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ABSTRACT 

The diffusion bonding of Kanthal APMT, CM247LC, and Rene 80 was studied. 

The objective of the first part of this work was to create diffusion bonded test 

samples of Kanthal APMT, CM247LC, and Rene 80 using a 25µm thick zinc 

interlayer at varying times and temperatures. Then, using scanning electron 

microscopy to determine the profile of the zinc diffusing into the parent materials, 

the diffusion coefficients of the zinc interlayer into the materials were determined 

for each of the materials at each bonding time and temperature. The next 

objective was to create a finite element model of the bonding process to 

determine the stresses present at the bondface at the bonding temperature. A 

model of the geometry used to create the diffusion specimens was created in 

ANSYS Workbench 14.0. The stress distributions of the model at the bondface 

were compared to other research of similar bonding conditions to validate the 

model.  

The diffusion coefficients of the materials found for the APMT and Rene 80 

followed the expected trend of decreasing as the bonding time increased. It was 

also observed that the approximate amount of zinc at the bond region decreased 

from the center to the edge of the bond supporting the theory of evaporative 

metal bonding. In addition, the nickel based alloys, CM247LC and Rene 80, had 

diffusion coefficients that approached theoretical diffusion coefficients of zinc in 



 
xiii 

pure nickel. The finite element model showed stress distributions that 

qualitatively agreed with those reported in other studies although there were 

some discrepancies. However, it was determined that these were a result of the 

geometry of the jig used to hold the samples in place for bonding. 
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CHAPTER I 

INTRODUCTION 

 Project Purpose  

 Fossil fuels continue to be a major source of energy production all over 

the planet. However, the increased concern over greenhouse gases and other 

emissions from powerplants has the industry researching cleaner methods of 

power production. One of these methods is high hydrogen gas turbines 

combusting gasified coal [1]. The components of these turbines have traditionally 

been made of nickel or cobalt base alloys and protected with thermal barrier 

coatings (TBCs). The coatings’ purpose is to keep the temperature of the 

component material down and to help prevent hot corrosion and oxidation of the 

component materials [2]. By preventing the corrosion of the turbine components, 

the service life of the turbine increases drastically [3]. 

In service, failure of the part is generally defined as when the TBC fails 

and exposes the base material to the corrosive environment inside the turbine. 

The primary failure mechanism of TBCs is spallation, which is when fragments of 

the material are ejected from the part due to stress or impact. The spallation life 

of the TBC varies based on the adhesion level of the TBC to the part to which it 

is adhered [4]. Greater spallation resistance will lead to a longer life for the part. 

In addition, because some of the components, such as the turbine blades, are 
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subjected to continuous stresses at high temperatures, the component materials 

(parent materials) need to have adequate creep strength to prevent failure of the 

component [2,3]. 

 

Overview of Diffusion Bonding 

 Diffusion bonding is a process in which materials are joined together 

through the diffusion of the atoms in the system rather than the melting of the 

materials to be joined as in fusion welding. Because the materials being bonded 

in diffusion bonding do not experience bulk melting, the microstructure of the 

material is largely preserved. This means that materials like nickel superalloys 

that get a large portion of their high temperature strength from their 

microstructure can be bonded and potentially retain their creep resistance. Some 

big advantages of diffusion bonding are the ability to make near net shapes, 

cause minimal change in material properties, bond together dissimilar materials, 

and fabricate internal structures [5, 6]. 

 The process of diffusion bonding can be simplified to two stages. First, the 

two materials must come into intimate contact with each other.  The reason that 

the contact must be extremely close is so that the atoms can diffuse across the 

joint to form a homogenous bond of the materials. If the materials to be joined 

are not brought into close enough contact, the material will not be able to diffuse, 

leaving voids in the bond region and leading to a weak joint [5]. To achieve this 

intimate contact, the bonding surfaces must be relatively smooth and clean. The 

parts are first machined to achieve the desired flat surfaces. After being 
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machined, each of the surfaces must be cleaned to remove contaminants and 

oxidation, which can form impurities in the joint. One method for cleaning is using 

an acid bath so as to free the surface of any oxidation or other material 

imperfections, depending on the reactivity of the material [5]. The pieces to be 

joined are then placed within a jig and clamped at a high pressure. The clamping 

pressure not only brings the materials into the desired intimate contact but may 

also yield some of the microscopic ridges on the interface to form a more intimate 

bond interface [7]. Figure 1 shows a representative drawing of two materials 

coming together a) just after the materials are placed together without the 

clamping force and b) after the clamping force is applied and the materials have 

yielded at the bondface. It can be seen that the clamping force brings more 

parent material into contact and reduces the size of the voids at the interface.  

 

 
Figure 1.   a) Voids Present During Initial Contact Between the Materials b) Voids 
Present After the Clamping Force is Applied 
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If an interlayer is used in the bonding process it may also aid in achieving 

intimate contact. The interlayer material can fill the remaining small irregularities 

on the bond interface, depending on the clamping force and interlayer properties. 

The second and most important stage of the bonding process is the 

diffusion of the atoms across the boundary between the parent materials typically 

facilitated by elevated temperature. The pressure applied to achieve better 

contact of the materials to be joined not only facilitates the interface matching but 

it also adds to the bond interface stress gradient, which will cause some initial 

migration of atoms across the interface [8]. To prevent the oxidation of the 

samples that would otherwise create imperfections in the bond, most materials 

are bonded under high vacuum or inert environments ranging from hydrogen to 

nitrogen [7]. To achieve the appropriate environment, the bonding is done in an 

environment-controlled furnace. The bonding temperature and the time at the 

bonding temperature vary depending on the materials that are being bonded. 

Bonding temperatures tend to fall in the range of 50% to 90% of the parent 

material’s melting temperature [9]. The elevated temperature facilitates the 

bonding because it adds the necessary energy to the system such that the atoms 

can move relatively freely. 

The use of an interlayer not only facilitates the contact between the 

materials but also is the main mechanism for the diffusion of atoms in the actual 

bond. The diffusion of the atoms of the interlayer into the parent material acts in a 

manner similar to a catalyst for the movement and diffusion of the parent material 

[5]. The atoms of the interlayer diffuse into the parent material creating joining the 
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parent material to the interlayer. To achieve greater strength of bonding, atoms of 

the parent material must diffuse across the interface and interdiffuse with the 

parent material on the other side of the bondline, creating a more homogenous 

joint [10]. The interlayer atoms then form second phase particles, form solid 

solutions, or diffuse out of the parent material [11]. When the interlayer diffuses 

out of the parent material this is referred to as evaporative metal bonding.  Figure 

2 shows a representation of evaporative metal bonding where the parent material 

is shown in blue and an exaggerated interlayer is shown in red. The black lines 

represent the diffusion path of the interlayer where it diffuses into the parent 

material before diffusing to the edge of the sample and evaporating out of the 

system. This is beneficial because the interlayer cannot form unwanted second 

phases [12]. 

 
Figure 2. Diagram of Interlayer Movement in Evaporative Metal Bonding 
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Prior Work 

Prior Work Overview 

 Superalloys are metal alloys that have been specially engineered so as to 

have superior strength and creep resistance at elevated temperatures. With the 

introduction of superalloys in the manufacture of turbine components in the 

1940s, the life of the turbine discs and other parts increased dramatically [13]. 

The base element of these alloys can be nickel, iron, or cobalt with alloying 

elements of chromium, molybdenum, tungsten, and other various metals. As 

superalloys have a very specific grain structure, joining them with standard fusion 

welding is quite difficult because the heat involved destroys the microstructure 

that gives the superalloy its strength at elevated temperatures. By utilizing 

diffusion bonding, superalloys can be bonded together and still preserve their 

microstructure and therefore maintain their high temperature strength [14]. With 

the increased use of superalloys in industry, research into the diffusion bonding 

of them is becoming more prominent. 

 A great deal of research is being done into the different parameters 

involved with the diffusion bonding of different materials, from the bonding 

temperature to the time at the bonding temperature to the pressure at the joint 

interface. The temperature and the bonding time are highly dependent on the 

materials being bonded [7,10]. Bonding temperatures for diffusion bonding can 

be as low as 400°C [10] and can be over 1300°C depending on the materials 

being joined [7]. Similarly, joining times can vary from a few minutes to hundreds 
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of hours [7]. The bonding time and temperature are important variables in the 

diffusion process; if the temperature is too low there will not be enough energy in 

the system for the atoms to move across the bondline. As the temperature 

increases, the isothermal solidification rate decreases which decreases the time 

required to create a uniform bond. Likewise, if the bonding time is too short, 

isothermal solidification can not be completed and the joint can be brittle and 

weak [15]. If the time is too long and the diffusivity of the bonding materials is 

significantly different, it is possible for the material with the higher diffusivity to 

diffuse into the other material faster causing Kirkendall voids to form [7,15]. For 

these reasons, each combination of metals to be bonded must be studied to 

determine ideal process conditions. Numerous studies have been done on the 

effects of different bonding parameters on the bonding of superalloys. These 

studies tend to focus on the pressure at the bondline and its effect on the quality 

of the bond as well as the effect of the temperature cycle used to make the bond 

on the strength of the alloys. The effects of bonding pressure and the effect of 

the bonding process on the material are the most studied because they are the 

most universal across the different materials being used [15-22]. 

 

Bonding Pressure 

 The pressure at the bond interface can have a great effect on the diffusion 

of the materials across the bond interface. The pressure used for the bonding 

can yield the bondface, which creates better contact between the two parts. The 

more intimate the contact between the parts, the easier it is for atoms of the 
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materials to diffuse across the joint. However, the optimal surface finish for 

bonding is not necessarily perfectly smooth. Leaving some surface roughness 

allows for yielding of the materials at the bond interface [7].  The yielding creates 

distortion energy at the bonding region; this additional energy lowers the 

activation energy of diffusion and creates some heat which means that less 

energy has to be added to the system for bonding to occur [15]. Studies show 

that the increase of pressure at the bonding interface decreases the voids 

present at the bond and increases the strength of the bond. However, the 

increase of bond quality as the pressure increases does have its limit. Depending 

on the materials being bonded, the strength of the bond will reach a limit at which 

the strength no longer increases with the increase of bonding pressure [14-17]. 

 Saha and Kahn studied the effect of changing the pressure on the 

bondface during the bonding of nickel superalloy Inconel MA 758 to itself. They 

found that increasing the pressure decreased the width of the joint. Through 

microhardness tests, it was determined that the joint region formed with this alloy 

and interlayer combination is weaker than the parent material so the strongest 

joint will be that with the smallest bonding zone. Once the bonding pressure got 

above 2 MPa, the width of the joint no longer decreased [14].  

In the study by Hong Li and Zhuo-Xin Li the strength of diffusion bonded of 

steel panels was measured. The specimens were varied with reference to the 

amount of plastic deformation that the materials underwent at bonding. The 

plastic deformation here is measured by the reduction percent of the original 

thickness of the specimens. In this study the increasing of the plastic deformation 
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is comparable to the increasing of pressure at bonding that was applied in other 

studies because to achieve a greater amount of plastic deformation (percent 

reduction) a greater force must be applied. The sample materials in this study the 

maximum stress in joint needed to exceed the yield strength of the material so 

the stress at the bondface exceeded 210 MPa. It can be seen in Figure 3 that 

with the increase in reduction percent of the sample that the strength of the bond 

increases until a maximum after which the strength of the bond no longer 

increases [15]. 

 

 Figure 3. The Effect of Reduction Percent on Bonding Strength [15]  

 

Other researchers also performed studies that measured the bonding 

pressure by relating the bonding pressure to the deformation of the original 
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materials [16, 17]. In each of these studies, the strength of the bond increased as 

the bonding pressure increased up to a maximum. However, the pressure at the 

bondface for the optimal strength varies depending on the materials being 

bonded. The pressure can be larger than the yield strength of the material and 

permanently deform the material [15] or be as low as 15% of the yield strength 

and cause no permanent deformation [17]. Even though the materials being 

bonded, the bonding times, bonding temperatures, and bonding pressures varied 

the same conclusions were made: 1) the quality and strength of the bond 

increased with increasing bonding pressure and 2) after a certain point 

increasing the bonding pressure no longer increases the strength of the joint [14-

17, 23]. While the maximum strength of the joints remained relatively constant at 

its highest point over each of the studies, Zhang and Chandel noted that at 

elevated pressures and higher temperatures a microstructure was observed at 

the bond interface that may degrade the bond strength. However, a joint strength 

of 95% of the parent material strength at room temperature was still observed 

with the noted microstructure [17].  

Another advantage to the increase in bonding pressure is the effect it has 

on the impurities of the bond itself. Other researchers looked at the change in the 

quality of the bondline as the pressure was varied. One such study found that 

with the increase of the pressure of the bonding the amount of defects in the joint 

was reduced. One explanation of this is that compounds that have a low melting 

temperature are being squeezed out of the bond taking unwanted oxides with 

them [14]. The increased pressure may also decrease voids in the joint. The 
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voids shrink for various reasons at the increased pressure. Increasing the 

pressure at the bondface causes more local yielding. Bondface yielding brings 

the surfaces closer together by reducing the surface roughness through yielding 

the peaks of the roughness [7]. The pressure can also plastically deform the 

interlayer, pushing it into the surface scratches, which adds to the area of atoms 

that can diffuse because they cannot diffuse across empty space. The yielding 

not only brings the faces into closer proximity to each other but also creates 

distortion energy that makes it easier for diffusion to occur [15].  

