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ABSTRACT 
 

 
 Temperature-dependent sex determination (TSD) was first discovered in an 

African lizard over 40 years ago.  TSD has since been shown to be exhibited by many 

vertebrates including some fish and amphibians, numerous lizards, turtles, and all 

crocodilians studied to date.  Although numerous questions surround TSD, a major 

question focuses on understanding the genetic, physiological and molecular mechanisms 

underlying this process.  However, the molecular mechanisms underlying TSD are not 

well known and the gene(s) that transduces a signal for ovary or testis development is not 

known in any species.  Furthermore, it is well established that sex steroid hormones, 

androgens and estrogens, are important for sex determination and differentiation in TSD 

species.  Yet, the role of androgens in these processes is not well understood.  This 

dissertation addresses these questions in two parts.  First, to identify unique, thermo-

sensitive, genes involved in TSD and secondly, determine the role of androgens in sex 

determination and differentiation in the common snapping turtle, a reptile with TSD.   

  I used differential-display PCR to clone a candidate gene involved in TSD, the 

cold-inducible RNA binding protein (Cirbp).  The temporal and spatial patterns of Cirbp 

mRNA and protein expression during and after sex determination were determined using 

quantitative real-time PCR, in situ hybridization, and immunohistochemistry.   I used 

next-generation Illumina sequencing to identify small nucleotide polymorphisms (SNPs) 

to test for associations between Cirbp genotype, mRNA expression, and sex ratios.  
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 To determine the role of androgens in sex determination and differentiation, 

snapping turtle embryos were treated with the androgen, dihydrotestosterone (DHT), the 

anti-androgen, flutamide, or a vehicle (ethanol) control.  Whole mount in situ 

hybridization and immunohistochemistry were used to determine the effect of the 

treatments on sex differentiation of the male reproductive tracts.   Quantitative real-time 

PCR was used to measure expression patterns of ovary-specific genes, testis-specific 

genes and steroidogenic genes in gonads from embryos treated with vehicle, DHT, or 

flutamide.  

 I found Cirbp was induced at a high female-producing temperature, but not at a 

low female-producing temperature.  Cirbp is associated with TSD and expression of 

alternative Cirbp alleles is capable of transducing temperature differently for establishing 

a signal that directs ovaries versus testes development.  I observed allelic specific 

expression and differences in allele frequencies between turtle embryos from northern 

and southern Minnesota, suggesting genetic adaptation to local thermal regime.  I also 

found significant genetic associations between Cirbp genotype, Cirbp expression and 

sexual phenotype in a study that produced mixed sex ratios.  

 Androgens were capable of inducing ovarian development even at an all-male 

producing temperature, presumably by inducing aromatase expression and increasing 

endogenous estrogen production.  I also observed among clutch variation in androgen 

responsiveness to produce females, suggesting there is a genetic basis for the response. 
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My findings provide the strongest evidence to date for a unique gene involved in 

TSD.   Additional studies are required to define the functional role of Cirbp in sex 

determination.  Androgens appear critical for ovarian development, but ongoing research 

is needed to understand androgen signaling and the genetic variation underlying this 

process.   
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CHAPTER I 
 
 

INTRODUCTION TO SEX DETERMINATION AND DIFFERENTIATION IN 
AMNIOTIC VERTEBRATES 

 
 

Sex determination and differentiation are important developmental processes 

because they shape every aspect of the organism’s biology, from the ecological to the 

molecular levels (Charnov, 1982; Shine, 1989; Ranz et al., 2003; Ellegren and Parsch, 

2007).  Sex determination is the developmental decision to form testes or ovaries.  Sex 

differentiation is the development of sex differences in non-gonadal tissues due to sex 

hormone signaling.  

Although sex determination and differentiation are fundamental biological 

processes, the modes of sex determination exhibited by amniotic vertebrates vary 

dramatically.  The variation in sex determination between mammals, birds, and reptiles 

makes these organisms useful for studying the conserved or unique mechanisms of sex 

determination and differentiation.   

Here I provide a brief synopsis of sex determination and differentiation in 

amniotic vertebrates.  First, I describe the varying sex determining mechanisms exhibited 

by amniotes, followed by the cellular, morphological, and molecular development of the 

gonads.  Next, I discuss sex differentiation, using the development of the male and 

female reproductive tracts as an example.  Finally, I establish research objectives to be 

addressed in proceeding chapters of this dissertation.  
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Sex Determining Mechanisms of Amniotic Vertebrates 

The modes of sex determination are generally classified into two broad 

categories: genotypic or environmental.  The mechanisms of sex determination exhibited 

by amniotic vertebrates are summarized in Figure 1.1 and described in more detail below.   

Genotypic Sex Determination 

An individual’s genetic composition, or genotype, can influence the organism to 

develop as male or female.  Species that display this mode of sex determination are said 

to have genotypic sex determination (GSD) (Bull 1983; Janzen and Paukstis, 1991; 

Valenzuela 2004).  In GSD species, sex is permanently fixed at conception by inherited 

genetic factors.   The most well known forms of GSD depend on the organization of 

inherited sex chromosomes.  Mammals, some lizards, and some turtles exhibit GSD with 

heterogametic males (XY) and homogametic females (XX).  Birds, snakes, some lizards, 

and some turtles exhibit GSD with homogametic females (ZZ) and heterogametic males 

(ZW).  

Environmental Sex Determination 

Environmental sex determination (ESD) is an alternative to GSD.  Species with 

ESD determine their sex after fertilization depending on various environmental factors, 

such as pH, photoperiod, social environment, nutritional status, and temperature (Bull, 

1983; Janzen and Paukstis, 1991).  Temperature is the only known environmental factor 

to determine sex in amniotic vertebrates, known as temperature-dependent sex 

determination (TSD).  TSD was originally discovered in the African lizard, Agama 

agama (Charnier, 1966).  It has since been shown that temperature determines sex in 
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some lizards, numerous turtles, and all crocodilians studied to date (Viets et al., 1993; 

Lang and Andrews, 1994; Deeming 2004; Ewert et al., 2004; Harlow, 2004).    

Species with TSD determine sex during a critical period of development when the 

embryo is sensitive to the incubation temperature, known as the temperature sensitive 

period (TSP).   The TSP varies with species, but generally occurs around the middle third 

of embryonic development (Janzen and Paukstis, 1991; Wibbels et al., 1991a; Lang and 

Andrews, 1994; Ewert et al., 2004).  Three thermal patterns of TSD are commonly 

observed (Bull, 1983; Ewert et al., 2004, Valenzuela, 2004).  Type Ia produces males at 

low temperatures and females at warm temperatures.  This pattern of TSD is primarily 

observed in turtles, including snapping, green, leatherback, and painted (Standora and 

Spotila, 1985).  Type Ib produces males at high temperatures and females at low 

temperatures.  This pattern of TSD occurs in some lizards, some turtles, and crocodilians 

(Valenzuela, 2004).  Type II produces males at intermediate temperatures and females at 

both cool and warm extremes around the intermediate temperature.  Some turtles and 

lizards, such as the leopard gecko (Eublepharis macularius) exhibit this latter pattern of 

TSD (Janes and Wayne, 2006; Rhen et al., 2011).     

Differentiation of the Gonads 

Development of the gonads is unique because they are derived from a bipotential 

tissue, meaning the tissue can differentiate into either testes or ovaries.  The bipotential 

tissue, known as the genital ridge or bipotential gonad, initially develops from the 

intermediate mesoderm and then as an outgrowth of cells from the mesonephric kidney 

(Wilhelm et al., 2007).  The bipotential gonad is histologically indistinguishable between 

the sexes, consisting of an outer cortex and inner medulla composed of undifferentiated 
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mesenchymal cells and an overlying coelomic epithelium.  Primordial germ cells separate 

into two populations and migrate from the yolk sac to the right or left genital ridge.  

Germ cells in mammals migrate through the hindgut and up the dorsal mesentery to the 

coelomic epithelium, but the germ cells in reptiles and birds migrate through the blood 

stream to the coelomic epithelium (Kuwana, 1993; Starz-Gaiano and Lehmann, 2001). 

The genital ridge grows as a bipotential tissue until the appropriate signals for 

differentiation of testes or ovaries occurs.  Regardless of the mode of sex determination, 

the general morphological and cellular development of the gonads appears similar across 

vertebrate groups, but the timing of these events during development can vary between 

species (Morrish and Sinclair, 2002; Carmona et al., 2009).  A summary of the 

histological development of the testes and ovaries is provided in figure 1.2.   

Morphological and Cellular Development of the Testes 

Testis organogenesis has been reviewed repeatedly in the last decade (Smith and 

Sinclair, 2001; Morrish and Sinclair, 2002; Tilmann and Capel, 2002; Barsoum and Yao, 

2006; Wilhelm et al., 2007; DeFalco and Capel, 2009), but a brief overview is provided.  

The testes develop from the inner medulla of the genital ridge, while the outer cortex 

regresses (Raynaud and Pieau, 1985; Wibbels et al., 1991).  The inner medulla grows due 

to differentiation of somatic cells into Sertoli, peritubular myoid, or Leydig cells.  Germ 

cells eventually differentiate to form mature sperm.  Each of these cell types plays an 

important role in testes development. 

Pre-Sertoli cells are derived from cells that originate in the coelomic epithelium 

and migrate to the medulla after commitment to testes development (Karl and Capel, 

1998).  The pre-Sertoli cells will differentiate further to form mature Sertoli cells.  The 
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presence of Sertoli cells is the first indicator of testes development.  Sertoli cells enclose 

the germ cells and assist with the formation of testes cords.  Sertoli cells function to 

support germ cells, regulate spermatogenesis, and secrete certain hormones.   

Other somatic cells will migrate from the mesonephros to the gonad and 

differentiate to form modified myofibroblastic cells called peritubular myoid cells (Capel 

et al., 1999).  These cells surround Sertoli and germ cells to finalize the formation of the 

testes cords, or seminiferous tubules.  These cells have contractile properties needed for 

moving sperm and other fluids into the lumen of the seminiferous tubules in the adult 

testes.   

Leydig cells are the final somatic cell type that differentiates in the testes.  These 

cells develop in the interstitium between the seminiferous tubules (Doddamani, 2006).  

Leydig cells are steroidogenic cells that secrete male hormones, or androgens, necessary 

for developing male secondary sex characteristics.   

Germ cells proliferate early in testis development, then leave the cell cycle, and 

arrest as spermatogonia.  Spermatogonia remain arrested until sexual maturity when 

signals from the brain and testes allow for spermatogenesis to occur (Pudney, 1995). 

After these cell types have been established, endocrine signals will influence sex 

differentiation of other tissues including the brain and reproductive tracts.  Sertoli and 

Leydig cells secrete hormones necessary for the development of the male reproductive 

tract and will be discussed later.  The final developmental feature of testes development 

is the formation of testis-specific vasculature (Morrish and Sinclair, 2002). 
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Morphological and Cellular Development of the Ovaries 

Numerous reviews have been published describing ovary organogenesis (Ditewig 

and Yao, 2005; Yao, 2005; DeFalco and Capel, 2009; Edson et al., 2009; Jiménez, 2009), 

and a brief overview will be provided.  Ovaries develop from the outer cortex of the 

genital ridge and the inner medulla regresses (Morrish and Sinclair, 2002).  The somatic 

and germ cells proliferate which leads to thickening of the cortex.  The development of 

germ cells influences the differentiation of two somatic cells: granulosa and theca cells.     

Germ cells continue to proliferate in the cortex and form a nest of germ cells 

called oogonia (Raynaud and Pieau, 1985).  Formation of oogonia usually occurs before 

birth/hatching.  Oogonia proliferate by meiosis and form primary oocytes.  Stromal cells 

will differentiate and form a single layer of cells around the oocytes to form primordial 

follicles.  These cells are called pre-granulosa or follicular cells.  Primordial follicles 

arrest at the diplotene stage of meiotic prophase I and remain arrested until sexual 

maturity (McLaren and Southee, 1997).  At sexual maturity, a subset of follicles is 

recruited to continue developing.  The pre-granulosa cells undergo mitosis and form 

larger cells, now called granulosa cells (Ditewig and Yao, 2005).  Granulosa cells are 

important for normal development of the ovum and converting androgens into estradiol.  

Stromal cells differentiate to form cells that surround the granulosa cells and follicles 

called theca cells.  Two layers of thecal cells will develop, an internal and an external 

layer.  These layers have distinct functions involved in hormone production and support 

of the follicle.  Follicles continue to develop until they mature and a single ovum is 

expelled from the ovary at ovulation.   Follicles that do not mature or expel an ovum will 

degenerate and be re-absorbed in a process called atresia (Wilhelm et al., 2007). 
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Molecular Mechanisms of Sex Determination 

What allows for commitment to testes or ovaries?  It is the molecular signaling 

that occurs in the genital ridge to both turn on testes-specific genes and suppress ovarian 

genes or vice versa.  Given that the modes of sex determination exhibited by amniotic 

vertebrates vary, it seems likely the molecular mechanisms underlying sex determination 

also vary.  For example, a single gene called the sex-determining region on the Y 

chromosome (Sry) determines the sex of the embryo in eutherian mammals with GSD 

(Sinclair et al., 1990; Koopman et al., 1990; Goodfellow and Lovell-Badge, 1993).  

However, Sry or an equivalent gene has not been identified in any other GSD species, nor 

has the gene(s) that transduces temperature into a signal for testis or ovary development 

been identified in any TSD species.    

Conservation in morphogenesis of the gonads would also suggest the presence of 

evolutionarily conserved genes in sex determination.  Studies examining the molecular 

mechanisms of sex determination in non-mammalian species have focused on cloning 

orthologs of sex determining genes first identified in mammals and examining their 

expression in developing gonads.  To date, approximately 18 genes are known to be 

conserved in either incipient testes or ovaries within amniotic vertebrates, but the levels 

and timing of expression of these genes varies between species (Pieau et al., 2001; Rhen 

and Schroeder 2010).  A summary of the molecular mechanisms underlying sex 

determination is provided in figure 1.2.   

Conserved Testis-specific Genes 

Of the approximately 18 conserved sex determining genes, Sox9, anti-müllerian 

hormone (Amh), and doublesex and mab-related transcription factor-1 (Dmrt1) have been 
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studied extensively and involved in testes development in almost all amniotic vertebrates.  

Members of the platelet-derived growth factor (Pdgf) signaling pathway also appear to be 

conserved in testes development, but these have only been examined in a few mammals, 

chicken, and one species of turtle (Basciani et al., 2010).  Other testis-specific genes in 

mammals include: Fgf9, Sox8, SF-1, and WT1, but these genes have not been well studied 

within amniotic vertebrates and many of these genes have not shown higher expression in 

incipient testes relative to ovaries (Rhen and Schroeder, 2010).    

Sox9 is a transcription factor and the first marker for Sertoli cell differentiation in 

the testes (Wilhelm et al., 2007).  Sox9 is a direct target of Sry in mammals and is 

expressed early in the testis-specific gene cascade (Morais da Silva et al., 1996; De Santa 

Barbara et al., 2000; Sekido and Lovell-Badge, 2008).  Sox9 functions in the developing 

testes to regulate expression of other testis-specific genes, including Amh, and may also 

repress ovary-specific genes (de Santa Barbara et al., 1998).  Expression of Sox9 is 

greater in incipient testes and gonads at a male-producing temperature in chicken and 

most reptiles with GSD or TSD (Oreal, 1998; Smith et al., 1999; Western et al., 1999; 

Torres Maldonado et al., 2003; Shoemaker et al., 2007a; Rhen et al., 2007; Valenzuela, 

2010).  However, unlike mammals, Sox9 expression occurs after induction of Amh in 

chickens and many reptiles, suggesting that Amh is not regulated by Sox9 or an 

equivalent Sox gene in non-mammalian species (Oreal et al., 1998; Western et al., 1999; 

Takada et al., 2005; Rhen, unpublished data).    

Amh is a protein hormone that is secreted by Sertoli cells and important for 

regression of the female reproductive tracts in males (Vigier et al., 1987; Behringer et al., 

1990).  Amh is expressed in the developing Sertoli and granulosa cells in embryonic and 
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adult mammalian testes and ovaries, respectively.  Expression of Amh is higher in the 

developing testes than ovaries in chickens and reptiles (Oreal et al., 1998; Smith et al., 

1999; Western et al., 1999; Takada et al., 2004; Shoemaker et al., 2007a; Rhen, 

unpublished results). 

 Dmrt1 is a transcription factor and the only gene that plays a conserved role in sex 

determination from invertebrates to vertebrates (Raymond et al., 1999; Zarkower, 2001; 

Volff et al., 2003).  Dmrt1 is expressed in germ cells and differentiating Sertoli cells 

throughout testicular development.  Dmrt1 is up-regulated in the developing mammalian 

testes after the appearance of sexual dimorphism between the gonads (De Grandi et al., 

2000; Raymond et al., 1999; 2000).  Expression of Dmrt1 is higher in bipotential gonads 

incubated at male-producing temperatures than female-producing temperatures and in 

incipient testes in reptiles with TSD and GSD, respectively (Smith et al., 1999; Kettlewell 

et al., 2000; Torres Malonado et al., 2003; Murdock and Wibbels, 2003a; Shoemaker et 

al., 2007a; Rhen et al., 2007 Valenzuela, 2010).  Dmrt1 is considered the candidate sex 

determining gene in chickens because it is required for testis development and linked to 

the Z chromosome (Smith et al., 2009). 

Conserved Ovary-specific Genes 

 Fewer genes have been identified to be involved in early ovary development 

compared to early testis development in mammals.  Furthermore, there are limited studies 

in non-mammalian species cloning mammalian orthologs of ovary-specific genes.  For 

example, Wnt4, R-spondin1 (Rspo1), and FoxL2 are involved in ovarian development in 

mammals, however, these genes have only been studied in chicken and a subset of reptile 

species (Rhen and Schroeder, 2010).   
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 FoxL2 has been investigated the most of these three candidate genes.  FoxL2 is a  

transcription factor necessary for granulosa cell differentiation in the ovaries (Ottolenghi 

et al., 2005; Duffin, 2009; Uhlenhaut et al., 2009).  FoxL2 is expressed in a female-

specific pattern in the gonads of mammals and chickens (Cocquet; 2002; Govoroun et al., 

2004; Hudson et al., 2005; Uhlenhaut and Treier , 2006).  Expression of FoxL2 is higher 

in bipotential gonads incubated at female-producing temperatures than male-producing 

temperature and incipient ovaries in reptiles with TSD. 

 There is a likely explanation for the lack of studies attempting to clone ovary-

specific genes in other species.  Sex steroid hormones, particularly estrogens, play a 

conserved role in sex determination in non-placental mammals and other non-mammalian 

species (Crews et al., 1991; Crews, 1996; Pieau and Dorizza, 2004; Lance 2009; Ramsey 

and Crews, 2009; Pask, 2012).  Sex steroid hormones are not critical for sex 

determination in mammals, but are important for maintenance of the ovary after sex 

determination.   

 Exogenous estrogen treatments induce ovary development in genetically male 

chickens and reptilian embryos incubated at male-producing temperatures (Gutzke and 

Bull, 1986; Bull et al., 1988; Dorizzi et al., 1991; Crews et al., 1991; Wibbels et al., 1991; 

Wibbels et al., 1993; Rhen and Lang, 1994; Nakabayashi et al., 1998; Akazome and 

Mori, 1999).  Furthermore, expression of aromatase, the gene that converts testosterone 

into estrogen, is higher in the developing chicken ovary and incipient ovaries in most 

reptiles with TSD and GSD (Desvages et al., 1993; Jeyasuriya et al., 1994; Smith et al., 

1997; Nakabayashi et al., 1998; Gabriel et al., 2001; Place et al., 2001; Murdock and 
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Wibbels, 2003b; Endo and Park, 2005; Rhen et al., 2007; Ramsey et al., 2007; 

Valenzuela and Shikano, 2007).   

 Examination of the two estrogen receptor mRNAs showed the receptors are 

expressed in both incipient testes and ovaries and at both male- and female-producing 

temperatures in chickens and reptiles with TSD, respectively (Smith et al., 1997; 

Bergeron et al., 1998; Nakabayashi et al., 1998; Ramsey and Crews, 2007; Rhen et al., 

2007).  These observations support the hypothesis that estrogens are important for sex 

determination and males are responsive to estrogens early in sex determination. 

 There is also a growing hypothesis that androgens are important for sex 

determination in non-mammalian species and maintenance of the ovary in mammals 

(Ramsey and Crews; 2009).  Mutations in the androgen receptor (Ar) and low levels of 

circulating androgens lead to the disease phenotype of premature ovarian syndrome 

(Kimura et al., 2007).  Furthermore, exposure to high levels of androgens leads to 

polycystic ovarian syndrome (Walters et al., 2008).  Expression of Ar is higher in the 

incipient ovary and in gonads incubated at female-producing temperatures in chickens 

and reptiles with TSD, respectively (Katoh et al., 2006; Ramsey and Crews, 2007; Rhen 

et al., 2007).  Indeed, treatments with dihydrotestosterone, a nonaromatizable androgen 

can feminize snapping turtle embryos incubated at or near a temperature that produces a 

1:1 sex ratio (Rhen and Lang, 1994; Rhen and Schroeder; 2010).  These data also support 

the role of androgens in ovarian development.   
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Sex Steroid Hormones in the Gonads:  

Synthesis, Regulation, and Mechanism of Action 

 Sex steroid hormones are critical for sex determination or maintenance of the 

gonads in vertebrates.  The synthesis of sex steroid hormones, estradiol or testosterone, 

by the gonads is also critical for growth and differentiation of other tissues, including the 

brain and reproductive tracts (Norris, 2007).  Given that hormones are essential for 

development, it is important to understand the biosynthesis, regulation, and mechanism of 

action of sex steroid hormones. 

 The biosynthesis of active steroid hormones is under tight regulation by follicle-

stimulating hormone (FSH) and Luteinizing hormone (LH) from the pituitary gland and 

gonadotropin-releasing hormone (GnRH) from the hypothalamus (Stocco, 2001).  

Through interactions with membrane-bound receptors on the surface of steroidogenic 

cells for LH and FSH, these hormones play a key role in regulating steroidogenic gene 

expression and steroid-dependent feedback loops.  The detailed description of regulation 

of steroidogenesis by hormones from the brain will not be discussed here, but a brief 

overview of the genes necessary for the conversion of cholesterol to steroids and 

mechanism of action of steroids will be provided. 

 They synthesis of steroids is facilitated by steroidogenic acute regulatory protein 

(StAR).  StAR controls the rate-limiting step of steroidogenesis by supplying the 

substrate cholesterol to the inner mitochondrial membrane (Stocco, 2001).  After the 

delivery of cholesterol to the mitochondria, steroids are synthesized through a series of 

reactions that are catalyzed by cytochrome P450s including CYP11A (P450scc; 

cholesterol side-chain cleavage), CYP17 (cytochrome P450 c17α-hydroxylase, 17, 20-
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lyase), and CYP19A (cytochrome P450 aromatase); and hydroxysteroid dehydrogenases 

(HSDs), including 3β and 17β-HSD (Miller, 1988; Figure 1.3).  5α-reductase, although 

not critical for formation of testosterone or estradiol, is an enzyme that converts 

testosterone into dihydrotesterone (DHT) (Andersson et al. 1989).  DHT is an important 

sex steroid hormone because it is a more potent androgen than testosterone and cannot be 

aromatized to estrogens. 

 Estrogens and androgens elicit their responses by binding to their specific 

receptors: estrogen receptor (ER) or androgen receptor (AR), respectively.  Both 

receptors are members of the steroid hormone superfamily of nuclear receptors and 

function as transcription factors to regulate target genes (Ribeiro et al., 1995).  

Structurally, members of this family of nuclear receptors are very similar.  They are 

composed of three interacting functional domains: an amino-terminal domain, DNA-

binding domain, and the ligand-binding domain.  The amino-terminal domain encodes a 

ligand-independent activation function necessary for protein-protein interactions and 

transcriptional activation.  The DNA-binding domain contains a zinc finger structure that 

is necessary for the binding of the receptors to specific DNA sequences.  Finally, the 

ligand-binding domain is necessary for the binding of the specific hormone and mediates 

nuclear translocation and transactivation of target gene expression. 

 ER has two subtypes, ERα and ERβ, and both bind estrogens with high 

specificity.  AR is capable of binding testosterone or DHT, but binds DHT more readily.  

Both AR and ER function in a similar manner.  Binding of estrogens to ER or androgens 

to AR triggers a conformational change that activates the receptor.  The receptor will 

form a dimer, translocate to the nucleus, bind to estrogen or androgen response elements 
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on target genes, and influence gene transcription (Jänne et al., 1993; Hiipakka and Liao, 

1998; Nilsson et al., 2001).  It is noteworthy that ER and AR can influence transcription 

of genes without binding to DNA, so called non-genomic actions, but these will not be 

discussed here (Revelli et al., 1998). 

Morphological and Cellular Development of the Reproductive Tracts 

The original formation of the male and female reproductive tracts occurs during 

embryonic development and is independent of sex.  After sex determination, either the 

male or female reproductive tracts will continue to develop and differentiate, while the 

other reproductive tracts regress.  An overview of the morphological and cellular 

development of the reproductive tracts is described below.   The histological 

development of the male and female reproductive tracts is presented in Figure 1.4.   

Male Reproductive Tract Development and Differentiation 

There have been many reviews describing the development of the male 

reproductive tract (Nef and Parada, 2000; Barsoum and Yao, 2005; Hannema and 

Hughes; 2007; Wilhelm et al., 2007; Joseph et al., 2009).  The anlagen of the male 

reproductive tracts are derived from the intermediate mesoderm of the urogenital ridge.  

These structures are called the Wolffian or mesonepric ducts.  The Wolffian ducts 

develop as short segments within the rudimentary embryonic kidney, the pronephros 

(Staack et al., 2003).  The pronephros will regress during development, but the ducts 

remain. The second embryonic kidney, the mesonephros, will develop, and the ducts 

develop from the mesonephric tubules within the mesonephros.  Here the ducts will grow 

caudally until they reach the cloaca (Barosum and Yao, 2005).  Wolffian ducts will not 

grow further unless differentiation of the testes has occurred. 
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Wolffian ducts are stabilized by hormones secreted by cells in the testes.  Leydig 

cells produce androgens or testosterone, which prevents the Wolffian ducts from 

regressing and causes cells of the ducts to proliferate and the ducts to begin coiling 

(Dyche, 1979).   Sertoli cells secrete AMH, which binds the AMH receptor on the female 

reproductive tracts and causes the ducts to regress (Kuroda et al., 1990; Munsterberg and 

Lovell-Badge, 1991).  Androgens are necessary for stabilization of the Wolffian ducts, 

however, the molecular mechanisms underlying androgen signaling in the Wolffian ducts 

are not well known (Hannema and Hughes, 2007). 

 After stabilization, Wolffian ducts differentiate into the morphologically and 

functionally distinct structures of the male reproductive tract: the efferent ductules, 

epididymis, vas deferens, and the seminal vesicles (mammals only) (Dyche, 1979).   The 

efferent ductules connect the testes to the epididymis so that sperm can be moved from 

the gonad to the reproductive tract.  The epididymis is a highly coiled structure that 

allows for the maturation and storage of sperm.  The vas deferens is a tube that moves 

sperm from the epididymis to the ejaculatory duct, where sperm can be released from the 

body.  

Female Reproductive Tract Development and Differentiation 

A number of reviews have been published about Müllerian duct development (Nef, 2000; 

Kobayashi and Behringer, 2003; Klattig and Englert, 2007; Wilhelm et al, 2007).  The 

anlagen of the female reproductive tracts are called the Müllerian or paramesonephric 

ducts.  Müllerian ducts develop parallel to the Wolffian ducts in the embryonic kidney 

and develop in an anterior to posterior and craniocaudal manner.   
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The Müllerian ducts only persist if the gonads differentiate into ovaries.  Ovaries 

do not produce sufficient anti-müllerian hormone to signal for regression of the Müllerian 

ducts.  Wolffian ducts regress in the females due to insufficient testosterone production 

from the ovaries to stabilize the Wolffian ducts.  The Müllerian ducts will differentiate to 

form the fallopian tubes, uterus and upper vagina (Dyche, 1979).   

