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ABSTRACT

The experimental determination of the critical point of metals is inherently

connected with difficulties of measuring large temperatures and pressures. On the other

hand, that of straight alkane chains larger than ten carbon atoms and branched chains

larger than eight atoms is burdensome due to decomposition of the molecules while in the

vapor phase. Therefore molecular simulations stand as an appropriate alternative for

determining the critical point and phase coexistence properties of these fluids. Most

simulation methods that are apt for this task rely on particles insertion and deletion moves

that can significantly complicate the simulation, since high density in the liquid phases

restrains this type of move. In our simulation this issue is avoided by combining the

Wang-Landau (WL) sampling method in the NPT ensemble with efficient techniques for

simulating dense liquid regions, such as configurational bias Monte Carlo (CBMC) and

hybrid Monte Carlo (HMC). We simulate the liquid-vapor equilibria curves of copper and

branched alkanes, isobutane and isopentane, by combining the HMC technique with the

WL sampling. The standard boiling points of n-alkanes such as eicosane, tetracosane and

triacontane are simulated by implementing the CBMC technique in the WL method in

order to sample efficiently the various conformations of the long chain molecules. For

copper we obtain a critical temperature Tc = 5695 ± 50 K, critical pressure

Pc = 1141 ± 100 bar and critical density ρc = 1.80 ± 0.03 g/cm3. All of these values lie

within the range of experimental data. The vapor-liquid equilibria curves and critical

xiii



points of the branched alkanes are in excellent agreement with experimental data as well

as simulation results using the Gibbs ensemble Monte Carlo method. The boiling points

of the above listed n-alkanes also show good match with experimental data, with

deviations in the range of 2 to 3 %. The WL simulations in the NPT ensemble is a simple

and robust method for establishing vapor-liquid phase diagrams, as a single simulation run

is necessary to evaluate the properties at a given temperature and for a large variety of

substances. Its reliability is proven by the good agreement between experimental and

simulation results.

xiv



CHAPTER I

INTRODUCTION

Depending on the arrangement of the building atoms or molecules, the materials

can be found in four different types of phases - solid, liquid, gas and plasma. A phase is

characterized with a uniform chemical composition and physical properties and well

separated by other phases with boundary surfaces. The study of phase transformations is

essential to control the desired characteristics of a given material. Thermodynamic

parameters such as temperature and pressure are often used to drive these transformations

in the forward or backwards directions and knowledge of the right amount of heat or work

done to the system under study in order to control these parameters is required. It is

convenient to present these parameters on a plot that indicates the phase domains, better

known as a phase diagram (Figure 1.1).

At the boundary between two phases, a unique dependence between two or more

of the thermodynamic parameters is established which controls the domain of the phase

diagram where the two phases coexist. Under these conditions phase equilibrium is

obtained and it is not underpinned by complete absence of change, but rather, the absence

of the tendency towards change on a macroscopic scale. This tendency towards change is

caused by a driving force and hence all the forces in equilibrium systems are exactly

balanced. The origin of the forces could be mechanical work, which is controlled by the

pressure exercised on the system. Heat change from one phase to the other would also

1



Figure 1.1. Example of a phase diagram

disrupt the equilibrium and that disturbance is caused by temperature difference. The

imbalance of chemical potential on the other side causes particle transfer from one phase

to the other. At equilibrium the thermodynamic variables that are equalized for the two

phases are pressure, temperature and chemical potential.

The transition between the phases is known as first order phase transition. It is

characterized with an abrupt change in the physical properties of the system. If we move

along the line connecting the vapor and liquid phases, as temperature increases the

difference between the densities of the two phases decreases. At the critical point it

becomes zero and so it is possible to have a continuous transition from the vapor phase

region to the liquid on the phase diagram (Figure 1.2). The differences in densities is non

zero below the critical point and there is no continuous transition. This difference is called

the order parameter of the vapor-liquid transition.

Phase equilibria of fluids is of significant importance in various fields of the

biological and physical sciences. Fluids can be in several states of matter that are

2



Figure 1.2. Example of a vapor-liquid equilibria curve . The difference in densities (ρvapor−

ρliquid) is the order parameter.

subjected to continuous deformation under shear stress. As such, they exist mainly in the

liquid and vapor phases. Transitions from one phase to the other is witnessed in a variety

of physiological and industrial processes. In chemistry and chemical engineering,

knowledge of the vapor-liquid phase envelope is crucial for many operations since often

two or more phases are in contact. Examples include extraction, adsorption and

distillation and the successful separation of mixtures lies in understanding the phenomena

of phase equilibrium. A large number of experimental data has been produced to

characterize the phase behavior of fluids. Furthermore, phase diagrams have been the

subject of theoretical studies, mainly due to the necessity of equilibria parameters in

equations of state (EOS). EOS relate state variables in an equation and as such are a

powerful tool in predicting the properties of fluids. They are used extensively in

engineering devices, materials and processes. Analytical solutions of the phase diagram,

however, can only be obtained for simple fluids. A number of constraints is present in the

experimental determination of phase diagrams when certain types of fluids are concerned.
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1.1 Metals

Knowledge of the properties of metals in their solid phase is abundant, as most of

them exist and are used for various purposes in this state. Little information is available,

as to their characteristics in the liquid and vapor phase is concerned, due to the extreme

conditions in which metals must be studied (Table 1.1). It is required in the nanosized

top-down building approach, where vapor phase deposition techniques are used Other

applications invlove geophysics and planetary science. Determination of the liquid-vapor

phase diagram and critical properties, requires complicated experimental techniques,

associated with a large investment in time and money, or estimation based on empirical or

semi-empirical correlations.26–28 Because of these issues, estimation of the critical

properties can vary in a large diapason29 and the critical points of only mercury and

sodium have been measured experimentally.30

Table 1.1. Standard boiling points, critical temperatures and pressures of metals.24

Metal Tboil, K Tcrit, K Pcrit, bars
Cu 2846 5140-5580 420-600
Ag 2437 3970-4480 150-270
Au 3081 7350-7610 2510
Al 2714 4000-4140 90
Zn 1184 3130-3240 1740
Cd 1040 2520-2570 1150-1230

1.2 Hydrocarbons

Certain hydrocarbons are also characterized with difficulties in the experimental

evaluation of their vapor-liquid equilibrium properties and critical points. Alkanes are one

of the main building blocks in biological molecules. They are also the main constituents

in natural resources such as crude oil. Therefore their thermodynamic and transport
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properties are of capital importance for the petrochemical industries. In large

multicomponent mixtures, EOS facilitate significantly the prediction of their vapor-liquid

equilibrium properties for optimization of the refinement process (Figure 1.3). A large

number of EOS are parametrized based on the critical properties of the components and

therefore knowledge of the critical temperature, pressure and density is required. For

n-alkanes longer than ten carbon atoms or branched alkanes with more than eight carbon

atoms however, the thermal instability of the chain renders the experimental estimation of

the critical point an arduous task. Only a few techniques are capable of directly measuring

the critical temperature and pressure of these alkanes, yet the integrity of the molecules

after the experiment is sometimes questioned and no data of the critical density can be

provided.31,32 That is why molecular simulations stand out as a good alternative for

studying such systems.

1.3 Molecular simulations of liquid-vapor phase equilibria

Molecular simulations have become an indispensable tool in the calculation of

phase behavior of fluids. Simulation methods clearly do not suffer from the

inconveniences of taking measurements at regions of instability of the molecules or under

harsh condition at elevated temperatures and pressures. Furthermore computational data

of the properties at equilibrium are increasingly used in the parameterization of

transferable molecular force fields for more accurate prediction.33–35 The computational

determination of vapor-liquid phase equilibria relies on a statistical mechanics sampling

of microscopic states along a path that connects the two phases in coexistence. The

difficulty presented is in the efficient sampling of the interface region which is

characterized with low statistical probabilities and high free energy. The task that is unfit
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Figure 1.3. Schmeatic representation of crude oil refinement

for conventional simulation methods, based solely on Monte Carlo (MC) or molecular

dynamics (MD) sampling, because exploration of the phase space is restricted to either

side of the potential barrier, separating the two phases.

1.3.1 Gibbs ensemble Monte Carlo method

Advancements in the past two decades have allowed the calculation of properties

at coexistence of the two phases. Gibbs Ensemble Monte Carlo (GEMC) method

introduced by Panagiotopoulos, has gained a significant popularity in applications

regarding vapor-liquid systems at equilibrium, due to its simplicity and robustness.1

Unlike the simulations using MD and an equation of state, with this method simulations in
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the liquid and vapor phases are carried out in parallel. This avoids the sampling of the

interface region by performing the simulation in two distinct simulation boxes

corresponding to the vapor and liquid phases (Figure 1.4). Even though separate, they are

coupled through the MC algorithm, which ensures that both phases are in coexistence.

Figure 1.4. Simulation boxes representing the liquid and vapor state in the Gibbs ensemble1

The thermodynamic conditions of equilibrium for the vapor and liquid phases

require that they have the same temperature, pressure and chemical potential. These

requirements are met for the GEMC method by performing three types of moves in two

simulation boxes, representing the two phases. First Monte Carlo (displacement) moves

inside each of the box separately ensure that they are at internal thermal equilibrium.

Random volume changes between the two boxes are carried out in order to ensure

homogeneity of pressure. Finally, particle exchanges between the two boxes are

performed to secure the same chemical potential, as part of the equilibrium criteria

(Figure 1.5). Since the simulated system consists of these two boxes, the total number of

particles and the total volume are fixed. The temperature is also fixed for the GEMC

simulations as a part of the equilibrium requirement. The closest resemblance to the Gibbs

ensemble is therefore the canonical ensemble with temperature, number of particles and
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Figure 1.5. Type of moves characteristic of a GEMC simulation. From left to right the
figures represent respectively Monte Carlo translational moves, random volume
changes and particle exchanges1

volume fixed. The difference is that in the Gibbs ensemble the particle exchange moves

and volume changes are performed in each of the subsystems (boxes), while keeping the

total number of particles and volume constant. Thus if N and NI correspond to

respectively the total number of particles and number of particles in box I, then the

number of particles in box II is NII = N − NI . The exact same dependence is valid for the

volume (VII = V − VI). When the two phases coexist at temperatures and pressures away

from the critical point, the equilibrium densities and compositions can be calculated by

averaging the variables after equilibration.

In this example of equilibration, the two stable regions are characterized with a

low density fluctuations for each phase. The free energy barrier between the two regions is

the reason why the simulation remains in a stable state. If the two phases are closer to the

critical point, this energy penalty for transition from one phase to the other decreases and

frequent exchange of phases between the two boxes may occur. As a result the

equilibrium densities cannot be determined accurately. Another issue related to the system

approaching the critical point is that the correlation length of the system tends to infinity.

The divergence cannot be simulated because of the finite sizes of the simulation boxes
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thus once again forcing the two coexisting phases to be well below the critical point.

The GEMC method does not require prior knowledge of the chemical potential for

the two phases at coexistence. As there is no interface separating the vapor and liquid

phases, the high energy barrier does not present a constraint for direct calculation of the

properties in both phases. This renders the method attractive for simulation of liquid and

vapor phases at coexistence. The step involving the exchange of particles, however, could

be burdensome in the case of high density liquids such as melted metals. The transfer

from low density to high density states could often be rejected due to the highly

unfavorable energetic states (particles overlap) in the liquid phase after the transfer. It is

therefore necessary to carefully place the molecule from the vapor to the liquid phase, so

that the particle insertion is accepted. In the case of chain molecules, configurational bias

(CB) techniques allow the chain to be inserted bead-by-bead such that energetically

favorable regions are found.36,37 The combination of the two methods, known as

Configurational Bias Gibbs Ensemble Monte Carlo (CB-GEMC), has been used in the

construction of vapor-liquid phase diagrams of a variety of long-chain hydrocarbons.38–41

Its main purpose is to enhance the acceptance rate for particle swaps between the two

phases. Nevertheless the method can be applied only for chain molecules, while for

molecules with more complex architecture other insertion techniques has to be considered.

The simulation of phase equilibria is very sensitive to the force field used to model

the interaction between (intermolecular) and within (intramolecular) the molecules. In

most cases the parameterization is achieved after fitting the parameters to the available

experimental data. Comparison between the simulation and experimental results allows to

assess the accuracy of the model as well as the parameterization. While some models are
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capable of accurately predicting solely the liquid or vapor phase, when the two phases are

simulated at equilibrium, they can significantly underestimate or overestimate the

properties at coexistence (Figure 1.6).

Figure 1.6. Vapor-liquid curve of octane using the GEMC simulations. Three different
types of force fields are used - OPLS, model, the model of Toxvaerd and the
TraPPE model of Siepmann2

In the example above (Figure 1.6), only the potential model developed by

Siepmann is capable of accurately predicting the equilibrium densities and critical point of

the molecule. This model was created on the base of previous models, such as these that

underestimate and overestimate the experimental properties. The correct parameterization

of the Siepmann model, made specially for fluids at coexistence has made it possible to

obtain accurate results. The transferability of the model to molecules with common

functionalities is achieved through comparison with experimental data and simulations of

variable molecules with the same interaction potential sites. Therefore it is crucial that the

simulation studies of variable molecules with the same potential are performed. The data
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collected form the simulation are in terms used in algorithms that can modify the

parameters of the potential so that the accuracy of the predicted values is improved.

1.3.2 Transition matrix Monte Carlo method

Another, more recent approach used in the estimation of vapor-liquid equilibrium

curves is the transition-matrix Monte Carlo (TMMC) method.42,43 In contrast to the

GEMC method in which there is not a well defined ensemble, the algorithm developed by

Errington can be used to simulate liquid-vapor phase coexistence in the grand canonical

(GC) ensemble and a single simulation box is used.15 When sampling occurs in this

ensemble, the method is referred to as the grand canonical transition-matrix Monte Carlo

(GC-TMMC). The constraints imposed on the system are the fixed chemical potential,

volume and temperature (µVT ) and two basic moves allow the system to be equilibrated:

displacement of the molecule inside the system and particle exchange between the system

and a thermal reservoir. As in the case of the GEMC method, displacement moves ensure

the internal equilibrium inside the box. Particle insertion and deletion are performed to

secure that the chemical potential is kept constant at the preliminary imposed value for the

simulation (Figure 1.7).

The GC-TMMC method is based on the conventional MC simulations in the µVT

ensemble and therefore it can be readily implemented by modifying the existing MC code

for it. It utilizes the information about the attempted transitions between macrostates

along a Markov chain. Similarly to the Metropolis scheme, the method also uses a

detailed balance condition, but with macrostate probabilities. The macroscopic variable

that changes during the simulation is the number of particles N, which ensures that both

phases are visited during the course of the simulation. Therefore the statistical quantity
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Figure 1.7. A simulation box used in the GC-TMMC method. Transfer of energy and
particles is allowed, while the volume is kept constant as in the grand canonical
(GC) ensemble.

that is traced is the probability of finding the system with a given number of particles

P(N), which in general can be obtained by summing over all the microstates with this

particular number of particles. In the GC-TMMC scheme this is achieved by calculating

an estimate of the macrostate transition probability of going from a macrostate with N

number of particles to a neighboring one with either N + 1 or N − 1 particles

(Π(N → N + ∆N), where ∆N = ±1).

The simulation starts by assigning a value to the chemical potential which is close

to the value at coexistence and performing the two types of moves, while P(N) is given an

arbitrary value. In order to find Π(N → N + ∆N), a collection matrix is created which

contains the conventional MC acceptance probabilities of microstates associated with the

two macrosates N and N + ∆N and updated after each move

(C(N → N + ∆N) = C(N → N + ∆N) + accα, with accα = min
[
1, pN/pN+∆N

]
). The

collection matrix of comprising the acceptance probabilities of staying in the same
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macrostate is also updated (C(N → N) = C(N → N + N) + 1 − accα). The overall

transition probability of moving to a macrostate with N + 1 number of particles, provided

that the system is in a state with N (Π(N → N + 1)) is calculated from the appropriately

gathered collection matrix (C(N → N + 1)) which is normalized. The probability of

finding the system with the neighboring number of particles P(N + 1) is then obtained

from the detailed balance condition of the MC scheme

(P(N)Π(N → N + 1) = P(N + 1)Π(N + 1→ N)). The microstates along the two phases are

sampled by changing the number of particles and calculating the probability distribution at

each step. This probability distribution is not normalized since an arbitrary value is set in

the beginning of the simulation and the grand canonical partition function is not known.

Since sampling the two phases requires traversing a path of low probabilities, a

weighing function is introduced in order to sample all states with equal probabilities. The

conventional trial MC moves are accepted with a modified probability, which includes the

macrostate probability (accη = min
[
1, exp

[
η (N + 1)

]
pN+1/exp

[
η (N)

]
pN

]
with

η(N) = −lnP(N). This biased probability is used only to sample evenly the microstates,

while the collection matrix is composed of the non-biased MC acceptance criteria.

Initially the states that are sampled are consistent with the Boltzmann distribution for the

values of µ, V and T specified. As the simulation progresses, P(N) is periodically

estimated using the collection matrices and hence more effective biasing function is

obtained which helps to sample evenly all the states.

The probability distribution acquired with this method is subject to the chemical

potential imposed. The value at which the two phases coexist (µsat) is found by shifting the

originally taken chemical potential until the areas under the vapor and liquid probability
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distribution domain are equal using histogram reweighting techniques.44 At this point the

areas under the vapor and liquid phases of the probability distribution have the same area.

The saturation pressure is determined by using the ideal gas as a reference state.

This is necessary as no estimation of the partition function is provided. Similarly to the

MC scheme, the partition function vanishes from the expression of the acceptance

criterion as only the ratio of probabilities is calculated. As in the case of the GEMC

method, without the implementation of a biasing strategy to insert the molecule in the

liquid phase, the method is restricted to simple fluids with relatively low densities. The

TMMC approach also relies on a pre-determined value of the chemical potential (or one

close to it). That requires a series of short trial runs or extrapolation from known values at

neighboring temperatures, which in certain cases can be a time consuming process.