 

Bonding Temperature 

 An area of large concern with diffusion bonding is the effect on the parent 

material caused by the heating cycle used in the diffusion bonding process. 

Nickel-based superalloys get their desirable properties not only from their 

combination of elements but also from the microstructures of the compounds 

present in the alloy. The microstructures are largely determined by the way that 

the superalloy is solidified as well as any heat treatments applied to it after the 

initial casting [24]. By heating the part up to the point where atoms of the 

interlayer and bonding materials can diffuse, the atoms in the microstructure can 

diffuse to form secondary phases with the interlayer material or desired second 

phases can precipitate out of the material [18]. The microstructure created by the 

diffusion bonding process at and around the bondline can be quite different than 

that of the original unbonded material. As shown in Figure 4 [19], the bond 

interface may have a higher hardness than the surrounding material. It can also 
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be seen that heat-treating the part after the bonding is completed has been 

shown to create a uniform hardness across the bond in some materials [19,20].  

 
Figure 4. Hardness Distribution in a Diffusion Joint Before and After Heat  

Treatment Across the Bondline [18] 

 

Studies on the heat treatment of specific superalloys have been 

conducted after diffusion bonding and on the as-cast material. These studies 

show that for the superalloys Rene 80 and CM247LC, performing a post-process 

heat treatment can increase the strength of the material or, in the case of 

diffusion bonded parts, return their strength to that of the pre-bonded alloy [20-

22]. Depending on the interlayer used, the structure of the bond region varies. A 

study was done on the post bonding heat treatment of Rene 80 joined using a 

nickel-based interlayer. The specimens were bonded under vaccum at 1100°C 

for 60 minutes. After bonding, the specimens were cooled to room temperature 

then a post-bonding heat treatment of 2 hours at 1206°C was performed. As 

shown in Figure 5a, it can be seen that for the given bonding conditions and 

280 

300 

320 

340 

360 

380 

H
ar

dn
es

s 
(H

V)
 

50µm 
Before Heat Treatment 
After Heat Treatment 



 
13 

materials, the interlayer formed undesirable intermetallic compounds at the 

bondline causing the grain structure to be discontinuous. However, in Figure 5b it 

can be seen that after a heat treatment the grain structure reforms and the 

intermetallics have been removed. Strength testing was also done on the bonded 

specimen after the material had passed through the heat treatment and it 

regained its strength to over 90% of the base metal at room temperature [20].  

a)  

b)  
Figure 5. Microstructure of Rene 80 a) As Bonded b) After Post Bonding Heat 

Treatment. [20] 
 

Finite Element Modeling 

With the rise in the use of diffusion bonded parts, more research is being 

done on the finite element modeling of the diffusion bonding process and 
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diffusion-bonded joints with the goal of creating stronger joints and more complex 

geometries of diffusion-bonded parts. Much of the finite element models use data 

gathered from the bonding materials and interlayers to model the diffusion of the 

atoms and their formation of secondary phases [25, 26]. This type of modeling is 

beyond the scope of the current research project. The model to be made in this 

project will focus on the stresses at the bond interface during the bonding 

process.  

One major issue with modeling diffusion bonding comes from the thermal 

expansion of the parent materials being bonded. As it is possible to bond two 

different materials together with diffusion bonding, the difference in material 

properties must be carefully noted. The materials being bonded may not have 

thermal expansion coefficients that are even relatively close to each other. 

Additional stresses can arise from the differences in thermal expansion of 

components and must be included in the design of the final part [27]. These 

stresses arise from the materials expanding during heating, then bonding at the 

elevated temperature and contracting during cooling to ambient temperature. The 

bond is created at a point in which the materials have expanded; if they have 

expanded unevenly due to different coefficients of thermal expansion, when the 

materials cool residual stresses will arise from the uneven shrinkage across the 

newly bonded part [23, 28-30]. In some cases, the stresses are large enough that 

the parent material can fracture due to the residual stresses. For these cases 

researchers have found that sandwiching additional layers between the materials 

to be bonded can aid in reducing the stress. By using materials of different 
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thermal expansions and elastic moduli, it is possible to reduce the residual 

stresses so as to prevent the failure of the parent materials [30, 31]. 

 Whether or not the materials have the same thermal expansions, there 

are likely to be residual stresses at the bond interface. This stems from the fact 

that the solidification of the entire joint does not happen at once but may occur 

while the part is still heating or is cooling and will therefore be expanding or 

contracting. These residual stresses must also be accounted for in the model [23, 

32]. Figures 6 a&b [32] show the residual axial stresses formed from the bonding 

of Al2 O3–TiC to itself using W18Cr4V as a sandwich layer. The model is a 2-D 

axisymmetric thermal model of the bonding specimen. The 2-D section used to 

create the model is shown in gray in the 3-D sketch of the bonding setup in 

Figure 6a. The model was constrained such that the all the nodes on the left of 

the model were constrained in the radial direction and all of the nodes in the 

bottom were constrained in the axial direction. An external uniform pressure was 

applied to the top edge and an initial temperature of the model was applied then 

the model was cooled to ambient temperature. In Figure 6b, from the figure it can 

be observed that the stress is uniform across the bond out to near the edge of 

the bond where increases to the maximum before the decreasing to a minimum 

at the edge of the sample [32]. However it can also be seen that the stress 

distribution in the model is not the same in the top layer of Al2O3-TiC as in the 

bottom. This is probably due to the constraints used in the model. This model 

shows the residual stresses after the bonded specimen returned back to ambient 

temperature. The residual stress in the model is an artifact of the high pressure 
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and plastic deformation of the material near the interface of the materials. Where 

a larger compressive load leads to larger compressive plastic deformation, which 

will then lead to a larger tensile residual stress. 

a)     

b)   
 

Figure 6. a) Diagram of Diffusion Bonded Joint b) Distribution of Residual Axial 
Stresses (in Pa) [32] 

 

For the cases were the materials being bonded have different material 

properties, the combination of materials being bonded does not have an affect on 

the appearance of the stress distribution profile. Each study showed that for 

samples of different material properties, the stress at the bondface is relatively 

constant from the center of the bond before increasing just ahead of the outer 

edge of the sample then reducing to a minimum at the edge of the bond [23, 28-

Al2O3 – TiC 
Interlayer 
W18Cr4V 
Interlayer 
Al2O3 – TiC 
 

-.109E+9               -.728E+8    -.473E+8     -.164E+8   .146E+8 
  -.937E+8     -.628E+8     -.318E+8    -889566    .301E+8 
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30, 33]. The shape of the bondline stress profile is consistent across material 

systems, but the magnitude of the stress varies depending on the materials used.  

 
Figure 7. Hardness of Rene 80 Versus Distance from Center of the Bond [20] 

 

The stress profile of joints made between like materials is different from 

that of joints made between different materials. As can be seen in Figure 7 [20] 

the hardness at the center of the bond is the greatest and decreases further from 

the center. One explanation for this is that the hardness at the center of the bond 

can be related to greater yield strength and the greater yield strength attributed to 

smaller grain size from the reverse Hall-Petch relation. The smaller grain size 

can be credited to greater pressure during solidification of the bond [33]. 

Therefore in a bond of like metals it is plausible that the pressure at the center of 

the specimen during bonding will be the greatest and the pressure will be 

decreasing to the minimum at the edge of the sample, although it remains 

constant across majority of the bond. Another explanation for the increased 
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hardness at the center of the bond is materials from the interlayer forming 

additional phases [20].  

The residual stress at the bondface is beneficial to modeling of the 

diffusion-bonded part. Knowing that the general distribution of the residual stress 

on the diffusion bonded face is consistent across many different bonding 

conditions allows for the verification of the finite element model [32]. If the 

generated finite element model has a stress distribution similar to that of the 

previous research it can be assumed that the model is an accurate 

representation of the bonding process.  

 

Current Work 

 Through a grant from the Department Of Energy (DOE) the Mechanical 

Engineering Department at the University of North Dakota, in conjunction with the 

University of North Dakota Energy & Environmental Research Center (EERC), 

studied the diffusion bonding of Kanthal APMT, CM247LC, and Rene 80 with the 

goal of designing turbine engine components with better mechanical properties 

than those currently being produced. The objective of the first part of this work is 

to create diffusion bonded joints of Kanthal APMT, CM247LC, and Rene 80 using 

zinc as the interlayer for the bonds then use scanning electron microscopy to 

determine the diffusion coefficients for the materials. The other objective is to 

build a finite element model of the samples during the bonding process with the 

intent of the model being used to help design a fixture to bond Kanthal APMT to 

CM247LC or Rene 80 with complex geometries. The coefficients of thermal 
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expansion of the materials for use in the finite element model will be determined 

using a thermal mechanical analyzer (TMA). The method for the creation of 

diffusion-bonded specimens and results of the diffusion of the interlayer as well 

as the creation and verification of a finite element model of the bonding process 

will be discussed in subsequent chapters of this thesis.
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CHAPTER II  

METHODS 

Overview 

 The superalloys CM247LC, Rene 80 and APMT were each to be bonded 

to themselves using zinc foil as the interlayer. The time at the bonding 

temperature as well as the bonding temperature were to be varied. The diffusion 

distance of the zinc was then to be measured so as to determine the diffusion 

coefficients of the zinc in the superalloys. Next, a finite element model of the 

bonding of the samples was to be constructed. The material properties at high 

temperatures were to be measured to serve as the material constants put into 

the computer model. With the diffusion coefficients of the materials and an 

accurate finite element model of the bonding stresses and it should be possible 

to design a fixture for the bonding of more complex turbine components that have 

a core of high creep strength CM247LC or Rene 80 coated with spallation- and 

oxidation-resistant APMT. 

Material Selection 

Bonding Alloys 

The materials that were used for bonding in this research were Kanthal 

APMT, CM247LC, and Rene 80. The composition of the bonding materials is 

shown in Table 1.  
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Table 1. Composition (wt%) of Superalloys Used in this Study [34, 35].  
 

  Cr C Mo W Ti Co Al B Zr Hf Mn Si Ta Fe Ni 

APMT 23.5 0.08 3 - - - 5 - - - 0.4 0.7 - Bal - 

CM247LC 8 0.07 0.5 10 0.7 9 5.6 0.015 0.01 1.4 - - 3.2 - Bal 

Rene 80 14 0.16 4 4 5 9.5 3 0.015 0.03 - - - - - Bal 

 

These materials were selected because of their use in previous related research 

and their current use in high temperature environments [36]. Previous research 

conducted by John Hurley has found that the superalloys CM247LC and Rene 80 

have superior strength at high temperatures to Kanthal APMT. It was also 

discovered that Kanthal APMT had a TBC spallation life three times that of 

CM247LC and Rene 80 and is much more oxidation-resistant, as well [12]. 

Increasing the spallation life and oxidation resistance of turbine components 

increases the time it to failure of the components, which increases the turbine 

maintenance intervals [37-39]. 

Previously, samples of CM247LC were diffusion bonded to Kanthal APMT. 

It was observed that the materials formed a uniform bond and, when creep 

tested, all of the specimens failed within the Kanthal APMT region away from the 

bondline [12]. The creation of turbine components with spallation- and oxidation-

resistant Kanthal APMT bonded over a core of CM247LC or Rene 80, which 

have better creep strength, has the potential to produce turbine components that 

have vastly longer lives than those of parts made with just one alloy.  
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Interlayer 

The interlayer used for the bonding of all of the materials was a 

commercially pure thin zinc foil. Zinc was selected as the interlayer for multiple 

reasons. First, zinc has a relatively low melting temperature compared to the 

alloys to be bonded. A molten interlayer is not necessary for bonding. However, a 

molten interlayer will aid in filling any remaining voids at the bond interface [9]. 

The low melting temperature of zinc makes the diffusion of the zinc energetically 

favorable; this is because the liquid zinc has a lower activation energy than solid 

zinc and so can diffuse through the parent materials easier. Second, zinc has a 

high vapor pressure; this is favorable because once the zinc diffuses through the 

joint and to the edge of the material it will evaporate off of the surface and thus 

not form second phases in the parent materials. Zinc was also used in the 

previous study when CM247LC and Kanthal APMT were bonded and a good 

joint was created [12,36]. 

 

Other Metals 

 For the actual bonding process, the samples were placed in a jig as 

shown in Figures 8a&b. The fixture, as well as the bolt that hold the sample in 

place, were machined from commercially pure molybdenum and the articulating 

hemispheres were made of AISI E 52100 high carbon steel. The molybdenum 

was chosen because the bonding materials have a greater coefficient of thermal 

expansion meaning the materials to be joined will create greater pressure at the 

joint following thermal expansion, which should create better contact between the 
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two pieces leading to a better bond. Molybdenum was also because it has good 

high temperature strength. The threads used on the jig and the bolts were Acme 

1/2”-10 threads. These threads were chosen so that the bolts are able to 

withstand higher loads without failure. Trapezoidal threads are typically used in 

applications where large loads are present. They are able to sustain greater 

loads because the base of the tooth is wider than triangular threads and 

therefore can withstand greater loads [40]. 

a)  

b)  
Figure 8. a) Bonding Jig Fixture Geometry (units in cm) 

b) Assembled Bonding Fixture 
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The end of the bolt is concave such that it mates well with the steel hemisphere. 