Study Objectives 

 Scientific investigation has focused on understanding many aspects of TSD 

including the evolution, adaptive significance, physiology, genetic, and molecular 

mechanisms underlying TSD.  Although all of these aspects are important, the overall 

goal of this dissertation is to understand the genetic, molecular, and physiological 

mechanisms underlying TSD.  To achieve this goal, this study has two main objectives: 

1) Identify the unique, thermo-sensitive genes involved in TSD and 2) Determine the role 

of androgens in sex determination and differentiation in a TSD species.  The first 

objective will provide information about what gene(s) are involved in TSD and how 

temperature transduces a signal for ovary or testis development.  The second objective 

will provide information about how androgens signal to influence development of the 

reproductive tracts and ovary. 

 The snapping turtle (Chelydra serpentina) will be used as the model organism to 

achieve the study objectives.  The snapping turtle exhibits TSD and has several 

characteristics making it a useful model for studying TSD and sex differentiation.  

Snapping turtles have relatively large clutch sizes (averaging ~40 eggs/clutch) and a 

relatively short temperature-sensitive period, lasting only 3-5 days of embryonic 

development (Rhen et al., 2007; 2009).  Furthermore, studies have shown there is a 
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latitudinal cline in TSD pattern for snapping turtle populations, indicating snapping 

turtles have adapted to their local thermal regimes (Ewert et al., 2005).  This suggests 

there is an underlying genetic basis for TSD.  Lastly, snapping turtles can be easily 

treated with exogenous hormones and hormone antagonists by spotting the chemical on 

the eggshell, allowing the chemical to diffuse through the egg and the circulation to carry 

the chemical to the embryo.   

 Overall, the findings from this dissertation will provide a greater understanding of 

the molecular mechanisms that are critical for sexual development and fertility in 

amniotic vertebrates.   
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Figure 1.1.  Cladogram representing the evolution of mechanisms of sex 
determination within amniotic vertebrates (adapted from Eernisse and Kluge, 1993).   
TSD = Temperature-dependent sex determination.  GSD = Genotypic sex 
determination.   
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Figure 1.2. Overview of the morphological and molecular mechanisms of testis (B-D) 
and ovary differentiation (E-G) from a bipotential primordia (A).  The black arrows in 
each panel indicate the medulla of the gonad and the white arrows indicate the cortex in 
the gonad.  c. = cortex.  m. = medulla.  s.c. = sex cords.  s.t. = seminiferous tubulues.   
g.c. = germ cells.  og. = oogonia.  p.f. = primordial follicles.  Scale bar = 50 µm. 
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Figure 1.3.  Generalized overview of gonadal steroidogenesis and the roles of various 
genes involved in regulating steroid biosynthesis (adapted from Villeneuve et al., 2007). 
StAR = steroidogenic acute regulatory protein; CYP11A = cytochrome P450 cholesterol 
side-chain cleavage; CYP17 = cytochrome P450 17α-hydroxylase, 17,20-lyase; CYP19 = 
aromatase; 3β-HSD = 3β-hydroxysteroid dehydrogenase; 17β-Hsd = 17β-hydroxysteroid 
dehydrogenase; LH = luteinizing hormone; FSH = follicle-stimulating hormone; LHR = 
luteinizing hormone receptor; FSHR = follicle-stimulating hormone receptor. 
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Figure 1.4.  Histological development of the Wolffian ducts (A-D) in males and 
Müllerian ducts (E-H) in females days after sex determination in the common 
snapping turtle.  White arrows indicate the Müllerian ducts in each panel.  Black 
arrows indicated the Wolffian ducts in each panel.  Notice the regression of the 
Müllerian ducts in the males and growth of the Müllerian ducts in the females.  Scale 
bar = 50 µm. 
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CHAPTER II 
 
 

IDENTIFICATION OF A CANDIDATE GENE INVOLVED IN TEMPERATURE-
DEPENDENT SEX DETERMINATION IN THE COMMON SNAPPING TURTLE 

 
 

Abstract 
 

Temperature-dependent sex determination (TSD) was first discovered in a lizard 

species more than 40 years ago.  Since its discovery, the molecular mechanisms 

underlying this process have been studied extensively.  Even so, the initial gene(s) that 

transduces temperature into a signal for testes versus ovarian development is not known 

in any species with TSD.  To identify genes involved in TSD, I used differential display 

PCR to clone and identify differentially expressed genes between bipotential gonads from 

embryos incubated at a male- or female-producing temperature.  I identified the cold-

inducible RNA binding protein (Cirbp) as a strong candidate gene in the common 

snapping turtle, Cheldyra serpentina, a species with TSD.  Cirbp mRNA expression was 

induced at a high female-producing temperature early in the TSP, but not at a low female-

producing temperature.  I examined the spatial distribution of Cirbp mRNA in hatchling 

gonads as well as the spatial distribution of Cirbp protein in bipotential and hatchling 

gonads. Cirbp protein expression localized to the cytoplasm during the thermo-sensitive 

period, but translocated to the nucleus after the thermo-sensitive period.  I also 

demonstrate a significant genetic correlation between Cirbp mRNA expression in the 

bipotential gonads and sex ratios produced within clutches.  These findings suggest
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Cirbp is involved in commitment of the bipotential gonads to an ovarian fate and appears 

to be playing different roles in gonad development during and after the thermo-sensitive 

period in the common snapping turtle.      

Introduction 
 

Sex determination is one of the most important developmental processes because 

the decision to develop as male or female impacts every aspect of an organism’s biology.  

This decision influences the genetics, physiology, morphology, and social interactions of 

the organism, which translates into the sex differences that we observe in nature.  Natural 

and sexual selection favors the evolution of sex differences and has led to the evolution 

of a variety of modes of sex determination in vertebrates.  In amniotic vertebrates, sex is 

determined by an individual’s genotype, referred to as genotypic sex determination 

(GSD), or by various environmental variables, referred to as environmental sex 

determination (ESD).  A variety of environmental variables have been found to influence 

sex determination in animals, but temperature is the only known environmental variable 

to influence sex determination in amniotic vertebrates.   Temperature-dependent sex 

determination (TSD) occurs when incubation temperature during early development 

determines the sex of the embryo (Janzen and Paukstis, 1991).   Among amniotic 

vertebrates, TSD is only observed in reptiles, being exhibited by numerous lizards, 

turtles, and all crocodilians studied to date (Viets et al., 1993; Lang and Andrews, 1994; 

Deeming 2004; Ewert et al., 2004; Harlow, 2004).  

Although sex-determining mechanisms are not conserved among amniotic 

vertebrates, morphological differentiation of the gonads does appear to be conserved 

(Wibbels et al., 1991; Yao and Capel, 2005).  The gonads are unique in that they develop 
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from a bipotential tissue that can differentiate into either testes or ovaries.  The 

bipotential tissue, known as the genital ridge, originally develops from the intermediate 

mesoderm and then as a thickening of the coelomic epithelium that overlies the 

mesonephric kidney.  The genital ridge will continue to grow to form the bipotential 

gonad that consists of an outer cortex and inner medulla.   Testes develop when the inner 

medulla grows, seminiferous tubules differentiate and the outer cortex regresses. Somatic 

cells of the bipotential gonad will differentiate into Sertoli, peritubular myoid, or Leydig 

cells in the testes and germ cells will eventually differentiate into sperm. In contrast, 

ovaries develop when the outer cortex grows and the inner medulla regresses.  In ovaries 

a reorganization of germ cells and somatic cells occurs to form primordial follicles.  The 

somatic cells in the bipotential gonad will differentiate into granulosa and thecal cells and 

the germ cells will differentiate into oocytes.      

The key event during sex determination is irreversible commitment of the 

bipotential gonads to testicular or ovarian development.  In species with TSD, sex is 

determined during the middle of embryogenesis when the gonads are sensitive to 

temperature, which is referred to as the temperature sensitive period (TSP; Crews, 1996; 

Pieu and Dorizzi, 2004; Place and Lance, 2004). During the TSP, temperature induces 

expression of genes involved in testis or ovary commitment.  To date, most studies in 

TSD species have focused on cloning orthologous genes known to be important in sex 

determination in mammals.  Many of these orthologs are temperature sensitive and 

appear to play a conserved role in gonad development.  For example, expression of Sox9, 

anti-müllerian hormone (Amh), Pdgf-ß and Dmrt1 is temperature sensitive with higher 

levels in incipient testes in all TSD species studied (reviewed in Shoemaker and Crews, 
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2009; Rhen and Schroeder, 2010).  In contrast, aromatase, Foxl2 and estrogen receptors 

have been identified as temperature sensitive genes that are expressed at higher levels in 

incipient ovaries (reviewed in Shoemaker and Crews, 2009; Rhen and Schroeder 2010).  

While the identification and characterization of orthologous genes is important for 

defining a conserved sex-determining pathway among vertebrates, it will not lead to the 

identification of novel genes involved in TSD.  To date, the initial thermo-sensitive 

gene(s) that transduces temperature into a biological signal has not been identified in any 

TSD species. 

 One reptile that exhibits TSD is the common snapping turtle, Cheldrya 

serpentina.  This species produces females at low and high temperatures, while males are 

produced at intermediate temperatures (Yntema, 1976; Rhen and Lang, 1994; Ewert et 

al., 2005).  Eggs incubated between 23oC and 26.5oC throughout development produce all 

males in the population we study.  In contrast, eggs incubated at 31oC produce 

exclusively females.  Mixed sex ratios are produced at temperatures below 23oC and 

between 27.0oC and 29.5oC, with 28.2oC producing a 50:50 sex ratio.   The snapping 

turtle is a unique TSD species, because its TSP comprises a narrow window of 

embryogenesis (~7%; Yntema, 1979; Rhen et al., 2012), while in other TSD species the 

TSP comprises a significantly longer period of development (Mrosovsky and Pieu, 1991; 

Lang and Andrews, 1994; Crews, 1996).  We have previously reported that shifting eggs 

from a male- to a female-producing temperature for six days is sufficient to induce 

commitment of the bipotential gonad to ovarian fate (Rhen et al., 2007; 2009).  This short 

TSP makes the snapping turtle a unique model to identify the thermo-sensitive genes 

during the sex-determining period.     
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The goal of this study was to identify unique thermo-sensitive genes involved in 

TSD in the snapping turtle.  I used differential display PCR (DD-PCR) to clone a novel 

gene that plays a role in TSD.  DD-PCR has been used to discover novel genes in a 

variety of organisms and to study numerous developmental processes, including sex 

determination (Nordqvist and Töhönen, 1997; Dcotta et al., 2001).  Here, I identify the 

cold-inducible RNA binding protein (Cirbp) as a strong TSD candidate in the snapping 

turtle.  Cirbp was induced at a high female-producing temperature early in the TSP, but 

not at a low female-producing temperature.  I examined the spatial distribution of Cirbp 

mRNA in hatchling gonads as well as the spatial distribution of Cirbp protein in 

bipotential and hatchling gonads.  I also demonstrated a significant genetic correlation 

between Cirbp mRNA expression in the bipotential gonads and sex ratios produced 

within clutches.  I hypothesized that Cirbp plays a role in TSD in the snapping turtle and 

more specifically that Cirbp is involved in commitment of the bipotential gonads to an 

ovarian fate. 

Material and Methods 
 

Embryos and Incubation for Differential Display PCR 

Animal experiments were carried out according to a protocol approved by the 

Institutional Animal Care and Use Committee at the University of North Dakota 

(Protocol #0905-1).  I collected snapping turtle eggs within 24 hours of laying from 

snapping turtle nests along the Clearwater and Mississippi Rivers in north-central 

Minnesota.  Eggs were covered with soil and transported to the animal quarters in the 

Biology Department at the University of North Dakota.  Eggs were washed in tepid 

water, candled for embryo viability and infertile eggs were removed.  Equal or 
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approximately equal numbers of viable eggs from each clutch were assigned to one of 

two thermal treatments. To produce males, one group of eggs was incubated at 26.5oC. 

To produce females, the other group of eggs was incubated at 26.5oC until embryos 

reached stage 16, at which point eggs were shifted to 31oC for 6 days and then returned to 

26.5oC.  Eggs were placed in containers filled with moist vermiculite and then randomly 

positioned within foam box incubators as described by Rhen and Lang (1994). 

I harvested gonads from embryos at 26.5oC and from clutch mates that had been 

shifted to 31oC.  Embryos were sampled on days 2, 3, 4, and 5 after the start of the 

temperature shift.  Eggs were opened and embryos euthanized as described in Rhen et al. 

(2007).  The adrenal-kidney-gonad (AKG) complex was removed, placed in RNAlater 

solution (Ambion, Austin, TX), and stored at -20 oC.  Gonads were dissected from the 

AKG complex. Total RNA was isolated from gonads and used for cDNA synthesis. This 

cDNA was used as template for differential display (DD)-PCR.  A subset of eggs from 

each thermal treatment was allowed to hatch to confirm that the 26.5 oC treatment 

produced only males and the 31oC treatment produced exclusively females, as well as to 

compare gene expression between embryos and hatchlings.   

mRNA Differential Display 

I extracted total RNA from the pair of gonads isolated from individual embryos or 

hatchlings from each treatment group using the PicoPure RNA Isolation Kit (Arcturus, 

Mountain View, CA).  I adapted the manufacturer’s protocol for use with tissue as 

described in Rhen et al. (2007).  Total RNA was eluted in 11 µl of elution buffer and 

quantified with a NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies, 

Wilmington, DE).   



 38 

 Total RNA (100 ng) from each pair of gonads was reverse transcribed using the 3’ 

anchoring primer, H-T11A, per the manufacturer’s protocol (GenHunter, Nashville, TN).  

The thermal profile was 65oC for 5 min, 37oC for 60 min, 75oC for 5 min, and 

indefinitely at 4 oC.  This cDNA was used as template for PCR to identify differentially 

expressed genes.  I followed the manufacturer’s protocol using H-T11A as the reverse 

primer and the arbitrary 13-mer primer, H-AP 03, as the forward primer (Table 2.1).  I 

used a 3-step thermal profile with 94oC for 30 sec, 40oC for 2 min, 72oC for 30 sec. This 

thermal profile was reapeated for 40 cycles. The final extension was at 72oC for 5 min. 

and then at 4oC.   

 I ran PCR products on a 6% polyacrylamide gel for approximately 2 hours at 60 

volts in TBE buffer (Invitrogen, Carlsbad, CA).  After electrophoresis, Sybr Gold was 

used to stain the gel and resolve the PCR bands, instead of using radiolabeling as 

described by the manufacturer.  I identified differentially expressed bands by measuring 

the optical density of the PCR products using LabWorks software on the AutoChemi gel 

visualization system (UVP, LCC, Upland, CA).  Differentially expressed PCR bands 

were cut out of polyacrylamide gels using a sterile scalpel, and placed in 1.5 ml 

microfuge tubes.  I extracted DNA from gels and used PCR to reamplify the cDNA 

fragment as described by the manufacturer (GenHunter).  I analyzed reamplified PCR 

products via agarose gel electrophoresis.  Single PCR products were excised from the gel 

and purified using the QIAquick Gel Extraction Kit (Qiagen, Valencia, CA).    

Cloning and Sequencing Analysis 

The TOPO TA Cloning Kit (Invitrogen, Carlsbad, CA) was used to clone the DD-

PCR product into the pCR4-TOPO plasmid according to the manufacturer’s protocol. 
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Plasmids containing an insert were used as template in sequencing reactions with the 

BigDye® Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, Foster City, CA). 

Sequences from multiple clones were aligned and a consensus sequence was generated 

using Sequencher software (Gene Codes Corp, Ann Arbor, MI).  The novel snapping 

turtle sequence was then used in BLAST search of the non-redundant nucleotide database 

to identify orthologous genes in other species.  

5’ Rapid Amplification of cDNA Ends (RACE) 

 The full-length sequence for Cirbp cDNA was determined by 5’ RACE according 

to the manufacturer’s protocol (5’ RACE System for Rapid Amplication of cDNA Ends; 

Invitrogen, Carlsbad, CA).  First-strand cDNA was synthesized from 1 µg of total RNA 

from gonads.  The primary 5’RACE PCR used the abridged anchor primer (AAP) and a 

reverse primer for the DD-PCR product described above. The secondary PCR used the 

abridged universal anchored primer (AUAP) and a semi-nested reverse primer (Table 

2.1).  The 5’RACE PCR products were cloned and sequenced as described.  If the full-

length sequence was not obtained, new primers were designed and used in another 5’ 

RACE until the full-length cDNA was obtained.   The full-length cDNA sequence was 

used in a BLAST search to identify orthologous genes.  

 Once full-length cDNA was obtained, we used the online ExPASy tool 

(http://ca.expasy.org/tools/dna.html) for in silico translation of the nucleotide sequence.  I 

used the predicted snapping turtle Cirbp amino acid sequence in a protein BLAST to 

retrieve orthologous amino acid sequences.  I used BioEdit software to align the snapping 

turtle Cirbp amino acid sequence with the Cirbp sequences from other vertebrates. 

Egg Incubation and Collection for Determining mRNA Expression of Cirbp during TSP 
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A second experiment was set up to confirm that Cirbp mRNA was differentially 

expressed between the 26.5oC and the 26.5oC-31oC-26.5oC treatment groups by using 

quantitative real-time PCR.  Bipotential gonads were isolated from each treatment group 

(26.5oC or 31oC) on days 2, 3, 4, and 5 after the start of the temperature shift.  RNA was 

extracted as described previously (Rhen et al., 2007).  Total RNA was reverse transcribed 

using the iScript cDNA Synthesis Kit following the manufacturer’s recommendations 

(BiodRad, Hercules, CA).  The cDNA was used as template in real-time PCR reactions.   

Short-Term Shift Experiment 

Previous experiments examined Cirbp mRNA expression two or more days after 

the start of the temperature shift, so I conducted an experiment to determine the time 

course for Cirbp mRNA induction. We collected gonads from embryos incubated at 

26.5oC and from clutch mates shifted from 26.5oC to 31oC.  Approximately equal 

numbers of embryos from each temperature treatment were sampled 6, 12, 24, and 48 

hours after the start of the temperature shift.  Gonads were dissected, RNA was isolated 

and reverse transcribed, and quantitative PCR performed as described above.   

Cold-Shift Experiment 

Because females can also be produced at cooler temperatures, I conducted an 

experiment to determine if Cirbp was induced at cool temperatures.  Approximately 

equal numbers of eggs from three different clutches were separated into two temperature 

treatment groups.  Eggs from both treatments were incubated at 26.5oC until stage 14, 

when half the eggs were shifted to 20oC.  After stage 19, a subset of embryos from the 

20oC treatment were shifted back to 26.5oC and embryos from both temperatures were 

allowed to hatch to determine sex ratios from each temperature treatment. 



 41 

I collected gonads from embryos incubated at 20oC (also referred to as 26-20-

26C) and from clutch mates at 26.5oC (also referred to as 26C).  Approximately twelve 

embryos (4 embryos x 3 clutches) were sampled from each temperature at stages 15 

through 19 after the temperature shift.  Gonads were dissected, RNA was isolated and 

reverse transcribed, and quantitative real-time PCR performed as described previously. 

Quantitative Real-Time PCR 

 Real-time PCR was performed to measure Cirbp mRNA and 18S rRNA 

expression in gonads from the experiments described above.  SYBR Green solution was 

used for real time reactions with the primers in Table 2.1.  Reactions were run on a 7300 

Real-Time PCR System (Applied Biosystems).  The thermal profile was 95oC for 10 min 

to activate the DNA polymerase followed by 40 cycles of two-step PCR (94oC for 15 sec 

and 60oC for 1 min).  Rigorous standard curves across eight orders of magnitude were 

used to quantify gene expression in absolute terms as described in Rhen et al. (2007).  

Controls lacking reverse transcriptase or RNA template were also prepared to 

demonstrate there was no contaminating DNA, RNA, or PCR products.  A melting 

temperature analysis was added at the end of the real time PCR to verify that a single 

product was amplified for each gene analyzed.   

In situ hybridization 

A 354 base pair fragment of snapping turtle Cirbp was amplified using cDNA 

from embryonic gonads as template.  PCR primers for probe generation are shown in 

Table 2.1.  The PCR product was cloned using the TOPO TA Cloning Kit.  The 

orientation of the insert was determined by sequencing.  The plasmid containing the 

Cirbp fragment was used as a template to synthesize antisense or sense RNA probes with 
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digoxigenin-UTP and T3 or T7 RNA polymerase according to the manufacturer’s 

protocol (Dig RNA Labeling Kit; Roche Applied Sciences, Indianapolis, IN).   

 AKGs isolated from male and female hatchling turtles were fixed in 4% 

paraformaldehyde in phosphate-buffered saline (PBS) overnight at 4oC.  Tissues were 

washed in PBS, dehydrated in ethanol, cleared in xylene, and embedded in paraffin.  

AKGs were sectioned at 6-µm and mounted on Histobond slides (VWR, Radnor, PA). 

Slides were deparaffinized in xylene, rehydrated in graded ethanol, and washed in PBS.  

Sections were washed and prehybridized for 2 h at 55oC in hybridization solution 

(50% formamide, 5x SSC, 1x Denhardts (2% Polyvinylpyrrolidone, 2% Ficoll 400, 2% 

BSA), 250 µg/ml yeast tRNA, 500 µg/ml salmon sperm DNA, 50 µg/ml heparin, 2.5 mM 

EDTA, 0.1% tween-20, 0.25% CHAPS).  Cirbp antisense or sense riboprobes were 

dissolved in hybridization solution at a concentration of 100 ng/ml and hybridized to 

slides overnight.   

After hybridization, slides were moved through a series of post-hybridization 

washes to remove unbound riboprobe.   Slides were washed once in 50% formamide with 

5x SSC and 0.1% tween-20 (SSCT), twice in 50% formamide with 2x SSCT, and twice 

in 50% formamide with 0.2x SSCT.  Slides were incubated in each wash solution for 30 

minutes at 65oC.  Slides were washed twice in 1x maleic acid buffer, 0.1% Tween 

(MABT) for 15 minutes at room temperature.  Sections were blocked in 2% blocking 

solution (Roche Applied Sciences) with 10% sheep serum, incubated with pre-absorbed 

anti-dioxigenin-AP Fab fragment (diluted 1:2000, Roche Applied Sciences), and stained 

with BM Purple AP substrate (Roche Applied Sciences).  Images were taken using an 
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Olympus BX-51 microscope equipped with an Infinity 2 digital camera (Lumenera Corp., 

Ottawa, ON, CA) using Rincon HD software (Imaging Planet, Goleta, CA). 

 

Immunohistochemistry 

AKGs were isolated from embryos incubated at male- and female-producing 

temperatures on days 1 through 6, 11, 21, and 31 after the temperature shift to examine 

Cirbp protein expression during the TSP and after sex determination.  Hatchling gonads 

were also isolated.  Tissues were fixed overnight at 4oC in 10% buffered formalin.  

Tissues were processed as described above for in situ hybridization. 

Endogenous peroxidase was quenched by placing deparaffinized, re-hydrated 

slides in 3% hydrogen peroxide in methanol for 15 min at room temperature (RT).  Slides 

were then washed 3 times in PBS for 5 min each.  Antigens were unmasked by 

incubating slides in 10 mM sodium citrate buffer (pH 6.0) and heating the buffer in a 

microwave for 5 minutes.  The buffer was allowed to cool for 2 minutes and then heated 

again for 5 minutes.  I heated and cooled slides once more before slides were washed 

twice with distilled water for 5 min and then once in PBS for 5 min.  

Sections were permeabilized and blocked in 3% goat serum, 0.1% Triton X-100, 1% 

bovine serum albumin (BSA) in PBS for 2 hours at RT or overnight at 4oC.  The primary 

Cirbp antibody was diluted 1:500 (Aviva Systems Biology, San Diego, CA) in 1x PBS, 

added to tissue sections, and incubated overnight at 4oC.  Negative controls were 

incubated in blocking solution without the primary antibody.  Sections were washed three 

times in 1x PBS and then incubated in a biotinylated goat-anti rabbit secondary antibody 

(1:200, Vector Laboratories, Burlingame, CA) for 2 h at RT.  The VectaStain ABC Elite 
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kit (Vector Laboratories) was used to detect the primary/secondary antibody complex.  

Staining was performed using freshly prepared 3, 3’-diaminobenzidine (DAB; Vector 

Laboratories) for 5 minutes and counterstained with hematoxylin.  The sections were 

dehydrated, cleared in xylene, and permanently mounted with Vectamount.  Images were 

captured as described above.   

Relationship between Cirbp mRNA expression and sex ratios 

 I conducted an experiment to test whether there is a genetic correlation between 

Cirbp mRNA expression in gonads during the TSP and sex ratio at hatching.  Snapping 

turtle eggs from nine clutches were incubated at 26.5oC until stage 17.5 of development.  

At stage 17.5, eggs from each clutch were shifted to 31oC for 2.5 days and then shifted 

back to 26.5 oC.  Approximately equal numbers of embryos from each of the 9 clutches 

were sampled at 24 and 48 hours of the 31oC exposure.  Gonads were dissected and total 

RNA extracted as previously described.  Total RNA was reverse transcribed to measure 

Cirbp mRNA expression using quantitative PCR.  A subset of eggs from each clutch was 

allowed to hatch to determine sex ratios for each clutch.   

Statistical Analysis 

 I used two-way analysis of variance (ANOVA) to compare optical density of the 

PCR products on the polyacrylamide gel from the DD-PCR.  Independent variables were 

temperature, day of the temperature shift, and the interaction between these variables.   

For the quantitative real-time PCR, I analyzed patterns of gene expression using 

clutch, temperature treatment, and sampling day as main effects in a three-way ANOVA 

using type III sums of squares.  All cycle threshold (Ct) values were log10 transformed to 

meet the assumptions of the ANOVA.  I used Ct values for 18S rRNA as a covariate to 
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control for potential variation in the quality of input RNA as well as variation in 

efficiency of the reverse transcription reaction.  Given significant main effects or 

interactions between independent variables (α < 0.05), I used the Dunn-Sidak method 

(SAS Institute, Cary, NC) to correct for multiple comparisons among treatment groups.   

Chi-squared tests were used to determine if there was significant variation in sex 

ratios amongst clutches.  To determine if there was a relationship between Cirbp mRNA 

levels in embryonic gonads and the sex ratios produced within each clutch, I performed 

the nonparametric Spearman’s rank correlation, because our data didn’t meet the 

assumptions of the parametric test.  All statistics were performed using JMP 5.0.1.2 

software (SAS Institute, Cary, NC).   

Results 

Hatchling Sex Ratios 

I examined the gross morphology and the histological structure of AKGs from 

hatchling turtles that had been exposed to different thermal regimes.  Hatchling snapping 

turtles that had been incubated at 26.5oC throughout embryonic development had testes 

and no visible signs of oviducts.  In contrast, all hatchlings that had been exposed to 31oC 

had ovaries and oviducts, indicating that the six-day temperature shift was sufficient to 

produce exclusively females. 

I also examined hatchling gonads and reproductive tracts from the cold shift 

experiment.  The sex ratio for snapping turtles exposed to 20oC from stage 14 to stage 19 

was 25% male (n = 12).  I was unable to diagnose the sex of eight embryos from the 20oC 

group that didn’t hatch. In contrast, all of the hatchlings from 26.5oC developed testes (n 

= 18).   
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Differential Display PCR 

I identified a PCR product of 150 base pairs (bp) that was differentially expressed 

between the 26.5oC and 31oC treatment groups (Figure 2.1).  This PCR product had 

higher optical density values at 31oC compared to 26.5oC (F(1, 16) = 11.02, p = 0.0043). 

The optical density of this PCR product did not change over time (F(3,16) = 0.9712, p = 

0.4306) and was not affected by the temperature x day interaction (F(3,16) = 2.69, p = 

0.0810). 