1.3.3 Wang-Landau method

The solution to some of the issues presented in GEMC and TMMC techniques can

be obtained by using the Wang-Landau (WL) sampling scheme. It was developed a

decade ago by Wang and Landau as a tool to study first and second order phase transitions

of two dimensional Potts and Ising model.4 It allows for an efficient sampling of low

probability states of vapor-liquid phases at coexistence that otherwise are infrequently

visited by the Boltzmann criterion (Figure 1.8). This is achieved through the

implementation of Monte Carlo simulations, combined with a biased distribution. The

goal is to achieve an accurate estimate of a biasing function, which is essential in the

calculation of thermodynamic properties.

Similarly to the GEMC and GC-TMMC, the method is simple to use, as a single

simulation run is necessary to give rise to the properties at equilibrium. Moreover, it
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Figure 1.8. Boltzmann distribution (black line) and probability distribution obtained from
Wang-Landau sampling (red curve)

allows the sampling of very high energy microstates at the interface through an accurate

estimation of the partition function. The formalism in the isothermal isobaric (N, P,T ) and

grand canonical ensemble was developed by Ganzenmüller and Camp and used in the

calculation of phase equilibria curves of monoatomic fluids.45 The method has been

successfully elaborated to simulate molecules with various architecture without the

implementation of a an insertion bias, when simulations are performed in the N, P,T

ensemble.16,46

The estimation of the biasing function stays at the heart of the WL method as a

powerful tool towards the further evaluation of the Boltzmann probability distribution

p(X) and various thermodynamic quantities. While in the canonical ensemble the biasing

function is the density of states, in the isothermal-isobaric and grand canonical ensemble

its function is taken by the canonical partition function QN,V,T . It can be used to evaluate

any thermodynamic property of interest such as density, entropy, Helmholtz free energy,

Gibbs free energy etc, which gives the WL method a significant flexibility, when studying

systems in equilibrium. These thermodynamic potentials cannot be directly calculated

with the Gibbs ensemble and transition matrix MC methods, since they do not provide an
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estimation of the partition function. It also allows to determine the interface region

between the two phases, which is not accessible with the GEMC method. Furthermore

when developed in the isothermal-isobaric ensemble, the WL method does not suffer from

low acceptance rates of particle exchange typical for the two previous techniques and does

not require an estimate of the chemical potential at equilibrium as in the GC-TMMC

scheme.

1.4 Dissertation objectives and outline

The goal of this dissertation is to establish a vapor-liquid phase equilibria curves

and estimate the critical properties of copper and alkanes by implementing the

Wang-Landau simulation scheme. In chapter II, the historical background of the

Wang-Landau sampling technique is presented with the various applications to which it

can be extended in lattice systems. Furthermore, the description of the method is followed

by its applications in off-lattice systems such as the calculation of vapor-liquid

equilibrium curves of simple fluids as well as its extension to molecular fluids.

Chapter III presents the study of the vapor-liquid equilibria of copper. The

formalism in the isobaric-isothermal ensemble is presented. A detailed description of

hybrid Monte Carlo sampling is provided as well as its implementation in the WL scheme.

The choice of the embedded atom model force field is discussed and compared to other

existing force fields. During the simulation, the convergence of the partition function is

traced as an important part of the accurate evaluations of properties at coexistence. The

densities at coexistence are presented at temperatures close to the critical point in order to

access the critical properties. The saturation pressures are evaluated at lower temperatures
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and an estimate of the boiling point is presented. Results are compared to available

experimental and simulation data.

In chapter IV, the problematics of the vapor-liquid equilibria studies for branch

alkanes is presented. The force field model is presented and the implementation of the

HMC scheme for the branched molecules is discussed. The difference with respect to the

copper model are in the implementation of multiple time step algorithm for the efficient

integration of bonding and non-bonding potentials. The results for two branched alkanes

(isobutane and isopentane) are once again compared to experimental data as well as

simulations using the GEMC method in order to establish the reliability of our simulation

method.

Chapter V provides information on the Monte Carlo Wang-Landau scheme applied

to long chain n-alkanes. The goal is to computationally determine the standard boiling

points of these hydrocarbons, which are used in the parameterization of the transferable

force fields. The conformational changes of the molecules are simulated using a

configurational bias Monte Carlo scheme and its implementation in the WL method is

explained in detail. The calculated data for the saturation pressure is presented and

compared to experimental results to confirm the validity of the method.

Conclusions and suggested future work are summarized in chapter VI. The unique

features of the WL scheme are presented with the promise for future applications.
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CHAPTER II

WANG-LANDAU SAMPLING

2.1 Introduction

The Wang-Landau method is mostly similar to the multicanonical technique

introduced by Berg and Neuhaus47 for the study of first order phase transitions. In the

latter method, an artificial sampling scheme is introduced in order to sample states that are

seldomly visited with the conventional MC sampling. This is particularly important when

visiting the low probability states at the interface between two phases at coexistence. The

macroscopic states along the order parameter are sampled with equal probability,

according to an inverse density of states. The density of states function is generated

iteratively during several runs and is updated between runs, while at the same time the

histogram of visited states is traced. The histogram gives information of the number of

times a state is visited from where the density of states is estimated. The thermodynamic

averages are obtained by averaging them with the Boltzmann probability distribution and

the generated density of states. In the WL method the density of states is also the desired

variable from the iteration scheme, however it is dynamically updated during each sweep

allowing a more efficient even sampling of all the states.

2.2 Applications
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2.2.1 Wang-Landau sampling of Ising and Potts models

In the original derivation of the method, Wang and Landau considered the 2D Ising

and ten state Potts models.3,4 The driving force behind the derivation of the method is the

efficient sampling of phase space of systems with 1st and 2nd order phase transitions. The

choice of the two mathematical models therefore is dictated by the fact that they serve as a

starting point for new algorithms with applicability in a variety of problems in physics,

chemistry and molecular biology, where short-range interactions between neighboring

particles determine the behavior of the system. They present an excellent way of testing

new methods. In these models the interaction sites are situated at the nodes of a two

dimensional square lattice such as in Figure 2.1.

Figure 2.1. Schematic representation of the Ising and Potts models.

Only interactions between the nearest neighbors contribute to the total energy of

the system. Thus only interactions between pairs of the nearest interaction sites are

considered. To each interaction site in the Ising model an independent variable σi is

assigned (i = 1.....N, where N is the total number of sites in the model). The variable σi

can take only two possible values ±1, which build the energy space of the system (the
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interaction sites are considered to have spins up (+1) and down (-1)). The Hamiltonian for

these systems is written as:

H = −
∑
〈i, j〉

Ji jσiσ j (2.1)

where Ji j is the unit energy of the neighboring interaction and equal to 1 for simplicity and

the sum
∑
〈i, j〉 Ji j is over all the neighboring pair interactions.

In the ten state Potts model, each site can have ten possible independent variables

(qi = 1....10). The Hamiltonian is given by the following expression:

H = −
∑
〈i, j〉

Ji jδ(qi, q j) (2.2)

where δ(qi, q j) is the delta function and once again the unit energy Ji j is taken as one for

each interaction.

Configurations in energy space are sampled by randomly selecting an interaction

site on the lattice and flipping the spins for Ising model, while for the Potts model one of

the ten possible variables is assigned to the site. If the sampling is performed without

biasing the probability distribution, the histogram of the energy distribution will converge

to the density of states in a very long run that visits all the possible spin states. For a

10x10 lattice, there are 2100 ≈ 1.27 1030 states, while in the ten state Potts model there are

10100 states. The probability density for a given configuration in energy phase space is

p(Γ, E) =
exp(−E(Γ)/kBT )

Z
with Z =

∑
Γ

exp(−E(Γ)/kBT ) (2.3)
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where Z is the system partition function and the sum is over all the possible configurations

of energy phase space. The probability density at a given energy could be obtained by

summing over the configuration with that particular energy

p(E) =
∑
Γ∈E

exp(−E(Γ)/kBT )
Z

=
Ω(E)exp(−E/kBT )

Z
(2.4)

where Ω(E) is the density of states or degeneracy of the energy level. If a biased

probability density for a given configuration is created such that

pbias(Γ, E) =
p(Γ, E)
p(E)

=
1

Ω(E)
(2.5)

the biased probability for a given energy level becomes the same for the whole energy

phase space

pbias(E) =
∑
Γ∈E

pbias(Γ, E) = 1 (2.6)

Thus with a probability density, proportional to the inverse of the density of states

(Equation 2.5), a flat histogram is generated for the energy distribution.

The simulation starts by assigning to all Ω(E) an arbitrary value (Ω(E)=1 for all

E). Upon visiting a given configuration, the probability at a given energy level is

proportional to 1/Ω(E) so that the acceptance probability for moving from an old to a new

configuration becomes:

acc(o→ n) = min
[
1,

Ω(Eo)
Ω(En)

]
(2.7)

where the subscripts o and n denote, respectively, an old and a new configuration in
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energy space. Each time a random change is induced, the corresponding new density of

states is updated by multiplying the existing value with a modification factor f > 1 such

that Ω(En)→ f Ω(En). During the first sweep of obtaining a flat histogram, the f can be as

big as the Napier’s number e. If f is chosen to be too small, then a very long time will be

necessary to reach all the energy states. On the other hand, a very large modification

factor is also unfavorable since it will lead to large statistical errors.

After each sweep, the density of states converges to its true value with an accuracy

proportional to ln f . The walk in energy space continues until all the states inside the

allowed energy region are visited several times and the accumulated histogram of visited

states H(E) is relatively flat. A flat histogram as defined by Wang and Landau is such that

the histogram H(E) for all possible E is not less than 80% of the average one 〈H(E)〉. f is

then reduced and the random walk in energy space is repeated until the same flatness

criterion is met. This step is performed several times until the Boltzmann distributions

between the sweeps do not differ significantly. This is achieved when f becomes smaller

than some predefined value, close but greater than one. The manner in which f is reduced,

thus has to be such that:

fn → 1 when n→ ∞ (2.8)

where n is the sweep number. The modification factor f is used as a control parameter for

the accuracy of the density of states. The manner in which it is reduced should not allow it

to become f < 1. In the original Wang Landau sampling it is decreased by the square root

of its predecessor in each sweep ( f →
√

f ). The closer it gets to one, the more accurate

Ω(E). The modification factor is essential in controlling the convergence of the
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simulation, since it determines the number of sweeps during the simulation and the

accuracy of Ω(E). In the simulations of the two models, the final sweep of the random

walk is such that f f inal = exp(10−8). The final distribution of the density of states as

obtained is only the relative density of states. The correct distribution can be calculated by

either taking into account that the total number of possible states in the system or the

number of ground states

∑
E

Ω(E) =


2N for the 2D Ising model

10N for the ten-state Potts model

The number of ground states is 2 for the Ising model (all spins up or down) and 10 for the

ten-state Potts model.

The detailed balance condition from which the acceptance criterion in Equation

2.7 is derived:

1
Ω(Eo)

acc(o→ n) =
1

Ω(En)
acc(n→ o) (2.9)

This condition is not exactly satisfied since the density of states is changed constantly

during the random walk. Nevertheless, after several sweeps Ω(E) quickly converges to its

true value as f approaches 1. Therefore it can be considered that the detailed balance

condition is satisfied at the end of the simulation to within an accuracy proportional to ln f .

With the final distribution of the density of states, the WL method allows to access

a broad range of properties. The canonical distribution at a given temperature can be

found by simply multiplying the density of states with the Boltzmann factor:
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p(E,T ) =
Ω(E)exp(−E/kBT )

Q
(2.10)

Upon using the WL scheme, the canonical distribution can be found by the above formula.

For these models the density of states is independent from temperature and thus a single

simulation is enough to generate any temperature dependent distribution (Figure 2.2). The

double peaked distribution in Figure 2.2 reflects that the transition temperature (Tc) is

reached for the different sizes of the lattice system in the ten Potts model, since the peaks

are characterized with equal heights. The conventional MC method cannot be applied to

study the phase transition of such type as the depth of the valley between the two peaks

serves as an impenetrable barrier for sampling states on the other side of the boundary.

The depth increases with the size of the system, which can significantly limit the

applicability of other methods for studying first order transitions.

Figure 2.2. The canonical distribution at the transition temperature for different sizes (LxL)
of the ten Potts model. The histogram of visited states for L = 100 is shown in
the inset.3

The accuracy of the results from the simulation of the ten state Potts model is

verified by comparing the transition temperatures for the different lattice sizes with
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finite-size scaling theory:

Tc(L) = Tc(∞) + c/Ld (2.11)

where Tc(L) and Tc(∞) are the first order transition temperatures for the finite and infinite

size systems and d is the dimension of the lattice. The data from the simulation is plotted

and is fitted according to the linear dependence of Tc(l) as a function of L−d as in Equation

2.11 (Figure 2.3).

Figure 2.3. Transition temperatures from simulation data for the ten state Potts model with
error bars obtained from multiple independent runs. Linear extrapolation for
the L = 10−30 lattice sizes as well as for the L = 50−200 lattice sizes (inset).3

From the plot it can be noticed that the transition temperature for the infinite size

system (Tc(∞) = 0.7014 ± 0.00004) is consistent with the exact solution

(Tc,exact = 0.0701232....). In the inset an even more accurate estimate is obtained by

enlarging the system size range from L = 10 − 30 to L = 50 − 200, with

Tc(∞) = 0.701236 ± 0.000025, which is in excellent agreement with the exact solution.

The WL allows one to calculate the density of states up to a 200×200 lattice model, while

with the multicanonical approach, Berg et al. obtained data only for lattices up to
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100×100.47

Another way of testing the accuracy and convergence of the WL method is

obtained by comparing the simulation data to exact solutions for the 2D Ising model.4 The

density of states distribution from the simulation is presented in Figure 2.4 and compared

to the exact results obtained by the Beale method.48 It can be seen from the plot that no

visible change can be detected between the two curves. Therefore in order to evaluate the

accuracy of the WL method the relative error (ε(X)) is calculated

ε(X) = |(Xsim − Xexact) /Xexact| (2.12)

where X is a general quantity. Its distribution is presented in the inset of Figure 2.4 and it

is as small as 0.035 % on the 32 × 32 lattice.

Figure 2.4. Density of states distribution obtained with the WL simulation and exact
results obtained with Beale’s method. The Inset shows the relative error
(ε(log[Ω(E)])).4

Similar results with low relative errors are obtained for the internal energy, free

Helmholtz energy, specific heat capacity and entropy. These thermodynamic variables are

calculated due to the evaluation of the the partition function:
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Q =
∑

E

Ω(E)exp(−E/kBT ) (2.13)

The Helmholtz free energy is then given by:

F(T ) = −kBT ln(Q) (2.14)

The internal energy is

U(T ) =

∑
E EΩ(E)exp(−E/kBT )

Q
(2.15)

while the specific heat capacity can be calculated from the fluctuations of the internal

energy

C(T ) =
∂U(T )
∂T

=

〈
E2

〉
− 〈E〉2

kBT 2 (2.16)

In the calculation of the canonical entropy, the Helmholtz free energy and the internal

energy are used

S (T ) =
U(T ) − F(T )

T
(2.17)

All of the above thermodynamic properties show almost a perfect match,

compared to their exact values in a large range of temperature kBT = 0 − 8 (Figure 2.5 and

2.6). As in the case of the density of states, there is no visible difference between the exact

and simulated values and the relative error is shown in the inset. It rarely exceed 10−2,

which shows the reliability of the method when sampling lattice systems.
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Figure 2.5. Internal energy (right) and Helmholtz free energy (left) as a function of
temperature calculated by using the density of states.5

Figure 2.6. Specific heat capacity (right) and entropy (left) as a function of temperature
calculated by using the density of states.5

In order to converge the results faster, Wang and Landau suggested dividing the

energy region of interest into segments.3 For each segment, the density of states is

determined in the same manner as for the entire region, ensuring that a flat histogram is

obtained for each. The overall Ω(E) is produced by joining together the segments. In the

example given in Figure 2.7, the energy region E/N ∈ [−2, 0.2] of 2D Ising model with

L = 256 is divided into 15 segments and the density of states is estimated independently

for each segment. Boundary effects are reduced by ensuring that each segment overlaps

with its neighbors. The simulation can be speeded up this way, especially when performed
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on multi-core processor.

Figure 2.7. Density of states of the 2D ising model with L = 256 obtained after performing
multiple walks in different segments. Inset - The flat histograms of overlapping
segments.3

The problem related to this type of sampling is that larger errors of Ω(E) at the end

of the sampled segment are observed. The sampling of energy states near the border of the

segment can proceed in two different ways, in case the random flipping of the spins leads

to an energy state which is outside the specified region. In Method 1 the attempted spin

flip is rejected and the density of states is not modified with f nor is the histogram of

visited states updated. In Method 2 the attempted spin flip is rejected and Ω(E) is

modified with f (Ω(E)→ f Ω(E)) and the histogram is updated (H(E)→ H(E) + 1).

Method 1 is used in Refs3,4 which leads to systematic underestimation of Ω(E) at the

borders of the energy values. The effect was later examined by Schultz et al. for 2D Ising

model with L = 32 and for three different energy ranges. An overestimation of Ω(E) can

be noticed at the right edge of the energy range (Figure 2.8). Such effect cannot be seen at

the edges of each segment, but only at the one comprising the highest energy since a

sufficient number of energy levels is allowed to overlap and the affected regions can be

discarded when joining the segments. The overestimation at the right edge can be
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explained by the non-updating of the density of states and histogram when a state outside

the right edge is attempted. In the example given in the interval of interest Ω(E) increases

monotonically with E. Because of this dependence, during the simulation, more states are

sampled at the right edge of the energy range when using Method 1. The generation of

states with energy higher than the right edge is more likely than the generations of states

with energy lower than the left edge of the energy range. As a result, an overestimation of

the density of states is observed only at the right edge. When Ω(E) is sampled according

to Method 2, no such errors are present since both the density of states and the histogram

of visited states are updated.

