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ABSTRACT

A theoretical model for the determination of the beam stiffness of a 

captive column loaded as a simple-supported beam with a concentrated 

midspan load is described. A captive column is a high strength, 

light-weight composite structural member. Due to the composite nature of 

a captive column, the deflection due to shear forces, which is neglected 

in typical beam applications, must be included in the determination of 

the lateral deflection. The total deflection is obtained by setting the 

elastic strain energy stored in the captive column equal to the work that 

is applied to the column. The effects of changes in individual design 

parameters are investigated using the theoretical model. Experimental 

data was obtained to verify the theoretical model and the effects of 

changes in individual design parameters. Comparisons are also made 

between beam stiffness values obtained from the theoretical model and a 

finite element computer model.

Comparisons between beam stiffness values obtained from the 

theoretical model, experimental testing, and the finite element model 

indicate that the theoretical model can be used to determine captive 

column beam stiffness or to predict the effect of a change in an 

individual design parameter. Sources of error in the experimental 

results and possible areas of improvement in the theoretical model are 

identified and discussed.
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CHAPTER 1

INTRODUCTION

A captive column is a high-strength, light-weight composite struc­

tural member. The high strength, while maintaining light weight, is 

attained by taking full advantage of the mechanical properties of the 

three major components which make up a captive column: the caps, the 

core, and the wrap (see Figure 1).

The primary emphasis in the design of a captive column is to place 

material with high strength and a high elastic modulus (the caps) at as 

great a distance as possible from the neutral axis. By doing this, the 

moment of inertia of the member is increased, which increases the 

flexural load carrying capacity of a captive column beam or girder and 

the critical buckling load of an axially loaded captive column.

In order to maintain the caps at a specified distance from the 

neutral axis, there must be a way to prevent the caps from movement 

relative to each other and to prevent buckling of an individual cap. A 

light-weight core section is used to prevent inward buckling of the caps. 

The core section consists of core panels, one for each cap, joined to a 

common centerpiece. The core panel material must possess a relatively 

high compressive strength in the direction perpendicular to the caps.

The wrap, which is a fibrous material or fine wire helically wound around 

the core and caps, is used to prevent outward or lateral buckling of the 

caps. The material used for the wrap should have a high tensile strength 

and elastic modulus. Together, the core and the wrap maintain the

5
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cross-sectional geometry. The caps are essentially held captive, which 

leads to the name "captive column".

A multitude of cross-sectional geometries for cap placement are 

possible, with the number of possibilities limited by the designer's 

imagination and economic construction techniques. Shown in Figure 1 are 

two of the simplest, and thus the most common cross-sectional geometries 

in use. In Figure 2, three other geometries are shown, along with a 

comparison between straight and tapered members. The cross-sectional 

geometry which is used in a design will be dependent upon the 

application.

The Engineering Experiment Station at the University of North Dakota 

is currently conducting research which is aimed at determining how the 

captive column reacts to various load conditions. This research is being 

done under a grant from the North Dakota State Highway Department and the 

Federal Highway Administration. The main emphasis of the research is the 

application of captive columns to highway-related structures.

Triangular and square cross-section captive columns have been built 

and tested. The range of size for these captive columns varied from a 

length of 2.5 feet with a 1.25 inch square cross-section, to a length of 

20 feet with an 11 inch triangular cross-section. Steel and fiberglass 

reinforced polyester rods have been used as caps. The core material has 

been balsa wood or acrylic sheet. Kevlar 49, which is an aramid fiber 

manufactured by DuPont Company, has been used as the wrap material.

These materials represent a small part of the wide spectrum of possible 

materials that can be used in the construction of captive columns.

Larsen [1] conducted an extensive study of possible materials in a 

previous report.
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9

At the present time, information concerning the structural behavior 

of captive columns is very limited [1-3]. This information is necessary 

before an engineer can properly design a structure which will incorporate 

captive columns. Design information similar to that for common 

structural members (steel beams, reinforced concrete, wood trusses, etc.) 

must be obtained. Unfortunately, design information for captive columns 

is difficult to obtain due to the complexities involved in the 

interrelationship between the caps, core, and wrap and the many 

parameters involved in captive column design. The wrap is a good example 

of the many design parameters in a captive column. Proper design of the 

wrap involves the selection of a wrap material, the cross-sectional shape 

and size, the wrap density, the wrap angle, the wrapping tension, and the 

correct adhesive to bond the wrap to the cap. These parameters depend 

upon the stresses which the wrap will be subjected to in the given 

application.

Kipp [2] has developed a finite element computer model for the 

structural analysis of captive columns. This model can be used to 

determine the deflection of any point of the captive column and to 

determine the stress condition within individual components for a wide 

variety of load conditions. The previously mentioned physical testing 

was used to verify that the computer model yields information which is 

acceptable for engineering design and analysis [2,3]. A computer with 

large storage capabilities and access to a general purpose finite element 

computer program are required for the use of this computer model.

Initial research has established a method of applying classical beam 

theory to predict the beam stiffness of a captive column loaded as a
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simple-supported beam with a concentrated midspan load. The beam 

stiffness is determined by dividing the applied load by the computed 

deflection due to the bending moment only. In some cases, this method 

provides an accurate prediction of the actual beam stiffness, but in 

other cases, a large difference exists between the predicted and 

experimentally determined values. Examination of the data indicates that 

the deflection due to shear force, which is neglected in typical beam 

applications, may be the primary cause of the discrepancies in the 

results.

There were three objectives of the research presented in this 

thesis: 1) the application of classical beam theory to the determination 

of beam stiffness, 2) the identification of the major captive column 

design parameters, and 3) the investigation of the interrelationships of 

the captive column components in beam applications. The application of 

classical beam theory will include the deflection due to the bending 

moment and the deflection due to the shear force. Comparisons will be 

made between experimentally determined beam stiffness values and values 

predicted by the classical beam theory approach and by the computer 

model. These comparisons will indicate the effectiveness of the two 

methods in accounting for the interrelationships of the various captive 

column components.

The emphasis of this research is on captive columns loaded as 

simple-supported beams with a concentrated midspan load. However, a 

chapter is also included that deals with the applicability of the two 

methods for predicting beam stiffness for other load conditions.



CHAPTER 2

THEORETICAL EQUATIONS

The equations needed to calculate the theoretically determined beam 

stiffness will be developed in this chapter. These equations are 

developed by applying the principle of conservation of energy to 

classical beam theory.

Initial Application of Classical Beam Theory

The initial application of classical beam theory used the well known 

equation for the midspan deflection of a simple-supported beam with a 

concentrated midspan load [2,3]. This equation is shown below:

6 PL3 
48 El ( 1 )

where 6 = deflection

P = applied load 

L = span length 

E = elastic modulus 

I = moment of inertia.

Equation (1) is based upon a beam composed of a homogeneous, 

linearly elastic, isotropic material. A captive column is constructed of 

more than one material, with a possibility of one or more of the 

materials being anisotropic. Because of the nonhomogeneity of the 

captive column, an equivalent flexural rigidity, (EI)eC|, was developed.

11
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This flexural rigidity is the summation of the flexural rigidities for 

the individual components that make up the captive column [2,3]:

(EI,eq ' (EI)caps + (EI)panels * (EI)center (2 )

where (El)eq = equivalent flexural rigidity
-'“1

(El)caps = ^ exura  ̂rigidity of the caps

(El)paneis = flexural rigidity of the core panels

(El)center = flexural rigidity of the core centerpiece.

The moment of inertia for the various components can be derived from 

standard equations. The necessary formulas for square and triangular 

cross-section captive columns can be found in Appendix A.

As noted by an examination of equation (2), the effect of the wrap 

is neglected in the computation of the equivalent flexural rigidity. The 

wrap flexural rigidity was neglected because the wrap moment of inertia 

is small in comparison with the cap and core panel moments of inertia 

[2]. The effect of the wrap on the equivalent flexural rigidity will be 

examined in greater detail later in this chapter.

The deflection computed by using equation (1) is the deflection due 

to the bending moment. Derivation of the equation is based upon the 

fundamental hypothesis of flexure theory [4], This hypothesis states 

that plane sections normal to the neutral axis remain plane and normal to 

the neutral axis after the beam is subjected to a bending moment. A 

segment of a homogeneous, rectangular beam is shown in Figures 3A through 

3D. Two plane sections, which are parallel to each other in Figure 3A, 

remain plane after being subjected to a bending moment, Figure 3B, but 

are no longer parallel to each other. If shear forces exist on the beam, 

the plane sections become curved, Figure 3C, due to the mutual sliding of
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adjacent axial planes along each other [5]. This cross-section curvature 

results in additional deflection of the beam, which will be referred to 

as the deflection due to shear force. The total deflection of the beam 

is the sum of the deflections due to the bending moment and the shear 

force, Figure 3D.

