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ABSTRACT 
 

One of the characteristics unique to mammalian evolution is the 

development of the neocortex.  The neocortex is a highly ordered six-layered 

structure, the development of which is tightly regulated.  The formation of the 

cortex is concomitantly dependent upon an outward expansion of the 

neuroepithelium, a tissue from which all of the neuronal subtypes and glia are 

born and differentiated, and the investment of blood vessels from the outer pial 

surface.  Orchestration of neurogenesis and blood vessel investment, or 

angiogenesis, in the cortex is critical for development; however, these processes 

are often studied independent of one another.  While independent investigation 

of neurogenesis can simplify a study, by removing the potentially confounding 

variable of angiogenesis, this reductionist approach ignores the fact that the two 

processes, neurogenesis and angiogenesis, are dependent upon each other and 

intimately linked.  

Many growth factors and transcription factors have roles in both 

angiogenesis and neurogenesis.  Members of both the Notch and Inhibitor of 

DNA binding (Id) family of proteins have been shown to guide differentiation in 

neural stem cells, as well as to direct the migration of newly sprouting vessels.  

Another growth factor that has been linked to both angiogenesis and 

neurogenesis is Vascular endothelial growth factor A (Vegf).  Vegf is a 



	
   x	
  

pleiotrophic factor linked to a broad range of effects in neurovascular systems 

including proliferation, migration and differentiation.  Vegf and its receptors 

(VegfR1, VegfR2, Nrp1, and Nrp2) are expressed in many of the cell types 

critical for neurogenesis and angiogenesis.  

The Vegf gene is expressed as three main isoforms in the mouse brain, 

and these isoforms have distinct biochemical properties based on the presence 

or absence of a heparin sulfate proteoglycan (HSPG) binding domain.  Vegf 

isoforms with the full HSPG-binding domain are not diffusible in the 

microenvironment (Vegf188) without proteolytic cleavage, those with a partial 

HSPG-binding domain are partially diffusible (Vegf164), and those lacking the 

domain entirely are freely diffusible (Vegf120).  The different biochemical 

properties of the Vegf isoforms allow gradients of Vegf to form in the 

microenvironment.   We hypothesize that it is through these differing gradients of 

Vegf isoforms, that Vegf can orchestrate neurogenesis and angiogenesis in the 

cortex. To investigate this, we took advantage of a transgenic mouse model in 

which mice express single Vegf isoforms (Vegf120 or Vegf188), or combinations 

of Vegf isoforms (Vegf120/188), and lack the Vegf164 isoform.  These mice 

represent a loss of function model (no Vegf164) as well as misexpression models 

through which we can test the role of Vegf in cortical neurogenesis and 

angiogenesis. 

The role of Vegf in angiogenesis has been extensively studied, and 

changes in the available isoform profile have been linked to altered blood vessel 

morphology, specifically vessel integrity (Vegf120) and capillary branching 
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(Vegf188).  Since angiogenesis is tightly coupled with neurogenesis, the 

dysmorphic vessels in the Vegf isoform mice may indirectly affect neurogenesis 

independent of the effect of altered Vegf isoform signaling and localization.  To 

minimize these indirect affects, we investigated the earliest stages of cortical 

development, beginning at stages where blood vessels have yet to invest the 

neuroepithelium.  At E9.5, a stage where there is no blood vessel investment 

within the dorsal-anterior neuroepithelium, we looked at the neuroepithelial 

transcriptome across the wild type and Vegf isoform mice.  We found that the 

Vegf isoform mice had unique patterns of expression when compared to wild 

type and to each other.  Identified amongst these differentially expressed genes 

were cohorts of genes with functional annotations linked to neurogenesis and 

neural stem cell differentiation.  

Based on the differentially expressed genes identified in the transcriptome 

profiles of the Vegf isoform mice we predicted that early neural stem cell 

proliferation, migration, and differentiation may be affected at later stages.  At 

E11.5, a critical period in neuroepithelial expansion, design-based stereology 

was used to quantify cells immunolabeled for markers of proliferation (Phospho-

histone H3, Phh3), differentiation (T-box related proteins 2, Tbr2), and migration 

(Calbindin, Calb1).  The Vegf isoform mice had shifts in total cell number, 

neuroepithelial Phh3-positive cells, Tbr2-positive cells, and calbindin1-positive 

cells with patterns of expression varying across the Vegf isoform genotypes 

relative to the wild type. 

In order to link disruption of normal Vegf isoform expression to changes in 
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early neural stem cell differentiation and the subsequent establishment of the 

neocortical layers, we used immunolabeling of cortical layer-specific markers to 

identify regionality in the developing cortical layers at P0.  At this time point only 

the deepest layers of the six-layered cortex are established, specifically layers V 

and VI.  Immunolabeling of markers specific to layer VI (Tbr1) and layer V( Ctip2) 

revealed extensive migration and lamination defects resulting in expanded 

regions of Tbr1-positive cells in layer VI of the Vegf isoform mice as well Ctip2-

positive cells in presumptive layer V relative to wild type. 

Taken together our evidence points to a role for Vegf in neocortical 

development.  To our knowledge, these data constitute the first comprehensive 

transcriptome assessment of the Vegf isoform mouse forebrain at a point in 

development that precedes major cortical lamination.  Our data support a key 

role for the different Vegf isoforms in modulating neural stem cell proliferation, 

differentiation, and migration with dramatic effects on early layer (VI and V) 

formation in the cortex.  Moreover, we have identified a role for Vegf188, 

particularly, in modulating normal tangential migration of the calbindin-positive 

neural precursor population that eventually gives rise to a major portion of the 

GABA-ergic interneurons of the cortex.  These results beg the question, “what is 

the long-term consequence for cortical function given the abnormal lamination 

observed with disrupted Vegf isoform profile?  Future studies will likely attempt to 

link early establishment of neural populations and their appropriate 

connections/positions with sensory processing abnormalities in a mature cortical 

system.  It is clear, however, that a full complement of Vegf isoforms is 
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necessary not only for normal blood vessel investment of the cortical 

neuroepithelium, but also for the proliferation, differentiation, and migration of 

neural stem cells that constitute the major functioning unit of the mouse cortex. 
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CHAPTER I 

INTRODUCTION 

Vascular endothelial growth factor A 

 Vascular endothelial growth factor (Vegf) A is a secreted protein important 

in the regulation and development of both the vascular and nervous systems. 

Vegf A is a member of the Vascular endothelial growth factor/Platelet-derived 

growth factor family of proteins. The major members of this family include Vegf A, 

Vegf B, Vegf C, and Vegf D all of which belong to a cysteine-knot superfamily of 

signaling biomolecules.  Evolution of Vegf is thought to have occurred early in 

animal development as the Vegf family of proteins is highly conserved between 

teleosts, reptiles, and mammals (Figure 1), and Vegf-like homologs, Vascular 

permeability factor (VPF), are found in Drosophila melanogaster and 

Caenorhabditis elegans (reviewed in [1], [2]). 

The Vegf A, henceforth referred to as Vegf, gene contains 8 exons that 

are alternatively spliced to generate several isoform variants in mouse: Vegf120, 

Vegf145, Vegf164, Vegf188, and Vegf208.  The predominant isoforms in the 

mouse brain are 120, 164, and 188 [3-6] (Figure 2A).  These isoforms differ in 

amino acid number and composition resulting in different biomolecular 

properties, including differential ability to bind heparin and heparan sulfate 

proteoglycans (HSPG), as well as the various Vegf receptors (Figure 2B).  
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Figure 1. Alignment of Vegf A homologues among vertebrate organisms. 

Using the Taxonomy browser and the Tree-building platform in the National Center for Biotechnology 

Information (http://www.ncbi.nlm.nih.gov), a dendrogram was constructed that highlighted the major 

taxonomic branch points and sequence relatedness among several vertebrate classes compared to the 

mouse Vegf A gene.  Genomic sequence alignments are indicated as 0-33% (white blocks/gaps), 33-66% 

(light green), or 66-100% (dark green). Speciation nodes are indicated with blue squares and duplication or 

gene split events are indicated with red nodes.  The number of homologues described to date are indicated 

for major subdivisions. 
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Figure 2.  Vegf splice variants form isoforms with differential diffusion
 potential.  (A) Genomic Vegf consists of eight exons, which after transcription 

can be spliced to form isoforms, with unique exon 5 borders.  The three main 

Vegf isoforms, Vegf120, Vegf188, and Vegf164, all share exons 1-5 (green) and 

8 (gold). Vegf120 lacks the HSPG-binding domain coded by exons 6 (red) and 7 

(blue) and is freely diffusible.  Vegf188 contains all eight exons, including the full 

HSPG-binding domain, and is non-diffusible.  Vegf164 lacks exon 6, but includes 

exon 7, leaving it with a partial HSPG-binding domain and is locally-retained and 

diffusible.  The Vegf isoforms dimerize in a head-to-tail fashion to bind to 

transmembrane receptors.  (B) This differential diffusion capacity allows for Vegf 

to act as an autocrine, juxtracrine, and paracrine signaling factor as depicted in 

this cartoon of a forming vessel lumen with perivascular cells producing Vegf 

isoforms that either diffuse (Vegf120 or Vegf164) or are retained in the local 

microenvironment (Vegf164 or Vegf188).  
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All of the Vegf isoforms share exons 1 through 5 and 8, however they differ at 

their exon 5 borders (Figure 2A).  The Vegf120 isoform lacks the HSPG binding 

domain normally coded for by exons 6 and 7, and is thus freely diffusible 

throughout the extracellular microenvironment [4, 7].  In contrast, the Vegf188 

isoform contains all 8 exons, including the full HSPG binding domain making it 

locally retained within the microenvironment, unless released by proteolytic 

cleavage.  Vegf164, the primary Vegf isoform in the mouse brain, lacks exon 6 

resulting in a partial HSPG binding domain allowing it to be both locally retained 

and diffusible [8-10]. These differences not only result in the isoforms having 

differential behaviors in the extracellular environment but also the capacity for 

differentially activating the Vegf receptors [11, 12].  

Vegf mediates its actions through a range of autocrine, juxtacrine, and 

paracrine effects via its interaction with integral membrane receptors.  Vegf 

signals through the receptor-tyrosine kinases (RTK), Vegfr1 and Vegfr2, as well 

as non-tyrosine kinase receptors Neuropilins 1 and 2, (Nrp1 and Nrp2)[12-16].  

Vegfr2 is well described for its role in promoting angiogenesis, the formation of 

new vessels from pre-existing vessels; and, more specifically, for its positive 

regulation of endothelial cell (EC) proliferation and migration. The role of Vegfr1 

in mediating Vegf signaling is less well understood.  Vegfr1 activation does not 

induce angiogenesis to the degree that Vegfr2 does; however, Vegfr1 has been 

suggested to function as a Vegf trap, or sink [17, 18]. If the “sink” hypothesis is 

valid, then Vegfr1 indirectly controls Vegf signaling by preventing binding to 
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Vegfr2 or other Vegf receptors.  Signaling through these receptors is mediated 

through the formation of various heterodimers and homeodimers, including 

combinations of the Vegfr2 receptor with Nrp1 or Nrp2 [19]. 

Not only do the different combinations of receptors elicit differential 

downstream signaling when bound to a Vegf ligand, but the Vegf isoforms also 

may have differential abilities as ligands to bind those receptors, particularly to 

the Nrps [12-14, 20-22].  The ability of Vegf to bind to and activate the Nrps is 

thought to be coded by exons 7 and 8, which are alternatively spliced in the Vegf 

isoforms.  For example, the Vegf120 isoform lacks the Nrp-binding domain coded 

by exon 7, and therefore has a lower affinity to bind to homodimers of either Nrp1 

or Nrp2 with, but might be able to bind more strongly to heterodimers of Vegfr2 

and Nrp1 or 2 [1].  Nrps are expressed on neural populations and are well 

described for their ability to bind semaphorins, which act as migratory cues 

during neurogenesis [23-25].   Because Vegf can signal via Vegfr2-Nrps 

heterodimers, signaling within both neural and vascular systems is possible.  

Vegf expression begins in the mouse as early as embryonic day (E) 7, and 

increases in expression throughout embryonic development, with prominent 

mRNA expression in the myocardium and neuroectoderm [26, 27].  Vegf 

expression decreases during adulthood; however, expression remains elevated 

in the vascular bed of the choroid plexus, lung alveoli, kidney glomeruli, and 

heart [1]. Vegf gene expression has been linked directly to oxygen levels in the 

microenvironment.  Moreover, hypoxic conditions during development or after 

injury have been shown to increase Vegf expression [28]. Hypoxia responsive 
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enhancers surround the Vegf gene and bind Hypoxia-inducible transcription 

factors that mediate Vegf expression in response to hypoxia [28].  

Initially described as Vascular permeability factor (VPF), Vegf was first 

identified for its ability to induce permeability in vessels of tumor ascites, in mice  

[29].  Since then Vegf and its receptors have been well described for their roles in 

vasculogenesis and angiogenesis [30].  Vasculogenesis is the formation of new 

blood vessels, de novo, versus angiogenesis, which is the sprouting of new 

vessels from existing vasculature.  In the mouse, vasculogenesis is largely 

restricted to the yolk sac, in which Vegfr1 expression has been detected as early 

as E6.5 by in situ hybridization [31]. Mice lacking Vegfr1 are embryonic lethal by 

day E9.0 as the cardiovascular system fails to form properly and development 

cannot proceed past this point [32].  Absence of a single allele of Vegf or Vegfr2 

also results in embryonic lethality indicating the importance of tightly regulating 

Vegf protein levels in a developing organism.  Decreased Vegf signaling impairs 

hematopoiesis and endothelial cell differentiation in the yolk sac [32].  Mice 

lacking Vegfr2 fail to form blood islands in the yolk sac, resulting in abnormal 

migration of the hematopoetic cells that arise in the yolk sac and migrate to the 

embryo proper.  In addition, the Vegfr2 heterozygous knockout mice display 

impaired vasculogenesis [33, 34] further supporting a critical role for Vegf and its 

receptors during early embryonic development.   

Vegf is crucial to angiogenesis as it drives endothelial cell proliferation and 

guides vessel migration, key cellular processes required for establishment, 

expansion, and elaboration of the vascular system.  Gradients of Vegf in the 
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microenvironment may direct angiogenesis and guide vessels to their targets.  

Ruhrberg and coworkers have proposed the gradient hypothesis for Vegf action 

with microenvironmental location established based on the different biochemical 

properties of the Vegf isoforms [4].  Specifically, they have proposed that 

Vegf120 has the potential to diffuse away from the Vegf producing cell since it 

lacks the HSPG binding domains.  In contrast, any Vegf188 would likely remain 

in close proximity to the cell producing it, as the protein would bind tightly to 

HSPG on the cell surface or embedded within the extracellular matrix.  The 

Vegf164 protein, possessing only part of the heparin sulfate proteoglycan binding 

domain would display intermediate properties, being bound locally as well as 

able to diffuse short distances (Figure 2B, 3) [4].  In keeping with the gradient 

hypothesis, the Vegf isoforms are differentially expressed in different organ 

systems during development and in the adult [3].  In addition, mice have been 

generated that express single or combinations of single Vegf isoforms in lieu of 

the normal complete profile of Vegf isoform expression [3, 5, 6, 35-37].  The 

altered Vegf gradient in mice expressing only the diffusible Vegf120 isoform 

leads to early postnatal embryonic lethality due to abnormal development of the 

cardiopulmonary system [3, 35].  In these mice, lung alveoli did not form and the 

normal capillary investment of the lung buds was incomplete.  Interestingly, it 

was later shown that Vegf188 is the predominant isoform in the mouse lung [3] 

and its absence in the Vegf120 mice completely prohibited normal lung 

development.  The Vegf120 mice also showed abnormal blood vessel formation 

in the retina and hindbrain leading to vessels with broad lumens and reduced 
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vessel branching.  Mice expressing only the locally-retained Vegf188 isoform 

were fully viable and exhibited highly ramified blood vessels with decreased 

lumenal diameter [5, 36, 37]. Altering the local Vegf gradient with locally-retained 

Vegf protein isoforms (Vegf188 or Vegf164) results in supernumerary blood 

vessels in the developing neural tube [38].  Therefore, the bioavailability of Vegf 

and its localization in the microenvironment are critical for directing angiogenesis. 

Crucial to the distribution of growth factors, such as Vegf, throughout the 

microenvironment are interactions with extracellular matrix (ECM) and HSPGs on 

the cell surface. Growth factors with HSPGs-binding domains have reduced 

diffusion through the microenvironment. In vitro, only Vegf120 and Vegf164 are 

detected in media conditioned with cells producing a normal contingent of Vegf 

isoforms.  Vegf188 protein, with its strong HSPG-binding domain, is not detected 

unless heparinase is added to the media, thereby releasing the Vegf188 from the 

HSPGs [8, 39].  

The ECM not only acts as a binding scaffold directing migrating cells, but 

components of the ECM can also sequester growth factors thereby establishing 

signaling gradients and working as co-receptors for growth factors.  The 

distribution of ECM components, like laminin (LN), fibronectin (FN), and HSPGs, 

in the microenviroment are critical to guiding the vasculature and disruption of 

ECM deposition or HSPG synthesis impairs normal developmental patterning 

[40-42]. Interactions between Vegf and the ECM regulate cell behavior and 

modulate Vegf receptor signaling.  Vegf binding to ECM is required for activation 

of some of Vegf’s signaling pathways [43].  For example, cells grown on 
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fibronectin-coated surfaces in culture and treated with Vegf display increased cell 

proliferation and cell migration relative to cells grown in the presence of either 

Vegf or FN alone [44]. Vegf binding to FN regulates endothelial cell proliferation 

via subsequent downstream signaling through integrin receptors and Vegfr2 [45]. 

The differential adhesion of Vegf isoforms to ECM and HSPG allows the isoforms 

to act as juxtacrine, autocrine, and paracrine factors depending on the isoform 

being expressed and its localization in the microenvironment. Differential Vegf 

isoform profiles can modify downstream Vegf signaling pathways based on 

differential isoform-dependent receptor activation. 

 

Development of the Nervous system in concert with the investment of the 

circulatory system 

Development of the circulatory system is concomitantly coordinated with 

the development of the nervous system [46, 47]. From an anatomical 

perspective, the layout of the peripheral nervous system closely parallels the 

patterning of the vessels of the circulatory system, suggesting the possibility for 

molecular and physical crosstalk between the two systems as they develop [46, 

48].  In the central nervous system (CNS), the early stages of forebrain formation 

are characterized by proliferation of an initially avascular neuroepithelium (NE) 

followed by blood vessel investment from the pial surface.  Angiogenesis always 

accompanies the expansion of the NE and is tightly coordinated, spatially and 

temporally, with neurogenesis in the NE [49-51] (Figure 3). 
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Figure 3.  Vegf isoform distribution in the developing neuroepithelial 
microenvironment. The differential ability of the Vegf isoforms to bind HSPG 

can establish gradients of Vegf within the cellular microenvironment.  The 

cartoon depicts the early stage of forebrain development with the pial surface 

shown to the right.  Here, vessels are established in the epidermal-derived 

surface tissue of the embryo and begin sending sprouts into the neuroepithelial 

tissue during angiogenesis (red cells).  Laminin in the basement membrane is 

shown as a blue deposit along the pial surface.  New capillary growth initially 

invests the tissue in a radial fashion with subsequent formation of lateral plexi 

later in development.  On the ventricular surface of the neuroepithelium is the 

zone of proliferating cells (blue cells) and the soma of radial glia (black cells).  

Intermediate progenitors (purple cells) and post-mitotic committed neural 

precursors (green cells) are closely associated with the radial glia processes and 

the ingressing blood vessels.  The Vegf120 (green circles), Vegf164 (gold 
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circles), and Vegf188 (blue circles) are produced by cells within the 

neuroepithelium, although the specific sources are unclear.  Vegf production is 

depicted to occur at both the ventricular and pial surfaces to include both major 

potential sources of this potent neural and angiogenic factor.  Gradients of Vegf 

are critical to serve as molecular guides for the migration and differentiation of 

neural stem cells from the ventricular surface in parallel with vessel investment 

from the pial surface into the expanding neuroepithelium.
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Neurogenesis is the process that drives neural stem cell (NSC) 

populations to differentiate into the neural and glial derivatives of which the CNS 

is comprised.  The formation of the CNS begins as a thin avascular neural tube 

that grows exponentially as neurogenesis proceeds.  Early stem cells expand in 

number through a rapid series of cell divisions, which in turn, thicken the neural 

tube.  This expansion of the neural tube results in a specific neuroepithelial 

arrangement of cells, with some of those cells possessing processes contacting 

both the inner and outer surfaces of the tube.  These particular cells are radial 

glia. Radial glia are a source of neural progenitors, they function to guide the 

differentiation of NSCs, the migration of post mitotic neurons, and the investment 

of blood vessels.  Radial glia are neural progenitors that divide and undergo 

mitoses along the inner surface of the neuroepithelium, known as the ventricular 

zone (VZ) [52, 53] (Figure 4A).  These cells also undergo an interkinetic nuclear 

migration between divisions, whereby the nuclei of these cells will cyclically 

migrate towards the outer surface of the neural tube, the pial surface (PS), and 

back during the S-phase of the cellular cycle [54]. Radial glia maintain contact 

with both the ventricular and pial surfaces throughout the life of the individual, 

although radial glial numbers are severely reduced in adulthood and the 

population is often referred to as tanicytes [52, 53].  Their role as a progenitor 

population in the adult has been hotly debated over the last several years [52, 

54]. 

Besides being a primary source of neural progenitors, radial glia serve as 

“guides” for post-mitotic neurons migrating to their appropriate destination within 
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the laminar neuroepithelium and as contact points for infiltrating blood vessels 

investing the neuroepithelium. As the metabolic demands of thickening 

neuroepithelium increase, blood vessels from the PS invest the tissues.  Radial 

glia, a source of Vegf, may serve to coordinate these processes by providing a 

gradient of Vegf for invading ECs and differentiating NSCs to follow [55] (Figure 

3).  Vegf binding of Nrp1 is required for invading ECs to properly migrate along 

the RG following the Vegf gradient as they invest the neuroepithelium [56], while 

Vegfr2 on migrating neurons guide them as they migrate along the radial glia. 

There is little known about the direct role that Vegf may play in regulation of 

radial gliagenesis, differentiation, or function; however, Vegf and Vegfr2 protein 

immunolabeling have been associated with radial glia, neurons, and the vascular 

cells of developing human fetal telencephalon [56, 57].  Vegf signaling promotes 

neuronal survival and axon outgrowth in cultured peripheral neurons [58, 59], in 

cortical neurons in culture, and in vivo [60, 61]. Vegf has been shown to be 

critical for coordinating sensory neuron migration and arteriole branching in both 

the peripheral nervous system and the neocortex, although the sources of Vegf 

were not clarified in these studies [56, 62].  Taken together, these results suggest 

a possible role for Vegf in coordinating neurogenesis and angiogenesis in the 

forebrain.  

Critical to the coordination of neurogenesis and angiogenesis is the 

collection of ECM molecules secreted by the radial glia and surrounding tissue. 

ECM provides pathway and migration cues, mediates cell survival via adhesion, 

and acts as a reservoir for growth factors, such as Vegf [63, 64].  Differential 
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binding of Vegf isoforms to ECM may establish Vegf gradients in the NE 

microenvironment that are dependent upon both diffusible and ECM-associated 

Vegf isoforms. Proper function of radial glia is not only dependent upon these 

growth factor signals associated with the surrounding ECM, but also upon direct 

interactions with ECM proteins, themselves.  For example, radial glia bind to 

laminin in the ECM via the α6 and ß1 integrin receptor complex [65-67].  Both α6 

and ß1 integrin subunits have been shown to be necessary for proper radial glia 

end-feet attachment at the cortical surface.  The loss of these subunits resulted 

in bundled end-feet that failed to correctly attach to the basal lamina at the 

cortical pial surface [68]. Apical and basal lamina contact with the basement 

membrane (via LN), as well as adherens junctions, are critical for proper radial 

glia differentiation and migration, as they help to anchor the cell and maintain a 

basal-apical polarity within the cell [52]. The polarity of radial glia, established by 

its apical and basal contacts with ECM, allows these cells to divide both 

symmetrically and asymmetrically.  The type of division radial glia undergo has 

been linked to unequal distribution of integrins along the cell surface, as well as 

other cytoplasmic components, and results in differential cell fates [52, 69] 

(Figure 4A).  When the NSC divides symmetrically and the two daughter cells 

maintain contact with the ventricular surface, both progeny maintain NSC status.  

When the daughter cells undergo asymmetric division and one of the progeny 

loses contact with the ventricular surface, that daughter progresses down the

neural lineage.
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Figure 4. Neural stem cell differentiation and early cortical layer formation.   

Early neural stem cells are Pax6+ cells found in the Ventricular zone (VZ).  

These cells divide along the Ventricular surface (VS), where they can undergo 

either a symmetric, proliferative, division to increase their numbers, or an 

asymmetric, differentiative division whereby one cell remains Pax6+ and the 

other becomes Tbr2+ and migrates from the VZ.  These Tbr2+ cells are known 

as intermediate progenitors, and they also can undergo both proliferative 

symmetric divisions, or differentiate into Tbr1+ positive cells with an asymmetric 

division.  These Tbr1+ cells are post-mitotic neurons, which migrate along the 

radial glia into the six-layered neocortex (a). The pallium of the adult neocortex 

forms six layers, and is populated by two major neuronal cell types, the pyramidal 

cell and the interneuron.  The six layers are formed from the inside-out migration 

and differentiation of pyramidal cells born in the VZ and subventricular zone 

(SVZ) of the pallium, as well as a tangential migration of Calb1+ interneurons 

born in the GE.  At E11.5, the pallium consists of two germinal zones, the VZ, 



	
   16	
  

consisting of Pax6+ cells, and the Subventricular Zone (SVZ), where the Pax6+ 

cells transition to Tbr2+.  At his stage the early post-mitotice neurons form a layer 

known as the Pre-Plate (PP).  At E13.5, the three initial zones stratify even more 

adding the intermediate zone (IZ), sub-plate (SP), and cortical plate (CP).  As 

Tbr2+ intermediate progenitors transition to Tbr1+ post-mitotic neurons they 

migrate from the IZ to the SP and CP.  The six-layers of the neocortex form 

between the CP and MZ, starting with the deepest cortical layer, VI.  