Figure 2.8. Relative error (ε(E) = |(Ω(E) −Ω(E)exact)/Ω(E)exact|) in the density of states
for the first 25 energy levels in a 2D Ising model with L = 32.6

Another way of coping with the edge effects of the simulation for the Ising model

was proposed by Schulz and coworkers.7 The authors combine the WL algorithm with the

N-fold way method by Bortz et al.49 known for its better performance than the Metropolis

algorithm at low temperatures. Because of the large value of the density of states, its

decimal logarithm is considered s(E) = log10Ω(E). In the beginning of the simulation,

s(E) is set to zero for the energy energy range E ∈ I = [Emin, Emax] where an estimation of
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Ω(E) is desired. All the spins are divided into classes according to the energy difference

∆Ei that a flip of the spin can cause. For the 2D Ising model there are M = 10 classes

(i = 1......10). The overall probability P that a spin of class i is flipped is

P(∆Ei) = n(σ, ∆Ei)p(E → E + ∆Ei) (2.18)

where n(σ, ∆Ei) is the number of spins of state σ, belonging to class i. Similarly to the

classical WL scheme he acceptance probability of visiting a new energy state

p(E → E + ∆Ei) is biased according to

p(E → E + ∆Ei) =


min

[
1, Ω(E)

Ω(E+∆Ei)

]
if E + ∆Ei ∈ I,

0 if E + ∆Ei < I.

The sum of probabilities for a spin flip within the for m classes is given by

Qm =
∑
i≤m

P(∆Ei), with m = 1.....M (2.19)

The value of Qm is calculated in order to determine the class from which the flipping of

the spin is done. A random number r is generated within the boundaries 0 < r < QM and a

class m is selected if Qm−1 < r < Qm. A spin from this class is chosen at random and as a

result of the spin flip, the spins and its neighbors will change classes and the number of

spins in state σ that belong to class i (n(σ, ∆Ei)) will also change. In order to calculate the

number of times the move made will be rejected on average in the thus proposed scheme

(average life-timeτ), first the probability that the first random number will produce a flip is

calculated by P̂ = QM/N. The probability that exactly n random numbers will produce a
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new configuration is

P̄n = P̂(1 − P̂)n−1 (2.20)

The average life-time is then

τ =

∞∑
n=1

nP̄n =

∞∑
n=1

nP̄(1 − P̂)n−1 =
N

QM
(2.21)

The steps that allow the estimation of the density of states are the following:

1. Initially the histogram of visited states as well as the weight factor s(E) is set to zero

(H(E) = 0, s(E) = 0 for all E). The initial increment of ∆s is chosen to be

∆s0 = log e.

2. The acceptance probabilities p(E → E + ∆Ei) are calculated and then the Qm’s of

the configuration using Equations 2.18 and 2.19.

3. The average life-time is determined by using Equation 2.21.

4. The histogram of visited states as well as the density of states are updated according

to

H(E)→ H(E) + τ (2.22)

s(E)→ s(E) + ∆s̄ (2.23)

∆si → ∆si+1 (2.24)
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with

∆s̄ =


∆siτ if ∆siτ ≤ log10e,

log10e if ∆siτ > log10e

and

∆si+1 =


∆si if ∆siτ ≤ log10e

∆s̄/τ if ∆siτ > log10e

if ∆si

5. The flatness of the histogram H(E) is checked. It is considered flat if

H(E) ≥ ε 〈H(E)〉 (2.25)

where ε is usually between 0.7 and 0.95.

6. ∆s j is refined according to ∆s j+1 = ∆s j/2.

7. Another spin is flipped as described and the steps are above are repeated starting

from step 2.

One of the advantages of the N-fold way version of the WL scheme presented here

is the low relative error ε(E) of the density of states (Equation 2.12 with X = Ω(E)). This

is particularly noticeable at the right edge of the energy range in Figure 2.9. With the

N-fold way, the systematic error at the right edge do not occur, contrary to the original
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WL method (single spin flip). This shows that the N-fold way can overcome the issues

related to the edge region of energy space where the acceptance rate for a spin flip is low.

With this method, the density of states at the edges is sampled properly since in the

definition of the acceptance probability (p(E → E + ∆Ei)), it is forbidden to sample states

outside the predetermined energy range.

Figure 2.9. Relative error in the density of states g(E) for the first 25 energy levels of a
two-dimensional Ising model with L = 32.7

The method was applied also on thin Ising three dimensional films L × L × D. In

this model the system is confined between two walls with fields h1 and h2 with periodic

boundary conditions in the L × L planes (Figure 2.10).

The Hamiltonian for such a model is given by

H = −J
∑
〈i, j〉

σiσ j − H
∑

i ∈bulk
σi − h1

∑
i ∈ surface 1

−h2

∑
i ∈ surface 2

(2.26)

where H is the internal field and as in the case of the 2D Ising model the spin can have a

value of σi = ±1. For a system with dimensions 32 × 6, surface fields of

h1/J = −h2/J = 0.55 and internal field H = 0, several thermodynamic properties are
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Figure 2.10. Thin film 3D Ising model with fields h1 and h2 acting on the surfaces and a
field H on the bulk.7

calculated. In Figures 2.11 and 2.12 the plotted specific heat and internal energy as a

function of the inverse temperature show a good consistency with simulation results from

a standard single spin-flip heat bath algorithm.50 In case of the specific heat capacity, the

N-fold WL method even exceeds the results from the heat bath algorithm, the latter being

characterized with more scattering around the guiding line.

Figure 2.11. Specific heat capacity C/N versus the inverse temperature calculated with the
N-fold WL method and a standard single spin flip heat bath algorithm.7

The evaluation of the density of states is particularly important since it allows for
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Figure 2.12. Internal Energy U/N versus the inverse temperature calculated with N-fold
WL method and a standard single spin flip heat bath algorithm.7

the calculation of the partition function according to Equation 2.13 and consequently any

thermodynamic property such as those shown above. This is an important advantage over

the conventional MC simulations since for the latter the partition function cannot be

accessed. The WL method as developed for the Ising and ten state Potts models is

applicable to a wide range of systems. The method was further used to sample the phase

space for other lattice models with applications to larger molecular systems.8,10,51

2.2.2 Other lattice systems

The WL scheme has been applied in the study of the energy barriers that separate

glass and melt conditions in thin polymer films.51 The lattice model is three dimensional

with polymer chains movement represented by self-avoiding random walks. Similarly to

the 2D Ising and ten state Potts models, the polymer chain interaction sites interact with

their nearest neighbors with a fixed energy potential. The acceptance criterion with

probability reciprocal to the density of states is slightly modified in order to take into
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account the configurational changes of the polymer molecules. These changes require a

bias move since at low temperatures or low densities conventional polymer trials fail to

sample efficiently the energy space. Therefore the bias trials are incorporated in the WL

scheme in the probability of proposing a transition (α(o→ n)) of the detailed balance

condition. This probability for the direct and reverse move is considered equal and

therefore eliminated from Equation 2.9 in the original WL scheme. In the method

proposed by Jain and de Pablo,51 this equation is written as:

1
Ω(Eo)

acc(o→ n)α(o→ n) =
1

Ω(En)
acc(n→ o)α(n→ o) (2.27)

Thus the acceptance criterion becomes:

acc(o→ n) = min
[
1,

Ω(Eo) α(n→ o)
Ω(En) α(o→ n)

]
(2.28)

The configurational bias move involves choosing a random bead on the polymer,

removing either side of the chain and regrowing it in a energetically favorable spaces. In

the cubic lattice there are k = 6 possible orientations for a bead from the chain and one

position j is selected from the available empty ei trial positions with probability

p j
i =

1
ei

(2.29)

The Rosenbluth factor RF is then calculated by

RF =

l∏
i=1

ei (2.30)
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where l is the number of beads that are regrown and the subscript F signifies that this is

the forward move. The Rosenbluth factor is calculated also for the reverse move RR this

time to retrace the old configuration. The acceptance criterion for the move is then

acc(o→ n) = min
[
1,

Ω(Eo) RF

Ω(En) RR

]
(2.31)

Because of the athermal nature of the WL simulation, a variety of properties can

be calculated as a continuous function of temperature and thus extract more information

from a single run. This renders the method much more attractive than the conventional

MC simulations, where temperature dependence discreticizes the studied variable. Upon

applying the conventional MC algorithm for the calculation of temperature dependent

properties, the end configuration from the previous run has to be taken as a starting

configuration in the next run in order to enable the system to relax fully instead of freezing

it. As pointed out by Rathore et al. this issue is particularly prominent for temperatures

near the glass transition.8 Upon tracing the average energy as a function of the reduced

temperature, the WL method provides a direct and continuous estimate of the energy

distribution (Figure 2.13). The results are consistent with the annealing and parallel

tempering simulation methods. By contrast, the last two can only provide the average

energy at particular temperatures.

The same conclusion can be drawn from the comparison of entropy as a function

of the reduced temperature (Figure 2.14).51 With the WL method, a single run is enough

to provide data at any temperature range while in the case of conventional canonical

ensemble simulations the process is serial and 4 to 5 times longer.
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Figure 2.13. Average potential energy of a protein molecule as a function of the reduced
temperature.8

Figure 2.14. Average potential energy of a protein molecule as a function of the reduced
temperature.8

Additionally, the WL scheme gives a direct estimate of the partition function in

order to calculate entropy. This can be easily obtained through the value of free energy

which, is a function of the density of states (Equation 2.14).

S ∗ =
S
kB

=
〈E〉 − F

kBT
(2.32)

In the canonical ensemble, however, the evaluation of the free energy is calculated from

the chemical potential, which on the other hand is obtained using the increment insertion

method by Kumar and coworkers.52 Thus WL simulations provide an important advantage

39



over conventional simulation methods in the complete thermodynamic characterization of

the lattice system.

The WL scheme is a suitable scheme for studying folding processes of polymers

and protein molecules. The potential energy landscape of these systems is irregular with

high energy barriers and therefore only efficient sampling of low probability states such as

WL sampling can be used in their simulations. It has been used to study the collapse of a

single chain in the bond-fluctuation lattice model.10 Monomers of the polymer chains are

represented as unit cubes on a cubic lattice. The monomers are connected by bonds,

which length can vary in a way that is compatible with the excluded volume between the

monomers. The polymer chain is flexible and the shortest distance between two

monomers is equal to 2 elementary cube sides while the longest one is
√

10 (Figure 2.15).

Figure 2.15. Schematic representation of the bond-fluctuation model on a cubic lattice.
The double arrow stands for non-bonded interaction, while the single arrows
represent the possible elementary motions of the monomers.9

A square well type potential is adopted acting between bonded and nonbonded

neighbors,
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E = −ε
1
2

∑
i

∑
j,i

θ(6 − r2
i j) (2.33)

where ε = 1 is the unit energy and θ is the Heavistate function,

θ(6 − r2
i j) =


0 if r2

i j > 6

1 if r2
i j ≤ 6

In the original WL scheme upon building the flat histogram of visited states, if an

attempted new state is rejected, the old one is recounted. The density of states is again

multiplied by the modification factor and, according to the acceptance criterion of

Equation 2.7, this increases the probability of accepting the next new state with energy En.

This propels the simulation to go through some hard-to-reach configurations in energy

space. By doing so, it also creates an imbalance between the density of states for the old

state (Ω(Eo)) and that for all other energies (Ω(E
′

)). In the coil-globule transition

simulation of the bulk three dimensional polymer chain, the authors chose only to update

Ω(E) only if the attempt is accepted, which led to the same density of states as the

unmodified WL algorithm. The running estimate of Ω(E) is presented for each sweep of

the simulation with decreasing modification factor f between each sweep (Figure 2.16).

The bottom curve is the first iteration with the lowest value of f . As the simulation

proceeds the shape of the curve becomes smoother and a more accurate dependence of

ln(Ω(E)) is obtained. After the first ten refinements of f it becomes indistinguishable on

the scale of the plot, because the modification factor is close to 1. The absolute value of

the density of states also increases with the number of sweeps and the real density of
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states has to be corrected by a multiplicative factor, which obeys the condition that there is

a single state when the energy is equal to zero (ln Ω(0) = 0).

Figure 2.16. Running estimate of the density of states of a chain of length N = 64 with
decreasing modification factor (ln f1 = 1 to ln f20 = 10−6).10

The determination of the second order coil-globule transition and the first order

liquid-solid transition of the polymer chain is strongly dependent on the energy range

considered. The shape of the curve tracing the specific heat (calculated using Equation

2.16) per monomer C/N as a function of temperature, changes for different ranges of the

energy (Figure 2.17(a)). For a chain of length N = 256 monomers with Emin = −2N and

Emin = −2.5N only one peak is visible. This range can be simulated using the conventional

canonical MC sampling. However this is impossible for larger energy ranges, where Emin

reaches −4N. This turns out to be an important issue as the peak indicating the second

order coil-globule transition starts to shift its position to the left and a second peak appears

indicating the first order liquid-solid transition. Thus to determine the correct temperature

for both transitions, it is important to sample over the appropriate energy range. The

stabilization of the peak position as a function of the energy range is presented in Figure
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2.17(b) for N = 512 monomer units. The position of the peak corresponding to the

coil-globule transition stabilizes around Emin is close to −3N. For the first order transition

this happens at Emin ≈ −4N. Thus, the accurate estimation of the transition temperature

for the crystallization process (Tτ) and that of the coil-globule transitions (Tθ) strongly

depend on the energy span chosen for the simulation.

(a) Specific heat as a function of
temperature for different value of the
minimum energy (Emin)

(b) Shift in the transition temperature (Tτ

- crystallization and Tθ - coil globule
transition as function of the energy span

Figure 2.17. Transition temperature as a function of the sampled energy range10

2.2.3 Off-lattice systems

The WL method was originally designed to study systems with natural

discretization of the energy phase space. The extension to the off-lattice systems is non

trivial since the lattice systems are characterized with a constant composition and are

assumed to be incompressible. Furthermore, the density of states is calculated to within a

multiplicative constant. However, real continuum systems, such as fluids, are not

incompressible and the absolute density of states is requires in order to calculate the

thermodynamic properties. The generalization of the WL scheme to such systems was
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proposed by Shell et al.11 and applications involve mainly the construction of phase

diagrams of vapor-liquid equilibria.12,13,53

In contrast to the lattice systems, the simulation of two phases in the real fluids

cannot be performed by sampling solely the energy space. Since density is the order

parameter, the energy sampling has to be accompanied with either volume changes or

particles insertions and deletions. The density of states becomes dependent on either the

volume or the number of particles together with the energy. The microcanonical partition

function (Ω(N, V, E)) is the appropriate density of states variable, because it gives the

number of states with a given energy E, in a volume V for a number of particles N. Since

the WL method is based on the MC random sampling of the configurational part of the

phase space, it is convenient to work with the configurational part of microcanonical

partition function (Ωcon f ig(N, V, U) where U is the potential energy). According to the

WL scheme, the probability of observing a particular configuration is inversely

proportional to the density of states. In a continuum system this probability is:

p(N,V,U(q3N)) =
1
C

dq3NdV
Ω(N,V,U(q3N))

(2.34)

where C is a normalization constant and q3N is the generalized positions of the particles.

The potential energy U is function only of the positions of the particles. The moves

involved in the sampling of the phase space in real fluids are the particle displacement,

volume scaling moves or particle insertion and deletion. The acceptance criteria for these

moves are derived from the detailed balance condition. For a transition from an old (o) to

a new (n) state the general acceptance criterion is
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acc(o→ n) = min
[
1,

p(n)α(n→ o)
p(o)α(o→ n)

]
(2.35)

For a displacement move, a particle is taken and placed randomly within a cubic

volume with side twice the maximum displacement distance in each direction (δmax).

acc(o→ n) = min
[
1,

{
(d q3Nd V)n

Ωcon f ig(N, V, Un)
1
N

(d q3)o

(2δmax)3

}{
(d q3Nd V)o

Ωcon f ig(N, V, Uo)
1
N

(d q3)n

(2δmax)3

}
−1

]
=

Ωcon f ig(N, V, Uo)
Ωcon f ig(N, V, Un)

(2.36)

The simplification in the expression comes from the fact that the differential elements d V ,

d q3N and d qN are equal in the old and new state. For this type of move the transition

probabilities (α(o→ n) and α(o→ n) ) are equal to each other and cancel out.

The volume change is accompanied with a rescaling of the entire simulation box

and the particle positions. The maximum amount of volume change is ±∆max and

therefore the new volume can be found within a range of 2∆max of the old one. While the

differential of the particle coordinates (d q3N) is not the same in the new and old state, that

of the reduced coordinates is (d s3N = d q3N/VN). The acceptance criterion for a volume

change can be written as

acc(o→ n) = min
[
1,

{
(d s3Nd V)nVN

n

Ωcon f ig(N, Vn, Un)
(d V)o

2∆max

}{
(d s3Nd V)oVN

o

Ωcon f ig(N, Vo, Uo)
(d V)n

2∆max

}
−1

]
=

Ωcon f ig(N, Vo, Uo)
Ωcon f ig(N, Vn, Un)

VN
n

VN
o

(2.37)

In this case the simplifications arise as the differential elements d V and the reduced

coordinates elements d s3N are equal in both states. The vapor-liquid phases at coexistence

are often separated by several orders of magnitude in density. Thus it is more convenient
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to work in the logarithmic scale of volume rather than volume itself. When changes in lnV

are performed, the acceptance criterion is

acc(o→ n)

= min
[
1,

{
(d s3Nd ln V)nVN+1

n

Ωcon f ig(N, ln Vn, Un)
(d ln V)o

2 ln ∆max

}{
(d s3Nd ln V)oVN+1

o

Ωcon f ig(N, ln Vo, Uo)
(d ln V)n

2 ln ∆max

}
−1

]
=

Ωcon f ig(N, ln Vo, Uo)
Ωcon f ig(N, ln Vn, Un)

VN+1
n

VN+1
o

(2.38)

In the particle insertion or deletion moves, a particle is added at a random position

in the box or one is chosen at random and deleted. In the first case of insertion the

acceptance criterion yields

acc(o→ n) = min
[
1,

{
(d q3N+3d V)n

Ωcon f ig(N + 1, V, Un)
1

N + 1

}{
(d q3Nd V)o

Ωcon f ig(N, V, Uo)
(d q3)n

V

}
−1

]
=

Ωcon f ig(N, V, Uo)
Ωcon f ig(N + 1, V, Un)

V
N + 1

(2.39)

where the new state has one more particle than the old state (from where the term N + 1

appears in the denominator). For a particle deletion the criterion becomes

(2.40)
acc(o→ n) = min

[
1,

{
(d q3N−3d V)n

Ωcon f ig(N − 1, V, Un)
(d q3)o

V

}{
(d q3Nd V)o

Ωcon f ig(N, V, Uo)
1
N

}
−1

]
=

Ωcon f ig(N, V, Uo)
Ωcon f ig(N − 1, V, Un)

N
V

where the new state has one particle less than the old one.