For typical beams, the deflection due to shear force is very small 

and is neglected in the majority of cases. For a captive column, the 

deflection due to shear force may be significant and in some cases it is 

greater than the deflection due to the bending moment. The equations 

needed to calculate the total deflection will be derived in the following 

section.

Conservation of Energy

Work done on a body is measured by the product of the force applied 

to the body and the displacement of the body. The forces applied to a 

body produce stresses within the body. In a solid deformable body, a 

stress multiplied by its respective area is a force. The product of this 

force and the deformation, which is a displacement, is the work done on 

the body due to externally applied forces. This work is stored in the 

body as elastic strain energy. The elastic strain energy stored in the 

body can be equated to the work applied to the body by using the 

principle of conservation of energy. The deflection of axially loaded 

members, torsional members, and beams may be determined by using this 

principle.

When a concentrated external force is gradually applied to a 

simple-supported beam, the external work is equal to one-half of the 

total force multiplied by the deflection in the direction of its action. 

This external force produces stresses within the beam in the form of 

normal bending stresses and shear stresses. The work associated with
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these stresses is stored in the form of elastic strain energy. Using the 

principle of conservation of energy, the following equation is obtained:

W . = U. . -i ext total

—  = U + U2 normal shear (3)

where Wext = external work 

P = applied load

6 = deflection at the load in the direction of the load

Utotai = tots'! elastic strain energy

^normal = e^astic strain energy due to normal bending stresses

Ushear = elastic strain energy due to shear stresses.

For a linearly elastic material, stress is proportional to strain. 

When a perfectly elastic body is subjected to a stress, no energy is 

dissipated and the work done on the body is stored as recoverable elastic 

strain energy. Equations have been developed for the elastic strain 

energy stored in a perfectly elastic body per unit volume of a linearly 

elastic material [4]. By integrating over the volume of the body the 

following equations are obtained:

Unormal
f  o2d V
i

(4)
Volume

Ushear f I T  ^
Volume

where a = normal bending stress

E = elastic modulus
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x = shear stress

G = shear modulus.

Elastic Strain Energy Due to Normal Bending Stress

The beams under consideration in this research are captive columns 

with a constant cross-section, and therefore, the moment of inertia will 

be constant along the length of the beam. By using a transformed section 

of the captive column cross-section, the normal stress will vary linearly 

from the neutral axis according to the following formula:

where M = bending moment

The transformed section is developed in such a way that the resisting 

forces of the section are equivalent to the resisting forces of the 

actual cross-section. Substituting equation (6) into equation (4) and 

using dxdA as the incremental volume yields the following equation:

The bending moment at any section of a beam is constant and the order of 

integration in equation (7) is arbitrary. Furthermore, the moment of 

inertia is defined by the following equation:

y = distance from neutral axis

I = moment of inertia

Volume
(7)

(8)
area
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By rearranging the terms in equation (7), and using the above statements 

and equation (8), the following result is obtained:

“normal = J  z h ?  dx /  
length^ area

L

Unormal =f  2IT dx 

0

where L = span length

El = flexural rigidity.

The shear and bending moment diagrams for a simple-supported beam 

with a concentrated midspan load are shown in Figure 4. The bending 

moment varies linearly from zero at either end of the beam to a maximum 

value at the midspan of the beam. The bending moment for the left half 

of the beam may be represented by the following equation:

M = for 0 < x < j  (10)

Substituting equation (10) into equation (9), and using symmetry to 

reduce the integral, the following equation is obtained:

p2l3
Unormal = 96 (El)'eq

This equation yields the strain energy stored in the beam that is 

attributable to the normal bending stress.
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Notice that the equivalent flexural rigidity, computed by using 

equation (2), is used in equation (11). This value is easier to compute 

than transforming the section and will yield the same result for the 

elastic strain energy.

Effect of the Wrap Upon the Flexural Rigidity

The effect of the wrap on the equivalent flexural rigidity was 

initially neglected because the moment of inertia for the wrap is small 

in comparison with the core panel and cap moments of inertia. This is a 

true statement, but it does not represent a fair comparison. The compar­

ison should be made between the wrap flexural rigidity and the core panel 

and cap flexural rigidities. When this comparison is made, the effect of 

the wrap on the flexural rigidity may become large enough so that it 

should not be neglected.

Because the captive column is a complex structural member, questions 

exist regarding the role of the wrap in resisting external forces and 

moments applied to the structure. For the following discussion, consider 

a square cross-section captive column subjected to a pure bending moment. 

In Figure 5A, assume that the wrap strands are rigid truss members pin- 

connected to the caps. Under the application of the bending moment, the 

wrap strands on the concave and convex sides of the captive column will 

be subjected to compressive and tensile stresses, respectively, thus 

decreasing the curvature of the member, see Figure 5B. Because the wrap 

strands are oriented at an angle to the longitudinal axis, the stress can 

be divided into two components; one parallel and one perpendicular to the 

longitudinal axis. The component of the stress that is perpendicular to 

the neutral axis will tend to push the caps on the concave side apart and 

pull the caps on the convex side together (Figure 5C). This distortion



20

A) Portion of a Captive Column

B) Wrap on Concave and Convex Sides

Neutral Axis

C) Distortion of 
Cross-Section

D) Free Body Diagram
Showing Side Wrap Forces

FIGURE 5 - WRAP STRESSES DUE TO A 
PURE BENDING MOMENT
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of the cross-section will increase the curvature of the captive column.

It is believed that the difference between the decrease in curvature due 

to the parallel component of the wrap stress and the increase in 

curvature due to the cross-sectional deformation is negligible in most 

cases. It is also believed that any stress in the wrap strands on the 

sides of the captive column will be fairly uniform, at any given section, 

from cap to cap. Therefore, any horizontal component of stress above the 

neutral axis will be balanced by an equal stress below the neutral axis 

(Figure 5D). For these reasons, the contribution of the wrap is 

neglected in the computation of the equivalent flexural rigidity for a 

captive column.

The above discussion for a square cross-section captive column can 

be expanded to a cross-section of any shape. By examining the resulting 

stress components in the wrap strands it is expected that the 

contribution of the wrap to the flexural rigidity will be negligible.

This discussion is not intended to dispel the importance of the wrap 

in the captive column structure. The wrap, as stated in Chapter 1, 

provides resistance to outward or lateral buckling of the caps. An 

additional role of the wrap is to prevent cross-sectional deformation due 

to load conditions other than a pure bending moment. In virtually all 

applications, including the one under consideration in this research 

effort, a captive column will be subjected to shear forces. The role of 

the wrap in resisting shear forces may be very significant.

The inventor of the captive column claims that substantially all 

types of loading of a captive column results in tensile or compressive 

forces in the structure [6]. He further claims that by properly design­

ing the wrap, virtually all of the shear forces applied to a captive



22

column can be transferred into axial forces in the wrap. If this state­

ment is true, the wrap will be a significant factor in the computation of 

the elastic strain energy due to shear stresses. A method to determine 

the contribution of the wrap in resisting shear force will be developed 

in the following section. The truth of the inventors claim will become 

apparent in Chapter 6.

Elastic Strain Energy Due to Shear Stress

The elastic strain energy due to shear stresses is computed by using 

equation (5). In order to perform the integration needed for this 

equation, the shear stress at any point within the captive column must be 

determined. The shear stress at any distance, h, from the neutral axis 

of an isotropic, linearly elastic, homogeneous beam is computed by using 

the following formula:

( 1 2 )

where V = shear force

A cross-section of a beam is shown in Figure 6A with the dimensions 

labeled. The first moment of area may be computed by using either of the 

following formulas:

Q = first moment of area outside of height h

I = moment of inertia

b = width of the cross-section at the height h.

(13)

Almno

(14)



A) Isotropic, Homogeneous Beam B) Captive Column Cross-Section

FIGURE 6 - BEAM CROSS-SECTION FOR SHEAR STRESS DETERMINATION
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where y = distance from the neutral axis

A, = area above h Imno

y = distance from the neutral axis to the centroid 
of the area above h.

Since the shear stress is squared in the integral of equation (5), 

the sign of the shear force is insignificant. By examining the shear 

diagram of Figure 4, it is apparent that the magnitude of the shear force 

is equal to a constant value of one half of the applied load, P. For a 

captive column, the equivalent moment of inertia, computed by dividing 

the equivalent flexural rigidity of equation (2) by the cap elastic 

modulus, is used in equation (12). The cap elastic modulus is used in 

computing the equivalent moment of inertia because the flexural rigidity 

of the caps is by far the largest component of the equivalent flexural 

rigidity. As previously stated, this value is constant along the length 

of the captive columns under consideration. Substituting the above 

values for the shear force and moment of inertia into equation (12) 

yields the following:

T - VQ 
lb

P Ecaps M
b (15)

The first bracketed term in equation (15) is a constant value. The 

second term is a function of the vertical distance from the neutral axis. 

Since the shear stress is a function of vertical distance only and is not 

a function of axial position, the incremental volume, dV, may be replaced 

by the following:

dV = LdA (16)
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where L = span length

dA = incremental area of the cross-section.