Concomitant with the stratification of the neocortex and radial migration of the 

pyramidal cells is the investment of Calb1+ interneurons arriving via a tangential 

migration along the pial surface from the GE.  
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Neural stem cell differentiation 

The thickening neural epithelium of the primitive forebrain becomes 

stratified early on as NSC populations give rise to additional radial glia, 

proliferating intermediate progenitor populations, or dedicated neuronal or glial 

lineages [70-74]. As NSCs shift from a proliferative stem cell state, they proceed 

along a stepwise differentiation pathway, reflected by a sequential shift in the 

expression of several transcription factors, paralleled by an outward migration 

(Figure 4A).  Most of the early proliferative cells are radial glia with Pax6-positive 

nuclei found in the ventricular zone.  These Pax6-positive cells can either expand 

their number with a symmetrical division, or they may undergo an asymmetrical 

division, with one daughter cell maintaining its Pax6 identity and the other 

daughter cell transitioning into a Tbr2-positive intermediate progenitor cell1 which 

begins to migrate into the subventricular zones.  The Tbr2-positive cells can take 

one of two potential paths, they may shift to a Tbr1-positive, post-mitotic, cell 

dedicated to a neuronal lineage, which then migrates into the intermediate zone 

(IZ) or subplate (SP) [70, 75]. A Tbr2-positive intermediate progenitor can also 

divide and form two more Tbr2-Positive cells, thus expanding the intermediate 

progenitor cell pool (Reviewed in [76]). Tbr2-positive cells and Tbr1-positive cell 

populations contribute directly to formation of the upper neocortical layers [55, 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  The term intermediate progenitor refers to a neural progenitor cell that divides outside of the 

ventricular zone, away from the ventricular surface.  In the literature, these cells are also known 

as basal progenitors. 
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75, 77, 78].  Due to the obvious need for a balance in the number, timing, and 

control of cell fate decisions, these sequential shifts in lineage determination are 

tightly regulated [74, 79, 80]. The key molecular regulators of these 

developmental transitions are an ongoing area of research, particularly in the 

multi-layered cortex [81, 82].  

Neocortical Development 

One of the distinctive features of the mammalian brain is its six-layered 

neocortex, consisting of two major neuronal cell types, the pyramidal cell and the 

interneuron.  The unique laminar structure of the neocortex is formed through the 

coordinated radial migration and differentiation of cortical pyramidal cells and the 

tangential migration of interneurons from the ganglionic eminence [83].  The 

neocortical layers are formed from the inside out, and are specified in an orderly 

fashion early in cortex development. 

Early NE (E9.5-12.5) of the developing cortex can be divided into three 

distinct germinal layers, starting at the inner VS is the ventricular zone (VZ), 

followed by the subventricular zone (SVZ), and finally an outer marginal zone 

(MZ) (Figure 4B). Neural progenitors are born in the VZ, and as they differentiate 

they migrate out and form additional layers.  After E13.5, two additional germinal 

layers form between the SVZ and MZ, the intermediate zone and subplate. It is 

from these germinal layers that the six-layered mammalian neocortex arises 

(Figure 4B).  Most of the pyramidal neurons that compose the six layers of the 

neocortex are born in and then migrate radially away from cells in the ventricular 

and subventricular zones.  The neurons of each layer are formed sequentially, 
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starting with those in the deepest layer, VI, and proceeding in an “inside-out” 

fashion forming layer I last. 

Coordinated with the outward laminar neocortical formation is the 

tangential migration of interneurons born in the ganglionic eminence (GE).  

These interneurons are Calbindin-positive (Calb1) and follow gradients of 

signaling molecules as they move from the Ganglionic Eminence (GE) into the 

developing pallium of the neocortex.  One such signaling molecule is the 

chemokine, Cxcl12, which is expressed in the pallium and the cerebellum.  The 

cortical interneurons use the receptor Cxcr4 to follow gradients of Cxcl12 as they 

migrate through the pallium [84].  Absence of Cxcl12 and Cxcr4 lead to major 

angiogenesis defects as well as lamination and migration defects in the 

developing cortex [85, 86].  Vegf has been shown to increase expression of 

Cxcr4 in endothelial cells [87, 88] and the converse is true as well with Cxcl12 

increasing expression of Vegf in a variety of cell types [88, 89].  The role of 

Cxcl12/Cxcr4 in mediating cellular migration has been revisited recently with the 

observation that Cxcl12 can signal through RDC1, now named Cxcr7 [90-92]. 

Exciting new data on the impact of Cxcl12 signaling through Cxcr4 (pro-

migratory) or Cxcr7 (anti-migratory) [93, 94] in the zebrafish nervous system has 

led to the idea that the impact of Cxcl12 signaling may be due to a balance 

between opposing signals through Cxcr4 or Cxcr7 with the outcome of the 

struggle determining whether or not cells migrate. To date, no direct link has 

been shown between Vegf and Cxcl12 signaling through Cxcr7. Microvascular 

ECs show altered expression of Cxcr4 and Cxcr7 in response to hypoxia, but not 

to direct application of Vegf [95].  How these various signaling pathways integrate 
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to regulate NSC fate choice and migration are unclear, but Vegf may be a central 

player based on its ability to impact both the vascular and neural systems 

directly. 

 

Experimental Model 

Given the contextual overlap amongst neural stem cell differentiation, 

neurogenesis, and vascular development, Vegf emerges as a central player, a 

factor potentially impacting all the cell types involved.  Using Vegf120/120 mice, 

Vegf188/188 mice, and Vegf120/188 mice (mice which express individual or 

combinations of Vegf isoforms) the role of Vegf and its isoform variants in these 

processes can be elucidated. Taking advantage of these mice, henceforth 

referred to as Vegf120, Vegf188, and Vegf120/188, neural stem cell 

differentiation can be examined in the presence of altered Vegf isoform profiles in 

mice expressing only Vegf120, only Vegf188, or both Vegf120 and 188 

(Vegf120/188). Since the Vegf164 isoform is the predominant form in the early 

forebrain [6], these former mice represent both loss of function (in the form of the 

Vegf164) as well as altered localization based on the differential distribution of 

the Vegf isoforms in the microenvironment.  The Vegf120/188 mice represented 

a putative functional rescue as the combination of isoforms provides both a local 

source of Vegf, the non-diffusible Vegf188, and a diffusible source in the non-

HSPG binding Vegf120. These different lines alter the microenvironmental 

localization of Vegf, without affecting total levels of available Vegf (Figure 5A and 

B).  
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Figure 5.  Vegf isoform expression in early forebrain.  Expression of 

individual Vegf isoform mRNA was quantified by qPCR in wild-type 

neuroepithelium at E7.5, E9.5, and E11.5 (n = 11).  Levels of each Vegf isoform 

are presented as a percent of total values for cDNA (DNA/ng RNA in original 

cDNA reaction) based on standard curves for each isoform. The proportion of 

Vegf isoform mRNA shifts as development proceeds, with the highest highest 

levels of Vegf120 and Vegf188 detected at E7.5.  After E9.5, the proportion of 

Vegf188 mRNA was reduced to basal levels, while the proportions of Vegf120 
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and Vegf164 switched with Vegf164 becoming the highest expressed Vegf 

isoform in the forebrain (A).  Vegf protein levels at E11.5 were quantified using 

an ELISA which detected total Vegf levels in the forebrain and midbrain based on 

a Vegf protein standard curve (B, N=7; ANOVA, no statistical difference among 

populations).  
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The effects of altered Vegf localization on NSC fate choice and subsequent 

cortical lamination can be investigated with these Vegf isoform mice.  Our 

hypothesis is that Vegf signaling plays a key role in regulating the coordinated 

investment of vasculature in the CNS and the differentiation, survival, and 

migration of NSCs in the forebrain, processes which ultimately lead to proper 

cortical layer formation.  We predict that altering Vegf isoform availability by 

changing the profile of expressed isoforms would alter cell fate choice at these 

critical junctures impacting proliferation, differentiation, and migration resulting in 

profound consequences for later neocortical layering specification. 

 It is important to note that the Vegf isoform mice display abnormalities in a 

range of developing organ systems, and that altering the Vegf isoform profile 

results in a variety of vascular abnormalities [3, 5, 6, 35-37].  Potential indirect 

effects of altered angiogenesis in the Vegf isoform mice must be taken into 

account when interpreting any results wherein the vascular system is 

compromised.  These indirect effects can be avoided to some extent, in the 

forebrain, by using time points before which the vasculature is established in the 

neuroepithelium (E9.5).  However, since NSC differentiation, migration, and 

subsequent cortical lamination occurs concomitantly with angiogenesis, we can 

not avoid these indirect effects entirely as later time points must be used to 

determine consequences of altering the Vegf isoform profile in these processes.  
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Chapter II 

METHODS 

Animal Husbandry 

The mice used in these studies are derived from the C57 Black 6 (C57Bl6) 

line of mice.  The mice are housed in Techniplast™ air filter flow chambers 

designed to cycle air and remove ammonia.  The mice are provided with nestlets, 

cardboard houses, and wood chips for bedding and allowed free access to water 

and standard mouse chow.  Mouse pups are weaned after three weeks, 

whereupon they are tail-cut for genotyping and ear-tagged.  Individuals are 

identified using an ear punch designating a number 0-4 on the right ear.  

Females are housed together with 2-3 mice per cages, where as males are 

caged separately unless paired for breeding or timed pregnancy.  

The viability of Vegf120 mice relative to wild type littermates was 

determined by analyzing genotype yields for E9.5 and E11.5 embryonic time 

points. A total of 53 E9.5 embryos from 9 litters derived from Vegf120 

heterozygous crosses yielded a roughly normal distribution of genotypes with 9 

wild-type (18%), 28 heterozygous (54%), and 14 homozygous (27%) embryos. A 

similar genotypic yield was obtained at E11.5 during neural epithelial expansion. 

A total of 42 E11.5 embryos from 13 litters derived from heterozygous crosses 

yielded 11 wild type (26%), 21 heterozygous (50%), and 10 homozygous (24%) 

embryos.  Crosses between Vegf188 homozygotes (188/188) and Vegf188  

(188/+) heterozygotes yielded 60% homozygotes and 40% heterozygote at E9.5, 

and 36.8% Vegf188 homozygotes at E11.5.  
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Generation Of Mouse Embryos And Genotyping 

Vegf188, Vegf120, and Vegf120/188 transgenic mouse lines have been 

described [3, 36, 96]. In brief, the Vegf120 mouse line was established by 

homologous recombination to remove exons 6 and 7.  The Vegf120 line is 

maintained using heterozygous Vegf120 mice, as the Vegf120 homozygous mice 

are early postnatal lethal, due to cardiopulmonary abnormalities [96]. The 

Vegf188 mice were generated by allelic recombination cloning in a cDNA for the 

Vegf188 construct to prevent alternative splicing of the transcript [3]. 

Vegf120/188 embryos were generated by crossing Vegf188 heterozygotes or 

homozygotes with Vegf120 heterozygous mice.  Timed-pregnant mice (plug date, 

day 0.5) were used to generate embryos at embryonic day (E) 9.5, E11.5, and 

E13.5.  Postnatal day (P) 0 collections were made within 6-8 hours of birth, 

although few Vegf120 mice survived to this stage.  Genotype was determined 

using purified genomic DNA obtained from tail cuts and standard PCR protocols 

described in [6, 33, 35].  Genomic DNA was purified from tail cuts (adult and 

embryonic) and digested overnight in lysis buffer containing 0.1 M Tris (pH 8.5), 

5 mM ethylenediaminetetraacetic acid (EDTA), 0.2% sodium dodecylsulfate 

(SDS), and 200 mM sodium chloride with constant rotation at 55˚C.  Genomic 

DNA was precipitated with an equal volume of isopropanol and then spun at 

14,000 g for 8 minutes at 4˚C.  The DNA was washed with 70% ethanol to 

remove residual salts and lysate solution then air dried overnight.  Genomic DNA 

was resuspended in 100 µl TE (50 µl for embryonic samples) for long-term 
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storage at -20˚C.  The genotype for each animal was determined using common 

forward primers and differential reverse primers that distinguished among the 

different alleles with cycling profiles optimized in the D’Amore Laboratory, 

Harvard Medical School (Appendix, Table I).  The cycling profile for the Vegf120 

reaction was a preheating at 94˚C (3.75 minutes), followed by 3 cycles of 94˚C (3 

minutes), 56˚C (2.5 minutes), 72˚C (3.75 minutes), followed by 25 cycles of 94˚C 

(3 minutes), 60˚C (2.5 minutes), 72˚C (3.75 minutes), followed by a final 

extension at 72˚C (50 minutes).  The cycling profile for Vegf188 was a preheating 

step at 95˚C (3.75 minutes) followed by 27 cycles of 95˚C (2.5 minutes), 62˚C (2 

minutes), 72˚C (3.75 minutes), followed by a final extension at 72˚C (20 minutes).   

The handling of animals and euthanasia methods used in this study followed the 

NIH recommended guidelines for the care and use of animals in research and 

was approved by the University of North Dakota Institutional Animal Care and 

Use Committee (#0807-1c, 0511-01, 1204-3c). 

 

Forebrain microdissection, RNA purification, and cDNA synthesis 

Embryonic heads (E7.5, 9.5, and 11.5) were collected and stored in 

RNALater (Life Technologies) prior to dissection.  For the E7.5 samples, the 

anterior neural ectoderm of three E7.5 embryos was pooled to obtain sufficient 

RNA for cDNA synthesis.  For the E9.5 embryos, the two dorsal anterior bulges 

of the telencephalon were dissected away from the forebrain with the top of the 

presumptive nasal process as the most anterior anatomical marker and the 

forward process of the diencephalon as the most posterior anatomical marker.  
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The optic cup was not included in the dissected material and pial vessel were 

peeled away where possible. The E11.5 embryo heads were dissected at the 

anterior divide between the forebrain and midbrain using the bifurcation of the 

cerebral artery as the dividing line.  Total RNA was purified with guanidinium 

isothiocyanate lysis and column purification using PicoPure™ RNA Isolation 

(Applied Biosystems) and the resulting RNA quantified with a Nanodrop 

spectrophotometer.  Optimal quality range for the RNA was based on an ratio of 

1.8-2.0 for the absorbance at 260λ relative to 280λ. Two hundred ng of total RNA 

was converted to cDNA in a 40µl reaction volume (GeneAmp kit, Applied 

Biosystems).  All cDNA samples were quality control checked with standard PCR 

amplification of glyceraldehyde phosphate dehydrogenase (Gapdh) prior to being 

used in the qPCR assay. 

 

Amplicon sub-cloning and Quantitative Real-Time PCR. 

Quantitative real time PCR was performed with SybrGreen detection on 

an ABI7300 Thermocycler (Applied Biosystems). Primer pairs were designed for 

each target and optimized for GC content (45-50%), base pair length (20-26 

oligonucleotides), melting temperature (54-60˚C), and amplicon size (75-450bp). 

Primer pairs were designed for each target gene and optimized using Primer 

Express Software (Applied Biosystems) and were selected based on minimal 

hairpin and dimerization secondary structures using Oligo Analyzer (Integrated 

DNA Technologies, Coralville, IA). The mRNA FASTA sequences were taken 

from the Entrez Gene website (http://www.ncbi.nlm.nih.gov/sites/entrez) and 
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compared against those found on Ensembl Mouse Gene Viewer 

(http://www.ensembl.org/Mus_musculus/index.html). (Appendix, Table II for 

Primers). Target product was amplified from E9.5 and E11.5 wild-type 

neuroepithelium cDNA and subcloned into TOPO-TA-Sequencing (Invitrogen). 

Cloned products were sequence confirmed using BigDye Terminator v3.1 Cycle 

Sequencing Kit (Applied Biosystems) on an ABI Prism 3100 Genetic Analyzer. 

Validated products were amplified off the plasmid, gel purified (Qiagen) and 

quantified with a Nanodrop spectrophotometer. The analysis approach was 

based on the previously published protocol [97] with modifications as described.  

Purified DNA product for each primer pair was used to generate 7-step standard 

curves plus a no-template control (only correlation coefficients of 0.98-0.99 were 

used) and the amplification efficiency was determined from the slope of the 

standard curve using the forumula: log10[-1/slope] – 1.  The efficiencies for the 

primers used ranged from 85-100%.  The CT of the product was corrected using 

the efficiency value determined for each primer pair and a melting curve was 

included in the run to check for uniform product formation based on the 

sequence-confirmed amplicon.  This approach was used to calculate the amount 

of target cDNA, relative to the standard curve, transcribed from the mRNA for a 

target gene and expressed in attograms of DNA per 2.5 ng total RNA loaded into 

the original cDNA synthesis reaction.  Amplification of 18S rRNA and Gapdh or 

18S rRNA alone were run for each cDNA sample in parallel and run as a 

covariate in the analyses to control for variation in transcription efficiency and 

sample-to-sample variation.  
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Transcriptional analysis with microarray 

Purified total RNA from forebrains of six wild-type, four Vegf120, four 

Vegf188, and three Vegf120/188 were submitted to Genome Explorations Inc. 

(Memphis, TN) for processing and preliminary analysis.  The RNA concentration 

was determined from the OD260/280 ratio and quality determined by capillary 

electrophoresis on an RNA 6000 Nano Lab-on-a-Chip kit and the Bioanalyzer 

2100 (Agilent Technologies, Santa Clara, CA).  15 ug of biotinylated cRNA were 

hybridized for 16 hr at 45˚C on the GeneChip 430.2 mouse array (Affymetrix; 

GPL1261).  GeneChips were washed and stained with streptavidin-phycoerythrin 

using the Affymetrix Fluidics Station 450, according to the manufacturer's 

protocol.  Hierarchical clustering analysis was conducted using the Probe 

Logarithmic Intensity Error Estimation (PLIER) [98] values for genes that were 

differentially changed at least 0.5 fold with t-test values < 0.05.  The log2-

transformed values were mean centered prior to clustering analysis by the 

farthest neighbor method with Euclidean distance and Pearson Correlation as the 

similarity metrics.  

 

Microarray Meta-Analysis 

Data from six E9.5 and four E11.5 wild-types microarrays of 

neuroepithelium, from Hartl and coworkers [99], were downloaded from the Gene 

Expression Omnibus (GEO record GSE8091) and were compared against our 

microarrays (6 E9.5 wild types, 4 E9.5 Vegf120, 4 E9.5 Vegf188, and 3 E9.5 

Vegf120/188 mice).  Although this is a public database, permission to use the 
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.CEL files was requested and obtained.  The E9.5 microdissection described by 

Hartl and coworkers [99] was comparable to our method and the resulting 

transcriptomic analysis showed similar arrays of genes expressed in the two 

batches of E9.5 samples.  Principal Components Analysis revealed a batch 

variation effect, so raw expression values from all arrays were PLIER normalized 

and Log2 transformed.  A MAS5 algorithm [100] was used to generate 

Presence/Absence calls for each gene, and probes with two or less “presence” 

hits were removed from further analysis. Samples were batch normalized using a 

non-parametric Empirical Bayes approach with a multivariate model (Batch, Age, 

and Genotype) using the R-script ComBat.R [101].  The BAMarray freeware 

[102] was used to run a Bayesian-modeled ANOVA to test for significance using 

the E9.5 wild types as a baseline for comparison.  Genes detected as 

significantly different from wild type were based on an adaptive test statistic that 

compared the increasing distance of the Z-cut from zero as well as the posterior 

variance as it approached one.  

The Affymetrix annotation numbers for genes that were differentially 

expressed among the Vegf isoform samples relative to wild type were uploaded 

onto the Database for Annotation, Visualization, and Integrated Discovery 

(DAVID) platform and the enriched functional clusters identified with the mouse 

genome as the population background [103, 104]. The geometric mean of all the 

enrichment values for each gene per cluster is expressed as the enrichment 

score. The Expression Analysis Systematic Explorer (EASE) score is expressed 

as a p value (determined from a modified Fisher’s exact test) [105] and reflects 
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the significance of the enrichment score as a representation of a functional gene 

group relative to the expected representation based on the population 

background.  Gene functional categories and individual networks of interest were 

identified based on high stringency settings and the EASE score [105].  

Differentially expressed genes from key clusters were run through the Search 

Tool for the Retrieval of Interacting Genes/Proteins (STRING) platform [106] to 

build interaction networks linking functional groups as well as individual genes.  

Based on literature reports of coexpression, binding data, and convergent or 

interacting pathways. 

 

Immunolabeling 

Embryos were fixed in buffered 3.7% paraformaldehyde and equilibrated 

to 30% sucrose. Cryosectioning of Neg50 (Fisher Scientifc/Thermo Scientific, 

Pittsburgh, PA) embedded tissue was cut with a Leica HM550 cryostat and slides 

were stored at -20˚ C.  Sections to be immunolabeled were blocked and 

permeabilized in 3% donkey serum, 2% goat serum (Vector Laboratories, 

Burlingame, CA), 0.1% Triton X-100, and 1% bovine serum albumin (BSA) in 

phosphate-buffered saline (PBS) overnight at 4˚C. The primary antibody 

incubation was 2 hours at room temperature or overnight at 4˚C. The absence of 

primary antibody or use of species-matched immunoglobulins were used as 

negative controls.  Rabbit polyclonal antibodies were phosphohistone H3 (PHH3, 

1:200, Upstate Biotechnology, Lake Placid, NY), Tbr1, Tbr2, Ctip2 (1:400, 

Abcam, Cambridge, MA), and G. simplicifolia lectin B4 conjugated to fluorescein 
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isothiocyanate (FITC; 1:200, Vector Laboratories, Burlington, CA).  For 

immunofluorescent detection of primary antibodies, a series of fluorochrome-

coupled secondary antibodies were incubated in block solution for one hour at 

room temperature (cy3, and FITC used at 1:200; Jackson ImmunoResearch 

Laboratories, West Grove, PA).  Nuclei were labeled with DAPI (Vector Labs) for 

standard fluorescent microscopy.  For immunolabeling at P0, the 

paraformaldehyde-fixed brains were equilibrated through a 30% sucrose 

gradient.  The head was placed nose side up and 5 µm coronal sections were cut 

through to the hippocampus.  Immunolabeling was conducted as described 

above.  Bound primary antibody was detected with species-matched fluorescent 

conjugated secondary antibodies (1:200, Jackson Immunologicals) and nuclei 

identified with DAPI (Vector Laboratories, Burlingame, CA).   

 

Design-based Stereology 

Design-based stereology was used to quantify PHH3-, Tbr2-, Tbr1-, 

Calb1-positive nuclei.  At E11.5 whole embryos were serially sectioned in the 

parasagittal plane at 30 microns with a ten-section interval.  Sections were 

immunolabeled with a PHH3, Tbr2, or Calb1 primary antibody, as described 

above, followed by a biotinylated secondary antibody (Goat anti-rabbit~biotin, 

1:200; Jackson Laboratories) and Vectastain Elite ABC horseradish peroxidase 

staining kit (Vector Labs) and developed with a DAB substrate kit for Peroxidase 

(Vector Labs) as per the manufacturer’s protocols.  The immunolabeled sections 

were counterstained with methyl green.  In brief, the DAB developed slides were 
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put in distilled water, and then a 0.5% methyl green in 0.1M sodium acetate 

buffer, pH 4.2 solution for five minutes.  Slides were then dehydrated through an 

alcohol series, including 95% alcohol, and two changes of 100% alcohol, and 

finally cleared in xylene and mounted with Vectamount Permanent Mounting 

Medium(Vector Labs). (protocol from www.IHCworld.com)  E13.5 heads were 

mounted nose up and 30 micron coronal sections were cut through the entire 

head using a ten section interval.  The sections were immunolabeled with Tbr1 

using the same protocol as the E11.5.  Primary antibody positive nuclei and total 

nuclei were counted using an Olympus BX51WI microscope with a motorized 

XYZ stage.  Quantification was done using the Optical Fractionator workflow in 

StereoInvestigator 9.0 (Microbrightfield, Inc., Wiliston, VT).  For the PHH3 

counting, the contour outlined the neuroepithelium within 100µm of the 

ventricular surface of the forebrain.  For the Tbr2 counting, the contour outlined 

the pial and ventricular surface of the forebrain.  Calb1 counting used a contour 

outlining the pial surface of the forebrain, with an internal boundary of 100 

microns from the pial surface.  The forebrain was also further subdivided into an 

area anterior to the Ganglionic Eminence (GE), the GE itself, and areas posterior 

to the GE.  Tbr1 tracing of the E13.5 embryos included contours of only one of 

the lateral ventricle.  The outer contour followed the pial surface while the interior 

countour followed the extent of Tbr1+ zone or 100 μm from the pial surface, 

whichever was thicker.  Tracing of sections began immediately before the 

emergence of the GE and stopped on the section after the re-joining of the 

medial and lateral GE.  For all counts, positive nuclei and total nuclei were 
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counted in every 10th section in systematically-selected frames based on optical 

dissector frames and grid sizes empirically determined for each counting 

paradigm so that the coefficient of error was less than 0.1 (10%). The total 

numbers were estimated using the optical fractionator algorithms in 

Stereoinvestigator V9 (Microbrightfield). The formula N=1/ssf/asf/hsf*ΣQ- is used 

for the estimation, where ssf = section sampling fraction(10), asf = area sampling 

fraction (area sampled/ total area), hsf = height sampling fraction (counting frame 

height/30μm, and ΣQ- (total particle count). Neuroepithelial volume was 

measured based on the total tracing area, the actual z-plane measured section 

thickness (to account for tissue shrinkage), and the section interval.  The 

statistical analyses were performed using GraphPad Prism  (GraphPad Software, 

Inc., LaJolla, CA) or JMP (SAS Institute Inc., Cary, NC).  Comparisons between 

wild type, Vegf120, Vegf188, and Vegf120/188 mice were run using standard 

Analysis of Variance with Dunnett’s post hoc test for comparisons of Vegf 

isoforms against a wild type baseline.  Data shown are the mean +/- the standard 

error of the mean (SEM) with the number of replicates indicated in the figure 

legend. (Table of Sampling parameters, and Tracing).  

 

Protein Quantification and ELISA Assays.  

Forebrain tissue from E11.5 embryos was microdissected and triturated in 

modified RIPA lysis buffer (25 mM Tris-HCl pH 7.6, 150 mM NaCl, 1% NP-40, 

1% sodium deoxycholate, 0.1% SDS) containing a cocktail of protease and 

phosphatase inhibitors (Sigma) and passed through 18 and 23 gauge needles to 



	
   35	
  

disrupt cells and shred genomic DNA.  Non-soluble material was separated from 

the lysed material with a 10-minute centrifugation at 20,000 rcf and samples were 

stored at -80˚C.  Total protein from E11.5 brain tissue was determined with a Bio-

Rad RCDC Protein Assay and loaded at the appropriate concentration for each 

ELISA detection assay.  For detection of Vegf protein, 50 µg of total protein was 

loaded in a Vegf ELISA kit (R & D Systems) with the assay conducted following 

manufacturer’s instructions.  The Vegf levels in E11.5 lysate samples were 

determined using a eight point Vegf standard curve starting at 500 pg and serially 

diluted 1:1 seven times.  The r2 for the standard curve was 0.9992 and the slope 

used to calculate the unknown concentrations within the linear range of the 

assay.  Values are expressed as pg Vegf/µg total protein in the assay.  For 

detection of fibronectin protein we used 2 µl of E11.5 lysate material loaded onto 

a precoated ELISA plate (Innovative Research, Novi, MI) and processed 

according to manufacturer’s instructions.  The fibronectin levels were determined 

using a fibronectin standard curve run in parallel and ranging from 500 pg to .005 

pg with an r2 of 0.998.  Values are expressed as pg fibronectin/µg total protein.  