Identification of the Full-Length cDNA and Amino Acid Sequence 

I used 5’ RACE to obtain the full-length sequence for this DD-PCR product.  The 

full-length cDNA was 851 bp long, and displayed 86 % nucleotide identity with the 

chicken cold-inducible RNA binding protein (Cirbp) cDNA (GenBank Accession No. 

NM_001031347).  The full-length cDNA sequence contained a 501 bp open reading 

frame that encodes a 169 amino acid sequence (Figure 2.2).  The predicted amino acid 

sequence for snapping turtle Cirbp displayed the two conserved domains; a single 

recognition motif (RRM) at the amino-terminal and an arginine and glycine-rich 

carboxyl-terminal.  Within the RRM, two highly conserved sequences, a hexamer called 

RNP2 and an octamer called RNP1, were present as well as many aromatic residues 

dispersed throughout the motif.   

The predicted amino acid sequence for snapping turtle Cirbp displayed high 

homology to the amino acid sequences of other vertebrates (Figure 2.3).  For example, 

snapping turtle Cirbp displayed 93% amino acid identity with the chicken Cirbp.  Even 

greater homology was observed in putative functional domains.  The RNA recognition 

motif (RRM) displayed 99% amino acid identity among amniotes, with mouse and rat 
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Cirbp containing alanine in place of serine at amino acid 21.  The RRM was not as highly 

conserved among non-amniotes: homology was less than 90% in this region.  

Cirbp mRNA Expression During the TSP 

After obtaining the full-length cDNA sequence for snapping turtle Cirbp, I 

conducted an independent experiment to confirm that Cirbp was differentially expressed 

between male- and female-producing temperatures.  Expression of Cirbp was influenced 

by clutch (F(2,65) = 22.16, p < 0.0001) and temperature treatment (F(1,65) = 124.48, p < 

0.0001).  Expression of 18S rRNA was a significant covariate (F(1,65) = 37.25, p < 

0.0001).  Cirbp expression did not vary with sampling day and was not influenced by 

interactions among independent variables.  Cirbp mRNA levels were twice as high in 

gonads from embryos at 31oC than in gonads from embryos at 26.5oC (Figure 2.4).  

However, there was no difference in Cirbp mRNA expression between hatchling testes 

and ovaries.  

Given that the temperature effect was already significant on day 2, I conducted 

another experiment and sampled embryos from both temperatures at 6, 12, 24, and 48 

hours of the temperature shift. Expression of Cirbp mRNA was influenced by clutch 

(F(2,130) = 12.7564, p < 0.0001), incubation temperature (F(1,130) = 10.1723, p = 0.0019),  

and sampling time (F(3,130) = 49.6173, p < 0.0001).  There were no significant interactions 

between any of the independent variables.  Cirbp was induced at both 26C and 26-31-

26C, but did not increase significantly until 48 hours (Figure 2.5).  At 48 hours, Cirbp 

mRNA levels were dimorphic with expression levels twice as high at 26-31-26C than at 

26C. 



 48 

I conducted another study to determine if Cirbp mRNA expression was induced at 

a cooler temperature that produces females.  Eggs were incubated at 26.5oC until stage 

14, half the eggs were then shifted to 20oC.  I sampled embryos from both temperatures at 

stages 15-19.  Expression of Cirbp mRNA was influenced by clutch (F(2,87) = 15.03, p < 

0.0001), incubation temperature (F(1,87) = 54.18, p < 0.0001), and developmental stage 

(F(4,87) = 7.71, p < 0.0001).  There were no interactions between any of the independent 

variables.  Cirbp mRNA expression was significantly higher in the embryonic gonads 

incubated at 26.5oC than it was in embryos at 20.0oC from stage 17 through the end of the 

TSP (Figure 2.6).  

Spatial distribution of Cirbp mRNA and protein in the snapping turtle gonads 

The spatial distribution of Cirbp mRNA was observed in snapping turtle hatchling 

testes and ovaries using in situ hybridization.  Localization of Cirbp mRNA was sexually 

dimorphic in the snapping turtle.  Cirbp mRNA was localized to the cortex of the ovary 

and appears to be expressed in somatic cells surrounding developing germ cells (Figure 

2.7B).  Strong Cirbp mRNA staining was localized to seminiferous tubules in the testes.  

Light Cirbp mRNA staining was also seen within the seminiferous tubules, likely in the 

developing germ cells (Figure 2.7A).  In the testis sample there is an ovarian-like cortex 

at the surface of the male-gonad and staining of Cirbp mRNA appears similar to that of 

the ovary.  Other species of turtles have also reported the presence of a cortex on the male 

gonad, but commonly this will degenerate over time to form normal testes (Pieau et al., 

1998). 

I used IHC to examine the spatial distribution of Cirbp protein during sex 

determination (Days 1-6 of the temperature shift) and gonad differentiation (Days 11, 21, 
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31, and hatch).  Cirbp protein expression was sexually dimorphic as early as day 1 after 

the temperature shift.  Staining in cortical epithelial cells was very strong at the female-

producing temperature (31oC) but was not detectable in epithelium at the male-producing 

temperature (26.5oC) (Figure 2.8D and C, respectively).  Cirbp protein expression 

became more localized to the cortex of gonads at 31oC, while Cirbp protein expression 

remained localized in the medulla in gonads at 26.5oC (Figure 2.9G and H, respectively) 

The spatial pattern of Cirbp protein expression continued to diverge during gonad 

differentiation.  Expression was localized to the cortex and germ cells of the developing 

ovaries (Figure 2.7D and Figure 2.9B, D, F, H).  Moreover, staining appeared 

cytoplasmic during the TSP, but nuclear during gonad differentiation.   

The developing testes showed Cirbp protein expression within the medulla and in a 

circular pattern indicating the protein is localized to the developing germs cells in the 

seminiferous tubules (Figure 2.7C and Figure 2.9A, C, E, G).   

Correlation between Cirbp Expression and Sex Ratio 

 I tested whether there was a genetic correlation between Cirbp expression and sex 

determination in an experiment that produced mixed sex ratios.  Eggs from 9 clutches 

were incubated at 26.5oC until embryos reached stage 17.5.  Eggs were then shifted to 

31oC for 2.5 days and shifted back to 26.5oC until eggs hatched.  This brief exposure to a 

female-producing temperature produced an overall sex ratio of 28% males.  There was 

significant variation in sex ratio among clutches, ranging from exclusively females in 

clutch 28 to mostly males in clutch 15 (66.7%) (χ2 = 25.9, p = 0.0011; Figure 2.10).  

Expression of Cirbp mRNA did not differ between day 1 and day 2 (One-way 

ANOVA; F(1,86) = 0.59, p = 0.4441).  Average Cirbp mRNA levels (mean + SEM) in this 



 50 

experiment were very similar to those described above for embryos shifted to 31oC (day 1 

= 534.62 + 76.30 attograms (ag)/2.5ng RNA; day 2 = 580.92 + 62.57 ag/2.5ng RNA, 

respectively).  

There was a significant negative correlation between Cirbp expression and 

hatchling sex ratios among clutches (Spearman’s Rho = -0.70, r = -0.63, p = 0.0358; 

Figure 2.11).  Clutches with lower Cirbp expression produced more males, while clutches 

with higher Cirbp expression produced more females.  For example, clutch 20 had the 

lowest Cirbp expression and produced 58.3% males.  In contrast, clutch 26 had the 

highest Cirbp expression and produced only female hatchlings.  

Discussion 

Many researchers are interested in understanding the molecular mechanisms 

underlying TSD.   Two main questions have been posed: 1) How conserved are the sex-

determining genes between TSD species and other non-TSD species? 2) What are the 

thermo-sensitive genes unique to TSD?  To date, numerous studies in TSD species have 

defined the spatial and/or temporal pattern of expression of conserved sex-determining 

genes.  However, studies designed to identify novel thermo-sensitive gene(s) are lacking, 

and in fact, the thermo-sensitive switch for testes versus ovary development has not been 

discovered in any TSD species.  The purpose of this study was to identify novel genes 

involved in TSD in the snapping turtle.  I isolated, cloned, and sequenced a snapping 

turtle gene that is induced by exposure to female-producing temperatures.  This gene is 

an ortholog of the cold-inducible RNA binding protein (Cirbp) found in other organisms.   

Cirbp (also known as A18 hnRNP) is a member of a large RNA binding protein 

family that contains a highly conserved RNA recognition motif (RRM, also known as 
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RNA binding domain (RBD) and glycine-rich domain known as the glycine-rich RNA 

binding protein family (GRP).  Members of this family are evolutionarily conserved from 

plants to humans and are involved in almost every aspect of RNA biology, including 

RNA processing, export, translation and stability (Dreyfuss et al., 2002; Maris et al., 

2005).  Snapping turtle Cirbp contains a single RRM at the amino-terminus and glycine-

rich carboxy-terminus that is highly conserved among vertebrates. Snapping turtle Cirbp 

RRM also contains two highly conserved sequences, RNP1 and RNP2, which allow for 

interactions between Cirbp and pre-mRNAs and mRNAs to regulate translation or 

mRNA stability (Yang et al., 2006; De Leeuw et al., 2007; Xia et al., 2012).  Many 

members of this family are responsive to environmental stressors and can influence a 

variety of cellular and developmental processes, including sex determination in 

invertebrates (Amrein et al. 1988; Bell et al. 1988, Nicoll et al., 1997; Skipper et al., 

1999).   

I used several methods to characterize the temporal and spatial pattern of Cirbp 

expression in bipotential gonads during the TSP, in differentiating gonads after the TSP, 

and in hatchling testes and ovaries.  I observed dimorphic Cirbp expression during the 

TSP, when mRNA levels were roughly two-fold higher at the female-producing 

temperature than the male-producing temperature.  I also observed clear differences in 

protein expression in gonadal epithelium during the TSP. Exposure to the female-

producing temperature dramatically increased Cirbp expression in epithelial cells, 

suggesting that Cirbp may be involved in commitment of the bipotential gonads to an 

ovarian fate.  Indeed, recent work has shown that a sub-population of granulosa cells 

develops from epithelial cells in fetal mouse ovaries (Mork et al., 2012).  Previous studies 
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in endotherms have shown that Cirbp is constitutively expressed in almost every tissue, 

but is induced in response to various environmental stressors, including mild hypothermia 

(Nishiyama et al., 1997a; Sheikh et al, 1998; Nishiyama et al., 1998; Pan et al., 2004; 

Wellman et al., 2004).  Studies in mammalian somatic cells indicate that Cirbp is induced 

at temperatures between 25oC and 31oC and as early as 12 hours after a shift from 37oC 

to 32oC (Nishiyama et al., 1997).  

Cirbp has recently been identified as a temperature sensitive gene in the red-eared 

slider, another TSD turtle (Chojnowski & Braun, 2012).  Suppression-subtractive 

hybridization was used to make cDNA libraries from whole embryos incubated at male- 

or female-producing temperatures.  Cirbp was one of the cDNAs in the library enriched 

in transcripts from a female-producing temperature.  Unfortunately, Cirbp expression was 

not measured in gonads or localized by in situ hybridization or immunohistochemistry. 

Given that Cirbp is expressed in most tissues, it not clear whether this gene is 

differentially expressed in embryonic gonads of the red-eared slider.   

I measured Cirbp expression in hatching testes and ovaries, but did not observe 

any difference in transcript levels.  This result is similar to what has been reported in 

gonads from neonatal and one-month old alligators (Kohno et al., 2010).  Although 

transcript levels are comparable in RNA extracted from whole gonads, there is a clear 

difference in protein expression and localization between hatchling ovaries and testes. 

Because Cirbp appears to be involved in ovarian development, I also examined 

Cirbp expression at a cooler temperature that produces females in our population.  Cirbp 

mRNA was expressed at a higher level in gonads from embryos at 26.5oC versus 20oC, 

yet 20oC still produced females.  This finding suggests that Cirbp may only play a role in 
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ovary formation at warm temperatures, while other gene(s) could be involved in ovary 

specification at cool temperatures.  In fact, previous studies have shown clutch by 

temperature interactions for TSD in the snapping turtle, indicating that different 

mechanisms are involved in sex determination at high versus low temperatures (Rhen et 

al., 1994, but see Janzen 1992).  Moreover, studies in mice have shown that Cirbp is 

inducible between 25oC and 32oC, but not at cooler temperatures (i.e. 15oC), although 

studies in Xenopus have shown that Cirbp is inducible at temperatures as low as 4oC 

(Nishiyama et al. 1997; Saito et al., 2000).  A caveat of these results is the three clutches 

for the cold shift experiment were previously assigned to a separate experiment that 

exposed the eggs to cycling temperatures.  Clutches were removed from the cycling 

temperatures at the beginning of the TSP; yet this temperature exposure may have 

induced Cirbp expression.  This may also explain why Cirbp mRNA levels at 26.5oC 

were higher than we had previously observed when Cirbp was induced at 31oC.    

The temporal expression pattern for conserved sex-determining genes in gonads 

from snapping turtle embryos has been described (Rhen et al., 2007).  I found that Cirbp 

was induced before any of the ovarian genes measured in that study.  Aromatase and 

Foxl2 were not induced until the third day of a shift from 26.5oC to 31oC, which is after 

most gonads have committed to an ovarian fate (~70% of embryos in the current study 

developed ovaries after just 2.5 days at 31oC).  I detected a significant correlation 

between Cirbp expression and sex ratio in siblings exposed to the same temperature 

regime (i.e., embryos at 26.5oC were exposed to 31oC for 2.5 days).  Families with lower 

Cirbp expression during the temperature shift produced more males, while families with 
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higher Cirbp expression produced more females.  In contrast, aromatase and Foxl2 

expression were not correlated with sex ratio in the same study (data not shown).   

Taken together, these results suggest that Cirbp is upstream, while Foxl2 and aromatase 

are downstream in the gene network for ovary determination.   

Expression of Cirbp protein was dimorphic in bipotential gonads on the first day 

of the temperature shift: staining in gonad epithelial cells was stronger at the female-

producing temperature than it was at the male-producing temperature.  This difference 

became more pronounced by the end of the TSP.  In addition, Cirbp staining appeared to 

be cytoplasmic during the TSP, but nuclear after the TSP.  This suggests Cirbp could be 

playing distinct roles during sex determination and gonad differentiation.  In Xenopus, 

Cirbp displays nucleocytoplasmic shuttling and Cirbp has distinct roles in the nucleus and 

cytoplasm (Aoki et al., 2002).  In response to environmental stressors, Cirbp moves from 

the nucleus to the cytoplasm where it associates with ribosomes to regulate expression of 

specific mRNAs (Yang et al., 2001; De Leeuw et al., 2007).  Because Cirbp is primarily 

found in the cytoplasm during the TSP, it may be regulating mRNAs involved in testis or 

ovary determination.  Nuclear Cirbp seems to be associated with cell growth and 

differentiation in other systems and may play a similar role in the gonad after sex 

determination.  

I also used in situ hybridization and immunohistochemistry to examine Cirbp 

mRNA and protein expression in hatchling testes and ovaries.  Cirbp mRNA and protein 

were concentrated in the seminiferous tubules of hatchling testes indicating that Cirbp is 

expressed in germ cells.  Cirbp is also expressed in human, mouse and American alligator 

testes.  Studies in mice have shown that Cirbp is constitutively expressed in the testes. 
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Cirbp expression is up-regulated at cooler temperatures and down-regulated at elevated 

temperatures, testicular varicocele, and experimental cryptorchidism (Nishiyama et al., 

1998; Zhou et al., 2009).  More specifically, Cirbp is expressed in germ cells and appears 

to be involved in spermatogenesis, which is a temperature sensitive process in mammals.  

Xia et al. (2012) recently reported that Cirbp has many mRNA targets in the testes, 

including azoospermia factor mRNAs, which are essential for spermatogenesis.  In mice, 

primary spermatocytes, secondary spermatocytes, and round spermatids express Cirbp.  

In contrast, Cirbp is not expressed in Sertoli cells or Leydig cells of mice.  Although the 

exact role Cirbp plays in spermatogenesis is not known, Cirbp has been reported to 

regulate the cell cycle in spermatogonia (Masuda et al., 2012).  It is important to note 

there were no major gross abnormalities or fertility problems in Cirbp knockout mice 

despite having fewer spermatogonia.  However, the down-regulation of Cirbp in the 

testes by heat stress may contribute to male infertility (Xia et al., 2012).   

Cirbp mRNA and protein were concentrated in the ovarian cortex of hatchling 

turtles.  Cirbp protein appeared to be mainly detected in the nucleus of the oocytes in the 

snapping turtle, supporting the idea that Cirbp is important for cell growth, 

differentiation, and maintenance of the gonad after sex determination.  Cirbp is also 

expressed in the ovaries of numerous mammals, fish, Xenopus, and American alligator. 

Cirbp is expressed in granulosa cells and oocytes and appears to be involved in 

folliculogenesis (Knoll-Gellida et al., 2006).  Three isoforms of the cold-inducible RNA 

binding protein (referred to as CIRP) have been identified in Xenopus, XCIRP, XCIRP-1 

and XCIRP-2, and all three are expressed in oocytes.  XCIRP2 is the most abundant 

isoform and it expression is cytoplasmic, suggesting that XCIRP2 may be involved in 
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regulating translation (Matsumoto et al., 2000).  It has been suggested that Cirbp is a 

proto-oncogene involved in ovarian cancer (Lleonart, 2010; Emmanuel et al., 2011). 

Thus, Cirbp may play a role in regulating the cell cycle in ovaries and testes. 

We hypothesize that Cirbp interacts with other sex-determining genes in the 

bipotential gonads of snapping turtle embryos. In Xenopus, Cirbp is a target of TCF 

transcription factors, which are important Wnt/ß-catenin signaling and have been 

implicated in mammalian sex determination.  TCF transcription factors are known to 

interact with stabilized ß-catenin to activate target genes necessary for ovarian 

development in many species (Van Venrooy et al., 2008; Bernard et al., 2008).  Cirbp 

also interacts with and stabilizes ß-catenin (Peng et al., 2006). It would therefore be 

interesting to directly test the hypothesis that Cirbp interacts with the Wnt/ß-catenin 

pathway in snapping turtle embryos.   

Cirbp has also been shown to target Wilm’s Tumor 1 (WT1) in Xenopus (Peng et 

al., 2000).  WT1 is a zinc finger transcription factor essential for gonadogenesis and sex 

determination in mammals (reviewed in Swain and Lovell-Badge, 1999; Capel 2000). 

Several WT1 isoforms are produced by alternative splicing of mRNA and alternative 

translation initiation sites.  For instance, the WT1 +KTS and –KTS isoforms play 

different roles in gonad development.  The -KTS isoform is essential for initial 

development of the bipotential gonads, while the +KTS isoform is required for testis 

determination in mice (reviewed in Bowles and Koopman, 2001; Wagner et al., 2003). 

Studies in the American alligator and red-eared slider turtle demonstrate that WT1 

mRNA and protein are also expressed in embryonic AKGs during the TSP (Spotila et al., 
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1998; Western et al., 2000; Schmahl et al., 2002). To our knowledge, no one has 

examined potential interactions between Cirbp and WT1 in TSD species.  

Another cold inducible RNA binding protein, RNA-binding motif protein 3 

(RBM3), is involved in microRNA (miRNA) biogenesis by regulating Dicer (Pilotte et 

al., 2011).  RBM3 is a member of the RRM protein family and is structurally similar to 

Cirbp, suggesting that RBM3 and Cirbp may have similar molecular functions.  miRNAs 

are short, noncoding RNAs that regulate gene expression by binding to complementary 

mRNA sequences and causing their degradation.  miRNAs play key roles in 

development, differentiation and plasticity (Pauli et al., 2011).  Recently, miRNAs have 

been reported to be important players in sex determination and differentiation in 

mammals and chickens (Bannister et al., 2009; Torley et al., 2011; Cutting et al., 2012; Li 

et al., 2012).  Thus, Cirbp could regulate expression of sex-determining genes by 

influencing the formation of miRNAs.    

In summary, I found that a high, female-producing temperature increases Cirbp 

expression in the bipotential gonads of snapping turtle embryos.  I also detected a 

significant familial correlation between the Cirbp induction during the TSP and sex ratios 

at hatching.  Taken together, these results strongly suggest that Cirbp plays a role in 

mediating temperature effects on sex determination in the snapping turtle.  Yet, Cirbp is 

probably not the only TSD gene because we would expect elevated Cirbp expression at 

both cool and warm female-producing temperatures.  Indeed, prior studies in the 

snapping turtle (and other TSD reptiles) suggest polygenic inheritance of thermal 

sensitivity and genotype by temperature interactions (Rhen and Lang, 1998; Rhen et al., 

2011).  Although I provide hypothetical mechanisms by which Cirbp might participate in 
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TSD, additional experiments are required.  Given that the main functional domain in 

Cirbp is the RRM, it would be informative to identify RNAs that physically interact with 

Cirbp in bipotential gonads at male versus female temperatures.  However, the ultimate 

test will involve manipulation of Cirbp expression (i.e., overexpression and knockdown 

experiments) and phenotypic analysis of gonad differentiation at male and female 

temperatures.  
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Table 2.1.  List of primers used for isolating, measuring mRNA expression levels, and 
obtaining the full-length cDNA of Cirbp.  H-T11A and H-AP 03 primers were used for 
mRNA Differential Display PCR to clone Cirbp.  The Real Time Forward and Reverse 
primers were used for quantitative PCR to measure the mRNA expression of Cirbp.  The 
5’ RACE Semi-nested primers were used for the 5’ RACE to obtain the full-length cDNA 
of Cirbp.   The riboprobe primers were used for synthesizing antisense and sense probes 
for in situ hybridization.    
________________________________________________________________________ 
        Primer                 Primer Sequence                                            
H-T11A  5’ - AAGCTTTTTTTTTTTA - 3’ 
H-AP 03           5’ - AAGCTTTGGTCAG – 3’ 
Real-Time Forward           5’ – CAAGTGAACAATCTGACTTGTAACAG – 3’ 
Real-Time Reverse          5’ – TTTTTACATCGATCTTTCTTGCAT – 3’ 
5’ RACE Semi-nested 1                5’ – TTTCCCGTCCATTTATTCAACGGT – 3’ 
5’ RACE Semi-nested 2                 5’ – CTCAGGAATGCTGTTTCAGGCTCA – 3’  
5’ RACE Semi-nested 3                 5’ – CCTGCTGCTGCTATAGTAGTCTCT – 3’ 
Riboprobe Forward 5’ – TGAAAGACAGAGAGACCCAGAGGTCCA-3’  
Riboprobe Reverse          5’ – ACCTGTCACCATAGCCACCTTGATTCCT-3’ 
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Figure 2.1.  6% polyacrylamide gel using H-T11A and H-AP 03 for Differential 
Display PCR.  A) Bands present from the polyacrylamide gel on days 2 and 3 after 
the temperature shift.   B) Bands present from the polyacrylamide gel on days 4 and 
5 after the temperature shift.  The male-producing (26.5oC) and female-producing 
(31oC) thermal groups are indicated in the middle of the three replicates for each 
treatment.  The day after the temperature shift is listed above the lanes.  The white 
arrowheads indicate the differentially expressed band at approximately 150 base 
pairs in the female-producing (31oC) treatment group.  The ladders shown on the 
ends and middle of the gels are 100 base pair ladders. 
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           Figure 2.2.  Full-length cDNA nucleotide and deduced amino  
acid sequences for snapping turtle Cirbp.  Amino acid sequence  
is shown in single-letter code below the nucleotide sequence.  The  
RNA recognition motif sequence is in bold and the putative RNP  
sequences are underlined.  The arginine and glycine rich regions  
are doubly underlined.  The stop codon is indicated by an asterisk. 

 
 
 
 
 
 
 

 

 

 

 

 
 
 

 

tacatcgtgctgggactttgaagcattgtgctgcccttgcactcaccgaggaccgaacaaa  61  

atggcatcagatgagggcaagctctttgttggtggactgagttttgataccaatgaacag  121  

 M  A  S  D  E  G  K  L  F  V  G  G  L  S  F  D  T  N  E  Q  

 

tcactggagcaagtcttttctaaatacggacagatctctgaagttgtcgtggtgaaagac  181 

 S  L  E  Q  V  F  S  K  Y  G  Q  I  S  E  V  V  V  V  K  D  

 

agagagacccagaggtccagaggctttggatttgttacttttgagaacatagatgatgct  241   

 R  E  T  Q  R  S  R  G  F  G  F  V  T  F  E  N  I  D  D  A  

 

aaagatgcaatgatggctatgaatggaaagtctgttgatgggcgtcagattagagttgac  301 

 K  D  A  M  M  A  M  N  G  K  S  V  D  G  R  Q  I  R  V  D  

 

caggcaggtaaatcatccgaaaatagatcccgtggatacagagggggttcatcaggtggc  361 

 Q  A  G  K  S  S  E  N  R  S  R  G  Y  R  G  G  S  S  G  G  

 

agaggctttttccgtggaggcagaggtcgggggggccgtggcttctctagaggaggtgga  421 

 R  G  F  F  R  G  G  R  G  R  G  G  R  G  F  S  R  G  G  G  

 

gacagaggctatggaggaagcagattcgattccagaagtgggggatataatgggtctaga  481 

 D  R  G  Y  G  G  S  R  F  D  S  R  S  G  G  Y  N  G  S  R  

 

gactactatagcagcagcaggaatcaaggtggctatggtgacaggtcttcaggagggtcc  541 

 D  Y  Y  S  S  S  R  N  Q  G  G  Y  G  D  R  S  S  G  G  S  

 

tacagagacaactatgacagttacggttgaagagaagatggacatttgagcctgaaacagc  601 

 Y  R  D  N  Y  D  S  Y  G  *   
 

attcctgagaatttcgtgaaagcagtacctacaatcaactttctaagcagcagtgagctgca 663 

tcgaagaggattgatacagctgttgactgagcagtggagttcaagagctttgagcagtgtat 725  

aatatccgatatagatccaagtgaacaatcggacttgtaaccgttgaataaatggacgggaa 787 

aaagcaatgcttttaaaataattctataaataaatgcaagaaagatcgatgtaaaaaaaaaaa 850 
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Figure 2.4.  Cold inducible RNA-binding protein (Cirbp) expression in 
gonads from snapping turtle embryos and hatchlings.  One group of eggs 
was incubated at 26.5oC throughout development, which produces only 
males (26C, open bars).  Another group was incubated at 26.5oC until 
stage16, shifted to a female producing temperature of 31oC for 6 days and 
returned to 26.5oC for the remainder of development (26-31-26C, solid 
bars).  This brief exposure to 31oC is enough to produce exclusively 
females.  Levels of Cirbp mRNA are adjusted least square means (+ 1 SE) 
for each temperature regime and time point.  Arrows indicate a significant 
(p < 0.05) difference in Cirbp expression between incubation temperatures 
based on the Dunn-Sidak post hoc test. 
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Figure 2.5.  Cold Inducible RNA binding protein (Cirbp) expression in 
gonads from snapping turtle embryos.  One group of eggs was incubated at 
26.5oC throughout development, which produces only males (26C, open 
bars).  Another group was incubated at 26.5oC until stage 16, shifted to a 
female producing temperature of 31oC (26-31-26C, solid).  Gonads from 
each temperature regime were sampled at 6, 12, 24, and 48 hours after the 
temperature shift.  Levels of Cirbp mRNA are adjusted least square means (+ 
1 SE) for each temperature regime and time point.  Arrows indicate a 
significant (p < 0.05) difference in Cirbp expression between incubation 
temperatures based on the Dunn-Sidak post hoc test. 
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Figure 2.6.  Cold Inducible RNA binding protein (Cirbp) expression in gonads 
from snapping turtle embryos.  One group of eggs was incubated at 26.5oC 
throughout development, which produces only males (26C, open bars).  
Another group was incubated at 26.5oC until stage 14, shifted to a female-
biased temperature of 20oC until stage 20 and returned to 26.5oC for the 
remainder of development (26-20-26C, solid bars).  Gonads from each 
temperature regime were sampled at stages 15 through 19 after the temperature 
shift.  Levels of Cirbp mRNA are adjusted least square means (+ 1 SE) for 
each stage and temperature regime.  Arrows indicate a significant (p < 0.05) 
difference in Cirbp expression between incubation temperatures based on the 
Dunn-Sidak post hoc test. 
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Figure 2.7.  The distribution of cold inducible RNA binding protein (Cirbp) mRNA and 
protein in hatchling testes and ovaries using in situ hybridization and 
immunohistochemistry, respectively.  A) Cirbp mRNA expression in hatchling testes 
incubated at 26.5oC throughout development.  B) Cirbp mRNA expression in hatchling 
ovaries incubated at 31oC for 6 days during the TSP.  C) Cirbp protein expression in 
hatchling testes incubated at 26.5oC throughout development.  D) Cirbp protein 
expression in hatchling ovaries incubated at 31oC for 6 days during the TSP.  Scale bar = 
100 µm.     
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Figure 2.8.  The distribution of Cirbp protein in bipotential gonads during the TSP 
incubated at male-producing (26.5oC; A, C, E, G) or female-producing (31oC; B, D, F, H) 
temperatures on days 1 (A-D) and 5 (E-H) after the temperature shift.  Images were taken 
at either 20x magnification (A, B, E, F) or 40x magnification (C, D, G, H).    The arrows 
in (G) and (H) indicate the cytoplasmic staining of Cirbp in the cortex of the bipotential 
gonad.  Scale bars = 100 µm.     
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Figure 2.9.  The distribution of Cirbp protein in differentiating gonads incubated at male-
producing (26.5oC; A, C, E, G) or female-producing (31oC; B, D, F, H) temperatures on 
days 11 (A-D) and 21 (E-H) after the temperature shift.  Images were taken at either 20x 
magnification (A, B, E, F) or 40x magnification (C, D, G, H).    The arrows in (G) and 
(H) indicate the nuclear staining of Cirbp in the medulla of the developing testes (G) and 
the cortex of the developing ovaries (H).  Scale bars = 100 µm.     
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                     Figure 2.10. The sex ratios produced (in percent males) for 9 clutches  

that were shifted from a male-producing (26.5oC) to a female-producing 
(31oC) temperature for 2.5 days at stage 17.5.  
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Figure 2.11.  The relationship between the average Cirbp mRNA  
expression on days 1 and 2 and the sex ratios produced for 9 different 
clutches following a shift from a male-producing (26.5oC) to a female-
producing (31oC) temperature for 2.5 days at embryonic stage 17.5.   
The statistics in the figure are based on the Spearman’s rank correlation  
test. 
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CHAPTER III 
 