The simulation of two phases at coexistence for continuum systems should include

changes in energy and particle density. In the second case this can be achieved by either

performing volume changes or particle insertions and deletions. Therefore first order

transitions with the above acceptance criteria for particle displacements and volume

changes can be simulated in the isothermal-isobaric ensemble.12 Those with particle
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displacements and insertion/deletion are simulated in the grand canonical ensemble.13

Since the two changes are independent from each other, the goal is to obtain a two

dimensional flat histogram (H(U,N) or H(U,V)) between each reduction of the

modification factor. At the end, the final density of states dependence on the two other

variables can be presented as the excess entropy calculated either as a function of U and N

as well as U and lnV in respectively Figures 2.18 and 2.19. The excess entropy is related

to the configurational density of states by the following equation

S ex = kBln
(

N!
VN Ωcon f ig(N, V, U)

)
(2.41)

Figure 2.18. Excess free energy as a function of potential energy and number of particles
for a Lennard-Jones system.11

In Figure 2.18 it can be noticed that the energy range is strongly dependent on the

number of particles. At low N, the accessible energy range is rather narrow and a sharp

peak is obtained upon decreasing the energy at constant N. Thus a re-establishment of the
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energy range is required upon changing the particle number during the simulation. Such a

drastic change characteristic for the grand canonical simulation is not present for the

isothermal-isobaric ensemble (Figure 2.19). Therefore the volume scaling could be more

advantageous in the calculation of the density of states.

Figure 2.19. Excess free energy as a function of potential energy and volume for a Lennard-
Jones system.11

The plot of the probability distribution also becomes three dimensional as a

function of the energy and number of particles or volume (Figure 2.20).

With the density of states generated after the last flat histogram is obtained, the

appropriate partition function (either the grand canonical or isothermal-isobaric one) can

be calculated.

Q(µ,V,T ) =
∑

N

∑
E

Ω(N,U) exp[−(E − µN)/kBT ] (2.42)
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Figure 2.20. Probability distribution for a Lennard-Jones system at a melting point12

Q(N, P,T ) =
∑

N

∑
E

Ω(V,U) exp[−(E + PV)/kBT ] (2.43)

In the above expressions however the absolute density of states has to be used as opposed

to the one coming from the last sweep with the smallest modification factor, known within

a multiplicative constant. For these simulations, when N = 0 or V = 0 the density of states

is unity, thus providing a means to determine the absolute value of the partition function.

When the results of the simulation are presented in a two dimensional phase

diagrams of the Lennard-Jones system show excellent consistency with experimental data

(Figure 2.21(a) and 2.21(b)).

As noted by Yan and coworkers, the fact that the density of states is function of

two variables leads to the relevant range of energy being dependent on the other variable

(number of particles in that study).53 In addition, sampling over the energy and number of

particles requires a vast amount of CPU time. In order to overcome these issues, the
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(a) Phase diagram of the truncated
Lennard-Jones fluid. Solid line shows the
results of WL simulations in the grand
canonical ensemble, while solid line
depicts literature data.53

(b) Phase diagram of the long-
range corrected Lennard-Jones fluid.
Squares and triangles correspond
to the WL results in respectively
the grand canonical and isothermal
isobaric ensemble, while crosses are
results from histogram reweighting
study11

Figure 2.21. Vapor-liquid equilibria curves for a Lennard-Jones fluid

authors suggested to perform the simulation at a fixed temperature, so that a flat

distribution of solely the number of particles (H(N)) is obtained as opposed to H(U,N).

The energy distribution of the particle displacement moves is then dictated by the

conventional Boltzmann weight

acc(o→ n) = min
[
1, exp(−∆U/kBT )

]
(2.44)

where −∆U/kBT = Un − Uo is the energy change associated with the insertion/deletion

move.

The probability of any state along the order parameter becomes inversely

proportional to the canonical partition function (Q(N,V,T )). The insertion and deletion

moves are accepted with probabilities, respectively:
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acc(o→ n) = min
[
1,

V
(N + 1)Λ3

Q(N,V,T )
Q(N + 1,V,T )

exp(−∆U/kBT )
]

(2.45)

and

acc(o→ n) = min
[
1,

NΛ3

V
Q(N,V,T )

Q(N − 1,V,T )
exp(−∆U/kBT )

]
(2.46)

Sampling a first order transition in the grand canonical ensemble by the WL

scheme is used in the study of the behavior of alkanes in supercritical carbon dioxide.13

The carbon dioxide is modeled as a single interaction site with truncated Lennard-Jones

potential, while that of hexadecane as five interaction sites connected together by

nonlinear elastic springs with the same type of potential between the non-bonded

interactions (Figure 2.22).

Figure 2.22. Carbon dioxide modeled as a single Lennard-Jones particle and hexadecane
modeled as a chain of 5 hexadecane particles bonded together.13

Since the simulation is performed in the grand canonical ensemble with long

molecules, the insertion of particles in the dense liquid region leads to particle overlaps. In

order to overcome this problem, a configurational bias Monte Carlo scheme is

implemented for the insertion and deletion moves. The multicanonical method developed

by Berg and Neuhaus47 is used in order to sample the density of the liquid and vapor phase

uniformly at a given chemical potential and temperature, while the histogram reweighting
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is used to find the probability distribution at another chemical potential and temperature.

The range of densities comprising the two phases at coexistence is sampled by

varying the number of particles (N) and the uniformity in states along the order parameter

is achieved through the introduction of the weight function w(n). A biased probability

pbias(N) = p(N)exp(−w(N)) is introduced in such a way that it becomes constant for the

choice of w(N) = lnp(N). The WL scheme is implemented in the estimation of w(N) in a

similar fashion the density of states is found in the original WL method. An initial value

of w(N) = 0 is given for the entire density range. Each sampling of a new state is

accompanied with a modification of the weight function with an increment δw. A

histogram of visited states (H(N)) is also updated at each attempted move. When this

histogram is sufficiently flat (|H(N) − 〈H(N)〉| < 0.5 〈H(N)〉 for every N), the increment is

decreased by a factor of 10 and the random walk in N is repeated after the histogram is

reset to zero. The initial value of δw is set to 10−3 and after three iterations a working

guess for w(N) is obtained (Figure 2.23). The initial increment value δw and the flatness

criterion depends on the system size and in order to avoid errors the multicanonical

sampling (δw) is encouraged to be performed for the production run.

The difficulty of obtaining a two dimensional flat histogram of visited states is to

some extent attenuated by combining the WL scheme with a parallel tempering technique

in the simulation of folding processes in proteins by Rathore et al.14,54 Unlike previous

simulations where long chain molecules are simulated using a lattice model, the authors

manage to implement the WL scheme to study the folding of chain proteins in continuum.

In such systems, the energy walk happens in a much larger energy space and there is

higher degeneracy of the energy levels than the lattice systems. Therefore the random
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Figure 2.23. Probability distribution as a function of the number of particle and
convergence of the weight function (inset).13

walk is coupled with a parallel tempering methodology. Two different protein molecules

are simulated in vacuo and in an implicit solvent. The protein molecule is modeled with

the CHARMM19 force field with bonding interactions taking into account bond

stretching, angle banding and proper and improper dihedral changes, while the

non-bonding interactions are modeled with the Lennard-Jones and Coulomb potentials.

The latter type of interactions occurs between the sites on the same molecule which are

separated by at least three successive bonds.

In the proposed algorithm, only conformational changes of the protein molecule

are investigated. Instead of using the conventional MC displacement moves, the authors

suggested to use the hybrid Monte Carlo scheme. The MC move consists of performing

several molecular dynamics steps m in the NVE ensemble. The velocities are assigned

according to a Gaussian distribution corresponding to the temperature of the simulation

box. Nevertheless a random walk is performed in the conformational phase space and no

real dynamic behavior is traced. The acceptance criteria given by Equation 2.7 is modified
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to include the total kinetic energy K

acc(o→ n) = min
[
1,

Ω(Uo)
Ω(Un)

exp(−∆K/kBT )
]

(2.47)

where ∆K is the change in total kinetic energy upon changing the system from an old to a

new state. In order to enhance the configurational rearrangement, another type of move is

performed - the pivot move. A rotation angle is selected in a certain interval 0 < θ < θmax

and the rotation is effectuated around a randomly oriented axis passing through either

carboxyl or amino segments of the molecule. The move is accepted with the probability

given in Equation 2.7.

The energy range comprising the folded and unfolded protein molecule

conformations and the number of possible states for a continuum system are much larger

than for a lattice one. Therefore the convergence of the simulation slows down as the

sampled energy range is increased. If however the energy range is subdivided into smaller

intervals, one risks to get trapped in a particular conformational well of the protein. This is

not desirable since some of the moves can lead to a drastic conformational change and

thus the protein molecule cannot be restructured. The solution proposed by the authors is

to create several replicas of the simulation box, each at a different temperature. The

replicas do not interact with each other and for each of them an energy interval is

assigned. When a replica with higher energy is chosen, the maximal rotation angle (θmax)

related to the pivot move is increased.

The density of states estimation is performed independently in these boxes. The

conformations in different replicas are swapped on a regular basis. The swapping move is

accepted if the potential energies of both replicas lie within the overlapping region of the
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energy intervals for the two simulation boxes. The idea is to keep narrow energy intervals

and small θmax in the folded regime in order to keep a copy of the near-folded

conformations. Narrow energy windows are necessary in the transition region as well in

order to achieve faster convergence. On the other side of the overall energy range, the

intervals ranges as well as θmax are larger so that major rearrangements of the proteins are

effectuated and attempted replica exchange moves are accepted. The heat capacity is

calculated from Equation 2.16 and plotted as a function of temperature in Figure 2.24. In

the case of Met-enkephalin similar transition temperatures corresponding to the peak of

the curve for the two types of implicit solvents (an implicit solvent model based on the

solvent access surface area (SASA) and a solvent effect model based on the

distance-dependent dielectric (DDE) function ε(r) = 2r) is obtained. The two transition

temperatures are also comparable to the transition temperature region upon tracing the

average end to end distance (〈de−e〉T ) between the N- and C-terminus of the protein

molecule (Figure 2.25). The protein molecule is extended at large temperatures and folded

at lower temperatures which is confirmed experimentally.

Figure 2.24. Specific heat capacity per unit residue as a function of temperature for Met-
enkephalin.14
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Figure 2.25. Average end to end distance 〈de−e〉T as a function of temperature for Met-
enkephalin.14

2.3 Vapor-liquid phase equilibria

The idea by Yan et al. of performing the simulation at constant temperature was

later developed by by Ganzenmüller and Camp,45 who developed the methodology in the

canonical, isothermal-isobaric and grand canonical ensembles. Sampling along the order

parameter at a constant temperature allows one to alleviate the issues related to the

estimation of density of states in previous simulations of continuum systems.

In any given ensemble, the choice of the biasing function that is dynamically

updated is dictated by the need to achieve a uniform sampling of an extensive variable

which allows the sampling in both vapor and liquid phases. Let this variable be called X.

The probability of finding X is equal to:

p(X) =

∫
p(Γ, X)dΓ (2.48)

where Γ is a specific configuration and Π(Γ, X) is the joint probability of being in this
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specific configuration with a specific value of X. The biased distribution, Πbias(X) should

be uniform - the probability of finding any of the states along the region comprising the

vapor and the liquid state is equal. If we choose the joint biased probability in the

following manner:

pbias(Γ, X) =
p(Γ, X)
p(X)

(2.49)

then pbias(X) becomes one for any value of X:

pbias(X) =

∫
pbias(Γ, X)dΓ =

∫
p(Γ, X)
p(X)

dΓ = 1 (2.50)

The detailed balance equation is then:

pbias(Γo, Xo)acc(o→n) = pbias(Γn, Xn)acc(n→o) (2.51)

where acc(o→ n) is the acceptance probability of a trial move from an old (o) to a new

(n) configuration. The Metropolis solution becomes:

acc(o→n) = min
[
1,

pbias(Γn, Xn)
pbias(Γo, Xo)

]
(2.52)

2.3.1 Sampling in the canonical ensemble

The WL method was developed as an improvement of the conventional MC

algorithm for sampling only the energy space in a lattice system. The analogue sampling

in continuum systems would be performed in the canonical ensemble. The biased

distribution is derived from the Boltzmann probability distribution in Γ:
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p(Γ) =
VNexp[−βU(Γ)]
N! Λ3N Q(N,V,T )

(2.53)

where Λ =
√

h2/2πmkBT is the de Broglie thermal wavelength and U(Γ) is the potential

energy. Since in the canonical ensemble the only variable is U(Γ) (function of the particle

positions), p(Γ) can be considered as the joint distribution. The energy distribution should

include those configurations with energy E:

p(E) =

∫
p(Γ)δ(U(Γ) − E)dΓ (2.54)

where δ is the Dirac delta function. The density of states, with energy E is given by:

Ω(N,V, E) =

∫
δ(U(Γ) − E)dΓ (2.55)

and hence the energy distribution can be replaced with the following expression:

p(E) = Ω(N,V, E)
VNexp[−βE(Γ)]

N! Λ3N Q(N,V,T )
(2.56)

The biased probability is obtained as shown in Equation 2.49:

pbias(Γ, E) =
1

Ω(N,V, E)
(2.57)

With this biased probability the final expression of the acceptance criterion can be derived,

according to the detailed balance condition 2.51:

accon = min
[
1,

Ω(N,V, Eo)
Ω(N,V, En)

]
(2.58)
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The biasing function in the canonical ensemble thus becomes the density of

potential energy states with N and V fixed. The Boltzmann probability distribution p(E) is

found by performing a random walk which would result in a flat histogram since the

acceptance probability is biased according to Equation 2.51. Ω(N,V, E) is modified in a

systematic way so that the random walk over the allowed energy range would converge to

the true value.

2.3.2 Sampling in the isothermal-isobaric ensemble

In the isothermal isobaric ensemble number of particles (N), pressure (P) and

temperature (T ) are fixed. The extensive variable that allows the sampling of the

vapor-liquid region is the volume (V). In this ensemble the joint distribution is given by:

p(V,Γ) =
VNexp[−βU(Γ) − βPV]

N! Λ3N Q(N, P,T )
(2.59)

where Q(N, P,T ) =
∫ ∞

0
Q(N,V,T )exp(−βPV)dV is the isothermal isobaric partition

function and Q(N,V,T ) is the canonical partition function. The integration of the joint

probability over the possible configurations then yields:

p(V) =
Q(N,V,T )exp(−βPV)

Q(N, P,T )
(2.60)

Following the expression for the joint biased probability in equation 2.49, in the

isothermal isobaric ensemble becomes:

pbias(V,Γ) =
VNexp[−βU(Γ)]
N! Λ3N Q(N,V,T )

(2.61)
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which leads to an acceptance probability:

acc(o→n) = min
[
1,

Q(NVoT )VN
n exp[−βU(Γn)]

Q(NVnT )VN
o exp[−βU(Γo)]

]
(2.62)

In this expression the variable that is unknown a priori and plays the role of the biasing

function is the canonical partition function Q(N,V,T ) and obtaining a good estimation of

it is at the core of the simulation. Another important characteristic of the WL method in

the NPT ensemble is that the pressure does not figure in the acceptance rule of equation

2.62. Thus the coexistence pressure is found after the simulation converges and does not

have to be predetermined in advance.

In the classical Wang-Landau method of spherical particles in the N, P,T

ensemble, two types of moves are performed, random particle translation moves and

volume changes. For this purpose, the volume domain comprising the volume and liquid

range is divided in equal intervals in lnV . The simulation starts by attributing an arbitrary

value to Q(N,V,T ) = 1. Each time a new volume interval is sampled, it is updated by a

convergence factor f (Q(NVoT ))→ f Q(NVoT ), starting with ln f = 1. The updated

partition function is higher in value and, thus, as it can be seen from equation 2.62, the

acceptance probability of visiting a new volume increases. This constant updating is the

driving force behind the uniform sampling. Not only it allows to visit low probability

volumes, but also the partition function converges towards its true value. Once all states in

each volume interval are sampled at least a certain number of times, which ensures a

reasonably flat sampling, another sweep is run with a lower convergence factor

( fn =
√

fn−1). It has to be stressed that the convergence of the simulation is monitored by

tracing the histogram of visited states and the running estimate of the partition function.
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The refinement of the convergence factor is necessary, as a better estimate of Q(N,V,T ) is

obtained after each sweep. Even though after it the random sampling of the volume

interval starts all over, the estimate of the partition function is kept in the computer

memory. The refinement of the convergence factor f is accompanied by a refinement in

Q(N,V,T ) and when it has an allure of smooth and continuous function, the simulation is

over.

With the formalism developed by Ganzenmüller and Camp the WL method is

applied to study spherical particles such as Lennard-Jpnes fluid and charged soft

spheres.45 The canonical partition function is used to calculate the densities at equilibrium

at the temperatures at which the runs are performed. First the pressure at coexistence can

be estimated by calculating the probabilities associated with the liquid (pliq) and vapor

(pvap) phases.

pliq =

∫ Vb

0
Π(V)dV and pvap =

∫ ∞

Vb

Π(V)dV (2.63)

where Vb correspond to the volume with minimum probability, situated between the vapor

and liquid phase, and calculated with Equation 2.60. The pressure in this expression

(2.60) is changed until the two probabilities pliq and pvap are equal, at which point the

pressure at coexistence is obtained. With it, the densities at equilibrium can be calculated.