Substituting equations (15) and (16) into equation (5) and simplify­

ing yields the following:

Ushear = /  h  dV
volume

Ushear

area

(17)

The above expression is valid provided that the equivalent flexural 

rigidity and the magnitude of the shear force are constant along the 

length of the span. The terms that are not within the integral yield a 

constant value for any given cross-sectional geometry. The integral is 

dependent upon the particular orientation of the cross section under 

consideration. The solution of this integral for a square cross-section 

captive column, oriented as in Figure 6B, will be developed in the 

remainder of this section.

The solution of the integral found in equation (17) is complicated 

due to three main reasons: 1) the possibility of a different material 

for each component of the cross-section, 2) the nature of the wrap 

strands in resisting shear force, and 3) the effect of a thin member 

positioned such that the vertical shear force acts at an angle to the 

member. Each of these complications will be addressed in the development 

of the solution to the integral. In the development, it will be assumed 

that the components of the cross-section are joined together in a fashion
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such that no slippage occurs between adjacent components. This implies 

that the strain on one side of an adhesive joint is equivalent to the 

strain on the other side of the joint.

An equivalent moment of inertia has been developed for the captive 

column cross-section. Due to the composite nature of the captive column, 

a similar development is needed in the computation of the first moment of 

area, Q, and the width of the cross-section, b. The equivalent 

quantities are determined in a similar fashion to the development of the 

equivalent moment of inertia:

eq

eq

where

^^caps + ^panels + ^ G^center + ^ G^wrap
^cap

(bG) + (bG) , + (bG) . + (bG)v ■'caps v 'panels v 'center v 'wrap
cap

Q = equivalent first moment of area eq

QG

(18)

(19)

eq

bG

^cap

= first moment of area of a component multiplied by its 
shear modulus

= equivalent cross-section width

= width of a component multiplied by its shear modulus 

= cap shear modulus.

The use of equations (18) and (19) results in a transformed section with 

the same resistance to shear force as the actual section. The cap shear 

modulus is used as the divisor in the two equations because the cap 

elastic modulus was used in the computation of the equivalent moment of 

i nertia.

The first moment of area for each of the components in equation (18)

is dependent upon the geometry of that component. The wrap is composed 

of individual strands, assumed to be uniformly distributed along the
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length of the captive column. The wrap strands on the top and bottom of 

the cross-section shown in Figure 6B are assumed to offer negligible 

resistance to vertical shear force. In order to determine the first 

moment of area for the individual strands of wrap on the sides of the 

cross-section, an equivalent width must be developed for a panel of wrap 

strands. This width is determined by considering the stress needed to 

distort a panel of wrap strands by an angle y. Two parameters of the 

wrap are used in this analysis. As shown in Figure 7A, the wrap angle,

<f>, is defined to be the angle between the wrap strands and the 

longitudinal axis of the captive column. Wrap density, p, is defined to 

be the number of wrap strands, in a given helical direction, per lineal 

inch of captive column.

Four rigid links are shown in Figure 7B. If the links are connected 

by frictionless pins, the assemblage will have no resistance to an 

applied shear stress. By adding wrap strands, which are represented by 

pin-connected links, the assemblage will have resistance to an applied 

shear stress (Figure 7C). This resistance is defined to be the shear 

stiffness of the wrap and is represented by the following equation:

(wG)WraP = P As E s1n<t> cos2<t> (20)

where (wG) = shear stiffness of the panel of wrap strands wrap

p = wrap density

Ag = cross-sectional area of one wrap strand

E = wrap material elastic modulus

<p = wrap angle.

The wrap is uniformly distributed along the length of the captive column; 

therefore, an equivalent width of the wrap panel is obtained by dividing 

shear stiffness by the shear modulus of the wrap material.
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FIGURE 7 - SHEAR STIFFNESS OF A WRAP PANEL
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w

(21)w.wrap g
wrap

Equation (21) represents the equivalent width of one side of wrap 

strands if there is no wrap pretension. With no pretension, the wrap 

strands will merely relax under an axial compressive force. For this 

reason, Figure 7C shows the wrap strands in one direction only. If the 

pretension is greater than the maximum compressive force that the strands 

will be subjected to, all of the wrap strands will resist the shear 

force. This pretension is defined to be the ideal pretension. In this 

case, the equivalent width will be the width calculated by using equation 

(21) multiplied by two. Derivation of equations (20) and (21) is found 

in Appendix B.

The centerpiece and caps are transformed into square regions with 

areas equivalent to the areas of the actual regions. These transforma­

tions are made in order to simplify the determination of the first moment 

of area. The error introduced by this simplification is negligibly 

small. The captive column cross-section, before and after the 

transformations are made, is shown in Figure 8, with the necessary 

quantities defined below:

D = cap centerline distance

d = cap diameter

tpanei = thickness of a core panel 

wcenter = width of the core centerpiece



'l/rap

FIGURE 8 - SIMPLIFIED SQUARE CROSS-SECTION
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wcap
x/tt d 

2 (22)

hl = w + /2 center (23)

h2 ’ (C-wcap)/2 (24)

h3 ' <D+Wcap>/2 (25)

The first moment of area for each of the components is shown below.

These values were computed using equation (13).

Caps
(26)Q(0, h2) = wcap (h/ - h2Z)

Q(h2. h3) - wcap (h32 - y2) (27)

Core Panels

hl> W l (h22 - hl2)
(28)

h2> - V f  W (h22 - 2> (29)

Q(h2. h3) = 0 (30)

Core Centerpiece

Q(0, hj) • "c‘f er (h32 - y2) (31)

Q(h1, h3) = 0 (32)

Wrap

h2> ■ V a p ( h22 - (33)

Q(h2, h3) = 0 (34)
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The width of each component, b, is needed for the solution of 

equation (19). The widths of the caps, core centerpiece, and wrap are 

given by the following equations.

1 = 2 w (35)caps cap

center wcenter (36)

I = 2 w (37)wrap wrap

The core panels of the cross-section shown in Figure 8 are oriented at a 

45° angle to the neutral plane. The horizontal width of a section is 

normally used to compute the shear stress. For thin sections, however, 

the thickness of the section is used to compute the shear stress [4],

For this reason, the following equation is used for the core panels:

bpanels 2 tpanels (38)

By substituting equations (26) through (38) into equations (18) and 

(19), three equations for the equivalent first moment of area divided by 

the equivalent cross-section width are derived. One equation will be 

derived for each of the following ranges of vertical distance:

1) 0 < y < hj, 2) hj < y < h^, and 3) h^ < y < h3.

Since the width of each component is independent of the height for 

the above three ranges of vertical distance, the incremental area, dA, in 

equation (17) can be reduced to the following values:

dA = [2(wG)wrap + (wG)center] 

Gcap
dy, for 0 < y < h1 (39)



33

dA
^ ( wG)wrap + 2>/2(tG|Lels]

cap
dy, for h1 < y < h2

dA = 2 wcap dy, for h2 < y < h3

(40)

(41)

The shear moduli ratios are again used to obtain an equivalent cross- 

section composed of the cap material.

Substituting equations (39) through (41) into equation (17), and 

using the horizontal plane of symmetry, the elastic strain energy due to 

shear force is computed as follows:

2
U =
shear 8G

cajas
TET eqj

dA
area

U

where K

Jo =

J3 =

p2l ^cap

4Gcap

hl

f(\3 \2

A 1
0

3eq/

h2

f(\3 \2 
)J V

hi
3eq /

h3r/(3eq\ 2
Jv
h2
W

shear = K[J1 + J2 + J3] 

2

dA

dA

dA

(42)
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By substituting the appropriate values into the three integrals and

performing the integrations, the following results are obtained:
c 2

J1 = cl^c2 hl ' 3 c2c3hl + T  hl ^ (43)

6 /. 5
^2 = c 4^-c 5 ^ 2  " ^1^ ”  3" C5C6 ^ 2  “  ) + 5“  ( ^ 2 " ^1 ^  ( 4 4 )

J3 = c7[c82(h3 - h2) - |  c8c9(h33 - h23) + ^  (h35 - h25)] (45)

where Cl " GcapL2CwG)wrap + (wG)center^

c2 = (h32 ‘ h22)(wG)cap + v/̂ 0122 ' hl2)(tG)panel + 
h 2

4 -  ^ c e n t e r  + h22 ^ w r a p  

c3 ~ 3  ŵG^center + ŵG^wrap

c = (wG)wrap +v/2(tG)panel 

4 2W < wG>wrap + (“ Ipanel^

c5 ■ <h32 - h22H wG)cap * h22^ tG)panel + <“G>wrap] 

c6 = ^ < tG)panel + <wG>„rap

. 2
c8 = h3 wcap 

c9 = wcap

For the interested reader, the solution of the above integrals can be 

found in Appendix C.
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Beam Stiffness

All of the quantities needed to determine the elastic strain energy 

stored in the captive column have now been computed. By substituting 

equations (11) and (42) into equation (3) and simplifying, the following 

relationship for deflection is obtained:

P <5 - n + U 
T  ' u normal shear

P6 _ P2L3 P2L
2 - W D 7 q 4Gcap

^cap [J1 + J2 + J3]

6 = PL 

48 (El)

24 (E ) 
1 + ____

eq L

(J, + + lL) (46)

The first term in the brackets of equation (46) accounts for the 

deflection due to the bending moment only. If the second term is 

neglected, equation (1) and equation (46) are equivalent. This is to be 

expected because the deflection due to shear forces is neglected in the 

derivation of equation (1).