 

NOVEL GENETIC ASSOCIATION BETWEEN COLD INDUCIBLE RNA-BINDING 
PROTEIN AND TEMPERATURE-DEPENDENT SEX DETERMINATION IN THE 

COMMON SNAPPING TURTLE 
 
 

Abstract 
 

The gene(s) that transduces temperature in a signal for ovary versus testis 

development is not known in any species that displays temperature-dependent sex 

determination (TSD). We recently identified cold-inducible RNA-binding protein (Cirbp) 

as a TSD candidate gene in the snapping turtle based on dimorphic expression in gonads 

during the sex-determining period.  In this study, we test for associations between Cirbp 

genotype, mRNA expression, and sex ratios.  We used next generation sequencing to 

identify single nucleotide polymorphisms (SNPs) within the coding sequence of Cirbp in 

snapping turtles from northern and southern Minnesota. We observed allelic specific 

expression and differences in allele frequencies between turtle embryos from northern 

and southern Minnesota, suggesting genetic adaptation to local thermal regime. We 

synthesized TaqMan probes to detect alternative alleles for one SNP and used 

quantitative PCR to verify allelic specific Cirbp expression. We also found significant 

genetic associations between Cirbp genotype, Cirbp expression and sexual phenotype in a 

study that produced mixed sex ratios.  These results provide the strongest evidence to 

date for a TSD gene.  Additional studies are required to define the functional role of 

Cirbp in sex determination. 
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Introduction 

Sex determination in amniotic vertebrates can be divided into two broad 

categories, either genotypic or environmental.  Genotypic sex determination (GSD) 

occurs at fertilization and is determined by the individual’s genotype.  GSD species often, 

but not always, display morphologically distinct sex chromosomes, as observed in 

mammals, birds, snakes, some lizards, and some turtles.  Environmental sex 

determination occurs when certain environmental factors influence gonad development 

and the sex of an embryo.  Various environment factors are known to determine sex in 

animals, but temperature is the only one to influence sex determination in amniotic 

vertebrates.  This phenomenon is referred to as temperature-dependent sex determination 

(TSD).  Among amniotes, TSD is only observed in reptiles, including many lizards, 

numerous turtles and all crocodilians studied to date (Viets et al., 1993; Lang and 

Andrews, 1994; Deeming 2004; Ewert et al., 2004; Harlow, 2004). 

The critical period when temperature induces commitment of the bipotential 

gonads to testicular or ovarian fate is referred to as the temperature-sensitive period 

(TSP) (Crews, 1996; Pieu and Dorizzi, 2004; Place and Lance, 2004).  The specific 

temperatures that produce males and females and length of the TSP vary among TSD 

species (Yntema, 1979; Wibbels et al., 1991; Lang and Andrews, 1994; Rhen and Lang, 

1998; Pieau et al., 2004).  Incubation temperature influences the expression of genes 

involved in testis and ovary development.  Although the initial trigger for sex 

determination is different between GSD and TSD species, it appears that many 

orthologous genes are involved in vertebrate sex determination.  For example, Dmrt1, 
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Sox9, Pdgf-B, and anti-Müllerian hormone (AMH) display temperature sensitive 

expression with higher levels in incipient testes in all species studied (reviewed in 

Shoemaker and Crews, 2009; Rhen and Schroeder, 2010).  In contrast, aromatase and 

Foxl2 have been identified as temperature sensitive genes that are expressed at higher 

levels in incipient ovaries (reviewed in Shoemaker and Crews, 2009; Rhen and Schroeder 

2010).  While these downstream genes are conserved, the initial switch for testis versus 

ovary development is not conserved between GSD and TSD species.  For example, a 

single gene on the Y chromosome, Sry, is the trigger for testis development in mammals. 

However, an exact ortholog of SRY has not been identified in non-mammalian 

vertebrates.  This suggests that the gene(s) transducing temperature into a signal for testes 

versus ovary development may not be orthologs of mammalian sex-determining genes. 

Thus, a candidate gene approach dependent on orthologs of mammalian genes may not 

identify the initial trigger for TSD (Lance, 2009).   

One reptile that exhibits TSD is the common snapping turtle, Cheldrya 

serpentina.  I have been using this species as a model for studying mechanisms 

underlying TSD.  The snapping turtle is a useful model because it has a very short TSP: 

exposure to a female-producing temperature for six days is sufficient to induce ovarian 

development (Rhen et al., 2007; 2009).  This allows identification of thermo-sensitive 

gene(s) that may trigger commitment to ovarian development.  This species produces 

females at low and high temperatures, while males are produced at intermediate 

temperatures (Yntema, 1976; Rhen and Lang, 1994; Ewert et al., 2005).  Eggs incubated 

between 23oC and 27oC produce all males in the population we study.  In contrast, eggs 

incubated at 31oC produce exclusively females.  Mixed sex ratios are produced at 
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temperatures below 23oC and between 27.0oC and 29.5oC, with 28.2oC producing a 50:50 

sex ratio.   

While this pattern of thermal sensitivity is observed in the population we study, 

Ewert et al. (2005) demonstrated a latitudinal cline for TSD in the snapping turtle.  This 

suggests populations of snapping turtles are adapted to their local thermal regimes. 

Studies within snapping turtle populations have found among-family variation at 

temperatures that produce mixed sex ratios, indicating broad-sense heritability for TSD 

(Jansen, 1992; Rhen and Lang; 1998).  More recent studies in other TSD species have 

demonstrated a heritable genetic basis for TSD (Rhen et al., 2011; McGaugh et al., 2011; 

McGaugh and Janzen, 2011).  The presence of genetic variation for TSD makes genetic 

association studies a feasible approach to identify TSD candidate genes.  

 Understanding the genetic basis of phenotypic plasticity is essential for 

understanding variation in sex ratios observed among families and populations of TSD 

species.   Single nucleotide polymorphisms (SNPs) represent the most common DNA 

sequence alteration in humans (Cargill et al., 1999; Nadeau, 2002).  SNPs are classified 

into two broad categories, either synonymous or non-synonymous.  Non-synonymous 

SNPs lead to changes in the amino acid sequence of a protein, which may alter protein 

function.  Non-synonymous mutations are less common than synonymous mutations, 

which do not change the amino acid sequence of a protein and do not directly alter 

protein structure or function.  However, synonymous SNPs can influence gene 

transcription, mRNA processing, mRNA stability, or translation, which in turn have 

phenotypic consequences (Goymer, 2007).  Synonymous mutations that influence gene 

expression account for much of the phenotypic variation within individuals, among 
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individuals, and among species (Whitehead and Crawford, 2006; Stranger et al., 2007).  

Therefore, the determination of variation in gene expression due to synonymous SNPs in 

biologically relevant loci is essential for understanding phenotypic variation.   

Allelic specific expression (ASE) assays have become a common method for 

associating gene expression with variation in phenotype.  ASE assays require a 

heterozygous marker, usually SNPs, within a gene to discriminate between two alleles 

(Germer et al., 2000; Wittkopp et al., 2004; Ronald et al., 2005).  Differences in 

expression of alternative alleles may be responsible for the phenotype of interest.  This 

approach has been used in genome-wide association studies of complex phenotypes in 

humans (Dixon et al., 2007).  This approach has also been used to study phenotypic 

variation in natural populations (Tung et al., 2011; Storey et al., 2007).  ASE assays may 

provide a powerful way to associate candidate genes with variation in TSD in natural 

snapping turtle populations. 

 Recently, I identified cold-inducible RNA-binding protein (Cirbp) as a candidate 

gene for TSD in the common snapping turtle (Rhen and Schroeder, 2010).  Cirbp 

contains a single RNA recognition motif and glycine-rich motif that is plays a crucial role 

in mRNA processing, RNA export, translation, and stability (Dreyfuss et al., 2002; Maris 

et al., 2005).  Cirbp is known to regulate many temperature-dependent cellular processes 

by regulating mRNAs through translational repression and stabilization (Yang et al., 

2006; De Leeuw et al., 2007; Xia et al., 2012).  Cirbp was more strongly expressed at a 

female-producing temperature (31oC) than a male-producing temperature (26.5oC).  I also 

found a significant correlation between Cirbp expression and sex ratios within families. 

Clutches with higher Cirbp expression produced more females, while clutches with 
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blunted Cirbp expression produced more males, suggesting Cirbp is involved in the 

commitment to the ovarian fate.  

It is challenging to test the function of differentially expressed genes in TSD 

species because, unlike mice and other model organisms, it is not possible to produce 

gene knockouts.  Yet, with the development of next generation sequencing, researchers 

can begin to identify variants in candidate genes that may explain variation in TSD.  In 

this study, I tested for genetic associations between Cirbp expression and gonad 

phenotype.  I identified SNPs in snapping turtle Cirbp using next-generation Illumina 

sequencing.   I determined allele frequencies and allele-specific expression from RNA-

Seq data.  Probes were synthesized to detect alternative alleles for one of the SNPs and 

measure allelic specific expression of Cirbp in a natural snapping turtle population.  I 

used this data to test the hypothesis that variation in Cirbp expression is genetically 

associated with commitment to ovarian fate.  

Materials and Methods 

Animal experiments were carried out according to a protocol approved by the 

Institutional Animal Care and Use Committee at the University of North Dakota 

(Protocol #0905-1).  In June 2008, 2009, and 2010, I collected eggs from snapping turtles 

nests throughout the state of Minnesota, USA. extending from the Iowa border to the 

Canadian border.  We transported eggs to the animal quarters in the Biology Department 

at the University of North Dakota.  I held eggs were held at ~20oC for less than one week 

before clutches were assigned to experimental treatments.  Eggs were washed in tepid 

water, candled for viability and infertile eggs removed.  Egg collection and incubation 
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protocols have been provided in extensive detail previously (Rhen et al., 2007, 2009), but 

a summary of our procedures for each experiment is provided below. 

SNP Identification and Allelic-Specific Expression Assay Using Illumina Sequencing 

Approximately equal numbers of eggs from 25 clutches were separated into two 

experimental groups.  Eggs were placed in containers filled with moist vermiculite and 

containers were randomly positioned in foam incubators (Rhen and Lang, 1994, Rhen et 

al., 2007, 2009).  One group of eggs was incubated at 26.5oC throughout development to 

produce males. The other group was incubated at 26.5oC until stage 17.5, at which point 

eggs were then shifted to 31oC for 6 days to produce females, and returned to 26.5oC for 

the rest of development.  This brief exposure to 31oC is sufficient to induce ovary 

development in all embryos (Rhen et al., 2007).  I dissected adrenal-kidney-gonad 

complexes (AKGs) from embryos incubated at 26.5oC and from clutch mates that had 

been shifted to 31oC.  Tissues were collected on days 1, 2, 3, 4, and 5 of the temperature 

shift, placed in RNAlater (Ambion, Austin, TX), and stored at -20oC until RNA was 

extracted. 

Genetic Association Experiment 

Snapping turtle eggs from 15 clutches were incubated at 26.5oC until stage 17.5 of 

development.  Eggs were shifted to 31oC for 2.5 days and then shifted back to 26.5 oC.  

Approximately equal numbers of embryos were sampled from each clutch at 24 and 48 

hours of the 31oC exposure.  Gonads were dissected and total RNA extracted as 

previously described.  A subset of eggs was allowed to hatch to determine sex ratios for 

each clutch.  Hatchlings were sexed, AKGs dissected, snap-frozen, and stored at -80oC 

until genomic DNA isolation. 
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RNA Extraction, DNA Extraction, cDNA Synthesis 

Embryonic gonads were carefully micro-dissected from AKGs.  I extracted total 

RNA from gonad pairs isolated from individual embryos or hatchlings using the PicoPure 

RNA Isolation Kit (Life Technologies, Carlsbad, CA) as described in Rhen et al. (2007).  

I combined total RNA from individual embryos to make 20 pools for RNA-Seq: 2 

temperatures x 5 days x 2 biological replicates.  While ten of these pools (2 temperatures 

x 5 days) were from eggs collected in southern Minnesota, the other ten pools (2 

temperatures x 5 days) were from eggs collected in northern Minnesota. The northern and 

southern populations were separated by the latitude of 46o 55’ N.  The concentration and 

quantity of each RNA pool was determined using the BioRad Experion System (Bio-Rad, 

Hercules, CA).  Total RNA was sent to the W.M. Keck Center for Comparative and 

Functional Genomics at the University of Illinois at Urbana-Champaign for sequencing.  

Twenty individual cDNA libraries were prepared at the Keck Center and each library was 

sequenced using the Illumina HiSeq 2000 platform (Illumina Inc, San Diego, CA).  

  Embryonic gonads for the genetic association study were carefully micro-

dissected from AKGs.  Total RNA was extracted using RNAzol RT (Molecular Research 

Center, Cincinnati, OH).  The RNAzol RT protocol was modified for the small amount of 

tissue from a pair of gonads.  We used one-quarter of the liquid recommended by the 

manufacturer for tissue homogenization, RNA isolation, and recovery.  For example, I 

homogenized tissue in 250 µl of RNAzol RT instead of 1 ml.  I added 1 µl of 

precipitation carrier (Molecular Research Center, Cincinnati, OH) to the homogenate to 

assist with RNA isolation because the expected yield was less than 10 µg.  Total RNA 

was dissolved in 15 µl of RNase-free water and quantified with a NanoDrop ND-1000 



 85 

spectrophotometer (NanoDrop Technologies, Wilmington, DE).  Genomic DNA was 

removed by DNase treatment following the RNA extraction to ensure RNA purity.   

 Total RNA (150 ng) from each pair of gonads was reverse transcribed in a 20 µl 

reaction using the iScript cDNA Synthesis Kit, which contains a blend of oligo dT and 

random hexamers (BioRad, Hercules, CA).  I diluted cDNA to a concentration of 1 ng 

input RNA/µl for use in real-time PCR reactions. 

One half of the frozen hatchling AKGs was used to isolate genomic DNA for SNP 

genotyping.  I isolated genomic DNA using TRI Reagent according to the manufacturer’s 

recommendations (Molecular Research Center, Cincinnati, OH).  I resuspended DNA in 

100 µl of water. The DNA was quantified with a NanoDrop ND-1000 spectrophotometer 

(NanoDrop Technologies, Wilmington, DE).  The integrity of DNA was determined by 

gel electrophoresis.  Purified genomic DNA was stored at -20oC until it was used for 

genotyping.   

Bioinformatics, SNP Base Calling, and mRNA-Seq 

 I used CLC Genomics Workbench 4 (CLC bio, Cambridge, MA) for read 

mapping, SNP identification, and RNA-Seq analyses.   I mapped reads to full-length 

Cirbp cDNA and determined the number of reads that were mapped and not mapped from 

each of the 20 cDNA libraries.  Reads uniquely mapped to Cirbp were used to identify 

SNPs and to determine allele frequencies in populations of snapping turtles from northern 

and southern MN.  I used the SNP detection tool to identify SNPs in Cirbp cDNA. 

Parameters for SNP detection required a minimum coverage of 4 reads for each SNP and 

a minimum variant frequency of 35 percent.   
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I used RNA-seq to measure ASE: read counts for each allele were determined for 

each of the twenty cDNA libraries.  Allelic-specific expression was standardized as reads 

per kilobase of exon per million mapped reads (RPKM) (Mortazavi et al., 2008).  The 

calculation for the RPKM is provided below.   

                          =                    Number of Reads for Cirbp Allele________ 
  Length of Cirbp x Total number of reads (in millions) 

 
 

Quantitative Real-time PCR for Alleles and Genotyping 

 I designed PCR primers and highly specific TaqMan (major groove binder) 

probes for real-time PCR.  I used these primers and probes to measure ASE of Cirbp 

mRNA and to genotype hatchling turtles (Applied Biosystems, Carlsbad, CA).  The 

sequence of primers and probes for the 124A>C SNP are shown below: 

Forward Primer 5’- GGTGGACTGAGTTTTGATACCAATG – 3’ 
Reverse Primer 5’-TTCACCACGACAACTTCAGAGATC- 3’ 
Reporter 1 (Fam) 5’- AACAGTCACTGGAGCAA-3’ 
Reporter 2 (Vic) 5’- AACAGTCCCTGGAGCA-3’ 
 

I used cDNA from 15 clutches as template in our ASE assay.  In brief, each 

reaction tube contained 5 µl SsoFast probes supermix (Bio-Rad, Hercules, CA), 300 nM 

of forward and reverse primers, 200 nM of each probe, 2 µl of cDNA from one individual 

(equivalent to 1 ng of total RNA), and water to bring the total reaction volume to 10 µl. 

PCR reactions were run on the Bio-Rad CFX 384 Real-Time System (Bio-Rad).  The 

thermal profile was 95oC for 30 sec to activate the DNA polymerase followed by 40 

cycles of two-step PCR (95oC for 5 sec and 64.3oC for 10 sec).  I used 64.3oC as the 

annealing and extension temperature because it was the optimal temperature for 

distinguishing between the alleles.  I made standard curves for each allele as described 

previously (Rhen et al., 2007, 2009).   
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 Genotyping was performed using genomic DNA isolated from hatchlings for all 

15 clutches. Primers and probes were the same as for the ASE assay.  Reactions were set 

up as described above.  Instead of using cDNA as template, I used 1 µg of genomic DNA 

as template for each individual.  The thermal profile was 95oC for 3 min to activate the 

DNA polymerase enzyme followed by 50 cycles of two-step PCR (95oC for 5 sec and 

64.3oC for 10 sec).  Genotyping reactions were run on the Bio-Rad CFX 384 Real-Time 

PCR System (Bio-Rad).   

Statistical Analysis 

I used logistic regression to compare allele frequencies for each SNP in the 20 

cDNA libraries described above.  I used temperature, population, and the interaction 

between temperature and population as independent variables in one model.  In a second 

model, I analyzed ASE for each SNP using temperature, allele and the interaction 

between temperature and allele as independent variables.  Given significant effects (α < 

0.05), I used the Dunn-Sidak method to correct for multiple comparisons among groups.  

Chi-square tests were used to test for an association between the hatchling genotype and 

gonadal sex.  We also performed a stratified categorical analysis using the Cochran-

Mantel-Haenszel (CMH) test to control for clutch identity, which could be confounded 

with hatchling genotype.  I performed the nonparametric Spearman’s rank correlation test 

to examine relationships among latitude, sex ratio, and allele frequency.  All statistics 

were performed using JMP 5.0.1.2 software (SAS Institute, Cary, NC). 
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Results 

Illumina Sequencing and SNP Identification 

 I obtained 153,568,937 reads (100bp/read) from the 20 cDNA libraries.  I mapped 

15,337 sequence reads to the full-length Cirbp cDNA sequence, with 5,379 reads  

mapping from the 26.5oC libraries and 9,958 reads mapping from the 31oC libraries.  A 

summary of the number of Illumina sequencing reads that were mapped or were not 

mapped back to the snapping turtle Cirbp for each population and thermal regime is 

provided in Table 3.1.  

From the 15,337 reads mapped, I identified four SNPs within the snapping turtle 

Cirbp sequence.  SNP at nucleotide (nt) 124 (A->C) occurred within the open reading 

frame of Cirbp and was a synonymous mutation at the codon for amino acid 21, which 

coded for serine.  Three other SNPs were identified: nt 618 (G->A), 644 (T->C),  

802 (T ->A), which were located within the 3’UTR of the snapping turtle Cirbp.   I 

determined the allele frequencies for each SNP from the two populations and thermal 

regimes and a summary of the allele frequencies is provided in Table 3.2.   

Allele Frequencies and ASE for each SNP using mRNA-Seq 

Logistic regression showed the allele frequency of SNP 124A>C did not vary 

significantly between the incubation temperatures, but did vary significantly by 

population, with the C allele being more common in families of turtles collected from 

northern Minnesota and the A allele occurring more frequently in families from southern 

Minnesota (Table 3.3).  There was also a significant temperature x population interaction, 

with the A allele occurring more frequently in the 31oC libraries than 26.5oC libraries in 

both the northern and southern populations.  
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Cirbp expression was significantly influenced by temperature, allelic state (SNP 

124A>C), and the temperature x allele interaction (Table 3.4).  The A allele was induced 

by the shift to 31oC, while expression of the C allele did not differ between 31oC and 

26.5oC (Figure 3.1).     

The allele frequency of SNP 618G>A varied significantly between the two 

populations  and the temperature x population interaction, with the G allele occurring 

more frequently in families from southern Minnesota and in the 31oC libraries in both 

populations (Table 3.3).  Allele frequencies did not differ between temperatures. 

Cirbp expression was significantly influenced by temperature and allelic state 

(SNP 618G>A) (Table 3.4).  Allelic expression was not significantly influenced by the 

temperature x allele interaction.  The shift to 31oC induced expression of both alleles with 

the G allele being more frequent at both temperatures (Figure 3.2).   

 The allele frequency of SNP 644T>C varied significantly with temperature and 

differed between populations, with the T allele being more common in families collected 

from southern Minnesota than from northern Minnesota (Table 3.3).  The allele 

frequency did not vary significantly by the temperature x allele interaction.    

 Cirbp expression was significantly influenced by temperature, allelic state (SNP 

644T>C), and the temperature x allele interaction (Table 3.4).  The T allele was induced 

by the shift to 31oC, while expression of the C allele did not differ between 31oC and 

26.5oC (Figure 3.3).  

 Allele frequency of SNP 802T>A varied significantly by temperature, population, 

and the temperature x population interaction (Table 3.3).  The T allele was more common 
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in families collected from northern Minnesota than families collected in southern 

Minnesota and appeared more strongly induced at 31oC (Table 3.2).   

 Cirbp expression was significantly influenced by temperature and allelic state 

(SNP 802T>A), but not by the temperature x allele interaction (Table 3.4).  The T allele 

was induced at 31oC, while expression of the A allele was not affected by the temperature 

shift (Figure 3.4).  

Genetic Association with Sexual Phenotype 

I tested whether there was a genetic association between expression of alternative 

Cirbp alleles and sex determination in an experiment that produced mixed sex ratios.  

Eggs from 15 clutches were incubated at 26.5oC until embryos reached stage 17.5oC.  

Eggs were then shifted to 31oC for 2.5 days and shifted back to 26.5 oC until eggs 

hatched.  This brief exposure to a female-producing temperature produced an overall sex 

ratio of 75% males.  There was significant variation in sex ratios among the 15 clutches 

(LR χ2 = 85.64, DF = 1, p < 0.0001), ranging from exclusively females in clutch 36 to 

exclusively males in clutch 15 (Figure 3.5).   

I used TaqMan MGB probes for SNP 124A>C in a quantitative PCR to measure 

allelic specific expression of Cirbp in embryonic gonads.  There was a significant 

difference in Cirbp expression between different genotypes, with A/A homozygotes 

having the higher expression and C/C homozygotes having significantly lower 

expression.  There was not a difference in expression of the A and C alleles in 

heterozygotes (Figure 3.6).  This pattern suggests a trans-acting factor may be driving 

allele specific expression. 
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I also determined the genotype and sex of each hatchling.  I found a significant 

association between Cirbp genotype and the sex of hatchlings (LR χ2 = 10.42, DF = 2, p 

= 0.0055).  I found that 69.7% of A/A homozygotes were males, 73.6% of A/C 

heterozygotes were males, while 100% of C/C homozygotes were males (Figure 3.7).  

However, when I controlled for clutch identity, I found there was not a significant 

association between Cirbp genotype and sex (Cochran-Mantel-Haenszel χ2 = 4.65,        

DF = 2, p = 0.0976).  This again suggests that a trans-acting factor may be driving allele 

specific expression and the genetic association between Cirbp and sexual phenotype. 

Because there was a significant association between hatchling genotype and 

hatchling sex, but not when controlling for variation between clutches, I determined if 

there was a correlation between SNP frequency and sex ratio among families.  There was 

a significant positive correlation between the number of Cirbp C alleles in a family and 

the family sex ratio (Spearman’s rho = 0.501, r = 0.49, p = 0.0044), but only 24 percent 

of the variance was explained by this relationship.  In general, families with a higher 

frequency of Cirbp C alleles had more male-biased sex ratios (Figure 3.8). 

Although clutches collected for this study spanned a relatively small portion of 

the latitudinal distribution of this species, we tested whether there was any relationship 

between latitude and sex ratios.  There was a significant correlation between the latitude 

where individual clutches were collected and sex ratios (Spearman’s rho = 0.575, r = 

0.40, p = 0.0014), but only 16 percent of the variance was explained by this relationship 

(Figure 3.9).  The clutches collected from slightly more southern latitudes produced 

mixed sex ratios, with a tendency to be more female-biased.  Clutches that were collected 

from more northern latitudes had more male-biased sex ratios.  Despite the correlation 
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between allele frequency and sex ratio among clutches and latitude and sex ratio, there 

was not a significant relationship between allele frequency and latitude (Spearman’s Rho 

= 0.147, r = 0.041, p = 0.4548). 

Discussion 

Genetic association studies have become widely used to provide links between 

candidate genes and complex disease phenotypes (Hirshhorn and Daly, 2005), but 

association studies can also be useful for linking genetic variants to any common 

phenotype, including sex.  I previously identified Cirbp as a strong TSD candidate gene.  

To the best of our knowledge, this is the first study to 1) identify variation in the coding 

sequence of a thermo-sensitive gene, 2) report temperature-dependent expression of 

alternative alleles, and 3) detect a significant genetic association between a TSD 

candidate gene and gonadal sex.  Taken together, these results strongly suggest that Cirbp 

plays a functional role in TSD.  In other words, Cirbp may be involved in transducing 

temperature into a molecular signal for testis versus ovary development.  The Cirbp A 

allele at nucleotide 124 is associated with ovarian development, while the Cirbp C allele 

is associated with testis development.  Furthermore, differences in allele frequencies 

between snapping turtle populations may provide a mechanistic basis for adaptation of 

each population to their local thermal regime.  