For detection of laminin, we developed our own standard ELISA assay approach 

by coating a 96-well assay plate coated overnight at 4˚C with either a 10-fold 

dilution curve of species laminin protein, 5000 to 5 pg/ml (Sigma) or with E11.5 

lysate solution diluted 1:30 in sodium carbonate coating buffer (pH 9.5).  After 3 

washes with 1X PBS with 0.05% Tween-20, the plate was blocked with 0.1% 

bovine serum albumin in PBS followed by incubation with 5 µg/ml of rabbit 

polyclonal antibody to laminin (L9393; Sigma).  The laminin assay was optimized 
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for coating conditions, lysate coating concentration, detection antibody 

concentration, and specificity to laminin using Bovine Serum Albumin and 

fibronectin as negative controls.  The concentration of laminin in the lysates was 

calculated based on a standard curve with an r2 of 0.99.
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Chapter III 

Results 

 

 Angiogenesis and Neural Development in the early forebrain 

The early mouse brain starts as a neural tube and is specified at a region 

of the developing embryo known as the neural plate.  Early on in neural 

development, the neural tube differentiates into three distinct vesicles, the 

prosencephalon (forebrain), mesencephalon (midbrain), and rhombencephalon 

(hindbrain). The prosencephalon then gets further subdivided into the 

telencephalon, which gives rise to the cortex, and the diencephalon (Figure 6).  

At E9.5 the mouse telencephalon is little more then a hollow neural tube, 

surrounded by pial vessels and lined on the inside with NE.  The telencephalon 

can be divided dorsally and ventrally.  The dorsal telencephalon gives rise to the 

pallium, from which the majority of the glutamatergic pyramidal neurons are born, 

with the anterior-lateral portion of the dorsal pallium giving rise to the neocortex.  

The ventral half of the telencephalon forms the medial, lateral, and caudal 

ganglionic emininences (MGE, LGE, and CGE respectively).  It is from the MGE 

that the majority of the gamma-Aminobutyric acid (GABA)-positive interneurons 

are born and which eventually migrate into the pallium of the neocortex. (Figure 

7) GABA is the major inhibitory neurotransmitter in the cortex, allowing for tight 

signaling conduction control through the network via GABAergic interneurons. 
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Figure 6.  Early brain vesicle formation.  The early neural tube of the 

developing brain gets specified into several compartments, or vesicles. The 

earliest vesicles specified are the forebrain (F, prosencephalon), midbrain (M, 

mesencephalon, and hindbrain (H, rhombencephalon).  From these three 

vesicles, five more arise; from the forebrain comes the telencephalon (Tn), 

from the midbrain comes the diencephalon (Dn) and mesencephalon (Mn), 

and from the hindbrain comes the metencephalon (Mt) and myelencephalon 

(My).  It is from the telencephalon that the neocortex forms. 
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Figure 7. Anatomical areas in the developing telencephalon.  The early 

telencephalon can be divided into several basic anatomical areas.  In this coronal 

section in the E13.5 mouse are the Medial Ganglionic Eminence (MGE), Lateral 

Ganglionic Eminence (LGE), Subpallium (SP), Lateral Pallium (LP), Dorsal 

Pallium (DP), Medial Pallium (MP), and Ventricle (V).   
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In parallel with the differentiation of the telencephalon into the primitive 

cortex, angiogenesis begins in the mouse cranial region by E7.5.  By E9.5 the 

early telencephalon is enveloped by a series of pial vessels; however, at this 

stage the pial vessels cover but do not invest the NE.  Periventricular vessels 

invest the developing brain in a dorsal to ventral, caudal to rostral pattern and the 

major plexi are established in the NE by E11.5 with capillary expansion 

continuing throughout development [49].  Vascular investment of the murine 

brain is guided primarily by Vegf and its receptors Vegfr2 and Nrp1 [107].  Vegf is 

expressed in the ventricular zone, while migrating endothelial cells of investing 

vessels express Vegfr2 [108, 109].  Endothelial cells in mice lacking Nrp1 fail to 

invest the NE in the forebrain and hindbrain [56].  In the absence of Nrp1, the 

endothelial tip cells that initiate new vessel formation and migration follow 

normally along the radial glia guides, but fail to turn or sprout in the locations 

where lateral plexus formation should occur.  These results further emphasize 

the importance of microenvironmental signaling with regard to fine-tuning the 

cerebral vasculature [56]. 

   

Altered Vegf isoform profile affects the NE transcriptome at E9.5 

In order to clarify the role of Vegf and its predominant isoforms in early 

cortical development, we took the approach of analyzing transcriptome-level 

changes associated with altered Vegf isoform expression at E9.5.  This allowed 

us first to determine which genes were being expressed at E9.5 in the 

neuroepithelium and to identify possible regulatory networks developmentally 

linked downstream of altered Vegf isoform expression.  To this end, we isolated 
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early neuroepithelium from E9.5 wild type mice (N=4) as well as mice expressing 

either the Vegf120 isoform (N=4) only, or the Vegf188 isoform (N=4). Using these 

mice we were able to look at the effects of Vegf in the absence of the diffusible 

isoforms, and in the absence of the locally-retained isoforms. We chose the E9.5 

time point in order to look at shifts in gene expression attributable to the changes 

in available Vegf isoform profile and localization independent of periventricular 

vascular investment in the forebrain.  At E9.5, the pial vessels have elaborated 

on the surface of the developing forebrain, but significant sprouting into the 

primitive telencephalon does not occur until E11.5 [48, 49, 110].  This early time 

point also represents a period during which the NSCs within the neuroepithelium 

are relatively homogenous, as they have yet to begin the rapid differentiation that 

occurs at later time points.  

Using the transcriptome-wide profiles in gene expression we compared 

overall patterns of expression across wild type and Vegf isoform mice, identifying 

key gene clusters shifted up or down with an altered profile of Vegf isoform 

expression.  We conducted ANOVA analysis on PLIER normalized array data 

from wild type and Vegf isoform mice to generate a heat map quantifying 

differentially-expressed genes among replicate animals from 2-3 different litters 

(Figure 8).  With this analysis approach, genes were identified based on a fold 

change greater than 1.5 and a p-value of 0.05, or less. This approach identified 

257 genes differentially expressed in the Vegf188 NE, 330 genes in the Vegf120 

NE, and 24 genes that were shifted in both groups, relative to wild type (Figure 

8).  
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Figure 8.  E9.5 Vegf isoform mice display unique transcriptome profiles.  

Total RNA was purified from E9.5 mouse forebrains (4 WT, 4 Vegf120, and 4 

Vegf188) and mRNA was quantified on an Affymetrix 430.2 array.  PLEIR 

normalized signal values for the differentially expressed genes were log2 
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transformed and mean centered before undergoing unsupervised hierarchical 

clustering using the Complete Linkage algorithm based on a Euclidean Distance 

similarity metric.  The individual genotype samples were clustered based on a 

Pearson Correlation.  Genes were considered differentially expressed based on 

an ANOVA p-vale <= 0.05, an absolute fold change => 1.5, and a independent t-

test p-value <= 0.05.  Cluster I contained 49 probe sets which were generally up 

in the Vegf120.  Cluster II contained 137 probe sets which were generally up in 

wild-type relative to the Vegf isoform mice. Cluster III contained 26 probe sets 

that were up in the Vegf188 mice.  Cluster IV contained genes down in the 

Vegf120 mice (189 probe sets) and Cluster V contained genes down in the 

Vegf188 mice (114 probe sets). Vegf isoforms present in each array set are 

represented by either “+” if present, or a “-“ if not.  Total RNA was collected from 

forebrain neuroepithelium dissected based on the red line (B). 
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Based on our analysis, it was clear that misexpression of the Vegf isoforms, 

shifting the profile to either diffusible (Vegf120) or locally-retained (Vegf188) 

altered the transcript profile significantly.  Moreover, the pattern of gene 

expression was distinct in the Vegf120 mice relative to the Vegf188 indicating 

that not just the shift in isoform expression, but the type of isoform expression 

was a distinct factor in the transcriptome profile (Figure 8). 

In order to further clarify the role of diffusible versus locally-retained Vegf, 

we look at the transcriptome profile of the E9.5 Vegf120/188 neuroepithelium.  

The Vegf120/188 mouse represents a potential rescue phenotype as it has both 

diffusible and locally retained isoforms.  It also represents a loss of function, in 

that it still lacks the primary Vegf164 isoform.  We ran this second set of arrays 

with three Vegf120/188 samples and two wild type samples, the latter used as 

baseline controls for comparison with the initial microarray. We combined our 

previous microarrays with these five additional arrays and identified genes that 

were differentially expressed using the same analytical method as described 

above with one exception.  The PLEIR normalized values were also mean-

centered to correct for batch effects between technical replicates. Using this 

method with wild types as a baseline, we identified differentially expressed genes 

in the Vegf isoform mice: Vegf120 (112 genes), Vegf188 (140 genes), and 

Vegf120/188 (152 genes).  The annotated gene lists and their fold change 

relative to wild type in the array are provided in Table III.  The pattern of gene 

expression was quite distinct among the Vegf isoform mice, with different gene 

clusters down-regulated in the Vegf120 and Vegf188 mice, relative to the wild 

type mice. 
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Figure 9.  E9.5 Vegf120/188 forebrain transcriptome is unique from wild-
type.  Vegf120/188 (yellow, n=3) forebrain transcriptome differs significantly from 

wild-type (green, n=6), implying that the presence of both a diffusible and non-

diffusible isoform is not sufficient to rescue the wild-type phenotype and the 

absence of the primary Vegf 164 isoform.  The Vegf120/188 transcriptome 

phenotype appears to be a combination of the Vegf120 (red, n=4)) and the 

Vegf188 (purple, n=4)) transcriptomes. Cluster I shows increased expression in 
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the wild-type mice compared to the three isoform mice (32 probe sets).  Cluster II 

showed a general decrease in expression in the Vegf188 and Vegf120/188 mice 

(111 probe sets).  Cluster III showed a decrease in gene expression among the 

wild-type mice (55 probe sets).  Cluster IV showed a decrease in expression 

amongst the Vegf120 and Vegf120/188 mice (83 Probe sets) Presence (+) or 

absence (-) of a Vegf isoform in a particular group is indicated below the heat 

map. Analysis was performed as described in Figure 8, with the addition of a 

batch normalization.  Cluster information can be found in Appendix Table III. 
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The pattern for the Vegf120/188 mice appeared intermediate between the 

Vegf120 and Vegf188 mice rather than a recapitulation of the wild type 

expression pattern as would have been expected from a “rescue” phenotype 

(Figure 9). It is important to emphasize that while the Vegf120 mice are early 

postnatal lethal, both the Vegf188 and Vegf120/188 mice are viable and breed 

normally. 

 In a separate, more in-depth approach to analyzing the microarray data 

set, we conducted a Bayesian analysis on batch- and PLIER-normalized data 

sets to potentially elicit additional differential gene expression patterns and 

enriched gene functional clusters.  We chose the Bayesian approach based on 

its ability to reduce the false discovery rate while maintaining acceptable 

statistical power in a highly dimensional data set, with multiple batches [111].  In 

order to further increase the statistical power of our study, we compared our E9.5 

wild type samples to each of the E9.5 Vegf isoform samples, as well as to E9.5 

and E11.5 wild types that had been previously published for a comprehensive 

early forebrain transcriptomic analysis by Hartl and coworkers [99].  Our rationale 

for including the E11.5 time point from the Hartl et al. study was based on our 

observation that many of the upregulated genes in the Vegf120 mice were 

associated with later stage differentiation of cortical neuron populations.  

Therefore, we speculated that the comparison with the later timepoint (E11.5) 

would provide a developmental backdrop if we were observing precocious 

differentiation in any of the Vegf isoform mice.   
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Figure 10.  Meta-analysis of transcriptome shifts of embryonic forebrain in 
Vegf isoform mice compared against an E9.5 wild type background.
  Microarray data from two previously published articles were downloaded from 

the Gene Expression Omnibus and incorporated into our analysis [34,56]. 

Unprocessed .CEL files were downloaded from GEO (6 E9.5 wild types, 4 E11.5 

wild types) and analyzed with our microarray runs (6 E9.5 wild types, 4 E9.5 

Vegf120, 4 E9.5 Vegf188, and 4 E9.5 Vegf120188).  All runs were PLIER and 

batched normalized, Presence/Absence filtered with MAS5, Log2 transformed, 

and tested for significance using a Bayesian modeled ANOVA run with BAMarray 

software and expressed as Zcuts relative to the E9.5 wild types.  The genes that 

were significantly up-regulated (red) or down-regulated (green) were selected 

based on an adaptive test statistic that used the increasing distance of the Zcut 

from zero and the approach of the posterior variance as it neared one.  The 
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shrinkage plots shown are the Zcut values graphed relative to the posterior 

variance. Significance is a reflection of distance from the 0 point for E9.5 wild 

type versus Vegf120 (A), Vegf188 (B), Vegf120/188 (C), and E11.5 wild type (D).  

Genes that were not significantly changed (Blue, Not Sig) center around a Zcut of 

zero and an increasing posterior variance away from one.  Appendix Table IV 

contains the specific information on the individual probes and their scores. 



	
  50	
  

In total, this comparison included our E9.5 wild types, Vegf120, Vegf188 and 

Vegf120/188 samples (n=6, n=4, n=4 and n=3; respectively), and previously 

published E9.5 wild types (n=6), E11.5 wild types (n=4).  Differentially expressed 

genes were identified using a Bayesian ANOVA performed by BAMArray.  We 

developed shrinkage plots using the BAMArray analysis that express the 

confidence of differential gene expression as a Z-cut (modified z-score) relative 

to the posterior variance of the comparison (Figure 10). In the Vegf120 mice we 

observed 285 genes that were up-regulated and 407 genes that were down-

regulated with respect to the E9.5 wild type samples.  The Vegf188 mice showed 

the fewest genes statistically changed relative to wild type with 260 up-regulated 

and 364 down-regulated genes.  The Vegf120/188 had the greatest number of 

genes shifted relative to wild type with 371 up-regulated and 1618 down-

regulated genes.  The E11.5 wild type mice had 2,895 genes up-regulated and 

10,667 genes down-regulated, a reflection of the dramatic developmental 

changes occurring from E9.5 to E11.5 in the forebrain.  As a control we 

compared the batch normalized E9.5 wild types from the three different technical 

batches, including our two batches (N=4, N=2) and that of Hartl and coworkers 

[99] (N=6) and found no differentially expressed probes (Figure 11), 

demonstrating proof of principal for our technical and analytical approaches.  

   In addition to identifying the differential gene expression patterns between 

each of the isoform mice and the wild type forebrain samples, we wanted to 

compare changes in gene expression profiles generated between the isoform 

mice relative to the shifts that occurred relative to E9.5 wild types.    
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Figure 11. Separate technical batches of E9.5 wild type forebrain 
microarrays display no statistically different genes in a meta-analysis.
  Zcuts were obtained from three separate wild type technical batches using a 

Bayesian-modeled run in BAMarray.  E9.5 wild type forebrains from our two 

technical batches (WT A, n= 4, and WT B, n = 2) were compared to those from 

and Hartl et al., 2008 (WT C, n = 6) {Hartl, 2008 #805} and plotted on a scatter 

plot comparing WT A versus WT B on the y-axis and WT A versus WT C on the 

x-axis.  No genes were detected as significantly changed in any of the technical 

runs, demonstrating a proof of principle for our meta-analysis approach. 
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To this end, we generated scatter plots of the Z-cut values generated by group 

for each of the Vegf isoform mice relative to wild type.  We compared each group 

to each other (Figure 12 A, C, and E).  The Vegf120 and Vegf188 mice had 71 

genes that were either up or down-regulated together.  The Vegf120 and 

Vegf120/188 shared 81 genes that shifted in the same direction while the 

Vegf188 and Vegf120/188 shared 68 genes.  When the Vegf isoform mice were 

compared to the E11.5 mice a large proportion of genes were shifted in a similar 

direction (Figure 12 B, D, and F; Vegf120 = 219 genes, Vegf188 = 92 genes, and 

Vegf120/188 = 662).  The differentially expressed genes identified by this 

approach are listed in Table IV along with their Z-cut score and the direction of 

change in the array. 

 To validate our microarray analysis we performed qPCR on a subset of 

genes.  Genes were selected for qPCR analysis based on the criteria that they 

were either detected as significantly changed in the microarray analysis, or have 

a well-established role in neurogenesis based on evidence in the literature. We 

collected total RNA from the neuroepithelial forebrains of wild type, Vegf120, 

Vegf188, and Vegf120/188 mice using the same dissection as described for the 

microarray collections.  200 nanograms of the total RNA was converted to cDNA 

for use in the reactions.  We looked at 21 different genes, including two reference 

genes, Gapdh and 18s rRNA. ANOVAs using the reference genes as covariates 

followed by a Tukey’s post test were used to test for significance.  The ANOVA 

tables, group signal means, p-values, and fold changes versus wild type are 

consolidated in Tables V-VII.  In brief, the results of the individual runs will be 

described below. 
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Figure 12.  Cross-comparisons of transcriptional shifts between Vegf 
isoform forebrains and embryonic time points.  Zcuts from two different group 

comparisons versus wild type were plotted on the X and Y axis.  Scatter plots on 

the left side compare how pairs of Vegf isoform forebrains shift relative to E9.5 

wild type.  Scatter plots on the right side compare shifts in gene expression of the 

individual E9.5 Vegf isoforms versus E11.5 wild types all relative to an E9.5 wild 

type baseline.   Genes are sorted based on being significant in any one group but 
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not the other (Blue and Green boxes), significant in both groups (Red boxes), or 

not significant in either (Grey boxes).  Genes found in the upper-right and lower-

left quadrants are shifted in the same direction relative to the E9.5 wild type base 

line. 



	
  55	
  

 

Gapdh and 18s rRNA were selected as reference genes to use as a basis 

for comparison in covariate analyses of selected genes of interest.  One-way 

ANOVAs of 18s rRNA and Gapdh demonstrated that there were no significant 

shifts in expression between any group (Table V, g,h).    

Shh is a growth factor critical to the dorsal-ventral patterning of the 

telencephalon.  Shh serves as a morphogen, whose effects are dependent upon 

its concentration.  Shh is a ventralizing factor in the forebrain and its actions are 

mediated by the Gli family of transcription factors and Smoothened (Smo) 

(reviewed in[112]).  Our qPCR analysis demonstrated that the Vegf188 mice had 

a roughly fifty percent decrease in expression levels versus wild type and the 

Vegf120 mice (p < 0.1).  No other groups were statistically different (Table V, a). 

 We also quantified Notch3, which is a member of the large Notch family of 

proteins that are important regulators of both vascular development and neural 

stem cell proliferation and differentiation (reviewed in [113, 114]).  In particular 

Notch3 has been shown to regulate differentiation of neural stem cells and push 

them towards an astroglial fate at later stages of development [115].  qPCR 

analysis of Notch3 at E9.5 showed a fifty percent decrease in expression in the 

Vegf188 mice compared to all other groups (P < 0.05; Table V, b).   

 Cxcr7 and Cxcl12 are key regulators of migration in both the angiogenic 

and neural migration pathways[93, 94].  Both the Vegf120 and Vegf188 mice had 

decreased expression of Cxcl12 compared to wild type and Vegf120/188 (p < 

0.1).  Cxcr7 was also down in the Vegf120 and Vegf188 mice relative wild type; 
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however, the difference versus Vegf120/188 was not significant (Table V c,d).  

Changes in these chemokines imply that altered Vegf isoform profile may have 

repercussions in later neural migration pathways and angiogenesis.   

 The Vegf receptor Nrp1 showed increased expression in the Vegf120/188 

mice relative to the other groups (p < 0.1), while Nrp2 expression was down in 

both Vegf188 and Vegf120/188 mice relative to the wild type (p < 0.05).  Since 

these Vegf receptors are found in both the nervous and vascular systems, 

changes in their expression has the potential to affect both systems (Table V e, 

f).  

 Suz12 is a member of the Polycomb group proteins, and serves to 

regulate histone methylation[116].  Suz12 is expressed in the neocortex during 

development, and heterozygous knockout results in neural tube defects and 

brain malformations[117].  The Vegf120 and Vegf120/188 mean values 

demonstrated a trend of increased expression versus wild type and Vegf188; 

however, the differences were not statistically significant (Table VI, a). 

 DNA methyl-transferase 3a, Dnmt3a, is a modulator of gene expression.  

Transition from Dnmt3b to Dnmt3a is an indicator of neuronal differentiation, and 

marks the transition of an intermediate progenitor becoming an early post mitotic 

neuron[118].  qPCR quantification demonstrated that the Vegf188 mice had a 

three-fold lower expression compared to wild type, and a ~2.5 (Log2) fold lower 

expression the Vegf120 and Vegf120/188 (p < 0.05; Table VI, b). 

 Id1 is key regulator of neurogenesis and angiogenesis.  Disruption of Id1 

expression results in precocious differentiation of neural stem cells, and the 



	
   57	
  

failure of angiogenic investment of the CNS [119].  Changes in the Vegf isoform 

profile resulted in isoform specific shifts in Id1 mRNA expression.  Expression 

was down in the Vegf188 mice and up in both the Vegf120 and Vegf120/188 

mice versus wild type, however only shift in the Vegf120/188 mice were 

significant (p < 0.05). Id1 was significantly down in Vegf188 versus Vegf120 and 

Vegf120/188 (p < 0.05; Table VI, c).  These isoform dependent shifts indicate 

that Vegf isoform profile may modulate early neural stem cell differentiation. 

 Pax6 is a well established marker of neural stem cells in the ventricular 

zone of the developing cortex as expression of this key transcription factor is 

linked to maintenance of the neural stem cell phenotype.  Compared to wild type, 

expression of Pax6 was reduced roughly 60% in the Vegf isoform mice (p < 0.05, 

Table VI, d).  Reduction in Pax6 may be indicative of a reduction in the early 

neural stem cell population, or a premature transition from a proliferative to a 

differentiative state. 

 Hey2 is an essential downstream effector of Notch signaling.  As an 

effector of Notch, changes in its expression could have consequences for both 

neurogenesis and angiogenesis.  Hey2 knockout mice have a clear phenotype 

that results in early neonatal death with characteristic vascular defects with 

abnormal heart formation and incomplete capillary formation in the pups, 

particularly notable in the CNS [120].  In Drosophila, there is only one 

homologue, Hey, that mediates Notch-induced directional control of symmetric 

(proliferative) versus assymetric (differentiative) neural stem cell divisions [121].  
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The Vegf isoform mice all showed a statistically significant increase in Hey2 

expression versus wild type (p < 0.05 Table VI, e).  

 Fezf2 is a well described regulator of differentiation, and is part of the 

network which can direct the differentiation of intermediate progenitors and early 

post-mitotic neurons in the neocortex [122].  Fezf2 was not statistically significant 

in any of our groups, however expression levels in the Vegf120 mice were one-

fold (Log2) change lower than wild type (p = 0.18) and Vegf120/188 (p = 0.11). 

 Pax3 is another regulator of stem cell maintenance and neurogenesis 

[123].  Pax3 expression was slightly up in Vegf120 mice versus wild type and 

slightly down in Vegf188; however, these shifts were not significant.  The 

expression in the Vegf120 mice was significantly higher than that detected in the 

Vegf188 (p < 0.05; Table VI, g).  

Foxm1 is a cell cycle regulator and its expression is dependent upon Pax6 

regulation[124].  Pax6-induced changes in Foxm1 expression can result in 

alterations of cell cycle duration.  Foxm1 expression is significantly down in all of 

the Vegf isoform mice relative to wild type (p < 0.1; Table VI, h).   

Zfhx1b specifies neural fate early in development [125].  In our qPCR 

analysis, Zfhx1b expression was down seven-fold (Log2) in the Vegf188 mice 

relative to wild type and Vegf120/188 mice.  The Vegf120 mice were also 

reduced relative to wild type; however, the difference was not significant (p = 

0.13; Table VI, i). 

Laminin is a heterotrimeric ECM protein often found in basement 

membranes and around angiogenic vessels.  We looked at laminin expression in 
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three different genes, Lamα4, Lamα5, and Lamc3. Overall, there was no 

statistical difference in laminin expression, except in the Vegf188 mice, where 

Lamα4 had significantly lower expression then wild type, Vegf120, and 

Vegf120/188 mice (p < 0.1; Table VII, a-c). 

Fibronectin expression, as determined by qPCR, was not significantly 

changed in the Vegf isoform mice relative to wild type at E9.5.  The individual 

isoforms showed distinct trends of shifted expression, where the Vegf188 mice 

had significantly lower expression than the Vegf120 mice (p < 0.05; Table VII, d).  

In order to do a comprehensive comparison with this subset of genes 

analyzed by qPCR, we conducted a hierarchical cluster analysis to generate a 

relatedness dendrogram.  We visualized the changes in expression patterns of 

the log2 values for the wild type mice minus the individual Vegf isoform mice 

using a heatmap.  Expression values that are lower in the wild type relative to the 

Vegf isoform mice are shown in green, while an increase in expression in the wild 

type relative to the Vegf isoform mice is shown in red with the color intensity 

reflecting magnitude of change (Figure 13).  We confirmed that with this subset 

of genes, the Vegf isoform mice show distinct gene expression patterns relative 

to one another.  This pattern recapitulates what we observed in the initial 

microarray analysis (wild type to Vegf120 and Vegf188) as well as the larger 

meta-analysis (wild type to Vegf120, Vegf188, and Vegf120/188). 
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Figure 13. qPCR heatmap comparing fold change for target gene
 expression in the Vegf isoform mice versus wild type.  Quantitiative real-

time PCR was run on twenty genes using total RNA isolated from E9.5 forebrain 

neuroepithelium collected from wild type, Vegf120, Vegf188, and Vegf120/188 

mice.  The expression values were converted to Log2 and the respective fold 

changes (wild type minus Vegf Isoform) were calculated.  These values were 

loaded into the JMP statistical package and Hierarchical Clustering was run to 
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generate a dendrogram relating gene expression changes relative to wild type 

across the three Vegf isoform mice.  Log2 fold change is reflected in the color 

scheme where an increase relative to wild type (negative values) are shown in 

green and decreases relative to wild type (positive values) are shown in red with 

magnitude reflected in color intensity.  qPCR values for each run are located in 

Appendix Table V-VII.  
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To determine whether our qPCR validation overall was comparable to the 

changes observed in the microarray meta-analysis, we conducted a correlation 

analysis using a subset of 16 genes for each of the three fold change 

comparisons.  We compared the fold changes of qPCR expression values (wild 

type versus each of the Vegf isoform mice) to their corresponding fold changes of 

the microarray expression values.  We ran a Spearman correlation, and 

determined that the shift in relative expression as detected in our microarray 

positively correlated with the values determined by qPCR (Spearman’s r = 

0.6501, p < 0.0001, m = 1.069) (Figure 14).   