Beam stiffness is defined to be the amount of force needed to 

produce a unit of deflection. By dividing the deflection computed by 

using equation (46) into the applied load, the beam stiffness is found to 

be:

k =

L3[l +

4 8 ( E I >eq

E4<Ecap>:

l2 Gcap <EI>eq
(Jj + J2 + J3)]

(47)
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where k = beam stiffness.

The above stiffness was determined by using the equivalent wrap

panel width for the case when there is no pretension. If the pretension

is sufficiently great to keep all of the wrap strands in tension under

the applied load, the stiffness will be increased. To determine this

stiffness, replace w in the constant values c, through ca with r wrap 1 o

^wwrap*

As previously noted, equation (47) applies for a square 

cross-section captive column positioned as shown in Figure 6B. If the 

captive column is rotated to a different orientation, or if a different 

cross-section is used, a different value for the elastic strain energy 

due to shear forces will result. The development of the equations needed 

to find the elastic strain energy due to shear forces for a square cross- 

section captive column rotated 45° and for a triangular cross-section 

captive column can be found in Appendix D. The development begins with 

equation (17) and follows the same steps used in the development of 

equation (42). The beam stiffness equations for the above cases can also 

be found in Appendix D.

Due to the large number of captive columns that were analyzed in 

this research effort, computer programs for the determination of beam 

stiffness were written for square and triangular cross-section captive 

columns. These programs may be found in Appendix E.

There are limitations in the use of equation (46) that should be 

discussed at this time. The major limitation is that this direct method 

can only be used to determine the deflection at the location of the 

applied load. To determine the deflection at other locations,
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Castigliano's theorem must be used. This method will be discussed in 

Chapter 8.

The contribution of the wrap in maintaining the cross-sectional 

geometry is neglected in the development of equation (46). The wrap 

decreases the cross-sectional deformation caused by loads that are not 

applied with a line of action through the centroid of the cross-section. 

This deformation will lead to an increase in the deflection in the 

vicinity of the applied load. The computed deflection is the deflection 

of the cross-section at the neutral axis of the captive column. The 

deflection of the cross-section at locations other than the neutral axis 

may not be the same due to the cross-sectional deformation. A further 

limitation is the fact that a range of stiffness values exists for 

various wrap pretensions, from the case of no pretension to an ideal 

pretension.

The above limitations should be considered when using equation (46). 

The verification of the method of applying classical beam theory which 

has been presented here will be discussed in Chapter 6.



CHAPTER 3

COMPUTER MODEL

A brief description of a finite element computer model will be given 

in this chapter. This model, which was developed by Kipp [2], can be 

used to conduct a complete structural analysis of a captive column under 

various load conditions. The input data needed to compute beam stiffness 

will be discussed here in greater detail.

General Computer Model

The computer model uses the Structural Analysis Program (SAP IV), 

which is a general purpose finite element program [7]. The model uses 

standard element types and can easily be adapted for use with other 

commerically available finite element programs.

A number of possible element combinations were considered for the 

computer model of a captive column. The final model was selected because 

it is adaptable to a wide variety of captive column geometries, material 

types, and load conditions while still yielding predictions of captive 

column behavior that are acceptable for engineering purposes.

Axial-force truss elements, beam elements, and plane stress elements 

are used in the computer model. The input data required by the SAP IV 

program for each of the element types is summarized below:

1. Truss element - coordinates of two nodal points (one at 
each end of the element), elastic modulus, and cross- 
sectional area,

2. Beam element - coordinates of three nodal points (one at 
each end of the element and one to define the local coord­
inate system), elastic modulus, Poisson's ratio, cross- 
sectional area, and the moments of inertia in the local 
coordinate system,

38
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3. Plane stress element - coordinates of four nodal points 
(one at each corner of the element), elastic moduli and 
Poisson's ratios for the three local coordinate directions 
of the element, shear modulus, and the element thickness.

By using the correct material and geometrical properties, a wide variety

of materials, both isotropic and anisotropic, and cross-sectional shapes

can be considered for each of the components of the captive column.

The following paragraphs will give a brief description of the finite 

element computer model. References [2] and [3] are recommended if a more 

specific description of the model is desired.

The core of a captive column is modeled by using a series of beam 

and plane stress elements. Figure 9 shows a portion of a core section 

for a triangular cross-section captive column. The plane stress element 

and the two radial beam elements represent a segment of a core panel.

The plane stress element is used to represent the in-plane stiffness of 

the core panel, with the radial beam element used to represent the 

out-of-plane stiffness. Although the two elements physically occupy the 

same space in the core panel, the geometrical properties of the beam 

elements are specified in such a way that there is no addition to the in­

plane stiffness of the core panel. These core panel segments are 

connected to a series of beam elements, which represent the centerpiece 

of the core.

The caps, shown in Figure 10, are represented by beam elements. The 

two nodal points used to define the ends of each beam element are also 

two of the nodal points used for the adjoining core panel segment. By 

using common nodal points, the cap beam elements are modeled as being 

rigidly attached to the core panel at these two points.
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Truss elements are used to model the wrap. As shown in Figure 11, a 

single element is used to model a group of individual strands. This 

approximation is required in order to reduce the size of the system of 

equations, thus reducing the computer solution time. This representation 

of the wrap is not believed to have any significant effect on the 

structural behavior. The nodal points used to define the truss elements 

are the same points that are used in defining the cap and core panel 

elements, thus implying rigid attachment of the wrap to the caps. Any 

wrap angle can be modeled by varying the location of these nodal points 

along the length of the captive column model.

The wrap strands in a captive column cannot carry compressive loads. 

The truss elements used to represent a group of wrap strands can carry 

both tensile and compressive loads, and therefore, a method was devised 

to identify the truss elements that are subjected to compressive loads. 

The truss elements so identified are then assigned a very small elastic 

modulus, which in effect, removes them from the model. This method 

requires a multi-step process which consists of identifying elements that 

are carrying a compressive load and then assigning the low modulus to 

these elements. This process is repeated until all of the wrap elements 

in the model are either carrying a tensile load or have been assigned the 

low modulus.

To reduce the amount of relaxation of the wrap strands upon the 

application of a load, pretension can be applied to the wrap strands 

during construction. This wrap pretension can be modeled in the wrap 

truss elements of the computer model by using the thermal stress 

capabilities of SAP IV. Any degree of pretension can be modeled by 

properly assigning the nodal point temperatures, the truss element zero
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stress temperature, and the truss element coefficient of thermal expan­

sion. The use of thermal stress to model wrap pretension will be 

examined in greater detail in Chapter 7.

After the nodal point coordinates and the required information for 

each of the element groups have been specified, a wide variety of load 

conditions can be investigated by properly assigning boundary conditions 

and the magnitude and location of external forces and moments. When 

symmetry in the captive column geometry and the load condition exists, 

the correct assignment of boundary conditions will enable the user to 

obtain the desired information by modeling a portion of the captive 

column. The output from the SAP IV program consists of displacements, 

both translational and rotational, for all of the nodal points and stress 

information for all of the elements.

Simple-Supported Beam

A vertical transverse plane of symmetry exists through the midspan 

of a simple-supported beam with a concentrated midspan load. The captive 

columns under consideration have a constant cross-section along the 

longitudinal axis. By using the symmetry of the load condition and the 

captive column geometry, the analysis using the full captive column can 

be reduced to an analysis using one half of the captive column (see 

Figure 12). The boundary conditions at the midspan are specified in such 

a way that the nodal points in the vertical transverse plane can not 

translate in the axial direction or rotate about the axis normal to the 

plane of the paper. This reduced model will result in a reduction in the 

size of the system of equations, thus decreasing the computer solution

time.
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FIGURE 12 - SIMPLE-SUPPORTED BEAM WITH CONCENTRATED MIDSPAN LOAD
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An example of the nodal point numbering scheme for a square 

cross-section captive column is shown in Figure 13, with the boundary 

conditions and applied forces necessary to model the load condition of 

Figure 12A listed in the lower, right-hand corner. The boundary 

conditions specify that there is no vertical translation of the bottom 

two cap beam element nodal points, nodes 6 and 9, at the support end of 

the captive column. The applied load, P, is reduced by a factor of two 

to account for the symmetry of loading. This reduced load is equally 

divided between the top two cap beam element nodal points, nodes 62 and 

63, at the midspan of the captive column. These boundary conditions at 

the support and the division of the load between two nodal points 

represent the support and load configuration of the physical testing of 

square captive columns that was done in this research effort. The 

following chapter will give specific information concerning the end 

supports and the loading apparatus for square and triangular 

cross-section captive columns.