The high carbon steel was chosen because it is strong, inexpensive, and 

commercially available in spheres. By getting the steel in larger spheres, six 

hemispheres with a high quality surface finish can be obtained per sphere. The 

hemispheres insure that the pressure applied from the fixture is applied 

perpendicular to the bond interface allowing for intimate contact between the 

parts, which should create a better bond. 

To prevent any residual stresses in the fixture from the machining 

process, the fixture was made utilizing electrical discharge machining. The 

samples to be bonded were electrical discharge machined to 2.54 cm long from 

the 30.48 cm long, 2.79 cm diameter bars received for the CM247LC and Rene 

80. For the APMT, 3 mm thick 2.79 cm diameter discs were produced from the 

3mm thick received APMT plate. The interlayer used was commercially pure zinc 

foil 25 microns thick from ESPI Metals of 1050 Benson Way Ashland, Oregon 

97520. 

 

Creation of Diffusion Bonded Samples 

After sample parts were machined to size, the bond faces were ground 

with 180 grit silicon carbide paper achieving a surface roughness of 

approximately Ra=0.8 micron [41] on a MetPrep 3 PH3 sample polishing 

machine to insure flat bonding surfaces. Next, each of the samples as well as the 

fixture, bolts, and hemispheres were sandblasted with silica sand to remove any 

surface oxidation that may have accumulated and may cause impurities in the 
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bond. The samples were then ground again on the bonding face with 220 grit 

silicon carbide paper on the sample polishing machine. Everything was then 

subsequently cleaned for 1 hour submerged in acetone in a Branson 5510 

ultrasonic cleaner. After the ultrasonic cleaning, each piece was taken out of the 

acetone, cleaned again with isopropyl alcohol, and assembled in the fixture as 

shown previously in Figure 8b. In the case of the APMT samples, Rene 80 was 

used as plugs to hold the APMT samples in place. Each sample to be bonded is 

placed in the fixture and secured in place by the threaded bolt and a torque of 

2.26 Newton*meters was applied to the bolt.  

Once assembled, the excess zinc foil was trimmed from around the bond 

interface, the entire fixture was again cleaned with isopropyl alcohol and the 

entire fixture was placed into an Orton tube furnace that allows for the 

temperature and atmosphere to be controlled. Once the samples were in the 

furnace, it was sealed and evacuated to 6x10-4 mbar with a BMH 70 Dry vacuum 

pump. The chamber was then flooded back to 0 kPa gage pressure with 

commercially pure argon that was additionally filtered by a Trigon Technologies 

Hydrocarbon Trap, a Trigon Technologies Big Oxygen Trap, a Flow Glass 

Moisture Trap, and a Trigon Technologies Indicating Oxygen Trap, to further 

remove any impurities that may be present in the gas and could possibly react 

with the bonding materials forming unwanted phases in the bond. The oven was 

then heated at a rate of 450°C/hr to 700°C and held for 30 minutes, during which 

the pressure in the oven increased to 100 kPa due to the thermal expansion of 

the argon in the furnace. This step was implemented with the idea that the 
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temperature would allow the zinc to melt while under additional pressure so the 

zinc would not be able to evaporate. The oven was then evacuated and the 

temperature was raised at a rate of 250°C/hr to the bonding temperature at which 

it was held for the scheduled time period. The samples were then allowed to cool 

in the evacuated oven.  

After bonding each of the created diffusion samples was sectioned using a 

Buhler slow speed diamond abrasive saw and subsequently mounted using 

Buehler EpoxiCure two-part epoxy. The mounted samples were ground to 000 

honing paper and then polished to 0.05 micron diamond grit. The polished 

samples were then analyzed using a Hitachi S-3400N scanning electron 

microscope (SEM) and energy dispersive spectroscopy (EDS). The samples 

were then analyzed with area scans to determine the weight percent of areas on 

the samples. Data was taken at the end of the bond and the center of the bond 

for each sample. This data was then compiled and used to determine the 

diffusion coefficient for each of the materials at the tested temperatures and 

times. 

 

Finite Element Modeling 

 The other major portion of this research was to make an accurate finite 

element model of the bonding of the test specimens. In this study an accurate 

model is defined as one in which the model accurately simulates the stresses at 

the bonding interface at the bonding temperature. Stress distributions will be 

determined to be acceptable based on their agreement with stress distributions 
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reported in other studies. The creation of an accurate model of the test 

specimens will assist in the creation of a model to simulate the creation of 

diffusion bonded turbine blades and other turbine components with complex 

geometries where the core of the part will be made of high creep strength 

CM247LC or Rene 80 and will have a plating of spallation- and oxidation-

resistant APMT diffusion bonded over the whole core. Ultimately the model with 

the complex geometries will assist in the design of a jig for the bonding of these 

complex geometries. The stress distribution of a good quality bond will be used 

as the baseline for what the stress distribution should look like for the design of 

the new bonding jig.  

To create an accurate model of the bonding, the material properties need 

to be known. The coefficient of thermal expansion was determined to be the most 

important material property for this finite element model because the pressure at 

the bondline during bonding is a direct result of the thermal expansion. The 

coefficients of thermal expansion of each of the materials used were determined 

experimentally using a Shimadzu TMA 60 thermal mechanical analyzer. To 

determine the coefficient of thermal expansion, each sample was subjected to a 

heating cycle where it was heated in 100°C increments in an inert argon gas 

environment and held at each temperature for fifteen minutes. Every material 

was tested 4 times and the coefficient of thermal expansion for each temperature 

interval was averaged across the fifteen-minute time interval and each of the 4 

test specimens. The material data was then inputed into the finite element model.  



 
28 

Another parameter that was needed for the model was the preload on the 

sample. The preload applied to the test specimen was used primarily to hold the 

bonding samples in place. Pressure sensitive indicating film was used to 

determine an initial load at the bondface and found a maximum initial pressure of 

2.4 MPa. This pressure was determined through the use of Fuji Prescale 

pressure film made by Sensor Products Inc of 300 Madison Avenue 

Madison, NJ 07940. Figure 9 shows the pressure film used. The pressure film 

changes color once a minimum pressure is applied and the color gets darker the 

more pressure is applied. The film shown in Figure 8 has a range of 0.5 MPa to 

2.4 MPa. When the sample was tested using the pressure film that indicates from 

 

 
Figure 9. Pressure Film 

 

2.4 MPa to 9.6 MPa the color change in the film was undeterminable so the 

pressure at the bondface from preload was determined to be an average of 2.4 
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MPa. It can also be seen in Figure 8 that the stress is not completely uniform but 

has an area of lower pressure near one side of the specimen. The pressure in 

this low pressure region was determined to be approximately 1 MPa using the 

color correction chart for the pressure film. The use of the pressure film not only 

yielded the preload pressure at the bondface but also confirmed that the grinding 

schedule produced uniform contact between the samples. 

A 3-D solid model was constructed using ANSYS Workbench 14.0. The 

model was constructed using the “ideal” geometry of each of the parts. The 

models of the two different test geometries can be seen in Figure 10a&b. Figure 

10a shows the setup for the CM247LC and the Rene 80 bonding while Figure 

10b is the setup for the APMT. These models have to be different because the 

APMT received was a plate and slugs of Rene 80 were used to hold the APMT 

specimens in place. This allowed the same molybdenum jig to be used for all 

samples. 

The model was constrained such that one node on 3 faces of the jig are 

constrained in one dimension and the hemispheres and test samples were 

constrained such that the nodes were bonded, behaved asymmetrically and were 

formulated using Augmented Lagrange, which is a contact formulation that 

expresses the force between the contact surfaces using both the contact 

pressure and the normal stiffness of the bodies. The model was constructed to 

apply thermal loading, at intervals of 100°C, and to show the stresses on the 

bonding face. Preliminary analysis with representative material property values 

used for the materials was performed. The setup was meshed with hexahedral  
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a)  

b)  

Figure 10. a) Model Used for Simulation of CM247LC and Rene 80 Bonding  
b) Model Used for Simulation of APMT Bonding  
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shaped elements using the fine mesh with a relevance of +80. The mesh size 

and the relevance both decrease the program-controlled size of the elements in 

the mesh the relevance. The increased relevance decreases the size of the 

mesh where a relevance of +100 creates the finest mesh and a relevance of -100 

produces the coarsest mesh. The mesh created with these settings for the 

preliminary model can be seen in Figure 11. 

 
Figure 11 Mesh of Preliminary Model 

 

This preliminary analysis showed that the assumption that the nodes are 

bonded is valid as the stress distributions for the model visually match the stress 

distributions of those reported in previous studies [20, 32]. The model was also 

tested with and without the 2.4 MPa preload on the sample. The high 

temperature stresses between the model with the preload and with out the 
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preload varied by less than 0.75%. As a result, the preload was left out of the 

final model. The assumption of leaving the preload out of the model and using 

bonded interfaces between the parts will be beneficial to the more complex 

model as it will make the model simpler and save on computing time. A mesh 

refinement study was then performed on the model to determine the final mesh 

size. 
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CHAPTER III 

DATA AND ANALYSIS 

Diffusion Data 

Diffusion samples were made for time periods of 1, 3, 5, 10, and 20 hours 

at 1214°C, for 3 and 20 hours at 1155°C, and for 30 minutes at 700°C. Samples 

were originally also planned for times of 1, 5, 10, and 20 hours for 1155°C as well 

as for 1, 3, 5, 10, and 20 hours at 1100°C; however, the samples that were 

created at 1155°C and held for 20 hours did not create a bond. As a bond could 

not be created for the longest planned bonding time at 1155°C, it was concluded 

that bonds would not be achieved for shorter periods at the bonding temperature. 

To save material for future study, these planned samples were not created. It 

should also be noted that none of the materials bonding experienced any 

measurable permanent plastic deformation at any temperature and that the 

APMT samples bonded to the Rene 80 that was used to hold the APMT in place 

for all cases. 

 Each of the diffusion-bonded test samples was analyzed with a Hitachi S-

3400N scanning electron microscope and the material compositions were 

determined using energy dispersive spectroscopy. Initially, element mapping was 

performed on the samples with the zinc being mapped onto the SEM image of 

the bondline as can be seen in Figure 12. From this preliminary analysis it can be 
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seen that the diffusion of the zinc through the CM247LC, as well as the Rene 80, 

and APMT, appears to be bulk diffusion where the zinc diffuses through the 

whole of the material rather than grain boundary diffusion where the zinc would 

have diffused primarily along the grains of the material. This is an important 

observation as the type of diffusion, grain boundary or bulk, defines the 

equations to be used to determine the diffusion coefficient. 

 

 
Figure 12. Zinc Intensity Mapped onto a SEM Image of CM247LC Bonded at 

1214°C for 5 hours. Bondline Indicated by the Yellow Arrow. 
 

As it appears that the zinc was diffusing through the parent materials via 

bulk diffusion, the diffusion coefficients of the materials can be determined by 

knowing the concentration of the zinc as a function of the distance from the 
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bondline. Area scans to determine weight percent of zinc were performed on 

each sample. The data was taken by having the EDS measure the weight 

percent of each of the elements present in the parent material as well as the zinc 

that is diffusing into the parent material from the interlayer within a specified area. 

The measurements were taken by specifying equal sized areas side-by-side for 

the EDS to measure starting at the bondline between the two parent materials 

and moving farther into the parent material away from the bondline until the level 

of zinc was less than 0.5% for a minimum of 2 consecutive scans. Each sample 

was measured at the center of the bondline and at the edge of the bondline 

(Specimen edge). For the data from the samples that did not bond at all (those 

that were in the furnace at a bonding temperature of 1155°C or 700°C) area 

scans were performed at the edge and center of the sample. An example of a 

SEM image with areas where the EDS measurements were taken can be seen in 

Figure 13. The image is from the center of a sample of Rene 80 that has been 

bonded at 1214°C for 3 hours and the red boxes overlaid on the image show 

where the EDS area scans were taken. In Figure 13 the bondline is the edge of 

the box denoted 1 and is shown as a blue line. The width of the areas used to 

acquire the weight percent of zinc varied between specimens. For this specimen, 

each of the areas was 10 microns wide. For specimens where the interlayer 

diffused faster, the widths of the areas were increased to reduce the amount of 

time taken to collect the data for the sample. The distance associated with each 

area scan was defined as the distance from the bondline to the center of the area 

scan from which the data was taken.  
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Figure 13 Area scan of Rene 80 bonded at 1214°C for 3 hours 

 

The diffusion coefficient for each sample was calculated using Equation 1 

[42]. This equation defines the diffusion of a thin film into a semi-infinite sink. 

 

(1) 

 

C(x,t) is the concentration of the diffusing atoms in the parent material in weight 

percent, β is the number of atoms per unit area present in the thin foil at x=0 in 

atoms/µm2, D* is the diffusion coefficient in µm2/min, t is the time that the 

diffusion is allowed to occur in minutes, and x is the distance into the parent 
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material that the material has traveled in µm. For a sample where a thin film is 

diffusing into a semi-infinite solid via bulk diffusion, the diffusion coefficient may 

decrease as the system is held at the bonding temperature for longer periods of 

time [42, 43]. This occurs because when the diffusion coefficient is not 

composition independent [43]. 

To determine the diffusion coefficient, the natural log of the concentration 

versus the distance squared is to be plotted. Then, finding the best-fit straight-

line slope of this graph the diffusion coefficient can easily be found. The slope of 

this best fit trend-line is defined in Equation 2, where m is the slope of the trend-

line, which can be rearranged to Equation 3 to determine the diffusion coefficient 

of the sample. 