 In order to characterize the genes differentially expressed in the meta-

array analysis among the Vegf isoform mice, we utilized the functional annotation 

clustering platform on the Database for Annotation, Visualization, and Integrated 

Discovery (DAVID) platform to identify gene groups.  DAVID identifies Gene 

Ontology categories that over-represented amongst a list of genes.  Affymetrix 

Probe Ids of differentially expressed genes detected in the E9.5 mice were 

uploaded into DAVID.  Genes were identified in the top eleven Gene Ontology 

(GO) categories using an enrichment score filter of 2.0 (Figures 15 and 16, Table 

VIII).  The first functional annotation cluster identified had the GO category 

transcription (134 probe ids). Within this cluster there were several probes 

identified for their potential roles in cell fate choice, for example Notch3, and 

neural development for example, Dachshund 1(Dach1) and Dachshund 2 

(Dach2).  The second annotation cluster, GO Category positive regulation of 

transcription (46 genes), included Meis homeobox 2 (Meis2), Distal-less 

homeobox2 (Dlx2), Sonic hedge hog (Shh), Sry-box 4 (Sox4), Bone 

morphogenetic protein 4 (Bmp4), and Neurogenin 2 (Neurog2).   
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Figure 14. qPCR confirmation of meta-array analysis.  qPCRs were run on 16 

genes and the fold change between WT and individual Vegf isoforms (Y-Axis) 

was plotted against the fold changes of the corresponding microarray probe 

expression values (X-Axis).  The scale on both axis is Log2.  The solid black line 

represents the regression line (m = 1.07) and the dashed lines indicate the 95% 

confidence intervals.  These latter values were used to remove outliers.  We ran 

a Spearman correlation analysis on 37 (black circles) of the 48 pairs and 

obtained a positive r-value of 0.6501 (p < 0.0001).   
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GO category regulation of neurogenesis (19 probes) identified many of the genes 

listed above, but in addition included Inhibitor of differentiation 4 (Id4), Distal-less 

homeobox 1 (Dlx1) and Neuropilin 1 (Nrp1).  The two functional annotation 

clusters with the highest numbers of identified probes were zinc ion binding (143 

probe ids) and cation binding (238 probe ids).  Within these categories were 

many transcription factors, cell signaling ligands, matrix interacting proteins, and 

epigenetic regulators, including members of the Notch signaling pathway, Jagged 

1 and Jagged 2.  Several ECM and ECM-interacting proteins were identified 

within these clusters including Versican, and Integrin-alpha 6.  The GO category 

neuron development (26 probe ids) contained several genes involved in neuronal 

migration and axon path finding, including chemokine receptor 4 (CXCR4), Eph 

receptor9 A7 (Epha7), Microtubule-associate protein 1B (Mtap1b), and 

Doublecortin-like kinase 1 (Dclk1).  Another interesting functional annotation 

cluster had the GO category chromatin organization (30 probe ids).  Genes in 

this category included histone deacetylase (Hdac9) as well as the methyl-

transferases, Set domain 8 (Setd8) and DNA-methyltransferase 3 alpha 

(Dmnt3a). 
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Figure 15. Enriched Gene Ontology Categories in Vegf isoform mice.  

Affymetrix probe identification numbers (Ids) of differentially expressed genes 

that were detected as significantly changed by BAMarray in the Vegf120, 

Vegf188, and Vegf120/188 microarray meta-analyses were uploaded as a single 

list into DAVID.  Functional Annotation Clustering was run on the high setting 

with the Bonferroni adjustment and GO Terms with an Enrichment Scores within 

a range of 2 to 6 and and p -values less then 0.01 were reported.  The DAVID 

analysis identified GO categories that were overly represented amongst the 

differentially expressed genes.  The bar graphs represent the number of probe 

Ids for each functional category.  Specific probe Ids, as well as, the DAVID 

statistics are located in Table VIII. 
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Figure 16.  Proportion of differentially expressed genes contributed by the 
Vegf isoform mice in each GO category. 417 unique differently expressed 

genes were identified by DAVID with GO categories that were statistically over-

represented. The gene contribution from each group of Vegf isoform mice into 

the various GO categories were broken down into their relative proportions.  Of 

these genes roughly 40% were found changed in either the Vegf188 mice only, 

or Vegf120 mice only.  No genes were identified by DAVID as being unique to 

the Vegf120/188 mice.
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Vegf isoform regulation of early neural stem cell differentiation and 

migration 

 

By E11.5, the periventricular vessels have invested the neuroepithelium of 

the telencephalon and neural progenitors have begun proliferating and 

differentiating.  The increase in proliferation thickens the neuroepithelium forcing 

the radial glia to span an even further distance as they remain in contact with the 

both the ventricular and pial surfaces.  Both angiogenic investment and radial glia 

polarity are dependent upon the ECM in the microenvironment.  Fibronectin (FN) 

has been shown to guide the differentiation and proliferation of angiogenic 

endothelial cells, even serving as a track guiding their migration towards sources 

of Vegf [126, 127].  The ECM protein Laminin (LN) is also required for 

angiogenesis and serves to regulate vessel diameter.  LN is deposited into the 

basement membrane by the endothelial cells of sprouting vessels, and surrounds 

the stalk of the growing blood vessel tube. Disruption of the various LN subunits, 

that form LN trimer, causes vessels of increased diameter (Lamc3), embryonic 

lethality (Lama5), and early postnatal bleeding (Lama4)[128-131].  The radial glia 

endfeet embed into the basement membrane and the pial surface, having direct 

connections with the LN via the cell surface integrin receptors.  Disruption of LN 

in the pial basement membrane alters radial glia orientation and results in 

bundled end feet of the radial glia processes.  While this does not disrupt radial 

glia proliferation, neuronal migration into the upper layers of the neocortex is 

affected [132]. 
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 Because bioavailability of Vegf is linked to extracellular matrix in the 

microenvironment and Vegf signaling is modified be ECM binding [11], we 

wanted to investigate the impact of disrupted Vegf isoform expression on matrix 

deposition itself.  To this end, we examined FN production in the forebrain of 

Vegf isoform mice using immunolabeling to assess FN localization as well as 

Enzyme linked immunosorbent assay (ELISA) to quantify total levels of FN 

protein (Figure 17).  Immunohistochemical labeling demonstrated that the wild 

type mice had low levels of FN with some punctate staining surrounding cells at 

the pial surface.  Qualitatively, the Vegf mice with just the diffusible form of Vegf 

(Vegf120) had a broader deposition pattern of fibronectin labeling, dispersed at 

the ventricular surface with some punctate labeling away from the surface.  The 

expression pattern of FN in the presence of the locally-retained Vegf isoform 

(Vegf188) was dramatically different from wild type with nearly all cells within a 

three-four cell width of the ventricular surface having positive immunolabeling for 

FN in punctate clusters on and around the cells.  This latter localization is based 

on z-stack analysis from confocal images (data not shown).  This distribution of 

FN in the Vegf120 and Vegf188 mice was consistent around the developing 

telencephalon, but most prominent in the anterior loop (Figure 17A).   In addition, 

co-labeling for the FN interacting protein, integrin α6, was expressed in a similar 

punctate pattern in regions from the ventricular outward, although not directly co-

localized with FN protein. This is in agreement with the cell surface localization of 

integrin α6 relative to FN which can be secreted and deposited in surrounding 

matrix, bound to the surface of the cell, or proteolytically cleaved and released

 into the microenvironment [126,127].
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Figure 17.  Changes in Vegf isoform profile affects deposition and
 quantities of ECM and ECM-interacting proteins at E11.5.  Fibronectin 

(Green), Integrin- α6  (ITGA6, Red), and Nuclei (Blue) were immunlabeled at the 

ventricular surface (VS) in the anterior loop of the telencephalon at 100x 

(Scalebar = 100µm, A). Wild-type (top, A) samples had qualitatively less 

fibronectin and integrin then Vegf120 (middle, A) or Vegf188 (bottom, A).  The 

qualitative shifts in FN deposition were confirmed with an ELISA quantifying total 

FN protein levels in the E11.5 forebrain.  Total neuroepithelial forebrain protein 
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was isolated from wild-type (n = 6), Vegf120 (n = 6), Vegf188 (n =6), and 

Vegf120/188 (n = 6). Loss of the primary Vegf isoform, Vegf164, in the all of the 

Vegf isoform mice resulted in a significant increase in total FN, with the greatest 

increase in the Vegf120 mouse.  A 1-way ANOVA followed by Tukey’s post-hoc 

test were used to test for significant differences between the Vegf genoytypes (*p 

< 0.05, ***p < 0.001, B).   
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The Vegf188 mouse had the most pronounced immunolabeling for both FN and 

integrin α6.  We confirmed these qualitative shifts in FN by measuring total 

protein levels of FN in the E11.5 forebrain using an ELISA assay that detects 

both soluble and insoluble FN	
   (Figure 17B).	
   	
  The FN ELISA demonstrated that 

mice lacking the Vegf164 isoform have increased levels of FN.  The Vegf188 and 

Vegf120/188 mice showed roughly a fifty percent increase in total FN levels and 

were significantly changed versus wild type (p < 0.05).  FN protein levels were 

almost double in the Vegf120 mice versus wild type (p < 0.001).  As this assay 

detects both locally-retained and soluble fibronectin, the relative levels differ from 

the apparent distribution intensity of FN in the microenvironment as detected by 

immunolabeling.  However, in all cases the FN is higher (ELISA) and has a 

broader distribution pattern (immunolabeling) relative to the wild type, confirming 

an increase in FN by two different methodological approaches. 

 Because FN has been historically associated with cell adhesion during 

migration, we wanted to also examine the expression of LN that has been more 

closely linked to basement membrane production during development, 

particularly in sites of cell-cell contact.  Therefore, we conducted qualitative and 

quantitative analysis of LN in the E11.5 mouse forebrain.  Laminin 

immunolabeling in the Vegf isoform mice was grossly similar to that of the 

wildtype mice and closely associated with the basement membrane barrier 

between the neuroepithelium and the pial vessel surface (Figure 18, A-D).  
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Figure 18.  Vegf isoform profile affects Laminin proteins levels.  The dorsal-

anterior telencephalon loop in E11.5 WT (A,E), Vegf120 (B,F), Vegf188 (C,G), 

and Vegf120/188 (D,H) were immunolabeled with the ECM protein Laminin (LN, 

green), the radial glia marker nestin (red), and DAPI to label nuclei (Blue).  At the 

pial surface (A-D) LN staining marks the basement membrane where radial glia 

end feet (yellow arrowheads) implant themselves. At the ventricular surface (E-

H), the intermediate filament nestin surrounds dividing cells (white arrowheads). 

Images were taken at 100x with a scalebar equal to 10µm. ELISA quantification 
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of LN protein levels in the E11.5 mouse forebrain demonstrates a dramatic 

increase of LN in the Vegf120 mouse (I).  Statistical significance was determined 

with a 1-way ANOVA followed by a Tukey’s Post-Hoc test (Each group had a N = 

6, *p < 0.0001). 
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No specific immunolabeling for LN was detected at the ventricular zone (Figure 

18, E-H).  Protein quantification of total LN revealed that the forebrains of 

Vegf120 mice had a significant increase in total LN relative to wildtype and 

Vegf120/188 (p < 0.05) forebrains.  The Vegf188 forebrain lysates had reduced 

levels of LN protein relative to Vegf120; however, the results were not statistically 

significant.  There was no significant difference in LN protein levels among 

wildtype, Vegf188, and Vegf120/188 (Figure 18, I). 

 To assess the morphology and distribution of radial glia and neural stem 

cells we looked at two proteins whose expression has been closely associated 

with stem cells, Nestin and Pax6 (Figure 18 and Figure 19 respectively).  Nestin 

is an intermediate filament associated with radial glia.  It appears early in neural 

development and persists until the radial glia differentiate into astrocytes 

whereupon nestin expression transitions to Glial fibrillic acid protein (GFAP) 

expression.  At E11.5, immuno-positive nestin fibers span the length of the 

neuroepithelium, coalescing in the radial glia end feet at the pial surface (Figure 

18A-D) with the somatic contacts at the ventricular surface.  In the ventricular 

zone of the neuroepithelium, nestin filaments surround the nuclei of dividing cells, 

demonstrating that radial glia do serve as neural progenitors (Figure 18E-H).  

Pax6 is a transcription factor expressed in many stem cell populations, 

particularly neural stem cells.  Loss of Pax6 expression correlates with 

specification to a neural or glial lineage, depending on developmental stage and 

cell fate choice (Reviewed in [76]).  At E11.5 Pax6 is generally restricted to the 

ventricular zone of the neuroepithelium (Figure 19A-C).  
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Figure 19.  Altered Vegf bioavailability alters early neural stem cell fate and
 basement membrane organization.  E11.5 mouse forebrains were 

immunolabeled with the radial glia stem cell marker Pax6 (red) and ECM protein 

laminin (green).  In the telencephalon (TN) and ganglionic eminence (GE) Pax6 

localization is altered in the Vegf isoform mice.  The WT and Vegf188 have clear 

ventricular-subventricular zone borders, marked by the transition of Pax6-postive 

to Pax6-negative cells, while Pax6-postive cells run all the way to the pial surface 

in the Vegf120 mouse.  Pax6 immunolabeling is strictly limited to the nuclei (blue 

arrowhead) of the WT (A,D) mice, while Vegf120 (B,E) and Vegf188 (D,F) mice 

also have Pax6 limited to the cytosol (purple arrowheads).  Laminin labeling is 

present in the vessels along the pial surface (Left), along the basement 

membrane, and surrounding the periventricular vessels. (40x, scalebar = 50µm) 
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Pax6 expression transitions to Tbr2 expression as neural stem cell differentiation 

proceeds and the cells begin their final migration out of the ventricular zone.  In 

the more caudal regions of the primitive forebrain at E11.5, Pax6-positive nuclei 

are present in the pallium and GE. In wild type mice Pax6 is entirely located in 

the nuclei, whereas the Vegf120 and Vegf188 mice display a distinct sub-

localization with many cells having Pax6 restricted to the cytosol, leaving the 

nucleus immunonegative (Figure 19, compare D-F).  The expression pattern of 

Pax6 is particularly unique in the GE of the Vegf120 mice.  Where most of the 

nuclei are Pax6 positive in the WT and Vegf188 GEs, Pax6 seems to be mostly 

absent in comparable nuclei of the Vegf120 mice and is, instead, localized to the 

cytosol.  The Vegf isoform-dependent changes in Pax6 cellular localization 

suggest a link between Vegf localization and neural stem cell differentiation. 

 In order to dissect the role of Vegf bioavailability in the regulation of neural 

stem cell differentiation and neocortical development, we had to survey the 

status of neural stem cell proliferation as well as early stages in the neural 

differentiation pathway.  To this end we quantified proliferating cells by counting 

Phospho-Histone H3 (Phh3), a marker of mitotic cells, and Tbr2/Eomes, that is 

expressed by the intermediate progenitor population once they have been 

restricted to the neural lineage.  We chose to begin looking at these stage 

markers early in neural development, at E11.5, so that we could rule out any 

secondary effects associated with any abnormal vasculature in the Vegf isoform 

mice.  At this early stage, the periventricular vessels are only just beginning to 

establish themselves, and the neuroepithelium is still thin enough to facilitate gas 
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exchange via simple diffusion.  The bulk of the proliferating cells are in the Pax6-

positive ventricular zones.  Phh3-positive proliferating cells line the ventricular 

surface.  In a complementary distribution pattern, their differentiated, Tbr2-

positive, counterparts have begun migrating and aligned in a cellular border 

subjacent to the pial surface (Figure 20A-L). We quantified the populations of the 

both the Phh3-positive and Tbr2-positive cells, as well as total neuroepithelial 

cells, in the E11.5 forebrains using unbiased, design-based stereology.   

 For the Phh3 and total neuroepithelial cell counts, we traced an area 

spanning 100μm from the ventricular surface along the entire forebrain.  The 

Vegf120 and Vegf188 mice had less Phh3-positive cells compared to wild type 

and Vegf120/188.  However, a one-way ANOVA followed by Dunnett’s post-test 

showed that only Vegf120 was significantly different from wild type (wild type n = 

6, Vegf120 = 4, Vegf188 = 3, and Vegf120/188 = 6, p < 0.05).  Total 

neuroepithelial cells were counted in parallel and again the Vegf120 mice 

showed a decrease relative to wild type (p < 0.05).  There was no significant 

difference in total cell numbers among the other genotypes (Figure 20M,O). 

 To assess the early stages of differentiation, we counted Tbr2-positive 

cells along the pial surface in animals matching those used in the previous 

counts.  The counting region we traced differed from the one used for the Phh3 

counts in that we traced from pial surface to 100μm in towards the ventricular 

surface.  The Vegf188 and the Vegf120/188 mice had fewer Tbr2-positive cells 

when compared to wild type and Vegf120; however, only the difference between

 Vegf188 and wild type was significant (p < 0.05).  
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Figure 20.  Vegf regulation of NSC proliferation and differentiation.  E11.5 

wild types (A, E, I), Vegf120 (B, F, J), Vegf188 (C, G, K), and Vegf120/188 (D, H, 

L) forebrains were sectioned in the parasagittal plane and immunolabeled with 

PHH3 (A-H) or Tbr2 (I-L) and counter-stained with methyl-green.  The whole 

forebrain imaged at 2x showed no major differences between the Vegf isoform 

mice versus wild type (A-D, scalebar = 500 µm). At 40x magnification Tbr2+ cells 

are labeled uniformly along the pial surface (E-H), and PHH3+ cells line the 

ventricular surface (I-L, scalebar = 50 µm). Arrows indicate dividing cells along 

the ventricular surface.  Counts of PHH3+, Tbr2+ cells, and total neuralepithelial 

cells were completed using Stereoinvestigator (M-O).  Groups were tested for 

significant differences using a 1-way ANOVA followed by a Dunnett’s post-test 

using wild types as the control.  The Vegf120 mice showed a significant reduction 

in total neuralepithelial cells and PHH3+ cells versus wild type. (P<0.05, wild type 
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n = 6, Vegf120 n = 4)  The Vegf188 mice showed reduced numbers of Tbr2+ 

cells compared to wild type (P<0.05, Vegf188 n = 3).  The Vegf120/188 mice 

were not statistically significant from wild type (P>0.05, n = 6). Errors bars 

represent standard error of the mean. 
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It was interesting that despite having decreased number of proliferating cells that 

corresponded with a decrease in the total cell number, the Vegf120 mice 

produced an equivalent number of intermediate progenitors relative to the wild 

type mice (Figure 19N).   

 Since the tangential migration of neurons into the pallium contribute a 

signification number of interneurons in the neocortex, we also immunolabeled 

sections matching those in the previous Tbr2 and Phh3 counts using Calbindin 

(Calb1).  Calb1-positive cells are born in the GE and from there they migrate out, 

eventually taking positions in the cortical layers.  Calb1-positive cells migrating 

into the anterior portion of the forebrain (pallium) and become the interneurons of 

the neocortex.  We divided the E11.5 mouse forebrain into three sections based 

on anatomical markers and cortical derivatives: the GE, an area anterior to the 

GE, and the area posterior to the GE (Figure 21).  We traced the entire 

neuropithelial area for the GE and anterior portions; however, since some areas 

in the posterior section were substantially thicker we only traced around the 

Calb1-positive areas, or 100μm from the pial surface to avoid cut-angle bias.  

Using stereology we counted the Calb1-positive cells and total neuroepithelial 

cells for each anatomic region and compared these across wild type and Vegf 

isoform genotypes.  We also quantified the neuroepithelial area traced in wild 

type (n = 4), Vegf120 (n = 4), Vegf188 (n = 4), and Vegf120/188 (n = 4).  We 

looked at each of these parameters in the Anterior, Posterior and GE portions, as 

well as combinations of all three.  All tests of significance were measured using a 

one-way ANOVA followed by Tukey’s post test.   
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Figure 21.  Vegf isoform profile affects the distribution of Calbindin positive cells.  
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Figure 21, Con’t.  Cablindin (Calb1) positive cells born in the ganglionic 

eminence (GE) migrate towards the anterior forebrain (green, B) to form 

inhibitory-interneurons in the pallium.  Changes in the microenvironmental 

distribution of Vegf, in the isoform mice, resulted in dramatic changes in the 

localization of the Calb1+ cells in the forebrain.  Calb1+, total neuroepithelial cells 

(NE), and counting area were quantified in the forebrains of E11.5 mice using 

stereology.  For these counts the mouse brain was divided into three areas the 

(GE, red), the area anterior to the GE (green), and the area posterior to the GE 

(purple).  Independent counts were obtained in each of these areas, and all 

counts were combined to get number for the Entire Forebrain.  Counts from 

Anterior and GE were also combined.  Difference between the genotypes was 

measured with a 1-way ANOVA, followed by a Tukey’s Post-Hoc test (WT n = 4, 

Vegf120 n = 4, Vegf188 n = 4, Vegf120/188 n = 4, *p < 0.05, ‘+’ indicated an 

apparent shift in mean which was not statistically significant). Gunderson 

confidence estimates (CE) were obtained from each counting group, except in 

the GE where a Schmitz-Hof was used due to the limited number of sections with 

GE present within a series (CE < 0.1, m = 1).  
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Significant difference from the wild type was marked with an “*” (p < 0.05).  In 

some instances the ANOVA did not detect a significant difference (p > 0.1) in any 

of the groups, despite the shift observed in population means.  In these instances 

a student’s t-test was used to compare the group versus wild type, a significant 

difference was indicated by “+” (p < 0.05).   

 When looking at the entire forebrain, the wild type mice had the largest 

overall area compared to the rest of the genotypes (p < 0.05).  The Vegf120 mice 

were the only group with a statistically significant decrease in Calb1-positive cells 

(p < 0.05); the other groups were unchanged versus wild type.  All of the Vegf 

isoform mice appeared to have a decreased number of total cells; however, only 

the Vegf120 and Vegf188 mice had a significant decrease (p < 0.05).  In the 

anterior portion, again the Vegf isoform mice had a decreased neuroepithelial 

area, with only the Vegf120 and Vegf188 groups being significant (p < 0.05).  

Total neuroepithelial cell numbers were significantly decreased in the anterior 

region of the Vegf isoform mice (p < 0.05).  The Vegf120 mice showed a 

significant decrease in Calb1-positive versus wild type.  While both Vegf188 and 

Vegf120/188 showed an increased trend in positive numbers versus wild type, 

the differences were not statistically significant.  In the GE, both the Vegf188 

mice and the Vegf120/188 mice had a significant decrease in area (p < 0.05) 

versus wild type.  The Vegf120 mouse had no apparent change versus wild type.  

In the GE, the Vegf188 mice had a decrease in both total cell number and Calb1-

positive labeled cells; however, neither shift was significantly different versus wild 

type. 
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 When we combined the counts from anterior and GE portions, we found 

that the areas in wild type and Vegf120 showed no apparent differences while 

both Vegf188 and Vegf120/188 were significantly lower (p < 0.05).  All of the 

Vegf isoform mice displayed significantly lower numbers of total cells versus wild 

type (p < 0.05); however, only the Vegf120 mouse showed any significant 

change downward relative to wild type (p < 0.05).  The areas of the posterior 

section were not significantly changed among any group.  The Vegf120 mice had 

a significant drop in the Calb1-positive cells, and both Vegf120 and Vegf188 mice 

showed a decrease in posterior total cells.   
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Consequences of altered Vegf bioavailbility in early cortical lamination 
 

 
 At E11.5, we looked at the affects of altered Vegf bioavailability on the 

early neural stem cell proliferation, differentiation, and migration in parallel with 

the changes in extracellular matrix in the microenvironment.  In order to 

determine the effects of these early changes we wanted to look at consequences 

at later developmental stages.  To accomplish this, we examined the E13.5 mice 

in which the blood vessels are well established in the surrounding pia mater and 

throughout the pallial neuroepithelium.  At this time point differentiation of the 

neural stem cells is well underway, the germinal layers of the neuroepithelium 

have become further stratified, forming the ventricular zone, subventricular 

zones, intermediate zone, subplate, cortical plate, and marginal zone (Figure 4).  

Tbr2-positive intermediate progenitors and Tbr1-positive post-mitotic neurons are 

well established and primed to begin the outward radial migration to start forming 

the six layers of the mammalian neocortex.  Concomitantly, Calb1-positive 

interneuron precursors have rapidly expanded in number and are undergoing 

their tangential migration out of the GE along the pial surface of the pallium. 

 At E13.5 Laminin remains highly expressed along the pial surface 

basement membrane as well as in the basement membrane of the blood vessels, 

deposited between the endothelial cells and the perivascular cells (Figure 22, A-

D).  
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Figure 22.  Vegf isoform missexpression affects radial glia morphology and
 periventricular blood vessels.  Nestin (red), laminin (green, LN), and DAPI 

(blue) were immunolabeled in E13.5 mouse forebrains at the joining of the GE 

(bottom left) and subpallium (top right).  LN immunolabeling is associated with 

the basement membrane at the pial surface, pial blood vessels, and 

periventricular blood vessels (arrowheads).  The blood vessels in the Vegf120 

(B) mouse are dysmorphic and have abnormally large lumens.  The radial glia, 

labeled by nestin, appear to have thicker and more tortuous fibers in the Vegf120 

and Vegf188 mice compared to their WT and Vegf120/188 counterparts.  These 

images were shot at 10x with standard fluorescence microscopy, and the scale 

bar is equivalent to 50µm. 
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As vascular investment of the telencephalon is well underway (albeit incomplete), 

vascular abnormalities characteristic of the Vegf isoform mice have begun to 

manifest, particularly in the Vegf120 mice.  Laminin staining of the periventricular 

vessels in the Vegf120 mice revealed convoluted vessels, with large lumens, and 

significant red blood cell hemorrhage (Figure 22, compare B to A).  Nestin 

staining of radial glia is still present throughout the neuroepithelium in all 

genotypes.  However, the nestin intermediate filaments in the Vegf120 and 

Vegf188 mice have a more intense labeling pattern and are more tortuous than 

those of the wild type or Vegf120/188 mice (Figure 22, A-D).  Gross structural 

morphology of the tissue is preserved at this stage and patent blood vessels are 

observed throughout the telencephalon/GE as expected for this developmental 

stage. 

 At E13.5, Calb1 positive interneuron precursors are migrating tangentially 

along the marginal zone, and preparing to interdigitate into the proper layer of the 

radially differentiating neocortex.  We examined the distribution of Calb1-positive 

cells in both the medial pallium (Figure 23A-D), and lateral pallium (Figure 23E-

H).  Calb1 immunlabeling was strongest in the lateral pallium of the Vegf120 and 

Vegf120/188 mice; however, it was still present in both the wild type and Vegf188 

mice.  Calb1 was not detected in the medial pallium.  In parallel, we also 

assessed the status of developing vasculature using G. simplicifolia lectin B4 

(Lectin) the binds to a sugar moiety on the surface of endothelial cells.  Again we 

saw that in the Vegf120 mice there were dysmorphic vessels with abnormally 

large lumens.  
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Figure 23.  Vascular compromise and migration defects in the Vegf isoform mice. E13.5 mouse forebrains were 

labeled with Lectin (green), Calbindin (Calb1, red), and DAPI (blue) and were imaged at the middle pallium (A-D), and 

lateral pallium (E-H)  Compared to wild type (A,E) the Vegf120 mice had highly ramified vessels with broad lumen (yellow 

arrow, B,F).  The Vegf188 mice had long and narrow vessels (C,G, white arrowhead).  The Vegf120/188 mice displayed 
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vessel morphology closest to that of wild type (D,H).  Calb1 immunolabeling was 

not detected in the medial pallium (A-D), however, along the lateral pallium 

Calb1-positive cells were detectable in the wild type with low intensity labeling 

relative to the genotypes.  Calb1 labeling was strongest in the Vegf120 and 

Vegf120/188 mice, and intermediate in the Vegf188 mice (E-H).  Images were 

collected using standard fluorescence at 10x and the scalebar is 50µm.  
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The Vegf188 mice displayed some vessels that were narrower then their wild 

type counterparts, a vascular phenotype that has been previously described in 

the retinal [36] and hindbrain [4] vasculature in these mice.  The Vegf120/188 

displayed vascular patterning closest to that of the wild type reflecting the value 

of combined localized and diffusible Vegf isoforms during angiogenesis.  Calb1-

positive cells are prevalent in the GE across all of the genotype mice at E13.5; 

however, contrary to stereological counts at E11.5, the Vegf120 mice 

qualitatively had the fewest Calb1-positive cells in the GE (Figure 24, A-H).  In 

the LGE, Calb1 was localized to both the nuclei and cytosolic processes of the 

interneuron precursors, although the intensity of the subcellular localization 

pattern differed among the Vegf isoform mice.  The Vegf188 mice had a relatively 

high number of these Calb1-positive processes compared to wild type and the 

Vegf120/188, where the majority of the Calb1 labeling was restricted to the 

nucleus. (Figure 24, A-H). 