I used next generation Illumina sequencing to identify single nucleotide 

polymorphisms in the snapping turtle Cirbp sequence.  For this study, I mapped reads to 

full-length cDNA sequence that we previously reported (Chapter I).  I have yet to 

determine if alternative splice forms of Cirbp exist in the common snapping turtle.  

Studies in mammals have demonstrated Cirbp expression is influenced by alternative 
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splicing (Al-Fageeh and Smales, 2009).  Furthermore, studies in Xenopus have identified 

three Cirbp isoforms that are differentially expressed over time and in a tissue-specific 

pattern (Uochi and Asashima, 1998; Matsumoto et al., 2000; Peng et al., 2000).  This 

opens the possibility that alternative splicing of Cirbp may be implicated in TSD in the 

snapping turtle, but this was outside of the scope of our study. 

I identified a total of four SNPs in the snapping turtle Cirbp transcript. One SNP 

(124 A>C) is at codon 21 in the open reading frame of Cirbp, while the others were 

located in the 3’ UTR. The 124A>C transversion is a synonymous mutation for serine 

within the highly conserved RRM.  A serine is found at codon 21 in human, alligator and 

chicken, but not in mice, rat, or Xenopus (Chapter I).  In mice and rats, alanine occurs at 

codon 21 and in Xenopus the amino acid cysteine occurs.  The serine at codon 21 is 

found in a motif that makes it likely to be phosphorylated by kinase ATM (Wong et al., 

2007).  It is not known whether post-translational modifications play a role in activation 

of Cirbp under various environmental conditions.  Prior studies of Cirbp have reported 

putative phosphorylation sites outside of the RRM, but the authors suggest that more 

research on kinases and Cirbp phosphorylation is needed (Yang et al., 2006; Lleonart, 

2010).  

A latitudinal cline in TSD pattern among snapping turtle populations strongly 

suggests adaptation to their local thermal regime (Ewert et al., 2005).  Populations in 

northern and southern Minnesota differ in their pivotal temperatures.  Incubation of eggs 

at 28.2oC produces a 50:50 sex ratio in the northern population while 27.8oC produces a 

50:50 sex ratio in the southern population (T.Rhen, unpublished results).  In this study we 

also found a significant relationship between latitude and sex ratios for families that were 
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collected less than 1o latitude away from each other.  These medium and small-scale 

clines are perfectly consistent with the broader, continental scale cline reported by Ewert 

et al. (2005).  If Cirbp is involved in sex determination, I would expect variation in allele 

frequencies among populations due to local adaptation.  I found significant differences in 

allele frequency between northern versus southern populations in the Illumina study and a 

significant correlation with latitude in the genetic association study, suggesting that Cirbp 

may play a role in adaptation to thermal regimes in different locations.  Furthermore, 

allelic specific expression for several SNPs showed differences in temperature sensitivity.  

I used one SNP as a marker for testing genetic association with gonad phenotype 

in a natural population of snapping turtles in Minnesota.  The Illumina data allowed 

identification of an a priori candidate, SNP 124A>C, that showed significant differences 

in expression between male-producing and female-producing temperatures.  Furthermore, 

SNP 124A>C was located in the open reading frame and therefore a likely candidate to 

be functional in the context of sex determination.  Examination of allelic expression for 

each genotype revealed that homozygotes for the A allele had higher Cirbp expression 

when shifted to 31oC than homozygotes for the C allele.  There was also a significant 

difference in sex ratio between genotypes, with A homozygotes being more likely to 

develop ovaries and C homozygotes being more likely to develop testes.  Cirbp may 

therefore play a role in transducing high temperatures into a signal for ovarian 

development.     

Although I found allele specific expression that was associated with sex 

determination, I do not know whether cis regulatory elements or trans-acting factors are 

causing this variation. Analysis of ASE in inbred parental lines and hybrids provides a 
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powerful method for dissecting these mechanisms. Although I did not have such 

information, I was able to compare Cirbp expression in heterozygotes to Cirbp expression 

in homozygotes. 

Cis-regulatory polymorphisms are often in or near the gene being regulated. 

These elements can affect transcription rate, transcript stability, or other aspects of gene 

expression.  Trans-regulatory polymorphisms occur at another locus, which may encode 

a transcription factor, co-activator, co-repressor, or some other factor that influences 

expression of the gene being regulated.  When variation in expression of a gene is 

strongly influenced by cis-regulatory polymorphisms, alternative alleles are expressed at 

different levels in heterozygotes, referred to as allelic imbalance.  In contrast, when 

variation in expression is due to trans-regulatory polymorphisms, both alleles are 

expressed at the same level in heterozygotes.  There was no difference in expression of 

different alleles in heterozygotes, suggesting that expression of Cirbp is regulated in 

trans.  Although I did not observe allelic imbalance in heterozygotes, this does not prove 

that a cis-regulatory polymorphism does not exist.  Rhen et al. are currently breeding 

adult snapping turtles from various latitudes in Minnesota.  This will allow for a more 

rigorous test for allelic imbalance.  We will also be able to compare allele specific 

expression in heterozygotes versus homozygotes.  Such comparisons can reveal additive 

versus dominance effects in a trans-acting factor.  

If variation in Cirbp expression is in fact regulated by a trans-acting factor, it 

would indicate polymorphism in an upstream gene in the TSD pathway.  One could 

hypothesize that such a factor only activates Cirbp expression under the appropriate 

environmental conditions (i.e., at specific temperatures).  Studies in other species reveal 
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that Tcf transcription factors regulate Cirbp expression (van Venrooy et al., 2008).  We 

have evidence that the shift from 26.5oC to 31oC activates the canonical Wnt signaling 

pathway, which involves β-catenin and Tcf transcription factors (Rhen, unpublished 

results).  

Other trans-acting factors, like microRNAs (miRNA), could be regulating Cirbp 

expression.  This is important to note because the A to C transversion at nucleotide 124 

creates a putative miRNA binding site (data not shown).  Although most functional target 

sites for miRNAs occur in the 3’ UTR, there is evidence that some target sites occur in 

the 5’ UTR and open reading frame of mRNAs (Farh et al., 2005; Lewis et al., 2005; 

Lytle et al., 2007).  Recent studies have identified several miRNAs with sexually 

dimorphic expression patterns in the bipotential gonads of chickens and mice (Bannister 

et al., 2009; Huang et al., 2010; Cutting et al., 2012).  These findings suggest that 

miRNAs may be a conserved regulatory mechanism for sex determination in amniotic 

vertebrates.  

The genetic association between Cirbp and sexual phenotype could also be 

explained by codon usage bias and differences in protein expression.  Codon usage bias 

occurs when there is an unequal use of synonymous codons within a species (Grantham 

et al., 1980; Moriyama, 2003).  Variation in codon usage is associated with gene length, 

GC-content, GC-content at the third nucleotide (referred to as GC3), recombination rate, 

and density of genes (Duret and Mouchiroud, 1999; Kreitman and Comeron, 1999; Duret, 

2000; Marais et al., 2001; Versteeg et al., 2003).  Bias has been observed most often in 

highly expressed proteins involved in cell growth and cell division.  Particular codons 

may be selected for fast responses to environmental changes (Bangoli and Lio, 1995).  
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Cirbp is temperature-responsive and influences cell growth and division in many species, 

making it a candidate for codon usage bias.  The SNP 124A>C at position 3 of the codon 

increases the GC content of the gene and the GC3 content.  One could speculate that the 

increase in GC3 makes this codon suboptimal, thereby decreasing the efficiency of Cirbp 

translation.  It is noteworthy that patterns and degrees of codon usage bias can vary by 

species and among genes within species.  For example, the gene copy number for serine 

tRNAs varies significantly in humans: there are 5 tRNA genes that recognize codon 

TCA, but no tRNA genes that recognize the codon TCC (Lavner and Kotlar, 2005).  In 

contrast, TCC was the optimal codon and TCA was less optimal in nematodes (Cutter et 

al., 2006).  The possibility of differences in Cirbp translation due to codon usage bias in 

the snapping turtle warrants further investigation.  

This study provides the strongest evidence to date for a TSD candidate gene. 

However, genetic association alone does not prove causation.  Additional studies are 

required to define the functional role of Cirbp in TSD.  For instance, Cirbp target mRNAs 

could be identified by RNA-binding immunoprecipitation combined with next generation 

sequencing (RIP-Seq). This data would help us understand how Cirbp may be regulating 

expression of other genes involved in sex determination. RNA-binding proteins are 

capable of regulating numerous mRNAs in a coordinated fashion (Keene, 2007). These 

mRNAs often encode proteins with similar function.  This suggests that Cirbp may have 

multiple targets that regulate ovarian commitment and a post-transcriptional RNA 

regulon for TSD.  However, the ultimate test will involve manipulation of Cirbp 

expression and phenotypic analysis of gonad development at male and female 

temperatures.  siRNA could be used to knockdown Cirbp expression in bipotential 
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gonads.  Based on results of the current study, I hypothesize siRNA mediated knockdown 

of Cirbp at female-producing temperatures would cause sex reversal.  I could test whether 

a decrease in Cirbp expression leads to an increase in expression of testis-specific genes 

like Dmrt1 and Sox9 and commitment to testis development.  Conversely, over 

expression of Cirbp at a male-producing temperature should result in activation of ovary-

specific genes.  
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Table 3.1.  Summary of the number of Illumina sequencing reads from each population 
and temperature for the 15,337 Illumina sequencing reads that were mapped to Cirbp or 
the 153,553,961 reads that were not mapped to Cirbp.     
_______________________________________________________________________ 
               Temperature (oC)          Population        # of Reads_____    
       

                   26.5  Southern 2,425   
 
 26.5                            Northern                    2,953 
Mapped to Cirbp 
 31 Southern         5,109 
 
 31  Northern                 4,489 
 
 
 26.5 Southern 36,177,000 
 
Not mapped  26.5 Northern 39,968,446 
to Cirbp  
 31 Southern 40,791,720 
 
 31 Northern 36,616,795 
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Table 3.2.  Summary of the allele frequencies (in number of reads) for the four Cirbp 
SNPs identified from the 20 Illumina sequencing libraries from each temperature regime 
and population. 
______________________________________________________________________ 
    Position                        Temperature    Population       Allele        Frequency    
      (bp)                                  (oC)                                                               (# of Reads)__ 
      124   26.5       South         A       835 
      124   26.5                  South         C      110 
      124   26.5       North         A              826 
      124   26.5       North         C                 253 
      124   31       South         A                1264 
      124   31                  South         C                 201 
      124   31       North         A             1123 
      124   31       North         C                 222 
 
      618   26.5       South         G                 487 
      618   26.5                  South         A      194 
      618   26.5       North         G      474 
      618   26.5       North         A                 379 
      618   31       South         G                1103 
      618   31                  South         A                 521  
      618   31       North         G                 978 
      618   31       North         A                 653 
 
      644   26.5       South         T                 510 
      644   26.5                  South         C                  77 
      644   26.5       North         T                 629 
      644   26.5       North         C                 135 
      644   31       South         T                1347 
      644   31                  South         C                 137 
      644   31       North         T                1135 
      644   31       North         C                 219 
 
      802   26.5       South         T                 107 
      802   26.5                  South         A     106 
      802   26.5       North         T                 193 
      802   26.5       North         A                 64 
      802   31       South         T                 340 
      802   31                  South         A     196 
      802   31       North         T                 391 
      802   31       North         A                128 
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Table 3.3.  Logistic regression model of the influence of temperature and population on 
the allele frequencies for snapping turtle Cirbp single nucleotide polymorphisms (SNP).  
Significant terms in the model at p < 0.05 are bolded.   
_______________________________________________________________________ 
             
      Cirbp SNP                               Source                         LR χ2                df__   _____p __  
                                                Temperature                        2.33                  1             0.1272 
      124 A>C                             Population                       43.52             1           <0.0001 
   Temperature x Population          14.96                 1             0.0001 
 

Temperature                     0.0056                 1             0.9401 
       618 G>A                            Population                       63.96                1           <0.0001 
   Temperature x Population             7.14                1             0.0075 
 
               Temperature                       6.59                1             0.0102   
        644 T>C                           Population                        27.00                1           <0.0001 
   Temperature x Population                2.21                1             0.1370 
 
                                                Temperature                       5.30                 1            0.0214 
         802 T>A                          Population                        47.53                1          <0.0001 
   Temperature x Population            4.82                 1            0.0282 
_______________________________________________________________________ 
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Table 3.4.  ANOVA model of the influence of temperature and allele on the allelic 
specific expression for each snapping turtle Cirbp single nucleotide polymorphisms 
(SNP).  Significant terms in the model at p < 0.05 are bolded.   
_______________________________________________________________________              
Cirbp SNP                          Source                             df                       F                         p _ 
                 Temperature                       1                    21.139               0.0100 
    124 A>C                         Allele                               1                  400.884             <0.0001 
                               Temperature x Allele                 1                   14.708                0.0185 
 
                 Temperature                       1                    43.139               0.0028 
    628 G>A                         Allele                               1                   24.970                0.0075 
                               Temperature x Allele                   1                    3.545                0.1328 
 
                 Temperature                       1                    94.912               0.0006 
    644 T>C                         Allele                               1                  409.924             <0.0001 
                               Temperature x Allele                 1                    60.491               0.0015 
 
                 Temperature                       1                    18.033               0.0132 
    802 T>A                         Allele                               1                    15.645               0.0167 
                               Temperature x Allele                   1                     4.460                0.1023 
________________________________________________________________________
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Figure 3.1.  Allele specific Cirbp expression in reads per kilobase per million 
mapped reads (RPKM) at male-producing (26.5oC) or female-producing (31oC) 
temperatures.  Expression levels are least square means (+ SE) for each 
temperature regime and allele (SNP 124A>C).  Different letters indicate a 
significant (p < 0.05) difference in Cirbp allelic expression between incubation 
temperatures and alleles based on the Dunn-Sidak post hoc test. 
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Figure 3.2.  Allele specific Cirbp expression in reads per kilobase per million 
mapped reads (RPKM) at male-producing (26.5oC) or female-producing (31oC) 
temperatures.  Expression levels are least square means (+ SE) for each 
temperature regime and allele (SNP 618G>C).  Different letters indicate a 
significant (p < 0.05) difference in Cirbp allelic expression between incubation 
temperatures and alleles based on the Dunn-Sidak post hoc test. 
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Figure 3.3. Cirbp expression in reads per kilobase per million mapped reads  
(RPKM) at male-producing (26.5oC) or female-producing (31oC) temperatures.  
Allelic expression levels are least square means (+ SE) for each temperature regime 
and allele (SNP 644T>C).  Different letters indicate a significant (p < 0.05) 
difference in Cirbp allelic expression between incubation temperatures and alleles 
based on the Dunn-Sidak post hoc test. 
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Figure 3.4.   Cirbp expression in reads per kilobase per million mapped reads 
(RPKM) at male-producing (26.5oC) or female-producing (31oC) temperatures.  
Allelic expression levels are least square means (+ SE) for each temperature regime 
and allele (SNP 802T>A).  Different letters indicate a significant (p < 0.05) 
difference in Cirbp allelic expression between incubation temperatures and alleles 
based on the Dunn-Sidak post hoc test. 
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Figure 3.5.  The sex ratios produced (in percent males) for 15 clutches that were shifted 
for 2.5 days from a male-producing (26.5oC) to a female-producing (31oC) temperature 
at stage 17.5. 
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Figure 3.6.  Average expression of different Cirbp genotypes AA (n = 129), AC 
(n = 53), and CC (n = 15) for SNP 124A>C in gonads from snapping turtle 
embryos incubated at 31oC for 24 and 48 hours.  Levels of Cirbp mRNA are least 
square means (+SE) for each genotype.  
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Figure 3.7.  The overall sex ratio from hatchlings from each clutch for each 
Cirbp genotype for SNP 124A>C.  The total number of hatchlings with each 
genotype is presented in each column. 
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 Figure 3.8.  Scatterplot of the relationship between the number of Cirbp C 
alleles and the sex ratio produced (in percent male) in each snapping turtle 
family.  The ellipse around the data represents the 95% confidence band.      
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Figure 3.9.  Scatterplot of the relationship between the latitude clutches were 
collected at and the sex ratio produced (in percent male) within each clutch. The 
ellipse around the data represents the 95% confidence band.  Clutch 43 was not 
included in the figure due to the extreme southern latitude at which the clutch 
was collected.        
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CHAPTER IV 
 
 

EFFECTS OF DIHYDROTESTOSTERONE AND FLUTAMIDE ON THE 
DEVELOPMENT OF THE MALE REPRODUCTIVE TRACTS IN THE COMMON 

SNAPPING TURTLE, A REPTILE WITH TEMPERATURE-DEPENDENT SEX 
DETERMINATION 

 
 

Abstract 
 

 The development of the male reproductive tracts is essential for reproduction and 

fertility in vertebrates.  The Wolffian ducts are the embryonic structures that give rise to 

the male reproductive tracts in mammals, birds and reptiles.  It is well established that 

androgens are critical for the stabilizing the Wolffian ducts and preventing their 

regression in males.  Although androgens are critical, many of the morphological and 

molecular mechanisms of androgen signaling in the Wolffian ducts are not known.  In 

this study, I administered a non-aromatizable androgen (DHT), flutamide (an anti-

androgen) or a vehicle control to snapping turtle eggs to determine when androgens are 

stabilizing the Wolffian ducts.  I used whole mount in situ hybridization to examine how 

these treatments affected androgen receptor mRNA expression after sex had been 

determined.  I also used immunohistochemistry to examine cell proliferation and 

apopotosis in the Wolffian ducts.  Design-based stereology was performed to provide 

unbiased measures of androgen-dependent morphological changes in the Wolffian ducts.  

Androgen receptor mRNA was present in the Wolffian ducts at stages 22 and stages 25 of 

embryonic development of the snapping turtle, indicating the ducts are stabilized before 
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hatching.  I did not observe any differences in cell proliferation or apoptosis between the 

different treatments.  I observed the development of ovaries in many of the embryos that 

were treated with DHT or flutamide, although the embryos were incubated at an all-male 

producing temperature.  Although these results provided little information about Wolffian 

duct stabilization in the snapping turtle, it suggests treatments with DHT or flutamide are 

capable of producing females in snapping turtles incubated at an all-male producing 

temperature.    

Introduction 

Normal development and differentiation of reproductive tracts is essential for 

reproduction and fertility in vertebrates.  In males, the reproductive tracts are derived 

from tissues known as Wolffian ducts (WDs), while female reproductive tracts are 

derived from tissues known as Müllerian ducts (MDs) (Drews, 2000; Kobayashi and 

Behringer, 2003; Hannema and Hughes, 2006).  The reproductive tracts arise from the 

intermediate mesoderm early in development as a pair of straight tubules that develop in 

both sexes.  After sex determination, the developing testes will secrete two hormones, 

anti-Müllerian hormone (AMH) and androgens, which are necessary for normal 

development of the male reproductive tracts.  Sertoli cells in the testes secrete AMH, 

which binds to its receptor on the MDs and causes the MDs to regress (Jost 1947; 

Blanchard and Josso, 1974).  The testes will also secrete androgens that stabilize the WDs 

and prevent their regression (Jost, 1970; Capel, 2000; Renfree et al., 2009).  In females, 

developing ovaries do not produce androgens or AMH, so the MDs remain and 

differentiate into the mature female reproductive tract, while the WDs regress 

(Huhtaniemi, 1994; Kobayashi and Behringer, 2003; Yin and Ma, 2005).  After 
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androgen-dependent stabilization, the WDs undergo significant morphological changes 

including tubular elongation and coiling that lead to the differentiation of various regions 

of the male reproductive tract, the epididymis, vas deferens, and in mammals, the seminal 

vesicles (Wilson et al., 1981; Hannema and Hughes, 2007; Wilhelm et al., 2007).  

Despite the importance of the male reproductive tracts for proper reproduction, limited 

research has been conducted in mammals and almost nil in other species (see Joseph et 

al., 2009).  The cellular and molecular processes associated with androgen-dependent 

WD stabilization remain unclear in any species. 

Secretion of testosterone and expression and activation of the androgen receptor 

(AR) are necessary for stabilization of the WDs.  Testosterone is produced and secreted 

by Leydig cells within the testes.  Testosterone passes into the lumen of seminiferous 

tubules and moves down the WD by diffusion (Tong et al., 1996).  Testosterone can bind 

to AR directly or testosterone can be modified in some cell types to the more potent 

androgen, dihydrotestosterone (DHT), by the enzyme 5-alpha-reductase (Andersson et al. 

1989).  AR is a transcription factor and member of the nuclear hormone receptor family.   

The members of this family are activated by the binding of steroid hormones to their 

receptor and influence a variety of cellular events, including cell growth, differentiation, 

and tissue development (Mangelsdorf et al., 1995; Ralff et al., 1995).  Once activated, AR 

moves to the nucleus, binds to androgen responsive elements in target genes and 

influences their expression (Claessens et al., 2008).  AR binds both testosterone and DHT 

with high specificity and affinity, but DHT is more capable of stabilizing the receptor 

because it dissociates less readily (Grino et al., 1994).  In mammals, DHT has been found 

to have little effect on the early stages of stabilization, but is important for the 
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differentiation of the Wolffian ducts (Bentvelsen et al., 1995; Dean et al., 2012).  It is 

unknown if DHT may be involved in earlier stabilization or only in the differentiation of 

the WD in other species.  AR is first expressed in the WD stroma and then at a low level 

within the epithelium of the WD (Majdic et al., 1995; Bentvelsen et al., 1995).  Studies 

suggest that AR expressing cells in the stroma are the primary target of androgens and the 

proliferation and differentiation of epithelial cells occurs through stromal-epithelial 

interactions.  The proliferation and differentiation of the epithelial cells lead to the 

formation of the functional regions of the male reproductive tract (Dyche, 1979; Cunha et 

al., 1992; reviewed in Archambeault et al., 2009). 

While perturbations at any stage of sexual development can lead to infertility, the 

stabilization of the WDs by androgens is particularly important, because genetic 

mutations or exposure to endocrine-disrupting chemicals could interfere with androgen 

signaling.   In humans, patients with loss-of-function mutations in AR have shown an 

incomplete development or a lack of WD-derived structures and often the female 

phenotype is displayed in adults (Brinkmann, 2001; McPhaul, 2002).  AR knockout mice 

have also shown that males have incomplete or absent epididymis, vas deferens, or 

seminal vesicles (Yeh et al., 2002).  Studies administering anti-androgens, like flutamide, 

in rats have shown incomplete or even a lack of WD-derived structures in adults, but only 

at high doses (Imperato-McGinley et al., 1992; Welsh et al., 2006).  Flutamide is a 

synthetic endocrine-disrupting chemical that competes with testosterone and DHT for 

binding to AR, but prevents AR activation and stabilization of the WDs.  Studies using 

flutamide have established the timing of WD stabilization in embryonic mammals, 

because exposure to anti-androgens during a specific developmental window leads to 
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abnormalities in the WD-derived structures (Welsh et al., 2006; Welsh et al., 2007).  The 

WDs are stabilized between embryonic days 15.5 and 17.5 and differentiate between 19.5 

and 21.5 in mice and rats (Welsh et al., 2007).  However, it is unknown when the WDs 

are stabilized in other species or whether this process is androgen-dependent. 

 The goal of this study was to determine when WDs in the common snapping turtle 

are stabilized by androgens.  The snapping turtle is a long-lived species that uses 

temperature-dependent sex determination and has been a model for studying the effect of 

endocrine-disrupting chemicals in nature (de Solla et al., 2008; Kelly et al., 2008; 

Eisenreich et al., 2009).  Endocrine-disrupting chemicals can be passed to the offspring 

by maternal transfer or the egg can be exposed to exogenous factors after laying.  This 

exposure can have adverse affects on androgen signaling that can influence the sex and 

development of the WDs in the snapping turtle.  In this study, I exposed turtles to DHT 

and flutamide by topical dosing of eggs to determine their effects on WDs during 

embryonic development.  This study provides the foundation needed to begin exploring 

the molecular mechanisms of androgen signaling in WD stabilization in non-mammalian 

vertebrates. 

Materials and Methods 

Egg Collection, Incubation, and Hormone Treatments 

Animal experiments were carried out according to a protocol approved by the 

Institutional Animal Care and Use Committee at the University of North Dakota 

(Protocol #0905-1).  Eggs were collected within 24 hours of laying from 8 snapping 

turtles nests throughout Minnesota in early June of 2010.  Clutch sizes ranged from 29 to 

76 eggs.  Eggs were transported to the animal quarters in the Biology Department at the 
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University of North Dakota and kept at 20oC for less than one week.  Eggs were washed 

in tepid water, candled for embryo viability and infertile eggs removed from the study.  

Equal or approximately equal numbers of viable eggs from each clutch were randomly 

assigned to one of three treatment groups to control for clutch effects.  Eggs were placed 

in containers filled with moist vermiculite and containers were randomly positioned 

within foam box incubators as previous described (Rhen and Lang, 1994).  Eggs were 

incubated at 26.5oC, which produces males in this population (Rhen and Lang, 1994; 

Ewert et al., 2005).  Prior to hormone treatments, eggs from each clutch and treatment 

group were randomly sampled to determine the developmental stage of the embryos 

(Yntema, 1968).  Eggs were candled again for viability and eggs containing dead 

embryos were eliminated from the study. 

Stage 17 is the middle of the temperature-sensitive period and is considered the 

stage when embryos are most sensitive to temperature to produce a sex in this species (J. 

Lang, unpublished data).  Hormone manipulations were performed at stage 17 of 

embryonic development to determine if DHT or flutamide had any influence on 

development of the WDs at stages after sex determination.   

Treatment groups included one vehicle-treated (ethanol group) only and two 

hormone groups, either DHT or flutamide.  Eggs in the vehicle (control) treatment 

received a single dose of 5 µl of 95% ethanol.  Eggs from the experimental groups 

received a single 50 µg dose of dihyrotestosterone dissolved in 5 µl 95% ethanol or a 

single 100 µg dose of flutamide dissolved in 5 µl 95% ethanol.  Dosages chosen for each 

chemical were based on previous studies with turtles (Rhen and Lang, 1994; Rhen and 

Schroeder, 2010).  All solutions were topically applied to the vascularized upper surface 
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of the eggshell as previously described (Crews et al., 1991).  After receiving treatments, 

all eggs were returned to incubators at a constant male-producing temperature of 26.5oC.  

Only a subset of the treated eggs was sampled for this experiment.     

Tissue Collection, Processing, Sectioning, and Histology 

  I sampled embryos from each treatment group at stages 20 through 26, which 

spans from the end of the temperature sensitive period to hatching in the snapping turtle 

(Yntema, 1968).  For this study, between 6 and 8 embryos from each stage and treatment 

group were opened and embryos quickly euthanized via decapitation.  The adrenal-

kidney-gonad (AKG) complex, containing the WDs, was dissected and fixed in 4% 

paraformaldehyde-PBS solution.  Tissue was fixed overnight at 4oC and then rinsed in 

PBS.  Between three and five samples from each treatment and stage were saturated 

through an increasing sucrose gradient (10-30%), embedded in OCT, and stored at -80oC 

until the blocks were ready to be sectioned.  The remaining samples were dehydrated 

through a methanol gradient and stored in 100% methanol at -20oC until they were 

processed for whole-mount in situ hybridization. 

OCT blocks were serially sectioned at 20 µm and 10 sections were mounted on 20 

Histobond slides (VWR, Radnor, PA).  Slides were stored at -80oC until they were used 

for immunohistochemistry, TUNEL assays, hematoxylin and eosin staining, and 

stereology.  I examined the morphological development of the gonads and reproductive 

tracts from each individual. 