First, the vapor density is given by

ρvap =

∫ ∞
Vb

(N/V)VN Q(N,V,T )exp
(
−βPeqV

)
dV∫ ∞

Vb
Q(N,V,T )exp

(
−βPeqV

)
dV

(2.64)
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and then the liquid density is estimated

ρliq =

∫ Vb

0
(N/V)VN Q(N,V,T )exp (−βPcoexV) dV∫ Vb

0
Q(N,V,T )exp (−βPcoexV) dV

(2.65)

With these data the phase diagram of the Lennard-Jones fluid is established and excellent

consistencies between results from the WL scheme and the transition matrix MC method

are obtained with maximum deviation between the two sets of data of 1.0 % and avergae

deviation of 0.4 %.

While largely studied on model fluids consisting of structureless spherical

particles, the implementation of the WL scheme on molecular fluids was first described by

Desgranges and Delhommelle.16 The method is applied to rigid molecules such as

benzene and flexible chains such as n-alkanes. The authors successfully implemented the

hybrid Monte Carlo scheme in the WL method (HMC-WL) in order to sample efficiently

the liquid states of the system. Thus the acceptance criterion for the updated particle

positions after each HMC move becomes:

acc(o→ n) = min
[
1, exp

[
−β(En − Eo)

]]
(2.66)

where E is the total energy of the system.

The HMC-WL algorithm is applied to a Lennard-Jones fluid for comparison

reasons. The volume range is divided into equal portions (bins) of lnV and the accuracy of

the results is tested by comparing the simulation data for different number of bins to the

TM data obtained by Errington15 (Figure 2.26). With the 100 bins division of the volume

range the HMC-WL simulation data tends to overestimate the TM results for liquid
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densities at coexistence by 1 to 2 % at low temperatures. The overestimation is similar to

that observed by Ganzenmüller and Camp.45 The accuracy can be improved by increasing

the number of bins as seen in Figure 2.26. It decreases to less than 0.5 % when the number

of bins reaches 400. The slight improvement in accuracy is achieved at the expense of

computational time, which is more than double for passing from a system of 150 to 400

bins.

Figure 2.26. Vapor-liquid phase diagram of Lennard-Jones fluid. Data from the TM method
by Errington15 are denoted as open circles, while results from the HMC-WL
simulation by open triangles for the volume range divided into 100 bins and
with open squares for the volume range divided into 400 bins.16

The results obtained for benzene and n-alkanes show a very good consistency with

experimental data in terms of the saturation vapor pressure (Figure 2.27) and vapor-liquid

equilibria curves (Figure 2.28). The accuracy of the simulation results proves the

reliability of the method upon simulating molecular fluids with different architectural

structures.
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Figure 2.27. Saturation pressure obtained with the HMC-WL method: simulation results
(open squares) and experimental data (solid line)16

Figure 2.28. Vapor-liquid equilibria curves obtained with the HMC-WL method (open
squares) and experimental data (solid line).16
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CHAPTER III

VAPOR-LIQUID EQUILIBRIA OF COPPER

Molecular simulations on vapor-liquid equilibria of metals are very limited. Data

is available only for a few elements; among them, aluminum, gold, potassium, sodium,

copper, nickel and mercury.55–58 Conventional Molecular Dynamics (MD) simulations

have been used in the case of nickel and mercury, which however cannot directly estimate

the properties at equilibrium. MD simulations permit the estimation of thermodynamic

properties in either vapor or liquid phase, but not both phases at coexistence. This can be

explained by the high energy barrier between the two phases, which acts as a bottleneck

that prevents the sampling of the density range of interest. In order to find the densities at

coexistence of the vapor and liquid phases, the authors have applied an empirical equation

of state, that completes the MD data.57,58 The accuracy of the results in these two cases

nonetheless hinges on not only the choice of the force field, but also the equation of state.

We propose a combination of the Wang Landau method in combination with the

hybrid Monte Carlo technique in order to study the phase behavior of copper in the

isothermal isobaric ensemble. Thus the difficulty related to the insertion of particles in the

dense liquid phase of the GEMC method is solved. Our method does not rely on a

configurational bias related to the insertion move, since sampling is performed in the NPT

ensemble, where changes in the volume allow to reach states related to the vapor and

liquid phase as well as the interfacial region.
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3.1 Potential model

The choice of the force field is crucial for the accuracy of the simulated properties.

Vapor-liquid equilibria curves of metals have been simulated by using two types of force

fields - an embedded atom potential (EAM) and a Morse pair potential.

The Morse pair potential contains only two body interaction terms and has the

following form:

U =
1
2

N∑
i=1

N∑
j,i

D
(
exp[−2α(ri j − r0)] − 2exp[−α(ri j − r0)]

)
(3.1)

where D is the dissociation energy, α is a constant with dimensions of reciprocal length

and r0 is the equilibrium distance of the two particles. This form has been used by Singh

and coworkers for the simulation of gold, potassium, sodium and copper56 as well as by

Cheng and Xu in the MD computation of nickel.57 The potential allows faster

computation of the potential energy of the system, as there are no many body terms. The

accuracy of the potential however is questioned, as the models used are parameterized for

metals in the solid state and the local density is not taken into account.

An embedded atom potential can be presented in the following form:

U =
1
2

N∑
i=1

N∑
j,i

φ(ri j) +

N∑
i

F(ρi) (3.2)

where φ(ri j) is a two body interaction term and F(ρi) is a many body term, with ρi being

the local density associated with atom i. The latter term is an important part of simulation

of metals as it accounts for the strong cohesive forces. It is therefore the potential of

choice for the simulation of aluminum by Siepmann and cowerkers.55 Another form of the
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embedded atom potential, the Sutton-Chen EAM, has also proven its ability to accurately

predict rheology and crystallization processes in liquid metals59,60 and therefore is the

model of choice in our simulations. The two body term in Equation 3.2 is given by

φ(ri j) = ε

(
a
ri j

)n

(3.3)

and the many-body term by

F(ρi) = −εc

∑
j,i

(
a
ri j

)m


0.5

(3.4)

The cutoff distance is set to be twice the lattice parameter a. All the parameters are taken

from the work of Luo et al.25 and presented in Table 3.1.

Table 3.1. qSC-EAM potential parameters for copper.25

a (Å) ε (10−2 eV) c m n
3.6030 0.57921 84.843 5 10

3.2 Hybrid Monte Carlo Wang-Landau simulations

In the formalism of the Wang-Landau scheme at a constant temperature, the

conventional MC displacement moves are used to explore the phase space.45 In our

simulation of copper the hybrid Monte Carlo scheme is used for the random displacement

moves. The acceptance criterion for a particle displacement move is given in Equation

2.66. The velocity-Verlet algorithm is used to integrate the equations of motion, due to its

area preserving properties and time reversibility. The advantage of using HMC over the

MC scheme is twofold. First, the MD trajectories account for the global and concerted
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moves of the particles. The moves are not completely randomized, but deterministic in

nature, which in the case of dense liquids such as metals, provides higher acceptance rates

than when using an MC scheme. Second, the time step of the MD move can also be set

higher than that of a conventional MD simulation, as some of the trajectories are allowed

to be rejected. Long MD trajectories result in an efficient sampling of the system.16

The simulation of copper is divided into two parts. In the first part, the goal is to

find the vapor-liquid equilibrium curve and critical properties. The temperature range is

therefore chosen to be close, yet below the critical temperature. In the second part, the

simulation aims to estimate the boiling point of the fluid and therefore the runs are

performed at temperatures close to the experimental boiling point.

For the first part, random volume changes and HMC moves are performed at

constant temperature, starting with 4800 K until the simulation converges. The other runs

are performed with temperature increments of 100 K, ending the simulation with a run at

4100 K. For this lowest temperature, the upper and lower bounds of the sampled volume

are chosen so that the maximum distribution probabilities of the densities of two phases

are within these bounds. The upper and lower bounds for the volume are chosen to

correspond to densities of 0.01 and 6.5 g cm−3. The simulated systems consist of 200

atoms. In the case of a metal for which these bounds are unknown, appropriate values can

be attributed by running a short HMC WL simulation with just a few sweeps (few

refinements of the convergence factor). The density range is translated in a volume range

divided into 150 intervals of equal lengths in lnV .

For the second part, the temperature range is between 2900 to 3000 K. The upper

and lower bounds for the volume are chosen to correspond to densities of 0.0001 and 7
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g cm−3. The increase in the density range is due to the pressure drop. The simulated

systems consist of 200 atoms. The density range is translated in a volume range divided

into 400 intervals of equal lengths in lnV .

Once the canonical partition function at the chosen temperatures is obtained, the

isothermal isobaric partition function can be calculated, which in turn can give rise to

densities in the liquid and vapor phases.

Q(NPT ) =

∫ ∞

0
Q(NVT )exp (−βPV) dV (3.5)

The pressure at coexistence can be estimated by calculating the probabilities

associated with the liquid (pliq) and vapor (pvap) phases.

pliq =

∫ Vb

0
Π(V)dV and pvap =

∫ ∞

Vb

Π(V)dV (3.6)

where Vb corresponds to the volume with minimum probability, situated between the

vapor and liquid phase, and calculated with Equation 2.60. The pressure in this expression

(2.60) is changed until the two probabilities pliq and pvap are equal, at which point the

pressure at coexistence is obtained. Thus densities at equilibrium can be calculated:

ρvap =

∫ ∞
Vb

(N/V)VN Q(N,V,T )exp
(
−βPeqV

)
dV∫ ∞

Vb
Q(N,V,T )exp

(
−βPeqV

)
dV

(3.7)

ρliq =

∫ Vb

0
(N/V)VN Q(N,V,T )exp (−βPcoexV) dV∫ Vb

0
Q(N,V,T )exp (−βPcoexV) dV

(3.8)

A phase diagram of the vapor and liquid regions for a given temperature and
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density can be constructed by connecting the points corresponding to the vapor and liquid

densities.

3.3 Evaluation of the critical point

Due to the large degree of fluctuations that occur near the critical point, direct

estimation is unreliable. The estimation of the critical point in this work is achieved first

by evaluating the critical temperature Tc, with a density scaling law:

ρliq − ρvap = B (Tc − T )β (3.9)

where B and Tc are obtained after least square fitting of the available data of ρliq and ρvap

in the above equation and β = 0.3265 is the 3D Ising order-parameter exponent. The

critical density ρc is then estimated using the law of rectilinear diameters given by

ρliq + ρvap

2
= ρc + A (T − Tc) (3.10)

3.4 Results and discussion

3.4.1 Vapor-liquid equilibria and critical point

The convergence of the simulation, following a WL scheme, is assessed by tracing

the evolution of the biasing canonical partition function throughout the simulation. The

flatness of the histogram of visited states is governed by the biased acceptance criterion,

which is a function of Q(N,V,T ). The histogram is considered to be reasonably flat if each

volume interval is visited at least 500 times. Since Q(N,V,T ) is continuously updated, it is

important to trace its evolution with volume for each sweep, in order to accurately

evaluate its convergence. The plotted running estimate of Q(N,V,T ) is shown in Figure
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3.1. It becomes more and more accurate as the convergence factor f decreases. The

roughness of the curve gradually diminishes as the simulation progresses until f becomes

close to 1 (ln f = 10−5). At this convergence factor, the smoothness of the curve indicates a

good final estimate of the biasing function. Further updates would not change significantly

the outcome of the simulation since the running estimate of the partition function would

stay close to that in the preceding sweep.

Figure 3.1. Canonical partition function Q(N,V,T ) as a function the reduced volume for
different convergence factors f .17

For each temperature run, Q(N,V,T ) is set to 1 and allowed to evolve. Thus the

outcome of each run is independent of the preceding one. The same qualitative behavior,

however, is obtained at each temperature as shown in Figure 3.2. This proves, once again,

that the simulation runs have converged and an accurate estimates of Q(N,V,T ) is reached

for every run.

With an accurate estimate of the partition functions, the coexistence properties of

copper can be represented graphically. In Figure 3.3, the liquid and vapor equilibrium
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Figure 3.2. Qualitative behavior of lnQ(N, V, T) as a function of the reduced volume for
different temperatures used in this work.17

densities are plotted at each temperature, using Equations 3.8 and 3.7, respectively. The

open square represents the critical point obtained by using the density scaling law

(Equation 3.9) and the law of rectilinear diameters (Equation 3.10). The critical point is

well above the highest temperature at which the simulation is performed, in order to avoid

any finite-size effects. These effects appear when the correlation length of the system

exceeds the size of the system. In the vicinity of the critical point, the divergence of the

correlation length cannot be captured by the size of the simulation box and therefore it is

essential to avoid sampling this region.61 The critical temperature and density were found

to be, respectively, 5696±50 K and 1.80±0.01 g/cm3.

Critical pressure is obtained by fitting the coexistence pressures, using Antoine’s

law:

log10Pcoex = A −
B

T + C
(3.11)
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Figure 3.3. Vapor-liquid equilibria for Cu obtained by NPT HMC-WL simulations (the
statistical uncertainty is less than the symbol size). The open square represents
the critical point extrapolated from the set of results.17

where Pcoex is in Pa, T is in C and A, B and C are fitting parameters. Using the equilibrium

pressures from our simulation and plugging the in Equation 3.11, a critical pressure of

1141±100 bar is finally obtained.

Critical and vapor-liquid equilibrium properties of copper available in the

literature are very scarce. Saturation pressures at such elevated temperature cannot be

found in literature, but at lower temperature data is available.18 On the plot in Figure 3.4

the experimental data is plotted (circles) and extrapolated (solid line), using Antoine’s law

(Equation 3.11). The plot shows that extrapolation of the experimental set lies closely to

the simulation data at elevated temperatures, which confirms the consistency between the

experimental and HMC-WL results.

Finally, the critical properties from the HMC-WL simulations are compared to

experimental data and another simulation work (Table 3.2). The simulation results
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Figure 3.4. Saturation vapor pressure in function of temperature obtained from experiments
(open circles),18 extrapolation with Antoine’s law of these experimental results
(solid line) and our simulations (open squares).

presented in the second row of the table are given by Singh et al.56 The method adopted

by the authors is transition matrix Monte Carlo simulation in the grand canonical

ensemble with a two-body Morse potential, used as a force field. Experimental critical

properties differ significantly one from another. Tc can be roughly found in the region of

5000 to 8000 K, while the critical pressure varies even more depending on the source with

an order of magnitude between the values of approximately 500 and 6000 bar.24,62 These

large discrepancies can be attributed mainly to the difficulty of performing an experiment

in such harsh conditions of elevated temperatures and pressures. The results from our

simulations lie within the experimental range of critical temperature and pressure.

Furthermore, our critical density is very close to the critical density obtained

experimentally by Hess.62 The data obtained from Singh et al.,56 on the other hand,

overestimate all of the critical properties presented in Table 3.2. The largest critical
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temperature is overestimated by 12 %, while the largest critical pressure and density by

64% and 36% respectively. These results can be attributed most probably to the two-body

Morse potential used in their simulations. While the simulation converges faster with this

type of force fields and it has shown some success in modeling liquid metals, it does not

contain the many body term that accounts for the strong cohesive forces in metals, such as

in the qSC-EAM.

Table 3.2. Critical properties of Cu.

Tc (K) Pc (bar) ρc (g/cm3)
This work 5696 ± 50 1141 ± 100 1.80 ± 0.03
Sim.56 8650 ± 50 9543 ± 180 2.631 ± 0.003
Exp.62 7696 5829 1.930
Exp.24 5140-5580 420-600 –

3.4.2 Boiling point

The formalism for the VLE of copper is also used to determine the saturation

pressure at lower temperatures. Upon obtaining the canonical partition function, the

probability distribution is found using Equation 2.60 and plotted in Figure 3.5. The areas

under the two peaks corresponding to the liquid (left) and vapor (right) phases are

integrated. When they are equal, the pressure at coexistence Pcoex is found (Equation 3.6).

The saturation pressures are plotted as a function of temperature in Figure 3.6,

combining the results at high (open squares) and low (open circles) temperatures. The

results are consistent as shown by the close fit to Antoine’s relation (Equation 3.11). It

allows us to estimate the standard boiling point of copper at Tb = 2936 ± 6 K. This

estimate is in an excellent agreement with simulation results from a constant-NPH

adiabatic GEMC simulation, with a standard boiling point of Tb = 2928 ± 4 K.20 Both
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Figure 3.5. Volume probability distribution for copper at 3000 K at coexistence.

results are in a reasonable agreement with the experimental value of T exp
b = 2835 K.19 The

simulation results from our work and those using the GEMC technique overestimate the

boiling point by roughly 100 K. As noted by Gelb and Chakraborty, this could be due to

the inaccuracy in the force field when applied to the vapor phase.20

3.5 Technical details

3.5.1 Molecular dynamics

Sampling of the phase space through a molecular dynamics simulation is governed

by the Newton’s equations of motion in a classical system of particles. The equations of

motions are solved for all the particles to a certain degree of accuracy in a discrete

step-by-step manner along time.

In molecular dynamics simulations the average of a macroscopic observable is

obtained after letting the system of N particles to evolve in time and therefore it is

necessary to trace its evolution. Lagrangian mechanics can be used to study the trajectory
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Figure 3.6. Saturation pressure of copper as function of the temperature at coexistence.
Low temperature HMC-WL results (open circles), high temperature HMC-
WL results (open squares), experimental boiling point (filled diamond),19 and
constant-NPH adiabatic GEMC simulations (filled triangle).20 The solid line is
fit of our simulation data at high and low temperatures using Antoine’s law.

of a system of particles. The Lagrangian is defined as:

L = K −V (3.12)

where T is the kinetic energy andV is the potential energy. The Lagrangian is a function

of the position q and momenta q̇ of all the particles (L(q, q̇)). The evolution of the system

can be found by solving the Euler-Lagrange equation,

d
dt

(
∂L

∂q̇

)
−
∂L

∂q
= 0 (3.13)

In a system of particles with Cartesian coordinates ri, the kinetic energy has the

form:
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K =

N∑
i=1

ṙi
2mi

2
(3.14)

where mi is the mass of particle i. The solution of Equation 3.13 becomes

mir̈i = fi (3.15)

where fi is the total force on particle i and it applies to the center of mass of the particle.

