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ABSTRACT 

Acetate supplementation increases brain acetyl-CoA and attenuates 

lipopolysaccharide (LPS)-induced neuroinflammation in vivo.  To explain the anti-

inflammatory effect of acetate treatment, we proposed that acetate treatment disrupts 

inflammatory signaling in microglia and astrocytes, and induces histone 

hyperacetylation known to be correlated with anti-inflammatory properties.  To test this 

hypothesis, we measured the effects that LPS and acetate treatment had on histone 

acetylation, mitogen-activated protein kinase (MAPK), nuclear factor-kappa B (NF-

κB), and eicosanoid signaling.  A single oral dose of acetate treatment (6 g/kg) in 

normal animals induced a time- and site-specific pattern of histone hyperacetylation, 

associated with reduction of histone deacetylase (HDAC) activity and expression.  

Long-term acetate treatment over 28 days induced the same site-specific pattern of 

histone hyperacetylation, and reversed LPS-induced histone H3 at lysine 9 (H3K9) 

hypoacetylation and interleukin (IL)-1β expression.  In LPS-stimulated BV-2 

microglia, acetate treatment reversed LPS-induced H3K9 hypoacetylation, IL-1β, IL-6, 

tumor necrosis factor (TNF)-α, cyclooxygenase (Cox)-1 and 2 protein levels, and NF-

κB p65 protein level and phosphorylation at serine 468.  Further, acetate treatment 

increased IL-4 and transforming growth factor (TGF)-β1 expression, and NF-κB p65 

acetylation at lysine 310.  Conversely, acetate treatment did not alter LPS-induced 



 
 

xvi 
 

cytosolic (c) phospholipase A2 (PLA2), transiently reduced MAPK p38 and JNK 

phosphorylation, and increased MAPK ERK1/2 phosphorylation.  In LPS-stimulated 

astrocyte, acetate treatment induced H3K9 hyperacetylation, reversed LPS-induced 

increases in IL-1β, TNF-α, NF-κB p65, and Cox-1 protein levels, MAPK p38 and 

cPLA2 phosphorylation and PGE2 release, and reversed LPS-induced decreases in 

TGF-β1 and IL-4.  Moreover, acetate treatment reduced basal levels of IL-6, 

phosphorylated ERK1/2 and NF-κB p65 at serine 536, sPLA2 IIA and PLCβ1.  Acetate 

treatment also increased acetylated H3K9 bound to the promoters of the genes of Cox-

1, Cox-2, IL-1β and NF-κB p65, but not IL-4 in BV-2 microglia, which suggests that 

acetate treatment-induced H3K9 hyperacetylation can potentially be involved in the 

alteration of the expression of these genes.  These data suggest that acetate treatment 

has net anti-inflammatory effects in vivo and in vitro both in LPS-stimulated microglia 

and astrocyte cultures through neuroglial cell type-distinct mechanisms.  
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CHAPTER I 

INTRODUCTION 

Dietary Acetate Supplementation 

Dietary acetate supplementation is a potentially effective therapy for the 

treatment of Canavan disease; a human demyelinating disease (Arun et al. 2010b, 

Madhavarao et al. 2009) and is effective at reducing the tremor phenotype in a rat 

model of this disease (Arun et al. 2010b).  Acetate supplementation is also effective at 

maintaining adenosine triphosphate (ATP) levels in a rat model of traumatic brain 

injury (Arun et al. 2010a) and reduces neuroglial activation and cholinergic 

immunoreactivity in rats subjected to lipopolysaccharide (LPS)-induced 

neuroinflammation (Reisenauer et al. 2011).  In the brain, acetate is converted to 

acetyl-CoA through the combined action of nuclear acetyl-CoA synthetase 1 

(Ariyannur et al. 2010) and mitochondrial acetyl-CoA synthetase 2 (Fujino et al. 2001).  

A single oral dose of glyceryl triacetate increases brain and liver acetyl-CoA levels by 

2.2-and 2.6-fold, respectively (Reisenauer et al. 2011).  Acetyl-CoA is a widely active 

precursor in numerous biological processes that are central to mitochondrial energy 

supply, fatty acid synthesis, and lipid metabolism (Deutsch et al. 2002).  For example, 

acetyl-CoA is used for oxidation in Krebs cycle and energy production after condensing 

with oxaloacetate to form citrate (Des Rosiers et al. 1991, McGarry & Foster 1980).    

Acetate can also be channeled into fatty acids and cholesterol synthesis, and when 
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present in excess as a result of an increase in fatty acid oxidation, acetyl-CoA can form 

ketone bodies (Fukao et al. 2004). 

Acetylation of Histone and Non-histone Proteins 

Acetyl-CoA is utilized as a substrate for protein acetylation which is 

increasingly appreciated as one of the major post-translational modification systems 

with a wide range of histone and non-histone substrates.  Non-histone targets of 

acetylation include transcription factors, nuclear transport factors, cytoskeletal proteins 

and many enzymes involved in diverse metabolic and signaling transduction pathways 

(Polevoda & Sherman 2002).  Acetylation of non-histones alters their subcellular 

localization, DNA binding, transcriptional activity, protein-protein interaction, and 

protein stability (Glozak et al. 2005).  

Another major target of acetylation is histone proteins which are instrumental in 

the packaging of DNA and play a central role in transcription regulation.  There are five 

isoforms of histones: H1, H2A, H2B, H3 and H4.  The basic structural unit of 

eukaryotic chromosomes is a DNA-protein complex called the nucleosome which 

consists of a DNA molecule associated with a histone octamer comprised of pairs of the 

core histones H2A, H2B, H3 and H4.  The nucleosomes are joined by linker DNA and 

histone H1 to form chromatin, and each chromosome can accommodate 147 base pairs 

of DNA.  Each core histone has a globular region and a histone fold domain which is 

involved in histone-histone interactions (Arents et al. 1991) and the wrapping of DNA 

around the nucleosome core (Luger et al. 1997).  The N-terminal tail regions extend 

outside of the nucleosome particle where they can interact with DNA and with other 
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regulatory proteins or transcription factors (Baneres et al. 1997, Bradbury 1992, Luger 

et al. 1997).  Acetylation of the lysine residues on the N-terminal tail of histones 

neutralizes the positive charge on the lysine residue and reduces histone-DNA binding.  

The reduction in histone-DNA binding increases the accessibility of chromatin by 

transcription machinery (Anderson et al. 2001, Gorisch et al. 2005, Polach et al. 2000).  

Hyperacetylated nucleosomes also increase the flexibility of the DNA associated with 

the end of the nucleosomes, which is proposed as an additional way histone acetylation 

can alter gene expression (Krajewski & Becker 1998).  Histone acetylation and 

methylation sites are recognized by proteins that have bromo- and chromo-domains 

respectively.  Therefore, covalently modified histone serve as marks for binding sites to 

recruit other proteins that facilitate downstream events resulting in altered gene 

expression (Mu et al. 2007).  The multitude of events and changes that take place 

during transcription are thus not due only to histone acetylation changes, but represents 

the outcome of synergistic actions of several factors (Eberharter & Becker 2002). 

The acetylation of histone H4 is restricted to lysines 5, 8, 12, and 16 (H4K5, 

H4K8, H4K12 and H4K16, respectively) (Clarke et al. 1993).  Another known post-

translational modification of histone H4 is methylation, restricted to lysine 20 (Borun et 

al. 1972), which precludes acetylation at this site (Annunziato et al. 1995).  Random 

histone acetylation would yield four mono-acetylated isoforms: acetylated H4K5, 

H4K8, H4K12 or H4K16, six di-acetylated isoforms: H4K5/H4K8, H4K5/H4K12, 

H4K5/H4K16, H4K8/H4K12, H4K8/H4K16 and H4K12/H4K16, four tri-acetylated 

isoforms: H4K5/H4K8/H4K12, H4K5/H4K12/H4K16, H4K8/H4K12/H4K16, and 
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H4K5/H4K8/H4K16, and one tetra-acetylated isoform.  The most common mono-

acetylated form is that of lysine 16 (Zhang et al. 2002).  Histone H3 can be acetylated 

at lysines 9, 14, 18 and 23, of which the acetylation at lysines 9 and 14 is better 

understood (Sterner & Berger 2000), and can be methylated at more numerous sites 

including lysines 4, 9, 27, 36 and 79, and arginines 2, 17 and 26 (Mu et al. 2007).  H2A 

has the largest number of variants including H2A.Z, MacroH2A, H2A-Bbd, H2AvD, 

and H2A.X which are classified based on the C-terminal sequence and length, and 

genomic distribution (Redon et al. 2002).  H2B has a few variants with largely 

unknown roles, even though they have specialized functions in chromatin compaction 

and transcription repression during gametogenesis (Green et al. 1995).  The 

involvement of histones H2A and H2B in inflammation is less clear than histones H3 

and H4.  A pubmed search using the keywords “H3 and H4 and inflammation” 

retrieves 54 articles, whereas using the keywords “H2A and H2B and inflammation” 

retrieves only 3 references.  We therefore chose to focus on changes in histones H3 and 

H4, but this does not exclude the possibility of acetate treatment inducing covalent 

modifications in histones H2A and H2B with potential functional consequences.  

Histone proteins can also be modified by phosphorylation, ADP-ribosylation, 

glycosylation and ubiquitination although the most well studied modifications are 

acetylation and methylation (Mu et al. 2007).  Throughout our studies, we focused on 

acetylation changes in histones which are more likely to result from altering the level of 

the acetyl group donor acetyl-CoA after acetate treatment.   
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Site-specific acetylation patterns have been linked to both physiological and 

pathological roles.  For example, histone H4 acetylated at lysine 16 (H4K16) is 

essential for transcription initiation (Shogren-Knaak et al. 2006) and DNA repair (Li et 

al. 2010).  Histone H3 acetylated at lysine 9 (H3K9) is selectively enriched at the 

promoters of stem cells, suggesting a role in pluripotency (Hezroni et al. 2011).  

Alterations in histone acetylation state are involved in many physiological processes 

including normal development (Shi & Wu 2009), cell differentiation (Haumaitre et al. 

2009), memory formation (Peleg et al. 2010, Levenson et al. 2004), cellular lifespan 

(Dang et al. 2009), synaptic plasticity (Vecsey et al. 2007, Guan et al. 2009, Sharma 

2010), and modifications of embryonic neuron differentiation (Balasubramaniyan et al. 

2006).  Therapeutically, increases in histone acetylation are associated with 

neuroprotective properties in animal models of cerebral ischemia (Kim et al. 2007), and 

amyotrophic lateral sclerosis (Rouaux et al. 2007), and reduce microglial activation in 

traumatic brain injury (Zhang et al. 2008).  Furthermore, oxidative stress-induced 

apoptosis, a hallmark of many neurodegenerative diseases such as Alzheimer’s disease, 

Parkinson’s disease, Huntington’s disease, stroke, and multiple sclerosis, is reduced 

upon treatment with histone deacetylase (HDAC) inhibitors suberoylanilide 

hydroxamic acid (SAHA) and trichostatin A (TSA) which lead to histone 

hyperacetylation (Ryu et al. 2003).  Similarly, HDAC inhibitors decrease 

polyglutamine toxicity in a mouse motor neuron–neuroblastoma fusion cell line 

(McCampbell et al. 2001) and in Drosophila models of polyglutamine diseases (Steffan 

et al. 2001).  All of which suggests a loss of neuronal function during 
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neurodegeneration can be restored by increasing histone acetylation.  The histone 

acetylation state is actively maintained by the opposing activities of two enzyme 

families: histone acetyltransferases (HATs) and HDACs.  Based on structural 

homology, HDACs are classified into different classes: HDAC class I is mainly located 

in the nucleus, HDAC class II shuttles between the nucleus and cytoplasm, and HDAC 

class III (sirtuins) are located in the cytoplasm (de Ruijter et al. 2003).  HDAC classes I 

and II are inhibited by conventional HDAC inhibitors, while class III HDACs are 

nicotinamide adenine dinucleotide (NAD+)-dependent and inhibited by nicotinamide 

(Avalos et al. 2005).  Likewise, HATs are classified into distinct families (general 

control non-derepressible 5 (GCN5), P300/cyclic adenosine monophosphate response 

element binding protein associated factor (PCAF), the MYST family named for its 

founding members in yeast and mammals, monocytic leukemia zinc finger protein 

(Moz), Something About Silencing protein (Sas2p), and HIV tat-interacting protein 60 

(Tip60), transcription initiation factor TFIID 250 kDa subunit (TAFII250), steroid 

receptor coactivator proteins (SRC), and GCN5-related N-acetyltransferase (GNAT)) 

that show high sequence similarity within families, but poor-to-no sequence similarity 

between families (Marmorstein & Roth 2001).  The exact correlation of individual 

HATs or HDACs with site-specific acetylation or deacetylation of histone lysine 

residues remains largely unknown due to overlapping enzyme targets (Howe et al. 

2001, Kuo et al. 1996). 
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Neuroinflammation 

Neuroinflammation, an innate immune response characterized by the release of 

a repertoire of inflammatory mediators including cytokines, is advantageous with 

regard to normal brain physiology.  However, excessive and persistent 

neuroinflammation is detrimental and associated with numerous neurological 

pathologies (Glass et al. 2010, Mrak 2009).  Cytokines have pleiotropic physiological 

functions that include regulating cell growth, survival, differentiation, and activities 

(Hopkins & Rothwell 1995, Rothwell & Hopkins 1995).  Cytokine release can lead to 

either beneficial or deleterious outcomes depending on the dose, time and duration of 

secretion, and cellular target leading to enhanced cellular viability or further damage, 

respectively (Suzuki et al. 2009).  Under normal conditions, cytokines serve as 

communication signals among different cell types in the brain, but contribute to 

bystander neuronal lysis in uncontrolled neuroinflammation (Tian et al. 2012).  

Excessive pro-inflammatory cytokines tumor necrosis factor-alpha (TNF-α), interleukin 

(IL)-1β, and IL-6 are involved in the pathogenesis of neuroinflammatory and 

neurodegenerative disease states such as acute cerebral ischemia (Denes et al. 2010), 

Alzheimer’s disease (Johnston et al. 2011, Shaftel et al. 2008), Parkinson’s disease 

(Qian et al. 2010), multiple sclerosis (Merson et al. 2010) and traumatic brain injury 

(Helmy et al. 2011).  Therefore, disrupting pro-inflammatory cytokine signaling is 

commonly proposed as a therapeutic target.  In contrast, anti-inflammatory cytokines 

include transforming growth factor-beta1 (TGF-β1), IL-4 and IL-10 which obviate the 

potential of injury due to excessive or uncontrolled inflammatory reactions through 
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downregulating the pro-inflammatory cytokines and induction of tissue repair 

(Ledeboer et al. 2000, Vitkovic et al. 2001).  A dynamic balance exists between the 

pro- and anti-inflammatory cytokines, both of which are generated upon exposure to 

injury or infection.  The duration and net effect of interactions between these opposing 

molecular groups determines the outcome of the immune response.  Pathologies arise 

from shifting this dynamic balance in one direction or the other.  For example, 

excessive pro-inflammatory cytokines are linked to neuroinflammation and 

degeneration as mentioned earlier, while excessive anti-inflammatory cytokines are 

conversely associated with susceptibility to systemic infections (Kasai et al. 1997, 

Munoz et al. 1991). 

Lipopolysaccharide-induced Neuroinflammation 

A well-established method of inducing neuroinflammation experimentally is 

through the use of LPS in whole animals or in cell cultures.  LPS, an endotoxin present 

in the membrane of Gram-negative bacilli, binds to toll-like receptor 4 (TLR-4) found 

on many brain cell types and promotes an inflammatory response characterized by 

enhanced expression of the pro-inflammatory cytokines, neuroglial activation and 

neurodegeneration, and increased turnover and metabolism of brain arachidonic acid.  

The activities of both arachidonic acid-selective secretory (s) and cytosolic 

phospholipases A2 (cPLA2) also increase as do the levels of prostaglandins E2 and D2 

(PGE2 and D2) with LPS stimulation.  Thus, this model reproduces many of the 

properties associated with known modalities of neuroinflammation (Aravalli et al. 

2007, Hauss-Wegrzyniak et al. 1998a, Hauss-Wegrzyniak et al. 1998b, Hauss-
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Wegrzyniak et al. 2000, Lehnardt 2010, Lehnardt et al. 2003, Reisenauer et al. 2011, 

Rosenberger et al. 2004).  LPS infusion through a cannula implanted into the fourth 

ventricle of the brain and connected to a subcutaneous mini-osmotic pump is 

commonly used as a model to study neuroinflammation in vivo (Hauss-Wegrzyniak et 

al. 1998a, Hauss-Wegrzyniak et al. 1998b, Hauss-Wegrzyniak et al. 2000, Reisenauer 

et al. 2011, Rosenberger et al. 2004).   

Microglia and Aastrocytes in Physiology and Neuroinflammation 

Microglia are the primary resident immune cells of the central nervous system 

that, under normal conditions, monitor the brain for any changes in the environment.  

When the structural or functional integrity of the brain is disturbed, microglia change 

into a more reactive phenotype characterized by microglial hypertrophy, loss or 

shortening or cellular processes, increased secretion of inflammatory mediators and 

enhanced phagocytic activity (Hanisch 2002, Hanisch & Kettenmann 2007, Lehnardt 

2010, Lehnardt et al. 2003, Olson & Miller 2004, Ransohoff & Perry 2009, Streit et al. 

1999).  The BV-2 mouse microglia cell line, immortalized through oncogenes-carrying 

retrovirus, exhibit morphological, functional, and phenotypical properties similar to 

primary microglia (Blasi et al. 1990, Bocchini et al. 1992).  Therefore, BV-2 microglial 

cells are commonly used as an alternative to primary microglia to study various 

microglial responses and interactions (Petrova et al. 1999, Rojanathammanee et al. 

2011, Woo et al. 2003).  Astrocytes are the most abundant cell type in central nervous 

system with essential functions in maintaining the blood-brain barrier, synaptic 

plasticity, provision of metabolites to neurons, and neurotransmitters homeostasis 
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(Sadoul et al. 2008, Sofroniew & Vinters 2010).  Being connected via gap junctions, in 

injury and infections, astrocytes distribute many mediators that contribute to either 

detrimental or beneficial consequences (Frantseva et al. 2002, Nakase et al. 2003).  In 

inflammatory conditions, astrocytes undergo reactive astrogliosis characterized by 

astrocytic hypertrophy, upregulation of intermediate filaments like vimentin and glial 

fibrillary acidic protein (GFAP), altered molecular expression profile, and scar 

formation (Kang & Hebert 2011, Pekny & Nilsson 2005, Sofroniew 2009).  Although 

essential for proper tissue healing, excessive astrocytic reactivity contributes to the 

inflammatory response through production to numerous pro-inflammatory cytokines 

(Dong & Benveniste 2001, Gorina et al. 2011, Gorina et al. 2009) and are thus 

recognized as a potential target of therapeutics in many neurological disorders (Hamby 

& Sofroniew 2010).   

Mitogen-activated Protein Kinases and Nuclear Factor-kappa B Signaling 

 Mitogen-activated protein kinases (MAPK) p38, c-Jun N-terminal kinase (JNK) 

and extracellular signal-regulated kinase (ERK) have a crucial role in the regulation of 

the immune and inflammatory responses, cell differentiation and survival, and the 

response to stress.  MAPK are key regulators of the biosynthesis of pro-inflammatory 

cytokines TNF-α, IL-6 and IL-1β and are hence potential therapeutic targets in 

inflammatory and autoimmune diseases (Kumar et al. 2003, Pearson et al. 2001).  

When activated by phosphorylation, MAPK signaling upregulates the biosynthesis of a 

number of inflammatory mediators including the pro-inflammatory cytokines 

(Kaminska et al. 2009, Pearson et al. 2001).  Interestingly, a certain lysine acetylation 



 
 

11 
 

in MAPK phosphatase-1 leads to its activation, which subsequently dephosphorylates 

and inactivates MAPK signaling (Cao et al. 2008).  This provides an important link 

between acetylation and phosphorylation in the regulation of inflammatory signaling.  

Nuclear factor-kappa B (NF-κB) is another major regulator of inflammatory and 

immune responses downstream of TLR-4 receptors.  NF-κB is a heterodimer of two 

subunits; most commonly p65 and p50, combined in the cytosol with inhibitors of 

kappa B (IκB) which mask the nuclear export motif, leading to NF-κB inactivity.  Upon 

stimulation by pro-inflammatory cytokines, B and T cell receptor signaling, and viral 

and bacterial toxins, NF-κB is released from IκB and translocates to the nucleus where 

it binds DNA sequences and alters the transcriptional activity of genes involved in 

inflammatory responses and cell survival (Chen & Ghosh 1999, DiDonato et al. 2012, 

Schmitz et al. 2004).  p65, but not p50, binds transcriptional co-activators p300 and 

CREB-binding protein (Perkins et al. 1997) and can be modified by acetylation at 

certain lysine residues with variable functional outcomes in terms of the affinity to IκB, 

nuclear translocation, DNA binding and transcriptional activity (Chen & Ghosh 1999, 

Chen et al. 2001, Chen et al. 2002, Huang et al. 2010a, Kiernan et al. 2003).  

Therefore, both MAPK and NF-κB signaling pathways are important players in 

inflammation that can be regulated by acetylation.   

Eicosanoid Signaling 

Phospholipases are a heterogeneous group of enzymes which catalyze the 

hydrolysis of fatty acids esterified to membrane phospholipids and release free fatty 

acids and lysophospholipids.  The action of cyclooxygenases-1 and 2 (Cox-1 and 2) on 
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arachidonic acid, released from the sn-2 position of membrane phosphatidyl choline by 

the action of PLA2, leads to the release of prostaglandins (PGs) (Smith et al. 2000).  

PLA2 groups are classified into cytosolic (c) PLA2 and secretory (s) PLA2 which 

require calcium for activity, and calcium-independent PLA2 (iPLA2) (Balboa et al. 

2002, Dennis 1994).  sPLA2 is divided into type I (also called pancreatic type) and type 

II (also called inflammatory type) (Sun et al. 2010), the most well studied of which is 

type IIA sPLA2 expressed in most areas of rat brain and whose levels are elevated after 

inflammatory conditions like ischemia and endotoxic shock (Fujimori et al. 1992, 

Lauritzen et al. 1994).  PLCs, structurally divided into PLCβ, γ, δ, and ε, hydrolyze 

fatty acids esterified at the sn-3 position of phosphatidyl inositol 4, 5-bisphosphate to 

release diacyl glycerol and inositol 1, 4 and 5- trisphosphate which eventually increase 

intracellular calcium and activate protein kinase C (Farooqui & Horrocks 2005).  The 

physiological functions of phospholipases in the brain include phospholipid 

metabolism, exocytosis, removal of phospholipid peroxides, neurotransmitter release, 

long-term potentiation, neural cell proliferation, and the release of neurotransmitters 

(Farooqui et al. 1997, Balboa et al. 2002, Dennis 1994).  Eicosanoid signaling is 

upregulated by LPS, pro-inflammatory cytokines IL-1β, IL-6 and TNF-α, NF-κB, and 

MAPK p38, ERK and JNK, all of which are major players in neuroinflammation 

(Farooqui & Horrocks 2005, Sun et al. 2010, Fujimori et al. 1992, Lauritzen et al. 1994, 

Lima et al. 2012, Phillis & O'Regan 2004, Farooqui et al. 1997, Smith et al. 2000, 

Balboa et al. 2002, Dennis 1994, Hiller & Sundler 1999, Kramer et al. 1996, Adibhatla 

& Hatcher 2007, Jupp et al. 2003).  cPLA2 is activated by phosphorylation, especially 
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by MAPK, which is followed by translocation from the cytosol to the membrane (Hiller 

& Sundler 1999, Kramer et al. 1996).  In pathological conditions, phospholipases and 

eicosanoid signaling has a role in neuronal injury because of altered membrane 

permeability, accumulation of free fatty acids and lipid peroxides and are therefore 

involved in a number of neuroinflammatory and degenerative conditions (Lima et al. 