Whole-Mount In Situ Hybridization (WISH) 

A 333 base pair fragment of the snapping turtle androgen receptor was generated 

by PCR using cDNA from embryonic gonads incubated at a male-producing temperature.    
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PCR primers for riboprobe generation were:  

Forward 5’ATGACAACAACCAGCCTAACTCCT-3’ 

Reverse 5’- TGATTTGAAGCCACCCGAACTCCT-3’ 

I cloned the PCR product into the pCR4-TOPO plasmid using the TOPO TA Cloning Kit 

(Invitrogen, Carlsbad, CA).  I amplified the AR insert by PCR using M13 Forward and 

M13 Reverse primers.  The identity of the PCR fragment and the fragment orientation 

within the plasmid were determined by sequencing.  The amplified AR product was used 

as template to synthesize digoxigenin-labeled antisense or sense probes with digoxigenin-

UTP and T3 or T7 RNA polymerase according to the manufacturer’s recommendations 

(Roche Applied Sciences, Indianapolis, IN).  The sense probe was synthesized to use as a 

negative control in the whole mount in situ hybridization.    

 AKGs used for WISH were removed from -20oC and rehydrated in graded 

methanol diluted in PBS, 0.1% Tween (PBT).   WISH was performed using standard 

methods (Streit and Stern, 2001; Wilkinson and Nieto, 1993), with  some modifications 

for our tissues.   

Briefly, endogenous peroxidases in AKGs were quenched in 6% H2O2 in PBT for 

1 hour with rocking.  AKGs were washed 3 times in PBT and then incubated in 10 µg/ml 

proteinase K in PBT for 20 mins at room temperature (RT).  Tissues were rinsed twice in 

PBT, post-fixed at room temperature for 30 minutes in 4% PFA with 0.1% 

glutaraldehyde, and washed three times for 10 min in PBT.  AKGs were incubated in a 

1:1 mixture of prehybridization buffer and PBT and then incubated in pre-hybridization 

buffer for at least 1 hour at 65oC.  Prehybridization buffer was removed and hybridization 

buffer (50% formamide, 5x SSC (pH 4.5), 50 µg/ml yeast tRNA, 100 µg/ml heparin, 5 
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mM EDTA, 0.2% Tween-20, 0.5% CHAPS) containing 400 ng of AR antisense or sense 

riboprobes were added to the AKGs and hybridized overnight at 55oC.  

After hybridization, the tissues were washed twice in hybridization buffer without 

the riboprobe for 20 mins each at 65oC.  All post-hybridization washes were for 20 mins 

at 65oC, unless otherwise noted.  Tissues were incubated in pre-warmed 1:1 solution of 

hybridization buffer and 5x saline-sodium citrate, 0.1% Tween (SSCT).  Tissues were 

incubated in graded SSCT washes (5x and 2x), followed by incubation in RNase A (100 

µg) and RNase T1 (100U) dissolved in 2x SSC for 30 mins at 37oC.  Tissues were then 

washed twice in prewarmed 2x SSCT, followed by incubation in prewarmed 0.2x SSCT.  

Tissues were then washed three times for 10 mins each in 1x maleic acid buffer, 0.1% 

Tween (MABT) at RT.   

AKGs were blocked in 2% blocking solution (Roche Applied Sciences) with 10% 

sheep serum diluted in MABT and incubated for at least 2 hours at RT.  AKGs were then 

incubated overnight at 4oC in blocking solution with preabsorbed anti-dioxigenin-AP 

antibody (diluted 1:2000, Roche Applied Sciences).  The following morning, AKGs were 

removed from the antibody solution and rinsed three times in MABT, followed by four, 

30 min washes in MABT at RT.  After MABT washes, AKGs were washed twice for 10 

mins in NTMT developing solution (100 mM NaCl, 100 mM Tris-HCl, pH 9.5, 50 mM 

MgCl2, 0.1% Tween) at RT.  AKGs were incubated in NTMT containing 4.5 µl nitro blue 

tetrazolium (NBT), 3.5 µl 5-bromo-4-chloro-3-indolyl-phosphate (BCIP), and 2 mM 

levamisole.  AKGs were incubated in the dark and monitored for color development.  

Color development was stopped by washing AKGs in PBT containing 1 mM EDTA 

twice for 10 mins each at room temperature.  AKGs were post-fixed in 4% 
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paraformaldehyde with 0.1% gluteraldehyde in PBS for 1 hour at room temperature and 

then washed three times for 10 mins in PBS.  AKGs were dehydrated and rehydrated 

through graded methanol in PBT to intensify the signal and remove background.  AKGs 

were moved through graded glycerol in PBT.  Images were taken with an Olympus SZX-

12 dissecting microscope equipped with an Infinity 2 digital camera (Lumenera Corp, 

Ottawa, ON, CA) using Rincon HD software (Imaging Planet, Goleta, CA).   

Immunohistochemistry to Examine Cell Proliferation and Apoptosis  

 Immunostaining for PCNA was used to assess cell proliferation in the WDs.  I 

also used immunohistochemistry for active caspase-3 to assess apoptosis in the WDs. 

Frozen sections from each treatment group and stage were removed from -80oC and 

allowed to air-dry overnight.  For proliferating cell nuclear antigen (PCNA) and active 

caspase-3 immunohistochemistry, nonspecific binding was blocked by incubating slides 

overnight at 4oC in blocking solution (3% goat serum, 0.1% Triton X-100, 1% bovine 

serum albumin in phosphate-buffered saline).  The slides were removed from the 

blocking solution and incubated with the primary antibodies diluted in block solution 

overnight at 4oC.  The anti-PCNA primary antibody (Biolegend, San Diego, CA) and the 

anti-active caspase-3 antibody (Promega Corp, Madison, WI) were diluted 1:250. To 

ensure specific staining, a negative control slide incubated with block solution instead of 

the primary antibody was also processed in parallel.  Slides were washed three times for 5 

min each at room temperature in Dulbecco’s PBS.  Endogenous peroxidases were 

quenched by placing slides in 0.3% H2O2 in methanol for 15 mins at room temperature. 

Sections were incubated with the appropriate secondary antibody, either biotinylated goat 

anti-rabbit secondary antibody for caspase-3 or biotinylated goat anti-mouse for PCNA, 
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diluted 1:250 in 2% normal goat serum and incubated overnight at 4oC.  After washes in 

PBS, the Vectastain ABC kit (Vector Laboratories, Burlingame, CA) was applied to the 

slides and incubated for 30 mins at room temp.  Antibody localization was determined by 

applying freshly prepared 3,3-diaminobenzidine with nickel (DAB; Vector Laboratories, 

Burlingame, CA) to each slide for 5 min and then rinsed in tap water to stop the reaction.  

Slides were counterstained with methyl green, dried in ascending alcohol percentages, 

cleared in xylene, and coverslipped using a xylene based mounting media.  Cellular sites 

expressing the PCNA or active caspace-3 were observed and photographed using an 

Olympus BX-51 microscope using Rincon HD software (Imaging Planet).  Slides from 

each stage and treatment group were processed in parallel for both PCNA and active 

caspase-3 to allow for reproducibility and accuracy when comparing groups.  PCNA-

positive and active caspase-3 positive cells were counted in the epithelium of the WDs as 

described below. 

TUNEL Assay for Apoptosis 

 I used terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate 

nick end labeling (TUNEL) to assess apoptosis in the WDs. TUNEL assay was 

performed according the manufacturer’s instructions (Roche Applied Sciences, 

Indianapolis, IN) with few modifications.  In brief, paraffin-embedded sections 

containing the WDs were deparaffinized through xylene, graded ethanol, and washed in 

distilled water.  Tissue sections were incubated in 10 µg/ml proteinase K in Tris-HCl (pH 

7.4) for 30 mins at 37oC.  Sections were washed twice in PBS for 10 mins each.  We 

applied 50 µl of TUNEL reaction mixture containing terminal deoxynucleotidyl 

transferase (TdT) and fluorescein-dUTP to each slide and incubated slide in the dark for 2 



 129 

hours at 37oC.  To ensure specific staining, positive and negative control slides were 

processed in parallel.  The positive control was prepared by treating the slide for 10 mins 

with 1500 U/ml Dnase I in 50 mM Tris (pH 7.5), 10 mM MgCl2, 1 mg/ml BSA at room 

temperature.  The negative control was prepared by omitting TdT from the slide.  Slides 

were washed three times in PBS for 10 mins each, followed by the addition of 50 µl of 

anti-fluorescein with alkaline phosphatase and incubated for 30 mins at 37oC.  Slides 

were washed three times for 10 mins in PBS and developed using BM Purple (Roche 

Applied Science).  Slides were coverslipped and photographs were taken from an 

Olympus BX-51 microscope equipped with an Infinity 2 digital camera (Lumenera 

Corp.) using Rincon HD software (Imaging Planet). 

Quantification of PCNA-positive cells using Design-based Stereology 

The unbiased quantification of PCNA-positive nuclei was performed using 

design-based stereology.  Sections from three or four individuals in each treatment group 

at each stage were used for counting.  PCNA-positive and total cells were counted using 

an Olympus BX-51WI microscope with motorized X, Y, and Z stage.  Unbiased 

quantification of nuclei was performed using the optical fractionator workflow in 

StereoInvestigator 9.0 (Microbrightfield Inc., Wiliston, VT).  

In each individual, PCNA-positive and total nuclei were counted from 2-5 

randomly aligned and systematically selected frames (each measuring 15x15 µm) in 

every 20th section using the 40x objective. For PCNA counting, the contour outlined the 

epithelium of the WD only and if the efferent ducts were observed in the section, they 

were not included in the contour.  In brief, the number and location of counting frames 

and the counting depth for each section were determined by entering parameters for the 
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grid size (50 x 50 µm), the thickness of top guard zone (5%) and the optical dissector 

height (13 µm). The grid angle was randomly placed on the tracing for each section.  The 

guard zones were set at 2 µm above and below the counting depth for each section with 

regional thickness and variation in section integrity quantified at each count site.  The 

PCNA-positive nuclei were counted if they were entirely within the 13 µm depth 

counting.  The StereoInvestigator software calculated the total number of PCNA-positive 

cells per WD by utilizing the optical fractionator formula (N=1/ssf.1/asf.1/hsf.ΣQ-) where 

ssf = section sampling fraction (20), asf = area sampling fraction (area sampled/total 

Wolffian duct area), hsf = height sampling fraction (counting frame height/section 

thickness (20 um)), and ΣQ- (total particle count).  The sampling was optimized for 

maximal efficiency, with a final mean coefficient of error (CE) of less than 10% for each 

of the two coefficients of error calculations.  I used both Gundersen CE, due to the 

sampling of three or more sections, as well as the Schmitz-Hof CE as an alternative 

means of confidence estimation (Gunderson and Jensen, 1987; Schmitz and Hof, 2000).   

Statistical Analysis 

I used JMP 5.0.1.2 software for all statistical analyses (SAS Institute, Cary, NC). 

Analysis of variance (ANOVA) was used to determine the effects of clutch, treatment, 

and developmental stage on cell proliferation in the WDs.  Tests of the residuals for each 

ANOVA were performed to determine if the data met the assumptions of normality and 

homogeneity of variance.  The ratio of proliferating cells to total cells was log10 

transformed to meet the assumptions of the ANOVA.   Given significant non-treatment 

effects (α < 0.05), I used the Dunn-Sidak method to correct for multiple comparisons 

among groups.  Given significant effects of treatment, I used the Dunnett’s test to correct 
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for multiple comparisons and to compare the treatment effects to the vehicle control.   I 

used Fisher’s exact tests to determine if there was an association between hormone 

treatments and the morphological development of the gonads.  The null hypothesis was 

that all males should be produced because the embryos were incubated at a male-

producing temperature.  Sample sizes for experimental groups are shown in each figure. 

Results 

Androgen Receptor WISH 

I used whole mount in situ hybridization to determine when the WDs begin to 

express AR mRNA and if our treatments had effects on AR expression.  I did not observe 

any staining in the WDs before stage 22 (data not shown).  In the vehicle treated group, I 

observed light staining in the WDs at stage 22 and then again at stage 25 of embryonic 

development (Figure 4.1A and D, respectively).  Staining was stronger at the rostral 

compared to the caudal end of the WDs.  Staining was also observed in the WDs at stage 

26 in the vehicle treated group, with staining extending more caudal than at stage 25 

(Figure 4.1 E).  In the DHT and flutamide treated groups, light staining was observed at 

stage 22 of development and disappeared thereafter (Figure 4.1 F and K, respectively).  

Staining increased again at stage 25 in the DHT and Flutamide treated groups, with a 

rostral expression pattern very similar to the vehicle treated group (Figure 4.1 I and N, 

respectively).  Light staining was still observed in the WDs from the DHT treated group 

at stage 26 (Figure 4.1 J), but disappeared in the WDs from the flutamide treated group 

(Figure 4.1 N).   
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Analysis of Cell Proliferation by PCNA Immunohistochemistry and Stereology 

I performed immunohistochemistry for PCNA to test whether hormone 

manipulations had any effect on cell proliferation in the WDs.  I observed PCNA staining 

within the epithelium of WDs in all treatment groups (Figure 4.2).  There was not a 

significant treatment effect on the number of PCNA-positive cells (F(2,23) = 1.59, p = 

0.2101) or the volume of the WDs (F(2,23) = 1.15, p = 0.3326).  The vehicle-treated 

embryos did not have significantly more PCNA-positive cells and larger WD volume 

than the DHT or flutamide-treated embryos (Figure 4.3).  Cell proliferation was 

significantly influenced by embryonic stage (F(6,23) = 2.79, p = 0.0346) with stages 22 and 

25 having the highest number of PCNA-positive cells (Figure 4.4).  There were no other 

significant independent variables or interactions within the model. 

Although there was no difference in the total number of PCNA-positive cells, I 

tested whether the ratio of PCNA positive-cells to total cells within the WDs were altered 

by the hormone treatments.  Hormone treatments did not affect the ratio of PCNA 

positive cells to total cells in the WD (F(2, 23) = 0.38, p = 0.6871), with approximately 6% 

of the total cells being PCNA-positive in all groups.  Although embryonic stage 

significantly influenced the number of PCNA-positive cells, it did not influence the ratio 

of positive cells to total cells (F(6,23) = 0.46, p = 0.8306).  Clutch and various interactions 

were not significant. 

Analysis of Cell Death by Caspase-3 Immunohistochemistry and TUNEL Assay 

 To assess whether treatments had any affect on apoptosis in the WDs, I performed 

TUNEL assays and immunostained for active caspase-3.  I observed very diffuse staining 

surrounding and within the epithelium of WDs in all of the treatment groups.  I observed 
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staining surrounding the MDs for active caspase-3 and the TUNEL assay in all of the 

vehicle-treated embryos, indicating that MDs were regressing in these embryos (Figure 

4.5 A and D, respectively).  I did not observe staining surrounding the MDs in many of 

the DHT- and flutamide-treated embryos (Figure 4.5 B, C, and E).  This indicates that the 

MDs were not regressing in many individuals from these treatment groups. 

Assessment of Gonad Morphology 

 Because Mullerian ducts appeared to be maintained in the DHT group and the 

Flutamide group, I decided to look more closely at the morphology of developing gonads. 

Embryos in the vehicle treated groups were developing testes with distinct medullary sex 

cords and a regressing cortex (Figure 4.6 A, D, G).  To my surprise, many of the DHT-

treated embryos and a few of the flutamide-treated embryos had gonads with a thickened 

outer cortex and a disorganized medulla typical of differentiating ovaries (Figure 4.6 B, I, 

and C, respectively).  Clutches varied in their response to DHT and flutamide-treatments.  

Most DHT treated embryos from clutch 2 developed ovaries, while all embryos from 

clutch 9 developed testes.  A summary of clutch differences in sex ratio is provided in 

Table 4.1. 

Discussion 

Studies in mammals indicate that exposure to anti-androgens, like flutamide, can 

have a major impact on WD stabilization and differentiation.  The goal of this study was 

to determine whether androgens influence WD development in snapping turtle embryos.  

In contrast to expectations, there were no obvious effects of DHT or flutamide on cell 

proliferation or cell death in WDs.  However, I observed MDs in many of the DHT and 

flutamide treated embryos, which suggested that DHT and flutamide either inhibited 
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AMH secretion from Sertoli cells or influenced sex determination.  Closer examination of 

gonads revealed that DHT induced ovary development in embryos incubated at a male-

producing temperature.  This is the first study to show that DHT can cause sex reversal in 

turtles incubated at a male-producing temperature.  Previous research in the snapping 

turtle has shown that DHT increases the number of females at a temperature that 

normally produces a mixed sex ratio (Rhen and Lang, 1994; Rhen and Schroeder et al., 

2010).  In contrast, DHT has a masculinizing effect at temperatures that produce mixed 

sex ratios in the red-eared slider turtle (Crews et al., 1989; Wibbels and Crews, 1992; 

Wibbels et al., 1992).  While DHT induced ovary development at male-producing 

temperatures is a novel finding, it complicates our analysis of DHT and flutamide effects 

on WD development. 

All vehicle-treated embryos developed testes as expected, thus findings in this 

group can inform us about normal development of WDs in the snapping turtle.  It has 

been suggested that increased AR expression reflects the period when androgens stabilize 

WDs (Bentevelsen et al., 1994; 1995).  I used whole mount in situ hybridization to 

determine when AR mRNA is expressed in developing WDs in the snapping turtle.  I 

detected AR expression in vehicle-treated embryos at stage 22 and again at stages 25 and 

26.  I observed stronger staining in the rostral portion of the WD than the caudal portion, 

which supports the hypothesis that WD stabilization occurs in a rostral to caudal direction 

(Bentevelsen et al., 1995).  The timing of AR expression suggests that stabilization of 

WDs may happen shortly before or after hatching.  Although the pattern of androgen 

secretion from embryonic testes has not been defined in the snapping turtle, testosterone 

may diffuse through efferent ducts and produce a concentration gradient extending from 
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the upper to the lower portion of the WD.  I did not observe any changes in WD 

morphology during embryonic development, indicating that differentiation of the 

epididymus and vas deferens occurs after hatching.  The timing of reproductive tract 

differentiation is delayed in comparison to mice and rats.  Stabilization and 

differentiation of the WDs occurs before birth in these species.  However, my findings do 

support the hypothesis that WD development is a biphasic process (Welsh et al., 2007).  

This may be due to developmental differences between species because male mice and 

rats reach reproductive maturity soon after birth, while it takes many years for male 

snapping turtles to reach maturity.  Further studies are necessary to determine when WDs 

differentiate in snapping turtle males.  

Some of the DHT- and flutamide-treated embryos used for in situ hybridization 

were from clutches that produced male hatchlings.  Comparisons between vehicle treated 

males and DHT or flutamide treated males revealed very similar spatial and temporal 

patterns of AR expression.  This suggests that androgens may not regulate AR expression 

during embryonic development in the snapping turtle.   AR is first expressed in the 

stroma and then the epithelium of the WDs in mammals.  This may be the result of 

mesenchymal-epithelial cell interactions involving paracrine factors (Cunha et al., 1992).  

Furthermore, in mice and rats, the critical period for stabilization occurs before regression 

of the MDs.  Complete regression of MDs occurs by stage 25 in the snapping turtle, 

indicating that AMH expression is occurring between stages 22 and 25 in differentiating 

testes. 

I tested whether hormone manipulations would influence proliferation or 

apoptosis of WD epithelial cells.  Although DHT and flutamide did not influence cell 
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proliferation in WDs, I did observe an increase in cell proliferation during stages 22 and 

25 of development.  This finding supports the idea that there may be critical periods for 

WD development in the snapping turtle.  Hormone manipulations did not affect apoptosis 

in snapping turtle WDs, which is similar to findings in embryonic rats treated with 

flutamide (Welsh et al., 2006).  It is noteworthy that apoptotic staining was not detected 

in the WDs of DHT-treated embryos that were developing ovaries.  This indicates that 

WDs were not regressing in females, which is consistent with DHT-induced stabilization 

of WDs in female rats (Bentevelsen et al., 1995).  However, it is also important that we 

did not detect regression of the WDs in flutamide-treated embryos that developed as 

females.  This suggests that WDs do not regress in the snapping turtle until after 

hatching.  It has yet to be determined when WDs regress in female snapping turtles, but 

in mammals the WDs regress in the female embryo shortly after commitment to ovarian 

development (Dyche, 1979; Taguchi et al., 1984; Capel, 2000). 

The original goal of this study was to determine the role androgens play in 

stabilization of the WDs in male snapping turtle embryos.  However, I unexpectedly 

found that DHT treatment (and sometimes flutamide treatment) induces ovary 

development.  Thus, I cannot use this model to study molecular aspects of WD 

stabilization.  Instead, the molecular mechanisms underlying the role of androgens in sex 

determination and ovarian development is a novel question that needs to be examined in 

more detail.  In addition, the observation that there was variation among clutches in 

androgen responsiveness indicates there may be a genetic basis for this response.  Future 

studies will examine the role of androgens in temperature-dependent sex determination in 
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the snapping turtle.  In conclusion, androgens may be essential for Wolffian duct 

development in the snapping turtle, but I was unable to determine their role in my study.   
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Figure 4.1.  Whole mount in situ hybridization for androgen receptor mRNA in Wolffian 
ducts treated with vehicle control (A-E), DHT (F-J), or flutamide (K-O) at stages 22 
through 26 of embryonic development.  The arrows indicate the staining within the 
Wolffian ducts.   
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Figure 4.2.  Analysis of cell proliferation by immunohistochemistry staining for 
proliferating cell nuclear antigen (PCNA) in Wolffian ducts from embryos treated with 
vehicle (A), DHT (B), or flutamide (C).  Arrows indicate epithelial cells in the Wolffian 
ducts labeled for PCNA.  Scale bar = 50 µm. 
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Figure 4.3. Design-based stereological quantification of PCNA-positive cells in Wolffian 
ducts from embryos treated with vehicle, DHT, or flutamide.  Values shown are mean 
and SEM.  Similar letters indicate no significant difference (p < 0.05) between the vehicle 
control and the treatment groups based on the Dunnett’s post hoc test.  Sample sizes for 
each treatment group are indicated within each column.  
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Figure 4.4.  Design-based stereological quantification of PCNA-positive cells  
in Wolffian ducts during developmental stages 20 through 22.  Values shown  
are mean and SEM.  Different letters indicate a significant difference (p < 0.05) 
between developmental stages based on the Dunn-Sidak post hoc test.  Sample  
sizes for each treatment group are indicated within each column.  
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Figure 4.5.   Analysis of apoptosis by immunohistochemistry staining for active caspase-
3 (A-D) and TUNEL assay (D-F) in Wolffian and Müllerian ducts from embryos treated 
with vehicle (A, D), DHT (B, E), or flutamide (C, F).  White arrows indicate positive 
staining for caspase-3 (A) or for the TUNEL assay (D and F) in the Müllerian ducts.  No 
positive staining for caspase-3 or TUNEL assay was observed within the Wolffian ducts.  
MD = Müllerian ducts.  WD = Wolffian ducts.  Scale bars = 50 µm. 
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Figure 4.6.  Histology of developing gonads from embryos treated with vehicle, DHT, or 
flutamide from clutches 2 (A-C), 9 (D-F), and 30 (G-J).  Embryos treated with vehicle 
produced testes in all clutches based on the developing medullary sex cords.  Embryos 
treated with DHT produced ovaries in clutches 2 and 30, but not clutch 9, based on the 
development of the cortex.  The embryo treated with flutamide from clutch 2 produced an 
ovary, but not in the embryos from clutches 9 or 30.  s.c. = medullary sex cords.  c = 
cortex.  Scale bar = 50 µm.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 149 

Table 4.1. Summary of the effects of each treatment on the sex ratios produced (in 
percent male) in each clutch.  The number in parentheses is the total number of  

 embryos sampled from that treatment group.  The chi-squared and p-values are based 
 on Fisher’s exact test.  Bolded p-values indicate significant (p < 0.05) variation in sex 
ratio produced by the treatments within each clutch; based on the null hypothesis that all 
males should be produced due to embryos being incubated at a male-producing 
temperature.  

________________________________________________________________________ 
     Clutch           Vehicle         DHT       Flutamide         Chi-squared      p-value  
 2 100.0 (3) 0.0 (3)  33.33 (3) 8.55          0.0139  
 
 6 100.0 (3)         33.33 (3)     66.67 (3)  3.92              0.1481 
 
 7 100.0 (3)          100.0 (3)     50.0 (2)        2.97          0.2266    
 
 9 100.0 (3)          100.0 (3)     100.0 (3)              0.0                1.0000 
 
 30 100.0 (5)           0.0 (5)         60.0 (5) 14.00            0.0009 
________________________________________________________________________ 
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CHAPTER V 
 
 

INFLUENCE OF NON-AROMATIZABLE ANDROGENS AND ANTI-ANDROGENS 
ON SEX DETERMINATION IN THE COMMON SNAPPING TURTLE, A REPTILE 

WITH TEMPERATURE-DEPENDENT SEX DETERMINATION 
 

 
Abstract 

 
Sex steroid hormones are involved in sex determination in almost all vertebrates, 

including species with temperature-dependent sex determination (TSD).  It is well 

established that aromatase and estrogens are involved in ovary development.  However, 

the role of androgens in the ovary remains unclear.  There is growing evidence that 

androgens and the androgen receptor (AR) may be involved in female sex determination 

by regulating aromatase expression.  In this study, I use dihydrotestosterone (DHT) and 

an AR antagonist (flutamide) to examine the role androgens play in sex determination in 

the snapping turtle.  I incubated snapping turtle eggs at a male-producing temperature and 

treated embryos with DHT or flutamide during the sex-determining period.  I examined 

expression of ovary-specific genes, testes-specific genes, and genes involved in 

steroidogenesis in the developing gonads.  Treatments with exogenous DHT or flutamide 

had a feminizing effect in many clutches by inducing expression of aromatase and FoxL2.  

Many genes involved in testis development and steroidogenesis were also influenced by 

DHT or flutamide treatments.  My findings support the hypothesis that androgens and the 
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androgen receptor are involved in female sex determination in the common snapping 

turtle.   

Introduction 
 

Sex steroid hormones are critical for sex determination in all vertebrate embryos 

except eutherian mammals.  This is true for reptiles that exhibit temperature-dependent sex 

determination (TSD), including numerous turtles, lizards, and all crocodilians studied to date 

(Viets et al., 1993; Lang and Andrews, 1994; Deeming 2004; Ewert et al., 2004; Harlow, 

2004).  Most of these species lack sex chromosomes.  Instead, the temperature of the embryo 

during the middle third of development determines sex.  Administration of exogenous steroid 

hormones or hormone antagonists to developing embryos can interfere with the temperature 

signal and reverse the putative sex of embryos (Crews, 1994; Crews et al., 1996; Matsumoto 

and Crews; 2012).  Sensitivity to hormone-induced sex reversal coincides with the 

temperature sensitive period for sex determination.  These findings support a role of steroid 

hormones in sex determination in TSD reptiles.  All of the research to date has implicated 

estrogens as crucial for ovarian development.   Administration of 17ß-estradiol to embryos 

incubated at male-producing temperatures overrides the temperature signal and leads to 

ovary development (Raynaud and Pieau, 1985; Gutzke and Bull, 1986; Bull et al., 1988; 

Dorizzi et al., 1991; Crews et al., 1991; Wibbels et al., 1991; Wibbels et al., 1993; Rhen and 

Lang, 1994; Crews et al., 1996; Freedberg et al., 2006).  While estrogens are clearly involved 

in ovary formation, the role of androgens in TSD reptiles remains unclear.  

Testosterone treatments produce a significant increase in the number of female 

hatchlings at temperatures that normally produce males or male-biased sex ratios 

(Wibbels and Crews, 1992; 1995; Rhen and Lang, 1994; Crews and Bergeron, 1994; 
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Crews et al., 1995).  Aromatase inhibitors block the feminizing effect of testosterone, 

presumably by preventing its conversion to estrogens (Crews and Bergeron, 1994; 

Wibbels and Crews, 1994; Rhen and Lang, 1994).  Given that aromatase expression and 

activity are very low at male-producing temperatures, it is not obvious how addition of 

substrate alone can induce ovary formation. 