 

    (2) 

 

     (3) 

 

Table 2 shows the data from the specimen of Rene 80 bonded at 1214°C for 3 

hours. The table shows the zinc concentration values with their respective 

distances along with the square of the distance values and the natural log of the 

concentration values that are needed to determine the diffusion coefficient. 

Figure 14 shows a graph of the values in Table 2 with the trend line and best-fit 

equation displayed. All of the data from the diffusion testing can be found in the 

appendix. 
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Table 2 Distance from Bondline to Area Analyzed with Distance Squared Values 
and Natural Log of Weight Percent for Rene 80 Bonded at 1214°C for 3 Hours 

Distance from Center 
(µm) 

Weight percent zinc 
(%) 

x2 Ln wt% 

5 6.789 25 1.915 
15 6.972 225 1.942 
25 6.214 625 1.827 
35 5.591 1225 1.721 
45 5.328 2025 1.673 
55 4.709 3025 1.549 
65 4.144 4225 1.422 
75 3.398 5625 1.223 
85 2.699 7225 0.993 
95 2.081 9025 0.733 
105 1.242 11025 0.217 
115 0.626 13225 -0.468 
125 0.576 15625 -0.552 
135 0.467 18225 -0.761 
145 0.193 21025 -1.645 
155 0.167 24025 -1.789 

 

 
Figure 14 The Natural Log of the Weight Percent vs Distance from the Bondline 
Squared for Rene 80 Bonded at 1214°C for 3 Hours 

 

In this manner, the diffusion coefficients for each of the diffusion-bonded 

samples were calculated. Table 3 shows the diffusion coefficient, the R2 values 
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for the trendline that was used to determine the diffusion coefficient for each of 

the samples, and the length of the bond. A schematic of the center of the bond 

and the edge of the bond can be seen in Figure 15. The empty cells in the table 

represent samples where the diffusion coefficient could not be determined. This 

is because either the trendline had a R2 value that fell below 0.5 or the first three 

area scans taken all contained zinc weight percents below 0.5%.  

 

Table 3 Diffusion Coefficients, R2 Values, and Bond Lengths for all Collected 
Samples 

Material Temp Time Center End Bond Length 
  (°C) (min) D (µm2/min) R2 D (µm2/min) R2 (mm) 

APMT 700 30 6.0386 0.83 4.0954 0.9919 0 
APMT 1155 180 70.146 0.7575 - - 0 
APMT 1155 1200 - - - - 0 
APMT 1214 60 299.76 0.8582 192.0122 0.9086 25.46 
APMT 1214 180 - - - - 3.753 
APMT 1214 300 112.61 0.8923 - - 18.146 
APMT 1214 600 - - - - 23.082 
APMT 1214 1200 - - - - 16.537 
CM247 700 30 1.2342 0.6537 0.8994 0.9707 0 
CM247 1155 180 1.7983 0.9153 - - 0 
CM247 1155 1200 - - - - 0 
CM247 1214 60 3.7369 0.9784 9.284 0.9688 11.37 
CM247 1214 180 5.7203 0.9211 3.8346 0.9111 11.69 
CM247 1214 300 3.7069 0.8994 3.7487 0.9622 9.67 
CM247 1214 600 3.8191 0.8887 - - 4.39 
CM247 1214 1200 0.4974 0.8414 - - 9.36 
Rene80 1155 1200 2.4713 0.8615 - - 0 
Rene80 1214 60 11.973 0.9668 8.7278 0.9945 9.73 
Rene80 1214 180 8.5523 0.9869 9.2654 0.9845 9.04 
Rene80 1214 300 6.688 0.9448 5.7195 0.9358 6.408 
Rene80 1214 600 3.4722 0.9437 1.3569 0.7901 11.78 
Rene80 1214 1200 3.1855 0.8532 0.3344 0.5854 7.411 
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Figure 15 Schematic Showing Locations of ‘Center’ and ‘Edge’  

 

The mass of zinc remaining in the sample was calculated to verify the 

evaporation of the zinc interlayer. The zinc interlayer is 25 µm thick and it can be 

assumed that the interlayer is diffusing equally in both directions of the joint. 

Therefore the zinc starts as a 12.5 µm wide strip the area of the bond and 

diffuses into the parent material. By assuming that the density of the parent 

material with the zinc diffused in it is equal to the density of the original parent 

material, the mass of the volume that the EDS was performed on can be found. 

Multiplying the weight percent of zinc by the mass of the material in the region 

and adding the mass from each of the regions can approximate the mass of the 

diffused zinc. The mass of the zinc diffused into the samples is shown in Table 4.  
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Table 4. Approximate Mass of Zinc Diffused into Bonded Samples 

Material Temp Time 
Mass of Zinc at 

Center 
Mass of Zinc at 

End 
Initial Mass of Zinc 

Before Diffusion 
  (°C) (min) (g) (g) (g) 

APMT 700 30 7.9657E-09 5.4163E-09 3.1238E-08 
APMT 1155 180 6.5698E-09 1.2941E-10 3.1238E-08 
APMT 1155 1200 1.8651E-09 1.2548E-09 3.1238E-08 
APMT 1214 60 1.1893E-08 1.0789E-08 3.1238E-08 
APMT 1214 180 1.1025E-09 9.2365E-10 3.1238E-08 
APMT 1214 300 1.9048E-08 2.8566E-09 3.1238E-08 
APMT 1214 600 5.2945E-09 2.4874E-09 3.1238E-08 
APMT 1214 1200 1.6291E-09 1.1571E-09 3.1238E-08 
CM247 700 30 5.0992E-09 7.4857E-09 3.1238E-08 
CM247 1155 180 1.5773E-08 7.7350E-12 3.1238E-08 
CM247 1155 1200 5.2955E-11 7.0210E-11 3.1238E-08 
CM247 1214 60 6.4233E-09 6.4025E-09 3.1238E-08 
CM247 1214 180 7.8070E-09 3.4117E-09 3.1238E-08 
CM247 1214 300 7.8549E-09 3.6203E-09 3.1238E-08 
CM247 1214 600 1.1777E-08 1.2852E-10 3.1238E-08 
CM247 1214 1200 4.3280E-09 7.7053E-11 3.1238E-08 
Rene80 1155 1200 1.2430E-08 1.6940E-10 3.1238E-08 
Rene80 1214 60 1.3204E-08 9.2490E-09 3.1238E-08 
Rene80 1214 180 1.4288E-08 1.3652E-08 3.1238E-08 
Rene80 1214 300 1.0414E-08 7.8728E-09 3.1238E-08 
Rene80 1214 600 4.8888E-09 1.2942E-09 3.1238E-08 
Rene80 1214 1200 5.5549E-09 2.5735E-09 3.1238E-08 

 
 Table 5 shows the centerline composition of each of the bonded 

specimens (data taken at the ‘Center’ position of each joint). 

Table 5. Centerline Composition of Each Joint (wt% Zn) 

Material 
Temp 
(°C) 

Time 
(min) 

Center Composition 
(wt%) 

APMT 700 30 16.2 
 APMT 1214 60 2.6 
 APMT 1214 300 1.9 

CM247LC 700 30 16.7 
 CM247LC 1214 60 6.9 
 CM247LC 1214 180 4.1 
 CM247LC 1214 300 3.5 
 CM247LC 1214 600 3.7 
 CM247LC 1214 1200 2.1 
Rene 80 1214 60 8.1 
 Rene 80 1214 180 6.8 
 Rene 80 1214 300 4.8 
 Rene 80 1214 600 2.7 
 Rene 80 1214 1200 1.4 
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Diffusion Data Analysis 

For the APMT samples, the diffusion coefficient at the center of the 

samples bonded at 1214°C started at 299.76 µm2/min when bonded for 1 hour 

and decreased down to 112.61 µm2/min when bonded for 5 hours. At the times 

longer than 5 hours, the zinc diffused to a point at which the diffusion coefficient 

could no longer be determined. The diffusion coefficient for the sample bonded at 

1155°C for 3 hours is less than the diffusion coefficient of the sample bonded for 

the same time at 1214°C. This decrease in diffusion coefficient for the same 

bonding time but lower bonding temperature is expected as the atoms have less 

free energy. The diffusion coefficients that could be determined for the data taken 

at the ends of the samples are less than the diffusion coefficients of those under 

the same bonding time and temperature of the data taken at the center of the 

bond.  

Similarly, it was found in the Rene 80 samples that the highest diffusion 

coefficient for a bonding temperature of 1214°C is 11.97 µm2/min and decreases 

to 3.18 µm2/min as the time that the sample is held at the bonding temperature 

increased from 1 hour to 20 hours. The sample of Rene 80 bonded at 1155°C for 

20 hours has a lower diffusion coefficient than that of the sample bonded for 20 

hours at 1214°C as is expected as described above. Even though the diffusion 

coefficients of the Rene 80 at the center decrease as the time increases, the 

diffusion coefficient at the end of the bond at a bonding time of 3 hours is 

unexpectedly greater than the diffusion coefficient at the end of the sample 
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bonded for 1 hour. Aside from the end of the sample bonded at 1214°C for 3 

hours the diffusion coefficients behaved as expected, decreasing as the bonding 

time increased and as the bonding temperature decreased. 

The diffusion coefficients for the CM247LC do not follow the expected 

trend of decreasing values with the increasing time at bonding temperature. At 

the center of the CM247LC samples, for example, the diffusion coefficient for the 

sample that was bonded at 1214°C for 1 hour is 3.73 µm2/min and is less than 

the diffusion coefficient for the sample bonded at the same temperature for 3 

hours which is 5.72 µm2/min. Interestingly, for the CM247LC the diffusion 

coefficients at the center of the samples are very close to each other for the 

samples at 1 hour, 5 hours and 10 hours when it should be decreasing. The 

diffusion coefficient at the edge of the bond for the sample bonded at 1214°C for 

1 hour is 8.12 µm2/min and decreases to 3.83 µm2/min when bonded for a time of 

3 hours. The diffusion coefficients for the CM247LC samples do not agree with 

the expected trend nor do they follow any noticeable trend additionally no 

noticeable changes in material structure or composition were observed that could 

account for this behavior. 

Several observations can be made about the data in Tables 3-5.  First, the 

diffusivity of Zn in both APMT and CM 247 is quite similar at 700°C.  Diffusivity in 

the APMT does appear to be slightly higher (~4 µm2/min vs ~2 µm2/min), but the 

midline composition after 30 minutes at this temperature is quite similar.   At 

1214°C, the situation is very different.  Because only about 15 wt% Zn remained 

at the midline after the low temperature hold, the absolute difference in 
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compositions between the APMT, CM247 and Rene 80 at 1214°C is relatively 

small.  However, the calculated diffusivity of Zn in APMT is approximately 20 

times higher than in CM 247 or Rene 80 (~120 µm2/min vs ~8 µm2/min) at 

1214°C.  Equation 4 is the standard expression for the diffusivity in terms of the 

diffusion coefficient, Do, and the activation energy for diffusion, Q, where R is the 

ideal gas constant and T is the absolute temperature: 

 

       (4) 

 

If Do and Q are assumed to be independent of temperature and composition for 

each material system and the approximate ratio of the diffusivities calculated 

above is substituted into Equation 5 for APMT and CM247, the difference in 

activation energies for diffusion of Zn through the two alloys can be estimated.  

This calculation yields: 

 

   (5) 

 

For reference, this value is similar in magnitude and sign to the difference in 

activation energies for the diffusion of copper in pure nickel (258 kJ/kmol) and 

pure iron (295 kJ/kmol) [44]. 

For each of the samples it was found that the amount of zinc that had 

diffused into the parent material was greater at the center than at the end of the 

sample with the exception of the CM247LC sample bonded at 1155°C for 20 
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hours, however, this specimen did not create a bonded part. By observing that 

the amount of zinc is greater at the center than at the edge of the bond it can be 

determined that the zinc was not just diffusing into the parent material but also 

out of the edges of the material as is expected for evaporative metal bonding. 

Theoretical calculations on the diffusion of various impurities in different 

materials have been performed by Zacherl. These calculations included the 

diffusion of zinc in pure nickel as a function of temperature. From these 

theoretical calculations the diffusion coefficient of zinc in pure nickel at 1200°C 

can be found to be approximately 3 µm2/min [45]. This theoretical value helps to 

validate the diffusion coefficients determined for the zinc in the nickel alloys 

CM247LC and Rene 80 in the current study. Additionally, the diffusion 

coefficients for the Rene 80 appear to be approaching this theoretical value. 

Furthermore, even though the diffusion coefficients for the CM247LC do not 

appear to follow any trend they are, for the most part, very close to this 

theoretical value. 

 

Finite Element Modeling Data 

 The thermal expansion data for all materials was collected using a 

Shimadzu TMA60, which automatically corrects the thermal expansion 

measurement with an alumina reference sample. Each sample was heated in an 

argon atmosphere at 100°C increments and held for 15 minutes at each 

temperature up to 1200°C. The coefficient of thermal expansion for each of the 

samples was calculated using Equation 6 where α is the coefficient of thermal 
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expansion in m/m°C, l is the initial length of the specimen in m, Δl is the change 

in length of the specimen in m, and ΔT is the change in temperature from the 

initial temperature in °C.  