2012, Phillis & O'Regan 2004).   

Our Work and Findings 

Acetate supplementation increases plasma and tissue levels of acetate and brain 

levels of acetyl-CoA, and attenuates LPS-induced microglia and astroglial activation 

and the loss of cholinergic immunoreactivity in a rat model of neuroinflammation 

(Reisenauer et al. 2011).  In addition, acetate treatment is effective therapy for the 

treatment of a human demyelinating disease Canavan disease (Arun et al. 2010b, 

Madhavarao et al. 2009) and is effective at reducing the tremor phenotype in a rat 

model of this disease (Arun et al. 2010b).  Acetate supplementation is also effective at 

maintaining ATP levels in a rat model of traumatic brain injury (Arun et al. 2010a) .  

This body of work represents an attempt to understand the mechanisms of the anti-

inflammatory effects of acetate supplementation in inflammation.  No reports are 

available that describe a decline in brain acetate levels in response to LPS or 

neurological pathologies.  Consequently, rather than replenishing endogenous acetate 

stores, we propose that acetate supplementation acts to increase intracellular levels of 

acetyl-CoA as an inducer of metabolic and molecular processes that ultimately result in 

the reduction of inflammatory phenotype.  Our overall hypothesis is that acetate 
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treatment in in vivo and in vitro models of inflammation shifts the cytokine balance 

toward a more anti-inflammatory state and disrupts inflammatory signaling, which is 

associated with acetylation of histone and non-histone targets.  To begin to test this 

hypothesis, we tested the effect that a single oral dose of glyceryl triacetate, used to 

induce acetate supplementation, has on brain histone acetylation.  We treated normal 

rats once with oral gavage of 6 g/kg glyceryl triacetate and used Western blot analysis 

to determine the level of acetylated histone H3 at lysine 9 and 14 (H3K9 and H3K14), 

and histones H4 at lysine 5, 8, 12 and 16 (H4K5, H4K8, H4K12 and H4K16).  We 

chose this dose of glyceryl triacetate based on earlier reports showing that this is the 

dose that leads to the highest increase in plasma and tissue acetate levels (Mathew et al. 

2005).  Our goal was to induce the highest possible acetyl-CoA level derived from 

acetate treatment to identify the metabolic and inflammatory processes that can be 

modulated downstream to acetyl-CoA formation.  Thereafter, the dose of acetate can be 

scaled down to determine the smallest acetate concentration that still leads to the 

desired therapeutic effects. We found that acetate treatment induced a pattern of site- 

and time-specific histone hyperacetylation in the brain.  Acetate supplementation 

increased the acetylation state of brain H4K8 at 2 and 4 h, H4K16 at 4 and 24 h, and 

H3K9 at 4 h following treatment.  No changes in other forms of brain H3 and H4 

acetylation state were found at any post-treatment times measured.  To determine the 

mechanism by which a single acetate supplementation alters histone acetylation, we 

measured the effect of a single acetate treatment on the HAT and HDAC enzymic 

activities.  We found that while HAT activity was not altered by a single oral dose of 
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acetate treatment, HDAC activity was reduced at 2 and 4 hrs that was associated with 

reduced HDAC2 protein level.  Based on these data, we conclude that a single oral dose 

of acetate supplementation can indeed alter histone acetylation, which is mainly due to 

reduction in HDAC activity.    

 The hypothesis that long-term acetate supplementation reverses LPS-induced 

histone acetylation changes and pro-inflammatory expression in the brain, proceeded to 

be tested.  The objective of this study was to demonstrate the association of histone 

hyperacetylation with functional consequences in terms of alteration of inflammatory 

gene expression in a rat model of neuroinflammation.  Sprague-Dawley rats underwent 

surgeries to install LPS or artificial cerebrospinal fluid (aCSF) subcutaneous 

minipumps connected to a cannula implanted into the 4
th

 ventricle.  Afterwards, 

animals were treated orally daily with either water or glyceryl triacetate (6 g/kg).  After 

28 days of treatment, animals were killed and the brains were collected.  Using Western 

blot analysis, we measured histone acetylation changes as well as the expression of IL-

1β protein.  Parallel studies were performed to quantify IL-1β mRNA using quantitative 

real-time polymerase chain reaction (qrt-PCR).  We found that long-term acetate 

supplementation increased the proportion of brain H3K9, H4K8 and H4K16, similar to 

that found with a single oral dose.  However, unlike a single dose of glyceryl triacetate, 

long-term treatment increased HAT activity and had no effect on HDAC activity, with 

variable effects on brain HDAC class I and II expression.  In agreement with our 

hypothesis, neuroinflammation reduced the proportion of brain H3K9 acetylation by 

50%, which was effectively reversed with acetate supplementation.  Further, in rats 
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subjected to LPS-induced neuroinflammation, IL-1β protein and mRNA levels were 

increased by 1.3- and 10-fold, respectively, and acetate supplementation reduced this 

expression to control levels.  Based on these results, we conclude that dietary acetate 

supplementation effectively reduces pro-inflammatory cytokine expression by a 

mechanism that may involve a distinct site-specific pattern of histone acetylation in the 

brain.  

An in vitro system that is conducive to examining the effect of acetate treatment 

on certain inflammatory signaling pathways in primary and BV-2 microglia and 

primary astrocyte cultures was then designed.  We proposed that in microglia and 

astrocytes, acetate supplementation reverses LPS-induced changes in histone 

acetylation, pro- and anti-inflammatory cytokines, and MAPK, NF-κB, and eicosanoid 

signaling.  In order to test that, we measured the effects of LPS and acetate treatment on 

the proportion of acetylated H3K9, the expression of IL-1β, IL-6, TNF-α, TGF-β1, IL-4 

and IL-10, the phosphorylation of MAPK p38, JNK and ERK1/2, NF-κB p65 total 

protein and modification, cPLA2 phosphorylation,  the protein levels of sPLA2 IIA, 

PLCβ1, PLCγ1, PLCδ1, Cox-1 and Cox-2, and the release of PGE2.  We treated 

primary microglia for 4 hours with either 6.25 ng/ml LPS and/or 12 mM sodium acetate 

and compared the results to 12 mM NaCl as a control group.  The rationale for using 

this acetate concentration is based on unpublished data showing that 12 mM sodium 

acetate is the highest concentration that does not cause significant cell death compared 

to cells grown in serum-free media.  The rationale for using this LPS concentration is 

based on the dose-response study showing that this LPS concentration produced 50% 
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H3K9 hypoacetylation in microglia similar to that found in vivo, and increased all the 

pro-inflammatory cytokines measured in microglia.  NaCl was used as a control group 

as well as together with LPS treatment to make sure all treatment groups had similar 

osmolarity to that of 12 mM sodium acetate.  Acetate supplementation increased H3K9 

acetylation starting at 2 hours in BV-2 microglia and at 1 hr in astrocytes, so we chose 

4 hr for later treatments to ensure protein expression after treatment.   

We observed distinct neuroglial-cell type specific differences both with acetate 

treatment and LPS challenge.  In LPS-stimulated microglia, acetate treatment induced 

H3K9 hyperacetylation and reversed LPS-induced H3K9 hypoacetylation similar to 

that found in vivo.  LPS also increased IL-1β, IL-6 and TNF-α mRNA and protein, 

while acetate treatment returned the protein to control levels and only partially 

attenuated IL-6 mRNA.  In contrast, acetate treatment increased mRNA levels of TGF-

β1 and both IL-4 mRNA and protein.  LPS increased p38 MAPK and JNK 

phosphorylation at 4 and 2-4 hr respectively, while acetate treatment reduced p38 

MAPK and JNK phosphorylation only at 2 hr.  In addition, acetate treatment reversed 

the LPS-induced elevation of NF-κB p65 protein and phosphorylation at serine 468 and 

induced hyperacetylation at lysine 310.  Acetate treatment did not alter the LPS-

induced 1.7-fold increase in the cPLA2 phosphorylation, reversed to control levels the 

LPS-induced 2-fold reduction in PLCβ1 protein levels and 1.5-fold increase in Cox-1 

protein level, and only partially attenuated the LPS-induced 4-fold increase in Cox-2 

protein level.  The protein levels of total cPLA2, sPLA2 IIA, PLCγ1 and PLCδ1, and 

PGE2 release were not altered by either acetate treatment or LPS.  Because acetate 
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treatment induces H3K9 hyperacetylation, reverses LPS-induced H3K9 

hypoacetylation, and alters inflammatory gene expression in vivo (Soliman et al. 

2012b) and in vitro (Soliman et al. 2012a), we proposed that acetate treatment increases 

the enrichment levels of acetylated H3K9 at the promoters of Cox-1 and 2, NF-κB, pro-

inflammatory cytokine IL-1β and anti-inflammatory cytokine IL-4.  Using chromatin 

immunoprecipitation analysis in LPS-stimulated BV-2 microglia, acetylated H3K9 was 

found to be increased with acetate treatment at the promoter regions of these genes 

except IL-4.  It is therefore possible that acetate treatment-mediated increase in 

acetylated H3K9 bound to the promoters of certain inflammatory genes is potentially 

involved in altering their expression.  These data suggest that acetate metabolism shifts 

inflammatory cytokine balance toward an anti-inflammatory state, alters the levels of 

enzymes involved in eicosanoid signaling, and possibly disrupts NF-κB signaling, 

which is associated with histone and non-histone protein hyperacetylation in LPS-

stimulated microglia.   

Using primary astrocyte cell cultures, we found that LPS (0-25 ng/ml, 4 hr) 

increased TNF-α and IL-1β in a concentration-dependent manner, which was reduced 

by treatment with sodium acetate (12 mM).  LPS did not alter H3K9 acetylation or IL-6 

levels, whereas acetate treatment increased H3K9 acetylation and decreased basal 

levels of IL-6.  Acetate treatment attenuated the LPS-induced increase in TNF- 

mRNA, but did not reverse the mRNA levels of other pro-inflammatory cytokines.  By 

contrast, LPS decreased TGF-β1 and IL-4 protein and TGF-β1 mRNA, all of which 

was reversed with acetate treatment.  Further, acetate treatment completely reversed 
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LPS-induced phosphorylation of MAPK p38 and decreased basal levels of 

phosphorylated extracellular signal-regulated kinases1/2 (ERK1/2).  Acetate treatment 

also reversed LPS-elevated NF-κB p65 protein level and reduced basal levels of 

phosphorylated NF-κB p65 at serine 536.  Moreover, acetate treatment reversed to 

control levels the LPS-induced 2-fold increase in cPLA2 phosphorylation and the 1.5-

fold increase in Cox-1 protein level, and decreased those of sPLA2 IIA and PLCβ1 

below control levels only in the presence of LPS.  Acetate treatment decreased basal 

levels of Cox-2 by 2-fold only in the absence of LPS and had no effect on LPS-induced 

3-fold increase in Cox-2 protein levels.  The protein levels of total cPLA2, PLCγ1 and 

PLCδ1 were not altered by either acetate treatment or LPS.  Acetate treatment reversed 

to control levels the LPS-induced 4-fold increase in PGE2 release.  These results 

suggest that acetate treatment shifts the inflammatory cytokine balance toward an anti-

inflammatory state, which is associated with histone hyperacetylation and a disruption 

in MAPK, eicosanoid and possibly NF-κB signaling in LPS-stimulated primary 

astrocytes.  Overall, these data suggest that acetate treatment has net anti-inflammatory 

effects in vivo and in vitro both in LPS-stimulated microglia and astrocyte cultures 

through neuroglial cell type-specific mechanisms, most notably of which is the reversal 

of LPS-induced p38 and cPLA2 phosphorylation and PGE2 release, and reducing basal 

levels of phosphorylated ERK1/2 in astrocytes.    
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CHAPTER II 

METHODS 

Reagent 

Antibodies against acetylated H3K9, acetylated H3K14, total histone H3, total 

histone H4, acetylated histone H4K5, H4K8, H4K12 and H4 K16 were obtained from 

Upstate Biotechnology (Lake Placid, NY).  Antibodies against HDAC1, 2, 3, 4, 5 and 7 

were obtained from Cell Signaling Technology Inc. (Danvers, MA).  Mouse 

monoclonal antibody against α-tubulin and goat anti-mouse IgM secondary antibody 

conjugated with horse radish peroxidase were from Santa Cruz Biotech. Inc. (Santa 

Cruz, CA).  Antibodies against phosphorylated p38 (Thr180/Tyr182), total p38, 

phosphorylated JNK (Thr183/Tyr185, Thr221/Tyr223), phosphorylated ERK1/2 

(Th202/Tyr204, Thr185/Tyr187), and ERK1/2 were from Millipore (Billerica, MA), 

and anti-JNK and NF-κB p65 antibodies were purchased from Cell Signaling 

Technology Incorporated (Danvers, MA).  Rabbit polyclonal antibodies to IL-1β, IL-6, 

TNF-α, TGF-β1, IL-4, IL-10 and acetyl-CoA synthetase, and HAT activity assay kit 

were from Abcam (Cambridge, MA).  All Western blot supplies and a goat anti-rabbit 

horseradish peroxidase-linked antibody were obtained from Bio-Rad Laboratories 

(Hercules, CA).  Glyceryl triacetate was purchased from Sigma (St. Louis, MO).  

Reverse and forward IL-1β, IL-6, TNF-α , IL-4, IL-10, TGF-β1 and β-actin primers for 

real-time polymerase chain reaction (qrt-PCR) from SA Biosciences (Frederick, MD), 
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FastStart Universal SYBR Green Master from Roche Applied Science (Indianapolis, 

IN), TRIzol
®
 reagent from Life Technologies (Grand Island, NY), the RT² Profiler™ 

PCR Array was from SABiosceinces (Valencia, CA), nuclease-free water was 

purchased from Gibco, Life Technologies (Grand Island, NY), and DMEM–F-12 media 

and fetal bovine serum were from Invitrogen (Grand Island, NY).  LPS (Escherichia 

Coli 055:B5) and proteinase K were purchased from Sigma (St. Louis, MO), antibodies 

against PLCβ1, γ1, δ1, cPLA2 from Santa Cruz Biotechnology Inc. (Santa Cruz, CA), 

antibodies against Cox-1, Cox-2 and sPLA2 IIA, and prostaglandin screening EIA kit 

from Cayman Chemical Company (Ann Arbor, MI), and RNAse A from Invitrogen 

(Grand Island, NY).  Chromatin immunoprecipitation assay kit, antibodies against 

acetylated H3K9 and normal rabbit IgG, and HDAC activity assay kit were purchased 

from Millipore (Billerica, MA), QIAquick PCR purification kit from Qiagen (Valencia, 

CA), protein A and protein G magnetic beads from Invitrogen (Grand Island, NY), 

complete EDTA-free protease inhibitor cocktail tablets from Roche Applied Science 

(Indianapolis, IN).  All chromatin immunoprecipitation primers (table 1) were ordered 

from Integrated DNA Technologies (Coraville, IA).  All buffering reagents and other 

chemicals were purchased from EMD Biosciences (Gibbstown, NJ). 

Animals 

All rats used conformed to the Guide for the Care and Use of Laboratory 

Animals (NIH publication number 80-23) as approved by the University of North 

Dakota animal care and use committee.  Male Sprague-Dawley rats (220-300 g, Charles 

River Laboratories, Portage, MI) were allowed to acclimate in our facility for at least 
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two weeks prior to inclusion in the study and were maintained on a constant 12-hour 

light cycle and fed a standard lab chow (Purina 2018 Tekled Global) ad libitum.  Oral 

glyceryl triacetate (6 g/kg) was used to induce acetate supplementation using feeding 

tubes (Instech, Solomon, PA) in rats that were starved for at least 12 hours before 

treatment to normalize circulating levels of glucose and fatty acids (Kargas et al. 1990).  

The rats were divided into six different groups (n = 6 per group).  Groups one through 

five (GTA-treated) were given a single oral dose of glyceryl triacetate while control 

rats were given a single oral dose of water (6 g/kg).   

Induction of Neuroinflammation 

In order to induce neuroinflammation, animals were subjected to surgeries by 

which cannulas (Model 3280PM, Plastics One, Roanoke, VA, USA) connected to 

subcutaneous osmotic mini-pumps (Model 2004, Durect Corp. Cupertino, CA, USA) 

were surgically implanted into the fourth ventricle of the rat brain as described in 

(Reisenauer et al. 2011).  The concentration of endotoxin used in these studies (5.0 

ng/hr) is based on results showing that this concentration results in significant neuroglia 

activation and cholinergic cell loss above control treated rats (Reisenauer et al. 2011), 

and is consistent with previous studies demonstrating a selective increase in 

arachidonic acid metabolism using this model (Lee et al. 2004, Rosenberger et al. 

2004).  During the infusion period, rats were treated daily with either glyceryl triacetate 

or water at a dose of 6 g/kg by gastric gavage using feeding tubes (Instech Solomon, 

Plymouth, PA).  The rats used for histone acetylation analysis were divided into four 

different groups: group one (n = 8) received an aCSF infusion and were treated daily 
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with water for 28 days (aCSF + H2O), group two (n = 7) received an aCSF infusion and 

daily treatment with glyceryl triacetate for 28 days (aCSF + GTA), group three (n = 8) 

received a LPS infusion and daily treatment with water for 28 days (LPS + H2O), and 

group four (n = 5) received a LPS infusion and daily treatment with glyceryl triacetate 

for 28 days (LPS + GTA).  The rats used for IL-1β analysis were divided into three 

different treatment groups: group one (n = 6) received an aCSF infusion (aCSF), group 

two (n = 12) received a LPS infusion (LPS), and group three (n = 6) received a LPS 

infusion and daily treatment with glyceryl triacetate for 28 days (LPS + GTA).  On the 

28
th

 day of treatment, animals were anesthetized with isoflurane (Butler Animal Health 

Supply, Dublin, OH) in an induction chamber for 1 min, and then euthanized by 

decapitation.  Brains were immediately removed and flash frozen by immersing in 

liquid nitrogen.  The post-mortem intervals for the brain did not exceed 1 min.  All 

samples were stored at -80º C until used.  Total brain homogenate was used for histone, 

HAT and HDAC isolation.  Specific brain regions were not studied because the goal 

was to determine if acetate had any effect on histone acetylation, HAT and HDAC 

activity or expression. 

Nuclei Isolation 

Brain nuclei were isolated by density centrifugation as described (Kim & 

Shukla 2006).  Frozen brain samples were weighed and then transferred to a 50 ml 

plastic centrifuge tube containing 10 ml of ice cold homogenization buffer (50mM Tris-

HCl, pH 6.95 containing 25mM KCl, and 10mM MgCl2 0.25M sucrose, 1mM sodium 

orthovanadate, 5mM sodium fluoride, 1mM phenylmethylsulfonyl fluoride (PMSF), 
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and a protease inhibitor cocktail).  The homogenized samples were gravity filtered 

through 100 µM nylon mesh, then diluted with the addition of another 5 ml of 

homogenization buffer.  The diluted homogenate was then centrifuged at 900 x g for 30 

min at 4
o
 C.  The pellet was re-suspended in homogenization buffer having a sucrose 

concentration of 0.8 M sucrose brain by mixing for 30 min at 4
o
 C.  The nuclei were 

isolated by density centrifugation (100,000 x g for 1.5 hr at 4
o
 C) with the lower layer 

containing homogenization buffer with 1.2 M sucrose brain.  Following centrifugation, 

the supernatant was discarded and the nuclear pellet was washed twice in a hypotonic 

wash solution (50 mM Tris-HCl, 1 mM KCl, 1.5 mM MgCl2 6-hydrate, pH 8.0) 

containing 1mM PMSF using slow intermittent mixing.  Using additional samples, the 

pellets were washed with ammonium sulfate NH4 (S04)2 solution (pH 5.5) instead of 

hypotonic wash and the supernatant was used to compare the yield of HDAC activity as 

described in Results section #2.  The samples were then centrifuged again at 1,000 x g 

for 20 min at 4
o
 C, the pellet was collected and the supernatant was kept for enzymatic 

activity and Western blot analysis while the pellets were used to isolate histones as 

described below.   

Acid Extraction of Histones 

An acid histone extraction was used to isolate nuclear histones (Shechter et al. 

2007).  The nuclear pellets were re-suspended in 2.0 ml of 0.4 N H2SO4 and then 

incubated with shaking at 4
o
 C overnight.  The samples were then centrifuged at 16,000 

x g for 10 min at 4
o
 C.  The supernatant was transferred to a second test tube and the 

solution was brought up to 33% trichloroacetic acid (TCA) with the addition of 1.0 ml 
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100% TCA solution.  The samples were incubated at 4
o
 C for 1 hr then centrifuged at 

21,000 x g for 5 min at 4
o
 C.  The pellets containing the histones were washed with 0.5 

ml acetone then allowed to dry at room temperature.  The pellets were re-suspended in 

2.0 ml of ice cold TKM buffer containing 1 mM PMSF then re-suspended by 

sonication and mixing.  The solution containing the isolated histones was centrifuged 

again at 12,000 x g for 5 min at 4
o
 C and the supernatant was stored at -80

o
 C.  Protein 

was measured using the Bradford method with bovine serum albumin as standard 

(Bradford 1976).   

Cell Cultures 

Primary microglia were derived from C57BL/6 mouse brains as described 

previously (Dhawan et al. 2012).  Briefly, cortices were removed and trypsinized.  The 

trypsin was inactivated in microglial growth media (DMEM/F-12 with L-glutamine 

[Invitrogen]) containing 10% heat-inactivated fetal bovine serum, 5% heat-inactivated 

horse serum, and antibiotics, penicillin, streptomycin, and neomycin (Gibco, 

Invitrogen, Carlsbad, CA).  The tissue was triturated and plated into tissue culture 

flasks.  After 24 hours all media and cellular debris was replaced with fresh media. 