The numbering scheme shown in Figure 13 is an example of a possible 

configuration. The total number of nodal points and elements will depend 

upon the length of the span and the wrap angle.

As defined in Chapter 2, the beam stiffness is determined by 

dividing the applied load by the deflection at the location and in the 

direction of the applied load. The total load, P, that is being modeled, 

not the reduced load, P/4, should be used in the determination of the 

beam stiffness.

The computer model, unlike the previously developed theoretical 

approach, will yield information concerning the distortion of the cross- 

section due to the applied load. For the square cross-section captive



Note: Nodal points on the neutral

FIGURE 13 - NODE NUMBERING FOR A SQUARE CROSS-SECTION CAPTIVE COLUMN
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column shown in Figure 13, four stiffness values may be computed 

depending upon which of the following four deflections is used: 1) the 

deflection of the top cap nodal points (nodes 62 and 63), 2) the 

deflection of the centerpiece nodal point (node 65), 3) the deflection of 

the bottom cap nodal points (nodes 61 and 64), or 4) an average value.

Any difference between the four stiffness values will depend upon the 

amount of cross-sectional deformation. The computer model also yields 

the deflection of any nodal point within the model.



CHAPTER 4

TEST SPECIMENS AND PHYSICAL TESTING

Forty-eight captive columns were constructed and tested during the 

various phases of this research effort. A description of each captive 

column will be given in this chapter, along with a brief description of 

the physical testing that was used to obtain beam stiffness values for 

the captive columns.

Captive Column Test Specimens

All of the captive columns that were built and tested in this 

research effort had either a square or triangular cross-section that was 

constant along the length of the member. These captive columns were 

tested in order to determine whether the analytical approach and/or the 

computer model yield adequate predictions of beam stiffness. Identifica­

tion of the effects of the various design parameters on stiffness was 

accomplished by holding all of the parameters constant except the 

parameter under consideration.

All of the test specimens were built and tested in the Structures 

Laboratory, which is located in Upson Hall at the University of North 

Dakota. Construction of the core assembly and attachment of the caps was 

done strictly by hand. A semi-automated wrapping machine was used to 

apply the helically wound wrap. Structural adhesives were used to bond 

the various components together.

The physical dimensions and materials used for all of the test 

specimens are listed in Table 1. The physical properties for all of the 

materials are listed in Table 2. When balsa wood was used as the core
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TABLE 1

DIMENSIONAL PROPERTIES

Captive
Column
Number

Core Panel 
Thickness (in), 

Material

Core
Centerpiece 
Width (in), 
Material

Cap
Diameter (in), 

Material

Wrap
Density (strands/in), 

Diameter (in), Wrapping 
Tension (lbs), Angle (degrees)

Distance 
Between Cap 
Centers (in)

1 3/16,BW 3/16,DF 1/8,FRP 32.0,0.0054,low,45 1.250
2 3/16,BW 3/16,DF 1/4,FRP 34.6,0.0054,low,45 1.156
3 3/16,BW 3/16,DF 1/8,ST 32.1,0.0054,low,45 1.246
4 3/16,BW 3/16,DF 1/4,ST 34.2,0.0054,low,45 1.168
5 3/16,BW 3/16,DF 1/8,FRP 21.4,0.0054,low,45 1.865
6 3/16,BW 3/16,DF 1/4,FRP 22.5,0.0054,low,45 1.781
7 3/16,BW 3/16,DF 1/8,ST 21.2,0.0054,low,45 1.885
8 3/16,BW 3/16,DF 1/4,ST 22.6,0.0054,low,45 1.767
9 3/16,ACR 3/16,ACR 1/8,FRP 29.8,0.0054,low,45 1.344
10 3/16,ACR 3/16,ACR 1/8,ST 30.1,0.0054,low,45 1.328
11 3/16,ACR 3/16,ACR 1/4,ST 22.2,0.0054,low,45 1.805
12 1/4,BW 1/4,DF 3/8,FRP 16.1,0.0054,med,45 3.719
13 1/4,BW 3/4,DF 3/8,FRP 16.4,0.0054,med,45 3.660
14 1/4,BW 1/4,DF 1/2,FRP 16.6,0.0054,med,45 3.613
15 1/4,BW 3/4,DF 1,2/FRP 16.5,0.0054,med,45 3.633
16 3/8,BW 1 ,DF 3/8,FRP 14.3,0.0076,med,45 7.000
17 5/16,BW 1 ,DF 1/2,FRP 13.8,0.0132,med,45 7.223
18 3/8,BW 1 ,DF 1/2,ST 14.2,0.0132,high,45 7.078
19 3/16,ACR 5/8,ACR 1/2,ST 11.8,0.0132,high,45 6.790
20 3/8,BW 1, DF 1/2,FRP 13.3,0.0132,high,45 10.062



TABLE 1 (Continued)

Captive 
Column 
Number

Core Panel 
Thickness (in), 

Material

Core
Centerpiece 
Width (in), 
Material

Cap
Diameter (in), 

Material

Wrap
Density (strands/in), 
Diameter (in), Wrapping 

Tension (lbs), Angle (degrees)

Di stance 
Between Cap 
Centers (in)

21 3/8,BW 1 ,DF 1/2,ST 13.2,0.0132,high,45 10.092
22 1/2,BW 1-1/8,DF 1/2,ST 11.3,0.0132,high,45 8.880
23 1/2,BW 1-1/8,DF 1/2,ST 11.0,0.0132,high,45 9.094
24 1/2,BW 1-1/8,DF 5/8,ST 13.3,0.0132,high,45 10.062
25 3/16,BW 5/8,DF 3/8,ST No Wrap 3.188
26 3/16,BW 5/8,DF 3/8,ST 6.3,0.0076,1.5,45 3.180
27 3/16,BW 5/8,DF 3/8,ST 18.9,0.0076,0.75,45 3.180
28 3/16,BW 5/8,DF 3/8,ST 18.9,0.0076,1.5,45 3.180
29 3/16,BW 5/8,DF 3/8,ST 18.9,0.0076,4.0,45 3.172
30 3/16,BW 5/8,DF 3/8,ST 37.8,0.0076,1.5,45 3.172
31 3/16,BW 5/8,DF 3/8,ST 63.2,0.0076,1.5,45 3.164
32 3/8,BW 1 ,DF 1/2,ST 17.7,0.0076,4.0,60 3.711
33 3/8,BW 1 ,DF 1/2,ST 18.3,0.0076,4.0,45 3.711
34 3/8,BW 1 ,DF 1/2,ST 15.6,0.0076,4.0,30 3.711
35 3/8,BW 1 ,DF 1/2,ST 17.6,0.0076,4.0,60 3.750
36 3/8,BW 1 ,DF 1/2,ST 18.1,0.0076,4.0,45 3.750
37 3/8,BW 1 ,DF 1/2,ST 15.4,0.0076,4.0,30 3.750
38 1/4,BW 3/4,DF 3/8,ST 2.5,0.0132,1.5,45 4.000
39 1/4,BW 3/4,DF 3/8,ST 2.5,0.0132,4.5,45 4.000
40 1/4,BW 3/4,DF 3/8,ST 2.5,0.0132,6.0,45 4.000



TABLE 1 (Continued)

Captive 
Column 
Number

Core Panel 
Thickness (in), 

Material

Core
Centerpiece 
Width (in), 
Material

Cap
Diameter (in), 

Material

Wrap
Density (strands/in), 
Diameter (in), Wrapping 

Tension (lbs), Angle (degrees)

Distance 
Between Cap 
Centers (in)

41 1/4,BW 3/4,DF 3/8,ST 7.5,0.0132,1.5,45 4.000
42 1/4,BW 3/4,DF 3/8,ST 7.5,0.0132,4.5,45 4.000
43 1/4,BW 3/4,DF 3/8,ST 7.5,0.0132,6.0,45 4.000
44 1/4,BW 3/4,DF 3/8,ST 15.0,0.0132,1.5,45 4.000
45 1/4,BW 3/4,DF 3/8,ST 15.0,0.0132,4.5,45 4.000
46 1/4,BW 3/4,DF 3/8,ST 15.0,0.0132,6.0,45 4.000
47 3/8,BW 1 ,DF 3/8,ST 7.5,0.0132,4.5,45 4.000
48 1/2,BW 1-1/8,DF 3/8,ST 7.5,0.0132,4.5,45 4.000

Captive columns numbered 1-4, 9-19, 22, 23, 25-48 have square cross-sections
Captive columns numbered 5-8, 20, 21, 24 have triangular cross-sections

Legend
BW - balsa wood 

ACR - acrylic 
DF - Douglas fir
FRP - fiberglass reinforced polyester 
ST - steel



TABLE 2

MATERIAL PROPERTIES

Material
Cap

Steel FRP
Core Panel

Balsa Wood Acrylic Sheet
Centerpiece 
Douglas Fir

Wrap
Kevlar 49, 
Type 965

Modulus of 
Elasticity (psi)

30 x 106 6 x 106
E 13,400
En 400,000 450,000 
E^ 13,400

E 71,000 
En 1.2 x 10° 
E^ 71,000

18 x 106

Shear
Modulus (psi)

11.5 x 106 l x  106 18,000 173,076 85,000 —

Poisson's
Ratio

0.3 uns 0,30.3 0.3 

-si ° - 04

y 0.35 
u"! ° - 35 

0.02
—

Weight

(lb/in3) 0.282 0.072 0.0041 0.043 0.018 0.056
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panel material, the grain of the wood was directed radially outward from 

the centerpiece. The wood was oriented in this way so that the core 

panels could resist the compressive force applied to the core assembly 

during the wrapping operation.