 

    (6) 

 

The linear coefficient of thermal expansion used in the finite element model was 

found by averaging the coefficient of thermal expansion for each data point within 

2°C of the holding temperature and averaging these values across the 4 tests 

done for each sample. The thermal expansion values found from the TMA data 

for the Rene 80 and APMT are consistent with those reported in literature [35, 

47]. CM247LC is a similar alloy to Rene 80 and so the thermal expansion of the 

two alloys should be similar. Table 6 shows the coefficients of thermal expansion 

for each of the parent materials at each temperature as well as the standard 

deviation of the data. Table 7 shows the coefficients of thermal expansion for the 

steel hemispheres. The thermal expansion data for the molybdenum was also 

measured. However, when comparing this data to published data the 

experimentally found values were over twice the published data. Therefore, the 

coefficient of thermal expansion for molybdenum was taken to be a constant 

6E+-06 m/m°C as published [46]. 
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Table 6. Coefficients of Thermal Expansion for Parent Materials 
 Rene 80 CM247LC APMT 

Temperature 
CTE 

(m/m°C) St Dev 
CTE 

(m/m°C) St Dev 
CTE 

(m/m°C) St Dev 
100 1.30E&05( 8.85E&08( 1.23E&05( 3.38E&08( 1.42E&05( 6.02E&08(

200 1.42E&05( 6.58E&08( 1.36E&05( 6.53E&08( 1.46E&05( 1.10E&07(

300 1.52E&05( 4.09E&08( 1.48E&05( 3.75E&08( 1.58E&05( 5.89E&08(

400 1.59E&05( 2.31E&08( 1.56E&05( 2.23E&08( 1.66E&05( 2.80E&08(

500 1.64E&05( 1.75E&08( 1.62E&05( 1.40E&08( 1.69E&05( 2.24E&08(

600 1.68E&05( 1.21E&08( 1.67E&05( 1.01E&08( 1.70E&05( 1.15E&08(

700 1.72E&05( 7.77E&09( 1.71E&05( 6.99E&09( 1.71E&05( 4.84E&09(

800 1.75E&05( 4.41E&09( 1.74E&05( 5.57E&09( 1.73E&05( 5.02E&09(

900 1.80E&05( 3.72E&09( 1.77E&05( 3.66E&09( 1.76E&05( 3.13E&09(

1000 1.86E&05( 2.98E&09( 1.79E&05( 1.32E&08( 1.78E&05( 8.13E&09(

1100 1.96E&05( 2.25E&08( 1.75E&05( 1.95E&08( 1.78E&05( 1.06E&08(

1200 2.06E&05( 4.69E&10( 1.74E&05( 1.28E&09( 1.80E&05( 8.47E&09(

 

 

Table 7. Coefficient of Thermal Expansion for Steel  
  Steel 

Temperature 
CTE 

(m/m°C) St Dev 
100 1.14E&05( 2.24E&07(

200 1.51E&05( 1.50E&07(

300 1.75E&05( 8.31E&08(

400 1.84E&05( 4.56E&08(

500 1.87E&05( 2.17E&08(

600 1.87E&05( 1.16E&08(

700 1.85E&05( 6.62E&09(

800 1.69E&05( 1.29E&08(

900 1.88E&05( 1.20E&08(

1000 1.94E&05( 1.15E&08(

1100 1.86E&05( 3.02E&08(

1200 1.72E&05( 4.69E&08(

 

 The finite element analysis was performed using ANSYS Workbench 14.0. 

The modulus of elasticity and Poisson’s ratio for each material were assumed 

constant for the test and were taken from literature and shown in Table 8 [35, 46-
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50]. The coefficients of thermal expansion used were determined via the TMA 

analysis. From the thermal expansion values, the foil interlayer was left out of the 

model as the materials being bonded thermally expand over 4 times the 

thickness of the foil.  

 

Table 8. Modulus of Elasticity and Poisson’s Ratio Used in Finite Element Model 
[35, 46-50] 

Material 
Poisson's 

Ratio 
Modulus of Elasticity 

(GPa) 
APMT 0.3 220 

CM247LC 0.4 152 
Rene 80 0.3 210 

Steel 0.3 210 
Molybdenum 0.38 330 

 

The mesh sizing of the models was determined from a mesh refinement 

convergence analysis. The model with the initial representative values was 

meshed with a fine relevance center, high smoothing, fine span angle center, and 

the midside nodes were kept. The fine relevance center was chosen to decrease 

the program chosen default size of the elements in the mesh. The high 

smoothing and the fine span angle center were chosen so that the program 

would improve the mesh around the curves of the model. Having the midside 

nodes in the model enables an extra node at the center of each element edge, 

which increases the order of the elements from linear to quadratic, which should 

increase the accuracy of the model. The maximum allowable size of the edge of 

the elements were then varied and the maximum von Mises stress at the 

bondface was measured until it no longer changed. Table 9 shows the element 

size, number of nodes in the model corresponding to the given element size, the 
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maximum stress at the bondface, and the percentage difference of the current 

element size from the next largest element size. Figure 16 shows a graph of the 

maximum stress at the bondface vs. the number of nodes in the model. 

 

Table 9. Results from Mesh Refinement 
Element(Size(

(mm)(

Number(of(

Nodes(

Max(Stress(at(Bondface(

(Pa)(

%(

difference(

4( 9993( 2.80E+08( ((

3( 25807( 2.77E+08( &1.06(

2.5( 47248( 2.76E+08( &0.36(

2( 72673( 2.76E+08( 0.01(

1.75( 113603( 2.76E+08( &0.14(

1.5( 155561( 2.76E+08( 0.04(

 

 
Figure 16. Maximum Stress at the Bondface vs. the Number of Nodes in the 

Model 
 

From the mesh refinement study it was concluded that an element size of 2.5 

mm creates a mesh that is fine enough. Figures 17 a&b show the final meshed 

models. Figure 17a shows the meshed model for the CM247LC and the Rene 80 

bonding while Figure 17b is the meshed model for the APMT. 
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a)  

b)  

Figure 17 a) Meshed Model Used for Simulation of CM247LC and Rene 80 
Bonding b) Meshed Model Used for Simulation of APMT Bonding 
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The model was run in 12 steps taking data starting at an ambient 

temperature of 22°C then at 100°C and at every subsequent 100°C increment all 

the way up to 1200°C. By performing the analysis in steps, transformation in the 

stress state can be observed. The stresses of most interest in this study are 

those at the bondface as those must be matched in future models of more 

complicated structures to assure that the same conditions are applied. By 

matching the stress state at the bonding temperature for a complex geometry 

with that of the simple bonding setup, the bond of the complex geometry can be 

assured. Figure 18 a&b shows the normal and von Mises stress state at 1200°C 

for the model consisting of just CM247LC being bonded. Figure 19 a&b shows 

the normal and von Mises stress state at 1200°C for the model consisting of 

Rene 80 being bonded. Figure 20 a&b shows the normal and von Mises stress at 

1200°C for the model where Rene 80 was used to hold the APMT samples in 

place. Figure 21 a&b shows the normal and von Mises stress at 1200°C for the 

model where Rene 80 was used to hold the APMT samples in place at the APMT 

Rene 80 interface. Table 10 shows the minimum and maximum normal stress 

values at the bondface for each of the models at each temperature found from 

the finite element model. Table 11 shows the minimum and maximum von Mises 

stress values at the bondface for each of the models at each temperature found 

from the finite element model. 
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a)  

b)  

Figure 18. a) Normal Stress Distribution and b) von Mises Stress Distribution at 
the Bondface at 1200°C for CM247LC 
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a)  
 

b)  

Figure 19. a) Normal Stress Distribution and b) von Mises Stress Distribution at 
the Bondface at 1200°C for Rene 80 
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a)  
 

b)  
Figure 20. a) Normal Stress Distribution and b) von Mises Stress Distribution at 
the Bondface at 1200°C for APMT 
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a)  
 

b)  
 

Figure 21. a) Normal Stress Distribution and b) von Mises Stress Distribution at 
the Interface of APMT and Rene 80 for the Bonding of APMT at 1200°C  
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Table 10. Minimum and Maximum Normal Stresses from Finite Element Models 
(( Rene(80( CM247LC( APMT(

Temperature(

(°C)(

Minimum(

(Pa)(

Maximum(

(Pa)(

Minimum(

(Pa)(

Maximum(

(Pa)(

Minimum(

(Pa)(

Maximum(

(Pa)(

100( &2.02E+07( &1.86E+07( &1.77E+07( &1.67E+07( &3.56E+07( 1.08E+06(

200( &5.87E+07( &5.48E+07( &5.38E+07( &5.04E+07( &8.49E+07( &3.96E+07(

300( &1.07E+08( &9.94E+07( &1.00E+08( &9.27E+07( &1.56E+08( &6.47E+07(

400( &1.56E+08( &1.45E+08( &1.48E+08( &1.37E+08( &2.29E+08( &9.09E+07(

500( &2.06E+08( &1.92E+08( &1.96E+08( &1.83E+08( &2.94E+08( &1.42E+08(

600( &2.55E+08( &2.38E+08( &2.45E+08( &2.30E+08( &3.50E+08( &1.69E+08(

700( &3.05E+08( &2.85E+08( &2.93E+08( &2.75E+08( &4.05E+08( &1.95E+08(

800( &3.43E+08( &3.21E+08( &3.29E+08( &3.10E+08( &4.56E+08( &2.21E+08(

900( &4.18E+08( &3.91E+08( &3.97E+08( &3.73E+08( &5.35E+08( &2.58E+08(

1000( &4.89E+08( &4.56E+08( &4.53E+08( &4.26E+08( &6.37E+08( &2.87E+08(

1100( &5.59E+08( &5.23E+08( &4.79E+08( &4.50E+08( &9.34E+08( &2.92E+08(

1200( &6.36E+08( &5.85E+08( &5.02E+08( &4.72E+08( &1.22E+09( &2.99E+08(

 

 

Table 11. Minimum and Maximum von Mises Stresses from Finite Element 
Models 

(( Rene(80( CM247LC( APMT(

Temperature(

(°C)(

Minimum(

(Pa)(

Maximum(

(Pa)(

Minimum(

(Pa)(

Maximum(

(Pa)(

Minimum(

(Pa)(

Maximum(

(Pa)(

100( 1.88E+07( 2.12E+07( 1.68E+07( 1.83E+07( 3.79E+05( 2.03E+07(

200( 5.50E+07( 5.89E+07( 5.06E+07( 5.40E+07( 3.62E+07( 7.04E+07(

300( 9.97E+07( 1.07E+08( 9.31E+07( 1.00E+08( 5.96E+07( 1.23E+08(

400( 1.46E+08( 1.57E+08( 1.38E+08( 1.48E+08( 8.49E+07( 1.79E+08(

500( 1.92E+08( 2.06E+08( 1.84E+08( 1.97E+08( 1.25E+08( 2.45E+08(

600( 2.39E+08( 2.56E+08( 2.31E+08( 2.46E+08( 1.77E+08( 3.19E+08(

700( 2.86E+08( 3.07E+08( 2.76E+08( 2.94E+08( 2.38E+08( 4.00E+08(

800( 3.23E+08( 3.54E+08( 3.12E+08( 3.34E+08( 2.86E+08( 4.66E+08(

900( 3.92E+08( 4.23E+08( 3.74E+08( 3.98E+08( 3.58E+08( 5.70E+08(

1000( 4.58E+08( 4.94E+08( 4.27E+08( 4.55E+08( 4.61E+08( 6.93E+08(

1100( 5.27E+08( 5.79E+08( 4.51E+08( 4.81E+08( 5.88E+08( 9.37E+08(

1200( 5.93E+08( 6.67E+08( 4.75E+08( 5.07E+08( 7.00E+08( 1.22E+09(
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Finite Element Modeling Data Analysis 

 To verify the stresses from the finite element model hand calculations 

were performed. For the hand calculations the model was first simplified to just 

the molybdenum supports of the jig and bonded in parallel to the sample the 

same length of the supports as shown in Figure 22. 

 
Figure 22. Schematic of Simplified Model Used for Hand Calculations 

 

Next, the coefficient of thermal expansion for each setup was calculated using 

Equation 7 [51], where αtotal is the total coefficient of thermal expansion, αS is the 

coefficient of thermal expansion of the sample, αJ is the coefficient of thermal 

expansion of the jig supports, ES is the modulus of elasticity of the sample, EJ is 

the modulus of elasticity of the jig supports, VS is the volume fraction of the 

sample, and VJ is the volume fraction of the jig supports. 
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Equation 7 

 

The change in length due to thermal loading of each simplified model was 

then calculated using Equation 8, where ΔL is the change in length, L is the initial 

length, α is the coefficient of thermal expansion, and ΔT is the change in 

temperature.  

Equation 8 

 

Next, the compressive deformation of each sample was calculated by 

subtracting the total thermal deformation of the simplified model from the total 

deformation of the unconstrained sample. This deformation was then changed 

into the strain of the specimen. Finally, using Hooke’s Law and the modulus of 

elasticity of the sample the stress could be found. These steps are shown in 

Equations 9-11. 

 

Equation 9 

 

 

Equation 10 

 

 

Equation 11 
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From these calculations the normal stress for the APMT model was 

calculated to be 1.39E+9 Pa, the stress for the CM247LC model was calculated 

to be 1.09E+9 Pa, and the stress for the Rene 80 was calculated to be 1.31E+9 

Pa. These calculations produce stresses that are 2x the stresses for the 

CM247LC and Rene 80 model and 1.1x the stress for the APMT model. 