After 7 more days, half of the media was replaced and cells were maintained as a mixed 

glia culture until day 14.  At 14 days in vitro, microglia were shaken from the mixed 

glial culture at 200 rpm for 45 minutes and collected for use.  The BV2 microglia were 

obtained from Dr. Colin K. Combs (Grand Forks, ND) and maintained until used as 

described previously (Rojanathammanee et al. 2011).  Cells were plated in 6 well-

dishes and allowed to replicate till 90% confluence, (1.1 x 10
6 

cells/dish).  The purity of 
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the astrocyte cell cultures was found to be 91 + 3% as determined by immunostaining 

using anti-GFAP antibody (1:1000).  Prior to stimulating the cells (3 hr), the media was 

changed to serum-free media.  Plates were divided into 4 different groups; a group 

treated with 12 mM NaCl as a control group, another group treated with 12 mM sodium 

acetate, a third group treated with both 6.25 ng/ml LPS and 12 mM NaCl, and a fourth 

group treated with both 6.25 ng/ml LPS and 12 mM sodium acetate (n = 6 per group for 

BV-2 cells and primary astrocytes, and n = 5 per group for primary microglia).  The 

concentration of acetate used in this study is based on studies to determine the maximal 

amount of acetate that did not lead to significant cell death over a 24 hr exposure 

period, compared to cells grown in serum-fee media.  After a single oral gavage of 

glyceryl triacetate (5.8 g/kg), brain acetate levels rise to 8 µM/g tissue at 1 hr, and then 

decline to 6 and 2 µM/g tissue at 2 and 4 hr, respectively (Mathew et al. 2005).  

However, the metabolically active molecule in this process is not acetate, but rather 

acetyl-CoA which reaches a maximum of 5.7 µg/g brain at 30 min and remains 

constant out to 4 hr in vivo (Reisenauer et al. 2011).  The cellular concentration of 

acetyl-CoA is controlled metabolically by acetyl-CoA synthetases 1 and 2, and not by 

cellular levels of free acetate (Fujino et al. 2001, Ariyannur et al. 2010).  Therefore, our 

rationale for using the highest tolerable acetate concentration was not to mimic 

maximal tissue concentrations of acetate but rather to maximize, over a 4 hr-period, 

cellular levels of acetyl-CoA in an effort to identify metabolic and the inflammatory 

pathways that are modulated downstream of the formation of acetyl-CoA.  For dose-

response studies, plates were divided in 6 different groups treated with LPS in the 
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following concentrations: 25, 12.5, 6.25, 3.125, 1.56, or 0 ng/ml (n = 3).  After 4 hr, the 

media was collected and stored at -20° C, and the cells were lysed in either TRIzol
®
 

reagent for qrt-PCR analysis or ice cold RIPA lysis buffer (150 mM sodium chloride, 

Triton X-100, 0.5% sodium deoxycholate, 0.1% sodium dodecyl sulphate, 50 mM Tris, 

pH 8.0) for Western blot analysis and stored at -80° C until used. 

Western Blot Analysis 

Equal amounts of protein were prepared by boiling samples in loading buffer 

composed of 95% Laemmli sample buffer and 5% 2-mercaptoethanol (Sigma, St. 

Louis, MO).  The separation of proteins was performed using a 10-20% Tris-HCl gel 

with an electrophoresis separation of 100 volts for 2 hr.  The electrophoretic transfer of 

proteins onto a 0.45 µm nitrocellulose membrane was performed at 100 volts for 90 

min in ice.  Primary antibodies were prepared at the following concentrations in 20 mM 

Tris buffer, pH 7.4 containing 150 mM NaCl and 0.05 % Tween 20 (TTBS) containing 

5 % non-fat dried milk.  The antibody concentration used were total histone H4 

(1:1000), acetylated histone H4K5 (1:800), acetylated histone H4K8 (1:2000), 

acetylated histone H4K12 (1:800), acetylated histone H4K16 (1:1000), total histone H3 

(1:500), acetylated histone H3K9 (1:1000), acetylated histone H3K14 (1:1000), HDAC 

1, 2, 3, 4, 5 and 7 (1:1000), acetyl-CoA synthetase (1:500), IL-1β, IL-6, TNF-α, TGF-

β1, IL-4, IL-10, total p38, phosphorylated p38, total JNK, phosphorylated JNK, total 

ERK1/2, phosphorylated ERK1/2, all NF-κB antibodies (1:1000), phosphorylated 

cPLA2 (1:250), total cPLA2 (1:500), sPLA2 IIA (1:500), PLCβ1 (1:250), PLCγ1 

(1:350), PLCδ1 (1:350), Cox-1 (1:1000) and Cox- 2 (1:1000), and α-tubulin (1:3000).   
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All primary antibodies were incubated with the nitrocellulose membranes overnight at 

4
o
 C.  The blots were incubated with the appropriate secondary antibody conjugated 

with a horse radish peroxidase at a dilution of 1:3000 in TTBS.  The blots probed with 

α-tubulin antibody were conjugated with a horse radish peroxidase-linked goat anti-

mouse IgM secondary antibody at a dilution of 1:4000 in TTBS.  Protein bands were 

visualized with a SuperSignal® West Pico or Femto Chemiluminescent Substrate 

(Pierce, Rockford, IL) using a UVP Bioimaging System (Upland, CA).  Image 

capturing and analysis was performed with LabWorks™ imaging software (version 4.5, 

Upland, CA).  Western blot data of acetylated histones is expressed as of the ratio of 

the optical density of acetylated histone residues to the optical density of total histone.  

Phosphorylated MAPK p38, JNK, ERK1/2, and phosphorylated cPLA2 are normalized 

to total MAPK p38, JNK, ERK1/2, and cPLA2, respectively.  Western blot data of all 

other proteins is expressed as the ratio of the optical density of the respective protein to 

the optical density of the loading control α-tubulin.   

HDAC and HAT Enzyme Activity Assays 

HDAC activity was measured using the colorimetric HDAC activity assay kit 

(Millipore, Billerica, MA) according to the manufacturer’s instructions.  The 

colorimetric HDAC assay measures the total HDAC activity in a two-step procedure 

performed in a 96-well plate.  In the first step, samples are incubated with the HDAC 

assay substrate, allowing deacetylation of the substrate.  Next, the addition of an 

“Activator Solution” releases p-nitroanilide from the deacetylated substrate or standard 

which is monitored by spectrophotometric analysis.  Nuclear extracts were added to the 
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assay buffer with HDAC substrate and mixed thoroughly.  The samples were then 

incubated at 37° C for 75 min.  At 75 min, an aliquot of the activator solution was 

added to each well, then following a 15 min room temperature incubation, the 

absorbance was measured at 405 nm.  Nuclear extract provided by the manufacturers 

was used as a positive control and water was used as a negative control.  The HAT 

activity was measured using the colorimetric HAT activity assay kit (Abcam, 

Cambridge, MA) according to the manufacturer’s instructions.  The colorimetric HAT 

activity assay depends on the acetylation of a peptide substrate by the active HAT; a 

process associated with the release of the free form of co-enzyme A.  Co-enzyme A 

serves as an essential co-enzyme for the production of NADH which is measured using 

spectrophotometric analysis upon its reaction with a soluble tetrazolium dye.  Briefly, 

40 µl of nuclear extract was incubated with HAT substrate I and II and NADH 

generating enzyme in 2 x HAT assay buffer for 4 hr at 37° C and absorbance was 

measured at 450 nm using a Labsystems Multiskan plate reader (Helsinki, Finland).  

Nuclear extracts provided by the manufacturer were used as positive control and water 

was used as negative control.  HAT activity is expressed as the ratio of the absorbance 

at 450 nm to the amount of nuclear extract as outlined by the manufacturer.   

Quantitative Real-time Polymerase Chain Reaction (qrt-PCR) 

Brain cortex samples (50-100 mg each) were homogenized in 1 ml TRIzol
® 

reagent, using a Polytron homogenizer.  Homogenized samples were incubated at room 

temperature for 5 min to permit dissociation of nucleoprotein complexes before adding 

0.2 ml of chloroform, shaking the tubes vigorously by hand, and incubating again at 
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room temperature for 3 min.  The samples were then centrifuged at 12,000 x g for 10 

min at 4° C.  Following centrifugation, the upper clear aqueous phase containing RNA 

was transferred to fresh tubes where RNA was precipitated from the aqueous phase by 

mixing with 0.5 ml of isopropyl alcohol.  The mix was incubated at room temperature 

for 10 min then centrifuged at 12,000 x g for 10 min at 4° C.  The RNA pellet was 

washed once with 1 ml of 75 % ethanol and centrifuged at 7,500 x g for 5 min at 4° C.  

At the end of the RNA extraction, ethanol was decanted and the RNA pellet was 

allowed to air-dry at room temperature for 5 min before re-dissolving in 200 µl of 

nuclease-free water.  One µg of RNA per sample was used for cDNA synthesis using 

iScript cDNA synthesis kit (Bio-Rad, Hercules, CA) according to the manufacturer’s 

instructions.  Amplification was performed using 500 ng cDNA, 500 nM of each of the 

reverse and forward primers, and FastStart Universal SYBR Green Master (Roche 

Applied Science, Indianapolis, IN) in a final reaction volume of 50 µl, using a two-step 

cycling program of 1 cycle of 95° C for 10 min followed by 40 repeats of 95° C for 15 

sec and 60° C for 60 sec in iCycler iQ Multicolor Real-Time PCR Detection System 

(Bio-Rad, Hercules, CA).  The expression of all transcripts amplified was normalized 

to the expression of β-actin.  PCR quantification was performed using the Livak 

formula 2
-∆∆Ct

 (Livak & Schmittgen 2001).
 
 The amplicon was mixed with DNA gel 

loading buffer 10 x (5 Prime, Gaithersburg, MD), and run on 1 % agarose gel at 100 

volts for 1 hr.  TrackIt™ DNA ladder (Invitrogen, Grand Island, NY) was used.    
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Quantitative Real-time Polymerase Chain Reaction (qrt-PCR) Array 

Brain cortex samples (50-100 mg each) were used for mRNA extraction, cDNA 

synthesis and amplification as described in detail in the previous section.  The RT² 

Profiler™ PCR Array PARN 052 (SABiosceinces) has built-in primers in the 96-well 

plate, and was used according to the manufacturer’s instructions.  Data analysis was 

performed using the SABiosceinces website data analysis tool.   

Lactate Dehydrogenase Assay 

Cellular release of lactate dehydrogenase (LDH) used to measure cell viability 

was measured using a commercial nonradioactive assay kit (Clontech Inc.), according 

to the manufacturer’s guidelines.  Absorbance measurements were taken at 490 nm.   

Chromatin Immunoprecipitation 

After treating the BV-2 cells for 4 hr, cross linking was done using 1% 

paraformaldehyde at room temperature for 10 min, then stopped by 0.125 M glycine at 

room temperature for 5 min.  The cells were then washed once with phosphate-buffered 

saline ((PBS) 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 2 mM KH2PO4, and pH 

7.4) before adding 0.2% trypsin and incubating at 37° C for 5 min in 5% carbon 

dioxide.  Trypsin was neutralized by twice the volume of fetal bovine serum.  One 

million cells per chromatin immunoprecipitation per antibody were suspended in SDS 

lysis buffer (1% SDS, 10 mM EDTA, 50 mM Tris, pH 8.1) containing protease 

inhibitor cocktail and sonicated for 7 cycles of 12 pulses with 3-sec intervals on ice 

between cycles.  The sonicated cells were centrifuged at 15000 g to remove the debris 

out of the lysates.  Seven µg of acetylated H3K9 antibody and normal rabbit IgG, 
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protein A and protein G magnetic beads were used for immunoprecipitation for 3 hr at 

4° C.  The magnetic beads were washed 4 times with low-salt wash buffer (0.1% SDS, 

1% Triton X-100, 2 mM EDTA, 20 mM Tris-HCl, pH 8.1, 150 mM NaCl), once with 

high-salt wash buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris-HCl, 

pH 8.1, 500 mM NaCl), and once with TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 

8.0).  The samples were then eluted at 65° C for 15 min using elution buffer (50 mM 

Tris-HCl, 10 mM EDTA, 1% SDS, pH 8.0).  Samples were incubated at 65° C 

overnight to reverse the crosslinks, then incubated with RNAse A (0.2 µg/ml) for 2 hr 

at 37° C, and with proteinase K (0.2 µg/ml) for 2 hr at 55° C.  One µg of the Chromatin 

immunoprecipitation end product, with 1 µg of forward and reverse primers, 10 µl 

SYBR green, and 8 µl of nuclease-free water were used for quantitative real-time 

polymerase chain reaction (qrt-PCR).        

Prostaglandin E2 Quantification using Enzyme Immunoassay 

PGE2 release was measured in the media of BV-2 microglia and primary 

astrocyte cell cultures using prostaglandin screening enzyme immunoassay (EIA) kit 

according the manufacturer’s instructions.  The test depends on the competition 

between PGs and PG-acetyl choline esterase conjugate for a limited amount on PG 

antiserum.  Absorbance was read at 405 nm.   

Statistical Analysis 

To compare between more than two groups, parametric or nonparametric One 

Way Analysis of Variance (ANOVA) was used when appropriate, followed by Tukey’s 

or Dunn’s post-hoc test, respectively.  When comparison was made between only two 
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groups, two-tailed unpaired t-test was used to calculate statistical differences using 

GraphPad InStat statistical software (Version 3.10, San Diego, CA).  All results are 

expressed as means ± SD and significance was set at p < 0.05.  Figures were prepared  

using SigmaPlot for Windows, version 10.0, Build 10.0.1.25.
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CHAPTER III 

RESULTS 

Method Optimization for Western Blot Analysis 

 Saturation of the Western blot image occurs when too much protein is loaded or 

as a result of increasing the exposure time of the Western blot during 

chemiluminescence detection using the imaging system.  To demonstrate that, the 

same Western blot was probed for the loading control histone H4 (primary antibody 

concentration 1:1000) and exposed during chemiluminescence detection for 5 min 

(Figure 1A) and 30 sec (Figure 1B).  The analysis of the blot in Figure 1A using 

Visionwoks
®
 software demonstrated a flat-topped peak with maximum intensity of 

around 3000 (Figure 1C).  The analysis of the blot in Figure 1B using Visionwoks
®
 

software demonstrated a pointed peak with maximum intensity of around 2500 (Figure 

1D).  That is, the intensity of the peak in Figure 1C was 1.2 times greater than that of 

Figure 1D even though the exposure time of the blot in figure 1A was 10 times that of 

the blot in figure 1B.  Therefore, the increase in exposure time during 

chemiluminescence detection was not matched by an equal increase in the intensity of 

the optical density indicating saturation which prevents accurate quantification of 

protein based on the optical density.  In the light of that, before embarking on Western 

blot analysis for the histone acetylation studies, we performed experiments to optimize 
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the protein amount and exposure duration during chemiluminescent detection to avoid 

saturation with Western blot analysis.       

  Optimizing the amount of protein for Western blot analysis. 

  In order to determine the optimal amount of protein to use for Western blot 

analysis, we loaded a serial dilution of histone extract (41-0.08 µg/lane), probed for the 

loading control histone H4 (1:1000), and exposed the blot for 2 min (Figure 2A).  We 

found that optical density leveled off with protein amounts greater than 3 µg/lane 

(Figure 2B).  These data demonstrate that the linear range of protein amount under 

these experimental conditions is 1-3 µg (Figure 3C).  The correlation coefficient is 

close to 1 (r
2 

= 0.993), which means that the amount of protein can be quantified based 

on the optical density without saturation because increasing the protein load within this 

range is matched by proportionate increases in intensity of optical density. 

 

Figure 1. Demonstration of saturation in Western blot analysis.   

 Images obtained by Visionworks
® 

software of the loading control histone H4 

(primary antibody concentration 1:1000) representing the intensity of the optical 

density on the y-axis.  Panel (A) demonstrates a saturated Western blot image exposed 

during chemiluminescence detection for 5 min.  Panel (B) demonstrates the same 

      (A) 

      
(A) 

 

                                                           
(B) 
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Western blot image after 30 sec of exposure.  Panel (C) shows the optical density 

analysis of the image in panel (A) using Visionworks
®
 software and demonstrates 

saturation.  Panel (D) demonstrates the optical density analysis of image in panel (B) 

and represents a quantifiable image with no saturation.   

 

Figure 2. Demonstration of the quantifiable range of protein content for Western blot 

analysis.   

 

 Optical density was plotted on the y-axis versus protein (µg) on the x-axis.  

Panel (A) shows the Western blot image of the serial dilution of histone extract (41-0.08 

µg/lane), probed for with anti-histone H4 (1:1000), and exposed during 

chemiluminescence detection for 2 min.  Panel (B) represents the quantification of the 

optical density of the protein concentrations (41-0.08 µg/lane) and demonstrates leveling 

off of the optical dentistry with protein amounts greater than 3 µg/lane.  Panel (C) 

demonstrates the linear range of protein (1-3 µg/lane) prepared to represent a 

quantifiable range of protein.  Blotting histone in this range allows the quantification of 

histone acetylation state based on the optical density without saturation.  
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 Optimizing the duration of exposure during chemiluminescene detection  

 for Western blot analysis. 

  

 Because saturation develops with increasing the exposure time during the 

chemiluminescence detection, we proceeded to determine the optimal duration for 

Western blot exposure.  A Western blot analysis was performed with loading histone 

extract (3 µg), probing for the loading control histone H4 (1:1000), and the blot was 

exposed for a range of durations between 15 sec and 30 min (Figure 3A).  The optical 

density increased with increasing the exposure time from 15 sec to 4 min before 

leveling off (Figure 3A and B).  These data demonstrate that the linear range for 

Western blot exposure under these experimental conditions is between 15 sec and 4 

min.  The correlation coefficient is close to 1 (r
2 

= 0.998), which means that increasing 

the Western blot exposure within this range is matched by proportionate increases in 

optical density without saturation. 

 
 

 

Figure 3. Demonstration of the optimal exposure duration for Western blot during the 

chemiluminescence detection.   
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  The optical density is plotted on the y-axis verses the exposure time (min) on 

the x-axis.  Panel (A) shows leveling off of the optical density with exposure for more 

than 4 min.  Panel (B) shows the linear part of the curve from 30 sec to 4 min.    

  The rationale for using histone extract for these optimization studies is that it is 

purer and more concentrated than whole cell lysates and brain homogenates.  

Therefore, saturating amounts of protein in histone extract are unlikely to be saturating 

when used to probe for less concentrated targets; for example, MAPK p38 or cPLA2 in 

using whole cell lysates or brain homogenate.  Likewise, the antibody against total 

histone H4 detects all acetylated and non-acetylated histones H4, and therefore 

saturating protein amounts detected by total histone H4 antibody are unlikely to be 

saturating when probing for the acetylated histones.  For Western blot analyses other 

than histone acetylation studies, we avoided saturation by capturing the images of each 

blot at several exposure times and depended on the shape of the peak on the image 

generated by Visionworks
®
 software to exclude saturation.    

Determining the Distribution of HDAC Activity in Different Cellular Fractions 

 

                     We measured the levels of HDAC activity in the different cellular 

fractions obtained during the procedures of nuclei isolations.  In addition to washing the 

nuclear pellet with hypotonic wash, we used additional samples to wash the nuclear 

pellet with NH4 (S04)2 solution to compare the HDAC activity yielded by the two 

methods (Method section under “nuclei isolation”).  We found that each of the 

hypotonic wash 1 and 2 had 2-3 times more HDAC activity than any of the other 
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fractions including the cytosol (Figure 4).  Therefore, hypotonic wash 1 and 2 were 

combined and used for measuring the enzymatic activities of HAT and HDAC.     

             

Figure 4. Comparison between the levels of HDAC activity in the cellular fractions 

obtained during the procedure of isolation of nuclei and with NH4 (S04)2 wash.   

 

 Hypotonic wash 1 and 2 had considerably higher HDAC activity than the other 

fractions and the NH4 (S04)2 wash, so they were used for the measurement of HAT and 

HDAC enzymatic activities.  The composition of the hypotonic washes, sucrose 

gradient and NH4 (S04)2 are described in the Method section under “Nuclei isolation”.        

A Single Oral Dose of Acetate Supplementation and Brain Histone Acetylation in 

Normal Rats 

 

 The proportion of acetylated H3 and H4 to total histone was measured at 

differing time points following a single oral gavage with glyceryl triacetate (6 g/kg) 

using Western blot analysis.  Specific antibodies against acetylated histones H4K5, 

H4K8, H4K12, H4K16, H3K9, and H3K14 as well as specific antibodies towards total 
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histone H3 and total histone H4 were used to measure brain histone acetylation state.  

Total histone H3, H3K9, and H3K14 were detected as protein bands at 17 kDa which 

correspond to the molecular weight of these types of histones (Figure 5A).  Similarly, 

H4K5, H4K8, H4K12, H4K16 and total histone H4 were detected as protein bands at 

10 kDa which correspond to the molecular weight of these types of histones.  Optical 

density analysis of the Western blots showed that acetate supplementation significantly 

increased the acetylation state of brain histone H3K9 by 1.5-fold at 4 hr following 

treatment compared to controls (Figure 5B).  No changes in the acetylation of brain 

histone H3K14 were detected at any of the time points examined (Figure 5C).  Optical 

density analysis of acetylated histone H4 showed that the acetylation state of brain 

histone H4K8 was increased 1.7-fold at 2 and 4 hr and brain histone H4K16 was 

increased 1.7- and 1.8-fold at 4 and 24 hr following treatment (Figure 5E and G).  

Acetate supplementation did not change the acetylation state of brain histone H4K5 and 

H4K12 at any of the time points examined (Figure 5D and F).   These data suggest that 

a single oral dose of acetate treatment can induce site- and time-specific histone 

acetylation changes.   



 
 

41 
 

 

 

 

Figure 5. A single oral dose of acetate supplementation and brain histone acetylation in 

normal rats.   

 

 The effect of a single oral dose of acetate supplementation on the histone 

acetylation state of brain histones H3K9, H4K8, and H4K16 at 0.5, 1, 2, 4 and 24 h 

following treatment with 6 g/kg glyceryl triacetate (GTA).  Panel A shows 

representative images of the Western blots while panels B-G show the quantification of 

the optical densities of acetylated histone.  The different panels represent the 
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acetylation ratio of H3K9, H3K14, H4K5, H4K8, H4K12 and H4K16 normalized to 

total H3 or total H4, respectively.  Bars represent the means ± SD of optical density 

analysis where statistical significance (*) was set at p < 0.05 as determined by One 

Way ANOVA followed by Tukey’s post-hoc test (n = 6 animals per group).  

A Single Oral Dose of Acetate Supplementation and Brain HDAC and HAT 

Activity 

 

  Having observed an increase in brain histone H3 and H4 acetylation state 

following acetate supplementation, we proceeded to determine the effect that a single 

oral dose of glyceryl triacetate has on the temporal activity of brain HDAC and HAT.  