 In order to determine the effect of altered Vegf isoform profile on the 

specification of intermediate progenitor populations we immunolabled the 

forebrains of E13.5 mice with Tbr2.  At this stage in development, Tbr2 is a 

transcription factor specific to the intermediate progenitor population that is 

specified for the neuronal lineage but is still actively dividing.  We speculated that 

altered bioavailability of Vegf would inhibit the Pax6-to-Tbr2 transition, would 

prevent the Tbr2 cells from migrating appropriately to the cortical plate, or would 

impact both developmental processes.  Low magnification images of the 

forebrain showed that the distribution of Tbr2 was similar across all genotypes.   
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Figure 24.  Vegf isoform bioavailability affects Calbindin-positive cell morphology in the LGE.  E13.5 mouse 

forebrains were immunolabeled with Calbindin (Calb1; single channel A-D), Lectin (green), and DAPI (blue).  Images were 

taken in the lateral GE, with the pial surface oriented towards the bottom of the image.  Triple-labeled images were 

collected using standard immunofluorescence at 20x magnification.  Vegf188 (C,G) and Vegf120/188 (D,H) had a broader 

swath of more intensely labeled Calb1-positive cells relative to wild type (A,E).  The Vegf120 mice (B,F) had a reduced
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cluster of positive cells in the GE.  The Vegf188 mice also had more Calb1-

positive labeling localized to the cell processes (orange arrowhead) compared to 

the other groups where the labeling was largely restricted to the cell soma.  

Representative Calb1-positive nuclei are indicated with a white arrowhead. 

(Scalebar = 50µm)   
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Tbr2-positive cells started at the border of the subpallium and GE and extended 

throughout the pallium, with population distribution stopping in the medial pallium 

and choroid plexus at this point in development.  Tbr2-positive cells had the 

highest concentration along the subventricular/intermediate zone border (Figure 

25, A-D).  Higher magnification images of the medial pallium (Figure 25, E-H), 

dorsal pallium (Figure 25, I-L), lateral pallium (Figure 25, M-P), and subpallium 

(Figure 25, Q-T) confirmed that Tbr2-positive nuclei were present across the 

entire developing neocortex.  In the medial pallium most of the Tbr2 cells were 

juxtaposed to the pial surface; however, both the wild type and Vegf188 mice had 

a number of Tbr2-positive cells migrating radially through the ventricular zone.  In 

the dorsal pallium, the distribution of Tbr2-positive cells seemed equivalent 

across all groups, with the exception that the Vegf120 group had a wide swath of 

positive cells although the cells were spaced further apart.  The radial distribution 

of Tbr2-positive cells was altered in the germinal layers of the Vegf188 mice.  

The Vegf188 mice had a substantial number of Tbr2-positive cells in the 

ventricular zone, a strong band of Tbr2-positive cells at the subventricular zone 

border, and a second band closer to the pial surface.  This differed from the wild 

type and Vegf120/188 mice, in which the strongest band of Tbr2-positive cells 

was much closer to the pial surface.  The Vegf120 mice also had bands of Tbr2-

positive cells at both the subventricular zone border and near the pial surface, 

but the staining was much weaker in intensity than that of the other genotypes.  
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Figure 25.  Radial distribution of intermediate progenitors is modulated by 
the available Vegf isoform profile.   
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Figure 25, Con’t.  E13.5 mouse forebrains were immunolabeled for Tbr2, 

developed with DAB immunohistochemistry, and nuclei counterstained with 

methyl-green. Low magnification images show overall distribution of Tbr2-

positive intermediate progenitors in wild type (A,E,I,M,Q), Vegf120 (B,F,J,N,R), 

Vegf188 (C,G,K,O,S) and Vegf120/188 (D,H,L,P,T) (2x, scalebar = 125µm).  20x 

close ups were taken at the medial pallium (red box, E-H), dorsal pallium (green 

box, I-L), lateral pallium (yellow box, M-P), and subpallium (black box, Q-T) 

(scalebar = 50µm). The Vegf120 and Vegf188 mice qualitatively had the thickest 

bands of Tbr2-positive cells throughout the pallium. In general, the Vegf isoform 

mice appeared to have increased Tbr2-positive cells in the ventricular zones, 

although the Vegf120/188 pattern of Tbr2 distribution closely resembled that of 

wild type animals.  The Vegf188 mouse had the strongest concentration of Tbr2-

positive cells in ventricular and subventricular zones, especially in the medial, 

lateral, and subpallium (G,O,S).  The wild type and Vegf120/188 mice had the 

strongest localization of Tbr2-positive cells near the pial zones, the intermediate 

zone and cortical plate.   
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The distribution of Tbr2-positive cells in the subpallium was roughly equivalent 

across all groups; however, the Vegf120 and Vegf188 mice had stronger 

immunolabeling compared to that of the wild type or Vegf120/188 mice. 

 Because of the shifted radial patterns of Tbr2-positive cells that were 

observed throughout the developing forebrain structures, we wanted to quantify 

the subsequent effects on the key post-mitotic neuron population that arises at 

this timepoint.  Cells positive for the transcription factor, Tbr1 have left the cell 

cycle and are actively migrating to cortical layer destinations and differentiating 

along the way to acquire their final neurotransmitter phenotype [55].  We 

observed that Tbr1 was strongly expressed along the pial half of the 

neuroepithelium across both the GE and pallium (Figure 26, A-L).  In the medial 

pallium, Tbr1 expression was most intense in the wild type and weakest in 

Vegf120 mice (Figure 26, E-H).  In the subpallium, Tbr1 immunolabeling was 

roughly equivalent across all of the genotypes (Figure 26, I-L).  There are 

angiogenesis defects that are present in the Vegf120 mice at this developmental 

stage.  Several large vessels appear as holes in the GE of the Vegf120 mice 

(Figure 26B).  At higher magnification, a large periventricular vessel is caught in 

cross section, disrupting an otherwise solid line of the Tbr1-positive cells in the 

Vegf120 mouse (Figure 26J, black arrowheads).  Using an unbiased, 

stereological approach, we counted the Tbr1-positive nuclei, as well as total cell 

nuclei (Figure 26, M and N).  We traced the neuroepithelium of the Tbr1-positive 

areas from the GE to the medial pallium.   
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Figure 26.  The available Vegf isoform profile does not affect early post-
mitotic neuronal differentiation.  E13.5 mouse forebrains were immunolabeled 

with Tbr1, developed with DAB, and counterstained with methyl green.   
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We surveyed Tbr1 distribution in wild type (A,E,I), Vegf120 (B,F,J), Vegf188 

(C,G,K), and Vegf120/188 (D,H,L) forebrains. Low magnification showed that the 

dispersal of Tbr1 was the same across all genotypes. (A-D, 2x, Scalebar = 

125µm).  Tbr1 staining in the medial pallium (red box, E-H) seemed to be 

qualitatively lower in the Vegf120 mice compared to the other genotypes. In the 

subpallium Tbr1 appeared unchanged in the Vegf isoform mice (black box, I-L).  

At E13.5 the vasculature is well established in the neuroepithelium.  Vascular 

defects associated with the Vegf isoform mice start to manifest, especially in the 

Vegf120 mice (Arrowheads, the asterisk in panel D shows a tear produced in 

cryosectioning, and not impaired vasculature).  Unbiased quantification by 

stereology demonstrated that Tbr1 was not significantly different in the Vegf 

isoform mice compared to wild type (1-way ANOVA, N = 4 per group, p = 0.28).  

However, there was a significant decrease in the total number of cells in the 

Vegf120 isoform mice compared to the rest of the groups as determined by a 1-

way ANOVA followed by Tukey’s post test (P < 0.05). 
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We counted forebrain sections starting at the most rostral section with the 

presence of the GE, through the lateral and medial GEs, and stopped at the 

caudal GE.  These counts revealed that there was no difference between the 

numbers of Tbr-positive nuclei in wild type or Vegf isoform mice as determined 

by a one-way ANOVA (n = 4 per genotype, p = 0.28).  However, the Vegf120 

mice did have significantly fewer total cells than the wild type, Vegf188, and 

Vegf120/188 mice (one-way ANOVA, Tukey’s post test p < 0.05).  All of the 

stereological counts had Gundersen confidence estimates less then 0.1 based 

on the optimal counting and unbiased sampling parameters. 

 Given the changes that we saw at E11.5 and E13.5 in the proliferating, 

differentiating, and migrating NSC populations we wanted to determine if there 

were any overt consequences to early cortical layering.  Therefore, we conducted 

a histological survey at P0, an embryonic time point at which early cortical layers 

V and VI have been initiated but the boundaries for the upper layers are not yet 

clearly defined [133].  Analysis of hematoxylin-stained P0 sections revealed 

marked differences between the wild type and Vegf isoform mice and a 

representative series is shown (Figure 27).  At the caudal-most end of the lateral 

ventricle, just prior to the emergence of the hippocampus and dentate gyrus, we 

observed a qualitative reduction in several of the presumptive cortical layers in 

the Vegf isoform mice compared to wild type.  The Vegf120 mice had increased 

cerebrovascular hemorrhage associated with their decreased vascular integrity 

and early postnatal lethality as has been previously reported [4, 33, 36]. 
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Figure 27.  Vegf affects neocortical layering at postnatal day 0.  Coronal 

sections from P0 wild type (A), Vegf120 (B), Vegf188 (C), and Vegf120/188 (D) 

mice were stained with hematoxylin and eosin.  2x (upper panels) and 10x (lower 

panels) objectives were used to image the most caudal sections of the lateral 

ventricle in forebrain before the emergence of the hippocampus and dentate 

gyrus (scale bars = 750 µm and 150 µm respectively).  The Vegf120 mice 

displayed increased cerebrovascular hemorrhaging (Arrows). The beginning of 

layer VI is marked with triangles, and the start of the presumptive layer 1 is 

marked with chevrons. 
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In order to look more specifically at the changes in cortical layering we 

tracked expression of Tbr1 and Coup-TF interacting protein 2 (Ctip2), factors that 

have been associated with cell fate choice in upper cortical layers [134, 135].  

Since the vascular plexi within the early forebrain are elaborated concomitantly 

with formation of the cortical layers [136, 137], we also labeled developing 

vasculature using Lectin (Figure 28, A-D). The Vegf188 and Vegf120/188 isoform 

mice showed no overt qualitative differences in blood vessel composition 

compared to the wild type mice. However, the Vegf120 mice displayed abnormal 

vessels with a distended vessel profile compared to wild type (arrows in Figure 

28, B).  This vascular phenotype paralleled that of the E13.5 cortical 

angiogenesis.  Tbr1 labeling surrounding the caudal lateral ventricle was 

qualitatively increased in cortical layers VI and II-IV across the Vegf isoform mice 

relative to wild type (Figure 28, A-D).  By this we refer to the considerably wider 

distribution of Tbr1-positive cells throughout the developing cortical layers.  While 

positive cells are certainly present in the wild type, the pronounced distribution of 

the post-mitotic population is notably absent in the wild type.  This is strikingly 

different from the Tbr1-positive distribution of cells at the earlier E13.5 timepoint 

prior to establishment of the cortical layers. 

We further investigated Ctip2-positive cell distribution to assess the impact 

on upper layer differentiation.  Ctip2 immunolabeling, associated with cortical 

layer V and also expressed in the caudate putamen, had distinct distribution 

patterns associated with disrupted Vegf isoform expression.  



	
   102	
  

	
  

Figure 28.  Vegf is required for the differentiation and stratification of Tbr1+
 cells.  Areas equivalent to those shown in Fig. 6 were labeled with Tbr1 (red), 

DAPI (blue), and Lectin (green) in wild type (A), Vegf120 (B), Vegf188 (C), and 

Vegf120/188 (D) P0 mice.  The caudal lateral ventricle of the wild type mouse 

displayed low levels of Tbr1+ cells (arrow heads) in layers V and VI.  The Vegf 

isoform mice showed substantial numbers of Tbr1+ cells scattered throughout 

the presumptive neocortical layers (II-VI).  Lectin labeling of the vasculature 

showed comparatively normal vessels in the Vegf188 and Vegf120/188 mice 

compared wild type, but vessels of increased vessel diameter in the Vegf120 

isoform mice. (Arrows, scalebar = 125 µm) 
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Compared to wild type, a broader region of positive cells was present in the 

caudate putamen, whose cells eventually contribute to the basal ganglia and 

receive input from the mature cortex.   A comparable band of Ctip2-positive cells 

was detected in all animals, but the Vegf isoform populations were shifted ventral 

and medial to the developing cortical layers (chevrons, Figure 29, A-D).  

Moreover, the distribution of Ctip2-positive nuclei of cortical layer V in the 

Vegf188 mice was clearly expanded relative to wild type and the other isoform 

mice. (Figure 29, C).  A higher magnification view of the band Ctip2-positive cells 

reveals that in the presence of the locally-retained Vegf188 isoform, the layer V 

population is unable to form the distinct layering pattern normally associated with 

this developmental stage (Figure 30, A-D).  The boundaries of the Ctip2 

population are highlighted with dashed yellow lines for comparison.
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Figure 29.  Vegf affects formation of neocortical layer V at PO.  Layer V marker Ctip2 (red) and nuclear marker DAPI 

(blue) are shown at P0 in wild type (A), Vegf120 (B), Vegf188(C), and Vegf120/188 (D).  The vertical region is located in 

the caudal-most sections of the lateral ventricles (areas equivalent to those shown in Figures 26, 27, and 29). Ctip2 was 

detected in layer V of all the mice with a more dorsal distribution in wider bands detected in the Vegf188 and Vegf120/188 

mice (indicated by chevrons). 
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Several Ctip2-positive cells were detected in layer VI in the wild type and 

Vegf120 mice (arrowheads). Ctip2 labeling was present throughout the caudate 

putamen (CP) in all animals. An isotype-matched negative control is shown for 

comparison (E). (Scalebar = 125 µm). 
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Figure 30.  Vegf isoform profile affects the distribution of Ctip2+ cells of neocortical layer V.  Sections equivalent to 

areas shown in Figure 29 were labeled for the layer V marker Ctip2 (red) and nuclear marker DAPI (blue) in wild type (A), 

Vegf120 (B), Vegf188(C), and Vegf120/188 (D). Ctip2 was detected in layer V of all the mice, however the positive cells 

occurred in a wider band in the Vegf188 mice (dashed line, Scalebar = 250 µm). 
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Chapter IV 

Discussion 

 Our results support the hypothesis that the composition of Vegf isoforms 

present in the microenvironment of the forebrain contributes to early cortical 

layering. Vegf and its receptors are expressed at the proper times and places to 

coordinate the establishment of the vasculature and development of NSCs in the 

forebrain [6]. We were particularly interested in the E9.5 developmental stage as 

a crux point for gene expression changes responsible for laying the groundwork 

for subsequent NSC differentiation and eventual neocortical layering.  An 

advantage of this early time point is that it occurs before extensive 

vascularization of forebrain neuroepithelium.  The blood vessels at the pial 

surface have not significantly invested the neuroepithelium at E9.5, which, in 

turn, reduces the confounding vascular variable for interpreting the gene 

expression results. 

Using a transcriptome-wide approach, we were able to identify groups of 

genes whose expression was dependent upon the available isoform profile.  

These observed shifts in gene expression could be due to either the localization 

of Vegf in the ECM microenvironment, or dependent upon Vegf isoform-specific 

signal transduction cascades associated with differential receptor activation.  The 

distribution of Vegf in the microenvironment is dependent upon the location of the 

cell producing the Vegf and the type of Vegf isoforms a given cell is making.  In 

the case of the Vegf188 mice, all of the Vegf that is produced and secreted into 

the microenvironment is locally retained.  Therefore, only cells in close proximity 
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to the source can respond, unless a truncated form of Vegf188 is released by 

proteolytic cleavage.  In the Vegf120 mice, the diffusible isoform can potentially 

signal at any distance from the source and reach a completely different set of 

cells then those in contact with the Vegf188 isoform.  These scenarios would 

potentially affect interpretation of our transcriptome results in that different 

subsets of cells would be responding to Vegf signaling based on isoform 

localization and microenvironmental distribution. Furthermore, the Vegf isoforms 

have differential affinities for their receptors, and in some cases proper signaling 

is dependent upon ECM and ECM-interacting proteins functioning as co-

receptors [138-140].  This outcome is particularly evident with the Vegf120 

isoform that lacks exon 6 and 7 and has a much lower affinity for Nrps compared 

to the Vegf164 and Vegf188 isoforms [138].  Furthermore, VegfR2 binding is 

enhanced by ECM interactions, giving Vegf164 and Vegf188 isoforms differing 

affinities for the receptor compared to the Vegf120 isoform [11, 43, 138].  The 

individual Vegf isoforms have also been shown to activate different cell signaling 

pathways through the differential phosphorylation of tyrosines on the Vegf 

receptors [139,140].  Thus, shifts in gene expression patterns in the Vegf isoform 

mice may be attributable to a combination of several potential mechanisms.  

Loss of the non-diffusible Vegf isoforms may prevent ECM-mediated Vegf co-

receptors from initiating normal signaling pathways, thereby altering NSC fate 

choice.  In addition to differential Vegf isoform affinity for the Vegf receptors, the 

individual isoforms may initiate distinct cell signaling cascades via alternative 

phosphorylation of the Vegf receptors [140].  Finally, altered localization of the 
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non-diffusible isoforms may exclude cells, located at a distance from the source 

of Vegf, from receiving the Vegf signal.  It is certainly feasible that developmental 

flexibility in terms of microenvironmental availability and receptor signaling for the 

Vegf isoforms may allow for a combination of mechanisms to modulate cortical 

development and further fine-tune the lamination process. 

The expression shifts detected in the Vegf isoform mice transcriptomes 

provided evidence that early forebrain neuroepithelium is responsive to altered 

Vegf bioavailability.  The neuroepithelial expression patterns are unique amongst 

the different Vegf isoform mice, demonstrating that each Vegf isoform has the 

capacity for eliciting different downstream effects on gene expression.  The 

transcriptome expression patterns in the Vegf120 and Vegf188 mice were 

unique.  The Vegf120/188 mice displayed a transcriptome profile that was a 

blend of the Vegf120 and Vegf188 expression patterns, rather than a 

recapitulation of wild type expression.  This evidence implies that Vegf120/188 

mice are not a rescue of the wild type phenotype, at the transcriptome level, but 

rather represent a ‘loss of function’ phenotype with respect to the primary 

Vegf164 isoform.  The Vegf120/188 does rescue the Vegf120 phenotype, in that 

the Vegf120/188 mice are overtly healthy and viable whereas their Vegf120 

counterparts are early post-natally lethal.  Therefore, a single allele of Vegf188 

codes for sufficient protein to allow cardiovascular development to proceed in 

these mice. 

The microarray results provide evidence that altering Vegf bioavailability in 

the microenvironment can alter NSC fate decisions.  Many of the differentially 
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expressed genes detected in the meta-array analysis and identified as enriched 

by DAVID with regard to GO function can be linked directly to processes involved 

in regulation of cell fate choice and NSC differentiation. Several genes described 

for their roles in neural tube patterning are changed.  For example, both Shh and 

Bmp4 are well known for their abilities to specify cell fate based on their signaling 

gradients and distribution in the microenvironment. Genes directly involved in the 

regulation of NSC proliferation and differentiation were identified in the meta-

microarray analysis (i.e Notch, Jag1, Jag2, Id4, Meis2, and Pax6).  Pax6, and its 

enhancer Meis2, are necessary for proper differentiation and stem cell fate 

choice in the developing forebrain [141].  Lost or reduced expression of Pax6 at 

this early time point would potentially result in changes in forebrain patterning 

including establishment of the pallial-subpallial border [142, 143].  Pax6-positive 

cells shift their expression profile to become Tbr2-positive cells as they 

differentiate and migrate away from the ventricular zone.  These cells, in turn, 

express other markers of differentiation as they concomitantly migrate and 

stratify into the six layers of the neocortex. One such example is the 

differentiation of Tbr1-positive cells, at E12.5-13.5, and their subsequent 

migration into layer VI [55].  

Neurog2 is important in the differentiation of neurons and its 

developmental expression is regulated by Pax6 [144].  Both Neurog2 and Dlx2 

contribute to NSC fate choice and interact through Notch signaling [145, 146].  

Reduced Pax6 expression results in early exit from the cell cycle, which in turn 

results in a decrease number of upper layer neurons [147, 148].  Shifts in 
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expression of Pax6, Neurog2, and Dlx2 detected at E9.5 provide evidence that 

the early NSC populations are vulnerable to changes in the Vegf isoform profile 

with regard to their cell fate decisions. Any factor affecting these early stepwise 

NSC fate decisions would have adverse consequences on subsequent 

neocortical layering. 

A predicted protein interaction network, generated with the Search Tool for 

the Retrieval of Interacting Genes (STRING 9.0; Figure 31) and using genes 

mined by DAVID clustering as well as several other genes of interest (Vegf, 

VegfR1, VegfR2, Tbr1, and Tbr2), provided an additional platform to identify 

potential pathways downstream of Vegf isoform mediated changes related to 

neocortical development.  Gene links were identified that were functionally 

associated with epigenetic modification, cell migration, NSC specification, and 

fate choice.  The STRING network linked Vegf and its receptors to factors 

essential to forebrain patterning and specification, Bmp4 and Shh [149, 150].  Id1 

and Id4, effectors of Bmp4-mediated inhibition of NSC differentiation, are also 

networked with Vegf [151].  The STRING network demonstrated a potential role 

for Vegf as a bridging factor in neurovascular development by linking several 

factors important to both vascular patterning and neural development, such as 

Notch3, Hey2, and Nrp1/2.  Nrp1 is well described for its role in neurovascular 

patterning by acting as a co-receptor for Vegf as well as semaphorins [152].  

Vegf is linked to the Notch signaling pathway, which has been shown to 

contribute to the maintenance of the stem cell pool, as well as, to direct 

angiogenesis [153, 154].  
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Figure 31. Predicted protein interactions network with a subset of 
differentially expressed genes identified in the Vegf isoform mice.  We used 

the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) to 

generate evidence-based links between and among genes identified from DAVID 

analysis of the top enriched gene clusters.  Gene acronyms were incorporated 

into STRING using default settings.  The components in this STRING model 

were simplified from a network originally constructed from genes listed in Table 
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IV.  Blue lines indicated direct evidence linking proteins with the thickness of the 

line reflecting confidence of interactions based upon the number of database 

links.  The lengths of the lines, the color and size of the nodes have no 

significance in this schematic.  To aid in network building, we incorporated five 

additional genes into the STRING model: Tbr1 Tbr2/Eomes, Flt1/VegfR1, 

Kdr/VegfR2, and the VegfA (Vegf).  Genes of particular interest are indicated with 

larger font with Notch 3, Pax6, and Vegf genes boxed to highlight their key 

position within the evidence network.  The STRING networks link genes shifted in 

the Vegf isoform mice with Vegf and its receptors, providing new directions for 

study involving Vegf regulation of cell fate choice.  Potential effectors for 

modifying epigenetic regulation of gene expression, HDAC9, Suz12, Dmnt3a, 

and Setd8, were networked to Vegf through Notch3 or Shh.  Pax6, in the center 

of a complex node cluster, linked to Vegf indirectly through Notch3 and Shh, as 

well. 



	
   114	
  

STRING links were also made between Vegf and epigenetic regulators of gene 

expression, Hdac9, Dnmt3a, Setd8, and Suz12.  These latter connections are 

critical for future investigations as methylation and histone modification of DNA 

have been implicated in cell fate regulation during the transition from NSC toward 

differentiated lineages [155]. 

Taken together, our transcriptomic data analyses lend supporting 

evidence linking an altered pattern of Vegf isoform expression to a shift in NSC 

specification and determination with consequences for early neocortex formation. 

The collection of genes and gene networks identified here can be used to further 

elucidate the mechanisms that coordinate the development of the NSC and the 

vasculature in the neocortex.   

Relative to the E9.5 wild type gene panel, many of the genes shifted in the 

E11.5 wild type microarrays were also shifted in the same direction in the E9.5 

Vegf isoform arrays.  One interpretation of this observation is that normal Vegf 

isoform expression is responsible for coordinating proper timing of NSC 

expansion and differentiation, and that altering the Vegf isoform profile leads to 

precocious gene expression changes resulting in altered cortical layering. 

Expansion and eventual stratification of the early neuralepithelium into a six-

layered neocortex is dependent upon the proper balance of NSC fate choices.  

We have shown that Vegf120 mice have reduced neuroepithelial volume and 

total cell number with unaltered Tbr2-positive populations [6] with the implication 

that non-diffusible Vegf isoforms are necessary to maintain NSC proliferation.  

When examined, the Vegf188 and Vegf120/188 mice had statistically equivalent 
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levels of PHH3-positive cells compared to wild type in agreement with the idea 

that a localized source of Vegf may be necessary for maintenance of NSC 

proliferation.  The Vegf188 forebrain had reduced numbers of Tbr2-positive cells, 

the loss of which may be correlated with the reduced expression of Pax6 in the 

Vegf isoform mice.  The Pax6-positive cells contribute directly to the genesis of 

Tbr2-positive intermediate progenitors, so a reduced Pax6-positive population 

would have significant consequences for intermediate progenitor cells and 

subsequent neural differentiation[148].  The reduction in Tbr2-positive cells in the 

Vegf188 mice may also represent a failure of Pax6-positive neural stem cells to 

differentiate into Tbr2-positive intermediate progenitors, or an early departure of 

the Tbr2-positive intermediate progenitor population down a further differentiated 

cell fate choice (i.e. Tbr1-positive).  Interestingly, the fact that the Vegf120/188 

mice resembled wild type mice with regard to numbers of PHH3- or Tbr2-positive 

cells may indicate that the presence of both diffusible and locally-retained Vegf 

isoforms may act as a functional rescue in animals lacking the Vegf164 isoform.  