The force is calculated from the potential energy of particle i.

fi =
∂

∂ri
L = −

∂

∂ri
V (3.16)

Hamiltonian Mechanics is an alternative formulation to the Lagrangian Mechanics.

The advantage of using Hamiltonian mechanics is that instead of solving the evolution of

the system by a series of second order differential equations, it defines its dynamics in

terms of first order equations, but twice as many of them. The Hamiltonian is defined by:

H =
∑

k

q̇k pk − L(q, q̇) (3.17)

Since the potential is independent of the velocities and time, the Hamiltonian is equal to

the total energy of the system:

H = K +V (3.18)

The difference with respect to the Lagrangian equations of motion is that the momenta

features in the Hamiltonian form:
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q̇k =
∂H

∂pk

ṗk = −
∂H

∂qk
(3.19)

In Cartesian coordinates, Hamilton’s equations of motion become:

ṙi =
ṗi

mi
(3.20)

ṗi = −
∂V

∂ri
= fi (3.21)

The solving of 6N first order differential equations is required in order to compute

the trajectories of all the N particles in the system. Obtaining the exact trajectories for a

typical simulation system of N = 100 − 1000 particles, however, is impossible.

Simulations rely on numerically approximate solutions and tracing the evolution of the

system proceeds in the following way. With the initial conditions for the system (r and p

specified at t = 0), the forces on each particle are calculated via Equation 3.21. The

instantaneous acceleration on each particle is then calculated by

ai =
fi

mi
(3.22)

where the force and thus acceleration are assumed to be constant over some short time

interval, δt. The new positions and momenta are calculated, using the thus calculated

accelerations in order to advance to a new point in phase space at t = δt. The step is
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repeated this time, using the newly obtained positions and momenta. This ’step-by-step’

advancement of the positions and momenta is performed using an algorithm that produces

a trajectory through phase space that closely matches the actual (continuous) trajectory to

a desired degree of accuracy. The algorithm for advancing the system in phase space can

be tested on a system that is analytically solvable. Several schemes for integrating the

equations of motion have been developed, including predictor-corrector algorithms, the

Verlet algorithm, the leap frog and the velocity-Verlet, discussed in detail below. It is

essential for the integration scheme to satisfy two important criteria - area preservation

and time reversibility.

For isolated systems at equilibrium (where there is no explicit time dependence in

the Hamiltonian), the Hamiltonian, which represents the total energy of the system, is a

constant of motion.

dH
dt

=
∂H

∂q
q̇ +

∂H

∂p
ṗ

=
∂H

∂q

(
∂H

∂p

)
+
∂H

∂p

(
−
∂H

∂q

)
= 0 (3.23)

TheH remains constant and therefore the phase space characterizing the system

must remain constant as well. That is why the integration scheme must be area preserving.

It must not allow the total energy of the system to augment or diminish throughout the

simulation. The trajectory in phase space must also be time reversible. If the momenta of

all the particles in the system are reversed, the system should go back to its initial

configuration following the exact same trajectory. If time reversibility condition is not
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satisfied, that would mean that two initial state points can produce the same future state

point in phase space, which is not compatible with the area preservation requirement.

The velocity-Verlet algorithm is chosen as an integrator of the equations of motion

for its area preserving and time reversible properties. It advances the positions and

velocities of the system’s particles using both full time steps (for positions) and half

time-steps (for velocities). The details are as follows:

Initially the position and velocities of the particles at time t are known. The

accelerations are found using Equations 3.21 and 3.22.

1. The particles’ positions at time t + δt are found by

~ri(t + δt) = ~ri(t) + ~vi(δt)δt + ~ai
1
2

(δt) (3.24)

The equation is a Taylor expansion around ~r and this first move is schematically

depicted in Figure 3.7 (left).

Figure 3.7. Schematic representation of the first two steps of the velocity-Verlet algorithm.

2. The velocities at half time-step are calculated

~vi(t +
δt
2

) = ~vi(t) +
~aiδt

2
(3.25)
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This essentially provides updated positions that are accurate to the degree that the

velocities at the mid-point of the time step approximate the average velocities over

the entire time step (Figure 3.7 right).

3. The forces and accelerations at t + δt are once again computed via Equations 3.21

and 3.22 and the new positions (Figure 3.8 left).

4. and finally the velocities at t + δt are found (Figure 3.8 right)

~vi(t + δt) = ~vi(t +
1
2
δt) + ~ai(t + δt)

(
1
2
δt
)
. (3.26)

Figure 3.8. Schematic representation of the last two steps of the velocity-Verlet algorithm.

3.5.2 Hybrid Monte Carlo scheme

Conventional Monte Carlo sampling is performed only with a single particle

update at each step. Random displacement of all the particles at once could result in low

acceptance probability and consequently large number of steps before reaching

equilibrium. At the same time, the size of each step cannot be taken to be too large, as

such a move would again result in a low acceptance ratio. Therefore even though MC
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sampling provides a complete exploration of phase space, the limitation of the step size

means that the process will take too many iterations. This is particularly prominent for

dense liquids. The step size in this case cannot be taken to be too large, as such a move

will result in overlapping of the particles and consequently low acceptance probability. On

the other hand MD simulations allow for larger time steps in phase space, because of the

global updates of particles, subjected to Newton’s equations of motion. Compared to MC

however, MD sampling also suffers from limitations. MD moves are deterministic in

nature, which means that unphysical moves cannot be performed. MD follows a direct

slope of decreasing potential energy, which could lead to trapping the simulation on a

limited cycle of phase space.21 Furthermore, the time step in MD is limited by the energy

conservation law, which is not the case in MC sampling.

In order to combine the advantages of the two methods, a hybrid technique

consisting of both types of moves (MC and MD) has been designed by Duane and

Kennedy, called Hybrid Monte Carlo (HMC).63 Originally developed to simulate the

behavior of quarks in the nucleon, the technique has been extensively used later for

simulating polymers in a liquid state as well as dense liquid systems.16,21,64,65

The HMC algorithm is essentially stochastic in nature generating a Markov chain

of states, thus resembling more the MC scheme. Nevertheless it provides global updating

of the system with high acceptance probability and as such faster convergence. The global

moves are performed in the configurational part of phase space, the difference with respect

to MC being that the moves are deterministic - the next state in the Markov chain is

generated using Hamilton’s equations of motion. Because of the deterministic updating of

the system, the outcome of the new configuration depends on the momenta of the particles
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in the old configuration, and so the transition matrix, or conditional probability of having

the new configuration by being in the old one has to be updated with a new term which is

a function of the particles’ momenta. For this purpose, it is convenient to use a Gaussian

distribution, from which the initial momenta of the particles at the temperature of choice

are drawn:

αmn ∝ α
′
mnexp

− 1
kBT

N∑
i=1

p2
i

2m

 (3.27)

The MC acceptance criterion (Equation 5.20) then is changed to the following expression

in the HMC scheme:

accmn = min

1,
ρnexp

(
− 1

kBT
p2

n
2m

)
α′nm

ρmexp
(
− 1

kBT
p2

m
2m

)
α′mn

 = min

1,
exp

(
−En(r,p)

kBT

)
α′nm

exp
(
−Em(r,p)

kBT

)
α′mn

 (3.28)

Finally the expression can be simplified to

accmn = min
{

1, exp
(
∆Emn

kBT

)
α′nm

α′mn

}
= min

{
1, exp

(
∆Emn

kBT

)}
(3.29)

where ∆Emn is the change in total energy and pn is the generalized momenta of the

particles in state n. Since the transition is performed in a Markov chain, the microscopic

reversibility condition has to be met, which means that α′mn = α′nm. As the transition from

the old to the new configuration is performed by using a trajectory consisting of several

MD steps, the above condition is met when the MD algorithm is time reversible - one

which retraces its steps back to the old state when the signs of the momenta of the new

state are reversed. This is because αnm, which includes information about the momenta of
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all particles, is invariant to the change in sign of the momenta. At the end of the MD

trajectory, no matter if the move is accepted or not, a new Gaussian distribution for the

momenta is generated. This is an essential requirement of the HMC algorithm, as the

detailed balance condition has to be met. If this step is skipped, then the chance of

returning to the old configuration is zero.

The initialization and the main HMC cycle can be schematically represented in

Figure 3.9. Initialization starts with the choice of position and momenta (drawn from a

Gaussian distribution) of the particles in the system. The total energy of the system is

calculated (E1) and a MD trajectory is performed. With the new position and momenta of

the particles, the total energy is calculated once again (E2) and the Boltzmann factor s is

estimated (s = exp[(E1 − E2)/kBT ]) and a random number (r) between 0 and 1 is

generated. The new positions are accepted if s > r. Otherwise the old configuration is

preserved. Regardless of the acceptance or rejection of the positions, new momenta are

generated and the cycle is repeated. After performing a given number of cycles, the

simulation ends.

It has to be noted that, even though the Hamilton’s equations are used to trace the

evolution of the system from the old to the new state, only the configurational phase space

is explored. No real time dependent properties of the system can be traced with HMC, as

the MD trajectory is used only to generate a new state and the probability distribution is

governed by the detailed balance condition. As a result, the ensemble average does not

depend on the time step chosen. This, however, is not the case for the acceptance

probability. Even when the MD algorithm is time reversible and area preserving, too large

time steps result in significant drifting of the total energy and therefore low acceptance
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Figure 3.9. Schematic representation of the HMC algorithm.

probability (Equation 3.29). Nevertheless, compared to an MD scheme, there is no

limitation imposed by the energy conservation law and larger time steps are usually

chosen. Any area preserving and time reversible algorithm can be used instead of MD, the

latter however is often the choice in HMC, as it provides reasonably high acceptance

probability.64

The difference between the MC, MD and HMC methods in exploring phase space

can be schematically presented as shown in Figure 3.10. The trajectory of a MC
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simulation allows the sampling of the whole phase space; however, due to the local

updating of the system, the process of exploring the phase space takes might take

significant computational time. MD sampling is characterized with global updating and

therefore big iteration steps. Some regions of phase space, however, may not be

attempted, as sometimes the MD simulation can get stuck in small regions of phase space

(it can be trapped in a cycle). HMC, however, manages with both issues presented, as

global iterations are carried out to sample phase space faster than an MC simulation and

random changes in the momenta of the particles do not allow the simulation to get trapped

in certain regions of phase space. The HMC technique however cannot be used to sample

efficiently states with very low probability, which play the role of bottlenecks in phase

space. It can be viewed as a more efficient MC sampling technique, yet limited by the

acceptance probability.

Figure 3.10. Schematic representation of the trajectories in phase space for an MC, MD
and HMC sampling.21
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CHAPTER IV

VAPOR-LIQUID EQUILIBRIA OF BRANCHED ALKANES

Phase behavior of hydrocarbons has been studied exhaustively, due to its

importance in processes related to polymer, chemical and petrochemical industries.

Information on their properties at coexistence is necessary for efficient extraction, design

of the separation equipment and oil recovery processes. Therefore an exact knowledge of

the phase diagrams of various alkane series is desired. Such phase diagrams are known

well only for normal alkane series of up to 10 carbon atoms and for branched alkane series

of up to 8 carbon atoms. Empirical correlations and semi-empirical equations of state can

contribute to solving the issue. They however often rely on the critical properties of

hydrocarbons, which are difficult to obtain experimentally, given the instability of the

molecules. As a result, molecular simulations provide a good alternative for studying

vapor-liquid equilibria of such fluids.

Vapor-liquid equilibria as well as critical properties of a large variety of

hydrocarbons have been determined by the Gibbs ensemble Monte Carlo method. The

method, however, relies on particle insertion and deletion moves between two simulation

boxes in order to achieve the chemical potential equilibration. Therefore a biased insertion

has to be implemented in order to facilitate the particle introduction in the dense liquid

phase. The biasing strategy depends on the molecular architecture. In the case n-alkanes

the configurational bias Monte Carlo (CBMC) technique is often used. This technique,
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while well working for chain molecules, has been shown to be invalid for branched

alkanes and a modification has been implemented in order to correct it.66 Instead of

growing multiple branches one after the other, the segments of the molecule are grown

simultaneously at a branched point. This adds another dimension of complexity to the

method and slows down the simulation as the acceptance probability of adding a branch to

the linear chain decreases.

In our simulations of branched alkanes we use the HMC-WL method to construct

a phase diagram of isobutane and isopentane. The insertion step of the GEMC method is

avoided as we perform our simulation in the NPT ensemble. The HMC technique that is

implemented in the WL scheme has been successfully applied in several cases in order to

replace the translation, rotation and conformational changes moves within each of the

simulation boxes of the GEMC simulation.23,67,68

4.1 Potential model

In our simulation study we use the NERD (Nath, Escobedo and de Pablo revised)

force field developed for the simulation of straight and branched alkanes.23,69 It has been

parameterized for linear and branched alkanes and has shown to accurately reproduce

experimental results. It is also a united atom potential model, for which a group of atoms

is represented as a single interaction site, thus accounting for faster computation of the

MD move.

Two types of interactions are considered in our system - bonding and non-bonding

interactions. The non-bonding interactions are described by the classical Lennard-Jones

12-6 potential:
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U(ri j) = 4εi j

(σi j

ri j

)12

−

(
σi j

ri j

)6 (4.1)

The values of the parameters εi and σi are taken from previous estimations,23 and applied

to two different groups of atoms - CH2 and CH3. This potential is used for intermolecular

interactions as well as interaction sites within the same molecule, separated by more than

three bonds. Similarly to previous studies, the Lorentz-Berthelot combining rules are used

for the parameters of unlike interaction sites.70

σi j =
1
2

(
σii + σ j j

)
(4.2)

εi j =
(
εii εi j

)1/2
(4.3)

The flexibility of the branched chain is represented by three different potentials

accounting for the stretching, bending and torsional changes that occur in alkanes. The

stretching potential has the following form:

V(r)/kB =
Kr

2
(r − beq)2 (4.4)

where Kr is a force constant, r is the distance between two neighboring sites and beq is the

equilibrium distance between two neighboring sites (Figure 4.4). The bending potential is

given by the following equation:

V(θ)/kB =
Kθ

2
(θ − θeq)2 (4.5)
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where Kθ is a bending force constant, θ is the bending angle and θeq is the equilibrium

angle (Figure 4.5). Finally, the torsional changes are modeled by the torsion potential:

V(φ)/kB = V0 + V1(1 + cos φ) + V2(1 − cos 2φ) + V3(1 + cos 3φ) (4.6)

where the Vi i = 1, 2, 3 are dihedral constants and φ is the dihedral angle (Figure 4.6). The

parameters for the bonded interaction potentials can be found in Table 4.1 and non-bonded

Lennard-Jones parameters in Table 4.2.

Table 4.1. Bonding parameters for isobutane and isopentane

Bond stretching parameters

Kr (KÅ
−2

) beq (Å)
96 500 1.54
Bond bending parameters
Kθ (K rad−2) θeq (◦) θeq (◦) (centered at a CH unit)
62 500 114.0 109.4
Torsional potential parameters
V0 (K) V1 (K) V2 (K) V3 (K)
1416.3 398.3 139.12 -901.2

Table 4.2. Lennard-Jones parameters for isobutane and isopentane

σCH3 (Å) σCH2 (Å) σCH (Å) εCH3 (K) εCH2 (K) εCH (K)
Isobutane 3.88 – 3.85 78.23 – 39.7
Isopentane 3.90 3.93 3.85 79.5 45.8 39.7

4.2 Parameter optimization

In our simulations we use a density range for isobutane and isopentane of 0.006

and 0.6 g/cm3 and the corresponding volume range is divided into 200 bins. In accord

with most of the MC simulations, the aim is to achieve a 50 % acceptance rate for the
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random moves in our system.70 A shortened simulation is performed for this purpose,

with only one value of the convergence factor f . Since the total branched molecule is

characterized with high frequency intramolecular vibrations, including the bond

stretching, bond bending and conformational changes modes, and long range

intermolecular interactions, the forces on a molecule are divided into a short distance and

long distance forces (F = Fshort + Flong). The multiple time step RESPA-NVE algorithm,

proposed by Martyna et al. is implemented in the HMC-WL scheme.71 For the MD

trajectories, the parameters that can be adjusted are the time step for the slow

intermolecular and fast intramolecular motions, as well as the length of the MD trajectory

(number of steps before applying the acceptance criterion16). In the case of isobutane, it is

found that an MD length of 20 steps with a 19.3 fs time step for the slow intermolecular

modes and fast intramolecular modes integrated 800 times over a single slow mode (800

times over 19.3 fs or time step of 19.3/800 = 0.024125 fs), gives an acceptance probability

of 50 % or above. In the case of isopentane, the same criterion is fulfilled when the MD

length is 20 steps with a 16.9 fs time step for the slow intermolecular modes and fast

intramolecular modes integrated 700 times over a single slow mode (700 times over 16.9

fs or time step of 16.9/700 = 0.024143 fs).

The acceptance probabilities for both the MD trajectories and the random volume

changes are traced as a function of the volume bin number. It was found that the lowest

acceptance probability for both moves is for the smallest volume bin(Figure 4.1). This

result can be anticipated for any random type of moves as, in this volume bin the particles’

density is the highest and high energy state trials that are rejected can be easily generated.
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(a) Isobutane at 300 K (b) Isopentane at 350 K

Figure 4.1. Acceptance probability for the two types of random moves. Solid line - MD
trajectories; dashed lines - volume changes

4.3 Convergence criteria

In the WL method, the key point is to obtain an accurate estimate of the biasing

function. In the NPT ensemble, it is the canonical partition function Q(N,V,T ) that is

dynamically updated in order to approach its true values in the volume interval embracing

the vapor and liquid phases. Therefore its convergence is traced during the simulation. As

the convergence factor decreases after each WL-HMC sweep, Q(N,V,T ) becomes

smoother. In Figure 4.2 the upper line corresponds to the running estimate of the partition

function as a function of the reduced volume for the smallest convergence factor. The

smoothness of the curve shows that an accurate estimate of Q(N,V,T ) is obtained.