Using commercially available HDAC and HAT assay kits, we observed a significant 

2.3- and 2.8-fold decrease in the brain HDAC activity at 2 and 4 hr following treatment, 

respectively (Figure 6A).  The HDAC activity in the control sample was 0.198 + 0.06 

mM/75 min/μg protein while the HDAC activities at 2 and 4 hr were 0.085 + 0.03 and 

0.07 + 0.02 mM/75 min/μg protein, respectively.  In parallel experiments, we did not 

observe significant changes in brain HAT activity at any of the time points examined 

when compared to controls (Figure 6B). 

A Single Oral Dose of Acetate Supplementation and Brain HDAC Expression 

  HDAC enzymes are classified into three different classes (de Ruijter et al. 

2003).  Class I (1, 2, 3, and 8) and class II (4, 5, 6, 7, and 9) are localized in the nucleus 

or shuttle between the cytoplasm and the nucleus following stimulation, respectively.  

Class III, the sirtuins, found primarily in the cytoplasm and mitochondria are inhibited 

by nicotinamide unlike conventional HDAC inhibitors (Avalos et al. 2005, Sanders et 

al. 2007).  Therefore, based on the nuclear localization and to explain the decrease in 
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nuclear HDAC activity, we measured the expression of class I and II HDAC using 

Western blot analysis.  Specific antibodies against HDAC1, 2, 3, 4, 5 and 7 were used 

to measure brain HDAC expression levels as compared to control animals.  The 

proportion of HDAC to α-tubulin was calculated at 4 hr following a single oral gavage 

with glyceryl triacetate (6 g/kg) (Figure 7A).   

 

 

 

 

Figure 6. A single oral dose of acetate supplementation and brain HDAC and HAT 

activity.   

 

 The effect of a single oral dose of acetate supplementation on histone 

deacetylases (HDAC, panel A) and histone acyltransferases (HAT, panel B) activity in 

different rat groups euthanized at 0.5, 1, 2, 4, and 24 h following treatment with 6 g/kg 
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glyceryl triacetate (GTA).  Panel C shows the standard curve for colorimetric HDAC 

assay.  The linear part of the curve lies between standard concentrations 1 mM and 

0.016 mM and the absorbance value is read at 405 nm.  Panel D shows the standard 

curve for colorimetric HAT assay set up using different dilutions of the sample with the 

highest protein concentration.  The graph shows steady increase in the absorbance at 

450 nm with increasing the protein content from 1.5 to 4 μg.  All our samples fell 

within this range.  Bars represent the means ± SD of absorbance reading at 405 nm 

after 75 min of incubation at 37° C normalized to the protein assayed (µg).  Statistical 

significance (*) was set at p < 0.05 as determined by One Way ANOVA followed by 

Tukey’s post-hoc test (n = 6 animals per group). 

 The analysis detected protein bands at 62, 60, 49, 140, 124, 105 and 50 kDa 

corresponding to the molecular weights of HDAC1, 2, 3, 4, 5, 7 and α-tubulin, 

respectively (Figure 7A).  Optical density analysis of these Western blots showed that 

acetate significantly decreased brain HDAC2 levels by 50% below control values at 4 

hr following treatment (Figure 7B).  Acetate supplementation did not decrease the 

expression of the other brain HDAC measured.  These results suggest that the increase 

in histone acetylation following acetate supplementation may be due to a decrease in 

the protein levels of HDAC2.   
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Figure 7. A single oral dose of acetate supplementation and brain HDAC expression.  

 The effect of a single oral dose of acetate supplementation on the brain HDAC2 

levels at 4hr, in control and glyceryl triacetate (GTA)-treated rats.  Figure 7A shows 

representative images of Western blots of HDAC2 and α-tubulin.  Figure 7B shows the 

ratio of brain HDAC2 normalized to α-tubulin.  Bars represent the means + SD of 

optical density analysis where statistical significance (*) was set at p < 0.05 as 

determined using a two-tailed unpaired t-test (n = 6 animals per group). 

Long-term Acetate Supplementation and Brain Histone H3 and Histone H4 

Acetylation in a Rat Model of Neuroinflammation 

 

  The proportions of acetylated histone H3 and H4 were measured using Western 

blot analysis.  Total H3, acetylated H3K9, and acetylated H3K14 were detected as 
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protein bands corresponding to a molecular weight of 17 kDa (Figure 8A).  Optical 

density analysis of acetylated H3 showed a 1.6-fold increase in the proportion of H3K9 

in the two groups of rats subjected to acetate supplementation (aCSF + GTA) and (LPS 

+ GTA), compared to controls (aCSF + H2O) (Figure 8B).  Interestingly, the proportion 

of acetylated H3K9 was decreased by 2-fold in rats subjected to neuroinflammation and 

treated with water (LPS + H2O) and 3-fold when compared to rats that received acetate 

(aCSF + GTA) and (LPS + GTA).  Neither acetate supplementation nor 

neuroinflammation altered the acetylation state of brain H3K14. 

Total H4 and acetylated H4K5, H4K8, H4K12, and H4K16 were detected as a 

protein bands at 10 kDa which correspond to the molecular weight of these histones 

(Figure 9A).  Similar to the proportional increases in acetylated H3K9, the proportions 

of acetylated H4K8 and H4K16 were significantly increased by 2-fold in rats subjected 

to acetate supplementation (aCSF + GTA) and (LPS + GTA) (Figure 9B).  However, 

unlike the proportion of acetylated H3K9, the proportion of acetylated H4K8 and 

H4K16 were not decreased in the rats subjected to neuroinflammation and treated with 

water (LPS + H2O) when compared to controls (aCSF + H2O).  Neither acetate 

supplementation nor neuroinflammation altered the acetylation state of H4K5 or 

H4K12.  These results suggest that acetate supplementation can selectively and 

positively regulate the acetylation of both histone H3 and H4 at specific acetylation 

sites.  However, LPS-induced neuroinflammation only decreased the acetylation state 

of H3K9, which was effectively reversed with acetate supplementation. 
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Figure 8. Long-term acetate supplementation and brain histone H3 acetylation in a rat 

model of neuroinflammation. 

.    

Changes in the acetylation state of brain H3K9, and H3K14 in control rats 

(aCSF), rats subjected to neuroinflammation (LPS), and rats treated with either water 

(H2O) or glyceryl triacetate (GTA).  Panel A shows representative images of the 

Western blots, and panel B shows the averaged proportion of brain H3K9 and H3K14, 

normalized to total H3.  The data represent the means ± SD where statistical 

significance (a = compared to aCSF + H2O, and b = compared to LPS + H2O) was set 

at p < 0.05, as determined by One Way ANOVA followed by Tukey’s post-hoc test.   
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Figure 9. Long-term acetate supplementation and brain histone H4 acetylation in a rat 

model of neuroinflammation.   

 

Changes in the acetylation state of brain H4K5, H4K8, H4K12, and H4K16 in 

control rats (aCSF) and rats subjected to neuroinflammation (LPS), and rats treated 

with either water (H2O) or glyceryl triacetate (GTA).  Panel A shows representative 



 
 

49 
 

images of the Western blots, while panel B shows the averaged proportion of brain 

H4K5, H4K8, H4K12, andH4K16, normalized to total H4.  The data represent the 

means ± SD where statistical significance (a = compared to aCSF + H2O, and b = 

compared to LPS + H2O) was set at p < 0.05, as determined by One Way ANOVA 

followed by Tukey’s post-hoc test. 

Long-term Acetate Supplementation and Brain HDAC and HAT Activities in a 

Rat Model of Neuroinflammation 

 

Because the brain histone acetylation state is controlled by the activities of HAT 

and HDAC, we examined the effect that acetate supplementation had on brain HAT and 

HDAC activities in different test groups.  Using commercially available HDAC and 

HAT assay kits, we found that acetate supplementation significantly increased by 1.8- 

and 1.6-fold the activity of brain HAT in (aCSF + GTA) and (LPS + GTA) groups, 

respectively, compared to controls (aCSF + H2O) (Figure 10).  No changes in HAT 

activity were observed in rats subjected to neuroinflammation and treated with water 

(LPS + H2O).  The HAT activity in the control sample was 35 ± 12 absorbance units at 

450 nm/µg protein, while the HAT activities in the (aCSF + GTA) and the (LPS + 

GTA) groups were 62 ± 14 and 56 ± 10 absorbance units at 450 nm/µg protein, 

respectively.  In parallel experiments, we did not find any changes in brain HDAC 

activity in any of the groups tested.  These results suggest that long-term acetate 

supplementation, and not LPS-induced neuroinflammation, positively regulates brain 

HAT activity with no apparent effect on brain HDAC activity.   
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Figure 10. Long-term acetate supplementation and brain HDAC and HAT activities in a 

rat model of neuroinflammation.   

 

 The effect of long-term acetate supplementation on brain HAT and HDAC 

activities in control rats (aCSF) and rats subjected to neuroinflammation (LPS), and rats 

treated with either water (H2O) or glyceryl triacetate (GTA).  Panel (A) represents 

changes in brain histone acyltransferases (HAT), and panel (B) represents changes in 

histone deacetylases (HDAC) activities.  HAT enzyme activity is expressed as the 

means ± SD of absorbance reading at 450 nm after 4 hr of incubation at 37° C, 

normalized to the protein assayed (µg).  HDAC enzyme activity is expressed as the 

means ± SD of absorbance at 405 nm after 75 min of incubation at 37° C, normalized to 

the protein assayed (µg).  Statistical significance (* = compared to aCSF + H2O 

(B) 

(A) 
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controls) was set at p < 0.05, as determined by nonparametric One Way ANOVA 

followed by Dunn’s post-hoc test.   

Long-term Acetate Supplementation and Brain HDAC Expression in a Rat Model 

of Neuroinflammation 

 

  We found earlier that a single oral dose of glyceryl triacetate decreases HDAC 

activity and reduces the expression of HDAC2 (Soliman & Rosenberger 2011).  We did 

not observe changes in HDAC activity suggesting that the effects of long-term 

treatment differ substantially from a single oral dose.  In order to further understand the 

effect that long-term acetate supplementation has on HDAC expression, we measured 

changes in the individual HDAC levels using Western blot analysis.  Optical density 

analysis showed that HDAC1 expression was significantly elevated by 2.4- and 1.7-

fold in rats treated with glyceryl triacetate; (aCSF + GTA) and (LPS + GTA) (Figure 

11B).  A similar effect was found in HDAC2 expression where the level was 

significantly increased by 1.7-fold in rats treated with acetate (aCSF + GTA), but not in 

rats subjected to neuroinflammation (LPS + GTA).  The expression levels of HDAC1 

and HDAC2 were not altered by LPS-induced neuroinflammation treated with water 

(LPS + H2O).  On the contrary, the levels of HDAC3 were significantly decreased by 

40% in rats treated with acetate; (aCSF + GTA) and (LPS + GTA) as compared to 

control rats (aCSF + H2O).  The HDAC3 expression level was not altered in rats 

subjected to neuroinflammation treated with water (LPS + H2O) as compared to control 

rats (aCSF + H2O).  Most interestingly, the expression of HDAC7 was increased by 

1.7-fold in rats subjected to neuroinflammation and treated with water (LPS + H2O) 

which was effectively reversed with acetate supplementation (aCSF + GTA) and (LPS 
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+ GTA).  No changes were found in the expression levels of HDAC4 and 5 in any of 

the groups tested.  These results suggest the HDAC7 may play a positive role in the 

inflammatory process evoked by long-term LPS infusion that does respond to long-

term acetate supplementation.  

   

 

 

Figure 11. Long-term acetate supplementation and brain HDAC expression in a rat 

model of neuroinflammation.   

 

(B) 

(A) 
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 The effect of long-term acetate supplementation on the expression of individual 

brain HDAC in control rats (aCSF) and rats subjected to neuroinflammation (LPS), and 

rats treated with either water (H2O) or glyceryl triacetate (GTA).  Panel A shows 

representative images of the Western blots, while panel B shows the quantifications of 

HDAC1, 2, 3, 4, 5 and 7.  Data in panel B represent means ± SD of the optical densities 

of HDAC1, 2, 3, 4, 5 & 7, normalized to α-tubulin.  Statistical significance (* = 

compared to aCSF + H2O controls) was set at p < 0.05, as determined by One Way 

ANOVA followed by Tukey’s post-hoc test for HDAC2, 3, 4 & 5, and nonparametric 

One Way ANOVA followed by Dunn’s post-hoc test for HDAC1 & 7. 

Long-term Acetate Supplementation and Brain IL-1β Expression in a Rat Model 

of Neuroinflammation 

 

  To test whether acetate supplementation can reduce the expression of pro-

inflammatory cytokines in vivo, and to provide insight into the anti-inflammatory 

mechanism by which acetate supplementation is effective in this model of 

neuroinflammation, we measured the effect that acetate treatment has on the protein 

and mRNA levels of brain pro-inflammatory cytokine IL-1β.  In these experiments, we 

found protein bands corresponding to a molecular weight of 17 kDa corresponding to 

IL-1β (Figure 12A), and cDNA bands corresponding to 209 and 131 base pairs which 

correspond to the expected base pair size of IL-1β and β-actin, respectively (Figure 

12C).  In rats subjected to neuroinflammation (LPS + H2O), IL-1β protein and mRNA 

levels were significantly elevated by 1.3- and 10-fold, respectively, (Figure 12B and 

D).  Further, the long-term acetate supplementation significantly reduced the expression 
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level of IL-1β below that found in rats subjected to neuroinflammation (LPS), and 

equal to the control levels (aCSF). 

   

         

 

Figure 12. Long-term acetate supplementation and brain IL-1β expression in a rat 

model of neuroinflammation.   
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 The effect of long-term acetate supplementation on the expression of brain IL-

1β in control rats (aCSF) and rats subjected to neuroinflammation (LPS), and rats 

treated with either water (H2O) or glyceryl triacetate (GTA) as determined by Western 

blot analysis and quantitative real-time PCR.  Panel A shows Western blot 

representative images of bands for IL-1β and -tubulin and panel B shows the means ± 

SD of the normalized optical density of IL-1β protein.  Panel C shows representative 

images of the bands for IL-1β and β-actin cDNA and panel D shows the means ± SD of 

the normalized amplified IL-1β cDNA.  Statistical significance (a = compared to aCSF 

+ H2O, and b = compared to LPS + H2O) was set at p < 0.05 (n = 6, per group), as 

determined by One Way ANOVA followed by Tukey’s post-hoc test.   

Optimizing the Duration of Acetate Treatment and LPS Concentration in BV-2 

Microglia 

 

 In rat brain, H3K9 acetylation is reduced by 50% in a model of 

neuroinflammation and is returned to control levels with acetate supplementation.  To 

determine the duration of acetate treatment required to achieve a similar H3K9 

hyperacetylation pattern in vitro, we treated BV-2 microglia with 12 mM sodium 

acetate for 1, 2 and 4 hr (Figures 13A and B).  Cell lysates were used for Western blot 

analysis to measure acetylated H3K9, total histone H3 (Figure 13A).  We found that 

acetate treatment increased H3K9 acetylation by 2 hr which remained elevated out to 4 

hr (Figure 13B).  To insure protein expression following treatment, we used 4 hr as the 

treatment duration for all the experiments with the exception of change in MAPK 

phosphorylation where additional time points were used.  To determine the optimal 

LPS concentration required to produce the same percentage of H3K9 hypoacetylation 
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found in vivo, we treated BV-2 microglia for 4 hr using a serial dilution of LPS ranging 

between 0 and 25 ng/ml (Figures 13C and D-G).  Cell lysates were used for Western 

blot analysis to measure acetylated H3K9, total histone H3 and the pro-inflammatory 

cytokines pro-IL-1β, IL-6, and TNF-α, which were detected as protein bands 

corresponding to the molecular weights of 17, 17, 32, 25 and 23, respectively (Figure 

13C).  LPS reduced H3K9 acetylation and increased the pro-inflammatory cytokine 

levels in a concentration-dependent manner (Figures 13D-G).  Based on these data, we 

used the LPS concentration 6.25 ng/ml because this concentration resulted in a 50% 

reduction in H3K9 acetylation, similar to that found in vivo (Soliman et al. 2012b), and 

also increased protein levels of all the pro-inflammatory cytokines measured.   

 In figure 13 below, time-dependent acetate-induced H3K9 hyperacetylation and 

dose-response study showing the effects of different LPS concentrations (0-25 ng/ml, 4 

hr) on H3K9 acetylation and the expression of pro-inflammatory cytokines in BV-2 

microglia.  Panels A and C show representative images of the Western blots.  Panel B 

shows the averaged proportion of H3K9 normalized to total H3 (n = 3) after 1, 2 and 4 

hr of treatment with 12 mM sodium acetate.  Panels D, E, F and G show the optical 

densities of H3K9 normalized to total H3 and the pro-inflammatory cytokines pro-IL-

1β, IL-6, and TNF-α normalized to the loading control α-tubulin (n = 3).  The graphs 

represent the means ± SD where statistical significance (* = compared to control in 

panel B and compared to LPS 0 ng/ml in panels D-G) was set at p < 0.05, as 

determined by One Way ANOVA followed by Tukey’s post-hoc test. 
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Figure 13. Optimizing the duration of acetate treatment and LPS concentration in BV-2 

microglia.   
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Acetate Treatment Reverses LPS-induced H3K9 Hypoacetylation without 

Inducing Cytotoxicity in Primary Microglia 

 

   To determine the ability of acetate treatment to reverse LPS-induced H3K9 

hypoacetylation in microglia similar to that found in the rat (Soliman et al. 2012b), we 

treated primary mouse microglia with LPS 6.25 ng/ml for 4 hr in the presence and 

absence of 12 mM sodium acetate, with 12 mM NaCl treatment as control.  Using 

whole cell lysates for Western blot analysis, we found that primary microglia express 

the enzyme acetyl-CoA synthetase which converts acetate to acetyl-CoA, as protein 

bands corresponding to the molecular weight of 79 kDa (Figure 14A).  The expression 

level of ACS was not different between groups (Figure 14B).  Further, acetate 

treatment increased H3K9 acetylation by 1.7-fold, whereas LPS reduced H3K9 

acetylation by 50% (Figure 14C).  Acetate treatment, similar to that found in vivo, 

effectively increased H3K9 acetylation to control levels in the presence of LPS (Figure 

14C).  Cell viability assays showed no difference in cell survival between groups 

(Figure 14D).  These data indicate that acetate treatment in vitro reverses LPS-induced 

H3K9 hypoacetylation in microglia similar to that found in vivo (Soliman et al. 2012b).   
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Figure 14. Acetate treatment and H3K9 acetylation in LPS-stimulated primary 

microglia.  

 

 Changes in histone acetylation in primary mouse microglial cell culture 

stimulated for 4 hr with LPS 6.25 ng/ml, and the reversal of these effects upon 

treatment with 12 mM sodium acetate.  Panel A shows representative images of the 
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Western blots.  Panels B and C show the optical densities of acetyl-CoA synthetase 

enzyme normalized to the loading control α-tubulin (n = 3) and H3K9 normalized to 

total H3 (n = 5), respectively.  Panel D shows the quantification of the ratio of secreted 

LDH in the media to total cellular LDH (n = 5).  Bars represent means + SD where 

statistical significance (a = compared to NaCl, and b = compared to LPS) was set at p ≤ 

0.05, as determined by a one way ANOVA followed by Tukey’s post-hoc test. 

Acetate Treatment Reverses LPS-induced Increases in the Pro-inflammatory 

Cytokine Proteins, but not mRNA, in Primary Microglia 

 

   To determine the ability of acetate treatment to reverse pro-inflammatory 

cytokine production in vitro similar to that found in vivo (Soliman et al. 2012b), cell 

lysates were analyzed using Western blot to probe for IL-1β, IL-6 and TNF-α (Figure 

15A).  We found that LPS increased pro-IL-1β, IL-6 and TNF-α by about 4, 1.5 and 

2.5-fold, respectively which were returned to control levels with acetate treatment 

(Figures 15B, D and F).  In parallel studies, we found that LPS increased the mRNA 

levels of all the pro-inflammatory cytokines measured but were not altered by acetate 

treatment (Figures 15C and G) with the exception of IL-6 mRNA which was attenuated 

3-fold (Figure 15E).  These data demonstrate that this in vitro system reproduces the 

findings from the animal model, and that acetate treatment decreases pro-inflammatory 

cytokine levels possibly by disrupting mRNA translation or by increasing protein 

turnover.   
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Figure 15. Acetate treatment and the expression of pro-inflammatory cytokines in LPS-

stimulated primary microglia.   

 

 Changes in the pro-inflammatory cytokines IL-1β, IL-6, and TNF-α in primary 

mouse microglial cell culture stimulated for 4 hr with LPS 6.25 ng/ml with and without 

12 mM sodium acetate.  Panel A shows representative images of the Western blots.  

Panels B, D and F show the optical densities of the pro-inflammatory cytokines pro-IL-

1β, IL-6 and TNF-α, respectively, normalized to the loading control α-tubulin (n = 5).  
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Panels C, E and G show the changes in the mRNA levels of the pro-inflammatory 

cytokines IL-1β, IL-6 and TNF-α, quantified by qrt-PCR and normalized to β-actin (n = 

5).  Bars represent means + SD where statistical significance (a = compared to NaCl, 

and b = compared to LPS) was set at p ≤ 0.05, as determined by a one way ANOVA 

followed by Tukey’s post-hoc test. 

Acetate Treatment Reverses LPS-induced H3K9 Hypoacetylation in BV-2 

Microglia without Inducing Cell Death 

 

  We examined H3K9 acetylation in BV-2 microglia (Figure 16A) under the 

same experimental conditions used with primary mouse microglia to confirm that both 

cell types respond similarly.  First, we confirmed that BV-2 microglia express acetyl-

CoA synthetase; which was not different between groups (Figure 16B).  Further, we 

found that acetate treatment increased H3K9 acetylation by 1.8-fold, and reversed the 

LPS-induced 50% reduction in H3K9 acetylation (Figure 16C) similar to that found in 

primary microglia cultures.  Further, like the primary microglia cultures, treatment did 

not alter cell viability (Figure 16D).   

Acetate Treatment Reverses the LPS-induced Increases in Pro-inflammatory 

Cytokine Protein, but not mRNA, in BV-2 Microglia 

 

  We proceeded to determine the effect of acetate treatment and LPS on pro-

inflammatory cytokine proteins (Figure 17A) and mRNA levels in BV-2 microglia 

under the same experimental conditions used with primary microglia to confirm that 

both cell types respond similarly in this regard.  We found that LPS increased pro-IL-

1β, IL-6 and TNF-α production by 25-, 1.5-, and 8-fold respectively which were 

returned to control levels with acetate treatment (Figures 17B, D, and F). 
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Figure 16. Acetate treatment and H3K9 acetylation in LPS-stimulated BV-2 microglia.  

 

 Changes in histone acetylation in BV-2 microglial cell culture stimulated for 4 

hr with LPS 6.25 ng/ml, and the reversal of these effects upon treatment with 12 mM 

sodium acetate.  Panel A shows representative images of the Western blots.  Panels B 

and C show the optical densities of acetyl-CoA synthetase enzyme normalized to the 
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loading control α-tubulin and H3K9 normalized to total H3, respectively (n = 6).  Panel 

D shows the quantification of the ratio of secreted LDH in the media to total cellular 

LDH (n = 6).  Bars represent means + SD where statistical significance (a = compared 

to NaCl, and b = compared to LPS) was set at p ≤ 0.05 (n = 6, per group), as 

determined by a one way ANOVA followed by Tukey’s post-hoc test. 