The beam stiffness of a captive column is dependent, to a certain

degree, upon the amount of wrap pretension. This pretension is applied

to the wrap while it is being wound onto the captive column. The tension 

value listed in Table 1 is the tension in the wrap strands during the 

winding operation. In Chapter 6 , it will be shown that the pretension of 

the wrap on the captive column is less than this wrapping tension. It 

was difficult initially to monitor and control the amount of tension in

the wrap strands during the wrapping operation. The lack of control over

the wrapping tension necessitated the use of a subjective value (low, 

medium, or high) for approximately half of the test specimens. 

Improvements in the wrapping machine allowed for better control of the 

tension applied to each wrap strand. A numerical value is listed in 

Table 1 for specimens built after these improvements were made.

Test Apparatus

All of the captive columns were loaded as simple-supported beams 

with a concentrated midspan load. The wide variation in specimen length 

required the use of two test set-ups. The test set-up used for specimens 

under thirty inches in length is shown in Figure 14. A hydraulic testing 

machine, Versa Tester Model 30M, was used to apply the load. The load 

measurement device was a Lebow IK load cell with a Vi shay Ellis digital 

strain indicator. A Soil-Test dial indicator was used to measure the 

deflection of the loading platen.
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t

FIGURE 14 - TEST CONFIGURATION FOR SMALL CAPTIVE COLUMNS

FIGURE 15 - TEST CONFIGURATION FOR LARGE CAPTIVE COLUMNS
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An Enerpac hydraulic ram and hand pump were used to apply the load 

to specimens over thirty inches in length, see Figure 15. The load cell 

and strain indicator described above were used to measure the applied 

load. Soil-Test dial indicators were used to measure the deflection of 

the top and/or bottom caps at midspan.

When square cross-section captive columns were tested, a narrow 

steel bar was placed between the loading device and the specimen, see 

Figure 16A. By doing this, the applied load was equally divided between 

the two upper caps. The captive columns were supported at the two ends 

by narrow steel bars in contact with the two lower caps.

Two methods of load distribution were used for triangular cross- 

section captive columns. When the specimen was tested with an apex down, 

Figure 16B, the method described above was used. Rigid frames were used 

to support the three caps at each end of the specimen, see Figure 16C. 

When the specimen was tested with an apex up, Figure 16D, a rigid frame 

was used to distribute the load between the three caps. Narrow steel 

bars were used as end supports for the two lower caps.
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A) Load Distribution, 
Square Cross-Section

C) End Support, Triangular 
Cross-Section

B) Load Distribution, Triangular 
Cross-Section (Apex Down)

D) Load Distribution, Triangular 
Cross-Section (Apex Up)

FIGURE 16 - LOAD DISTRIBUTIONS AND END SUPPORTS



CHAPTER 5

RESULTS

The beam stiffness values determined experimentally will be 

presented in this chapter, along with the test procedure used to obtain 

these results. The analytical approach developed in Chapter 2 and the 

computer model described in Chapter 3 were used to predict beam stiffness 

values for the physical test specimens. These values are also presented 

in this chapter.

Experimental Results

Each of the captive columns listed in Table 1 was tested using one 

of the test set-ups described in the previous chapter. Approximately one 

half of the captive columns were tested more than once, using either a 

different test span or, in the case of triangular cross-section 

specimens, a different angular orientation of the specimen (apex up 

versus apex down).

The data collected for each test consisted of a change in deflection 

for a change in load, rather than absolute deflection for an absolute 

load. A small initial load, varying from twenty pounds for small 

specimens to one hundred pounds for large specimens, was applied and 

measurements were made relative to this point. This initial load was 

applied to ensure that the steel bars or rigid frames used to distribute 

the load or as end supports were in full contact with the caps.

The experimental data proved to be quite linear in nature. The 

general linear model (GLM) method was used to compute the equation of the 

best fit straight line for each of the tests:

58
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Reflection m^Road^ + a (48)

where

m

a

Reflection

Road

= change in deflection 

= change in load 

= slope of the best fit line 

= zero intercept of the best fit line.

The value of the zero-intercept, for virtually all of the tests, was 

statistically insignificant. The beam stiffness is determined by taking 

the reciprocal of the slope:

To ensure repeatability of the tests, data was obtained for at least 

two load cycles for each specimen. In some cases, the test specimen was 

rotated about its axis (90 degrees for square cross-sections and 120 

degrees for triangular cross-sections) and the tests were repeated. This 

was done to yield information concerning the symmetry of the cross- 

section. The results of these multiple tests indicated that the 

structural response was repeatable and that the captive columns tested 

were very close to being symmetric. The results presented here are based 

on all of the data that was collected for each set of tests.

The experimentally determined beam stiffness values can be found in 

Table 3, along with the values predicted by the analytical approach and 

the computer model. For tests done on triangular cross-section captive 

columns, a triangle is drawn next to the captive column number. This 

triangle indicates the orientation, apex up or apex down, of the captive 

column for that test. Due to distortion of the cross-section during 

loading, the deflection was not the same for all of the caps at the

Road (49)
Reflection



TABLE 3

BEAM STIFFNESS VALVES

_______ _ Beam StiffnessHflbs/in)
Captive Analytical Computer Model

Test
Number

Column 
Number

Span (in) Gage
Point

Experimental No
Pretension

Ideal
Pretension

No
Pretension

Ideal
Pretension

1 1 26.5 TC 381 270 279 257 281
2 1 21.7 TC 515 469 492 436 496
3 1 16.9 TC 909 911 979 805 981
4 2 26.5 TC 817 807 880 676 837
5 2 21.7 TC 1290 1330 1500 1060 1400
6 2 16.9 TC 2140 2370 2810 1740 2540
7 3 26.5 TC 760 1030 1170 822 1090
8 3 21.7 TC 1160 1630 1930 1220 1760
9 3 16.9 TC 1770 2740 3450 1890 3010

10 4 26.5 TC 1690 2260 2930 1550 2510
11 4 21.7 TC 2330 3210 4400 2170 3690
12 4 16.9 TC 3640 4760 6890 3810 5690
13 5-A 28.0 AVG 293 238 247 244 264
14 6-A 28.0 AVG 681 701 787 678 821
15 7-A 28.0 AVG 757 858 1000 823 1050
16 8-A 28.0 AVG 1460 1620 2180 1540 2350
17 9 28.0 TC 439 358 359 372 379
18 10 28.0 TC 1250 1350 1370 1240 1300
19 11 28.0 TC 5660 6630 6900 4270 5120
20 12 50.8 BC 2090 1720 2000 1520 2000
21 13 50.8 BC 1980 1840 2100 1510 1970
22 14 50.8 BC 3950 2250 2730 1900 2650
23 15 50.8 BC 3000 2530 3020 1940 2690



TABLE 3 (Continued)

_____________________ Beam Stiffness^ (lbs/in) ~________
Captive Analytical Computer Model

Test
Number

Column
Number

Span (in) Gage
Point

Experimental No
Pretension

Ideal
Pretension

No
Pretension

Ideal
Pretension

24 16 216.0 BC 173 147 149 145 150
25 16 187.2 BC 266 221 226 217 228
26 16 158.4 BC 429 352 363 344 367
27 16 129.6 BC 750 609 636 589 646
28 16 100.8 BC 1450 1170 1250 1110 1280
29 17 216.0 BC 303 276 283 266 284
30 17 187.2 BC 465 416 428 398 432
31 17 158.4 BC 734 664 692 626 701
32 17 129.6 BC 1310 1150 1220 1060 1240
33 17 100.8 BC 2330 2210 2420 1970 2510
34 18 216.0 BC 1150 1120 1220 966 1190
35 18 187.2 BC 1680 1610 1800 1350 1750
36 18 158.4 BC 2550 2410 2780 1940 2680
37 18 129.6 BC 3980 3780 4580 2900 4380
38 18 100.8 BC 6760 6300 8150 4540 7710
39 19 216.0 BC 1140 1160 1190 1110 1170
39 19 216.0 TC 1100 1160 1190 1070 1150
40 19 187.2 BC 1650 1720 1780 1620 1740
40 19 187.2 TC 1580 1720 1780 1530 1690
41 19 158.4 BC 2550 2670 2800 2470 2720
41 19 158.4 TC 2390 2670 2800 2280 2590
42 19 129.6 BC 4140 4430 4720 3980 4560
42 19 129.6 TC 3740 4430 4720 3510 4210
43 19 100.8 BC 7530 7980 8730 6860 8330
43 19 100.8 TC 6460 7980 8730 5580 7230