However, the evidence for the Vegf120/188 mice as a rescue animal may not be 

that clear cut, given that the Vegf120/188 mice showed the largest numbers of 

altered genes in the microarray compared to the E9.5 wild types.  In effect, the 

gene expression similarities of the Vegf120/188 isoform mice compared to the 

Vegf120 and Vegf188 mice may reflect a level of phenotypic plasticity in the 

Vegf120/188 mice that shift expression in an effort to develop the normal 

forebrain structure in the absence of Vegf164. 
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Changing the microenvironmental localization of Vegf, by altering the 

available Vegf isoform profile, should hypothetically affect Vegf’s ability to serve 

as a migratory cue.  Supporting this idea of Vegf misexpression altering migration 

pathways is our microarray data that identified several migration-related factors, 

Dlx1, Dlx2, and CXCR4, as differentially expressed in the Vegf isoform mice 

compared to wild type.  Knock-out mice for these genes have demonstrated 

significant changes in interneuron migration and neocortical lamination in the 

developing mouse forebrain [156-158].  Stereological counts of the forebrain 

distribution of Calb1-positive, migratory interneurons at E11.5 demonstrated that 

Calb1-positive cell localization within the forebrain was dependent upon the 

available Vegf isoform profile.  Changes in the Vegf isoform mice neocortices at 

P0 also give weight to this idea of Vegf orchestration of early neuron migration 

and final laminar localization. Hematoxylin and eosin staining of coronal P0 

sections showed an altered laminar organization in the Vegf mice.  Corroborating 

this observation, was the immunolableing of Ctip2-positive cells and their 

distribution within layer V.  Ctip2 positive cells are spread across a much broader 

area in the Vegf188 and Vegf120/188 mice, implying a role for Vegf in the 

establishment of layers in the neocortex by influencing the migration and final 

localization of post mitotic neurons. 

Proper cortical development is dependent upon the proper timing of post-

mitotic neuronal differentiation and their subsequent migration.  Since layers of 

the cortex are formed from the inside out, the deeper cortical neurons of layers V 

and VI, are born first.  Most of the neurons of these deep layers are born 
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between E12.5 and E14.5 [159].  Given our data, we hypothesized that 

alterations in Vegf isoform availability would affect the differentiation and 

migration of early Tbr1-positive, post-mitotic neurons.  However, at E13.5 we 

found no changes in the distribution or quantities of Tbr1-positive cells in the 

forebrain, suggesting that Vegf does not have a direct effect on their ability to 

differentiate.  However, when we looked at the distribution of Tbr1-positive cells 

at P0 we found that the distribution of Tbr1-positive cells in the Vegf isoform mice 

was vastly expanded compared to wild type.  At P0, Tbr1-postive cells are mostly 

restricted to layer VI in wild type, with minimal expression in layers II/III.  Tbr1-

positive cells are generally not well established in layers II/III until P3 [160].  

However, the Vegf isoform mice did have significant numbers of Tbr1-positive 

cells in layers II/III at P0, many more then their wild type counterparts.  These 

data, taken together, imply that an altered Vegf isoform profile does not hinder 

the differentiation of these Tbr1-postive, post-mitotic neurons; however, Vegf 

bioavailability may affect the timing of their differentiation, migration, and final 

localization.  

The role of Vegf in the coordination of neurovascular development is 

complex.  Vegf and its receptors are expressed by both neuronal and vascular 

cell types during cortical development, and many of Vegf’s downstream effectors 

have been shown to play a role in both angiogenesis and neurogenesis.  

Observing the direct effects of Vegf is often confounded by potential indirect 

effects caused by the impaired vasculature.  However, despite these difficulties it 

is clear that Vegf plays an important role in the development of cortex.  By 
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looking early on in development, we minimized indirect effects and identified Vegf 

isoform specific shifts in the expression of genes important to NSC differentiation 

independent of any vascular compromise.  We were able to demonstrate that 

despite any of the vascular abnormalities in the Vegf isoform mice, changes in 

the Vegf isoform profile did not stop the proliferation, differentiation, or the 

migration of NSCs.  The Vegf isoform mice were still able to proliferate NSCs, 

although reduced in the Vegf120 mice, produce both intermediate progenitors 

and post-mitotic neurons, and in the cases of the Vegf188 and Vegf120/188 

mice, they are completely viable.  Our findings imply that the Vegf isoforms serve 

to guide and fine tune NSC development by mediating the balance and timing of 

their proliferation, differentiation, migration, and final localization.  

Evolution of the cortex, specifically the neocortex, is the pinnacle of 

mammalian development.  It is a highly integrative information-processing organ, 

which takes sensory input and translates it into learning, memory, thought, and 

consciousness in general.  The complex cellular histology responsible for its 

function is dependent on precise coordination of NSC proliferation, differentiation, 

and migration as well as vascular integration.  Defects in any of these processes 

can have severe consequences for cortical development.  For example, neuronal 

migration defects can result in developmental disorders such as lissencephally, 

wherein the sulci and gyri of the brain fail to form. Furthermore, injuries to the 

cortex can have severe consequences in behavior, learning, and motor functions.  

Until recently, the dogma was that injury to the nervous system was irreparable in 

mammals, as it was thought there were no pluripotent cell populations in the 
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mature CNS capable of healing the tissue and replacing the damaged cells.  

However, with discovery adult neural stem cells in the subventricular zones of the 

cortex and subgranular zones of the dentate gyrus, healing injuries in the cortex 

might not be as impossible as previously thought.   

In the adult, NSCs have been found in vascular niches associated with 

capillaries.  It is thought the growth factors released from the endothelial cells of 

the blood vessels help maintain these adult NSC populations, and that 

stimulation from growth factors, like Vegf binding to VegfR2, can activate 

proliferation and differentiation of these adult NSCs (reviewed in [2]).  Vegf is in 

place to serve as a mediator of NSC/endothelial cell crosstalk in the adult NSC 

niche, and understanding Vegf’s role in mediating NSC proliferation, migration, 

and differentiation during development will be key to finding potential Vegf-

mediated therapies in the recovery of CNS injury.   
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Table I. PCR primers used to genotype Vegf isoform mice.  In order to 

genotype wild type, Vegf isoform heterozygote and Vegf isoform homozygotes 

we use two sets, of primers, one set specific to the Vegf188 allele and the other 

specific to the Vegf120 allele.  Each set contains one forward primer (common to 

both the wild type and Vegf allele) and two reverse primers.  Of the two reverse 

primers one is specific to the wild type Vegf allele and the other is specific to the 

Vegf isoform allele.  Since the Vegf188 allele was made from a single cDNA and 

the Vegf120 allele has exons 6 and 7 removed, the amplicon resulting from the 

common forward primer and the Vegf isoform specific primer is shorter then the 

wild type amplicon.  In a reaction with the presence of the wild type allele a 400 

bp band is formed, and in the presence of the Vegf isoform allele a 300 bp band 

is formed.  In this way, wild types can be identified by the presence of a single 

400 bp band, Vegf homozygotes by the presence of a single 300 bp band, and 

heterozygotes have both a 400 bp and a 300 bp band.  In order identify, 

Vegf120/188 heterozygotes both a Vegf120 and Vegf188 reactions must be run.  

In the Vegf120 reaction the Vegf120/188 mouse appears as a single 300 bp 

band, but in the Vegf188 mouse both a 300bp and 400bp band is present. The 

400 bp band in the Vegf188 reaction is because the forward Vegf188 primer can 

bind both the Vegf188 and Vegf120 allele. 

Primer Sequence 5’-3’ 120 band 188 band 
Vegf120_For CAGTCTATTGCCTCCTGACCTTCAGGGTC   
Vegf120_END_Rev TTCAGAGCGGAGAAAGCATTTGTTTGTCCA 300bp NA 
Vegf120_Rev CTTGCGTCCACACCGTCACATTAAGTCAC 400bp NA 
Vegf188_For GATCAAACCTCACCAAAGCCAGCACATAG   
Vegf188_END_Rev GTGGGTAGAGAAAAGAAGAGAAAACAAG NA 300bp 
Vegf188_Rev TTGTCACATCTGCAAGTACGTTCGTTTAAC 400bp 400bp 
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Table II.  Primer pairs used in qPCR analysis.   
Name Forward 5’ -> 3’ Reverse 5’ -> 3’ Refseq ID  
Gapdh GTGGCAAAGTGGTTGCC GATGATGACTTTGGCTCC NM_008084.2 
Nrp1 TCAGGACCATACAGGAGATGG TGACATCCCATTGTGCCAAC NM_008737.2 
Nrp2 AGACTACCACCCCATATCCCATGG CTGCCCTGGTCCTCACGGAT

G 
NM_001077403.1 

Id1 AGCAAAGCGTGGCCATCTC AGGACGTTCACCTGCTC NM_010495.2 
Pax6 GCTTGGTGGTGTCTTTGTCA TTTGCATCTGCATGGGTCT NM_013627.3 
Pax3 TTGTCCCCCCACCTATAGCA TTCCCCGTTCTCAAGCAAGA NM_001159520.1 
Cxcr7 AAGCCCTGAGGTCACTTGGTC CAAACAAGTGCACATCCATGG NM_001271607.1 
Cxcl12 CCGCGCTCTGCATCAG TGGCTCTCGAAGAACCGG NM_001012477.2 
Foxm1 GGAGACGTTGGGACCGAAG CGCCRCACCACCAGCATAG NM_008021.4 
Zfhx1b AGGCATATGGTGACGCACAA CTTGAACTTGCGGTTACCTGC NM_015753.3 
Lamα4 AACTACAGGCAGCAGAGAGAGG AGCCGCTGTCGTCTTGTTAG NM_010681.4 
Lamα5 TCCCCTACTGTGAAGCTGGC CCAGTACCCAGGTTTACAGCG

A 
NM_001081171.2 

Lamc3 CCCCAGAGTGCTCCAGTCTTA GGCGTGACCATTGCATTTG NM_011836.3 
18s GACAGCGACAGGATTGACAGATTG

ATAG 
GTTAGCATGCCAGAGTCTCGT
TCGTT 

NR_003278.3 

Notch3 ACACTGGGAGTTCTCTGT GTCTGCTGGCATGGGATA NM_008716.2 
Shh TGTCATCGAGGAGCACAGCT AGCTGGACTTGACCGCCATT NM_009170.3 
Suz12 AAAGGAAGGATGTAAGTTGTCCA CGAGTAGGACTTCACCATATG

G 
NM_001163018.1 

Fezf2 GCAAGGTGTTCAATGCTCAC GGTGAGCTTGTGATTCTTGTA
G 

NM_080433.3 

Hey2 GCATCCGAAGAGCAGAATCTG GCTACTTTGATGCCATGC NM_013904.1 
Dnmt3a CCGGTGGAAAGCAGTGACA GGTGAGTCTTGGCATGGGTC NM_007872.4 
Vegf120 GCCAGCACATAGGAGAGATGAGC CGGCTTGTCACATTTTTCTGG NM_001025257.3 
Vegf164 GCCAGCACATAGGAGAGATGAGC CAAGGCTCACAGTGATTTTCT

GG 
NM_009505.4 

Vegf188 GCCAGCACATAGGAGAGATGAGC AACAAGGCTCACAGTGAACGC
T 

NM_001025250.3 
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Table III. Differentially-expressed genes in E9.5 forebrain of Vegf isoform mice compared to wild type (WT).  The 

281 genes identified are presented in the heat map in Figure 1.  The Fold Change value is derived by subtracting the log2 

mean of the wild type signal from the Vegf isoform signal for mice expressing only Vegf120, Vegf188, or a combination of 

Vegf120/188.  The t test p-value was determined from the batch normalized, Log2 transformed values form the array pre-

filtered by a group ANOVA (p <0.05) and a fold-change greater than 0.5 relative to the wild type. 

 
     t test Fold Change t test Fold 

Change 
t test Fold Change 

 Heat Map 
Order 

Probe Set ID Gene Title Gene 
Symbol 

Vegf120 v 
WT 

Vegf120 Vegf188 v 
WT 

Vegf188 Vegf120/188 v 
WT 

Vegf120/188 

 1 1436973_at chaperonin subunit 8 (theta) Cct8 0.0449 -0.4935 0.0244 -0.5402 0.0198 -0.6690 

 2 1430205_a_at cell division cycle 37 homolog (S. 
cerevisiae)-like 1 

Cdc37l1 0.0258 -0.6327 0.0187 -0.4908 0.0026 -0.6023 

 3 1431031_at AT rich interactive domain 4B (Rbp1 like) Arid4b 0.0768 -0.5423 0.0931 -0.5441 0.0102 -0.9794 

 4 1425457_a_at growth factor receptor bound protein 10 Grb10 0.0667 -0.5243 0.0502 -0.5453 0.0162 -0.8918 

 5 1415893_at sphingosine phosphate lyase 1 Sgpl1 0.0442 -0.5629 0.0199 -0.6277 0.0038 -1.0302 

 6 1421582_a_at cAMP responsive element binding 
protein 1 

Creb1 0.0059 -0.7293 0.0201 -0.4532 0.0043 -0.8094 

 7 1451805_at pleckstrin homology domain interacting 
protein 

Phip 0.0155 -0.6308 0.2106 -0.2221 0.0205 -0.6083 

 8 1443229_at ATPase family, AAA domain containing 2 Atad2 0.0168 -0.7576 0.0033 -0.6714 0.0015 -0.8735 

 9 1416124_at cyclin D2 Ccnd2 0.0062 -0.6994 0.0284 -0.4201 0.0044 -0.6939 

 10 1420856_a_at LanC (bacterial lantibiotic synthetase 
component C)-like 2 /// similar to testis-

specific adriamycin sensitivity protein 

Lancl2 
/// 

LOC100
045439 

0.0222 -0.6942 0.0539 -0.4032 0.0302 -0.7472 

 11 1431096_at integrator complex subunit 8 Ints8 0.0171 -0.6160 0.0390 -0.4099 0.0177 -0.6200 

 12 1416019_at down-regulator of transcription 1 Dr1 0.0154 -0.5547 0.1050 -0.3441 0.0199 -0.6278 

 13 1453683_a_at centrosomal protein 55 Cep55 0.0543 -0.6458 0.0753 -0.3713 0.0047 -0.7739 
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Table III, 
Con’t 

14 1448955_s_at Ca<2+>dependent activator protein for 
secretion 

Cadps 0.1346 -0.4617 0.1544 -0.4323 0.0401 -0.9604 

 15 1439127_at expressed sequence AI314180 AI31418
0 

0.1889 -0.2804 0.2679 -0.2407 0.0292 -0.6307 

 16 1439737_x_at Mediator of RNA polymerase II 
transcription, subunit 6 homolog (yeast) 

Med6 0.1162 -0.4537 0.2018 -0.3550 0.0113 -0.9491 

 17 1452489_at vacuolar protein sorting 11 (yeast) Vps11 0.2557 -1.7498 0.3467 -1.4185 0.0243 -4.7713 

 18 1424022_at oxidative stress induced growth inhibitor 
1 

Osgin1 0.1944 -0.6183 0.2761 -0.5076 0.0147 -1.6527 

 19 1440542_at RIKEN cDNA 7420416P09 gene 742041
6P09Rik 

0.2711 -2.5684 0.2397 -2.7516 0.0150 -8.1190 

 20 1455472_at RIKEN cDNA A630071D13 gene A63007
1D13Ri

k 

0.0517 -0.4066 0.1760 -0.2871 0.0302 -0.5945 

 21 1438535_at pleckstrin homology domain interacting 
protein 

Phip 0.1290 -0.3772 0.0718 -0.2832 0.0080 -0.6421 

 22 1452772_at tankyrase, TRF1-interacting ankyrin-
related ADP-ribose polymerase 2 

Tnks2 0.1314 -0.3437 0.2206 -0.2503 0.0217 -0.6322 

 23 1425650_at transducin-like enhancer of split 4, 
homolog of Drosophila E(spl) 

Tle4 0.0164 -0.3976 0.0033 -0.4774 0.0302 -0.6241 

 24 1429502_at stress 70 protein chaperone, microsome-
associated, human homolog 

Stch 0.0230 -0.4930 0.0880 -0.3253 0.0460 -0.6231 

 25 1434474_at ATP-binding cassette, sub-family A 
(ABC1), member 5 

Abca5 0.0301 -0.6045 0.0569 -0.3678 0.0261 -0.8595 

 26 1450075_at polymerase (DNA directed), eta (RAD 30 
related) 

Polh 0.0850 -0.5150 0.0371 -0.5955 0.0543 -0.6690 

 27 1447837_x_at polymerase (DNA directed), eta (RAD 30 
related) 

Polh 0.0003 -0.6460 0.0002 -0.6265 0.0005 -0.6811 

 28 1449306_at heat shock factor 2 Hsf2 0.1176 -0.3969 0.0457 -0.5271 0.0463 -0.5947 

 29 1416053_at leucine rich repeat protein 1, neuronal Lrrn1 0.2604 -0.2743 0.0147 -0.6594 0.0249 -0.6711 

 30 1458379_at RIKEN cDNA 9330159F19 gene 933015
9F19Rik 

0.1207 -0.2356 0.0016 -0.6482 0.0095 -0.4544 

 31 1418271_at basic helix-loop-helix domain containing, 
class B5 

Bhlhb5 0.1917 -0.3469 0.0197 -0.6845 0.0785 -0.5750 

 32 1429138_at neuronal PAS domain protein 3 Npas3 0.3388 -0.2116 0.0431 -0.5378 0.0278 -0.6281 

 33 1447605_at Adult pancreas islet cells cDNA, RIKEN 
full-length enriched library, 

clone:C820020L02 
product:unclassifiable, full insert 

sequence 

--- 0.2066 -0.1886 0.0049 -0.6052 0.0357 -0.4821 

 34 1425877_at hyaluronoglucosaminidase 3 Hyal3 0.0648 -0.2540 0.0008 -0.5891 0.0537 -0.5387 

 35 1438828_at Rap guanine nucleotide exchange factor 
(GEF) 6 

Rapgef6 0.2408 -0.2255 0.0259 -0.6149 0.0040 -0.5439 
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Table III, 
Con’t 

36 1441540_at Nuclear receptor coactivator 7 Ncoa7 0.7409 -0.0591 0.0049 -0.8838 0.0078 -0.5794 

 37 1460612_at RAN binding protein 3 Ranbp3 0.0426 -1.0599 0.0107 -1.4248 0.1214 -0.7846 

 38 1421138_a_at protein kinase inhibitor beta, cAMP 
dependent, testis specific 

Pkib 0.0823 -0.4881 0.0095 -0.9664 0.0733 -0.5450 

 39 1437259_at solute carrier family 9 (sodium/hydrogen 
exchanger), member 2 

Slc9a2 0.2954 -0.1826 0.0151 -0.5972 0.0240 -0.4606 

 40 1448458_at topoisomerase (DNA) II beta Top2b 0.0784 -0.3571 0.0055 -0.8869 0.0194 -0.7107 

 41 1453921_at RIKEN cDNA 4930429F11 gene 493042
9F11Rik 

0.0238 -0.7223 0.0457 -0.7698 0.0304 -1.0059 

 42 1444749_at Adult male hippocampus cDNA, RIKEN 
full-length enriched library, 

clone:C630010M09 
product:unclassifiable, full insert 

sequence 

--- 0.6607 -0.0775 0.0169 -0.9086 0.0516 -0.4274 

 43 1427715_a_at 5'-nucleotidase, cytosolic IB Nt5c1b 0.9117 -0.0192 0.0350 -0.6668 0.5181 -0.1315 

 44 1425574_at Eph receptor A3 Epha3 0.5210 0.1968 0.0166 -1.1143 0.0104 -0.5875 

 45 1453791_at RIKEN cDNA C130071C03 gene C13007
1C03Ri

k 

0.6690 0.2135 0.0392 -1.5736 0.0340 -0.9620 

 46 1423011_at ecotropic viral integration site 1 Evi1 0.3112 0.2236 0.0450 -0.7296 0.2298 -0.2659 

 47 1418790_at Fez family zinc finger 2 Fezf2 0.3110 0.3041 0.0031 -1.3764 0.0241 -0.6360 

 48 1441161_at RIKEN cDNA B230216G23 gene B23021
6G23Ri

k 

0.0035 -0.6305 0.0117 -0.5347 0.0035 -0.4743 

 49 1450940_at ganglioside-induced differentiation-
associated-protein 1 

Gdap1 0.1164 -0.5696 0.0052 -1.1448 0.0543 -0.6996 

 50 1446064_at --- --- 0.0617 -0.5154 0.0255 -0.9449 0.0817 -0.5161 

 51 1440079_at RIKEN cDNA 3632454L22 gene 363245
4L22Rik 

0.1318 -0.4100 0.0226 -0.7500 0.2925 -0.3083 

 52 1439843_at calcium/calmodulin-dependent protein 
kinase IV 

Camk4 0.9278 -0.0208 0.0089 -0.8941 0.0663 -0.3315 

 53 1449939_s_at delta-like 1 homolog (Drosophila) Dlk1 0.0397 0.6619 0.0807 -0.5542 0.4457 -0.2281 

 54 1422734_a_at myeloblastosis oncogene Myb 0.9507 -0.0096 0.0164 -0.6173 0.0493 -0.5480 

 55 1454720_at amyloid beta (A4) precursor protein-
binding, family A, member 3 /// heparan 

sulfate (glucosamine) 3-O-
sulfotransferase 5 

Apba3 
/// 

Hs3st5 

0.2044 0.2692 0.0367 -1.1111 0.0365 -0.3814 

 56 1427265_at breakpoint cluster region homolog Bcr 0.9107 -0.0219 0.0156 -0.9019 0.0824 -0.3581 
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Table III, 
Con’t 

57 1448766_at gap junction membrane channel protein 
beta 1 

Gjb1 0.9582 -0.0243 0.0493 -4.4178 0.0146 -1.7547 

 58 1451443_at nuclear factor I/X Nfix 0.7630 0.1971 0.0147 -5.5429 0.0148 -1.9040 

 59 1458503_at B-cell CLL/lymphoma 7A Bcl7a 0.0026 0.7139 0.1593 -0.8457 0.4689 0.1512 

 60 1452624_at leucine rich repeat transmembrane 
neuronal 1 

Lrrtm1 0.3311 -0.1414 0.0117 -1.1597 0.0021 -0.5618 

 61 1417614_at creatine kinase, muscle Ckm 0.5933 0.0856 0.0415 -0.7682 0.1528 -0.2572 

 62 1458323_at hypothetical protein LOC73980 LOC739
80 

0.0575 0.4552 0.0250 -1.0325 0.8204 -0.0542 

 63 1431892_a_at phospholipase C, delta 3 Plcd3 0.8860 -0.0189 0.0238 -0.7160 0.0518 -0.3675 

 64 1422137_at dual oxidase maturation factor 2 Duoxa2 0.1341 0.3593 0.0446 -0.5904 0.3393 -0.1291 

 65 1440327_at expressed sequence AI195470 AI19547
0 

0.8018 -0.0495 0.0184 -1.1394 0.0851 -0.4078 

 66 1436672_at CDNA clone IMAGE:5720309 --- 0.0384 0.5842 0.0251 -0.7811 0.3719 -0.2869 

 67 1454485_at RIKEN cDNA 4930456G14 gene 493045
6G14Ri

k 

0.6522 0.1370 0.0424 -0.8185 0.9863 -0.0061 

 68 1426607_at predicted gene, EG633640 EG6336
40 

0.5621 0.2528 0.0050 -1.1985 0.4271 -0.2800 

 69 1416149_at oligodendrocyte transcription factor 1 Olig1 0.8290 -0.0667 0.0024 -0.7563 0.0213 -0.5333 

 70 1417760_at nuclear receptor subfamily 0, group B, 
member 1 

Nr0b1 0.5810 0.1421 0.0079 -0.6796 0.7132 -0.0796 

 71 1422643_at monooxygenase, DBH-like 1 Moxd1 0.8996 -0.0259 0.0038 -0.6534 0.3886 -0.1749 

 72 1429452_x_at RIKEN cDNA 4933439C20 gene 493343
9C20Ri

k 

0.8380 -0.1244 0.0001 -2.0554 0.0002 -1.3444 

 73 1426387_x_at RIKEN cDNA 4933439C20 gene /// 
phosphatidylserine decarboxylase 
pseudogene /// phosphatidylserine 

decarboxylase /// hypothetical protein 
LOC100044151 

493343
9C20Ri

k /// 
LOC100
044151 

/// 
LOC236

604 /// 
Pisd 

0.8190 -0.0350 0.0001 -0.6442 0.0004 -0.4635 

 74 1434975_x_at RIKEN cDNA 4933439C20 gene 493343
9C20Ri

k 

0.4412 -0.1594 0.0000 -1.0222 0.0001 -0.7102 

 
 
 

75 1436944_x_at RIKEN cDNA 4933439C20 gene /// 
phosphatidylserine decarboxylase 

pseudogene /// hypothetical protein  

493343
9C20Ri

k  

0.6324 -0.1228 0.0000 -1.3420 0.0003 -1.0639 
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 76 1447985_s_at ankyrin repeat and IBR domain 
containing 1 

Ankib1 0.2947 -0.2201 0.0128 -0.8497 0.0142 -0.5659 

 77 1446041_at --- --- 0.7632 0.0510 0.0289 -0.6265 0.0920 -0.3322 

 78 1453439_at amelotin Amtn 0.5964 -0.0787 0.0017 -0.6018 0.1370 -0.2600 

 79 1454220_at RIKEN cDNA 9330185C12 gene 933018
5C12Ri

k 

0.8644 -0.0555 0.0084 -1.1280 0.3939 -0.3621 

 80 1416232_at oligodendrocyte transcription factor 2 Olig2 0.3351 0.3620 0.0103 -1.1260 0.0995 -0.5739 

 81 1423260_at inhibitor of DNA binding 4 /// similar to Id4 Id4 /// 
LOC100
045546 

0.4654 0.3520 0.0091 -1.1087 0.1539 -0.6058 

 82 1435179_at RIKEN cDNA C130071C03 gene C13007
1C03Ri

k 

0.9671 -0.0216 0.0034 -1.5773 0.0347 -1.1235 

 83 1423259_at inhibitor of DNA binding 4 /// similar to Id4 Id4 /// 
LOC100
045546 

0.9990 0.0006 0.0018 -1.3726 0.0356 -0.9395 

 84 1450928_at similar to Id4 LOC100
045546 

0.9542 -0.0262 0.0036 -1.3065 0.0186 -1.0647 

 85 1442734_at --- --- 0.7271 -0.0754 0.0041 -0.6530 0.0493 -0.3786 

 86 1437075_at FERM domain containing 3 Frmd3 0.9710 0.0100 0.0366 -0.6470 0.1465 -0.4605 

 87 1421723_at protocadherin beta 18 Pcdhb1
8 

0.0234 1.0813 0.1692 -0.8376 0.9834 0.0116 

 88 1438612_a_at colipase, pancreatic Clps 0.0437 0.5656 0.0197 -0.5997 0.5789 -0.1287 

 89 1420680_at cathepsin 8 Cts8 0.0382 4.9190 0.0516 -4.5050 0.9157 0.2484 

 90 1460275_at G-protein coupled receptor 3 Gpr3 0.0013 0.6795 0.0712 -0.4987 0.3147 0.1800 

 91 1437445_at transient receptor potential cation 
channel, subfamily M, member 1 

Trpm1 0.0169 0.7607 0.0539 -0.5774 0.4036 -0.2107 

 92 1424679_at mab-21-like 1 (C. elegans) Mab21l
1 

0.2422 0.3907 0.0439 -0.6283 0.4385 -0.2384 

 93 1455106_a_at creatine kinase, brain Ckb 0.6449 0.1137 0.0388 -0.6112 0.4281 -0.2271 