Researchers have also administered dihydrotestosterone (DHT) to embryos to 

determine the effect of non-aromatizable androgens on TSD.  In the red-eared slider 

turtle, DHT had a masculinizing effect on embryos incubated at a temperature that 

normally produces a 1:1 sex ratio.  However, DHT did not influence sex determination in 

red-eared sliders at a temperature that produces exclusively females (Wibbels and Crews, 

1992; 1995).  Similar results have been observed in the American alligator (Lance and 

Bogart, 1994).  In contrast, DHT had a feminizing effect on snapping turtle embryos 

incubated at temperatures that produce a 1:1 sex ratio or a female-biased sex ratio (Rhen 

and Lang, 1994; Rhen and Schroeder, 2010).  Furthermore, the anti-androgen flutamide 

had a feminizing effect in some snapping turtle families, but a masculinizing effect in 

others (Rhen and Schroeder, 2010).  The conflicting effects of DHT and flutamide within 

and among TSD species indicates that androgen signaling should be studied more 

closely.  

Interestingly, AR expression is higher in gonads at female-producing 

temperatures than at male-producing temperatures in snapping turtles and red-eared slider 

turtles, suggesting a role for AR in ovarian development (Rhen et al., 2007; Ramsey and 

Crews, 2007; 2009).  In fact, androgens act via AR to induce aromatase and Foxl2 

expression in snapping turtle embryos incubated at a temperature that produce mixed sex 
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ratios (Rhen and Schroeder, 2010).  These findings may help explain the feminizing 

effect of testosterone at male-producing temperatures: testosterone could enhance its own 

conversion to estrogens by upregulating aromatase expression.  Although an androgen-

dependent feed forward mechanism might be involved in ovarian development, 

sensitivity to exogenous steroids can vary with incubation temperature (Wibbels et al., 

1995).  Thus, androgens may or may not have any effect on aromatase expression at 

male-producing temperatures where aromatase expression is very low.   

The aim of this study was to determine the effects of DHT and flutamide on sex 

determination in snapping turtle embryos incubated at an all male-producing temperature. 

I measured the mRNA expression in gonads after the TSP to determine the effects of 

hormone treatments on genes involved in ovarian and testicular development.  Given that 

aromatase is involved in steroidogenesis, I examined the effects of our treatments on 

expression of other genes involved in steroidogenesis (Figure 5.1).  I hypothesized that 

DHT would induce aromatase and FoxL2 expression and ovarian development at a male-

producing temperature.  I also hypothesized that DHT and flutamide would regulate 

expression of other genes involved in steroidogenesis.  

Materials and Methods 
 

Egg Collection, Incubation, and Hormone Treatments 
 

Animal experiments were carried out according to a protocol approved by the 

Institutional Animal Care and Use Committee at the University of North Dakota 

(Protocol #0905-1).  Eggs were collected within 24 hours of oviposition from 8 snapping 

turtles nests throughout Minnesota in early June of 2010.  Eggs from three snapping 

turtles nests were also collected in early June of 2011 to replicate the experiment from 
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2010.  Clutch sizes ranged from 29 to 76 eggs.  I transported eggs to the animal quarters 

in the Biology Department at the University of North Dakota.  I held eggs at ~20oC for 

less than one week before clutches were assigned to experimental treatments.  Eggs were 

washed in tepid water, candled for viability and infertile eggs removed.  Eggs were 

placed in containers filled with moist vermiculite and then randomly positioned within 

foam box incubators as previous described (Rhen and Lang, 1994) and incubated at 

26.5oC, which produces males in this population (Rhen and Lang, 1994; Ewert et al., 

2005).  Prior to hormone treatments, a few eggs from each clutch and treatment group 

were randomly sampled to determine the developmental stage of the embryos (Yntema, 

1968).  Eggs were candled again for viability and eggs containing dead embryos were 

eliminated from the study.   

Stage 17 is the middle of the temperature-sensitive period in this species and is 

considered the stage when embryos are most sensitive to temperature (J. Lang, 

unpublished data).  Hormone manipulations were performed at stage 17 of embryonic 

development to determine if DHT or flutamide had any influence on sex determination. 

Treatment groups included one vehicle-treated (ethanol only) group and two hormone 

groups, either DHT or flutamide.  Eggs in the vehicle (control) treatment received a 

single dose of 5 µl of 95% ethanol.  Eggs from the experimental groups received a single 

50 µg dose of dihyrotestosterone dissolved in 5 µl 95% ethanol or a single 100 µg dose of 

flutamide dissolved in 5 µl 95% ethanol.  Dosages chosen for each chemical were based 

on previous studies with turtles (Rhen and Lang, 1994; Rhen and Schroeder, 2010).  All 

solutions were topically applied to the vascularized upper surface of the eggshell as 
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previously described (Crews et al., 1991).  After receiving treatments, all eggs were 

returned to incubators at a constant male-producing temperature of 26.5oC.  

Tissue Collection and Histology 

 In 2010, one to two eggs from each clutch and treatment group were sampled 

during embryonic stages 20-26.  Eggs were opened and embryos quickly euthanized via 

decapitation.  The adrenal-kidney-gonad (AKG) complex was removed, placed in 

RNAlater (Ambion, Austin, TX) and stored at -20oC.  The gonads were carefully micro-

dissected from the mesonephros, taking care to prevent or remove any kidney tissue from 

the gonad.  Only the micro-dissected gonads were used for RNA isolation and subsequent 

experiments. 

 Eggs treated in 2011 were sampled for histology.  AKGs were fixed in 4% 

paraformaldehyde in phosphate-buffered saline (PBS) overnight at 4oC.  Tissues were 

washed in PBS, dehydrated in ethanol, cleared in xylene, and embedded in paraffin 

according to standard protocols.  AKGs were sectioned at 6 µm and mounted on 

HistoBond slides (VWR, Radnor, PA).  Slides were deparaffinized in xylene, rehydrated 

in graded ethanol, and washed in PBS.  Slides were stained with hematoxylin and eosin 

by standard protocols and images were taken using an Olympus BX-51 microscope 

equipped with an Infinity 2 digital camera (Lumenera Corp., Ottawa, ON) using Rincon 

HD Software (Imaging Planet, Goleta, CA) to observe the morphology of developing 

gonads in the various treatment groups.  We considered development of the cortex and 

follicles as an indication of ovary development.  The observation of sex cords within the 

medulla as an indication of testis development.  I did not include the presence or absence 

of the Müllerian ducts as an indication of male or female development, because 
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treatments with DHT or flutamide lead to retention of the Müllerian ducts in snapping 

turtle embryos developing testes (Schroeder and Rhen, unpublished data).     

RNA Isolation, Dnase Treatment, and cDNA Synthesis 
 

Total RNA was extracted from each pair of gonads using RNAzol RT (Molecular 

Research Center, Cincinnati, OH).  The RNAzol RT protocol was modified for the small 

amount of tissue from a single pair of gonads.  I used one-quarter the amount of liquid 

recommended by the manufacturer for tissue homogenization, RNA isolation, and 

recovery.  I added 1 µl of precipitation carrier (Molecular Research Center, Cincinati, 

OH) to the homogenate to assist with isolation RNA because the expect yield was less 

than 10 µg.  I added 15 µl of Rnase-free water to dissolve the RNA pellet.  The dissolved 

RNA was quantified using a NanoDrop ND-1000 spectrophotometer (NanoDrop 

Technologies, Wilmington, DE).  Genomic DNA was removed by DNase treatment 

following the RNA extraction to ensure purity of the RNA.    

 Total RNA (150 ng) from each pair of gonads was reverse transcribed in a 20 µl 

reaction using the iScript cDNA Synthesis Kit, which contains a blend of oligo dT and 

random hexamers (BioRad, Hercules, CA).  I diluted the synthesized cDNA to 0.5 ng 

input RNA/µl to include in real-time PCR reactions. 

Primer Selection and Quantitative PCR 

Primers for quantitative PCR for testis-specific and steroidogenic genes were 

developed from Illumina sequences obtained from bipotential gonads for snapping turtles 

incubated at male-producing or female-producing temperatures (Rhen et al., unpublished 

data).  The primers for each gene were developed using Primer Express 2.0 (Life 

Technologies, Grand Island, NY).  The primers were designed with the following 



 157 

parameters: length 18-25 base pairs (bp), guanine-cytosine content near 50%, melt 

temperature ranging from 55 to 60oC, and a short amplicon size (50-150 bp).  Sequences 

and development of primers for Foxl2, aromatase, and Ar have been previously reported 

(Rhen et al., 2007).  All other primer sequences are listed in Table 5.1.   All primers were 

purchased from Integrated DNA Technologies (Coralville, IA). 

Quantitative PCR was used to measure mRNA expression of select genes in the 

gonads of control and hormone-treated embryos.  I evaluated expression of genes 

involved in ovarian development [aromatase (Cyp19a1), Foxl2, and Ar], testicular 

development [anti-Müllerian hormone (Amh) and anti-Müllerian hormone receptor 2 

(AmhrII)], and steroidogenic genes [steroidogenic acute regulatory protein (StAR), 

cholesterol side chain cleavage enzyme  (Cyp11a1), 3ß-hydroxysteroid dehydrogenase 

(3ß-Hsd), Cyp17a1, 17ß-Hsd, and steroid-5-α reductase (Srd5a1)].  I also measured 18S 

rRNA in pure gonads.  In brief, each reaction contained 5 µl of 2x SsoFast EvaGreen 

supermix (BioRad, Hercules, CA), 200 nM of each forward and reverse primer, and 2 µl 

of 0.5 ng/µl diluted cDNA synthesized from gonads isolated from one individual, and 

water to bring the total reaction to 10 µl.  Reactions were run on the CFX 384 Real-Time 

PCR Detection System (BioRad, Hercules, CA).  The thermal profile was 95oC for 30 sec 

to activate the DNA polymerase followed by 40 cycles of two-step PCR (95oC for 5 sec 

and 61oC for 10 sec).   

 Rigorous standard curves across eight orders of magnitude were used to quantify 

gene expression in absolute terms as described in Rhen et al. (2007).  Efficiencies of each 

real-time PCR reaction was estimated from the slope of our standard curves and ranged 

from 90-110 % with all slopes having an R2 > 0.990.  Controls lacking reverse 
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transcriptase or RNA template were prepared to demonstrate no contamination from 

foreign DNA, RNA, or PCR products.  A melting temperature analysis was added at the 

end of each real-time PCR reaction to verify that a single product was amplified for each 

gene. 

Statistical Analysis 
 
 I used JMP 5.0.1.2 software for all statistical analyses (SAS Institute, Cary, NC).   

I analyzed patterns of gene expression in embryonic gonads using clutch, treatment, and 

developmental stage as main effects in a three-way analysis of variance (ANOVA).  All 

threshold cycles (Ct) were log10 transformed to meet the assumptions of the ANOVA.  

Residuals of each ANOVA were assessed for outliers using Cook’s distance and outliers 

were removed if necessary.  I used Ct values for 18S rRNA as a covariate to control for 

potential variation in the quality of input RNA as well as variation in the efficiency of the 

reverse transcription reaction.  Given significant effects of treatment (α < 0.05), we used 

the Dunnett’s test to correct for multiple comparisons and to compare the treatment 

effects to the vehicle control.  Sample sizes for experimental groups are shown in each 

figure.   

 I used k-means cluster analysis of aromatase and Foxl2 expression to identify 

developing ovaries due to the DHT or flutamide treatments.  Aromatase and Foxl2 were 

chosen because their expression is sexually dimorphic in the developing gonads and both 

are considered markers for ovarian development (Loffler et al., 2003; Rhen et al., 2007).  

I then analyzed patterns of gene expression for testicular genes and steroidogenic genes 

using ANOVA, but included putative sex as a factor in the model.  This analysis was 

performed to determine whether treatment effects were due to regulation of the genes by 
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androgens and AR or a secondary consequence of gonad differentiation.  Assumptions 

were checked for each ANOVA.  When treatment effects were significant in ANOVA, I 

used the Dunnett’s test to compare individual groups.    

Results 
 

Effects of Treatments on Gonad Morphology 
 

Treatment of embryos with the ethanol vehicle had no effect on sex 

determination. All hatchlings in this group had normal testes with well-developed 

seminiferous tubules containing germ cells, as expected for embryos incubated at 26.5oC 

(Figure 5.2 A-D).  The DHT and flutamide treatments produced similar results in both 

years.  Hormone treatments reversed the sex of some embryos: DHT and flutamide 

induced ovarian development, as evidenced by a thickened cortex containing numerous 

follicles with meiotic oocytes (Figure 5.2 E-H, I, K).  However, the feminizing effects of 

DHT and flutamide varied significantly among clutches (Table 5.2).  

Expression of Genes Involved in Ovarian Development 

 I measured the expression of Foxl2, aromatase, and Ar in differentiating gonads 

from vehicle treated embryos and embryos treated with DHT or flutamide.  Expression of 

aromatase mRNA in embryonic gonads was influenced by hormone treatments, clutch, 

developmental stage, and the clutch x treatment interaction (Table 5.3).  Levels of 18S 

rRNA were a significant covariate in the model.   Aromatase mRNA levels were 

significantly greater in gonads from DHT-treated embryos compared to vehicle-treated 

embryos in clutches 2, 4, 6, and 8 (Figure 5.3).  Flutamide also induced a significant 

increase in aromatase mRNA levels in gonads from clutches 2, 4, and 8 compared to the 

vehicle controls.    
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Expression of Foxl2 mRNA in embryonic gonads was significantly influenced by 

hormone treatments, clutch, and the clutch x treatment interaction (Table 5.3).  Levels of 

18s rRNA were a significant covariate.  Levels of Foxl2 mRNA were significantly 

greater in gonads from the DHT-treated embryos compared to vehicle-treated embryos in 

clutches 2, 6, and 10.  In contrast, there was no difference in Foxl2 mRNA expression 

between flutamide-treated embryos and vehicle treated controls (Figure 5.4).  

 Expression of Ar mRNA was significantly influenced by hormone treatments  and 

clutch (Table 5.3).  Levels of 18S rRNA were a significant covariate.  Ar mRNA levels 

were significantly greater in gonads from DHT-treated embryos compared to vehicle-

treated embryos in clutches 2, 8, and 10 (Figure 5.5).  There was not a difference between 

levels of Ar mRNA in gonads from flutamide- and vehicle-treated embryos in any clutch. 

Identification of Putative Females using Cluster Analysis 
 

The observation of greater aromatase and/or Foxl2 mRNA expression in gonads 

from the DHT- and flutamide-treated embryos suggested that these genes were involved 

in ovary development.  I performed k-means cluster analysis using aromatase and Foxl2 

mRNA levels as markers for ovarian development to assign a putative sex to each 

embryo.  The predicted sex was then added to statistical models to analyze expression of 

other genes.  Cluster analysis identified 29 embryos as putative females, which were all 

from the DHT (n = 24) or flutamide (n = 5) groups.  Putative females had significantly 

higher cluster means for mRNA levels (mean + SD) for both aromatase and Foxl2 (51.88 

+ 8.54 and 32.86 + 4.08, respectively) compared to the putative males (0.73 + 5.49 and 

0.17 + 7.78, respectively).  A summary of the sex ratios produced within each clutch 

from the k-means analysis is presented in Table 5.2.  
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Expression of Genes Involved in Testicular Development 
 
 Given that DHT or flutamide were capable of inducing ovarian development, I 

analyzed expression of a testis-specific gene, Amh and its receptor (AmhrII).  Expression 

of Amh mRNA was significantly influenced by clutch, treatment, stage of development, 

the clutch x treatment interaction, and the stage x treatment interaction (Table 5.4).  

Levels of 18S were a significant covariate.  Levels of Amh were significantly lower in 

gonads from DHT-treated embryos in clutches 2, 4, and 6 compared to the vehicle 

controls, but there was not a significant difference in Amh between gonads from 

flutamide-treated embryos compared to the vehicle controls (Figure 5.6).  

To determine if mRNA levels were lower in developing ovaries, we included the 

putative sex of embryos into the model.  Expression of Amh mRNA was still influenced 

by clutch, treatment, developmental stage and the stage x treatment interaction (Table 

5.5).  Levels of 18S rRNA remained a significant covariate.  The clutch x treatment 

interaction was no longer significant in the model.  Expression of Amh mRNA was 

influenced by the putative sex of embryos with levels being 6-fold higher in putative 

males (33883.7 + 2690.4 ag/ng RNA, n = 146) than putative females (2556.3 + 8252.1 

ag/ng RNA, n = 27). 

 Expression of AmhrII mRNA was significantly influenced by clutch, treatment, 

stage and the clutch x treatment interaction (Table 5.4).  Levels of 18S rRNA were a 

significant covariate within the model.  The stage x treatment interaction did not 

influence AmhrII mRNA expression.  Levels of AmhrII were significantly higher in 

gonads from DHT-treated embryos from clutches 2 and 6 compared to the vehicle 
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controls, but there was no difference between flutamide-treated embryos and vehicle 

controls (Figure 5.7). 

Including the putative sex into the model, expression of AmhrII mRNA was still 

influenced by clutch, treatment, and stage (Table 5.5).  However, the clutch x treatment 

interaction was no longer significant.  Levels of 18S rRNA remained a significant 

covariate within the model.  The stage x treatment interaction did not influence AmhrII 

mRNA expression.  The putative sex of embryos significantly influenced AmhrII mRNA 

expression with levels almost double in ovaries (1,344.4 + 190.9 ag/ng RNA, n =  28) 

compared to testes (745.7 + 61.5 ag/ng RNA, n = 150). 

Expression of Genes Involved in Steroidogenesis 
 

Expression of StAR mRNA was significantly influenced by clutch, treatment, 

developmental stage, clutch x treatment interaction, clutch x stage interaction (Table 5.6).  

Levels of 18S rRNA were a significant covariate.  Expression of StAR mRNA was 

significantly higher in gonads from DHT- and flutamide-treated embryos compared to 

controls (Figure 5.8 A).  Clutches 2, 6, 5, and 10 had significantly higher levels of StAR 

in the DHT-treated group compared to controls. In contrast, StAR levels did not differ 

between flutamide- and vehicle-treated embryos in any clutch (Figure 5.9). 

When putative sex was included in the model, expression of StAR mRNA was still 

influenced by clutch, treatment, developmental stage, and the stage x treatment 

interaction (Table 5.7).  The clutch x treatment interaction was no longer significant.  

Levels of 18S rRNA remained a significant covariate in the model.  Expression of StAR 

mRNA differed between the putative sexes with mRNA levels being approximately 6-

fold higher in ovaries (12.91 + 1.48, n = 27) than testes (2.48 + 0.46, n = 151).  
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Expression of Cyp11a1 mRNA was significantly influenced by clutch, treatment, 

and the clutch x treatment interaction (Table 5.6).  Levels of 18S rRNA were a significant 

covariate.  Expression of Cyp11a1 mRNA was significantly higher in gonads from DHT-

treated embryos compared to the vehicle-treated controls (Figure 5.8 B).  Flutamide had 

no detectable effect on Cyp11a1 mRNA expression compared to controls. 

When putative sex was included in the model, expression of Cyp11a1 mRNA was 

still influenced by clutch and treatment (Table 5.7).  Developmental stage and the stage x 

treatment interaction were still insignificant.  The interaction of clutch x treatment was no 

longer significant.  Levels of 18S rRNA remained a significant covariate.  The putative 

sex of embryos influenced expression of cyp11a1 mRNA with higher levels in ovaries 

(40.1 + 9.22 ag/ng RNA, n = 28) than testes (28.6 + 3.0 ag/ng, n = 151).   

Expression of Cyp17a1 mRNA was significantly influenced by clutch (Table 5.6).  

In contrast, Cyp17a1 mRNA levels did not vary among treatment groups (Figure 5.8 C) 

or any other independent variable.  Levels of 18S rRNA were a significant covariate.  

When I included putative sex into the model, Cyp17a1 mRNA expression was 

still influenced by clutch and levels of 18S rRNA remained a significant covariate in the 

model (Table 5.7).  The putative sex of embryos did not influence Cyp17a1 mRNA 

expression. Expression of Cyp17a1 mRNA was very similar in ovaries (1542.5 + 513.8 

ag/ng RNA, n = 27) and testes (1423.4 + 161.1, n = 147). 

Expression of 3ß-Hsd mRNA was significantly influenced by clutch, treatment, 

and developmental stage (Table 5.6).  Levels of 18S rRNA were a significant covariate 

within the model.  There were no significant interactions in the model.  Levels of 3ß-Hsd 
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were significantly higher in gonads from embryos treated with DHT or flutamide 

compared to the vehicle controls (Figure 5.8 D).  

By including the putative sex into the model, expression of 3ß-Hsd was still 

influenced by clutch, treatment, and developmental stage (Table 5.7).  Levels of 18S 

rRNA remained a significant covariate in the model.  Putative sex did not significantly 

influence 3ß-Hsd mRNA expression with similar levels in ovaries (753.9 + 239.8 ag/ng 

RNA, n = 29) and testes (1239.5 + 77.2 ag/ng RNA, n = 149). 

Expression of 17ß-Hsd mRNA was significantly influenced by clutch, treatment, 

and the stage x treatment interaction (Table 5.6).  Levels of 18S rRNA were a significant 

covariate within the model.  Levels of 17ß-Hsd expression were significantly higher in 

gonads from embryos treated with DHT compared to the vehicle controls (Figure 5.8 E).  

Flutamide did not influence expression of 17ß-Hsd compared to controls. 

When putative sex was included in the model, expression of 17ß-Hsd mRNA was 

still significantly influenced by clutch, treatment, and the stage x treatment interaction 

(Table 5.7).  Levels of 18S rRNA remained a significant covariate within the model.  

Putative sex did not influence 17ß-Hsd mRNA expression with similar levels in ovaries 

(54.6 + 8.83 ag/ng RNA, n = 29) and testes (49.0 + 2.8 ag/ng RNA, n = 147).  

Expression of Srd5a1 mRNA was significantly influenced by clutch, treatment 

and developmental stage (Table 5.6).  Levels of 18S rRNA were a significant covariate 

within the model.  Levels of Srd5a1 were significantly higher in gonads from embryos 

treated with DHT and flutamide compared to vehicle controls (Figure 5.8 F).  There were 

no interactions between independent variables in the model. 
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 Incorporating putative sex into the model, expression of Srd5a1 was still 

influenced by clutch and developmental stage (Table 5.7).  Levels of 18S rRNA were still 

a significant covariate in the model.  Hormone treatment was no longer significant in the 

model.  Interactions in the model were not significant.  Putative sex significantly 

influenced the expression of Srd5a1 with levels being higher in ovaries (413.8 + 59.2 

ag/ng RNA, n = 28) than testes (227.5 + 18.3 ag/ng RNA, n = 153).   

Discussion 
 

The involvement of sex steroid hormones in sex determination has been 

extensively studied in fish, amphibians, and reptiles (Pieau et al., 1994; Ramsey and 

Crews, 2009).  Particular steroids are implicated in sex determination based on their 

effectiveness of causing complete sex reversal.  Administration of DHT or flutamide to 

snapping turtle embryos incubated at the pivotal temperature had a feminizing effect, 

suggesting androgens and the androgen receptor are involved in ovary development in the 

snapping turtle (Rhen and Schroeder, 2010).  In this study, I determined whether DHT or 

flutamide would sex-reverse snapping turtle embryos incubated at an all male-producing 

temperature. 

I found DHT had a feminizing effect in all but one clutch.  The response to DHT 

varied dramatically among clutches: while one clutch produced all males, another clutch 

produced all females.  Flutamide had a feminizing effect on two of eight clutches,  

supporting the notion that flutamide acts as a partial Ar agonist in the snapping turtle. 

These observations are consistent with previous reports in the snapping turtle (Rhen and 

Lang, 1994; Rhen and Schroeder, 2010).  Variation in the number of females among 

clutches suggests the existence of genetic variation in at least one component of the 
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androgen signaling pathway.  Studies have shown that genetic variation in the coding 

sequence of Ar influences receptor activity and sensitivity, which leads to various 

phenotypes in mammals (Chamberlain et al., 1994; Choong et al., 1996; Giovannucci et 

al., 1997; Mifsud et al., 2000; Westberg et al., 2001; Dejager et al., 2002; Ibanez et al., 

2003).  Identification of genetic variants in snapping turtle Ar or androgen response 

elements in ovary-specific genes would provide insights into how androgens induce 

ovary development.   

Production of ovotestes have been observed in some turtle species when treated 

with high levels of sex steroids or aromatase inhibitors and exogenous androgens at 

mixed sex ratios, but not from treatments with exogenous androgens at all male-

producing temperatures (Wibbels et al., 1992; Crews and Bergeron, 1994; Wibbels and 

Crews, 1995).  I did not observe ovotestes in my histological analyses of the gonads, 

making it unlikely in the gonads used for analyzing mRNA expression. 

Feminizing effects were also observed at the molecular level: DHT and flutamide 

treatments increased aromatase mRNA levels in gonads from embryos at a male-

producing temperature.  Foxl2 expression was induced in embryos treated with DHT, but 

not flutamide.  My current findings provide additional support for the hypothesis that 

androgens and Ar are in a feed forward loop that includes aromatase and Foxl2 (Rhen and 

Schroeder 2010).  Aromatase converts endogenous testosterone into estrogens, which are 

key regulators of ovarian differentiation in TSD reptiles (Pieau et al., 1994, 1995, 2004; 

Lance, 1997, 2009).  This is the first study demonstrating that DHT can override the 

effects of male-producing temperatures in the snapping turtle. 
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I examined expression of Amh and its receptor, because Amh is expressed in 

Sertoli cells in the developing testes and Amh represses aromatase expression in gonads 

of birds, reptiles, and mammals (Vigier et al., 1989; di Clemente et al., 1992).  As 

expected, DHT treatments reduced Amh expression in clutches that produced mostly 

females.  Levels of Amh expression in gonads from DHT-treated embryos were still 

relatively high in clutch 2, which produced all females.  Flutamide treatment had no 

detectable effect on Amh mRNA levels, presumably because mostly males were 

produced.  Additionally, AmhrII expression levels were significantly higher in clutches 

producing mostly females from the DHT-treatment.  

I therefore tested for differences in Amh expression between putative females and 

males.  Putative sex had a large effect on Amh expression, with females having 

significantly lower Amh expression than males, yet Amh mRNA expression was still 

observed in developing females.  Amh is expressed at low levels in the cortex in 

developing ovaries of chickens, fish, and mammals, but not in alligators or red-eared 

slider turtles (Munsterberg and Lovell-Badge, 1991; Carre-Eusebe et al., 1996; Oreal et 

al., 1998; Smith et al., 1999; Western et al., 1999; Yoshinaga et al., 2004; Shoemaker et 

al., 2007; Ijiri et al., 2008).  Although Amh expression decreased in putative females, we 

observed an increase in AmhrII expression.  Low levels of Amh may be playing a 

functional role in differentiation of the ovary, because Amh is known to be involved in 

folliculogenesis in the ovary by preventing the recruitment of primordial follicles into the 

growing pool (Durlinger et al., 2002).    

I analyzed expression of other genes that encode steroidogenic enzymes. 

Treatments with DHT or flutamide significantly influenced expression of all 
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steroidogenic genes studied except Cyp17a1.  However, when putative sex was included 

in the statistical model, the variance explained by the treatments decreased, and for some 

genes, there was no longer a treatment effect.  These results suggest that differences in 

expression of many of the steroidogenic genes may be due to gonadal sex and not a result 

of gene regulation by AR. 

I observed significant differences in StAR and Cyp11a1 expression among the 

treatment groups and between putative females and males.  StAR mediates the rate-

limiting step in steroidogenesis by delivering cholesterol from the outer mitochondrial 

membrane to the inner mitochondrial membrane where Cyp11a1 resides.  StAR levels 

were higher in gonads from the DHT and flutamide treatments and developing ovaries 

than testes.  Previous studies in the snapping turtle revealed higher StAR mRNA 

expression in bipotential gonads from a female-producing temperature compared to a 

male-producing temperature, but not until the end of the temperature sensitive period (T. 