 In parallel, we found that LPS increased the mRNA levels of the same pro-

inflammatory cytokines similar to that found with the primary microglia cultures and 

were not altered by acetate treatment (Figures 17C and G) with the exception of IL-6 

which was attenuated 2-fold (Figure 17E).  Therefore, the inflammatory response of 

BV-2 microglia towards LPS and acetate treatment is similar to that of primary 

microglia.   

Acetate Treatment Increases the Expression of Anti-inflammatory Cytokines in 

BV-2 Microglia 

 

  Anti-inflammatory cytokines are an integral part of the inflammatory response 

to minimize the potential of the pro-inflammatory cytokines to produce neuronal 

damage.  We determined the effect of acetate treatment on expression levels of the anti-

inflammatory cytokine proteins TGF-β1, IL-4, and IL-10 (Figure 18A).  Acetate 

treatment did not alter the protein levels of TGF-β1 or IL-10 (Figures 18B and F); 

however, IL-4 was increased by 1.3-fold (Figure 18D).  In parallel, we found that 

acetate treatment increased TGF-β1 mRNA by 2-fold (Figure 18C) and IL-4 mRNA by 

11- and 4-fold, depending on the group (Figure 18E).  Conversely, LPS increased IL-10 

protein and mRNA by 1.4- and 16-fold, respectively.  Acetate treatment returned IL-10 

protein to control levels and attenuated IL-10 mRNA by 8-fold (Figures 18F and G).  
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The possible reasons why increases in mRNA levels are not paralleled by increased 

protein levels may involve mRNA stability or reflect the short treatment duration.  

Regardless, these data suggest that acetate treatment modulates pro- and anti-

inflammatory cytokine release in BV-2 microglia towards a more anti-inflammatory 

state.   

 

 

Figure 17. Acetate treatment and the expression of pro-inflammatory cytokines in LPS-

stimulated BV-2 microglia.   
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 Changes in the pro-inflammatory cytokines IL-1β, IL-6, and TNF-α in BV-2 

microglial cell culture stimulated for 4 hr with LPS 6.25 ng/ml with and without 12 

mM sodium acetate.  Panel A shows representative images of the Western blots.  Panels 

B, D and F show the optical densities of the pro-inflammatory cytokines pro-IL-1β, IL-

6 and TNF-α, respectively, normalized to the loading control α-tubulin.  Panels C, E 

and G show the changes in the mRNA levels of the pro-inflammatory cytokines IL-1β, 

IL-6 and TNF-α, quantified by qrt-PCR and normalized to β-actin.  Bars represent 

means ± SD where statistical significance (a = compared to NaCl, and b = compared to 

LPS) was set at p ≤ 0.05 (n = 6, except pro-IL-1β where n = 5), as determined by a one 

way ANOVA followed by Tukey’s post-hoc test. 

In Figure 18 below, changes in the anti-inflammatory cytokines TGF-β1, IL-4, 

and IL-10 in BV-2 microglial cell culture stimulated for 4 hr with LPS 6.25 ng/ml with 

and without treatment with 12 mM sodium acetate.  Panel A shows representative 

images of the Western blots.  Panels B, D and F show the optical densities of the anti-

inflammatory cytokines TGF-β1, IL-4, and IL-10, respectively, normalized to the 

loading control α-tubulin (n = 6).  Panels C, E and G show the changes in the mRNA 

levels of the anti-inflammatory cytokines TGF-β1, IL-4, and IL-10, quantified by qrt-

PCR and normalized to β-actin (n = 6).  Bars represent means + SD where statistical 

significance (a = compared to NaCl, and b = compared to LPS) was set at p ≤ 0.05, as 

determined by a one way ANOVA followed by Tukey’s post-hoc test. 
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Figure 18. Acetate treatment and the expression of anti-inflammatory cytokines in LPS-

stimulated BV-2 microglia.   
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Acetate Treatment and LPS Alter MAPK Phosphorylation in a Time-dependent 

Manner in BV-2 Microglia 

 

   Because MAPK signaling can be inhibited by the acetylation of MAPK 

phosphatase-1 which induces deacetylation and deactivation of MAPK (Cao et al. 

2008), we measured the effects of acetate treatment on LPS-induced MAPK 

phosphorylation at 0.5, 1, 2, and 4 hr.  The rationale for including multiple time points 

is that other studies reported MAPK activation by LPS at much earlier time points than 

4 hr (Schumann et al. 1996, Kraatz et al. 1998).  Whole cell lysates were used for 

Western blot analysis, and phosphorylated p38, p38, phosphorylated JNK, JNK, 

phosphorylated ERK1/2 and ERK1/2 were detected as protein bands corresponding to 

the molecular weights of 38, 38, 46, 54 and 46, and 42 and 46 kDa, respectively (Figure 

19A).  At 0.5 and 1 hr, neither LPS nor acetate treatment had an effect on the levels of 

phosphorylated MAPK (Figures 19B-D).  At 2 hr, acetate treatment reduced the level 

of phosphorylated p38 as compared to LPS, and LPS increased JNK phosphorylation 

by 5-fold, which was attenuated 2.5-fold with acetate treatment (Figures 19B and C).  

At 4 hr, LPS increased phosphorylated p38 and phosphorylated JNK by 2-fold and was 

not altered upon acetate treatment; however treatment did increase the level of 

phosphorylated ERK1/2 by 2-fold only in the presence of LPS (Figures 19B-D).   
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Figure 19. Acetate treatment and MAPK phosphorylation in LPS-stimulated BV-2 

microglia.   

 

Changes in the phosphorylation state of MAPK p38, JNK and ERK1/2 in BV-2 

microglia stimulated for 0.5, 1, 2 and 4 hr with LPS 6.25 ng/ml with and without 12 

mM sodium acetate.  Panel A shows representative images of the Western blots from 

the 4 hr experiment.  Panels B, C and D show the optical densities of phosphorylated 

MAPK p38, JNK and ERK1/2 normalized to the loading controls MAPK p38, JNK and 

ERK1/2, respectively (n = 6).  The data represent the means ± SD where statistical 

significance (a = compared to NaCl, b = compared to LPS) was set at p < 0.05, as 

determined by One Way ANOVA followed by Tukey’s post-hoc test. 

Acetate Treatment Alters LPS-induced Increases in NF-κB p65 Protein Levels and 

Phosphorylation at Serine 468 in BV-2 Microglia 

 

 Because NF-κB signaling is altered by acetylation of p65 (Kiernan et al. 2003, 

Chen et al. 2001, Huang et al. 2010a) and has a prominent role in the regulation of 

inflammatory and immune responses, we tested the effect of acetate treatment on LPS-

induced changes in p65 protein levels, phosphorylation and acetylation after 4 hr of 
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treatment.  Whole cell lysates were used for Western blot analysis, and total p65, 

phosphorylated p65 at serine 536, phosphorylated p65 at serine 468, and acetylated p65 

at lysine 310 were detected as protein bands corresponding to the molecular weight of 

65 kDa (Figure 20A).  LPS increased the total protein level of p65 by 1.5-fold which 

returned to control levels with acetate treatment (Figure 20B).  While neither acetate 

treatment nor LPS altered the level of phosphorylated p65 at serine 536, LPS did 

increase the levels of phosphorylated p65 at serine 468 by 2-fold which was reduced to 

control levels with acetate treatment (Figures 20C and D).  In addition, acetate 

treatment induced p65 hyperacetylation at lysine 310 by 3.5 and 4-fold depending on 

the group (Figure 20E).  These data suggest that acetate metabolism alters the LPS-

induced p65 response in microglia, and that the anti-inflammatory effect of acetate 

treatment can potentially be attributed to acetylation of non-histone targets. 

 In Figure 20, changes in the protein level, phosphorylation and acetylation 

states of NF-κB p65 in BV-2 microglia cell culture stimulated for 4 hr with LPS 6.25 

ng/ml with and without 12 mM sodium acetate.  Panel A shows representative images 

of the Western blots.  Panel B shows the optical density of total NF-κB p65 normalized 

to the loading control α-tubulin.  Panels C, D and E show the optical densities of 

phosphorylated p65 at S536, phosphorylated p65 at serine 468 and acetylFated p65 at 

lysine 310 normalized to total p65, respectively (n = 6).  The data represent the means ± 

SD where statistical significance (a = compared to NaCl and b = compared to LPS) was 

set at p < 0.05, as determined by One Way ANOVA followed by Tukey’s post-hoc test.  

Abbreviations are: S536, serine 536; S468; serine 468: and K310, lysine 310. 
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Figure 20. Acetate treatment and NF-κB p65 protein levels and modifications in LPS-

stimulated BV-2 microglia.   

 

Optimizing the Duration of Acetate Treatment and LPS Concentration in Primary 

Astroglial Cultures 

 

  To determine the duration of acetate treatment required to achieve H3K9 

hyperacetylation pattern in vitro similar to that found in vivo (Soliman et al. 2012b), we 

treated primary astrocytes with 12 mM sodium acetate for 1, 2 and 4 hr (Figures 21A 

and B).  Cell lysates were used for Western blot analysis to measure acetylated H3K9, 

total histone H3 (Figure 21A).  We found that acetate increased H3K9 acetylation at 1 
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hr which remained increased out to 4 hr (Figure 21B).  To insure protein expression 

following treatment, we used 4 hr as the treatment duration for all the experiments.  To 

determine the optimal LPS concentration required to produce the same percentage of 

H3K9 hypoacetylation in vitro similar to that found in vivo and in LPS-stimulated 

microglia in vitro, using a serial dilution of LPS (0-25 ng/ml), we treated primary 

astrocytes for 4 hr (Figures 21C and D-G).  Cell lysates were used for Western blot 

analysis to measure acetylated H3K9, total histone H3 and the pro-inflammatory 

cytokines pro-IL-1β, IL-6, and TNF-α, which were detected as protein bands 

corresponding to the molecular weights of 17, 17, 32, 25 and 17 kDa, respectively 

(Figure 21C).  Interestingly, LPS did not alter H3K9 acetylation or IL-6 protein levels 

and increased pro-IL-1β and TNF-α protein levels in a concentration-dependent manner 

(Figures 21D-G).  Based on these data, we decided to use the LPS concentration 6.25 

ng/ml because this concentration increased both pro-IL-1β and TNF-α protein levels, 

and also to conform to the concentration used for the treatment of primary and BV-2 

microglia.   

In Figure 21, time-dependent acetate treatment-induced H3K9 hyperacetylation 

and dose-response study showing the effects of different LPS concentrations (0-25 

ng/ml, 4 hr) on H3K9 acetylation and the expression of pro-inflammatory cytokines in 

primary mouse astrocyte cell culture.  Panels A and C show representative images of 

the Western blots.  Panel B shows the averaged proportion of H3K9 normalized to total 

H3 (n = 3) after 1, 2 and 4 hr of treatment with 12 mM sodium acetate.  Panels D, E, F 

and G show the optical densities of H3K9 normalized to total H3 and the pro-
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inflammatory cytokines pro-IL-1β, IL-6, and TNF-α normalized to the loading control 

α-tubulin (n = 3).  The graphs represent the means ± SD where statistical significance 

(* = compared to control in panel B, and compared to LPS 0 ng/ml in panels D-G) was 

set at p < 0.05, as determined by One Way ANOVA followed by Tukey’s post-hoc test. 

 

 

 

Figure 21. Optimizing the duration of acetate treatment and LPS concentration in 

primary astroglial cultures.   
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Acetate Treatment causes H3K9 Hyperacetylation without Inducing Cytotoxicity 

in LPS-stimulated Primary Astrocytes 

 

   In order to determine the effect of acetate on H3K9 acetylation in LPS-

challenged astrocytes, we treated primary astrocyte cultures with 6.25 ng/ml LPS in the 

presence and absence of 12 mM sodium acetate, and compared the results to cells 

treated with 12 mM NaCl as a control group.  Using whole cell lysates for Western blot 

analysis, we found that primary astrocytes express acetyl-CoA synthetase; the enzyme 

which converts acetate to acetyl-CoA, as protein bands corresponding to the molecular 

weight of 79 kDa (Figure 22A).  The expression levels of ACS were not different 

between groups (Figure 22B).  In addition, while LPS did not alter H3K9 acetylation, 

acetate supplementation increased H3K9 acetylation by 2-fold in the presence and 

absence of LPS challenge (Figure 22D).  This finding is different than microglia where 

the same concentration of LPS reduces H3K9 acetylation by about 50%.  Measuring 

cellular release of LDH as an index of cell death showed no difference in cell survival 

between groups (Figure 22C).  These data indicate that acetate treatment in vitro 

induces H3K9 hyperacetylation in astrocytes similar to that found in vivo using oral 

glyceryl triacetate in a rat model of neuroinflammation (Soliman et al. 2012b) and in 

LPS-stimulated microglia in vitro  (Soliman et al. 2012a), without altering acetyl-CoA 

synthetase protein levels or inducing cell death. 
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Figure 22. Acetate treatment and H3K9 acetylation in LPS-stimulated primary 

astrocytes.   

 

Changes in histone acetylation in primary mouse astrocyte cell culture 

stimulated for 4 hr with LPS 6.25 ng/ml and/or 12 mM sodium acetate, with 12 mM 

NaCl as control.  Panel A shows representative images of the Western blots.  Panels B 

and D show the optical densities of acetyl-CoA synthetase enzyme normalized to the 

loading control α-tubulin, and H3K9 normalized to total H3, respectively.  Panel C 

shows the quantification of the ratio of secreted LDH in the media to total cellular 

LDH.  Bars represent means + SD where statistical significance (* = compared to 

NaCl, n = 4, 5, 4, and 5) was set at p ≤ 0.05, as determined by One Way ANOVA 

followed by Tukey’s post-hoc test. 
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Acetate Reverses LPS-induced Increases in the Pro-inflammatory Cytokine 

Proteins, but not mRNA, in Primary Astrocytes 

 

  To determine the ability of acetate to reverse pro-inflammatory cytokine 

production in vitro similar to that found in whole brain in vivo (Soliman et al. 2012b) 

and in LPS-stimulated microglia in vitro (Soliman et al. 2012a), cell lysates were 

analyzed using Western blot to probe for IL-1β, IL-6 and TNF-α (Figure 23A).  We 

found that LPS increased pro-IL-1β, TNF-α production, but not IL-6, by about 3.5 and 

2.5-fold, respectively (Figure 23 B and F).  Acetate treatment only partially attenuated 

LPS-induced increases in pro-IL-1β (Figure 23B), completely reversed TNF-α (Figure 

23F), and decreased IL-6 basal levels by about 40% (Figure 23D).  Quantifying mRNA 

using qrt-PCR showed that LPS increased the mRNA levels of the 3 pro-inflammatory 

cytokines measured that were not altered by acetate treatment (Figures 23C and E) with 

the exception of TNF-α mRNA which was only partially attenuated (Figure 23G).   

Acetate Modulates the Expression of the Anti-inflammatory Cytokines in LPS- 

challenged Primary Astrocytes 

 

 Anti-inflammatory cytokines are produced during the inflammatory response as 

a part of self-checking mechanisms, to mitigate the destructive effects of unopposed 

pro-inflammatory mediators.  We determined the effect of acetate treatment on 

expression levels of the anti-inflammatory cytokine proteins TGF-β1, IL-4, and IL-10 

in LPS-stimulated primary astrocytes (Figure 24A), that were detected as protein bands 

corresponding to the molecular weights of around 25, 30 and 18 kDa, respectively.  

Acetate treatment reversed the LPS-induced reduction in the TGF-β1 mRNA and 

protein, and IL-4 protein (Figure 24B, C and D) and upregulated IL-4 mRNA by 3-fold 
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and protein by 1.3-fold (Figure 24D and E).  Interestingly, IL-10 mRNA was increased 

by about 4-fold with acetate treatment, while the protein levels were decreased by 2-

fold.  IL-10 protein and mRNA were not altered by LPS (Figure 24F and G).  We 

speculate that this could be due to either interference with mRNA translation, increased 

protein turnover, or enhanced secretion into the extracellular milieu.  Regardless, these 

data suggest that acetate modulates pro- and anti-inflammatory cytokine in primary 

astrocytes towards a more anti-inflammatory state similar to that found in LPS-

stimulated microglia (Soliman et al. 2012a). 

 

Figure 23. Acetate treatment and the expression of pro-inflammatory cytokines in LPS-

stimulated primary astrocytes.   
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Changes in the pro-inflammatory cytokines pro-IL-1β, IL-6, and TNF-α in 

primary mouse astrocyte cell culture stimulated for 4 hr with LPS 6.25 ng/ml and/or 12 

mM sodium acetate, with 12 mM NaCl as control.  Panel A shows representative 

images of the Western blots.  Panels B, D and F show the optical densities of the pro-

inflammatory cytokines pro-IL-1β, IL-6 and TNF-α, respectively, normalized to the 

loading control α-tubulin (n = 6).  Panels C, E and G show the changes in the mRNA 

levels of the pro-inflammatory cytokines IL-1β, IL-6 and TNF-α, quantified by qrt-PCR 

and normalized to β-actin (n = 6).  Bars represent means + SD where statistical 

significance (a = compared to NaCl, and b = compared to LPS) was set at p ≤ 0.05, as 

determined by One Way ANOVA followed by Tukey’s post-hoc test. 

Acetate Reverses LPS-induced p38 Phosphorylation and Decreases Basal Levels of 

ERK1/2 Phosphorylation in Primary Astrocyte Culture 

 

   MAPK inflammatory cascade is evidently involved in neuroinflammation and 

pro-inflammatory cytokine production.  Specific lysine acetylation was shown to 

activate a MAPK phosphatase-1, which in turn deactivates MAPK signaling.  This 

sparked our interest to study the effects of acetate on LPS-induced MAPK 

phosphorylation, and determine whether this is a potential mechanism of the anti-

inflammatory effect of acetate in primary astrocytes.  Whole cell lysates were used for 

Western blot analysis, and p38, phosphorylated p38, JNK, phosphorylated JNK, 

ERK1/2, and phosphorylated ERK1/2 were detected as protein bands corresponding 

with the molecular weights of around 38, 38, 46 and 54, 46 and kDa, 42 and 46, and 42 

and 46 kDa, respectively (Figure 25A).   
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Figure 24. Acetate treatment and the expression of the anti-inflammatory cytokines in 

LPS- stimulated primary astrocytes.   

 

 Changes in the anti-inflammatory cytokines TGF-β1, IL-4, and IL-10 in 

primary mouse astrocyte cell culture stimulated for 4 hr with LPS 6.25 ng/ml and/or 12 
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mM sodium acetate, with 12 mM NaCl as control.  Panel A shows representative 

images of the Western blots.  Panels B, D and F show the optical densities of the anti-

inflammatory cytokines TGF-β1, IL-4, and IL-10, respectively, normalized to the 

loading control α-tubulin (n = 6).  Panels C, E and G show the changes in the mRNA 

levels of the anti-inflammatory cytokines TGF-β1, IL-4, and IL-10, quantified by qrt-

PCR and normalized to β-actin (n = 6).  Bars represent means + SD where statistical 

significance (a = compared to NaCl, and b = compared to LPS) was set at p ≤ 0.05, as 

determined by One Way ANOVA followed by Tukey’s post-hoc test. 

 LPS increased p38 phosphorylation by 1.5-fold which was returned to control 

level with acetate (Figure 25B).  Neither LPS not acetate had an effect on JNK 

phosphorylation (Figure 25C).  While LPS did not alter ERK1/2 phosphorylation, the 

basal levels of phosphorylated ERK1/2 were decreased by acetate treatment in the 

presence and absence of LPS by almost 2-fold (Figure 25D).  These data demonstrate 

that acetate and LPS selectively modulate MAPK phosphorylation in primary 

astrocytes in vitro, which can potentially represent a mechanism for the anti-

inflammatory effect of acetate treatment in astrocytes.  This is different from microglia 

where at 4 hr following LPS stimulation, MAPK p38 and JNK phosphorylation is 

increased and is not altered by acetate treatment, and phosphorylated ERK1/2 that is 

increased by acetate treatment only in the presence of LPS (Soliman et al. 2012a).  

  Acetate reverses LPS-induced elevated NF-κB p65 protein level, and decreases 

the basal levels of p65 phosphorylation at serine 536 in primary astrocyte culture. 
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Figure 25. Acetate treatment and MAPK phosphorylation in LPS-stimulated primary 

astrocytes.   

 

 Changes in the phosphorylation state of MAPK p38, JNK and ERK1/2 in 

primary mouse astrocyte cell culture stimulated for 4 hr with LPS 6.25 ng/ml and/or 12 

mM sodium acetate, with 12 mM NaCl as control.  Panel A shows representative 

images of the Western blots.  Panels B, C and D show the optical densities of 

phosphorylated MAPK p38, JNK and ERK1/2 normalized to the loading controls 

MAPK p38, JNK and ERK1/2, respectively (n = 6).  The data represent the means ± 

SD where statistical significance (a = compared to NaCl and b = compared to LPS) was 

set at p < 0.05, as determined by One Way ANOVA followed by Tukey’s post-hoc test. 

 NF-κB is a major player in neuroinflammation and the biosynthesis of pro-

inflammatory mediators.  NF-κB p65 subunit is also regulated by a wide range of post-

translational modifications which have diverse functional consequences (Huang et al. 
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2010a).  In the light of this, we quantified the effects of LPS and acetate treatment on 

NF-κB p65 protein levels and selected post-translational modifications using total cell 

lysates for Western blot analysis.  Total NF-κB p65 protein, acetylated p65 at lysine 

310, and phosphorylated p65 at serine residues 468 and 536 were detected as protein 

bands corresponding to the molecular weight 65 kDa (Figure 26).  We found that while 

LPS increased the protein levels of NF-κB p65 by 1.5-fold, acetate treatment reduced it 

back to control levels (Figure 26B).  Moreover, acetate treatment reduced the basal 

level of phosphorylated p65 at serine 536 (Figure 26D).  Neither LPS nor acetate 

treatment altered acetylated p65 at lysine 310 or phosphorylated p65 at serine 468 

(Figure 26C and E).  These data suggest that acetate treatment can alter NF-κB p65 

protein and selected post-translational modifications, which may explain the anti-

inflammatory effect of acetate treatment in LPS-challenged primary astrocytes.  