TABLE 3

Captive
Test Column Span (in) Gage Experimental
Number Number Point

44 20-V 200.0 BC 402
44 20-V 200.0 TC 371
45 20-A 200.0 AVG 391
46 20-V 160.0 BC 761
46 20-V 160.0 TC 693
47 20-A 160.0 AVG 709
48 20-V 120.0 BC 1620
48 20-V 120.0 TC 1350
49 20-A 120.0 AVG 1540
50 21-V 200.0 BC 1410
50 21-v 200.0 TC 1300
51 21 -A 200.0 AVG 1370
52 21-V 160.0 BC 2390
52 21-V 160.0 TC 2100
53 21 -A 160.0 AVG 2310
54 21-v 120.0 BC 4720
54 21-V 120.0 TC 3660
55 21-A 120.0 AVG 4150
56 22 117.6 BC 6930
57 23 117.6 BC 7030
57 23 117.6 TC 6240
58 24-V 120.0 BC 6360
58 24-V 120.0 TC 5240
59 24-A 120.0 AVG 5720
60 25 54.0 BC 1270

(Continued)

_____ Beam'Stiffness (Ibs/in) ~  _________ ______
Analytical ' Computer Model

No Ideal No Ideal
Pretension Pretension Pretension Pretension

326 333 328 347
326 333 317 339
326 333 321 343
603 623 611 665
603 623 574 639
603 623 592 651
1284 1356 1320 1520
1284 1356 1160 1390
1284 1356 1240 1450
1320 1480 1210 1490
1320 1480 1130 1410
1320 1480 1160 1440
2230 2620 2010 2680
2230 2620 1790 2440
2230 2620 1890 2520
4120 5190 3620 5450
4120 5190 2980 4570
4120 5190 3240 4840
6210 7810 4740 7380
6350 8010 4830 7560
6350 8010 4160 6660
5360 6960 4680 7190
5360 6960 3970 6130
5360 6960 4250 6450

cr»
ro

1400 1080



TABLE 3 (Continued)

Beam Stiffness' (Ibs/in)

Test
Number

Captive 
Column 
Number

Span (in) Gage
Point

Experimental
Analytical 

No Ideal 
Pretension Pretension

Computer Model 
No Ideal 

Pretension Pretension

60 25 54.0 TC 1030 1400 879
61 26 54.0 BC 2240 2180 2850 1620 2520
61 26 54.0 TC 1980 2180 2850 1520 2380
62 27 54.0 BC 2830 3430 4720 2300 4260
62 27 54.0 TC 2460 3430 4720 2170 4030
63 28 54.0 BC 3360 3430 4720 2300 4260
63 28 54.0 TC 2910 3430 4720 2170 4030
64 29 54.0 BC 3460 3420 4710 2300 4240
64 29 54.0 TC 2820 3420 4710 2170 4020
65 30 54.0 BC 4540 4710 6220 2950 5740
65 30 54.0 TC 3760 4720 6220 2780 5460
66 31 54.0 BC 5340 5800 7250 3490 6830
66 31 54.0 TC 4400 5800 7250 3280 6520
67 32 48.0 BC 7230 6430 8330 4320 6600
67 32 48.0 TC 6990 6430 8330 4110 6320
68 33 48.0 BC 8240 7760 10600 5110 8480
68 33 48.0 TC 7370 7760 10600 4660 7790
69 34 48.0 BC 9010 7460 10100 4940 7910
69 34 48.0 TC 7410 7460 10100 4350 7010
70 35 48.0 BC 7030 6460 8380 4360 6640
70 35 48.0 TC 6520 6460 8380 4140 6350
71 36 48.0 BC 8260 7780 10600 5150 8570
71 36 48.0 TC 7340 7780 10600 4700 7860
72 37 48.0 BC 8620 7470 10100 4990 8020
72 37 48.0 TC 7370 7470 10100 4380 7090



TABLE 3

Captive
Test Column Span (in) Gage Experimental
Number Number Point

73 38 88.0 BC 1410
73 38 88.0 TC 1340
74 38 72.0 BC 1980
74 38 72.0 TC 1850
75 38 56.0 BC 2900
75 38 56.0 TC 2610
76 39 88.0 BC 1550
76 39 88.0 TC 1490
77 39 72.0 BC 2170
77 39 72.0 TC 2090
78 39 56.0 BC 3300
78 39 56.0 TC 3120
79 40 88.0 BC 1740
79 40 88.0 TC 1690
80 40 72.0 BC 2500
80 40 72.0 TC 2410
81 40 56.0 BC 3700
81 40 56.0 TC 3470
82 41 88.0 BC 1690
82 41 88.0 TC 1600
83 41 72.0 BC 2450
83 41 72.0 TC 2280
84 41 56.0 BC 3590
84 41 56.0 TC 3290

(Continued)

Beam Stiffness' 
Analytical

7 lbs/in)
Computer Model

No
tension

Ideal
Pretension

No
Pretension

Ideal
Pretensi

1540 1850 1200 1640
1540 1850 1130 1560
2170 2700 1650 2360
2170 2700 1530 2210
3190 4100 2380 3560
3190 4100 2140 3230
1540 1850 1200 1640
1540 1850 1130 1560
2170 2700 1650 2360
2170 2700 1530 2210
3190 4100 2380 3560
3190 4100 2140 3230
1540 1850 1200 1640
1540 1850 1130 1560
2170 2700 1650 2360
2170 2700 1530 2210
3190 4100 2380 3560
3190 4100 2140 3230
2080 2540 1560 2340
2080 2540 1490 2250
3120 3990 2230 3620
3120 3990 2080 3420
4890 6670 3320 5950
4890 6670 3010 5430

CT>



TABLE 3

Captive
Test Column Span (in) Gage Experimental
Number Number Point

85 42 88.0 BC 2100
85 42 88.0 TC 2020
86 42 72.0 BC 3270
86 42 72.0 TC 3140
87 42 56.0 BC 5100
87 42 56.0 TC 4730
88 43 88.0 BC 2220
88 43 88.0 TC 2150
89 43 72.0 BC 3480
89 43 72.0 TC 3350
90 43 56.0 BC 5500
90 43 56.0 TC 5120
91 44 88.0 BC 2000
91 44 88.0 TC 1930
92 44 72.0 BC 2950
92 44 72.0 TC 2870
93 44 56.0 BC 4590
93 44 56.0 TC 4450
94 45 88.0 BC 2590
94 45 88.0 TC 2560
95 45 72.0 BC 4230
95 45 72.0 TC 4020
96 45 56.0 BC 7260
96 45 56.0 TC 7080

(Continued)

Beam Stfffness (Ibs/in) _________
Analytical Computer Model

No
Pretension

Ideal
Pretension

No
Pretension

Ideal
Pretensi

2080 2540 1560 2340
2080 2540 1490 2250
3120 3990 2230 3620
3120 3990 2080 3420
4890 6670 3320 5950
4890 6670 3010 5430
2080 2540 1560 2340
2080 2540 1490 2250
3120 3990 2230 3620
3120 3990 2080 3420
4890 6670 3320 5950
4890 6670 3010 5430
2540 2960 1890 2810
2540 2960 1800 2720
3990 4900 2780 4580
3990 4900 2600 4360
6670 8770 4280 8080
6670 8770 3880 7400
2540 2960 1890 2810
2540 2960 1800 2720
3990 4900 2780 4580
3990 4900 2600 4360
6670 8770 4280 8080
6670 8770 3880 7400

CT)
<_n



TABLE 3

Captive
Test
Number

Column
Number

Span (in) Gage
Point

Experimental

97 46 88.0 BC 2560
97 46 88.0 TC 2430
98 46 72.0 BC 4240
98 46 72.0 TC 4000
99 46 56.0 BC 7160
99 46 56.0 TC 6450

100 47 88.0 BC 2460
100 47 88.0 TC 2400
101 47 72.0 BC 3840
101 47 72.0 TC 3660
102 47 56.0 BC 6320
102 47 56.0 TC 5800
103 48 88.0 BC 2440
103 48 88.0 TC 2350
104 48 72.0 BC 3910
104 48 72.0 TC 3710
105 48 56.0 BC 6470
105 48 56.0 TC 5940

(Continued)

______B~eam Stiffness (lbs/in)
Analytical Computer Model

No Ideal No Ideal
Pretension Pretension Pretension Pretension

2540 2960
2540 2960
3990 4900
3990 4900
6670 8770
6670 8770
2460 2770
2460 2770
3840 4470
3840 4770
6350 7750
6350 7750
2460 2780
2460 2780
3840 4500
3840 4500
6340 7810
6340 7810

1890 2810
1800 2720
2780 4580
2600 4360
4280 8080
3880 7400
1990 2520
1910 2440
2970 3980
2790 3790
4630 6680
4220 6160
1950 2500
1880 2430
2890 3930
2740 3760
4500 6590
4140 6120

orcrv



67

midspan of the captive column. The column in Table 3 headed Gage Point 

indicates whether the deflection of the top or bottom caps was measured. 