Rhen, unpublished results).  Aromatase mRNA expression becomes sexually dimorphic 

during the temperature sensitive period (Rhen et al., 2007).  Estrogens induce a rapid 

increase in StAR protein levels in the ovaries of rabbits, but the effect of estrogens on 

StAR mRNA is unknown (Townson et al., 1996).  Androgens and Ar may be indirectly 

influencing StAR expression by increasing aromatase expression and estrogen production.  

Although androgens and Ar have yet to be implicated in ovarian development in 

other reptilian species with TSD, there is increasing evidence that androgens may be an 

evolutionarily conserved mechanism in ovarian development.  Ar is expressed at higher 

levels in the developing ovary than testes in chickens and reptiles (Katoh, et al., 2006; 

Ramsey and Crews, 2007; 2009).  In contrast, administration of DHT had a masculinizing 
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effect on red-eared slider embryos incubated at a mixed sex ratio temperature.  This 

suggests the role of androgens in ovarian development may not be conserved among 

turtles.  Furthermore, the role of androgens in ovarian development may be species-

specific.  For example, administration of DHT to channel and blue catfish has been 

reported to increase the production of females (Davis et al., 1992), while DHT has a 

masculinizing effect in many other fish species (Chiasson and Bentley, 2007; Krisfalusi 

and Cloud, 1999).  Davis et al. (1992) reported that the feminizing effect of DHT was 

influenced by the timing and dose of administration.  Crews et al. (1996) reported effects 

from DHT only during the TSP and a dose response to masculinize red-eared slider 

turtles.  These results suggest a dosage-dependence effect of androgens to produce 

females and may explain variation in results between turtle species.  

 The appropriate level of androgens may be critical for normal ovarian 

development.  Exposure to high levels of androgens during mammalian embryonic 

development is associated with polycystic ovarian syndrome (PCOS; Norman et al., 

2007).  On the other hand, low levels of circulating androgens or lack of AR function 

leads to premature ovarian failure (POF; Shiina et al., 2005).  PCOS is characterized by 

an increase in the number of developing follicles compared to normal ovaries (Webber et 

al., 2003; Steckler et al., 2005).  POF is characterized by amenorrhoea and early loss of 

ovarian function (Goswami and Conway, 2005).  Previous studies in snapping turtles 

revealed a similar phenotype: ovaries from individuals treated with DHT during 

embryogenesis had increased numbers of developing follicles (Rhen et al., unpublished 

results).  My data supports the hypothesis that genetic variation in androgen receptor 

sensitivity or activity may be associated with hyper-androgenism in the ovary (Legro et 
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al., 1998).  Furthermore, Amh, AmhrII, and many of the genes encoding steroidogenic 

enzymes have been implicated in the development of PCOS (Prapas et al, 2009; Pellatt et 

al., 2010; Luense et al., 2011).  The expression of these genes in the developing ovary 

from DHT-treated snapping turtle embryos may lead to the characteristic ovarian 

phenotypes of PCOS, but the molecular mechanisms underlying PCOS during embryonic 

development are not well understood.  Further analyses of these genes in control and 

DHT-induced ovaries are warranted.  

In sum, my findings strongly support the hypothesis that androgens and AR play a 

role in ovarian development in the common snapping turtle, presumably by inducing 

aromatase and leading to the conversion of aromatizable androgens into estrogens.  

Moreover, AR appears to be involved in regulating steroidogenic genes, StAR and 

Cyp11a1, which are necessary for steroid hormone production.  Although androgens 

appear important in ovarian development, too much or too little androgen production in 

females leads to disease phenotypes, suggesting that the production of androgens and 

estrogens is highly regulated during development of normal ovaries.  
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Table 5.1.  List of primer pairs used for quantitative real-time PCR. 
_____________________________________________________________________ 
Target             Primer Sequence____                                         Tm (oC)_ 
Amh  For  5’ – CATTCTGCTCTCCTGTCTCTG – 3’       54.8 

Rev 5’ – ACGTCCTCTTGAAAAGCCAG – 3’        55.2 
 
AmhrII  For  5’ – TGAAGCAGGCTGACATCTACTCCT – 3’       59.5 

Rev 5’ – TCGTAGGCCAGCTGGAAGGGA – 3’        62.6 
 
StAR   For  5’ - TCTTCCGAATGGAGACGGTG - 3’        56.7 

Rev 5’ – CATAGAAGAGCTGGTCCACGG - 3’        57.3 
 
Cyp11a1   For 5’ – CTCTAAGACCTGGCGGGACC - 3’        59.5 

Rev 5’ – TGCCTGAAAATCACATCCCA - 3’        54.6 
 
Cyp17a1    For 5’ – CCCCGTCCCTCCTTTGAC - 3’               58.0 

Rev 5’ – AATAATTCAGCGCCTCGCTCT - 3’         56.8 
 

3ß-Hsd   For 5’ – GAGATCCGAACCCTGGACAA - 3’        56.6 
Rev 5’ – AAAATTCCTGCGTGCCTCAT - 3’                   55.3 

 
17ß-Hsd For 5’ – CTATCTACGGGAGACCCGGG - 3’       58.5 

Rev 5’ – CCCACGAGACTGGAAATGTTG – 3’       56.0 
 
Srd5a1  For 5’ – TTCTGGGTGGCTGAAAGGTC-3’       57.4 

Rev 5’ – AGCCACGCTGCAAAACCTAC – 3’       58.5 
___________________________________________________________________
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Table 5.2.  A summary of the sex ratios produced (in percent male) for each treatment 
group within each clutch from the k-means cluster analysis.  The number in parentheses 
represents the number of individuals from each treatment group. 
________________________________________________________________________                            
_________Clutch                       Vehicle                             DHT                      Flutamide   
     2           100 (7)               0.0 (8)           57.1 (7) 
 
     3           100 (5)              83.3 (6)            100 (6)  

 
     4           100 (7)              71.4 (7)                 100 (5)  
 
     5               100 (8)              77.8 (9)                 100 (9) 
 
    6          100 (9)              12.5 (8)                 75.0 (8) 
 
    8          100 (7)              85.7 (7)                 100 (7) 
 
    9          100 (12)              100 (11)                 100 (10)  
 
                    10          100 (7)               62.5 (8)                 100 (8) 
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Table 5.3.  ANOVA model of the influence of clutch, treatment, and stage on the log10 
transformed mRNA expression of genes involved in ovarian development.  18S rRNA 
was included as a covariate within the model.  Significant terms in the model at p < 0.05 
are bolded.   
______________________________________________________________________ 
                                                                      Type III  
    Dependent                          Sum of                                
      Variable                        Source               Squares           df                  F                   p __ 
                      Clutch                 27.65            7                7.683          <0.0001 
                   Treatment              30.11            2              29.280         <0.0001 
   Aromatase                     Stage                   11.48            6                 3.722           0.0018 
                     Treatment x Clutch       26.07           14               3.622         <0.0001 
                     Treatment x Stage             5.47           12               0.887            0.5617 
                  18S rRNA               11.71            1              22.776         <0.0001 
                                 Error                    70.43          137 
 
                                     Clutch                  78.32            7              17.187         <0.0001 
                   Treatment              44.16            2              33.918        <0.0001 
     Foxl2                     Stage                      2.08            6                0.533           0.7823 
                     Treatment x Clutch       28.89           14               3.169           0.0002 
                     Treatment x Stage             5.96           12               0.764           0.6868 
                  18S rRNA               10.99            1              16.878         <0.0001 
                                 Error                    89.19          137 

 
                                           Clutch                   2.73             7                2.342           0.0274 
                   Treatment               4.06            2               12.169         <0.0001 
      Ar                                 Stage                     1.35            6                 1.352           0.2384 
                     Treatment x Clutch           2.76           14                1.184           0.2944 
                     Treatment x Stage             2.35           12                1.173           0.3085 
                  18S rRNA                4.82             1              28.872         <0.0001 
                                 Error                   22.84           137 
________________________________________________________________________ 
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Table 5.4. ANOVA model of the influence of clutch, treatment, and stage on the log10 
transformed mRNA expression of genes involved in testicular development.  18S rRNA 
was included as a covariate within the model.  Significant terms in the model at p < 0.05 
are bolded.   
_______________________________________________________________________ 
                                                                     Type III  
    Dependent                          Sum of                                
      Variable                        Source               Squares           df                  F                   p __ 
                             Clutch                  12.56             7               4.200           0.0003 
                   Treatment              21.69            2              25.381        <0.0001 
        Amh                      Stage                     8.94             6                3.488          0.0032 
                     Treatment x Clutch       17.03            14              2.847           0.0009 
                     Treatment x Stage         11.07            12              2.159           0.0174 
                  18S rRNA                 7.61             1             17.821         <0.0001 
                                 Error                    54.69           128 
 
                                     Clutch                 30.84             7              43.625         <0.0001 
                   Treatment              4.22             2              20.875         <0.0001 
     AmhrII                     Stage                    3.48             6                5.745         <0.0001 
                     Treatment x Clutch        3.80           14               2.690            0.0017 
                     Treatment x Stage            0.62            12              0.511            0.9045 
                  18S rRNA                2.03             1             20.123          <0.0001 
                                 Error                   13.43           133 
_______________________________________________________________________
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Table 5.5 ANOVA model of the influence of clutch, treatment, stage, and putative sex on 
the log10 transformed mRNA expression of genes involved in testicular development.  
18S rRNA was included as a covariate within the model.  Significant terms in the model 
at p < 0.05 are bolded.   
_______________________________________________________________________ 
                                                                     Type III  
    Dependent                          Sum of                                
      Variable                        Source               Squares           df                  F                   p __ 
                             Clutch                 11.98             7               5.907         <0.0001 
                   Treatment              3.14             2               5.427            0.0055 
        Amh                      Stage                   11.04            6               6.355          <0.0001 
                     Treatment x Clutch           5.38           14              1.327            0.2005 
                     Treatment x Stage          6.80            12              1.957            0.0335 
        Putative Sex           17.92            1             61.870          <0.0001 
                  18S rRNA                9.41             1             32.480          <0.0001 
                                 Error                   36.78           127 
 
                                     Clutch                 19.18             7              30.310         <0.0001 
                   Treatment              0.86             2                4.735            0.0103 
     AmhrII                     Stage                    3.89             6                7.163         <0.0001 
                     Treatment x Clutch          1.34            14               1.060            0.3992 
                     Treatment x Stage            0.63            12               0.584            0.8521 
      Putative Sex             1.50             1              16.578          <0.0001  
                  18S rRNA                1.63             1              18.129          <0.0001 
                                 Error                    11.93          132 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 183 

Table 5.6.  ANOVA model of the influence of clutch, treatment, and stage on the log10 
transformed mRNA expression of genes involved in steroidogenesis.  18S rRNA was 
included as a covariate within the model.  Significant terms in the model at p < 0.05 are 
bolded. 
_______________________________________________________________________ 
                                                                     Type III  
    Dependent                          Sum of                                
      Variable                        Source               Squares           df                  F                   p __ 
                                 Clutch                  7.89              7              11.265       <0.0001 
                   Treatment             12.35             2              61.711       <0.0001 
       StAR                     Stage                     3.25             6                5.420       <0.0001 
                     Treatment x Clutch         3.33            14               2.376         0.0056 
                     Treatment x Stage           2.35            12               1.960         0.0330 
                  18S rRNA                 2.60             1              26.011       <0.0001 
                                 Error                     13.00           130 
 
                                     Clutch                 33.50             7             16.538        <0.0001 
                   Treatment              6.55             2             11.314        <0.0001 
     Cyp11a1                     Stage                     2.71            6               1.561           0.1636 
                     Treatment x Clutch        8.68           14              2.143           0.0133 
                     Treatment x Stage            4.80           12              1.383           0.1819 
                  18S rRNA              11.01            1             38.072         <0.0001 
                                 Error                   70.43          132 

 
                                           Clutch                 40.08            7             27.158          <0.0001 
                   Treatment                0.62            2               1.461            0.2357 
      Cyp17a1                     Stage                    0.50            6               0.392            0.8830 
                     Treatment x Clutch          2.43           14              0.822            0.6440 
                     Treatment x Stage            2.26           12              0.894            0.5549 
                  18S rRNA                4.58            1             21.741          <0.0001 
                                 Error                   27.41          130 
 
                                Clutch                11.50            7             18.103           <0.0001 
                   Treatment              2.73            2             15.055           <0.0001 
     3β-Hsd                     Stage                    2.07            6               3.807             0.0016 
                     Treatment x Clutch          1.06           14              0.835             0.6304 
                     Treatment x Stage            1.49           12              1.366             0.1898 
                  18S rRNA                3.08            1             33.892           <0.0001 
                                 Error                   12.16          134 
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                                     Clutch                 10.73           7              12.480           <0.0001 
                   Treatment              1.58           2                6.411              0.0022 
   17β-Hsd                     Stage                    1.18           6                1.599              0.1524 
                     Treatment x Clutch          1.18          14               0.685              0.7860 
                     Treatment x Stage          3.06          12               2.074             0.0228 
                  18S rRNA                3.13           1              25.519           <0.0001 
                                 Error                   16.09         131 
 

       Clutch                   7.40             7             6.534            <0.0001 
                   Treatment              2.53             2             7.815               0.0006 
      Srd5a1                     Stage                    3.23            6              3.329               0.0043 
                     Treatment x Clutch          3.45           14             1.523               0.1105 
                     Treatment x Stage            1.19           12             0.611               0.8302 
                  18S rRNA                3.37            1            20.853             <0.0001 
                                 Error                    22.16         137 
________________________________________________________________________
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Table 5.7.  ANOVA model of the influence of clutch, treatment, stage, and putative sex 
on the log10 transformed mRNA expression of genes involved in steroidogenesis.  18S 
rRNA was included as a covariate within the model.  Significant terms in the model at     
p < 0.05 are bolded.   
_______________________________________________________________________ 
                                                                     Type III  
    Dependent                          Sum of                                
      Variable                        Source               Squares           df                  F                   p __ 
                                 Clutch                  2.47              7               5.008           0.0006 
                   Treatment               2.20             2             15.615         <0.0001 
       StAR                     Stage                     3.18             6               7.527         <0.0001 
                     Treatment x Clutch            0.96           14              0.976           0.4815 
                     Treatment x Stage           1.86            12              2.205           0.0149 
                                       Putative Sex               3.93             1            55.920         <0.0001 
                  18S rRNA                 1.59             1             22.617         <0.0001 
                                 Error                      9.07           129 
 
                                     Clutch                  34.22             7             17.506         <0.0001 
                   Treatment               2.36             2               4.229           0.0166 
     Cyp11a1                     Stage                     2.92             6               1.741           0.1164 
                     Treatment x Clutch           4.82            14              1.234           0.2583 
                     Treatment x Stage             4.77            12              1.423           0.1631 
      Putative Sex              1.62             1               5.801           0.0174 
                  18S rRNA                 9.71            1              34.786         <0.0001 
                                 Error                    36.58           131 

 
                                           Clutch                 40.15             7              27.148         <0.0001 
                   Treatment                0.15             2                0.349           0.2357 
      Cyp17a1                     Stage                     0.48            6                0.376            0.8830 
                     Treatment x Clutch           1.61           14               0.544           0.6440 
                     Treatment x Stage             2.27           12               0.895           0.5549 
      Putative Sex               0.16            1                0.763           0.3840 
                  18S rRNA                4.37            1               20.702        <0.0001 
                                 Error                   27.25          129 
 
                                Clutch                 11.70           7             17.867           <0.0001 
                   Treatment               2.31            2            12.689           <0.0001 
     3β-Hsd                     Stage                     2.07            6              3.781             0.0017 
                     Treatment x Clutch           1.07           14             0.835             0.6232 
                     Treatment x Stage             1.51           12             1.366             0.1842 
      Putative Sex               0.03            1              0.370             0.5440 
                  18S rRNA                3.08            1             33.892           <0.0001 
                                 Error                   12.12          133 
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                                     Clutch                 10.71           7              12.491           <0.0001 
                   Treatment              0.83           2                3.392             0.0367 
   17β-Hsd                     Stage                    1.15           6                1.566             0.1621 
                     Treatment x Clutch          0.94          14               0.549             0.8994 
                     Treatment x Stage          3.03          12              2.064              0.0236 
       Putative Sex             0.16           1                1.339             0.2494 
                  18S rRNA                2.93           1             23.917            <0.0001 
                                 Error                    15.93        130 
                           

       Clutch                   4.41           7               4.094              0.0004 
                   Treatment                0.74           2               2.414              0.0933 
      Srd5a1                     Stage                    3.42           6               3.708              0.0019 
                     Treatment x Clutch          2.68          14              1.243              0.2515 
                     Treatment x Stage            0.81          12              0.439              0.9449 
      Putative Sex             1.25           1               8.163              0.0049 
                  18S rRNA                2.91           1             18.930           <0.0001 
                                 Error                   20.90         136 
________________________________________________________________________ 
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Figure 5.1.  Overview of steroidogenesis in the gonads and the genes/proteins involved 
in sex steroid biosynthesis (adapted from Bulun et al., 2005).  We examined the genes 
that encode the enzymes necessary for the conversion of cholesterol into sex steroid 
hormones including: Steroidogenic acute regulatory protein (StAR), Cyp11a1 
(cholesterol side-chain cleavage; P450scc), Cyp17a1 (cytochrome P450 c17α-
hydroxylase, 17, 20-lyase), 3β-hydroxysteroid dehydrogenase (Hsd), 17β-Hsd, and 
aromatase (cytochrome P450 aromatase, Cyp19a).
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  Figure 5.2.  Differentiating gonads of snapping turtles during stages 22 through 25 of 
embryonic development from embryos treated with vehicle control (A-D), DHT (E-H), 
or flutamide (I-L), at stage 17 of development.   Each gonad shown is from a single 
individual from the same clutch.  The vehicle-treated embryos all showed developing 
medullary sex cords (black arrows) indicating testis development.  All DHT-treated 
embryos from this clutch showed development of the cortex and developing follicles 
(white arrows) indicating ovarian development.  Flutamide-treated embryos showed 
development of the cortex in some individuals (I, K) and development of medullary 
cords in the others (J, K).  Scale bar = 50 µm.  

 
 
 
 
 



 189 

 
Figure 5.3.  Log10 transformed aromatase expression in gonads from 8 clutches  
for snapping turtle embryos treated with either DHT, flutamide, or vehicle.  
Aromatase mRNA are least square means (+ 1 SE) for each clutch and treatment.  
Sample sizes for each treatment and clutch are presented in each column or above 
the error bars.  Asterisks indicate a significant difference (p < 0.05) between the 
treatments and vehicle control from the Dunnett’s post hoc test. 
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Figure 5.4.  Log10 transformed Foxl2 expression in gonads from 8 clutches for 
snapping turtle embryos treated with either DHT, flutamide, or vehicle.  Foxl2 
mRNA are least square means (+ 1 SE) for each clutch and treatment.  Sample 
sizes for each treatment and clutch are presented in each column or above the 
error bars.  Asterisks indicate a significant difference (p < 0.05) between the 
treatments and vehicle control from the Dunnett’s post hoc test.     
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Figure 5.5.  Log10 transformed Ar expression in gonads from 8 clutches for snapping 
turtle embryos treated with either DHT, flutamide, or vehicle.  Ar mRNA are least 
square means (+ 1 SE) for each clutch and treatment.  Sample sizes for each treatment 
and clutch are presented in each column or above the error bars.  Asterisks indicate a 
significant difference (p < 0.05) between the treatments and vehicle control from the 
Dunnett’s post hoc test.     
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Figure 5.6.  Log10 transformed Amh expression in gonads from 8 clutches  
for snapping turtle embryos treated with either DHT, flutamide, or vehicle.  
Amh mRNA are least square means (+ 1 SE) for each clutch and treatment.  
Sample sizes for each treatment and clutch are presented in each column or 
above the error bars.  Asterisks indicate a significant difference (p < 0.05) 
between the treatments and the vehicle control from the Dunnett’s post hoc  
test.     
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Figure 5.7.  Log10 transformed AmhrII expression in gonads from 8 
clutches for snapping turtle embryos treated with either DHT, flutamide,  
or vehicle. AmhrII mRNA are least square means (+ 1 SE) for each  
clutch and treatment.  Sample sizes for each treatment and clutch are  
presented in each column or above the error bars.  Asterisks indicate a 
significant difference (p < 0.05) between the treatments and the vehicle  
control from the Dunnett’s post hoc test.     
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Figure 5.8.  Log10 transformed expression of steroidogenic genes StAR (A), Cyp11a1 
(B), Cyp17a1 (C), 3ß-Hsd (D), 17ß-Hsd (E), Srd5a1 (D) in gonads from snapping turtle 
embryos treated with either DHT, flutamide, or vehicle.  mRNA levels are least square 
means (+ 1 SE) for each treatment from the model that did not include the putative sex.  
Sample sizes for each treatment are presented in each column or above the error bars.  
Asterisks indicate a significant difference (p < 0.05) between the treatments and the 
vehicle control from the Dunnett’s post hoc test. 
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Figure 5.9.  Log10 transformed StAR expression in gonads from 8 clutches for 
snapping turtle embryos treated with either DHT, flutamide, or vehicle.  StAR 
mRNA are least square means (+ 1 SE) for each clutch and treatment.  Sample 
sizes for each treatment and clutch are presented in each column or above the  
error bars.  Asterisks indicate a significant difference (p < 0.05) from between 
the treatments and the vehicle control from the Dunnett’s post hoc test. 
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CHAPTER VI 
 
 

EPILOGUE 
 
 

Summary of Research Findings 
 
 The genetic, physiological, and molecular mechanisms underlying temperature-

dependent sex determination (TSD) are not well understood.  Numerous studies have 

focused on cloning orthologous genes known to be important for sex determination in 

mammals, but little research has focused on the cloning and identification of unique 

genes involved in TSD.   Also, sex steroid hormones are known to be involved in sex 

determination or maintenance of the gonads of all vertebrate species.  Estrogens are 

critical for ovarian development, but the role of androgens in sex determination remains 

unclear.  The research described here had two main objectives 1) Identify unique, 

thermo-sensitive, genes involved in TSD and 2) Determine the role of androgens in sex 

determination and differentiation in a TSD species.  

The goal of the study in the second chapter was to identify a candidate gene 

involved in TSD.  I identified the cold inducible RNA-binding protein (Cirbp) as a strong 

candidate of TSD in the snapping turtle.  Cirbp was strongly induced at a high female-

producing temperature, but not at a low female-producing temperature.  This suggests 

that Cirbp is involved in the commitment to ovarian development.  Cirbp has been cloned 

in other reptile species with TSD, but this is the first study to examine its role in sex 

determination (Kohno et al., 2010; Chojnowski and Braun 2012).  Furthermore, I 
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detected higher Cirbp protein expression in the developing ovaries than testes.  I also 

observed differences in localization of Cirbp protein during sex determination and gonad 

differentiation, suggesting different roles of Cirbp in sex determination and 

differentiation.   

Genetic association studies are commonly used to provide genotype-phenotype 

relationships.  The study described in chapter III identified a novel association between 

Cirbp expression and TSD.   Next-generation sequencing allowed relatively quick 

identification of SNPs.  I observed allelic specific expression and differences in allele 

frequencies between turtle embryos from northern and southern Minnesota, suggesting 

genetic adaptation to local thermal regime.  I also found significant genetic associations 

between Cirbp genotype, Cirbp expression and sexual phenotype in a study that produced 

mixed sex ratios.  These results provided the strongest evidence to date for a TSD gene.   

The role of androgens and androgen signaling in development of the male 

reproductive tract is not well known in any species.  The experiments in Chapter IV were 

developed to address the role of androgens and anti-androgens on the morphology of the 

developing male reproductive tracts.  Unfortunately, the treatments with DHT or 

flutamide were sufficient to produce females, despite the embryos being incubated at an 

all-male producing temperature.  The development of females by my treatments 

confounds the results of this study.  Although this study provided little information about 

the mechanisms of androgen action on development of the male reproductive tracts, it 

provided a new question about the role of androgens in sex determination in the snapping 

turtle. 
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There is a growing hypothesis that androgens are important in ovarian 

development in species where aromatase is a key regulator (Ramsey and Crews; 2009).  

Our results from Chapter IV, suggest that this is an acceptable hypothesis in the snapping 

turtle.  I found that DHT and flutamide were sufficient to produce females, despite 

individuals being incubated at an all-male producing temperature.  It appears that 

androgens and AR are likely involved in the regulation of aromatase, presumably to 

convert endogenous testosterone into estrogens needed to induce ovarian development.  I 

also observed variation in the number of females produced within each clutch treated 

with DHT or flutamide.  This observation suggests the existence of genetic variation in at 

least one component of the androgen signaling pathway. 

Future Studies and Hypotheses 

 Although I found a significant association between Cirbp allelic expression and 

sex ratios produced in snapping turtles families, these results do not prove causation.  

Future studies need to be conducted to determine a functional role of Cirbp in TSD.  In 

mice and rats, the development of a gene knockout provides the functional role for a 

candidate gene involved in developmental processes, like sex determination.  Gene 

knockouts are not plausible in snapping turtles, but with new technologies, like short 

interfering RNAs (siRNA), we can knockdown gene expression to determine the function 

of a candidate gene.  We are developing an organ culture system to knockdown 

expression of Cirbp mRNA using siRNA in bipotential gonads.  I hypothesize that 

knockdown of Cirbp mRNA in gonads incubated at female-producing temperatures will 

lead to up-regulation of testis-specific genes, and ultimately, the development of testes.   

Also, these studies did not provide any information about where Cirbp lies in the gene 
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regulatory network for TSD.   We are performing genetic studies that will examine F1 

generations from snapping turtles from different populations that will provide insights 

into the possible regulation of Cirbp and its role in the gene regulatory cascade.   

 My results provide strong evidence for a role of androgens in ovarian 

development.  These results do not provide causal information of how androgens and AR 

are signaling to induce ovary formation.  We previously suggested that AR is able to 

regulate aromatase and FoxL2 directly (Rhen et al., 2007).  Future studies will need to 

examine if androgen response elements (AREs) occur within these female-specific genes.  

The genetic variation in androgen signaling that I observed presents some important 

questions.   For example, 1) Is there a dose-dependent response for androgens to induce 

ovarian development?  2) Is the observed variation due to genetic differences in AR or 

AREs in female-specific genes?  3) If variation is due to AR, is it because of differences 

in AR activity, sensitivity, or combination of the two?   

What it All Means (Practical Application of This Work) 

The development of male or female organs and secondary sex characteristics 

shapes every aspect of our biology.  Understanding the underlying molecular processes 

involved in this process leads to a better understanding of the sex differences, which lead 

to differential life histories, selection pressures and interactions.  Also, understanding the 

molecular mechanisms underlying sex determination has implications for reproductive 

and general health and disease.  Perturbations in gene expression during sexual 

development can lead to fertility problems and have effects individual fitness.   In species 

with TSD, the identification and characterization of required thermo-sensitive genes can 

explain the evolutionary potential and adaptability of these organisms to changing 
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environments.  This is important for species with TSD, because global climate change 

could lead to the development of skewed sex ratios in already threatened species.   

Sex steroid hormones and their receptors are crucial for development and/or the 

maintenance of the gonads in all vertebrate species.  Mutations in sex hormone receptors 

or exposure to high or low levels of hormones can lead to disease phenotypes (Sahay et 

al., 2002).  Understanding how androgens function and elicit their responses in the 

gonads is essential for fertility in both males and females.  In females, exposure to high 

levels of androgens during development can lead to polycystic ovarian syndrome 

(PCOS), while insufficient androgen levels leads to premature ovarian failure (Walters et 

al., 2008).  Our previous studies treating turtle embryos with androgens showed ovarian 

phenotypes similar to PCOS (Rhen, unpublished results).  This observation supports 

conserved role of sex steroid hormones needed for proper ovarian development.  The 

snapping turtle may function as a model for exploring the genetic and molecular 

mechanisms associated with PCOS.  The examination of genetic variation in androgen 

responsiveness in snapping turtles may also provide a basis for variation in 

hyperandrogenism observed in humans with PCOS (Escobar-Morreale et al., 2005).       
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