Acetate Treatment and the Protein Levels of Phospholipases in LPS-stimulated 

BV-2 Microglia 

 

To determine the effect of LPS and acetate treatment on the phosphorylation 

level of cPLA2 and the protein levels of total cPLA2, sPLA2 IIA and selected PLC 

isoforms in BV-2 microglia, cells were treated with 6.25 ng/ml LPS in the presence and 

absence of 12 mM sodium acetate, and compared the results to cells treated with 12 

mM NaCl as a control group.  Using whole cell lysates for Western blot analysis, 

cPLA2, phosphorylated cPLA2, sPLA2 IIA, PLCβ1, PLCγ1, and PLCδ1 were detected 

as protein bands corresponding to the molecular weight of 85, 85, 18, 150, 155, and 85 

kDa, respectively (Figure 27A).  The protein levels of total cPLA2 were not different 

between groups (Figure 27B), whereas phosphorylated cPLA2 was increased with LPS 
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1.5-fold which was not altered by acetate treatment (Figure 27C).  The protein levels of 

sPLA2 IIA, PLCγ1 and PLCδ1 were not altered by either LPS or acetate treatment 

(Figure 27D, F and G).  By contrast, LPS decreased PLCβ1 by 2-fold which was 

reversed to control levels with acetate treatment (Figure 27E).  These data suggest that 

acetate treatment can alter cPLA2 phosphorylation and the protein levels of enzymes 

involved in eicosanoid signaling in BV-2 microglia. 

 

 

Figure 26. Acetate treatment and NF-κB p65 protein levels and modifications in LPS-

stimulated primary astrocytes.   
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 Changes in the protein level and phosphorylation and acetylation states of NF-

κB p65 in primary mouse astrocyte cell culture stimulated for 4 hr with LPS 6.25 ng/ml 

and/or 12 mM sodium acetate, with 12 mM NaCl as control.  Panel A shows 

representative images of the Western blots.  Panel B shows the optical density of total 

NF-κB p65 normalized to the loading control α-tubulin.  Panels C, D and E show the 

optical densities of acetylated p65 at lysine 310, phosphorylated p65 at S536, and 

phosphorylated p65 at serine 468, respectively (n = 6).  The data represent the means ± 

SD where statistical significance (a = compared to NaCl and b = compared to LPS) was 

set at p < 0.05, as determined by One Way ANOVA followed by Tukey’s post-hoc test. 

Acetate Treatment and the Protein Levels of Phospholipases in LPS-stimulated 

Primary Astrocytes 

 

 To determine the effect of LPS and acetate treatment on the phosphorylation of 

cPLA2 and the protein levels of total cPLA2, sPLA2 IIA and selected PLC isoforms in 

astrocytes, primary astrocyte cultures were treated with 6.25 ng/ml LPS in the presence 

and absence of 12 mM sodium acetate, and compared the results to cells treated with 12 

mM NaCl as a control group.  Whole cell lysates were used for Western blot analysis 

(Figure 28A).  The protein levels of total cPLA2 were not different between groups 

(Figure 28B), whereas LPS increased phosphorylated cPLA2 by 2-fold which was 

reversed to control levels by acetate treatment (Figure 28C).  Acetate treatment 

decreased the protein levels of sPLA2 IIA and PLCβ1 by 20% only in the presence of 

LPS (Figure 28D and E).  PLCγ1 and PLCδ1 protein levels were not altered by either 

LPS or acetate treatment (Figure 28F and G).  These data suggest that acetate treatment 
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can alter cPLA2 phosphorylation and the protein levels of enzymes involved in the 

eicosanoid signaling in primary astrocytes in a pattern different from BV-2 microglia.     

   

 

 

Figure 27. Acetate treatment and phospholipases phosphorylation and protein levels in 

LPS-stimulated BV-2 microglia.   

 

 Figure 27 shows the changes in the levels of cPLA2 phosphorylation and total 

cPLA2, sPLA2 IIA, PLCβ1, PLCγ1 and PLCδ1 protein levels in BV-2 microglia 
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cultures stimulated for 4 hr with LPS 6.25 ng/ml and/or 12 mM sodium acetate, with 12 

mM NaCl as control.  Panel A shows representative images of the Western blots.  

Panels B, D, E, F and G show the optical densities total cPLA2, sPLA2 IIA, PLCβ1, 

PLCγ1 and PLCδ1 normalized to the loading control α-tubulin.  Panel C shows the 

optical density of phosphorylated cPLA2 normalized to total cPLA2.  Bars represent 

means + SD where statistical significance (a = compared to NaCl, b = compared to 

LPS, n = 6 per group) was set at p ≤ 0.05, as determined by One Way ANOVA 

followed by Tukey’s post-hoc test.    

Acetate Treatment and Cox-1 and 2 Levels in LPS-stimulated BV-2 Microglia and 

Primary Astrocytes Culture 

 

    To determine the effect of acetate treatment downstream of cPLA2, the protein 

levels of Cox-1 and 2 were measured in both LPS-stimulated BV-2 microglia and 

primary astrocyte cell cultures.  Using whole cell lysates for Western blot analysis, 

Cox-1 and 2 were detected as protein bands corresponding to the molecular weights of 

70 and 72 kDa, respectively (Figure 29A).  In BV-2 microglia cultures, LPS increased 

Cox-1 level by 1.5-fold which was completely reversed to control levels with acetate 

(Figure 29B), and Cox-2 by 4-fold which was only partially attenuated by acetate 

treatment (Figure 29C).  In astrocyte cultures, LPS increased the protein levels of Cox-

1 by 1.5-fold which was reversed to control levels with acetate treatment (Figure 29D) 

and Cox-2 by about 2.9-fold which was not altered by acetate treatment (Figure 29E).  

However, the basal levels of Cox-2 were reduced by 2-fold by acetate treatment only in 

the absence of LPS (Figure 29E).  These data suggest that acetate treatment 
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differentially modulates the levels of Cox-1 and 2 in LPS-challenged BV-2 microglia 

and primary astrocytes cultures. 

   

 

 

 

Figure 28. Acetate treatment and phospholipases phosphorylation and protein levels in 

LPS-stimulated primary astrocytes.  
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 Figure 28 shows the changes in the levels of cPLA2 phosphorylation and total 

cPLA2, sPLA2 IIA, PLCβ1, PLCγ1 and PLCδ1 protein levels in primary astrocyte cell 

cultures stimulated for 4 hr with LPS 6.25 ng/ml and/or 12 mM sodium acetate, with 12 

mM NaCl as control.  Panel A shows representative images of the Western blots.  

Panels B, D, E, F and G show the optical densities total cPLA2, sPLA2 IIA, PLCβ1, 

PLCγ1 and PLCδ1 normalized to the loading control α-tubulin.  Panel C shows the 

optical density of phosphorylated cPLA2 normalized to total cPLA2.  Bars represent 

means + SD where statistical significance (a = compared to NaCl, b = compared to 

LPS, n = 6 per group) was set at p ≤ 0.05, as determined by One Way ANOVA 

followed by Tukey’s post-hoc test.    

 

 

 

 

Figure 29. Acetate treatment and the protein levels of cyclooxygenases in LPS-

stimulated BV-2 microglia and primary astrocytes.   
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Figure 29 shows the changes in the total Cox-1 and Cox-2 protein levels in BV-

2 microglia and primary astrocyte cell cultures stimulated for 4 hr with LPS 6.25 ng/ml 

and/or 12 mM sodium acetate, with 12 mM NaCl as control.  Panel A shows 

representative images of the Western blots.  Panels B and C show the optical densities 

of Cox-1 and Cox 2, respectively normalized to the loading control α-tubulin in BV-2 

microglial cell cultures.  Panels D and E show the optical densities of Cox-1 and Cox 2, 

respectively normalized to the loading control α-tubulin in primary astrocyte cell 

cultures.  Bars represent means + SD where statistical significance (a = compared to 

NaCl, b = compared to LPS, n = 6 per group) was set at p ≤ 0.05, as determined by One 

Way ANOVA followed by Tukey’s post-hoc test. 

Acetate Treatment and the Production of Prostaglandin E2 in LPS-stimulated BV-

2 Microglia and Primary Astrocyte Cultures 

 

  Having demonstrated the ability of acetate treatment to alter cPLA2 

phosphorylation and sPLA2 IIA, Cox-1 and 2 protein levels, we proceeded to determine 

whether acetate treatment had functional effects in terms of PG release.  The media 

from LPS-stimulated BV2-microglia and primary astrocyte cultures were used to 

quantify PGE2 using enzyme immunoassay kit.  PGE2 levels were not altered by either 

LPS or acetate treatment in BV-2 microglia cultures (Figure 30A), whereas LPS 

increased PGE2 levels by 4-fold in astrocyte cultures which was completely reversed to 

control levels with acetate treatment (Figure 30B).  These data suggest that acetate 

treatment can differentially modulate PGE2 release, which may contribute to the anti-

inflammatory effect of acetate in LPS-stimulated astrocytes.  
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Figure 30. Acetate treatment and the release of prostaglandin E2 in LPS-stimulated BV-

2 microglia and primary astrocytes.   

 

 Figure 30 shows the changes in the levels of PGE2 secreted in the media of BV-

2 microglia (panel A) and primary astrocyte cell cultures (panel B) stimulated for 4 hr 

with LPS 6.25 ng/ml and/or 12 mM sodium acetate, with 12 mM NaCl as control.  

PGE2 levels were measured using enzyme immunoassay.  Bars represent means + SD 

where statistical significance (a = compared to NaCl, b = compared to LPS, n = 6 per 

group) was set at p ≤ 0.05, as determined by One Way ANOVA followed by Tukey’s 

post-hoc test. 

Acetate Treatment and the Enrichment of Acetylated H3K9 around the 

Transcription Start Sites of Inflammatory Genes in LPS-stimulated BV-2 

Microglia Cell Cultures 

 

Acetate treatment increases H3K9 acetylation in vivo (Soliman & Rosenberger 

2011, Soliman et al. 2012b) and in vitro (Soliman et al. 2012a), reverses LPS-induced 

increase in NF-κB p65 protein but not IL-1β mRNA, and increases IL-4 mRNA 

(Soliman et al. 2012a).  Because histone acetylation changes are associated with 

alterations in gene expression (Rice & Allis 2001, Strahl & Allis 2000), the enrichment 

of acetylated H3K9 around the promoters of ptgs1, ptgs2 (coding for Cox-1 and Cox-2, 
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respectively), p65, il4 and il1b genes was measured using chromatin 

immunoprecipitation.  Five different primer sets were prepared for each of these genes, 

except il1b (4 primer sets) spanning different genomic stretches between -750 base 

pairs and +1000 base pairs (Table 1).  Acetate treatment increased acetylated H3K9 as 

detected using primer sets # 2, 3 and 5 for ptgs1 (Figure 31A) and primer set # 5 for 

ptgs2 (Figure 31B).  In addition, acetate treatment was found to increase acetylated 

H3K9 as detected using primer sets # 1, 2 and 4 for p65 (Figure 31C), and primer sets # 

2, 3 and 4 for il1b (Figure 31E) and did not alter acetylation H3K9 at il4 (Figure 31D).  

LPS did not alter the levels of acetylated H3K9, except for a small reduction observed 

using primer set # 2 for ptgs1 which was reversed to control levels with acetate 

treatment (Figure 31A).  These data suggest that acetate treatment alters acetylated 

H3K9 at the promoters of genes involved in inflammatory signaling, which may 

potentially influence inflammatory gene expression.   

 During the preparation of these primer sets, we used the mouse genome browser 

of the University of California, Santa Cruz at http://genome.ucsc.edu/cgi-

bin/hgGateway; the December 2011 assembly.  To calculate the properties of the 

primers (length, melting temperature, and GC content), we used the online 

oligonucleotide properties calculator available at http://www.basic.northwestern.edu/ 

biotools/oligocalc.html.  The (-) and (+) signs mean upstream and downstream, 

respectively in reference to the transcription start site. For each gene, we designed 2 

primer sets spanning genomic sequences upstream to the transcription start site (up to 

750 base pairs), 2 primer sets spanning genomic sequences downstream to the 

http://www.basic.northwestern.edu/
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transcription start site (up to 1000 base pairs) and one primer set spanning the 

transcription start site.   

 

 

Figure 31:  Acetate treatment and the enrichment of acetylated H3K9 around the 

transcription start sites of inflammatory genes in LPS-stimulated BV-2 microglia 

cultures.   

 

Figure 31 shows the changes in the levels of enrichment of acetylated H3K9 at 

ptgs1 (panel A), ptgs2 (panel B), p65 (panel C), il4 (panel D), and il1b (panel E) genes 

measured by chromatin immunoprecipitation analysis followed by qrt-PCR, in BV-2 

microglial cell cultures stimulated for 4 hr with LPS 6.25 ng/ml and/or 12 mM sodium 

acetate, with 12 mM NaCl as control.  Bars represent means + SD where statistical 

significance (a = compared to NaCl, b = compared to LPS, n = 3 per group) was set at p 

≤ 0.05, as determined by One Way ANOVA followed by Tukey’s post-hoc test.    
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Acetate Treatment Modulates the Expression of a Selected Subset of 

Inflammatory Genes 

 

  We addressed the question of whether acetate treatment alters global gene 

expression or the expression of selective inflammatory genes.  Using qrt-PCR array, we 

quantified the effect of long-term acetate treatment on the expression of 84 genes that 

are involved in the innate and adaptive immune responses in rat brain.  Only six genes 

out of a total of 84 showed more than 0.5-fold change from the control values.  These 6 

genes were aodra2a, il1b, il1rn, mapk14, nfkb1 and tnf which code for adenosine A2a 

receptor, IL-1β, IL-1 receptor antagonist, MAPK p38, NF-κB 105 kDa protein subunit 

and TNF (Table 2).  The change in only adenosine A2a receptor expression was 

statistically significant.  These results support the findings that acetate treatment can 

alter the expression of genes involved in the inflammatory and immune responses and 

suggest that acetate treatment modulates gene expression in a selected subset of genes 

and does not induce global gene expression changes.     

 Table 2 shows the gene symbols, description and fold changes elicited by long-

term acetate supplementation in the expression of 84 genes involved in the innate and 

adaptive immune responses in rat brain, (n = 2).  The last five genes coding for a large 

ribosomal subunit protein P1, hypoxanthine phosphoribosyltransferase 1, ribosomal 

protein L13A, lactate dehydrogenase A, β-actin are controls.  Data analysis was 

performed using SABiosciences online data analysis tool.          

 

 

 



 
 

101 

 

Table 2 

Acetate Treatment and Expression of Genes involved Innate and Adaptive Immune 

Responses   

 

# Symbol Description Fold 

Change 

 

1 Adora2a Adenosine A2a receptor 8.66 

 

2 C5 Complement component 5 1.14 

 

3 C8a Complement component 8, alpha 

polypeptide 

 

1.14 

4 Camp Cathelicidin antimicrobial peptide 0.93 

 

5 Casp1 Caspase 1 1.44 

 

6 Casp4 Caspase 4, apoptosis-related cysteine 

peptidase 

 

1.34 

7 Cc12 Chemokine (C-C motif) ligand 2 1.90 

 

8 Ccr3 Chemokine (C-C motif) receptor 3 1.14 

 

9 Cd14 CD14 molecule 1.14 

 

10 Cd1d1 CD1d1 molecule 1.14 

 

11 Cd55 Cd55 molecule 1.34 

 

12 Cfp Complement factor properdin 1.26 

 

13 Chuk Conserved helix-loop-helix ubiquitous 

kinase 

 

0.69 

14 Clec7a C-type lectin domain family 7, member a 

 

1.14 

15 Colec12 Collection sub-family member 12 0.57 

 

16 Crjp C-reactive protein, pentraxin-related 1.14 
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Table 2 (continued) 

 

# Symbol Description Fold 

Change 

17 Cxcr4 Chemokine (C-X-C motif) receptor 4 

 

1.14 

18 Cybb Cytochrome b-245, beta plypeptide 1.05 

 

19 Defb4 Defensin beta 4 1.14 

 

20 Dmbt1 Deleted in malignant brain tumors 1 1.14 

 

21 Fn1 Fibronectin 1 0.61 

 

22 Hmox1 Heme oxygenase (decycling) 1 1.23 

 

23 Ifna1 Interferon-alpha 1 1.14 

 

24 Ifnb1 Interferon beta 1, fibroblast 1.14 

 

25 Ifngr1 Interferon gamma receptor 1 1.10 

 

26 Ifngr2 Interferon gamma receptor 2 0.69 

 

27 Ikbkb Inhibitor of kappa light polypeptide gene 

enhancer in B-cells, kinase beta 

 

0.83 

28 I110 Interleukin 10 1.14 

 

29 I112rb2 Interleukin 12 receptor, beta 2 0.68 

 

30 I11a Interleukin 1 alpha 1.04 

 

31 I11b Interleukin 1 beta 1.54 

 

32 I11f10 Interleukin 1 family, member 10 1.14 

 

33 I11f5 Interleukin 1 family, member 5 (delta) 

 

1.14 

34 I11f6 Interleukin 1 family, member 6 1.14 

 



 
 

103 

 

Table 2 (continued) 

 

# Symbol Description Fold 

Change 

 

35 I11f8 Interleukin 1 family, member 8 1.14 

 

36 I11fp Interleukin 1 family, member 9 

 

1.14 

 

37 I11r1 Interleukin 1 receptor, type I 0.94 

 

38 I11r2 Interleukin 1 receptor, type II 1.14 

 

39 I11rap Interleukin 1 receptor accessory protein 1.14 

 

40 I11rap12 Interleukin 1 receptor accessory protein-

like 2 

 

0.75 

41 I11r12 Interleukin 1 receptor-like 2 1.14 

 

42 I11m Interleukin 1 receptor antagonist 0.48 

 

43 I16 Interleukin 6 1.14 

 

44 Irak1 Interleukin-1 receptor-associated kinase 1 

 

0.64 

45 Irak2 Interleukin-1 receptor-associated kinase 2 

 

1.14 

46 Irf1 Interferon regulatory factor 1 0.91 

 

47 Lalba Lactalbumin, alpha 1.14 

 

48 Lbp Lipopolysaccharide binding protein 1.14 

 

49 Lck Lymphocyte-specific protein tyrosine 

kinase 

 

1.14 

50 Ly96 Lymphocyte antigen 96 0.97 

 

51 Lyz2 Lysozyme 2 0.65 

 

52 Mapk14 Mitogen activated protein kinase 14 2.36 
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Table 2 (continued) 

 

# Symbol Description Fold 

Change 

 

53 Mapk8 Mitogen-activated protein kinase 8 0.60 

 

54 Mif Macrophage migration inhibitory factor 1.17 

 

55 Myd88 Myeloid differentiation primary response  

gene 88 

 

0.74 

56 Ncf4 Neutrophil cytosolic factor 4 1.14 

 

57 Nfkb1 Nuclear factor of kappa light polypeptide 

gene enhancer in B-cells 1 

 

2.97 

58 Nfkb2 Nuclear factor of kappa light polypeptide 

gene enhancer in B-cells 2, p49/p100 

 

1.15 

59 Nfkbia Nuclear factor of kappa light polypeptide 

gene enhancer in B-cells inhibitor, alpha 

 

0.93 

60 Nirc4 NLR family, CARD domain containing 4 

 

1.14 

61 Nos2 Nitric oxide synthase 2, inducible 

 

1.14 

62 Pglyrp1 Peptidoglycan recognition protein 1 1.05 

 

63 Pglyrp3 Peptidoglycan recognition protein 3 1.14 

 

64 Ppbp Pro-platelet basic protein (chemokine (C-

X-C motif) ligand 7) 

 

1.14 

65 Prg2 Proteoglycan 2, bone marrow 0.85 

 

66 Proc Protein C 1.14 

 

67 Ptafr Platelet-activating factor receptor 1.10 

 

68 Serpina 1 Serpin peptidase inhibitor, clade A (alpha-

1 antiproteinase, antitrypsin), member 1 

 

1.15 
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Table 2 (continued) 

 

# Symbol Description Fold 

Change 

 

69 Serpina 1 Serpin peptidase inhibitor, clade E (nexin, 

plasminogen activator inhibitor type 1), 

member 1 

 

1.14 

70 Sftpd Surfactant protein D 1.14 

 

71 LOC100363

145 

Stabilin 1 1.14 

 

72 Tgfb1 Transforming growth factor, beta 1 0.69 

 

73 T1r1 Toll-like receptor 1 1.30 

 

74 T1r10 Toll-like receptor 10 1.14 

 

75 T1r2 Toll-like receptor 2 0.97 

 

76 T1r3 Toll-like receptor 3 0.76 

 

77 T1r4 Toll-like receptor 4  0.72 

 

78 T1r6 Toll-like receptor 6 1.03 

 

79 T1r9 Toll-like receptor 9 1.14 

 

80 Tnf Tumor necrosis factor (TNF superfamily, 

member 2) 

 

2.59 

81 Tnfrsf1a Tumor necrosis factor receptor 

superfamily, member 1 a 

 

1.14 

82 Tollip Toll interacting protein 1.05 

 

83 Traf6 Tnf receptor-associated factor 6 0.64 

 

84 Trem1 Triggering receptor expressed on myeloid 

cells 1 

 

1.14 

85 Rplp1 Ribosomal protein, large, P1 1.16 
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Table 2 (continued) 

 

# Symbol Description Fold 

Change 

86 Hprt1 Hypoxanthine phosphoribosyltransferase 1 

 

0.96 

87 Rp113a Ribosomal protein L13A 1.08 

 

88 Ldha Lactate dehydrogenase A 0.71 

 

89 Actb Actin, beta 0.97 
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CHAPTER IV 

DISCUSSION 

Preferential Uptake and Utilization of Acetate 

Acetate has long been used as a substrate to study glial metabolism (Thoren et 

al. 2005, Wyss et al. 2011, Wyss et al. 2009), particularly because it is preferentially 

utilized by astrocytes (Waniewski & Martin 1998, Hosoi et al. 2009, Muir et al. 1986).  

Peripherally-derived acetate crosses the blood brain barrier by simple diffusion 

(Oldendorf 1973, Terasaki 1992).  The rate-limiting step of acetate utilization is its 

activation by acetyl-CoA synthetase to form acetyl-CoA.  The transport of acetate into 

the cell is through a carrier that has similar biochemical properties to monocarboxylate 

transporters (MCTs), a number of which were cloned, differ in organ distribution, and 

have different substrate and inhibitor affinities (Garcia et al. 1994b, Garcia et al. 

1994a).  Earlier reports demonstrated MCT1 is expressed in astrocytes while MCT2 is 

expressed in the neurons (Broer et al. 1997, Pierre et al. 2000), and later reports 

demonstrated the cell type-specific expression of MCTs 1, 2 and 4 in the brain based on 

age (Rafiki et al. 2003).  The presence of different MCT isoforms in astrocytes than in 

neurons explains the differential utilization of acetate by astrocytes, particularly 

because acetyl-CoA synthetase is not expressed differently between cell types and even 

has greater activity in neurons than in astrocytes.  Altogether, the ability of astrocytes to 

utilize acetate is well-established; however, the novelty of our studies stems from 
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investigating the mechanisms by which acetate treatment can be anti-inflammatory in 

glial cells. We tested the hypothesis that acetate alters histone acetylation and disrupts 

inflammatory signaling in vivo and in vitro, as an attempt to explain the anti-

inflammatory effects of acetate we observed in a rat model of LPS-induced 

neuroinflammation (Reisenauer et al. 2011).   