However, these calculations neglect bending of the top and bottom of the jig, the 

deformation of the steel hemispheres, the contact between the hemispheres and 

the jig, as well as the bolt that holds the sample in place. Each of these will 

increase the deformation of the entire model and as such decrease the total 

compressive deformation that will reduce the stress at the bondface. Therefore 

the stress values from the finite element model are determined to be reasonable.  

 It can be observed that both the maximum and minimum stress at the 

bondface increase as the temperature increases for each of the models. The 

increase in stress with the increase of temperature is expected as the materials 

expand as the temperature increases. All of the materials constrained by the 

molybdenum jig have larger coefficients of thermal expansion than the 

molybdenum. This observation is another verification that the model is behaving 

properly. The most important observation to make of the finite element models is 

that of how the stress distribution across the bondfaces develops. 

For each of the models it can be seen that the stress distribution is not 

even all the way around the bondface. In each of the models the stress on the 

bondface at the edge near the vertical supports of the jig is less than the stress at 

the edge that is farthest from the jig support. It was theorized that the shape of 
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these stress distributions could be from either the stiffness of the supports of the 

jig or from the irregular shape of the contact surface between the steel 

hemispheres and the jig. To determine what was causing the uneven stress 

distribution the jig was removed from the model of Rene 80 and the steel 

hemispheres were constrained so as to recreate the contact surface of the jig as 

well as different contact situations to determine optimal end conditions for a jig 

for the bonding of complex geometries. The Rene 80 was chosen because it 

exhibited the largest variation in stress around the perimeter of the bondface. 

Boundary conditions for the model tested varied from small circular 

contact and thin irregular contact surfaces to contact of the full hemisphere. The 

boundary conditions used and stress distributions for some of these tests can be 

seen in Figures 23 – 31. 

 

  
Figure 23. Boundary Conditions C for Rene 80 With Simulated Irregular Jig 

Contact 
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Figure 24. Normal Stress Distribution at the Bondface at 1200°C for Rene 80 

With Simulated Irregular Jig Contact 
 

  
Figure 25. von Mises Stress Distribution at the Bondface at 1200°C for Rene 80 

With Simulated Irregular Jig Contact 
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Figure 26. Boundary Conditions for Rene 80 With Simulated Circular Jig Contact 

 

 
Figure 27. Normal Stress Distribution at the Bondface at 1200°C for Rene 80 

With Simulated Circular Jig Contact 
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c)  
Figure 28. von Mises Stress Distribution at the Bondface at 1200°C for Rene 80 

With Simulated Circular Jig Contact 
 

 

Figure 29. Boundary Conditions for Rene 80 With Fully Supported Hemispheres 
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Figure 30. Normal Stress Distribution at the Bondface at 1200°C for Rene 80 
With Fully Supported Hemispheres 

 

c)  

Figure 31. von Mises Stress Distribution at the Bondface at 1200°C for Rene 80 
With Fully Supported Hemispheres 
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Table 12. Maximum Normal and von Mises Stresses from Boundary Conditions 
Modeling 

Geometry of 
Contact 

Maximum Normal Stress 
(Pa) 

Maximum von Mises Stress 
(Pa) 

Irregular Jig -1.525E+09 1.525E+09 
Circular Jig -1.367E+09 1.367E+09 

Fully Supported -1.707E+09 1.878E+09 
 

 For each of these models it can be seen that the maximum stress is 

greater than that in the models with the jig. This is because the model was 

constrained such that the top of the samples would expand equal to the 

theoretical expansion that was found in the verification of the model results and 

as stated this expansion does not account for many additional deflections that 

may occur within the complete model. From this analysis of the end conditions it 

can be seen that the shape of both the normal stress distribution and the von 

Mises stress distribution in the original model where there is increased stress at 

the bondface near the jig supports can be attributed to the contact shape of the 

sample and hemispheres with the jig. A more uniform stress distribution was 

achieved when a circular contact on the hemisphere was implemented and the 

most axisymmetric distribution was achieved when the entire hemisphere was 

constrained.  

The room temperature yield strengths for the bonding materials can be 

seen in Table 13 [32, 47, 50]. For the models simulating CM247LC and Rene 80 

the maximum stress values from the model show that neither the CM247LC nor 

the Rene 80 models achieved a stress at the bondface greater than the parent 
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material yield strength. This observation agrees with the experimentally bonded 

specimens where it was observed that none of these samples experienced a 

measureable amount of yielding during bonding. However, it is expected that the 

yield strengths of the materials would decrease as the temperature increase. It 

can be seen that for the cases where CM247LC and Rene 80 are the samples 

being bonded that the pressure is greatest at the center of the bonding area and 

decreases to a minimum out to the edge of the bond. This agrees with the 

previous research performed by Ekrami et al. where they found that bonding 

Rene 80 to itself created the greatest hardness at the center of the bonding area 

and the hardness decreased farther from the center [20]. As previously stated, 

the high hardness at the bond center can be attributed to the high pressure. The 

similarities between the stress distribution in the current model and with the 

stress distributions from pervious studies shows that the current models give a 

reasonable representation of the stresses present at the bonding temperature. 

 

Table 13. Bonding Material Yield Strengths [32, 47, 50] 

Material 
Yield Strength 

(MPa) 
APMT 540 

CM247LC 825 
Rene 80 1034 

 

For the model simulating the bonding of the APMT, the maximum stress at 

the bondface does surpass the yield strength of the APMT so the material at the 

bondface likely yields to some extent [35]. However, no measureable 

deformation was observed in the experimental specimens. It can be seen from 

Figure 20 that the stress is fairly uniform from specimen centerline outward then 
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the stress decreases to a minimum before increasing to a maximum at the edge 

of the bond. This bullseye shape distribution of stress seen in the APMT model 

largely resembles the work reported by Xiaoquin et al. with their work bonding Al2 

O3–TiC to itself using W18Cr4V as a sandwich layer [32]. The previous study 

reported the residual stresses present surrounding the bond after the bonding of 

the materials was completed and the sample had returned to room temperature. 

The residual stresses present at the bonding area arise from the stresses that 

are present during the bonding of the materials. The pressure that is applied 

during the bonding of the materials helps to create the contact between the 

materials. This pressure creates plastic deformation of the materials and areas 

where the greatest pressure is applied experience the largest plastic 

deformation. As such the larger the plastic deformation of the material the 

smaller the residual stresses that will arise at the bonding region [32]. Although in 

the current study the purpose is to bond two plates of APMT together and not 

bond a sandwich layer, as in the previous study of Xiaoquin et al., the stress 

distributions can be determined to be similar because in the current work the 

APMT did also bond with the Rene 80 that was used to hold it in place. 

Therefore, the stresses present at the bondface between the APMT plates can 

be likened to the stress reported at the middle of the W18Cr4V. However, the 

stress distribution in the current model of APMT has a stress distribution that is 

the inverse of the stress distribution that the previous study reported. This is 

because the APMT has a lower modulus of elasticity than the Rene 80, the 

opposite of the previous study where W18Cr4V has a larger modulus of elasticity 
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than the Al2O3–TiC. Running the model again but changing the material 

properties around so that the thick plug material has a higher modulus than the 

plates at the center confirmed this and is shown in Figure 32. 

 

 
Figure 32. von Mises Stress Distribution at the Bondface at 1200°C for Plate That 

is Stiffer Than the Supporting Material. 
 

 

 As a result of the similarities of the APMT model with previous work the 

current model can be determined to be an accurate representation of the 

bonding. 
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CHAPTER IV 

CONCLUSION 

 The diffusion bonding and subsequent SEM and EDS analysis yielded the 

weight percent data necessary to calculate the diffusion coefficients of zinc in the 

different materials under the different bonding conditions. The coefficients of 

thermal expansion of the bonding materials were experimentally found using a 

TMA. That data, along with other material properties found in literature, served as 

input values for a finite element model of the bonding process. A finite element 

model was created for each of the bonding situations and the stress distribution 

results were validated by comparison against previous research and analytical 

estimates. The results from the current work will aid in future study aimed at the 

design of fixtures to aid in the production of turbine components with complex 

geometries that have a spallation resistant layer diffusion-bonded over the top of 

core material with a higher creep strength. 

 

Summary 

 The first portion of this research focused on the creation of diffusion-

bonded samples of three different super alloys and the determination of the 

diffusion coefficient of the zinc interlayer used to bond the materials together. To 

achieve this, samples of each of the three materials: APMT, CM247LC, and 
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Rene 80, were bonded to themselves at varying times and temperatures. Each 

sample’s bondface was ground to a surface roughness of approximately Ra=0.8 

micron. Then the sample was extensively cleaned before being placed in the 

furnace. Samples were then sealed in the tube furnace flooded with commercially 

pure argon. Samples were created at times of 1, 3, 5, 10, and 20 hours at 

1214°C, for 3 and 20 hours at 1155°C, and 30 minutes at 700°C. The bonded 

samples were then sectioned and analyzed with SEM and EDS to determine the 

weight percent of the diffusing zinc interlayer in areas moving away from the 

bond. Next, using the equation for the diffusion of a thin film into a semi-infinite 

sink, the diffusion coefficients were determined for each of the materials for every 

time and temperature tested.  

The other portion of this research centered on the creating of a finite 

element model that accurately predicts the stresses present during the bonding 

process. The model was created using ANSYS Workbench 14.0. For the material 

constants of the model, the thermal expansion coefficients were determined for 

each material experimentally with a TMA; the remaining material properties were 

taken from literature. The analysis of the stresses caused by the thermal 

expansion of the materials was done in 12 steps. Each step calculated the stress 

at the bondface every one hundred degrees between room temperature and 

1200°C. The stresses present during the heating and bonding of the samples for 

each of the three materials were analyzed. The stress distributions were then 

cross-referenced with similar finite element models from previous studies that 

also modeled the stress distributions during the bonding process. The cause for 
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the distribution of the stress was investigated. Then by comparing the results 

from the current finite element model to the results from previous studies it can 

be determined if the current model is a valid representation of the bonding.  

 

Results Summary 

 In the first part of the study, the diffusion coefficient for the zinc interlayer 

diffusing into the parent material was calculated for each of the time and 

temperature combinations. It was found that the for Rene 80 and APMT the 

diffusion coefficient started at a maximum under the shortest bonding time at the 

bonding temperature of 1214°C and decreased as the time at the bonding 

temperature increased as well as when the bonding temperature decreased. The 

diffusion coefficient of the zinc interlayer in APMT decreased from 299.8 µm2/min 

at the center of the bond during the bonding at 1214°C for 1 hour to 112.6 

µm2/min at the center of the bond during the bonding at 1214°C for 5 hours 

before the diffusion coefficient could no longer be determined at longer times at 

1214°C. The diffusion coefficient at 1155°C reached only a maximum of 63.42 

µm2/min at the center of the bond during the bonding at 3 hours. Similarly, the 

diffusion coefficient of Rene 80 decreased from a maximum of 11.97 µm2/min 

when bonded at 1214°C for 1 hour to a minimum of 3.18 µm2/min at the center of 

the bond when bonded at 1214°C for 20 hours. The diffusion coefficient for the 

zinc in Rene 80 when bonded at 1155°C for 20 hours was 2.33 µm2/min at the 

center of the bond. These numbers agree with literature that states that the 

diffusion coefficient decreases as time increases as well as when the 
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temperature decreases. The diffusion coefficients for the CM247LC, however, did 

not appear to follow any trend. 

The diffusion coefficients for the nickel based alloys Rene 80 and 

CM247LC did approach a value that was theoretically determined for the 

diffusion of zinc in pure nickel. Additionally the approximate mass of zinc at the 

bond is greater at the center of the bond than at the edge of the bond supporting 

the evaporative metal bonding of the zinc. The diffusion coefficients of the zinc 

interlayer in the bonding materials will aid in the determination of a heating 

program for the creation of diffusion-bonded parts of more complicated 

geometries.  

From the diffusion data samples it could be seen that the APMT created a 

bond between 5 and 10 hours at 1214°C where the zinc interlayer has diffused 

almost completely out of the parent material. However, after a bonding time of 20 

hours at 1214°C the CM247LC and the Rene 80 still had zinc present in the joint 

and it was still diffusing. Therefore, a complete bond of the CM247LC and Rene 

80 will take longer than 20 hours at 1214°C with a zinc interlayer and minimal 

preloading.  

 In the second portion of the study, the stresses present at the bondface 

during the temperature cycle were determined using finite element analysis in 

ANSYS Workbench 14.0. The stress distribution for the models where Rene 80 is 

bonding to itself and CM247LC is bonding to itself showed that for the situation in 

which the samples being bonded are the same material the stress is the greatest 

at the center of the bonding area decreasing out to the edge of the bond. The 
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stress decreases sharply at first and becomes more gradual and almost level 

towards the edge of the bond. This profile agrees with previous work that 

measured the hardness of the bondline as the hardness of the bond can be 

correlated to the pressure at which the bond was under when it formed. For the 

model where APMT is being bonded to itself with Rene 80 used as a buffer 

material to hold the sample in place, the stress distribution looks quite different. 