In accord with the evolution of ln(Q(N,V,T )) with volume, the derivative of the

logarithm of the running estimate of Q(N,V,T ) with volume also shows a smooth noise

free curve at a low convergence factor (Figure 4.3). This can be viewed as another

indicator of the simulation convergence.

Finally, the convergence can be quantified by tracing the relative error in
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Figure 4.2. Evolution of the canonical partition function as a function of the reduced
volume at different convergence factors.

Figure 4.3. Derivative of the logarithm of the running estimate for the canonical partition
function with respect to volume for isobutane at T = 350 K (solid line, f =

√
e

; filled circles, f = e1/216).

ln(Q(N,V,T )). It can be defined in the following expression:

∆En =

∣∣∣∣∣∣ lnQ fn(N,V,T ) − lnQ fn−1(N,V,T )
lnQ fn(N,V,T )

∣∣∣∣∣∣ (4.7)

where Q fn(N,V,T ) is the running estimate of the canonical partition function at

convergence factor f = e1/2n
. The convergence is once again confirmed in Figure 4.4 as
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the relative error becomes insignificant at high n values (n > 14). At the end of the

simulation, it becomes less than 10−4 for all values of the relative volume.

Figure 4.4. Relative error in the logarithm of the running estimate for the canonical
partition function for isobutane at T = 350 K (∆E2, squares; ∆E6, triangles;
∆E16, circles)

From the evolution of the logarithm of the partition function as well as its

derivative and relative error, it is clear that a low convergence factor ensures the

convergence of the simulation with a final accurate estimate of Q(N,V,T ) as a function of

volume.

4.4 Results and discussion

The WL-HMC simulations are carried out for eight temperatures ranging from

T = 290 to T = 360 K for isobutane and the 340-410 range for isopentane. The vapor and

liquid densities of isobutane and isopentane at coexistence are plotted in Figure 4.5 and

Figure 4.6, respectively. As in the case of copper, the equilibrium densities are calculated

using equations 3.7 and 3.8, using the accurate estimate of the canonical partition

function. Data from experimental and simulations studies using the GEMC method
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combined with the CBMC technique are plotted as well for comparison. All the data

concerning the critical properties obtained from experimental studies and our simulation

work are summarized in Table 4.3.

Table 4.3. Critical temperatures and densities of isobutane and isopentane.

Compound Tc,sim (K) Tc,exp(K)22 ρc,sim (kg/m3) ρc,exp(kg/m3)22

Isobutane 404 ± 8 408.13 236 ± 15 221
Isopentane 457 ± 8 460.95 241 ± 15 234

Figure 4.5. Vapour-liquid equilibria for isobutane obtained from NPT WL-HMC
simulations (open squares), experiments22 (filled circles) and Nath and de
Pablo23 simulations (open triangles). The bold symbols represent the critical
point.

The WL-HMC simulation results are in excellent agreement with the available

experimental data22 and previous simulations.23 Critical properties from our simulation

are also compared to the experimental ones. For isobutane we found Tc = 404 ± 8 K,

while ρc = 236 ± 15 kg/m3. This values are within 1 and 7 % respectively of their

experimental counterparts. The critical point of isopentane is found at Tc = 457 ± 8 and

ρc = 241 ± 15. These values are even closer to experimental ones and differ only by 1 and
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Figure 4.6. Vapour-liquid equilibria for isopentane obtained from NPT WL-HMC
simulations (open squares), experiments22 (filled circles) and Nath and de
Pablo23 simulations (open triangles). The bold symbols represent the critical
point.

3 % for the critical temperature and density respectively. The densities for the two

coexisting phases, obtained from the WL-HMC simulations, as well as the critical points

for isobutane and isopentane, extrapolated from the WL-HMC simulations, are therefore

in excellent agreement with the experimental data.

4.5 Multiple time step algorithm

In molecular dynamics simulations, the time step has to be chosen in accordance

with the frequency of the intramolecular vibrations of the molecule. The adequate

sampling of phase space is observed only when the time step is shorter than the period of

the fastest vibrations. The problem that arises is that MD simulations of molecular fluids

become too long compared to that of atomic fluids. The solution is to integrate the forces

related to the high frequency intramolecular vibrations with shorter time steps and the

intermolecular forces with a longer time step - multiple time step integration.

The RESPA-NVE multiple time step method proposed by Martyna et al. is used in
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our simulations.71 It is based on the Trotter factorization of the Liouville operator. The

latter is defined as follows

iL =
∂H

∂p
∂

∂r
−
∂H

∂r
∂

∂p
= {...,H} (4.8)

where {...,H} is the Poisson bracket. Each configuration (point) in phase space is

characterized with a multidimensional vector Γ(r,p), which is depends on the position

and momenta of all the particles in the system. In order to trace the evolution of Γ in

phase space, we can write

dΓ
dt

= {Γ,H} (4.9)

which gives the Hamilton’s differential equations of motion (Equations 3.20 and 3.21),

since for a single particle we have

dr
dt

= {r,H}

=
∂r
∂r

p
m

+
∂r
∂p

F(r)

=
p
m

(4.10)

and

dp
dt

= {p,H}

=
∂p
∂r

p
m
−
∂p
∂p

dU
dr
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= F(r) (4.11)

Therefore, the equations of motion can be written in the Liouville operator mode

dΓ
dt

= iLΓ (4.12)

The equations of motion can be solved to yield Γ at time t

Γ(t) = exp(iLt)Γ(0) (4.13)

Since the evolution of the system cannot be traced analytically, an approximation of the

true operator accurate at ∆t = t/p is applied p times

Γ(t) =

p∏
i=1

(
exp(iL∆t)

)
Γ(0) (4.14)

In the NVE ensemble the Liouville operator can be separated into two parts

iL = iLr + iLp

=
p
m
∂

∂r
+ F(r)

∂

∂p
(4.15)

The step by step integration of motion can be solved by applying the Trotter

formula.72

exp (iL∆t) ≈ exp
(
iLp∆t/2

)
exp (iLr∆t) exp

(
iLp∆t/2

)
(4.16)

The positions and momenta at time ∆t are found by applying the Liouville operator in the
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above written form under the initial conditions (r(0),p(0)). With the factorized form of

the operator, position and momenta at time ∆t are obtained after three steps:

exp (iL∆t)
(
Γ

[
r(0),p(0)

])
= exp

(
iLp∆t/2

)
exp (iLr∆t) exp

(
iLp∆t/2

)
Γ

[
r(0),p(0)

]
= exp

(
iLp∆t/2

)
exp (iLr∆t)Γ

[
r(0),p(0) + F(0)

∆t
2

]
= exp

(
iLp∆t/2

)
Γ

[
r(0) +

p(∆t/2)
m

∆t,p(0) + F(0)
∆t
2

]
= Γ

[
r(0) +

p(∆t/2)
m

∆t,p(0) + F(0)
∆t
2

+ F(∆t)
∆t
2

]
(4.17)

Thus the evolution in the position and momenta is followed by the velocity-Verlet

algorithm (Figure 3.7 and 3.8), the only difference being that the order of the first two

steps with respect to the previous description of the algorithm is inversed. The factorized

operators are applied sequentially by updating first the momenta of the particles, with step

∆t/2, then the positions with step ∆t and finally again the momenta with a step ∆t/2. In a

similar way, the Liouville operator iLp can be broken into two parts when considering the

forces due to short range interactions (Fshort) and those due to long range interactions

(Flong). In terms of velocities, the first part is written as

iLshort =
Fshort

m
∂

∂v
(4.18)

where the the force Fshort is due to short range intramolecular interactions, including the

bond stretching, bond bending and torsional changes. The second part of the operator can
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be written as

iLlong =
F − Fshort

m
∂

∂v
=

Flong

m
∂

∂v
. (4.19)

The total Liouville operator thus becomes

iL = iLr + iLshort + iLlong (4.20)

The separation of the time scales is obtained by introducing a reference system

characterized with the fast motions due to short range particle interactions with a Liouville

operator iLre f = iLr + iLshort. The time step for this system is chosen in accord with the

fastest vibrations by dividing the large time step suitable for long range interactions into n

δt = ∆T/n. The remaining term of the total Liouville operator iLlong advances the

velocities over time ∆t. The Trotter expansion reads

exp (iL∆t) = exp
[
(iLr + iLshort + iLlong

)
∆t

]
= exp

(
iLlong

∆t
2

)
exp [(iLshort + iLr) ∆t] exp

(
iLlong

∆t
2

)
= exp

(
iLlong

∆t
2

) [
exp

(
iLshort

δt
2

)
exp (iLrδt) exp

(
iLshort

δt
2

)]n

exp
(
iLlong

∆t
2

)

The integration of the equations of motion proceeds in the following way

1. First the velocities are advanced over time step ∆t/2 due to the long range force

Flong.

2. The equations of motions are integrated with the velocity-Verlet algorithm n times

over time step δt under the influence of the short range force Fshort.
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3. The velocities are once again advanced over time step ∆t/2 due to the long range

force Flong, this time a s a function of the new positions obtained in the previous step.
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CHAPTER V

VAPOR-LIQUID EQUILIBRIA OF LONG CHAIN NORMAL ALKANES

5.1 Potential model

The simulations of long chain alkanes are based on the TraPPE united atom model

with paramters introduced by Martin and Siepmann.33 Similarly to the NERD force field,

the force field consists of bonding and non-bonding interactions. The latter are modeled

after the Lennard-Jones potential (Equation 4.1) and are used to describe interactions

between interaction sites of two different molecules as well as interactions between sites

on the same molecule, separated by at least three bonds.

The bonding interactions are modeled using a bond-bending potential

V(θ)/kB =
Kθ

2
(θ − θeq)2 (5.1)

where Kθ is a bending force constant, θ is the bending angle and θeq is the equilibrium

angle and a torsional potential with the following form:

V(φ)/kB = V1(1 + cos φ) + V2(1 − cos 2φ) + V3(1 + cos 3φ) (5.2)

where the Vi i = 1, 2, 3 are dihedral constants and φ is the dihedral angle. Parameters for

the three potential models are taken from prior work33 and presented in Table 5.1.
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Table 5.1. Bonding and non-bonding parameters for icosane, tetracosane and triacontane

Parameters for the Lennard-Jones potential
σCH3 (Å) σCH2 (Å) εCH3 (K) εCH2 (K)
3.75 3.95 98 46
Bond bending parameters
Kθ (K rad−2) θeq (◦)
62 500 114.0
Torsional parameters
V1 (K) V2 (K) V3 (K)
355.03 -68.19 791.32

5.2 Wang-Landau configurational bias Monte Carlo simulations

The long chain n-alkanes are simulated integrating the configurational bias Monte

Carlo technique into the Wang-Landau scheme (WL-CBMC) in the isothermal-isobaric

ensemble. Apart the volume changes that are sampled according to the biased probability

(Equation 2.62) there are three more random moves related to exploring phase space. A

molecule is picked at random and the following moves are performed

• translation (32.8 % of the attempted moves)

• rotation (32.8 % of the attempted moves)

• conformational change (32.8 % of the attempted moves)

• volume change (1.6 % of the attempted moves)

The probability of accepting any of the first two moves is calculated using the

Boltzmann weight factor:

acc(o→ n) = min
[
1, exp(−(Un − Uo)/kBT )

]
(5.3)
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In order to sample efficiently the conformational changes of the molecule, the

configurational bias Monte Carlo (CBMC) scheme is used. It consists of regrowing part of

the molecule in such a way that energetically favorable regions are explored during the

regrowth. The Rosenbluth factor W is calculated for the new and the old conformation and

the acceptance criterion is given by

acc(o→ n) = min
[
1,

W(n)
W(o)

]
. (5.4)

Our simulation system consists of 100 molecules for n-icosane , n-tetracosane and

n-triacontane. The minimum and maximum limits of the volume for the three systems are

set at 0.0001 and 0.7 g/cm3. The volume range is divided into 400 bins in uniform

intervals over lnV . Same methodology is followed as in section 2.3.2. In line with

previous simulations, the convergence factor is chosen to be such that ln f = e at the

beginning of the simulation and ln f = 10−5 for the last sweep.

5.3 Results and discussions

The coexistence densities at the specified temperature for the three n-alkanes used

are obtained first by estimating the isothermal-isobaric partition function using Equation

3.5. It is used, in turn, to find the volume probability distribution given by

p(V) =
Q(N,V,T )exp(−PV/kBT )

Q(N, P,T )
(5.5)

The coexisting pressure (Pcoex) is found by assuring that the areas of the two peaks

corresponding to the vapor and liquid phases are the same
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∫ Vb

0
p(V)dV =

∫ ∞

Vb

p(V)dV (5.6)

where Vb correspond to the volume bin with minimum probability density. We plot in

Figure 5.1 the volume distribution for n-icosane at T = 603 K at coexistence when the the

above requirement is fulfilled and the same area is found under each peak.

Figure 5.1. Volume distribution at coexistence for n-icosane at T=603 K. V∗ denotes that
the volume is reduced with respect to the Lennard-Jones parameters of the CH2

group.

The simulation data of equilibrium pressure and temperature is presented in Figure

5.2. Our results are in good agreement with experimental data, slightly shifted to the right

side of the experimental curve. The standard boiling point is determined by fitting the

results of equilibrium pressure and temperature in Antoine’s law (Equation 3.11). The

results from our simulations show a boiling point of Tb = 595 ± 5 K for n-icosane which

slightly underestimates the experimentally found boiling point of T exp
b = 616.2 K.73 The

boiling point of n-tetracosane was found to be Tb = 647 ± 5 K, which is also lower but

close to the experimental value of T exp
b = 664 K.74 In the case of n-triacontane, a value of
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Tb = 710 ± 6 K is obtained from our simulations, which is in a good agreement with the

experimental one of T exp
b = 723 K.74 In all three cases our data underestimate the

experimental results of the boiling points, which reaches 3 % for n-icosane and

n-tetracosane and 2 % for n-triacontane. The results are consistent with the GEMC results

for shorter n-alkanes with the same potential model, which also show a deviation of 2 to 3

% (2% for n-dodecane and 3 % for n-octane).33 The fact that WL-CBMC method showed

the same order of deviation for n-alkanes, which are much longer than the previously

simulated by Martin and Siepmann,33 proves the reliability of the method. The difficulties

associated with particle insertion and deletion moves are eliminated and reliable results

can be obtained for long chains.

Figure 5.2. Saturation pressure as a function of temperature for n-icosane (filled squares),
n-tetracosane (filled circles) and n-triacontane (filled diamonds). Our
simulation data is shown as symbols, while experimental data as dashed lines.
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5.4 Technical details

5.4.1 Monte Carlo sampling

The original Monte Carlo method is based on selecting random numbers from a

uniform distribution. The MC integration method can be best illustrated by the ”hit and

miss” technique for evaluating the numerical value of π. This can be achieved by

estimating the area of a circle inscribed in a square (Figure 5.3). Both figures share the

same origin and the radius of the circle r is half the side of the the square a. Pairs of

random numbers (ξ with 0 < ξ < a) are generated according to a uniform distribution, so

that each pair corresponds to a point inside the square. Since the pairs are generated

randomly, the picture in Figure 5.3, resembles a target with shots evenly distributed inside

the area of the square, with a fraction of them being outside the circle.

Figure 5.3. Hit and miss integration method.

Each time a point is generated, the distance between the center and the point is

calculated. If the distance is shorter than the radius of the of the circle, a hit is recorded.

The total number of hits τhits and shots (total number of generated pairs or τshots) are noted

down. The area of the circle is then proportional to τhits and that of the square to τshots.
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The ratio of the two areas can be given as:

S circle

S square
=
πr2

a2 ≈
τhit

τshot
(5.7)

Since a = 2r, an estimate of π can be calculated according to:

π ≈
4τhit

τshot
(5.8)

The accuracy of the estimate depends on the number of shots, generated from the uniform

distribution. The π number generated with 107 shots is found to be correct to four

significant figures and to have one more decimal place would require an order of

magnitude increase in the number of shots.70

Sampling the phase space requires a more efficient method of generating states.

This could be achieved through generating configurations according to a uneven

distribution, each configuration being chosen with its appropriate weight factor, known as

importance sampling. The efficiency of the importance sampling can be illustrated by an

example of evaluation of one dimensional integral.2 Let us assume that the integral has the

form:

I =

∫ 1

0
dx f (x) (5.9)

The idea is to estimate the integral by MC sampling, but instead of generating points

according a uniform distribution, the points are distributed according to a nonnegative

weight w(x) in the interval [0,1]. Equation 5.9 can be rewritten as:

109



I =

∫ 1

0
dx w(x)

f (x)
w(x)

(5.10)

If w(x) is the derivative of another function (du(x) = dx w(x)), which is nonnegative and

nondecreasing with u(0) = 0 and u(1) = 1, the above expression can be rewritten as:

I =

∫ 1

0
du

f [x(u)]
w [x(u)]

(5.11)

The integral can be evaluated by generating K random values of u, uniformly distributed

in the interval [0, 1]. The integral estimate is:

I ≈
1
K

K∑
i=1

f [x(ui)]
w [x(ui)]

(5.12)

The weight w [x(ui)] plays an important role in the integral evaluation. This can be seen by

calculating the variance of the integral (Var(I)). In Equation 5.12, the integral is

represented as a sum of uncorrelated random variables. Therefore the variance of the sum

can be expressed as the sum of the variances of each term:

Var(I) = Var

 1
K

K∑
i=1

f [x(ui)]
w [x(ui)]

 =
1

K2

K∑
i=1

Var
(

f [x(ui)]
w [x(ui)]

)
(5.13)

Using the definition of variance, for each term we can write:

Var(I) =
1

K2

K∑
i=1

〈(
f [x(ui)]
w [x(ui)]

−

〈
f
w

〉)2〉
=

1
K

〈( f
w

)2〉
−

〈
f
w

〉2 (5.14)
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From the latter expression, it can be seen that in the ideal case f (x)/w(x) is a constant over

the integration interval with a variance equal to zero. If on the other hand w(x) is constant,

then it would be a simple uniform Monte Carlo on the [0, 1] interval. In this case, if only a

small fraction of f contributes significantly to the integral value (for example when f (X)

is very narrow and steep bell like curve), the variance would be proportional to 1/(K f )

and consequently result in a highly inaccurate estimation. When sampling the

configurational phase space, most of the randomly constructed states will have very high

energy as the number of configurations with particular energy increases exponentially

with energy. Thus if using the brute force MC, sampling would be ineffective since a very

large number of trials would have to be generated to have a good estimate of the average

macroscopic quantity. The importance sampling of the configurational phase space has to

be carried out with the weight function being proportional to the Boltzmann factor. The

issue presented is that a transformation such as that from Equation 5.10 to Equation 5.11

is a difficult task and a necessary condition would be to calculate the partition function of

the system under study.