Metabolic Channels for Acetyl-CoA Utilization 

    Acetate supplementation using glyceryl triacetate increases brain levels of acetate 

17-fold 1 hr after treatment with a dose of 5.8 g/kg (Mathew et al. 2005).  Glyceryl 

triacetate-derived acetate is converted to metabolically active acetyl-CoA by 30 min 

following treatment and brain levels remain significantly elevated for up to 4 hr 

(Reisenauer et al. 2011).  Acetyl-CoA has numerous roles in metabolism and biological 

processes in brain.  For example, in oligodendrocyte cytosol, acetyl-CoA is the source 

of the units of two carbon atoms used for fatty acid elongation which parallels myelin 

deposition (Bourre et al. 1977).  In addition, it can be used as a substrate for ketone 

bodies, fatty acids and cholesterol biosynthesis, and oxidation in Krebs cycle for energy 

generation after condensing with oxaloacetate to form citrate (Fukao et al. 2004, 

McGarry & Foster 1980, Deutsch et al. 2002, Des Rosiers et al. 1991).  

Acetyltransferases use acetyl-CoA as acetyl donor for post-translational acetylation 

reactions on lysine and arginine residues which can lead to structural and functional 

consequences in proteins. 

At the onset of these studies, we proposed that a possible therapeutic 

mechanism of action by which acetate reduces neuroinflammatory phenotype is by 
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altering brain histone acetylation.  To test this hypothesis, we examined the ability of a 

single oral dose of glyceryl triacetate (6 g/kg) to effectively alter brain histone 

acetylation state.  These results suggest that acetate supplementation significantly 

increases the acetylation of brain histones H3K9, H4K8, and H4K16 while having no 

effect on the acetylation state of brain histones H3K14, H4K5, or H4K12.  Moreover, 

acetate supplementation inhibited HDAC activity and decreased HDAC2 protein levels 

in brain without altering HAT activity.  In order to begin to determine the mechanism 

by which acetate supplementation decreases HDAC activity, we examined the protein 

levels of several HDAC.  Of the known HDAC, class I and II HDAC are known to be 

primarily involved in the regulation of histone acetylation.  While we did not observe 

significant changes in HDAC1, 3, 4, 5 or 7, we found HDAC2 levels were significantly 

decreased at 4 hr post-treatment.  The decrease in HDAC activity reported in this study 

coincides with the time points measured when HDAC2 protein levels were decreased 

and brain histone acetylation states were increased.  The temporal relationship between 

increased histone acetylation and HDAC inhibition suggests that HDAC inhibition is a 

possible mechanism by which acetate supplementation can alter brain histone 

acetylation state.   

The temporal and histone specific changes found in this study suggest that 

specific inhibition of HDAC2 may lead to preferential and possible therapeutically 

beneficial increases in the acetylation of specific histone lysine residues.  This premise 

is supported by studies showing that HDAC maintain substrate specificity in terms of 

the particular histone lysine residues they deacetylate.  For example, Rpd3p 
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preferentially deacetylates histones H4K5 and H4K12 and promotes hypoacetylation in 

yeast (Peterson 2002) and the diacetylation of histone H4 follows a specific non-

random pattern at H4K16 and H4K8 (Clarke et al. 1993, Thorne et al. 1990, Turner et 

al. 1989).  On the other hand, the acetylation of histone H4K5 and H4K12 is mainly 

restricted to the newly synthesized histone H4, and that acetylation of H4K8 and 

H4K16 inhibits the acetylation of H4K5 and H4K12 (Makowski et al. 2001).  This data 

provides support for the premise that site-specific acetylation of histones can regulate 

the acetylation of other substrate sites and that elevated brain acetyl-CoA may result in 

specific HDAC inhibition.   

Mechanisms of Action of HDAC Inhibitors 

The HDAC inhibitors SAHA, MS 275, valproic acid, and TSA work on the 

catalytic site of the enzyme.  These inhibitors function by; (a) chelating or displacing 

the zinc ions, (b) forming a hydrophobic spacer spanning the entire length of the 

HDAC enzyme hydrophobic active site, (c) acting as a hydrophobic cap preventing 

substrate binding and, (d) inducing ubiquitination and subsequent proteasomal 

degradation of the enzyme (Santini et al. 2007).  Acetate supplementation has not been 

described previously as an inhibitor of HDAC activity; however, we demonstrate that 

acetylation caused by acetate supplementation may be a result of an inhibition of 

HDAC activity and expression independent of HAT activation.  HDAC inhibition by 

acetate supplementation can, in addition, be explained by the fact that the increased 

tissue levels of acetyl-CoA exert endpoint inhibition of HDAC activity, thus hindering 

the removal of acetyl groups from the N-terminal tail of histone.  Nevertheless, because 
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the regulatory mechanisms controlling histone acetylation and HDAC enzyme activity 

are numerous, the results demonstrated with a single oral dose of acetate cannot 

exclude the possibility of acetate altering other mechanisms such as acetylation of non-

histone proteins, inducting other post-translational modifications of histones and 

transcriptional factors, or altering the activity of other HDAC.   

Histone Acetylation Correlates with Anti-inflammatory and Neuroprotective 

Properties 

 

               Translational research and clinical trials are being executed to test the 

effectiveness of HDAC inhibitors as alternatives to non-steroidal anti-inflammatory 

drugs as well as being anti-neoplastic through inducing a hyperacetylation state.  The 

association of histone hyperacetylation with anti-inflammatory effects is clearly 

demonstrated by a wide range of studies showing that a number of HDAC inhibitors 

ameliorate symptoms of Huntington’s disease, spinal and bulbar muscular atrophy, 

Alzheimer’s and Parkinson’s diseases, amyotrophic lateral sclerosis, spinal muscular 

atrophy, and Friedreich’s ataxia (Adcock 2007, Blanchard & Chipoy 2005, Langley et 

al. 2005, Morrison et al. 2007).  The functional significance of site-specific histone 

acetylation remains unclear; however, the acetylation of certain lysine residues has 

been associated with beneficial biological outcomes.  For example, an increase in 

acetylated H3K9 following valproic acid treatment, a class I HDAC inhibitor, protects 

neurons against hypoxia-induced neuronal apoptosis (Li et al. 2008).  Similarly, 

increased acetylated H3K9 is associated with attenuating microglial activation in an 

animal model of traumatic brain injury (Zhang et al. 2008).  The preferential 

hyperacetylation of brain H4K16 is recognized as a central switch in higher-order 
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chromatin structure (Shogren-Knaak et al. 2006).  When arranged into nucleosomal 

arrays, acetylated H4K16 inhibits the formation of higher-order 30 nm chromatin fibers 

and therefore leads to activation of gene expression.  Moreover, H4K16 acetylation is 

thought to play a unique role in DNA repair due to its being defective in aging and 

neurodegenerative disorders (Li et al. 2010).  In this regard, both H4K16 and H4K8 

acetylation were increased following a single oral dose of glyceryl triacetate as well as 

with long-term acetate supplementation.  All of which support the premise that specific 

alterations in histone acetylation can be potentially therapeutic.  These results suggest 

that a potential mechanism by which acetate supplementation may be effective at 

attenuating neuroinflammation is by altering higher-order chromatin structure and 

reducing pro-inflammatory gene expression.  In support of this notion, H4K12 

acetylation, which was not altered in our model, is implicated in gene silencing 

(Braunstein et al. 1996).  The acetylation state at H4K16 is also an epigenetic hallmark 

for certain cancers, including leukemia, lymphoma, and colorectal adenocarcinoma cell 

lines, in which H4K16 hyperacetylation is lost (Fraga et al. 2005, Fraga & Esteller 

2005).   

Discrepancies between the Effects of a Single Dose of Acetate and Long-term 

Acetate Supplementation 

 

        Long-term acetate supplementation decreases neuroglia activation and 

cholinergic cell loss in a rat model of neuroinflammation (Reisenauer et al. 2011).  A 

single oral dose increases histone acetylation, decreases HDAC activity, and decreases 

HDAC2 protein levels (Soliman & Rosenberger 2011).  For these reasons and because 

histone hyperacetylation is associated with anti-inflammatory phenotypes (Adcock 
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2007) and can alter gene expression (Strahl & Allis 2000), we proposed that acetate 

supplementation reverses LPS-induced histone acetylation changes, and is associated 

with reduction of the pro-inflammatory gene expression.  To begin to test this 

hypothesis we quantified the ability of long-term acetate supplementation to increase 

brain histone acetylation, to alter HAT and HDAC enzyme activities, and to decrease 

the expression of the pro-inflammatory cytokine IL-1β in a rat model of LPS-induced 

neuroinflammation.  Unlike a single dose of glyceryl triacetate, long-term acetate 

supplementation increased HAT activity and had no effect on total brain HDAC 

activity, with variable effects on brain HDAC class I & II expression.  In agreement 

with our hypothesis, neuroinflammation reduced the proportion of brain H3K9 

acetylation by 50% and increased IL-1β protein and mRNA levels by 1.3- and 10- fold, 

respectively, all of which were effectively reversed with long-term acetate 

supplementation. 

Evaluating the effect of neuroinflammation on brain histone acetylation in 

parallel with the drug effect found in the control and treated rats suggest that H3K9 

acetylation and possibly HDAC7 activity may be directly involved in injury 

progression in this model.  For example, as outlined in figure 8B, LPS-induced 

neuroinflammation resulted in a direct reduction in H3K9 acetylation that was reversed 

with acetate supplementation.  This finding is corroborated by other reports showing 

that the use of a HDAC inhibitor DMA-PB decreases microglial activation in a rat 

model of traumatic brain injury, and that this anti-inflammatory effect is associated 

with increased histone H3 acetylation (Zhang et al. 2008).  Further, the proportion of 
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acetylated H3K9 is significantly lower in livers of aged rats, suggesting that the 

acetylation of H3K9 may be required to maintain essential cellular functions 

(Kawakami et al. 2009).  Similarly, we found that the expression of HDAC7 was 

increased in rats subjected to LPS-induced neuroinflammation that was again reversed 

with long-term acetate supplementation.  This suggests that mechanisms are in place 

that may account for injury- and treatment-specific changes in histone acetylation.  In 

contrast, the acetylation state of H3K14 was not altered by acetate supplementation or 

LPS-induced neuroinflammation suggesting that H3K14 acetylation was not related to 

treatment or neuroinflammation.   

Another discrepancy between the effects of a single oral dose of acetate versus 

long-term acetate supplementation is that a single treatment decreases brain HDAC 

activity, whereas long-term supplementation had no effect on total brain HDAC 

activity, despite multiple alterations in the expression of individual HDAC.  This can be 

explained by the fact that HDAC assays performed in this study measured overall 

HDAC activity and were reflective of the sum of all the individual HDAC.  Given the 

differences in HDAC expression (i.e. increased brain HDAC1, 2 & 7 and decreased 

brain HDAC3), we believe that the histone acetylation pattern found in this study is a 

reflection of the substrate specificity of the specific HDAC expressed following 

treatment despite no overall change in total brain HDAC activity.  We speculate that 

the increased expression of HDAC1 and HDAC2 is a physiological response to long-

term acetate supplementation and an increase in brain acetyl-CoA levels.  Further, 

HDAC activity does not depend solely on the expression of HDAC, but rather work in 
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concert with co-regulatory repressive complexes to modify catalytic activity (de Ruijter 

et al. 2003).  For example, cloned HDAC and purified HDAC do not have 

deacetylating activity in vitro due to the lack of other protein complexes found in vivo 

(Saha & Pahan 2006).  Therefore, HDAC activity is not expected to increase unless the 

increase in HDAC expression is paralleled by an increase in the expression of co-

regulatory complexes.  Moreover, we do not exclude the possibility that other post-

transcriptional or post-translational modifications of the expressed HDAC that render 

them less active, resulting in no overall change in total brain HDAC activity.  

Pyruvate: Another Anti-inflammatory Metabolite 

 Another metabolite that has anti-inflammatory and neuroprotective properties is 

pyruvate.  The supplementation of pyruvate, or its aliphatic ester ethyl pyruvate, 

decreases LPS and hydrogen peroxide-induced microglial activation and promotes 

neuronal survival (Kim et al. 2005).  In addition, the administration of pyruvate 

provides protection against hippocampal neuronal injury following transient cerebral 

ischemia in rats (Lee et al. 2001).  Pyruvate also boosts extracellular brain glucose 

levels and decreases contusion volume and neuronal death in a rat model of traumatic 

brain injury (Fukushima et al. 2009).  Because acetate-derived acetyl-CoA can inhibit 

pyruvate dehydrogenase and lead to the accumulation of brain pyruvate, it is not 

unreasonable to suggest that the anti-inflammatory and neuroprotective effect of acetate 

may occur at least in part due to the accumulation of pyruvate.  It will be interesting to 

test whether pyruvate, like acetate, can increase brain acetyl-CoA levels and alter 

histone acetylation and pro-inflammatory gene expression.  To examine whether 
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acetate works through a mitochondrial process, we measured the effect of acetate on 

mitochondrial biogenesis but found no alteration in neuronal mitochondrial numbers 

following 28 days of acetate supplementation.  This, however, does not exclude the 

possibility that acetate alters other mitochondrial processes such as tricarboxylic acid 

cycle, the energy state, or mitochondrial gene expression.  In summary, long-term 

acetate supplementation reduced IL-1β expression in vivo by a mechanism that may 

involve a distinct site-specific pattern of histone acetylation and/or HDAC expression 

in brain.  LPS-induced changes in H3K9 acetylation, the expression of HDAC7, and the 

pro-inflammatory cytokine IL-1β are potentially key mechanistic targets of acetate 

supplementation.  Thus physical epigenetic changes and/or direct changes in protein 

acetylation may help to explain the functional consequences of acetate supplementation 

found in this rat model of neuroinflammation.   

The data generated in the in vitro system were informative and inclusive as they 

comprised more pro-inflammatory cytokines as well as anti-inflammatory cytokines 

that could not be measured reliably in vivo because of the dilution of these molecules in 

whole brain homogenates.  We demonstrated that acetate treatment reverses the LPS-

induced reduction in H3K9 acetylation and decreases pro-inflammatory cytokines in 

microglia in vitro.  Moreover, acetate treatment increased the transcription of the anti-

inflammatory cytokines TGF-β1 and IL-4, suggesting that acetate-induced histone 

modulation may influence more strongly the expression of anti-inflammatory cytokines 

in this model considering histone hyperacetylation is conventionally linked to increased 

gene expression.  We also demonstrated the time-dependent effects of LPS and acetate 
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treatment on MAPK activation.  In addition, acetate treatment reduced LPS-induced 

increases in total NF-κB p65 protein level, serine 468 phosphorylation, and increased 

its acetylation at lysine 310.  These data suggest that acetate metabolism can modulate 

cytokine balance in microglia toward a more anti-inflammatory state which correlates 

to increases in both histone and non-histone protein acetylation.   

Possible Mechanisms by which Acetate may Interfere with Translation 

The differential effect of acetate treatment on mRNA and protein levels 

suggests that the reduction in pro-inflammatory cytokines may be due to a disruption in 

mRNA translation rather than gene transcription or pro-inflammatory cytokine 

turnover.  Translation involves the interaction of mRNA with various subsets of 

proteins which, we speculate, may be regulated by acetylation.  For example, nuclear 

mRNA binds to nuclear proteins that transport mRNA to the cytosol.  Some of these 

proteins repress translation by interfering with the binding of mRNA to ribosomal 

subunits (Wells 2006).  Similarly, the integrity of mRNA is modulated by mRNA 

stabilizing proteins (Kohn et al. 1996).  It is possible that acetylation may alter the 

expression and/or activity of mRNA-binding and/or stabilizing proteins.  Of particular 

interest is cytosolic polyadenylation element-binding protein (CPEB) expressed both in 

neuroglia and neurons which prevents the formation of the translation initiation 

complex and represses translation (Theis et al. 2003, Mendez & Richter 2001).  CPEB 

is regulated by phosphorylation (Atkins et al. 2004) however the effect that acetylation 

has on its activity remains unknown.  Further, the eukaryotic initiation factor 5A 

(eIF5A), which regulates initiation and elongation, contains a polyamine-lysine 
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conjugated amino acid “hypusine” that is essential to its activity (Zanelli et al. 2006, 

Gregio et al. 2009, Saini et al. 2009) and is inactivated following acetylation by 

spermidine/spermine acetyltransferase 1 (Lee et al. 2011).  In addition, acetylation by a 

histone acetyltransferase PCAF leads to eIF5A accumulation in the nucleus that 

prevents translocation to the cytosol and in turn disrupts translation (Ishfaq et al. 2012).  

All of which suggests that acetylation may be involved in the regulation of mRNA 

translation.  Acetate treatment may also reduce pro-inflammatory cytokine levels but 

not mRNA by increasing protein turnover.  A number of histone acetyltransferases 

possess intrinsic ubiquitin-conjugating activity and are associated with ubiquitin 

transferases in multiprotein complexes that stimulate degradation (Sadoul et al. 2008).  

Further, acetylation of the translation elongation factor (E2F1) (Galbiati et al. 2005) 

and the hypoxia-inducible factor 1α (HIF-1) at lysine 532 enhances their ubiquitination 

and degradation (Jeong et al. 2002).  Thus, it is plausible that non-histone protein 

acetylation may alter mRNA translation and the turnover of pro-inflammatory 

cytokines in activated microglia.  These speculations may potentially explain why 

acetate treatment reduces the levels of pro-inflammatory cytokine protein and not 

mRNA. 

The Dynamic Balance between Pro- and Anti-inflammatory Cytokines 

             An increase in pro-inflammatory cytokine production is generally considered 

deleterious based on their involvement in a wide number of neurological and non-

neurological disorders.  IL-1β, among other cytokines, is expressed in brain at low 

levels under physiological conditions and contributes to the control of metabolism 
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(Grossberg et al. 2011), temperature regulation (Huang et al. 2010b), synaptic plasticity 

and neuronal transmission (Vitkovic et al. 2000).  However, IL-1β is produced in high 

levels in many pathological conditions that include ischemic stroke (Legos et al. 2000), 

Alzheimer’s disease (Griffin et al. 1989, Shaftel et al. 2008), Down syndrome (Griffin 

et al. 1989), multiple sclerosis (McGuinness et al. 1997), Parkinson’s disease (Parish et 

al. 2002), epilepsy (Pernot et al. 2011), amyotrophic lateral sclerosis (Meissner et al. 

2010), and HIV-associated dementia (Zhao et al. 2001).  Co-cultures of primary rat 

cortical neurons with LPS-activated microglia results in neuronal death which can be 

largely blocked using the naturally occurring IL-1 receptor antagonist IL-1ra (Li et al. 

2003).  Not surprisingly, suppression of pro-inflammatory cytokines is associated with 

improved behavioral and cognitive endpoints in animal models of neurodegenerative 

diseases (Hu et al. 2007, Lloyd et al. 2008).  All of which suggests that IL-1β has an 

important role in the progression of neuroinflammation (Basu et al. 2004).  Upon 

injury, activated microglia produce inflammatory mediators which lead to activation 

and proliferation of astrocytes.  Likewise, activated astrocytes release inflammatory 

mediators, leading to further inter-glial communication, that if left unchecked results in 

neuronal bystander lysis (Streit et al. 1999).  IL-1β is a major signaling molecule and is 

involved in both neuronal-glial and inter-glial interactions which can increase 

microglial proliferation in mixed glial cultures, but not in isolated microglia cultures 

(Ganter et al. 1992), bolstering the notion that microglial activation is at least in part 

dependent on interactions with neighboring astrocytes (Kim et al.).  Therefore, 

disruption of the IL-1β system using anti-IL-1β antibodies, receptor blockade, or 
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interfering with activation by enzymatic cleavage ameliorates neuroinflammation and 

delays neurodegeneration (Labow et al. 1997).   

              In a mouse model of septic shock, the histone deacetylase inhibitor SAHA 

increases H3K9 acetylation and inhibits TNF- and IL-1β gene expression in lung 

tissue (Li et al. 2009).  This supports the premise that the reduction in the proportion of 

H3K9 is indeed associated with the LPS-induced neuroinflammation, and that 

increased H3K9 acetylation can be linked to reducing the pro-inflammatory cytokines 

expression.  However, pro-inflammatory cytokine expression in microglia is controlled 

directly by p38 MAPK downstream of the toll-like receptor 4 complex and is 

modulated by inhibitors selective for this kinase (Bachstetter et al.).  Further, p38 

MAPK is associated with other regulatory kinases that are potentially modified post-

translationally by acetylation reactions.  For example, HDAC inhibition increases the 

acetylation of MAPK- phosphatase 1 that promotes complex formation between MAPK 

phosphatase-1 and p38 MAPK.  This results in a reduction in phosphorylated p38 

MAPK and a reduction in cytokine formation (Cao et al. 2008).  Mechanistically, it is 

not known whether the net anti-inflammatory effect of HDAC inhibition is the result of 

alterations in pro-inflammatory gene expression or a direct result of modulating the 

acetylation state of accessory proteins involved in toll-like receptor signaling.  

Therefore, it is not clear at this point as to whether the treatment effect found in vivo on 

IL-1β expression, on IL-6 in vitro in LPS-stimulated microglia, and on TNF-α in LPS-

stimulated astrocytes is a direct result of decreasing p38 MAPK phosphorylation or an 

indirect effect by modulating gene expression.   
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            On the other hand, IL-4, IL-10, and TGF-β1 share features of anti-inflammatory 

and neuroprotective actions that can be attributed to downregulating glial production of 

pro-inflammatory cytokines and/or attenuating their secondary release.  IL-4 reduces 

the production of inflammatory mediators, including inducible nitric oxide (NO) 

synthase, TNF-α, IL-1β, cyclooxygenase 2, and macrophage chemoattractant protein-1 

by activated microglia in vivo and in vitro (Ledeboer et al. 2000, Furlan et al. 2000).  In 

addition, TGF-β has a neuroprotective effect by regulating Bad (pro-apoptotic) and Bcl-

2 and Bcl-x1 (anti-apoptotic) proteins (Dhandapani & Brann 2003).  Further, anti-

inflammatory cytokines reduce the expression levels of the pro-inflammatory cytokines 

in LPS-stimulated microglial-astroglial co-cultures (Ledeboer et al. 2000).  Endogenous 

and exogenous TGF-β1 and β2 suppress the production of NO but not IL-1β, IL-6 or 

TNF-α and exogenous IL-4 downregulates NO, IL-6 and TNF-α, but not IL-1β 

(Ledeboer et al. 2000).  Our findings showing that LPS stimulation upregulated IL-10 

is not counterintuitive, because stimulation of an inflammatory response can lead to 

upregulation of both conventional pro-inflammatory and anti-inflammatory mediators 

as a biological self-checking mechanism.  In this regard, IL-10 inhibits the LPS-

induced increase of IL-1β and TNF-α (Sawada et al. 1999) and IL-10 release by LPS-

stimulated microglia increases simultaneously with TNF-α (Seo et al. 2004).  The 

multiplicity of receptors, signaling cascades, cellular and subcellular targets, and 

various experimental designs all demonstrate the complexity of how anti-inflammatory 

cytokines can regulate the transcription and/or translation of the pro-inflammatory 

cytokines.   
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A dynamic balance exists between the pro- and anti-inflammatory cytokines, 

both of which are generated upon exposure to injury or infection.  The duration and net 

effect of interactions between these opposing molecular groups determines the outcome 

of the immune response.  Pathologies arise from shifting this dynamic balance in one 

direction or the other.  For example, excessive pro-inflammatory cytokines are linked to 

neuroinflammation and degeneration as mentioned earlier, while excessive anti-

inflammatory cytokines are conversely associated with susceptibility to systemic 

infections (Kasai et al. 1997, Munoz et al. 1991). 