The stress across the middle of the bond region is relatively constant then 

increases to a maximum then decreases again before the edge of the bond 

where it is at a minimum. This stress distribution in the new model agrees with 

the stress distribution present in previous study where Al2O3–TiC was 

sandwiched around W18Cr4V. This agreement between the current finite 

element models and the stress distributions reported in previous research shows 

that the current models are correct representations of the real bonding process. It 

was also observed that the maximum stress at the bondface exceeded the yield 

stress of APMT. Therefore it can be assumed that the APMT would yield during 

diffusion. This yielding may in part contribute to the high diffusion coefficients of 

the zinc in the APMT. It was also determined that the contact between the jig and 

the hemispheres should be circular for an even stress distribution. The 

verification of the current finite element models serves as a starting point for 

further study into the design of a fixture for diffusion bonding of complex 

geometries. 
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Future Work 

 Future work with these specific superalloys may include the creation and 

analysis of diffusion-bonded samples where the APMT plate is bonded to Rene 

80 and also to CM247LC. This analysis is important because the large difference 

of diffusion coefficients between the APMT and the Rene 80 as well as the 

CM247LC. In the bonding of materials with large differences in diffusion 

coefficients is when Kirkendall voids form. These can be mitigated somewhat by 

bonding the materials for the appropriate time and cooling them before the voids 

form. For that reason time at bonding analysis needs to be performed on these 

bonding situations to avoid the creation of voids. Studying this will determine the 

optimal bonding time for the creation of these joints. 

 Other future work includes the design of a jig for the bonding of turbine 

components that have Rene 80 or CM247LC as a core and APMT plate diffusion 

bonded over the top. The design of the jig can be made in a similar manner to 

that of the current finite element model and comparing the stress distribution to 

the current model. Contact between the hemispheres used to hold the materials 

for optimal contact should have a circular contact to ensure even stress 

distribution. The new design of the jig can then be made and tested in the actual 

bonding of multi layer turbine components. Testing of the fixture is necessary so 

that it can be confirmed that the zinc diffuses in the same manner when the part 

to be bonded has a much larger bonding area. 
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Conclusion 

 The study of the diffusion-bonding of Rene 80, CM247LC, and APMT is 

important in the creation of layered turbine components. These components are 

to be made with a core of Rene 80 or CM247LC, which have high creep strength, 

and plated with APMT, which has high TBC spallation resistance. By determining 

the diffusion coefficient of the zinc interlayer in the test materials, the heating 

schedule of larger and more complex bonded parts can be determined. The 

creation of a finite element model of the bonding process will also aid in the 

production of more complex parts. Simple models of the bonding setup and the 

determination of the stresses present at the bondface during bonding will aid in 

the design of a jig to bond more complex geometries.  
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Appendix  

EDS Diffusion Data and Calculated Diffusion Coefficients 

APMT 700°C 30 min Center  
Distance from 
Center x (µm) 

Weight percent 
zinc (wt%) x2 Ln wt% 

15 16.138 56.25 2.7812 
30 3.941 506.25 1.3714 
45 0.5 1406.25 -0.6931 
60 0.349 2756.25 -1.0527 

    m (1/ µm2) -1.38E-03 
    D (µm2/min) 6.0386 
    R2 0.83 

 
APMT 700°C 30 min End 
Distance from 
Center x (µm) 

Weight percent 
zinc (wt%) x2 Ln wt% 

15 10.338 56.25 2.3358 
30 3.26 506.25 1.1817 
45 0.632 1406.25 -0.4589 

    m (1/ µm2) -2.03E-03 
    D (µm2/min) 4.0954 
    R2 0.9919 

 
APMT 1155°C 3h Center 
Distance from 
Center x (µm) 

Weight percent 
zinc (wt%) x2 Ln wt% 

10 0.72 25 -0.3285 
20 1.076 225 0.0733 
30 1.249 625 0.2223 
40 1.587 1225 0.4618 
50 1.406 2025 0.3407 
60 1.34 3025 0.2927 
70 1.335 4225 0.2889 
80 1.74 5625 0.5539 
90 1.482 7225 0.3934 

100 1.568 9025 0.4498 
110 1.234 11025 0.2103 
120 1.131 13225 0.1231 
130 1.017 15625 0.0169 
140 1.146 18225 0.1363 



 
78 

150 1.155 21025 0.1441 
160 1.159 24025 0.1476 
170 1.021 27225 0.0208 
180 0.867 30625 -0.1427 
190 0.571 34225 -0.5604 
200 0.62 38025 -0.4780 
210 0.498 42025 -0.6972 
220 0.527 46225 -0.6406 
230 0.529 50625 -0.6368 
240 0.488 55225 -0.7174 
250 0.425 60025 -0.8557 

    m (1/ µm2) -1.98E-05 
    D (µm2/min) 70.146 
    R2 0.7575 

 
APMT 1155°C 3h End 
Distance from 
Center x (µm) 

Weight percent 
zinc (wt%) x2 Ln wt% 

10 0.177 25 -1.7316 
20 0.163 225 -1.8140 
30 0.17 625 -1.7720 

    m (1/ µm2) - 
    D (µm2/min) - 
    R2 - 

 
APMT 1155°C 20h Center 
Distance from 
Center x (µm) 

Weight percent 
zinc (wt%) x2 Ln wt% 

50 0.525 625 -0.6444 
100 0.536 5625 -0.6236 
150 0.409 15625 -0.8940 
200 0.457 30625 -0.7831 

    m (1/ µm2) - 
    D (µm2/min) - 
    R2 0.4063 

 
APMT 1155°C 20h End 
Distance from 
Center x (µm) 

Weight percent 
zinc (wt%) x2 Ln wt% 

50 0.187 625 -1.6766 
100 0.341 5625 -1.0759 
150 0.461 15625 -0.7744 

    m (1/ µm2) - 
    D (µm2/min) - 
    R2 - 

 
APMT 1214°C 1h Cneter 
Distance from Weight percent x2 Ln wt% 
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Center x (µm) zinc (wt%) 
75 2.588 1406.25 0.9509 

150 1.941 12656.25 0.6632 
225 0.688 35156.25 -0.3740 
300 0.461 68906.25 -0.7744 
375 0.35 113906.25 -1.0498 
450 0.221 170156.25 -1.5096 

    m (1/ µm2) -1.39E-05 
    D (µm2/min) 299.76 
    R2 0.8582 

 
APMT 1214°C 1h End 
Distance from 
Center x (µm) 

Weight percent 
zinc (wt%) x2 Ln wt% 

75 2.306 1406.25 0.8355 
150 1.937 12656.25 0.6611 
225 0.887 35156.25 -0.1199 
300 0.293 68906.25 -1.2276 
375 0.246 113906.25 -1.4024 

    m (1/ µm2) -2.17E-05 
    D (µm2/min) 192.012 
    R2 0.9086 

 
APMT 1214°C 3h Center 
Distance from 
Center x (µm) 

Weight percent 
zinc (wt%) x2 Ln wt% 

50 0.397 625 -0.9238 
100 0.188 5625 -1.6713 
150 0.284 15625 -1.2588 

    m (1/ µm2) - 
    D (µm2/min) - 
    R2 - 

 
APMT 1214°C 3h End 
Distance from 
Center x (µm) 

Weight percent 
zinc (wt%) x2 Ln wt% 

50 0.19 625 -1.6607 
100 0.214 5625 -1.5418 
150 0.324 15625 -1.1270 

    m (1/ µm2) - 
    D (µm2/min) - 
    R2 - 

 
APMT 1214°C 5h Center 
Distance from 
Center x (µm) 

Weight percent 
zinc (wt%) x2 Ln wt% 

75 1.877 1406.25 0.6297 
150 2.017 12656.25 0.7016 
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225 1.558 35156.25 0.4434 
300 0.937 68906.25 -0.0651 
375 0.67 113906.25 -0.4005 
450 0.65 170156.25 -0.4308 

    m (1/ µm2) -7.40E-06 
    D (µm2/min) 112.61 
    R2 0.8923 

 
APMT 1214°C 5h End 
Distance from 
Center x (µm) 

Weight percent 
zinc (wt%) x2 Ln wt% 

75 0.628 1406.25 -0.4652 
150 0.394 12656.25 -0.9314 
225 0.479 35156.25 -0.7361 

    m (1/ µm2) -5.60E-06 
    D (µm2/min) 148.81 
    R2 0.1712 

 
APMT 1214°C 10h Center 
Distance from 
Center x (µm) 

Weight percent 
zinc (wt%) x2 Ln wt% 

75 0.398 1406.25 -0.9213 
150 0.349 12656.25 -1.0527 
225 0.538 35156.25 -0.6199 
300 0.589 68906.25 -0.5293 
375 0.497 113906.25 -0.6992 
450 0.411 170156.25 -0.8892 

    m (1/ µm2) - 
    D (µm2/min) - 
    R2 0.0339 

 
APMT 1214°C 10h End 
Distance from 
Center x (µm) 

Weight percent 
zinc (wt%) x2 Ln wt% 

75 0.381 1406.25 -0.9650 
150 0.434 12656.25 -0.8347 
225 0.492 35156.25 -0.7093 

    m (1/ µm2) - 
    D (µm2/min) - 
    R2 - 

 
APMT 1214°C 20h Center 
Distance from 
Center x (µm) 

Weight percent 
zinc (wt%) x^2 Ln wt% 

75 0.316 1406.25 -1.1520 
150 0.223 12656.25 -1.5006 
225 0.317 35156.25 -1.1489 

    m (1/ µm2) - 
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    D (µm2/min) - 
    R2 - 

 
APMT 1214°C 20h End 
Distance from 
Center x (µm) 

Weight percent 
zinc (wt%) x2 Ln wt% 

75 0.245 1406.25 -1.4065 
150 0.154 12656.25 -1.8708 
225 0.209 35156.25 -1.5654 

    m (1/ µm2) - 
    D (µm2/min) - 
    R2 - 

 
CM247LC 700°C 30 min Center 
Distance from 
Center x (µm) 

Weight percent 
zinc (wt%) x2 Ln wt% 

10 16.721 25 2.8167 
20 0.254 225 -1.3704 
30 0.165 625 -1.8018 

    m (1/ µm2) -6.75E-03 
    D (µm2/min) 1.2342 
    R2 0.6537 

 
CM247LC 700°C 30 min End 
Distance from 
Center x (µm) 

Weight percent 
zinc (wt%) x2 Ln wt% 

10 17.674 25 2.8721 
20 7.021 225 1.9489 
30 0.082 625 -2.5010 

    m (1/ µm2) -2.03E-03 
    D (µm2/min) 4.0954 
    R2 0.9919 

 
CM247LC 1155°C 3h Center 
Distance from 
Center x (µm) 

Weight percent 
zinc (wt%) x2 Ln wt% 

10 7.583 25 2.0259 
20 14.059 225 2.6433 
30 9.778 625 2.2801 
40 9.055 1225 2.2033 
50 6.777 2025 1.9135 
60 4.122 3025 1.4163 
70 1.38 4225 0.3221 
80 0.233 5625 -1.4567 
90 0.033 7225 -3.4112 

    m (1/ µm2) -7.72E-04 
    D (µm2/min) 1.7984 
    R2 0.9153 
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CM247LC 1155°C 3h End 
Distance from 
Center x (µm) 

Weight percent 
zinc (wt%) x2 Ln wt% 

10 0 25 - 
20 0.026 225 -3.6497 
30 0 625 - 

    m (1/ µm2) - 
    D (µm2/min) - 
    R2 - 

 
CM247LC 1155°C 20h Center 
Distance from 
Center x (µm) 

Weight percent 
zinc (wt%) x2 Ln wt% 

10 0.111 25 -2.1982 
20 0.017 225 -4.0745 
30 0.05 625 -2.9957 

    m (1/ µm2) - 
    D (µm2/min) - 
    R2 - 

 
CM247LC 1155°C 20h End 
Distance from 
Center x (µm) 

Weight percent 
zinc (wt%) x2 Ln wt% 

10 0.126 25 -2.0715 
20 0 225 - 
30 0.11 625 -2.2073 

    m (1/ µm2) - 
    D (µm2/min) - 
    R2 - 

 
CM247LC 1214°C 1h Center 
Distance from 
Center x (µm) 

Weight percent 
zinc (wt%) x2 Ln wt% 

10 6.859 25 1.9256 
20 5.589 225 1.7208 
30 4.901 625 1.5894 
40 2.403 1225 0.8767 
50 1.487 2025 0.3968 
60 0.29 3025 -1.2379 
70 0.062 4225 -2.7806 

    m (1/ µm2) -1.12E-03 
    D (µm2/min) 3.7369 
    R2 0.9784 

 
CM247LC 1214°C 1h End 
Distance from 
Center x (µm) 

Weight percent 
zinc (wt%) x2 Ln wt% 
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10 4.397 25 1.4809 
20 4.277 225 1.4533 
30 3.761 625 1.3247 
40 3.572 1225 1.2731 
50 2.71 2025 0.9969 
60 1.961 3025 0.6735 
70 0.843 4225 -0.1708 
80 0.493 5625 -0.7072 
90 0.161 7225 -1.8264 

    m (1/ µm2) -4.49E-04 
    D (µm2/min) 9.2840 
    R2 0.9688 

 
CM247LC 1214°C 3h Center 
Distance from 
Center x (µm) 

Weight percent 
zinc (wt%) x2 Ln wt% 

10 4.123 25 1.4166 
20 3.959 225 1.3760 
30 3.238 625 1.1750 
40 3.482 1225 1.2476 
50 2.766 2025 1.0174 
60 2.805 3025 1.0314 
70 1.766 4225 0.5687 
80 1.661 5625 0.5074 
90 1.25 7225 0.2231 