It is possible to generate a sequence of random states so that at the end each state

has occurred with its appropriate probability, without calculating the partition function of

the system. This is achieved by setting up a chain of states, called a Markov chain, with a

limiting distribution of ρN,V,T . In a Markov chain the outcome of each stochastic trial

belongs to a finite set of trials, which is the configurational space that is explored

{Γ1, Γ2, Γ3, .... Γm, Γn....} and the outcome of each trial depends only on the preceding

one.70 The probability of going from state m to a new one n is given by the transition

probability πmn, also known as the transition matrix. In a Markov chain, any process will
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converge to a unique state with a limiting distribution:

∑
m

ρmπmn = ρn (5.15)

The Markov chain is constructed such that every state can be visited from another state,

which is consistent with the ergodic hypothesis. The transition probability can be

considered as the product of the probability to perform the move (transition matrix,

denoted αmn) and the probability of accepting the move (acceptance probability, denoted

accmn). For convenience, the equation of the limiting distribution can be replaced with the

unnecessary strong condition of microscopic reversibility, known also as detailed balance

condition:

ρmπmn = ρnπnm (5.16)

or

ρmαmnaccmn = ρnαnmaccnm (5.17)

The transition matrix αmn in the above equations is stochastic, consistent with the

ergodicity requirement. It is designed so that the system can go from sate m to any of the

neighboring states n with equal probability (αmn = αnm).

The solution of the microscopic reversibility equation as suggested by Metropolis

is divided into two distinct cases:

1.

if ρn ≥ ρm → πmn = αmn for m , n (5.18)
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2.

if ρn < ρm → πmn = αmn(ρn/ρm) for m , n (5.19)

Thus in the first case, when ρn ≥ ρm, accmn = 1 and in the second case when ρn < ρm,

accmn = ρn/ρm. The two cases can be summarized in the following equation:

accmn = min
{

1,
ρn

ρm

}
(5.20)

The above equation is a simplified form of the Metropolis acceptance criterion, due to the

symmetry of the transition matrix. A more general form would include αmn:

accmn = min
{

1,
ρnαnm

ρmαmn

}
(5.21)

The first step in the MC scheme is to choose randomly a particle i in a simulation

box of N particles. A neighboring state can be chosen at random within a certain distance

from particle i. The translation of particle i from state m to state n is illustrated in Figure

5.4. The new position belongs to a finite number of possible positions Np within the

displacement volume, shown in Figure 5.4 as a shaded area. Thus, the transition matrix

can be defined as:

αmn = 1/Np (5.22)

The transition probability of moving from state m to state n is then given according

to Equations 5.18 and 5.19. When ρn ≥ ρm, Equation 5.18 applies. The inequality is

satisfied when δUmn = Un − Um ≤ 0 and the move is accepted. The calculation of the
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potential energy difference does not require the complete calculation of each pair of

particles, but just the changes associated with the translated atom:

δUmn =

 N∑
j=1

U(rn
i j) −

N∑
j=1

U(rm
i j)

 (5.23)

If the move results in ρn > ρm, then Equation 5.19 applies. The attempted move is

accepted this time with probability ρn/ρm. In calculating the ratio, it can be noted that the

configurational integral Z does not figure in the acceptance criteria:

ρn

ρm
=

exp (−Un/kBT )
ZN,V,T

ZN,V,T

exp (−Um/kBT )
= exp (−δUnm/kBT ) (5.24)

Figure 5.4. State m is obtained from state n by moving the particle within the shaded area
(a two dimension representation of the displacement volume)

In order to accept or reject the move with transition probability exp (−δUnm/kBT ),

a random number ξ between 0 and 1 is generated and compared to the acceptance

expression. If ξ < exp (−δUnm/kBT ), then the move is accepted and if

ξ > exp (−δUnm/kBT ) - rejected. In the second case scenario of rejection of the move, the
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old position of particle i is retained and the system remains in state m. Nevertheless it is

important to count this state once again as part of the Markov chain. The transition

probability of a Markov chain is such that:

∑
n

πmn = 1 (5.25)

This can be considered as a normalization requirement.2 The probability of accepting the

old configuration is then:

πmm = 1 −
∑
n,m

πmn (5.26)

which implies that the old configuration should be counted. Schematically the steps of the

algorithm are shown in Figure 5.5.

Finally any thermodynamic property 〈A〉N,V,T is obtained by averaging over the n

trials in the Markov chain:

〈A〉N,V,T = 〈A〉run (5.27)

Some important details of the Monte Carlo scheme include the displacement

volume and the acceptance ratio of accepted moves. If the displacement volume is chosen

to be very small, the particles are allowed to move over small distances and it will take

many MC steps to arrive at a statistically independent configuration. On the other hand, if

the volume is chosen to be too large, the particle position on average will change too

much. This will lead to a strong increase in the energy of the system and most of the time

the new configurations will be rejected. The displacement volume should be adjusted in

115



Figure 5.5. Schematic representation of the steps in the Metropolis Monte Carlo algorithm

accordance with the potential energy between the particles, such that a reasonable

acceptance ratio is obtained. In MC simulations it is generally accepted a ratio of 0.5.70

An important requirement in devising the MC scheme is the detailed balance

condition (Equation 5.16). Even though it is not strictly required for a Markov chain, its

nonobservance often leads to wrong sampling. An example of such breaking of the

detailed balance condition is provided in Frenkel’s book on molecular simulations.2 In the

step consisting of the choice for the new configuration if the random displacement is going

only in the positive direction (the randomly chosen x, y and z displacement vectors are
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positive), then the reserve move of putting the particle back at its original configuration is

impossible (αnm = 0). The new algorithm can cause divergence of a thermodynamic

quantity at high densities. Another example of non detailed balance sampling would be

when several trial moves (such as displacement, volume changes (required for an NPT

ensemble) and molecule rotations) are performed in a predetermined sequence. Once

again, the reserve move would be impossible, which leads to wrong sampling. Such a

sequential scheme, however, can be applied when choosing particles. Instead of randomly

choosing a particle in a system, an order in choosing the particles one after the other can

be established for faster convergence of the simulation. Although this algorithm certainly

breaks the microscopic reversibility condition, it has been shown to result in correct MC

sampling that satisfies the limiting distribution equation (Equation 5.15).75

5.4.2 Configurational bias Monte Carlo technique

Standard MC methods sample the configurational phase space by performing

rotational and translational changes on the molecules in the simulation box. They,

however, do not account for the correct distribution of molecular conformations, in which

molecules appear with the right statistical weights for different molecular structures.

Achieving conformational equilibrium is an essential part of the internal equilibrium of a

molecular fluid. Long chain molecules are particularly vulnerable to conformational

changes, the number increasing with the molecule length and temperature. The practical

solution of sampling the conformational phase space with the correct distribution was first

suggested by Rosenbluth and Rosenbluth36 and later extended by Siepmann and

Frenkel.37 The method is known as the Configurational Bias Monte Carlo (CBMC).

Conformational changes are obtained by regrowing the molecule or part of it bead by bead
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such that more probable configurations occur with a higher frequency. Each bead (or

monomeric unit) is part of the molecule and can be considered as a single potential site

interacting with its neighbors through intra and inter-molecular forces. An accurate model

of long chain molecules usually comprises stretching, bending and torsional

intra-molecular plus external non-bonded interactions (Figure 5.6).

Figure 5.6. Segment of a long chain molecule with the intra-molecular degrees of freedom
(stretching (r), bending (θ) and torsional changes (φ)). Each ball corresponds
to a single potential site (bead).

The generation of a new conformation starts by selecting a molecule and a bead

from it at random and removing the remaining of the molecule at either side of the bead.

The removed segment will be kept in the computer memory in order to be compared with

the newly regrown one. The regrowth starts with placing a new bead around the old

position, first by considering the intramolecular interactions for the model. The bonded

energy can be written as a sum of the vibrational, bending and torsional potentials

(Uvib(r), Ubend(θ), Uvib(φ)):

Ubond(r, θ, φ) = Uvib(r) + Ubend(θ) + Utors(φ) (5.28)

The length of the bond is often subjected to a harmonic potential with oscillations around
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an equilibrium distance. Thus the trial orientations can be distributed on an outer portion

of a sphere, enclosed by two spherical surfaces with radii that are slightly bigger and

slightly smaller than the equilibrium bond distance. Only a limited number of k trials are

generated in order to speed up the simulation. The probability of generating a new

position n from this set of trials configuration r is:

ρn,bonddr =
exp

[
−un,bond(r)/kBT

]
dr∫

dr exp
[
−ui,bond(r)/kBT

] =
exp

[
−un,bond(r)/kBT

]
dr

C
(5.29)

where un,bond is the bonded energy of monomer n, and C is the normalization constant

related to the bonded energy. Since r, θ and φ are used to represent the conformations of

the molecule (see Figure 5.6), it is convenient to work with spherical coordinates:

dr = r2dr dcosθ dφ (5.30)

The probability that this new trial position is generated then becomes:

ρn,bonddr =
exp

[
−un,vib(r)/kBT

]
exp

[
−un,bend(θ)/kBT

]
exp

[
−un,tors(φ)/kBT

]
r2dr dcosθ dφ

C

(5.31)

A new trial is obtained, by generating a random vector within the portion of a sphere

limited by the two radii and calculating the distance (r), bending (θ) and torsional (φ)

angles. The distance and the angles are accepted with a probability according to equation

5.31. If rejected, another vector is generated until one gets accepted. In case the new

position corresponds to the second bead in the molecule, any random vector is accepted
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with the probability distribution according to the vibrational energy, since no bending or

torsional restraints are present. The probability of generating the third bead is also

simplified, given that no torsional changes are present.

ρn,bonddr =
exp

[
−un,vib(r)/kBT

]
exp

[
−un,bend(θ)/kBT

]
r2dr dcosθ dφ

C
(5.32)

The next step is to calculate the external, non-bonded energy probability of the selected

bead. At this point, selecting the new position depends on the interactions with the beads

from the other molecules around and those from the same molecule separated by more

than 3 monomeric units:

ρn,ext(rn) =
exp

[
−un,ext(rn)/kBT

]∑k
i=1 exp

[
−ui,ext(rn)/kBT

] (5.33)

where un,ext(rn) is the external energy for the new bead and the denominator represents its

external configurational partition function. The latter term is given the symbol wi,ext(n):

ρn,ext(rn) =
exp

[
−un,ext(rn)/kBT

]
wi,ext(n)

(5.34)

Once the entire chain is regrown, the Rosenbluth factor is calculated:

Wext(n) =

l∏
i=1

wi,ext(n) (5.35)

where, l is the number of beads regrown.

In order to compare the thus obtained new conformation to the old (o) one, it is

necessary to repeat the same steps for the old chain. This time, the first step of evaluating

120



the bonded probability is omitted as it does not influence the final acceptance criterion for

accepting or rejecting the new structure. Each ”new” bead is also accepted with 100 %

probability as their positions in the old chain are predetermined. Same number of different

trials around the old monomeric unit however is generated, calculating the external energy

for each one (ui,ext(o)) and the external configurational partition function:

wi,ext(o) =

k∑
i=1

exp
[
−ui,ext(ro)/kBT

]
(5.36)

When the old conformation is retraced, once again the Rosenbluth factor is calculated:

Wext(o) =

l∏
i=1

wi,ext(o) (5.37)

The correct sampling of the transition from the old to the new chain conformation

is guaranteed by the detailed balance condition (Equation 5.17). In what follows, this

condition is discussed in details, comparing a single old and a new bead as a

conformational change, the extension being straightforward for a larger segment of the

molecule. The difference with respect to the conventional MC scheme is that the transition

matrix probability is biased according to the above described method of generating a new

bead from the old one. It depends on the product of generating a trial orientation

according to the bonded probability (Equation 5.29) and the external energy probability of

the selected bead (Equation 5.33):

αon = ρi,bond(n)ρi,ext(n)α′on (5.38)

where α′on is a symmetric transition matrix, such as the transition matrix in a conventional
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MC scheme. The detailed balance condition is:

ρoαonaccon = ρnαnoaccno (5.39)

By replacing αon with the expression in Equation 5.38, it becomes:

ρoρbond(n)ρext(n)α′onaccon = ρnρbond(o)ρext(o)α′noaccno (5.40)

Since α′ is symmetric and ρo ∝ exp [−u(o)/kBT ], the left and right side of the equation can

be written as follows:

1. Left side

exp [−u(o)/kBT ]
exp [−ubond(n)/kBT ]

C
exp [−uext(n)/kBT ]

wext(n)
accon (5.41)

2. Right side

exp [−u(n)/kBT ]
exp [−ubond(o)/kBT ]

C
exp [−uext(o)/kBT ]

wext(o)
)accno (5.42)

It is of note that since u(o) = ubond(o) + uext(o) one can express the probability of

being in the old configuration as:

exp [−u(o)/kBT ] = exp [−ubond(o)/kBT ] exp [−uext(o)/kBT ] (5.43)

Using the above expression, the detailed balance condition can be further simplified;

having the same bonding configurational partition function for the old and new bead, the
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final acceptance criterion becomes:

accon = min
{

1,
wext(n)
wext(o)

}
(5.44)

The move is accepted based solely on the external non-bonded energy of the trials

for the new and old bead. The convenience of using the Rosenbluth scheme in the

off-lattice case comes from the fact that bonded energy is omitted in the final acceptance

rule, which decreases the computational time. If more than one bead is grown, expressions

1 and 2 would grow with additional terms, corresponding to each bead in the regrown and

its counterpart old conformation. The acceptance criterion can be simplified again to give

this time a product of the wext factors for each new and old bead, which are the two

Rosenbluth factors (Equations 5.35 and 5.37).

accon = min
{

1,
Wext(n)
Wext(o)

}
(5.45)

Figure 5.7. Schematic representation of the CBMC algorithm in 2D. The black beads
correspond to part of the molecule which is regrown with the arrows indicating
the possible orientations for the next bead.

The CBMC technique is tightly coupled with the Gibbs Ensemble Monte Carlo

(GEMC) method, especially in the construction of phase diagrams of alkane chains. The
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particle exchange moves are essential to attain equilibrium in the Gibbs Ensemble. The

insertion of a chain molecule in the liquid phase must be accompanied with a change in

the conformational structure of the molecule in order to avoid overlapping and therefore it

is inserted bead by bead, in exactly the same manner as when a chain is regrown. The

particle exchange move, however, still presents a challenge for long molecules with

complex architecture. The configurational bias technique has to be implemented not only

for the particle exchange, but also with the MC move inside each of the simulation boxes,

for the regrowth (conformational change) of the chain.

Generation of trial positions is time consuming, when a branched chain is

considered. The acceptance of a trial configuration of the branched site now depends on

the bond length, the torsional angle and the two angles between the bond vector and the

two existing branches. The acceptance probability is thus decreased and the efficiency for

successful generation of a branched site is about 2-10 times lower than for a linear

molecule. This method was later improved by Nath and Khare67 by growing all the atoms

from a branch point simultaneously instead of one after another. This technique, described

in details by Macedonia and Maginn66 was found to be faster with an efficiency of

generating new configurations of branched sites an order of magnitude higher for simple

molecules and increases as the molecule becomes more complex. Yet, the acceptance

probability of the inserted molecule will depend on number of the preliminary established

configurations of a single branched segment.
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CHAPTER VI

CONCLUSION

The Wang-Landau method can be applied to effectively calculate vapor-liquid

equilibria curves. It is simple to use since a single simulation run can give rise to

equilibrium properties of the system at a given temperature. In this respect, it retains the

simplicity of GEMC and transition matrix MC schemes. In addition, efficient sampling of

the phase space is achieved through the incorporation of configurational bias Monte Carlo

or hybrid Monte Carlo techniques. Their integration significantly reduces the

computational time when sampling dense liquid regions. The integration of MD

trajectories, within the HMC algorithm, helps for the faster convergence of the simulation,

due to the concerted and deterministic moves of the particles. Furthermore, the

implementation of the WL algorithm in the NPT ensemble does not rely on biasing

strategies for the efficient insertion of particles in the dense liquid regions. Thus sampling

of fluids with a variety of molecular architecture is possible, without the need to adjust the

configurational bias according to the structural characteristics of the molecule. Sampling

of the liquid regions with the HMC method also removes the necessity of adjusting the

biasing strategy to fit the molecular structure, which is an issue present in the Gibbs

ensemble or grand canonical ensemble.

The WL scheme thoroughly samples the ensemble microstates of vapor and liquid

phases at coexistences. A noticeable feature of the method is the sampling of the interface
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region, which is avoided in other methods. This is achieved through an accurate

estimation of the ensemble partition function. The latter, in turn, is obtained by evaluating

a biasing function through an iterative scheme. In the NPT ensemble the convergence of

the simulation can be easily verified by ensuring the smoothness and continuity of the

canonical partition function. The simulation is conducted without prior precise knowledge

of equilibrium properties of the system - even though the simulations are performed at a

constant pressure, prior knowledge of the saturation pressure is not needed.

Wang-Landau simulations in the NPT ensemble is an efficient and reliable method

for simulating vapor and liquid phases in coexistence. Critical properties of copper from

our simulations have shown to be within the experimental range available and

extrapolation line of the experimental saturation pressures lies close to the simulated ones.

Vapor and liquid densities of linear and branched alkanes are in excellent agreement with

experimental data and critical points of isobutane and isopentane being within 1 to 7 % of

the available experimental data, while those of n-alkanes are within 2 to 3 %. The

accuracy of the simulation results proves the reliability of the method.
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