Non-histone Targets of Acetylation 

   Lysine acetylation is a common post-translational modification that occurs on 

both histones as well as non-histone proteins.  Histone acetylation is conventionally 

linked to alteration of gene expression.  Non-histone targets of acetylation include 

cytoskeletal proteins and transcription and nuclear import factors.  Acetylation of these 

targets have many functional consequences including altering subcellular localization, 

DNA-binding, transcriptional activity, protein-protein interaction and protein stability 

(Sadoul et al. 2008, Glozak et al. 2005).  Acetyltransferases use acetyl-CoA as acetyl 

donor for post-translational acetylation reactions on lysine and arginine residues which 

can lead to structural and functional consequences in proteins.  The functional 

consequences of acetylation depend on where exactly within the protein acetylation 

takes place.  For example, NF-κB p65 acetylation at lysines 218, 221 and 310 increases 

nuclear localization, while acetylation at 122 and 123 reduces the binding affinity of 

p65 to DNA which promotes IκB-p65 interaction and nuclear export (Chen et al. 2002, 
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Huang et al. 2010a).  These examples give an idea on the intricacy of reactions and 

functional consequences based of acetylation.  We have demonstrated that, in LPS-

stimulated primary astrocyte cell cultures, acetate treatment decreases the basal levels 

of NF-κB p65 phosphorylation at serine 536 while not altering p65 phosphorylation at 

serine 468 or acetylation at lysine 310.  In this regard, phosphorylation of serine 536 

lowers the affinity of p65 to IκBα leading to NF- κB translocation into the nucleus and 

enhanced activity (Buss et al. 2004, Bohuslav et al. 2004).  Therefore, acetate 

treatment-mediated reduction in p65 phosphorylation at 536 may be responsible in part 

for the anti-inflammatory effect of acetate supplementation on LPS-activated astrocytes 

we observed in vivo (Reisenauer et al. 2011).  Because p65 phosphorylation at serine 

536 stimulates subsequent acetylation at lysine 310 (Hoberg et al. 2006, Chen et al. 

2005b), this could explain why acetate does not increase acetylation at lysine 310 in 

astrocytes, unlike in microglia.  Regardless, since post-translational modifications of 

NF-κB have diverse functional consequences (Huang et al. 2010a), further experiments 

need to be performed to determine the effect of acetate treatment on the different 

functional aspects of NF-κB in both LPS-stimulated microglia and astrocyte cultures.  

 MAPK signaling -another example of non-histone targets of acetylation- is 

inducible by pro-inflammatory cytokines and also regulates their transcription and 

translation.  For example, MAPK signaling regulates the production of IL-8 in response 

to IL-1 and osmotic shock (Shapiro & Dinarello 1995), and regulates the production of 

IL-6 in response to TNF-α (Beyaert et al. 1996).  Furthermore, interferon-β reduces 

traumatic spinal cord injury-induced ERK hyperphosphorylation and is associated with 
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functional recovery (Ito et al. 2009).  Inhibition of MAPK p38 and ERK reduces edema 

and the inflammatory mediator matrix metalloproteinase-9 after brain trauma (Mori et 

al. 2002), the infarct size (Sugino et al. 2000), iNOS, TNF-α, and cyclooxygenase-2 

expression (Piao et al. 2003) in ischemia, and the neurological deficits after transient 

(Legos et al. 2001) and permanent (Barone et al. 2001) ischemia.  Animals with genetic 

deletion of one of the MAPK accessory proteins show diminished IL-6 and TNF-α 

production in response to LPS stimulation (Kotlyarov et al. 1999).   

 Earlier studies demonstrated that a MAPK phosphatase is activated by certain 

lysine acetylation which leads to inactivation of MAPK signaling pathway, providing 

an important link between acetylation and phosphorylation in the regulation of 

neuroinflammation (Cao et al. 2008).   Because MAPK signaling can be altered by 

acetylation, we studied whether acetate treatment alters MAPK phosphorylation 

(activation) in LPS-stimulated BV-2 microglia and primary astrocyte cell cultures.  We 

have showed that acetate reduces LPS-induced MAPK p38 phosphorylation and basal 

level phosphorylation of ERK1/2 in astrocytes which may be attributable to acetylation 

of MAPK phosphatase-1.  In BV-2 microglia, the effect of LPS on MAPK 

phosphorylation in BV-2 microglia was time-dependent, as was the ability of acetate 

treatment to reduce LPS-induced p38 and JNK phosphorylation.  LPS increased 

phosphorylated p38 at 4 hr and phosphorylated JNK at 2 and 4 hr, whereas acetate 

treatment reduced phosphorylated p38 and JNK only at 2, but not 4, hr.  We did not 

observe an increase in MAPK activation at 0.5 or 1 hr unlike other studies (Schumann 

et al. 1996, Kraatz et al. 1998).  However, this may be due to our using a lower 
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concentration of LPS or may demonstrate a cell-type specific response.  These data are 

important in the light of the role that MAPK signaling has in neuropathologies.  While 

the therapeutic effect of acetate supplementation is demonstrated in the in vivo studies 

(Reisenauer et al. 2011), these present results further strengthen our understanding of 

the possible therapeutic mechanism(s) involved in modulating cytokine expression by 

increasing acetate metabolism.  Therefore, because the effect of acetate treatment on 

the LPS-induced MAPK p38 phosphorylation in BV-2 microglia is transient, the effect 

of acetate treatment on cytokine release may be due to the synergistic effect of other 

possible mechanisms. 

   NF-κB -another example of non-histone targets of acetylation- is acetylated on 

p65 subunit which modulates nuclear translocation, DNA binding, and transcriptional 

activity (Chen et al. 2001, Chen et al. 2002, Huang et al. 2010a).  Our studies showed 

that acetate treatment induced p65 hyperacetylation at lysine 310 in LPS-stimulated 

BV-2 microglia.  This is of interest because p65 interacts with HDAC1, 2 and 3, but 

only HDAC3 deacetylates p65 (Kiernan et al. 2003, Chen et al. 2001) which is 

downregulated with long-term acetate supplementation (Figure 11).  Therefore, the 

effect that acetate metabolism has on HDAC3 expression may help to explain the 

hyperacetylation of p65 at lysine 310 observed in this study.  The acetylation of p65 

may be associated with anti-inflammatory outcomes as it represses transcriptional 

activity, reduces binding to κB-DNA, and facilitates its interaction with IκB that 

increases p65 export to the cytoplasm.  Because acetylated p65 accumulates in the 

cytoplasm suggests that post-activation turn-off of NF-κB-dependent transcription is 
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regulated, at least in part, by acetylation (Kiernan et al. 2003).  However, β-amyloid 

toxicity increases hyperacetylated p65 at lysine 310 in microglia, which is reversed by 

sirtuin 1 over-expression and stimulation (Chen et al. 2005a).  This suggests that 

changes in the activity and expression of the of the sirtuins and class I HDAC can 

differentially modulate NF-κB-mediated inflammatory phenotype, possibly as a result 

of differing inflammatory stimulation or differing intercellular regulation points.  

Alternately, acetate treatment-induced p65 hyperacetylation in the presence of LPS 

may be linked to pro-inflammatory signaling that is generally outweighed by the other 

anti-inflammatory mechanisms.  Regardless, the functional consequences of post-

translational modification of p65 are diverse and specific to the modification and the 

residue involved (Huang et al. 2010a).  Future studies are necessary to determine the 

impact that acetylation of p65 has on NF-κB functionality in this model.   

Acetate-mediated Global and Gene-specific Epigenetic and Expression 

Modulation 

 

Whereas acetate treatment alters histone acetylation at histones H3K9, H4K8 

and H4K16 after a single oral dose and long-term supplementation, LPS alters only 

acetylated H3K9 in our in vivo experimental paradigm where it reduces acetylated 

H3K9 by 2-fold and acetate treatment reverses it to a hyperacetylation state (Soliman et 

al. 2012b).  Because of this as well as other reports implicating H3K9 in 

neuroinflammation and neuroglial activation (Govindarajan et al. 2011, Silva et al. 

2012, Zhang et al. 2008), we chose to focus on this epigenetic marker for our later in 

vitro experiments.  In LPS-stimulated microglia, acetate treatment also reverses LPS-

induced H3K9 hypoacetylation similar to that found in vivo (Soliman et al. 2012a).  In 
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contrast, in LPS-stimulated astrocytes, acetate treatment increases H3K9 acetylation in 

the presence and absence of LPS, but LPS itself does not alter acetylated H3K9.  For 

this reason, we decided to carry out our chromatin immunoprecipitation analysis with 

BV-2 microglia cultures, where LPS is altered by both LPS and acetate treatment.   

Acetate treatment reverses LPS-induced increases in Cox-1, Cox-2 and NF-κB 

p65 protein levels, IL-1β protein and not mRNA, and increases IL-4 mRNA.  In an 

attempt to determine whether acetate treatment-induced global H3K9 hyperacetylation 

is involved in the regulation of these inflammatory mediators at the gene levels, we 

measured H3K9 acetylation at the promoters of these genes of interest using chromatin 

immunoprecipitation.  The enrichment levels of acetylated H3K9 were increased 

around the promoter regions for the genes coding for Cox-1 and 2, IL-1β and NF-κB 

p65, but not IL-4, all of which were largely unaffected by LPS.  This suggests that 

acetate-induced H3K9 acetylation may potentially contribute to the effect of treatment 

on the expression of these specific genes.  Alternatively, the effect of acetate treatment 

on gene expression can possibly be linked to acetylation of non-histone transcription 

factors as discussed earlier, or other acetate treatment-mediated histone acetylation 

changes such as H4K8 or H4K16.  These results warrant more experiments to evaluate 

the involvement of other histone markers in the acetate-treatment mediated gene 

expression changes. 

Since histone acetylation is conventionally associated with enhanced gene 

expression (Strahl & Allis 2000), we speculate that the increases in H3K9 acetylation 

may be instrumental in upregulating the transcription of anti-inflammatory cytokines, 
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as found in our studies. Interestingly, LPS did not alter H3K9 acetylation in astrocytes 

unlike our other results showing that LPS infusion over 28 days decreases H3K9 

acetylation by 50% in whole brains from a rat model of neuroinflammation (Soliman et 

al. 2012b) and in LPS-stimulated primary and BV-2 microglia.  This can potentially be 

attributed to the different overall acetate concentrations (and thus acetate-derived 

acetyl-CoA) in vivo and in vitro, or the in vivo results representing the combined effects 

in all cell types in the brain.  Our data also demonstrate a correlation between acetate 

treatment-induced inhibition of pro-inflammatory cytokine release and hyperacetylation 

of H3K9 and p65 at lysine 310.   

  H3K9 can also be modified by methylation where methylated H3K9 is 

associated with gene repression, contrary to acetylated H3K9 that is associated with 

active gene expression (Rice & Allis 2001).  In this regard, the enrichment of 

methylated H3K9 at the promoter region of opioid receptors is linked to a decrease in 

opioid receptor transcription in mice fed a high fat diet (Vucetic et al. 2011).  Similarly, 

genome-wide mapping demonstrates that an increase H3K9 acetylation corresponds 

with areas of transcription activity (Shin et al. 2012).  H3 methylation is more 

predominant in areas of enriched acetylated H4, unlike methylated H4 which is more 

evident in less acetylated chromatin regions (Annunziato et al. 1995).  The functional 

outcome of this interplay regarding gene expression control and the individual genes 

involved is not clearly known, but sheds the light on the intricacy of the post-

translational modifications of histones.  It is also possible that H3K9 hyperacetylation 

may alter the expression and/or activity of effector proteins involved in translation, 
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which may help to explain the decrease in pro-inflammatory cytokines in the absence 

of a reduction in their mRNA levels.   

 To address non-specific effects of acetate on gene expression, we performed an 

rt-PCR array to determine the simultaneous changes in 84 genes involved in both the 

innate and adaptive immune responses.  The expression of only six genes was altered 

by more than 0.5-fold.  Only four genes did show more than a 2–fold change; 

adenosine receptor A2a, MAPK p38, TNF-α, and IL-1 receptor antagonist suggesting 

that acetate supplementation can influence the expression of genes involved in adaptive 

and innate immune responses.  None of these changes were statistically significant, 

with the exception of adenosine A2a mRNA which was increased by 8 fold.  The 

importance of this experiment is that it shows that acetate treatment alters the 

expression of selected genes and does not induce global gene expression changes.   

Astrocytes Involvement in the Inter-glial Communication in Neuroinflammation 

Astrocytes possess a number of physiological functions including regulation of 

blood flow, fluid, ion and transmitter homeostasis, modulation of synaptic functions, 

and supporting the blood brain barrier (Sofroniew & Vinters 2010).  The immune 

functions of the astrocytes are recognized as astrocytes are an abundant source of pro-

inflammatory cytokines and other as inflammatory mediators in brain injury and 

infection (Sofroniew & Vinters 2010, Dong & Benveniste 2001, Gorina et al. 2009, 

Gorina et al. 2011) and reactive astrogliosis is a pathological component of numerous 

neurological discords (Hamby & Sofroniew 2010, Sofroniew & Vinters 2010).  

Furthermore, glial communication plays a crucial role in sustaining a 
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neuroinflammatory response and can eventually lead to neuronal bystander death if left 

unchecked (Tian et al. 2012, Hamby & Sofroniew 2010, Streit et al. 1999).  This 

crosstalk also involves beneficial effects; for example, astrocytic factors upregulate 

microglia-derived anti-oxidants and thus reduce microglial reactive oxygen species 

generation (Min et al. 2006).  Likewise, astrocyte-conditioned media rapidly reduce 

interferon-γ-stimulated microglia-derived inflammatory mediators such as iNOS (Kim 

et al. 2010) and stimulate microglial release of the pro-survival mediator brain-derived 

neurotrophic factor (Yang et al. 2012).  Downregulating the astrocytes-derived 

inflammatory response protects neurons from the potential of excessive uncontrolled 

pro-inflammatory cytokines (Hamby & Sofroniew 2010).  In addition, it can disrupt 

neuroglia communication and mutual activation, and therefore further averts neuronal 

damage.  We demonstrated that acetate treatment reduces pro-inflammatory cytokine 

levels in a rat model of neuroinflammation, and in vitro in LPS-stimulated microglia 

and astrocytes, which can explain the attenuation of LPS-induced glial activation 

observed with acetate supplementation in vivo (Reisenauer et al. 2011). 

The Differences between the Effects of Acetate Treatment  in Microglia and 

Astrocyte Cultures 

 

Interestingly, throughout our cumulating work, we have observed many 

neuroglial cell type-specific similarities as well as discrepancies in terms of their 

response to acetate treatment and LPS challenge.  Similarities include acetate treatment 

reducing LPS-induced microglial and astrocyte activation in vivo, increasing H3K9 

acetylation, upregulating anti-inflammatory cytokine IL-4 and TGF-β1 mRNA, and 

returning LPS-induced NF-κB p65 and Cox-1 protein levels to control levels in both 
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cell types in vitro.  Moreover, acetate treatment reduces pro-inflammatory cytokines 

IL-1β, IL-6 and TNF-α protein but not mRNA in both cell types, suggesting that 

treatment decreases pro-inflammatory cytokine levels mainly by interfering with 

translation of mRNA rather than modulating transcription, or by stimulating protein 

turnover.  Differences between the astroglial and microglia responses include LPS 

reducing H3K9 acetylation by 2-fold, increasing IL-6 by 1.3-fold, increasing JNK 

phosphorylation by 2-fold, and decreasing PLCβ1 protein level only in microglia.  

Moreover, whereas MAPK p38 phosphorylation is increased by LPS both in microglia 

and astrocytes, it is reduced by acetate treatment at 4 hr in astrocytes cell cultures only.  

In addition, acetate treatment increases NF-κB p65 acetylation at lysine 310 by 3.5 fold, 

and reverses LPS-induced increases in phosphorylation at serine 468 of p65 and Cox-2 

protein level only in microglial cell culture, whereas only in astrocytes does acetate 

treatment decrease sPLA2 IIA, PLCβ1, LPS-induced cPLA2 phosphorylation and PGE2 

release, and basal levels of NF-κB p65 phosphorylation at 536.  ERK1/2 

phosphorylation increases by acetate treatment only in the presence of LPS in microglia 

cultures, and is reduced beyond control levels with acetate treatment in astrocyte 

cultures.  All of which demonstrates clear cell type-specific responses to acetate 

treatment despite the similar overall anti-inflammatory outcome evidenced by the 

reduction in the LPS-induced activation in vivo and the shift of the inflammatory 

cytokine balance toward a more anti-inflammatory state in vitro and in vivo.  This is 

further supported by other reports showing the distinctive responses of astrocytes and 

microglia to injury, infection, inflammation and other anti-inflammatory agents (Lee et 
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al. 2010, Lu et al. 2010).  Because acetate treatment reverses the LPS-induced MAPK 

p38 phosphorylation and the basal levels of phosphorylated ERK1/2 in astrocyte and 

not in microglial cultures, we speculate that interruption of MAPK signaling plays a 

stronger role in the anti-inflammatory effect of acetate treatment in astrocytes.  

Conversely, because H3K9 acetylation in reduced by LPS and reversed with acetate 

treatment in microglia, it is possible that the epigenetic mechanisms are more 

influential in microglia.  This premise is promising for the potential of selectively 

downregulating MAPK signaling in only one cell type without impeding its 

physiological functions in other cell types, as opposed to universal inhibitors of MAPK 

signaling.  This adds to the advantage of acetate treatment being safe and well-

tolerated.  In this regard, clinical trials using glyceryl triacetate to induce acetate 

supplementation in patients with Canavan’s disease show that it does not produce 

biochemical or metabolic abnormalities (Madhavarao et al. 2009, Segel et al. 2011).  

Likewise, animal studies using larger doses of glyceryl triacetate show that acetate 

supplementation is well-tolerated and cause no apparent toxicity (Mathew et al. 2005).   

In vivo, the discrepancy in the glial responses to acetate treatment, which 

partially reduces LPS-mediated microglial activation while completely reducing 

astrocyte activation, may be attributed to astrocytes being more efficient at the uptake 

and/or utilization of acetate, or the continual LPS stimulation to which microglia may 

be more sensitive.  This could potentially explain why acetate treatment interrupts more 

inflammatory reactions in astrocytes than it does it microglia as demonstrated by the 

selective effect of acetate on MAPK, cPLA2 phosphorylation, sPLA2 IIA, PLCβ1 and 
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PGE2 release in astrocyte.  These speculations pave the road for further studies 

determining other cell type-specific mechanism of the anti-inflammatory effect of 

acetate.      

Eicosanoid Signaling Alteration in the Light of MAPK and Cytokine Changes 

To broaden our understanding of the mechanisms of the anti-inflammatory 

effect of acetate in vivo, we studied the effect of acetate treatment on eicosanoid 

signaling known to be associated with neuroinflammatory and neurodegenerative 

conditions (Lima et al. 2012, Sun et al. 2010) in BV-2 microglia and primary astrocyte 

cultures following LPS stimulation.  Acetate treatment did not alter LPS-induced 

cPLA2 phosphorylation and reversed LPS-induced reduction in PLCβ1 and increases in 

Cox-1 and Cox-2 in BV-2 microglia.  In LPS-stimulated primary astrocytes, acetate 

treatment reduced sPLA2 IIA, PLCβ1 in the presence of LPS and reversed the LPS-

induced cPLA2 phosphorylation and Cox-1 levels while not altering LPS-increased 

Cox-2.  Further, acetate treatment reversed LPS-elevated PGE2 secretion in astrocyte, 

which was not altered in BV-2 microglia by either LPS or acetate treatment.  The 

enrichment levels of acetylated H3K9 were measured at the promoters of the genes for 

Cox-1 and 2 and were found to be increased by acetate treatment and largely unaltered 

by LPS stimulation.  These data suggest that acetate treatment can modulate eicosanoid 

signaling in neuroglial cell type-distinct mechanisms, which may potentially involve 

H3K9 acetylation.   

Of interest, acetate reduces sPLA2 IIA and LPS-induced cPLA2 phosphorylation 

in astrocytes and not BV-2 microglia.  Because cPLA2 is a substrate for 
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phosphorylation by MAPK p38 (Hiller & Sundler 1999, Kramer et al. 1996) and ERK 

(Hiller & Sundler 1999), both of which are inhibited by acetate treatment in astrocytes 

and not BV-2 microglia, it is possible that acetate treatment reverses cPLA2 

phosphorylation primarily by reducing MAPK p38 and ERK activity.  In addition, 

acetate treatment reduces LPS-induced elevations of TNF-α and IL-1β, both of which 

upregulate cPLA2 phosphorylation (Jupp et al. 2003) and sPLA2 IIA level and activity 

(Adibhatla & Hatcher 2007) which may contribute to the reduction of cPLA2 

phosphorylation with acetate treatment.  Although plausible in astrocytes, this does not 

explain why acetate treatment does not reduce LPS-induced cPLA2 phosphorylation in 

BV-2 microglia in this study, since acetate treatment reduces IL-1β and TNF-α in both 

LPS-stimulated BV-2 microglia and astrocyte cultures.  The complete attenuation of 

LPS-induced PGE2 in astrocytes and not in BV-2 microglia by acetate treatment can 

potentially be due to completely reducing cPLA2 phosphorylation only in astrocytes.  

These data do not exclude the possibility of alterations regarding the enzyme activities 

and membrane translocation. 

Conclusion 

In conclusion, these studies significantly broadened our understanding of the 

specific molecular and cellular effects of acetate treatment in in vivo and in vitro 

models of inflammation.  We have optimized in vitro microglia and astrocyte systems 

that reproduce the main findings from a rat model of neuroinflammation.  Specific key 

inflammatory mediators have been identified that can be altered by acetate treatment in 

neuroglial cell type-specific patterns in microglia and astrocyte.  Moreover, these 
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results describe epigenetic changes both on the global and gene-specific levels, shifting 

of the inflammatory cytokine balance towards a more anti-inflammatory phenotype, 

and modulation of certain signaling transduction pathways by acetate treatment.  Future 

studies will test the effect of acetate treatment on the behavioral deficits in animal 

models of neurodegenerative diseases such as a triple transgenic mouse model of 

Alzheimer’s disease, the functional consequences of NF-κB modifications, and the 

changes in other histone targets and their modifications.  
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