100 0.857 9025 -0.1543 
110 0.167 11025 -1.7898 
120 0.168 13225 -1.7838 

    m (1/ µm2) -2.43E-04 
    D (µm2/min) 5.7203 
    R2 0.9211 

 
CM247LC 1214°C 3h End 
Distance from 
Center x (µm) 

Weight percent 
zinc (wt%) x2 Ln wt% 

10 2.292 25 0.829424799 
20 2.137 225 0.7594 
30 1.808 625 0.5922 
40 1.243 1225 0.2175 
50 1.699 2025 0.5300 
60 0.791 3025 -0.2345 
70 0.844 4225 -0.1696 
80 0.559 5625 -0.5816 
90 0.095 7225 -2.3539 

100 0.096 9025 -2.3434 
    m (1/ µm2) -3.62E-04 
    D (µm2/min) 3.8346 
    R2 0.9111 
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CM247LC 1214°C 5h Center 
Distance from 
Center x (µm) 

Weight percent 
zinc (wt%) x2 Ln wt% 

10 3.506 25 1.2545 
20 3.381 225 1.2182 
30 3.548 625 1.2664 
40 3.262 1225 1.1823 
50 2.518 2025 0.9235 
60 2.644 3025 0.9723 
70 2.236 4225 0.8047 
80 1.824 5625 0.6010 
90 1.247 7225 0.2207 

100 0.898 9025 -0.1076 
110 0.563 11025 -0.5745 
120 0.666 13225 -0.4065 
130 0.07 15625 -2.6593 
140 0.04 18225 -3.2189 

    m (1/ µm2) -2.25E-04 
    D (µm2/min) 3.7070 
    R2 0.8994 

 
CM247LC 1214°C 5h End 
Distance from 
Center x (µm) 

Weight percent 
zinc (wt%) x2 Ln wt% 

10 2.657 25 0.9772 
20 1.774 225 0.5732 
30 1.967 625 0.6765 
40 1.189 1225 0.1731 
50 1.168 2025 0.1553 
60 1.285 3025 0.2508 
70 0.838 4225 -0.1767 
80 0.576 5625 -0.5516 
90 0.375 7225 -0.9808 

100 0.340 9025 -1.0788 
110 0.165 11025 -1.8018 

    m (1/ µm2) -2.22E-04 
    D (µm2/min) 3.7487 
    R2 0.9622 

 
CM247LC 1214°C 10 Center 
Distance from 
Center x (µm) 

Weight percent 
zinc (wt%) x2 Ln wt% 

10 3.67 25 1.3002 
20 3.612 225 1.2843 
30 3.543 625 1.2650 
40 3.505 1225 1.2542 
50 3.703 2025 1.3091 
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60 3.554 3025 1.2681 
70 3.571 4225 1.2728 
80 3.113 5625 1.1356 
90 2.62 7225 0.9632 

100 2.477 9025 0.9070 
110 2.268 11025 0.8189 
120 1.41 13225 0.3436 
130 1.098 15625 0.0935 
140 0.795 18225 -0.2294 
150 0.49 21025 -0.7133 
160 0.159 24025 -1.8389 

    m (1/ µm2) -1.09E-04 
    D (µm2/min) 3.8191 
    R2 0.8887 

 
CM247LC 1214°C 10 End 
Distance from 
Center x (µm) 

Weight percent 
zinc (wt%) x2 Ln wt% 

10 0.079 25 -2.5383 
20 0.136 225 -1.9951 
30 0.217 625 -1.5279 

    m (1/ µm2) - 
    D (µm2/min) - 
    R2 - 

 
CM247LC 1214°C 20h Center 
Distance from 
Center x (µm) 

Weight percent 
zinc (wt%) x2 Ln wt% 

10 2.051 25 0.7183 
20 2.194 225 0.7857 
30 2.199 625 0.7880 
40 2.036 1225 0.7110 
50 1.998 2025 0.6921 
60 2.354 3025 0.8561 
70 0.751 4225 -0.2863 
80 0.742 5625 -0.2984 
90 0.192 7225 -1.6503 

100 0.031 9025 -3.4738 
    m (1/ µm2) -4.19E-04 
    D (µm2/min) 0.4975 
    R2 0.8414 

 
CM247LC 1214°C 20h End 
Distance from 
Center x (µm) 

Weight percent 
zinc (wt%) x2 Ln wt% 

10 0.123 25 -2.0956 
20 0.136 225 -1.9951 
30 0 625 - 
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    m (1/ µm2) - 
    D (µm2/min) - 
    R2 - 

 
Rene 80 1155°C 20h Center 
Distance from 
Center x (µm) 

Weight percent 
zinc (wt%) x2 Ln wt% 

10 1.543 25 0.4337 
20 4.215 225 1.4386 
30 4.813 625 1.5713 
40 4.544 1225 1.5138 
50 3.85 2025 1.3481 
60 4.431 3025 1.4886 
70 2.96 4225 1.0852 
80 3.459 5625 1.2410 
90 3.003 7225 1.0996 

100 2.871 9025 1.0547 
110 2.22 11025 0.7975 
120 1.874 13225 0.6281 
130 1.775 15625 0.5738 
140 0.763 18225 -0.2705 
150 0.626 21025 -0.4684 
160 0.301 24025 -1.2006 
170 0.545 27225 -0.6070 
180 0.243 30625 -1.4147 
190 0.358 34225 -1.0272 

    m (1/ µm2) -8.43E-05 
    D (µm2/min) 2.4713 
    R2 0.8615 

 
Rene 80 1155°C 20h End 
Distance from 
Center x (µm) 

Weight percent 
zinc (wt%) x2 Ln wt% 

10 0.218 25 -1.5233 
20 0.106 225 -2.2443 
30 0.281 625 -1.2694 

    m (1/ µm2) - 
    D (µm2/min) - 
    R2 - 

 
Rene 80 1214°C 1h Center 
Distance from 
Center x (µm) 

Weight percent 
zinc (wt%) x2 Ln wt% 

10 8.124 25 2.0948 
20 7.934 225 2.0712 
30 7.374 625 1.9980 
40 7.163 1225 1.9689 
50 5.636 2025 1.7292 
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60 4.356 3025 1.4716 
70 2.791 4225 1.0264 
80 1.99 5625 0.6881 
90 1.25 7225 0.2231 

100 0.384 9025 -0.9571 
110 0.155 11025 -1.8643 

    m (1/ µm2) -3.48E-04 
    D (µm2/min) 11.973 
    R2 0.9668 

 
Rene 80 1214°C 1h End 
Distance from 
Center x (µm) 

Weight percent 
zinc (wt%) x2 Ln wt% 

10 8.422 25 2.1308 
20 7.333 225 1.9924 
30 5.914 625 1.7773 
40 4.182 1225 1.4308 
50 3.316 2025 1.1988 
60 2.153 3025 0.7669 
70 0.909 4225 -0.0954 
80 0.49 5625 -0.7133 
90 0.313 7225 -1.1616 

100 0.105 9025 -2.2538 
    m (1/ µm2) -4.49E-04 
    D (µm2/min) 9.2840 
    R2 0.9688 

 
Rene 80 1214°C 3h Center 
Distance from 
Center x (µm) 

Weight percent 
zinc (wt%) x2 Ln wt% 

10 6.789 25 1.9153 
20 6.972 225 1.9419 
30 6.214 625 1.8268 
40 5.591 1225 1.7212 
50 5.328 2025 1.6730 
60 4.709 3025 1.5495 
70 4.144 4225 1.4217 
80 3.398 5625 1.2232 
90 2.699 7225 0.9929 

100 2.081 9025 0.7328 
110 1.242 11025 0.2167 
120 0.626 13225 -0.4684 
130 0.576 15625 -0.5516 
140 0.467 18225 -0.7614 
150 0.193 21025 -1.6451 
160 0.167 24025 -1.7898 

    m (1/ µm2) -1.62E-04 
    D (µm2/min) 8.5523 
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    R2 0.9869 
 
Rene 80 1214°C 3h End 
Distance from 
Center x (µm) 

Weight percent 
zinc (wt%) x2 Ln wt% 

10 6.557 25 1.8805 
20 6.256 225 1.8335 
30 5.626 625 1.7274 
40 5.618 1225 1.7260 
50 5.506 2025 1.7058 
60 4.589 3025 1.5237 
70 4.02 4225 1.3913 
80 2.936 5625 1.0770 
90 2.794 7225 1.0275 

100 1.628 9025 0.4874 
110 1.004 11025 0.0040 
120 0.795 13225 -0.2294 
130 0.675 15625 -0.3930 
140 0.391 18225 -0.9390 
150 0.361 21025 -1.0189 

    m (1/ µm2) -1.50E-04 
    D (µm2/min) 9.2654 
    R2 0.9834 

 
Rene 80 1214°C 5h Center 
Distance from 
Center x (µm) 

Weight percent 
zinc (wt%) x2 Ln wt% 

10 4.75 25 1.5581 
20 3.575 225 1.2740 
30 3.702 625 1.3089 
40 3.762 1225 1.3250 
50 3.437 2025 1.2346 
60 3.318 3025 1.1994 
70 2.995 4225 1.0969 
80 3.504 5625 1.2539 
90 2.592 7225 0.9524 

100 1.743 9025 0.5556 
110 1.142 11025 0.1328 
120 1.131 13225 0.1231 
130 0.876 15625 -0.1324 
140 0.413 18225 -0.8843 
150 0.252 21025 -1.3783 

    m (1/ µm2) -1.25E-04 
    D (µm2/min) 6.6881 
    R2 0.9448 

 
Rene 80 1214°C 5h End  
Distance from Weight percent x2 Ln wt% 
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Center x (µm) zinc (wt%) 
10 3.046 25 1.1138 
20 3.758 225 1.3239 
30 3.558 625 1.2692 
40 3.449 1225 1.2381 
50 2.735 2025 1.0061 
60 2.24 3025 0.8065 
70 2.246 4225 0.8092 
80 1.549 5625 0.4376 
90 1.526 7225 0.4226 

100 1.028 9025 0.0276 
110 1.115 11025 0.1089 
120 0.966 13225 -0.0346 
130 0.558 15625 -0.5834 
140 0.241 18225 -1.4230 
150 0.102 21025 -2.2828 

    m (1/ µm2) -1.46E-04 
    D (µm2/min) 5.7195 
    R2 0.9358 

 
Rene 80 1214°C 10h Center 
Distance from 
Center x (µm) 

Weight percent 
zinc (wt%) x2 Ln wt% 

10 2.66 25 0.9783 
20 2.265 225 0.8176 
30 2.207 625 0.7916 
40 1.802 1225 0.5889 
50 1.814 2025 0.5955 
60 1.769 3025 0.5704 
70 1.33 4225 0.2852 
80 0.87 5625 -0.1393 
90 1.029 7225 0.0286 

100 0.944 9025 -0.0576 
110 0.457 11025 -0.7831 
120 0.313 13225 -1.1616 

    m (1/ µm2) -1.20E-04 
    D (µm2/min) 3.4722 
    R2 0.9437 

 
Rene 80 1214°C 10h End 
Distance from 
Center x (µm) 

Weight percent 
zinc (wt%) x2 Ln wt% 

10 0.994 25 -0.0060 
20 0.665 225 -0.4080 
30 0.791 625 -0.2345 
40 0.646 1225 -0.4370 
50 0.415 2025 -0.8795 
60 0.52 3025 -0.6539 
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70 0.454 4225 -0.7897 
80 0.137 5625 -1.9878 

    m (1/ µm2) -2.66E-04 
    D (µm2/min) 1.5694 
    R2 0.7901 

 
Rene 80 1214°C 20h Center 
Distance from 
Center x (µm) 

Weight percent 
zinc (wt%) x2 Ln wt% 

10 1.436 25 0.3619 
20 1.668 225 0.5116 
30 1.564 625 0.4472 
40 1.832 1225 0.6054 
50 1.518 2025 0.4174 
60 1.495 3025 0.4021 
70 1.405 4225 0.3400 
80 1.23 5625 0.2070 
90 1.489 7225 0.3981 

100 1.088 9025 0.0843 
110 1.139 11025 0.1302 
120 1.058 13225 0.0564 
130 0.629 15625 -0.4636 
140 0.764 18225 -0.2692 
150 0.36 21025 -1.0217 
160 0.756 24025 -0.2797 
170 0.258 27225 -1.3548 
180 0.15 30625 -1.8971 

    m (1/ µm2) -6.54E-05 
    D (µm2/min) 3.1855 
    R2 0.8532 

 
Rene 80 1214°C 20h End 
Distance from 
Center x (µm) 

Weight percent 
zinc (wt%) x2 Ln wt% 

10 0.903 25 -0.1020 
20 0.692 225 -0.3682 
30 1.047 625 0.0459 
40 0.942 1225 -0.0598 
50 1.071 2025 0.0686 
60 1.031 3025 0.0305 
70 0.96 4225 -0.0408 
80 0.928 5625 -0.0747 
90 0.68 7225 -0.3857 

100 0.471 9025 -0.7529 
110 0.466 11025 -0.7636 

    m (1/ µm2) -6.23E-04 
    D (µm2/min) 0.3344 
    R2 0.5852 
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