 94 1422706_at transmembrane, prostate androgen 
induced RNA 

Tmepai 0.6230 0.1124 0.0369 -0.7424 0.1953 -0.3779 

 95 1432516_at RIKEN cDNA 4930447F04 gene 493044
7F04Rik 

0.5306 1.2652 0.0282 -6.3059 0.2472 -3.5516 

 96 1451298_at pleckstrin homology domain containing, 
family H (with MyTH4 domain) member 3 

Plekhh3 0.9370 0.0309 0.0224 -1.0080 0.9468 0.0281 
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97 1432691_at RIKEN cDNA 9030407C09 gene 903040
7C09Ri

k 

0.8747 0.0485 0.0250 -0.9092 0.8424 -0.0662 

 98 1432521_at matrix-remodelling associated 8 Mxra8 0.5129 0.8618 0.0000 -8.5683 0.1042 -2.1666 

 99 1458036_at --- --- 0.1378 -0.5273 0.0115 -1.3780 0.1312 -0.5736 

 100 1417639_at solute carrier family 22 (organic cation 
transporter), member 4 

Slc22a4 0.7704 0.2695 0.0347 -5.2741 0.2894 -1.0446 

 101 1437648_at phosphate cytidylyltransferase 1, choline, 
beta isoform 

Pcyt1b 0.8068 0.0578 0.0299 -1.2172 0.1336 -0.4729 

 102 1422160_at histocompatibility 2, T region locus 24 H2-T24 0.9734 -0.0081 0.0058 -1.2356 0.1212 -0.4403 

 103 1445623_at Transcribed locus --- 0.7884 0.1152 0.0218 -2.9506 0.0966 -0.8838 

 104 1420208_at --- --- 0.5652 0.1528 0.0238 -0.7087 0.8112 -0.0557 

 105 1458361_at DNA cross-link repair 1C, PSO2 homolog 
(S. cerevisiae) 

Dclre1c 0.2371 0.3243 0.0331 -0.8327 0.6618 -0.1300 

 106 1453144_at RIKEN cDNA 4933439C20 gene 493343
9C20Ri

k 

0.2929 0.4925 0.0047 -3.3092 0.0009 -1.3295 

 107 1453145_at RIKEN cDNA 4933439C20 gene 493343
9C20Ri

k 

0.2883 0.1996 0.0000 -2.0876 0.0000 -1.0494 

 108 1425982_a_at Werner syndrome homolog (human) /// 
similar to WRN protein 

LOC100
044321 
/// Wrn 

0.6004 0.0892 0.0163 -0.6056 0.6066 -0.1023 

 109 1416942_at type 1 tumor necrosis factor receptor 
shedding aminopeptidase regulator 

Arts1 0.5689 0.1818 0.0481 -1.5536 0.1838 -0.4745 

 110 1432519_at RIKEN cDNA 1810059H22 gene 181005
9H22Ri

k 

0.6229 0.0611 0.0295 -0.6887 0.1339 -0.2261 

 111 1420673_a_at acyl-Coenzyme A oxidase 2, branched 
chain 

Acox2 0.3434 0.1820 0.0445 -0.6438 0.9066 -0.0225 

 112 1453850_at RIKEN cDNA 1500002I01 gene 150000
2I01Rik 

0.8213 -0.0661 0.0132 -0.9428 0.1477 -0.4479 

 113 1432031_at RIKEN cDNA 4930563E18 gene 493056
3E18Rik 

0.4583 -0.0717 0.0005 -0.6240 0.0578 -0.3529 

 114 1419559_at cytochrome P450, family 4, subfamily f, 
polypeptide 14 

Cyp4f14 0.1737 0.4613 0.0158 -1.3449 0.4049 -0.5877 

 115 1433014_at RIKEN cDNA 6330436F06 gene 633043
6F06Rik 

0.9823 -0.0051 0.0077 -0.6888 0.1225 -0.4968 

 116 1437190_at serine/threonine/tyrosine kinase 1 Styk1 0.3732 -0.1534 0.0118 -0.6180 0.2770 -0.2194 

 117 1441664_at hypothetical gene supported by 
AK081809 

LOC433
351 

0.6279 -0.1598 0.0102 -2.3591 0.1170 -0.8411 
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118 1445163_at --- --- 0.7233 -0.0711 0.0161 -0.6548 0.6622 -0.0941 

 119 1431240_at C-type lectin domain family 2, member h Clec2h 0.4075 0.7811 0.0480 -5.0579 0.2275 -1.1644 

 120 1440812_at Transcribed locus --- 0.1183 -3.4293 0.0020 -7.1233 0.0177 -3.6981 

 121 1449173_at membrane protein, palmitoylated 2 
(MAGUK p55 subfamily member 2) 

Mpp2 0.0035 0.6251 0.5654 0.1144 0.0350 0.3732 

 122 1418991_at BCL2-antagonist/killer 1 Bak1 0.0166 0.6821 0.8789 0.0213 0.1725 0.2105 

 123 1424667_a_at cut-like 1 (Drosophila) Cutl1 0.0107 0.6098 0.1689 -0.2739 0.1144 0.2436 

 124 1425646_at cDNA sequence BC016495 BC0164
95 

0.0422 0.8934 0.4044 -0.3551 0.3264 0.4553 

 125 1431338_at CASK interacting protein 1 Caskin1 0.0098 1.0064 0.7986 -0.0897 0.4379 0.2085 

 126 1447981_at expressed sequence C78441 C78441 0.0074 1.4914 0.9616 -0.0268 0.3340 0.4875 

 127 1437531_at transient receptor potential cation 
channel, subfamily M, member 1 

Trpm1 0.0100 0.9264 0.1864 0.4784 0.0349 0.7617 

 128 1453340_at RIKEN cDNA 1700057D03 gene 170005
7D03Ri

k 

0.0020 0.6491 0.4636 0.1713 0.1243 0.3095 

 129 1439148_a_at phosphofructokinase, liver, B-type Pfkl 0.0006 0.6696 0.5369 0.1028 0.0143 0.4853 

 130 1443501_at Transcribed locus --- 0.0106 0.5993 0.6344 0.0957 0.1251 0.4411 

 131 1440967_at 13 days embryo heart cDNA, RIKEN full-
length enriched library, 

clone:D330036N06 
product:unclassifiable, full insert 

sequence /// 3 days neonate thymus 
cDNA, RIKEN full-length enriched library, 
clone:A630063I24 product:unclassifiable, 

full insert sequence 

--- 0.0064 0.6197 0.3601 0.1795 0.0740 0.4277 

 132 1453225_at RIKEN cDNA A930038C07 gene A93003
8C07Ri

k 

0.0086 1.2326 0.8713 -0.0710 0.4977 0.2187 

 133 1458037_at --- --- 0.0119 0.7075 0.8015 0.0489 0.2824 0.2944 

 134 1447493_at RIKEN cDNA A530088H08 gene A53008
8H08Ri

k 

0.0015 0.5852 0.3168 0.1274 0.0178 0.3788 

 135 1447564_x_at piwi-like homolog 4 (Drosophila) Piwil4 0.0115 0.6851 0.4800 0.1447 0.1255 0.4085 

 136 1427300_at LIM homeobox protein 8 Lhx8 0.0348 1.3387 0.8521 -0.0933 0.0510 1.5549 

 137 1431484_at proline rich Gla (G-carboxyglutamic acid) 
1 

Prrg1 0.0044 0.5903 0.0735 -0.2422 0.3828 0.2130 
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138 1423342_at BarH-like homeobox 1 Barx1 0.0227 0.7764 0.0466 -0.6118 0.5635 0.2016 

 139 1459222_x_at --- --- 0.0201 0.8010 0.9260 0.0252 0.2825 0.3442 

 140 1423748_at pyruvate dehydrogenase kinase, 
isoenzyme 1 

Pdk1 0.0186 0.5892 0.9088 -0.0178 0.0897 0.2990 

 141 1452482_at v-erb-b2 erythroblastic leukemia viral 
oncogene homolog 3 (avian) 

Erbb3 0.0154 0.7707 0.2626 -0.2832 0.3675 0.2086 

 142 1420555_at aristaless 3 Alx3 0.0044 0.7590 0.9928 0.0024 0.4275 0.1820 

 143 1457755_at guanine nucleotide binding protein (G 
protein), gamma 8 subunit 

Gng8 0.0008 0.6196 0.6926 0.0921 0.0713 0.3347 

 144 1419596_at ectodysplasin-A /// similar to EDA-A1 Eda /// 
LOC100
045121 

0.0017 0.6073 0.1760 0.3123 0.0002 0.5447 

 145 1456362_at cytochrome P450, family 11, subfamily b, 
polypeptide 1 

Cyp11b
1 

0.0022 0.5946 0.0287 0.3871 0.0204 0.3602 

 146 1453847_at RIKEN cDNA A930037O16 gene A93003
7O16Ri

k 

0.0110 0.2967 0.0071 0.6151 0.0030 0.5164 

 147 1440665_at --- --- 0.0312 0.6876 0.0057 0.8848 0.0165 0.7267 

 148 1453789_at RIKEN cDNA 4933440N22 gene 493344
0N22Ri

k 

0.0350 0.5725 0.0284 0.6662 0.0472 0.5884 

 149 1430044_at RIKEN cDNA 4930415F15 gene 493041
5F15Rik 

0.0032 0.8698 0.0186 0.6199 0.0179 0.7046 

 150 1457123_at neuregulin 4 Nrg4 0.0510 1.1543 0.0481 1.1386 0.1614 0.8869 

 151 1446043_at expressed sequence C81086 C81086 0.0140 0.8517 0.0706 0.5611 0.1181 0.5056 

 152 1421444_at progesterone receptor Pgr 0.0393 0.5996 0.0668 0.4603 0.1388 0.4232 

 153 1434364_at mitogen-activated protein kinase kinase 
kinase 14 

Map3k1
4 

0.0219 0.6442 0.0231 0.5480 0.0660 0.6244 

 154 1445731_at --- --- 0.0907 0.6358 0.0577 0.7786 0.0334 0.9889 

 155 1425417_x_at killer cell lectin-like receptor, subfamily A, 
member 8 /// similar to killer cell lectin-

like receptor subfamily A member 29 /// 
hypothetical protein LOC100038897 

Klra8 /// 
LOC100
038897 

/// 
LOC667

769 

0.2177 0.4818 0.0307 1.0518 0.1281 0.6986 

 156 1458302_at Transcribed locus --- 0.1222 0.3906 0.0182 0.6723 0.0918 0.4885 

 157 1459016_at B6-derived CD11 +ve dendritic cells 
cDNA, RIKEN full-length enriched library, 

clone:F730301C14 
product:unclassifiable, full insert  

--- 0.0142 0.9034 0.4735 0.2110 0.6663 0.1495 
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158 1442846_at --- --- 0.0315 0.6870 0.3298 0.2496 0.5193 0.1860 

 159 1427615_at integrin alpha 4 Itga4 0.0055 1.3580 0.0130 0.8352 0.0071 1.1073 

 160 1455989_at gap junction membrane channel protein 
alpha 12 

Gja12 0.0336 2.3118 0.0899 1.7956 0.2083 1.4690 

 161 1442970_at FCH and double SH3 domains 2 Fchsd2 0.0191 2.9420 0.0493 2.5684 0.1107 2.0246 

 162 1429563_x_at Sp110 nuclear body protein Sp110 0.0255 0.6430 0.0679 0.5184 0.0831 0.5588 

 163 1451945_at --- --- 0.0055 7.9602 0.0556 6.3360 0.0311 6.6630 

 164 1440004_at Transcribed locus --- 0.0011 1.1244 0.2216 0.4758 0.0794 0.5237 

 165 1442584_at --- --- 0.0064 0.7470 0.0468 0.5337 0.0254 0.5440 

 166 1417946_at abhydrolase domain containing 3 Abhd3 0.0175 0.7575 0.0957 0.5249 0.4009 0.2525 

 167 1423634_at gasdermin 1 Gsdm1 0.0438 0.6308 0.0284 0.5764 0.1811 0.3541 

 168 1453250_at RIKEN cDNA 4921511C04 gene /// 
hypothetical protein LOC100046859 

492151
1C04Ri

k /// 
LOC100
046859 

0.0927 4.7500 0.0409 5.9604 0.4005 2.6277 

 169 1428909_at RIKEN cDNA A130040M12 gene A13004
0M12Ri

k 

0.0508 4.5213 0.0479 4.6024 0.3287 2.4246 

 170 1458513_at mitogen activated protein kinase 10 Mapk10 0.0350 0.6116 0.0564 0.4709 0.3731 0.2239 

 171 1425823_at cDNA sequence BC026782 BC0267
82 

0.0477 0.4553 0.0005 0.8407 0.0261 0.4256 

 172 1432879_at RIKEN cDNA 6820402A03 gene 682040
2A03Rik 

0.0293 0.5417 0.0080 0.6988 0.1399 0.4298 

 173 1432877_at RIKEN cDNA 4930544N03 gene 493054
4N03Ri

k 

0.0049 0.9883 0.0463 0.7913 0.0257 0.7969 

 174 1438148_at chemokine (C-X-C motif) ligand 3 Cxcl3 0.0147 0.6316 0.0059 0.8259 0.0328 0.5988 

 175 1459955_at Predicted gene, EG665317 EG6653
17 

0.0646 1.0979 0.0234 1.1246 0.1475 0.7420 

 176 1446913_at --- --- 0.0551 1.4172 0.0298 1.9783 0.1822 1.0566 

 177 1445202_at 0 day neonate cerebellum cDNA, RIKEN 
full-length enriched library, 

clone:C230022P04 
product:unclassifiable, full insert  

--- 0.5007 0.1505 0.0089 0.6479 0.1069 0.3673 

 178 1418382_at adenomatosis polyposis coli down-
regulated 1 

Apcdd1 0.7450 0.0366 0.0104 0.6185 0.0055 0.4972 
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179 1422236_at RIKEN cDNA 4930560E09 gene 493056
0E09Rik 

0.3321 0.4049 0.0030 1.1747 0.0723 0.6344 

 180 1427738_at DNA segment, KIST 2 D0Kist2 0.0562 0.5093 0.0112 0.7811 0.0902 0.6741 

 181 1446487_at --- --- 0.0637 0.2908 0.0039 0.5374 0.0145 0.6222 

 182 1460674_at progestin and adipoQ receptor family 
member VII 

Paqr7 0.3371 0.2140 0.2955 0.2440 0.0356 0.6457 

 183 1457152_at --- --- 0.1328 0.7797 0.1949 0.6584 0.0251 1.5879 

 184 1459101_at expressed sequence C78760 C78760 0.2217 0.5384 0.8277 0.0945 0.0437 1.2300 

 185 1432008_at transmembrane protein 86B Tmem8
6b 

0.0784 0.3576 0.0220 0.4844 0.0247 0.7114 

 186 1439762_x_at adrenergic receptor, alpha 2c /// similar to 
alpha-2 adrenergic receptor 

Adra2c 
/// 

LOC100
045767 

0.0135 0.7380 0.0088 0.7939 0.0104 1.0096 

 187 1457450_at RIKEN cDNA A830091I15 gene A83009
1I15Rik 

0.0326 0.6151 0.0910 0.4662 0.0119 0.8934 

 188 1450977_s_at N-myc downstream regulated gene 1 Ndrg1 0.0582 0.3478 0.0127 0.5628 0.0341 0.6802 

 189 1421564_at serine (or cysteine) peptidase inhibitor, 
clade A, member 3C 

Serpina
3c 

0.3222 1.7931 0.1138 2.6593 0.0146 5.6049 

 190 1454518_at RIKEN cDNA 4930429L21 gene 493042
9L21Rik 

0.1735 2.1009 0.4716 1.1433 0.0308 4.4145 

 191 1419232_a_at apolipoprotein A-I Apoa1 0.2595 1.5316 0.2302 1.6293 0.0402 3.6904 

 192 1445632_at oxoglutarate dehydrogenase (lipoamide) Ogdh 0.2560 0.2268 0.4302 0.1534 0.0241 0.6105 

 193 1427652_x_at synaptojanin 2 Synj2 0.2075 2.0241 0.2858 1.6960 0.0169 5.3852 

 194 1439505_at chloride intracellular channel 5 Clic5 0.1717 1.7416 0.1580 1.7836 0.0108 4.6125 

 195 1445044_at Prostaglandin I2 (prostacyclin) synthase Ptgis 0.2555 1.3105 0.1551 1.6678 0.0184 4.1551 

 196 1445813_at WD repeat domain 27 Wdr27 0.2014 1.5557 0.1769 1.6544 0.0127 4.4101 

 197 1418136_at transforming growth factor beta 1 
induced transcript 1 

Tgfb1i1 0.3381 0.1999 0.1732 0.3078 0.0295 0.6042 

 198 1421414_a_at sema domain, transmembrane domain 
(TM), and cytoplasmic domain, 

(semaphorin) 6A 

Sema6a 0.0600 0.5174 0.4010 0.2202 0.0184 0.8898 

 199 1430719_at RIKEN cDNA 4833447P13 gene 483344
7P13Rik 

0.6510 -0.1228 0.0328 0.6653 0.1903 0.4145 

 200 1444780_at RIKEN cDNA 5330421F07 gene 533042
1F07Rik 

0.2905 -0.2753 0.0066 0.6145 0.8021 0.0752 

 201 1440811_x_at CD8 antigen, alpha chain Cd8a 0.5116 -1.7008 0.0311 4.9996 0.6699 0.9744 
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202 1425471_x_at --- --- 0.0171 -1.0807 0.1813 0.5811 0.8877 -0.0583 

 203 1447366_at Transcribed locus --- 0.0122 -0.7230 0.9262 0.0223 0.2751 -0.3100 

 204 1437913_at B-cell leukemia/lymphoma 2 related 
protein A1a /// B-cell leukemia/lymphoma 

2 related protein A1b /// B-cell 
leukemia/lymphoma 2 related protein A1c 

/// B-cell leukemia/lymphoma 2 related 
protein A1d 

Bcl2a1a 
/// 

Bcl2a1b 
/// 

Bcl2a1c 
/// 

Bcl2a1d 

0.0446 -0.7566 0.2172 0.4782 0.6491 0.1767 

 205 1424842_a_at Rho GTPase activating protein 24 Arhgap2
4 

0.0122 -0.6607 0.9097 0.0215 0.5929 -0.1075 

 206 1415996_at thioredoxin interacting protein Txnip 0.0051 -0.6550 0.4707 0.0768 0.0620 -0.2597 

 207 1428977_at carbohydrate (N-acetylgalactosamine 4-
0) sulfotransferase 8 

Chst8 0.0153 -0.6379 0.7878 -0.0412 0.3325 -0.1810 

 208 1438125_at RIKEN cDNA C230085N15 gene C23008
5N15Ri

k 

0.0283 -1.0726 0.6865 0.0436 0.0005 -0.5495 

 209 1441513_at TRAF family member-associated Nf-
kappa B activator 

Tank 0.0186 -0.8829 0.5713 -0.1228 0.0744 -0.4744 

 210 1443870_at ATP-binding cassette, sub-family C 
(CFTR/MRP), member 4 

Abcc4 0.0039 -0.6398 0.3866 0.1502 0.5166 -0.0988 

 211 1449545_at fibroblast growth factor 18 Fgf18 0.0308 -0.7972 0.2094 0.4399 0.3536 0.2638 

 212 1434572_at histone deacetylase 9 Hdac9 0.0056 -0.6465 0.5779 -0.1365 0.1998 -0.2911 

 213 1440490_at 1 day pregnant adult female ovary cDNA, 
RIKEN full-length enriched library, 

clone:7230402P09 product:hypothetical 
protein, full insert sequence 

--- 0.0288 -0.6689 0.2462 0.2844 0.1627 -0.3421 

 214 1455978_a_at matrilin 2 Matn2 0.0340 -0.7438 0.8140 0.0509 0.2273 -0.2605 

 215 1452848_at transmembrane protein 181 Tmem1
81 

0.0085 -0.6913 0.1304 -0.2766 0.3911 -0.1973 

 216 1436584_at sprouty homolog 2 (Drosophila) Spry2 0.0117 -0.6854 0.6286 -0.1050 0.8595 -0.0482 

 217 1454580_at RIKEN cDNA 5430427N15 gene 543042
7N15Ri

k 

0.0032 -0.8678 0.7911 0.0532 0.1591 -0.2597 

 218 1448424_at frizzled-related protein Frzb 0.0227 -0.7568 0.4175 0.1622 0.7124 -0.0774 

 219 1460465_at RIKEN cDNA A930038C07 gene A93003
8C07Ri

k 

0.0277 -0.7047 0.3716 0.1962 0.6597 0.1111 

 220 1456197_x_at Adherens junction associated protein 1 Ajap1 0.0057 -0.7820 0.6612 0.0609 0.5643 -0.1209 
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Table III, 
Con’t 

221 1450488_at chemokine (C-C motif) ligand 24 Ccl24 0.1473 -0.3034 0.0032 0.6770 0.3860 0.1747 

 222 1448949_at carbonic anhydrase 4 Car4 0.0973 -0.5683 0.0152 0.8372 0.0854 0.4857 

 223 1418094_s_at carbonic anhydrase 4 Car4 0.1521 -0.4844 0.0076 0.8374 0.0852 0.4492 

 224 1427355_at calcitonin/calcitonin-related polypeptide, 
alpha 

Calca 0.0354 -0.6311 0.1552 0.3852 0.9494 -0.0144 

 225 1449434_at carbonic anhydrase 3 Car3 0.0096 -0.7551 0.2441 0.2659 0.9154 0.0250 

 226 1437824_at glutamate receptor, ionotropic, delta 2 Grid2 0.0000 -8.0250 0.0279 2.4672 0.1538 -1.5642 

 227 1449783_at --- --- 0.0032 -7.7864 0.3577 -2.2856 0.0085 -5.7836 

 228 1457373_at Transcribed locus --- 0.0449 -0.8722 0.5655 0.0950 0.0055 -0.4901 

 229 1426568_at solute carrier family 2 (facilitated glucose 
transporter), member 9 

Slc2a9 0.0314 -1.3077 0.7399 0.1249 0.3326 -0.3372 

 230 1425470_at --- --- 0.0180 -6.4577 0.2140 2.2581 0.3291 -2.5058 

 231 1440716_at RIKEN cDNA 6430604M11 gene 643060
4M11Ri

k 

0.0067 -0.6547 0.7408 0.0715 0.2282 -0.2667 

 232 1440463_at --- --- 0.0178 -0.7890 0.6798 0.0775 0.0364 -0.5302 

 233 1432077_at protection of telomeres 1A Pot1a 0.0103 -6.6941 0.0892 0.8190 0.0836 -3.8058 

 234 1440519_at trans-acting transcription factor 8 Sp8 0.0025 -0.6788 0.9601 0.0076 0.0734 -0.3108 

 235 1420162_at expressed sequence AA409749 AA4097
49 

0.0201 -0.8820 0.4341 -0.1607 0.0006 -0.6234 

 236 1421749_at --- --- 0.0167 -0.6923 0.5664 0.1592 0.6044 -0.1341 

 237 1449534_at synaptonemal complex protein 3 Sycp3 0.0028 -0.9412 0.1457 -0.3718 0.0143 -0.7238 

 238 1419926_at Thioredoxin domain containing 10 Txndc1
0 

0.0250 -0.7764 0.3548 -0.1852 0.0525 -0.3845 

 239 1442182_at DnaJ (Hsp40) homolog, subfamily C, 
member 19 

Dnajc19 0.0107 -0.7434 0.2154 -0.2541 0.0101 -0.5473 

 240 1420094_at Heterogeneous nuclear ribonucleoprotein 
D-like 

Hnrpdl 0.0065 -0.8366 0.1321 -0.2942 0.0055 -0.6404 

 241 1453859_at ubiquinol-cytochrome c reductase 
complex chaperone, CBP3 homolog 

(yeast) 

Uqcc 0.0346 -5.2265 0.4147 -0.5865 0.0532 -1.8841 

 242 1424354_at transmembrane protein 140 Tmem1
40 

 

0.0266 -0.8240 0.7162 0.0519 0.1099 -0.2912 
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Table III, 
Con’t 

 
243 

 
1453473_a_at 

 
dynein light chain Tctex-type 1 /// similar 

to tctex-1 protein 

Dynlt1 
/// 

LOC100
040531 

/// 
LOC100
040563 

/// 
LOC100
040603 

/// 
LOC100
040631 

/// 
LOC100
043890 

0.0041 -0.7726 0.2943 -0.1350 0.0775 -0.2678 

 244 1427837_at similar to Unknown (protein for 
MGC:103328) 

LOC100
046552 

0.0387 -0.6165 0.6730 0.0787 0.6902 -0.1015 

 245 1459785_at Zinc finger protein 383 Zfp383 0.0018 -1.2926 0.2695 -0.2693 0.0410 -0.5554 

 246 1443404_s_at DNA segment, Chr 13, ERATO Doi 94, 
expressed 

D13Ertd
94e 

0.0262 -5.6085 0.7106 -0.4951 0.0614 -1.8316 

 247 1429943_at chitobiase, di-N-acetyl- Ctbs 0.0170 -0.9739 0.7290 -0.0605 0.0110 -0.4684 

 248 1435948_at transmembrane protein 181 /// similar to 
G protein-coupled receptor 178 

LOC100
040525 

/// 
LOC100
040596 

/// 
Tmem1

81 

0.0293 -0.5867 0.9467 -0.0121 0.4487 -0.1532 

 249 1436127_at corticotropin releasing hormone binding 
protein 

Crhbp 0.0254 -0.6182 0.9455 -0.0104 0.0569 -0.2811 

 250 1436690_at LPS-responsive beige-like anchor Lrba 0.0188 -5.7987 0.2210 1.1627 0.2766 -1.0535 

 251 1441966_at transient receptor potential cation 
channel, subfamily M, member 3 

Trpm3 0.0134 -1.9382 0.4643 -0.3243 0.2895 -0.7373 

 252 1443230_at CDNA clone IMAGE:6514950 --- 0.0093 -0.8293 0.8743 -0.0326 0.1108 -0.3433 

 253 1458460_at --- --- 0.0024 -0.8186 0.7903 -0.0574 0.0382 -0.5550 

 254 1431039_at OTU domain containing 4 Otud4 0.0083 -0.6040 0.6071 -0.0830 0.0501 -0.4205 

 255 1432953_at RIKEN cDNA 4921520E09 gene 492152
0E09Rik 

0.0051 -1.1486 0.5474 -0.1954 0.2932 -0.3852 

 256 1419681_a_at prokineticin 2 Prok2 0.0155 -0.9286 0.8946 -0.0194 0.1534 -0.3376 
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Table III, 
Con’t 

257 1457904_at carbonic anhydrase 8 Car8 0.0353 -4.2855 0.3743 0.5202 0.0327 -1.4197 

 258 1416593_at glutaredoxin Glrx 0.0213 -0.5947 0.6153 0.0696 0.3587 -0.1452 

 259 1452750_at RIKEN cDNA 5530601H04 gene 553060
1H04Ri

k 

0.0052 -0.6939 0.9299 0.0158 0.0552 -0.5495 

 260 1456984_at sex comb on midleg-like 2 (Drosophila) Scml2 0.0086 -0.6113 0.8907 -0.0274 0.0542 -0.4555 

 261 1418681_at asparagine-linked glycosylation 13 
homolog (S. cerevisiae) 

Alg13 0.0160 -0.6232 0.5992 -0.1207 0.1344 -0.4298 

 262 1431172_at origin recognition complex, subunit 4-like 
(S. cerevisiae) 

Orc4l 0.0049 -0.6074 0.9643 -0.0063 0.0251 -0.4625 

 263 1428604_at RIKEN cDNA 2610305D13 gene 261030
5D13Ri

k 

0.0021 -0.6384 0.2364 0.1838 0.1697 -0.3112 

 264 1424963_at retinitis pigmentosa 1 homolog (human) Rp1h 0.0053 -1.0912 0.7165 -0.0864 0.1682 -0.6638 

 265 1452539_a_at CD247 antigen Cd247 0.0010 -0.5855 0.1042 0.3750 0.7633 0.0366 

 266 1457646_at homeo box A11, opposite strand 
transcript 

Hoxa11
os 

0.0097 -1.7675 0.2524 0.5410 0.2754 -0.5745 

 267 1451629_at limb-bud and heart /// similar to limb-bud 
and heart 

Lbh /// 
LOC100
048380 

0.0097 -0.7474 0.0186 -0.5044 0.0473 -0.4575 

 268 1437062_s_at phytanoyl-CoA hydroxylase interacting 
protein-like 

Phyhipl 0.0106 -0.8595 0.0987 -0.4512 0.1150 -0.4349 

 269 1442905_at Transcribed locus --- 0.0088 -0.6084 0.0475 -0.3748 0.0682 -0.3541 

 270 1417462_at CAP, adenylate cyclase-associated 
protein 1 (yeast) 

Cap1 0.0057 -0.6191 0.0212 -0.5382 0.0823 -0.4116 

 271 1421851_at microtubule-associated protein 1 B Mtap1b 0.0261 -0.6216 0.0146 -0.4531 0.0330 -0.4381 

 272 1438356_x_at RIKEN cDNA 4933432K03 gene 493343
2K03Rik 

0.0013 -0.7094 0.0342 -0.3222 0.0623 -0.4249 

 273 1454277_at RIKEN cDNA 1700049J03 gene 170004
9J03Rik 

0.0004 -0.8014 0.0165 -0.3836 0.0003 -0.8188 

 274 1430720_at Y box protein 1 Ybx1 0.0018 -0.6595 0.0572 -0.2175 0.0028 -0.5614 

 275 1431499_at RIKEN cDNA 4933436F18 gene 493343
6F18Rik 

0.0011 -0.6086 0.7975 -0.0511 0.1075 -0.3414 

 276 1431611_a_at cell adhesion molecule 1 Cadm1 0.0207 -0.7087 0.0749 -0.2813 0.0581 -0.4318 

 277 1425942_a_at glycoprotein m6b Gpm6b 0.0172 -0.7460 0.3137 -0.2250 0.1906 -0.3746 

 278 1440050_at similar to Hbs1l protein LOC100
040505/  
LOC100
045696 

0.0272 -0.5861 0.6385 -0.1067 0.1799 -0.3923 
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Table III, 
Con’t 

279 1437568_at matrix metallopeptidase 16 Mmp16 0.0030 -0.5974 0.3282 -0.1954 0.0121 -0.4770 

 280 1421895_at eukaryotic translation initiation factor 2, 
subunit 3, structural gene X-linked /// 

similar to translation initiation factor eIF-2 
gamma subunit 

Eif2s3x 
/// 

LOC100
039419 

/// 
LOC100
048746 

0.0040 -0.8212 0.3153 -0.1762 0.0726 -0.6169 

 281 1438838_at RIKEN cDNA B230206F22 gene B23020
6F22Rik 

0.0086 -0.6805 0.3907 -0.1808 0.0555 -0.5860 
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Table IV. Genes identified as differentially expressed in E9.5 Vegf isoform 

mice and E11.5 wild types relative to a E9.5 wild type background.  A meta-

analysis combining microarrays from our current study (E9.5 WT=2, E9.5 

Vegf188=4, E9.5 Vegf120/188=3), Darland et al., 2011 (E9.5 WT=4, E9.5 

Vegf120=4, Ref and GEO), and Hartl et al., 2008 (E9.5 WT= 6, E11.5 WT=4). 

Unprocessed .CEL files were downloaded from Gene Expression Omnibus 

(website) and combined with our arrays.  The runs were PLIER normalized, 

Presence/Absence filtered using MAS5, and log2 transformed.  To eliminate 

variation attributed to the different technical batches, all arrays were batch 

normalized using a multivariate-modeled (Genotype, Age, Batch) Empirical 

Bayes correction run by the R-scripts ComBat.R.  Affymetrix probe set IDs from 

Affymetrix 430A Mouse microarray chip are provided along with the gene title 

and symbol, as well as the Zcut for each group and whether the gene was 

significantly up (1), down (-1), or not changed (0) relative to the E9.5 wild types.  

The genes selected for this list were all those changed in at least one of the E9.5 

Vegf isoform mice. Due to the overwhelming number of total genes shifted in the 

forebrains of E11.5 wild type mice, we did not include in this table genes only 

shifted in the E11.5 group.   Due to the size of this table ( >200 pages) we have 

elected to provide this table as an electronic copy. 
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Table V. Covariate analysis of qPCR quantitation for key growth factor signaling genes (Shh, Notch3, CXCL12, 
CXCR7, Nrp1, Nrp2) and reference genes (18S rRNA and GAPDH).  Statistical comparisons were done with the log2 
values for each sample and the Degrees of freedom (Df), F-value, and P value for residuals (Pr) are shown based on 
mean and standard deviation from the mean with fold change and p-value indicated for atatistical comparisons were do 
 
 
a. Shh 

Factors Df F-Value Pr (>F) 
 Genotype 3 4.1847 0.05423 
 18s 1 0.6797 0.43689 
 Gapdh 1 6.2581 0.04089 
 Genotype:18s 3 0.1159 0.94792 
 Genotype:Gapdh 3 1.6077 0.27187 
 Gapdh:18s 1 0.0011 0.975 
 Genotype:18s:Gapdh 2 1.679 0.25373 
 Residuals 7 

   
     Genotype WT V120 V188 V120/188 

N 7 5 6 9 
Mean (ag/Total RNA) 6.7361 6.7254 3.284 4.6467 
Standard Deviation 1.1441 1.9564 0.9489 2.0856 

     Tukey's Post Hoc WT v V120 WT v V188 WT v V120/188 
 p-value 0.9999 0.0816 0.2636 
 Fold Change 0.0032 1.0994 0.6957 
 

     
 

V120 v Vegf188 V120 v V120/188 V188 v V120/188 
 p-value 0.0865 0.2785 0.5127 
 Fold Change 1.0962 0.6925 -0.4037 
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Table V, continued. 
 
b. Notch3 

Factors Df F-Value Pr (>F) 
 Genotype 3 5.3215 0.022 
 18s 1 4.0225 0.0758 
 Gapdh 1 11.2193 0.00853 
 Genotype:18s 3 0.5704 0.6485 
 Genotype:Gapdh 3 5.2256 0.0231 
 Gapdh:18s 1 3.4241 0.0973 
 Genotype:18s:Gapdh 3 6.3048 0.0136 
 Residuals 9 

   
     Genotype WT V120 V188 V120/188 

N 8 6 7 8 
Mean (ag/Total RNA) 364.468 359.1558 174.09 324.5793 
Standard Deviation 76.9364 39.9049 159.9405 94.5449 

     Tukey's Post Hoc WT v V120 WT v V188 WT v V120/188 
 p-value 0.994 0.027 0.8402 
 Fold Change 0.0531 1.3719 0.1943 
 

 

 
V120 v Vegf188 V120 v V120/188 V188 v V120/188 

 p-value 0.0228 0.7251 0.068 
 Fold Change 1.3189 0.1412 -1.1776 
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Table V, continued. 
 
c. CXCL12 

Factors Df F-Value Pr (>F) 
 Genotype 3 4.8424 0.008 
 18s 1 16.9934 0.0003 
 Genotype:18s 3 0.1345 0.9386 
 Residuals 27 

   
     Genotype WT V120 V188 V120/188 

N 8 11 7 9 
Mean (pg/Total RNA) 0.024 0.0114 0.00513 0.02 
Standard Deviation 0.013 0.0114 0.00422 0.018 

     Tukey's Post Hoc WT v V120 WT v V188 WT v V120/188 
 p-value 0.0811 0.0116 0.878 
 Fold Change 1.8079 2.3375 0.6472 
 

     
 

V120 v Vegf188 V120 v V120/188 V188 v V120/188 
 p-value 0.6368 0.3007 0.0497 
 Fold Change 0.5296 -1.1607 -1.6904 
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Table V, continued. 
 
d. CXCR7 

Factors Df F-Value Pr (>F) 
 Genotype 3 6.682 0.0011 
 18s 1 28.4503 0.000006 
 Genotype:18s 3 3.8345 0.0181 
 Residuals 34 

   
     Genotype WT V120 V188 V120/188 

N 11 11 10 11 
Mean (pg/Total RNA) 0.0000119 0.00000834 0.00000834 0.0000101 
Standard Deviation 0.0000034 0.00000369 0.00000024 0.00000279 

     Tukey's Post Hoc WT v V120 WT v V188 WT v V120/188 
 p-value 0.0033 0.0044 0.506 
 Fold Change 0.5669 0.5026 0.2251 
 

     
 

V120 v Vegf188 V120 v V120/188 V188 v V120/188 
 p-value 0.9999 0.1243 0.1412 
 Fold Change -0.0643 -0.3418 -0.2775 
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Table V, continued. 
 
e. Nrp1 

Factors Df F-Value Pr (>F) 
 Genotype 3 5.5645 0.0076 
 18s 1 40.8765 0.000007 
 Genotype:18s 3 9.6986 0.0006 
 Residuals 25 

   
     Genotype WT V120 V188 V120/188 

N 6 7 5 7 
Mean (pg/Total RNA) 0.0019 0.0019 0.00054 0.005 
Standard Deviation 0.0017 0.002 0.00039 0.0071 

     Tukey's Post Hoc WT v V120 WT v V188 WT v V120/188 
 p-value 0.9999 0.6671 0.0619 
 Fold Change 0.5631 1.4996 -0.2198 
 

     
 

V120 v Vegf188 V120 v V120/188 V188 v V120/188 
 p-value 0.6834 0.0432 0.0074 
 Fold Change 0.9364 -0.7829 -1.7193 
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Table V, continued. 
 
f. Nrp2 

Factors Df F-Value Pr (>F) 
 Genotype 3 4.6584 0.0102 
 18s 1 3.1685 0.08723 
 Genotype:18s 3 2.6853 0.06825 
 Residuals 25 

   
     Genotype WT V120 V188 V120/188 

N 9 7 9 9 
Mean (pg/Total RNA) 0.0894 0.0557 0.0103 0.0221 
Standard Deviation 0.0646 0.0905 0.0086 0.0175 

     Tukey's Post Hoc WT v V120 WT v V188 WT v V120/188 
 p-value 0.5221 0.0098 0.048 
 Fold Change 1.7498 3.0489 1.9972 
 

     
 

V120 v Vegf188 V120 v V120/188 V188 v V120/188 
 p-value 0.272 0.5991 0.9345 
 Fold Change 1.2991 0.2473 -1.0518 
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Table V, continued. 
 
g. 18S rRNA 
 

Factors Df F-Value Pr (>F) 
 Genotype 3 0.7431 0.5396 
 18s 1 1.6074 0.2202 
 Genotype:18s 3 0.2935 0.8296 
 Residuals 19 

   
     Genotype WT V120 V188 V120/188 

N 9 6 6 8 
Mean (ag/Total RNA) 8702 11347 9964 9964 
Standard Deviation 3573 2007 2303 2303 

     Tukey's Post Hoc WT v V120 WT v V188 WT v V120/188 
 p-value 0.4931 0.9941 0.8863 
 Fold Change -0.4822 0.0563 -0.2856 
 

     
 

V120 v Vegf188 V120 v V120/188 V188 v V120/188 
 p-value 0.7272 0.8685 0.9806 
 Fold Change 0.5385 0.1966 -0.3419 
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Table V, continued. 
 
h. GAPDH 
 

Factors Df F-Value Pr (>F) 
 Genotype 3 1.4877 0.2498 
 18s 1 1.5995 0.2213 
 Genotype:18s 3 0.2611 0.8525 
 Residuals 19 

   
     Genotype WT V120 V188 V120/188 

N 9 6 8 8 
Mean (ag/Total RNA) 1051 1272 896 1334 
Standard Deviation 436 375 417 190 

     Tukey's Post Hoc WT v V120 WT v V188 WT v V120/188 
 p-value 0.4625 0.9231 0.2384 
 Fold Change -0.4028 0.2634 -0.4426 
 

     
 

V120 v Vegf188 V120 v V120/188 V188 v V120/188 
 p-value 0.8792 0.998 0.698 
 Fold Change 0.6662 -0.0397 -0.706 
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Table VI. Covariate analysis of qPCR quantitation for key transcription modulators (Suz12, Dnmt3a, Id1, Pax6, 
Hey 2, Fezf2, Pax3, FoxM1, and Zfhxb1) and reference genes (18S and GAPDH). Statistical comparisons were done 
with the log2 values for each sample and the Degrees of freedom (Df), F-value, and P value for residuals (Pr) are shown 
based on mean and standard deviation from the mean with fold change and p-value indicated for 
atatistical comparisons were do 
 
a. Suz12 

Factors Df F-Value Pr (>F) 
 Genotype 3 1.5052 0.2784 
 18s 1 6.0691 0.0359 
 Gapdh 1 14.6298 0.0041 
 Genotype:18s 3 0.0849 0.9665 
 Genotype:Gapdh 3 4.0782 0.0439 
 Gapdh:18s 1 0.018 0.8963 
 Genotype:18s:Gapdh 2 2.5311 0.1226 
 Residuals 9 

   
     Genotype WT V120 V188 V120/188 

N 8 6 5 9 
Mean (ag/Total RNA) 38.9251 45.5759 40.108 50.4278 
Standard Deviation 16.9085 10.1259 16.0011 24.8914 

     Tukey's Post Hoc WT v V120 WT v V188 WT v V120/188 
 p-value 0.7938 0.9612 0.2333 
 Fold Change -0.3572 -0.0592 -0.3417 
 

 
V120 v Vegf188 V120 v V120/188 V188 v V120/188 

 p-value 0.9871 0.7352 0.6098 
 Fold Change 0.298 0.0155 -0.2825 
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Table VI, continued. 
 
b. Dnmt3a 

Factors Df F-Value Pr (>F) 
 Genotype 3 6.5292 0.0194 
 18s 1 2.276 0.1751 
 Gapdh 1 3.6272 0.0985 
 Genotype:18s 3 0.7174 0.5724 
 Genotype:Gapdh 3 1.6345 0.2615 
 Gapdh:18s 1 0.0008 0.9785 
 Genotype:18s:Gapdh 3 3.3742 0.0942 
 Residuals 7 

   
     Genotype WT V120 V188 V120/188 

N 7 5 7 7 
Mean (ag/Total RNA) 4.5659 3.8055 0.6086 3.9891 
Standard Deviation 0.9872 1.4274 0.2065 1.6956 

     Tukey's Post Hoc WT v V120 WT v V188 WT v V120/188 
 p-value 0.6672 0.0131 0.7728 
 Fold Change 0.1627 2.949 0.2822 
 

     
 

V120 v Vegf188 V120 v V120/188 V188 v V120/188 
 p-value 0.04465 0.9916 0.0285 
 Fold Change 2.786 0.1195 -2.6668 
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Table VI, continued. 
 
c. Id1 

Factors Df F-Value Pr (>F) 
 Genotype 3 11.0294 0.0048 
 18s 1 4.5409 0.0706 
 Gapdh 1 1.8197 0.2194 
 Genotype:18s 3 0.1268 0.9412 
 Genotype:Gapdh 3 1.0492 4286 
 Gapdh:18s 1 2.001 0.2001 
 Genotype:18s:Gapdh 2 0.0657 0.937 
 Residuals 

    
     Genotype WT V120 V188 V120/188 

N 8 6 8 8 
Mean (ag/Total RNA) 10.5908 13.5738 5.8083 14.8733 
Standard Deviation 3.2014 1.508 1.6885 2.7845 

     Tukey's Post Hoc WT v V120 WT v V188 WT v V120/188 
 p-value 0.2859 0.1243 0.037 
 Fold Change -0.4381 0.8641 -0.5306 
 

     
 

V120 v Vegf188 V120 v V120/188 V188 v V120/188 
 p-value 0.0199 0.606 0.0045 
 Fold Change 1.3021 -0.09258 -1.3947 
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Table VI, continued. 
 
d. Pax6  

Factors Df F-Value Pr (>F) 
 Genotype 3 4.683 0.0075 
 18s 1 6.5483 0.015 
 Genotype:18s 3 0.469 0.7058 
 Residuals 35 

   
     Genotype WT V120 V188 V120/188 

N 11 11 11 11 
Mean (pg/Total RNA) 0.00019 0.00013 0.00014 0.00012 
Standard Deviation 0.00004 0.00006 0.000039 0.000051 

     Tukey's Post Hoc WT v V120 WT v V188 WT v V120/188 
 p-value 0.0207 0.0481 0.0127 
 Fold Change 0.6929 0.5064 0.7503 
 

     
 

V120 v Vegf188 V120 v V120/188 V188 v V120/188 
 p-value 0.9847 0.9932 0.9277 
 Fold Change -0.1865 0.0574 0.2439 
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Table VI, continued. 
 
e. Hey2 

Factors Df F-Value Pr (>F) 
 Genotype 3 11.9726 0.0038 
 18s 1 6.0713 0.04321 
 Gapdh 1 28.1327 0.0011 
 Genotype:18s 3 11.4222 0.00436 
 Genotype:Gapdh 3 3.499 0.07816 
 Gapdh:18s 1 0.0646 0.8067 
 Genotype:18s:Gapdh 3 10.9678 0.0049 
 Residuals 7 

   
     Genotype WT V120 V188 V120/188 

N 8 5 7 8 
Mean (ag/Total RNA) 1.556 2.5172 2.0434 2.1275 
Standard Deviation 0.8607 1.7514 1.514 0.7691 

     Tukey's Post Hoc WT v V120 WT v V188 WT v V120/188 
 p-value 0.0044 0.0126 0.0486 
 Fold Change -0.5819 -0.2952 -0.5553 
 

     
 

V120 v Vegf188 V120 v V120/188 V188 v V120/188 
 p-value 0.8367 0.1142 0.3837 
 Fold Change 0.2868 0.0267 -0.2601 
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Table VI, continued. 
 
f. Fezf2 

Factors Df F-Value Pr (>F) 
 Genotype 3 2.8982 0.1017 
 18s 1 0.3313 0.5807 
 Gapdh 1 0.6622 0.4393 
 Genotype:18s 3 3.3503 0.07616 
 Genotype:Gapdh 3 0.1484 0.9278 
 Gapdh:18s 1 0.4203 0.5349 
 Genotype:18s:Gapdh 3 0.9664 0.4545 
 Residuals 8 

   
     Genotype WT V120 V188 V120/188 

N 10 6 9 7 
Mean (ag/Total RNA) 2.1054 1.078 2.3214 1.8174 
Standard Deviation 0.8447 0.4201 1.9975 0.4945 

     Tukey's Post Hoc WT v V120 WT v V188 WT v V120/188 
 p-value 0.1853 0.8951 0.9993 
 Fold Change 1.0012 0.1256 0.1479 
 

 

 
V120 v Vegf188 V120 v V120/188 V188 v V120/188 

 p-value 0.1119 0.2175 0.851 
 Fold Change -0.8757 -0.8534 0.0223 
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Table VI, continued. 
 
g. Pax3 

Factors Df F-Value Pr (>F) 
 Genotype 3 3.4357 0.081 
 18s 1 0.7674 0.4101 
 Gapdh 1 11.5465 0.0114 
 Genotype:18s 3 0.6341 0.6162 
 Genotype:Gapdh 3 0.2408 0.8653 
 Gapdh:18s 1 0.1275 0.7316 
 Genotype:18s:Gapdh 3 4.6572 0.043 
 Residuals 7 

   
     Genotype WT V120 V188 V120/188 

N 8 5 8 8 
Mean (ag/Total RNA) 2.0906 3.2895 1.742 2.2142 
Standard Deviation 0.8692 1.4534 0.7061 0.8307 

     Tukey's Post Hoc WT v V120 WT v V188 WT v V120/188 
 p-value 0.1507 0.802 0.9903 
 Fold Change -0.68 0.2268 -0.099 
 

 

 
V120 v Vegf188 V120 v V120/188 V188 v V120/188 

 p-value 0.0748 0.2133 0.6685 
 Fold Change 0.9067 0.5809 -0.3258 
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Table VI, continued. 
 
h. FoxM1 

Factors Df F-Value Pr (>F) 
 Genotype 3 5.9651 0.0099 
 18s 1 5.7231 0.03399 
 Genotype:18s 3 3.0849 0.0681 
 Residuals 12 

   
     Genotype WT V120 V188 V120/188 

N 5 4 6 5 
Mean (pg/Total RNA) 0.000213 0.000072 0.0000032 0.0000043 
Standard Deviation 0.000183 0.0000023 0.0000065 0.0000042 

     Tukey's Post Hoc WT v V120 WT v V188 WT v V120/188 
 p-value 0.0787 0.0106 0.0217 
 Fold Change 1.0822 4.051 2.542 
 

     
 

V120 v Vegf188 V120 v V120/188 V188 v V120/188 
 p-value 0.85 0.9455 0.9939 
 Fold Change 2.9689 1.4599 -1.5089 
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Table VI, continued. 
 
i. Zfhx1b 

Factors Df F-Value Pr (>F) 
 Genotype 3 6.0541 0.0153 
 18s 1 1.613 0.2359 
 Genotype:18s 3 1.162 0.3767 
 Residuals 9 

   
     Genotype WT V120 V188 V120/188 

N 5 4 4 4 
Mean (pg/Total RNA) 68.43 25.8954 0.6308 54.5202 
Standard Deviation 37.135 7.2259 0.4837 34.3632 

     Tukey's Post Hoc WT v V120 WT v V188 WT v V120/188 
 p-value 0.1302 0.01451 0.8476 
 Fold Change 1.2821 6.8713 0.3356 
 

     
 

V120 v Vegf188 V120 v V120/188 V188 v V120/188 
 p-value 0.5309 0.4332 0.0618 
 Fold Change 5.5892 -0.9465 -6.5357 
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Table VII. Covariate analysis of qPCR quantitation for key extracellular matrix proteins (Lamα4, Lamα5, Lamc3, 
FN) and reference genes (18S and GAPDH). Statistical comparisons were done with the log2 values for each sample 
and the Degrees of freedom (Df), F-value, and P value for residuals (Pr) are shown based on mean and standard 
deviation from the mean with fold change and p-value indicated for a set to 0.05 (Program R, SAS). 
 
a. Lama4 

Factors Df F-Value Pr (>F) 
 Genotype 3 6.9301 0.0224 
 18s 1 2.12 0.1956 
 Gapdh 1 1.1734 0.3203 
 Genotype:18s 3 3.2689 0.1011 
 Genotype:Gapdh 3 2.9577 0.1277 
 Gapdh:18s 1 0.556 0.484 
 Genotype:18s:Gapdh 2 9.006 0.0156 
 Residuals 6 

   
     Genotype WT V120 V188 V120/188 

N 6 4 5 10 
Mean (ag/Total RNA) 1.0856 0.9452 0.4003 0.8958 
Standard Deviation 0.2516 0.5338 0.1049 0.4756 

     Tukey's Post Hoc WT v V120 WT v V188 WT v V120/188 
 p-value 0.696 0.02282 0.9999 
 Fold Change 0.3099 1.4438 0.6531 
 

 

 
V120 v Vegf188 V120 v V120/188 V188 v V120/188 

 p-value 0.0765 0.6335 0.01886 
 Fold Change 1.1338 0.3432 -0.7906 
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Table VII, continued. 
 
b. Lama5 

Factors Df F-Value Pr (>F) 
 Genotype 3 1.2288 0.3909 
 18s 1 0.2838 0.6171 
 Gapdh 1 0.8181 0.4072 
 Genotype:18s 3 0.1388 0.9326 
 Genotype:Gapdh 3 0.1289 0.8819 
 Gapdh:18s 1 0.1736 0.6942 
 Genotype:18s:Gapdh 2 0.5167 0.6252 
 Residuals 5 

   
     Genotype WT V120 V188 V120/188 

N 7 4 4 8 
Mean (ag/Total RNA) 4.228 5.6851 2.0424 4.3456 
Standard Deviation 1.2783 0.4589 0.5415 1.906 

     Tukey's Post Hoc WT v V120 WT v V188 WT v V120/188 
 p-value 0.6496 0.7486 0.9698 
 Fold Change -0.5001 1.03 -0.06589 
 

 
V120 v Vegf188 V120 v V120/188 V188 v V120/188 

 p-value 0.348 0.8271 0.5818 
 Fold Change 1.5301 0.4342 -1.0959 
  

  



	
  

	
  

158	
  

Table VII, continued. 
 
c. Lamc3 

Factors Df F-Value Pr (>F) 
 Genotype 3 0.622 0.6167 
 18s 1 0.5142 0.4897 
 Gapdh 1 3.5498 0.0889 
 Genotype:18s 3 0.6932 0.5769 
 Genotype:Gapdh 3 3.1331 0.07423 
 Gapdh:18s 1 0.6136 0.4516 
 Genotype:18s:Gapdh 3 2.6075 0.1096 
 Residuals 10 

   
     Genotype WT V120 V188 V120/188 

N 10 8 10 10 
Mean (ag/Total RNA) 28.1676 29.3247 28.7057 27.9276 
Standard Deviation 0.9504 2.8385 1.2613 2.6273 

     Tukey's Post Hoc WT v V120 WT v V188 WT v V120/188 
 p-value 0.5554 0.9351 0.8555 
 Fold Change -0.0534 -0.0267 0.0176 
 

     
 

V120 v Vegf188 V120 v V120/188 V188 v V120/188 
 p-value 0.9114 0.9386 0.9991 
 Fold Change 0.02665 0.071 0.0443 
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Table VII, continued. 
 
d. FN 

Factors Df F-Value Pr (>F) 
 Genotype 3 3.1794 0.1226 
 18s 1 0.0009 0.9771 
 Gapdh 1 0.145 0.719 
 Genotype:18s 3 5.214 0.0535 
 Genotype:Gapdh 3 0.7531 0.566 
 Gapdh:18s 1 9.2813 0.0285 
 Genotype:18s:Gapdh 2 2.5365 0.1705 
 Residuals 9 

   
     Genotype WT V120 V188 V120/188 

N 8 5 9 7 
Mean (ag/Total RNA) 6.8152 8.4892 4.5538 6.4777 
Standard Deviation 1.9687 2.6184 2.0787 2.7486 

     Tukey's Post Hoc WT v V120 WT v V188 WT v V120/188 
 p-value 0.4262 0.4486 0.9916 
 Fold Change -0.3136 0.6681 0.1516 
 

     
 

V120 v Vegf188 V120 v V120/188 V188 v V120/188 
 p-value 0.09551 0.5416 0.3419 
 Fold Change 0.9817 0.4651 -0.5165 
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