In the case of triangular cross-sections with an apex up, all three caps 

are in contact with the load distribution frame. If there is no deform­

ation of the frame, all three caps will deflect an equal amount, yielding 

an average value.

Analytical Results

Predicted beam stiffness values were obtained for each captive 

column flexure test that was performed. Two stiffness values are listed 

in Table 3 for each test. These values represent a range from the case 

where there is no wrap pretension to the case of ideal wrap pretension.

As noted in Chapter 2, the analytical approach for predicting beam stiff­

ness is unable to determine the extent of the cross-sectional 

deformation. The results listed in Table 3 represent the deflection of 

the neutral axis of the cross-section.

The equivalent flexural rigidity, used in computing the beam stiff­

ness, for each captive column is listed in Table 4, along with the radius 

of gyration and the core significance. The core significance is defined 

by the following ratio:

core significance = X 100* (50)

This term represents the contribution of the core to the overall 

resistance of the captive column to the applied bending moment.

Computer Model Results

The computer model was also used to predict the beam stiffness for 

each flexure test. Again, two stiffness values are listed in Table 3,
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TABLE 4

COMPUTED CAPTIVE COLUMN PROPERTIES

Captive Column 
Number

1
2
3
4
5
6
7
8 
9

10
1 1
1 2
13
14
15
16
17
18
19
20 
21  
22
23
24
25

25 - 28 
29, 30 

31
32,33,34 
35,36,37 
38 - 46
47
48

Radius of 
Gyration (in)

0.582
0.570
0.614
0.585
0.725
0.721
0.762
0.722
0.547
0.627
0.885
1.829
1.634
1.793
1.702
2.891
3.216
3.451
3.319
3.815
4.057 
4.297 
4.370
4.058 
1.569 
1.565 
1.561 
1.557 
1.814 
1.833 
1.952 
1.916 
1.897

Core
Significance (%)

0.91
0.17
0.18
0.03
1.04
0 . 2 0
0 . 2 1
0.04
22.98
5.55
1.76
0.36
0.70
0.18
0.38
1.40
0 . 6 8
0.16
1.91
0.75
0.15
0.24
0.27
0.13
0.09
0.09
0.09
0.09
0.18
0.18
0.14
0.37
0.45

total
El(106 lb-in2)

0.1164
0.3989
0.5741
2.0327
0.1296
0.4715
0.6564
2.317
0.1731
0.6890
4.907
9.222
8.963
15.48
15.68
32.96
61.96 

295.9 
277.3
60.15

300.7 
466.0
488.8 
467.2
33.82
33.65
33.48
33.32
81.63
83.35
53.20
53.33
53.37
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one for the case of no wrap pretension and the other for the case of 

ideal wrap pretension. The computer model is able to predict the amount 

of cross-sectional deformation. The stiffness values listed in Table 3 

correspond to the stiffness of the top or bottom caps as determined by 

physical testing.

Cone!usions

In general, the computer model yields a better prediction of the 

experimental beam stiffness than the analytical approach. Comparisons 

between the experimentally determined and analytically predicted beam 

stiffness values will be made in the latter part of the following 

chapter. Possible sources of error in the experimental results, as well 

as inadequacies in the analytical approach, will be identified there.

The computer model results will be examined in Chapter 7.



CHAPTER 6

ANALYTICAL RESULTS

The influence of individual design parameters on the beam stiffness 

of a captive column will be discussed in this chapter. The following 

parameters will be investigated: 1 ) cross-section shape and size, 2) 

cap and core panel materials and dimensions, 3) wrap material, density, 

diameter, angle, and wrapping tension, and 4) span length. The 

analytical development of Chapter 2 will be used to predict the effect of 

a change in each of the above parameters. The experimentally determined 

beam stiffness values will then be studied to see whether or not the 

predicted behavior can be verified by experimental evidence.

Approximate Beam Stiffness

The beam stiffness for a square cross-section captive column, 

oriented as in Figure 6B, can be computed by using equation (47). For 

convenience, equation (47) is repeated below:

k =
48(El)

eg_

L3[l + 24<Ecap> 

lZ Gcap <EI>eq
(Jj + J2 + J3)]

(51)

It is very difficult to isolate the effect of an individual design 

parameter in the above equation. For this reason, the equation will be 

simplified by introducing approximations for some of the quantities in 

the equation.

The major component of the equivalent moment of inertia for a 

captive column is generally the product of the area of each cap and the

70
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square of the distance from the centroid of the cap to the neutral axis. 

If all of the caps are made of the same material and have equal diameter, 

d, the flexural rigidity for a square cross-section captive column can be 

approximated by the following equation:

2 2 
it E d *  D*

(EI)eq £ -----  (52)

For the test specimens under consideration in this research effort, 

the contribution of the integrals and to the sum of the three 

integrals (J^ + Jg + J^) is less than five percent. The equivalent 

first moment of area used in computing is primarily due to the first 

moment of area of the caps. By neglecting the first moment of area of 

the wrap and the core panels, the following equation is developed:

J ('•S’cap'^2 - h

panel

[2(wG)wrap + 2 /2"(tG)panel Jt.
G ycap

j  [(*G>w-ap * ^  (tG>panell[<wGU  1 * 3 *  ~ ^

2 ’ 2 Gcap [("G>«rap + <tG>pane1]2
(h2 - hx)

This equation can be further simplified by making the following two 

substitutions:

(wG)cap
u 2, . 1 d2 D
h2 } -----r ~

d I w center
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Substituting the above quantities into the equation for the integral J2 

and simplifying yields the following equation for an approximation to the 

integral J2:
ir a u u

(53)J2 =
/ d 4D2G

— 3 Z - £ S E b 1 h  1

where jwGjwrap + sfl (tG)panel 

[{wG)wrap + {tG)panel]2

H1 = °*5D " °*443d " °-5wcenter

Approximate equations have been developed for (El) and By

setting = J3 = 0, substituting equations (52) and (53) into 

equation (51), and simplifying, the following approximate equation for 

beam stiffness is developed:

k =
12ird2D2 E _________  cap

L3 + 3L7rd2E B,H, cap 1 1

(54)

Using the above equation, the effect of the previously identified 

parameters can more easily be determined.

The first term in the denominator of equation (54) accounts for the 

deflection due to the bending moment and the second term accounts for the 

deflection due to the shear force. If the deflection due to the shear 

force is neglected when computing the beam stiffness, equation (54) will 

become:

k a

2 2 
12nd D E cap (55)

The effect of a change in the cap material or diameter, cap centerline 

distance, or span length can easily be determined by examining equation 

(55). For example, by doubling the cap diameter, the stiffness will be 

increased by a factor of four.
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Experimentally determined beam stiffness values indicate that the 

increase in stiffness due to a decrease in the span length or an increase 

in the cap diameter, cap elastic modulus, or cap centerline distance is 

not as great as the increase predicted by equation (55). The 

discrepancies between the experimental beam stiffness and the stiffness 

predicted from equation (55) indicate the need for including the 

deflection due to the shear force when predicting beam stiffness.

Equation (54) must be used to determine the full effect of a design 

parameter.

Predicted Captive Column Behavior

The component materials and physical dimensions for a square

cross-section captive column are listed below. This captive column will

serve as the reference with respect to which the influence of the various

parameters will be examined.

Caps: 3/8 inch diameter steel

Core Panels: 3/8 inch thick balsa wood

Core Centerpiece: 3/8 inch thick Douglas Fir

Wrap: 0.0132 inch diameter Kevlar, 45° angle, 10 strands/inch, 
assume ideal pretension

Cap Centerline Distance: 4 inches

Span Length: 72 inches

The interrelationships of the variables are complex and the effect 

of a change in an individual design parameter is dependent upon the 

values of the other parameters. For example, it will be shown that the 

beam stiffness is very dependent upon the wrap density, diameter, 

material, and angle for the captive column described above. If the core 

panel material is acrylic sheet instead of balsa wood, the stiffness 

will not be nearly as dependent upon the wrap parameters.
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The effect of a change in each design parameter will be discussed 

independently. This will be accomplished by solving equation (54) in 

terms of the particular parameter under consideration. For the captive 

column described above, the stiffness is highly dependent upon each 

parameter. That is why these particular values were chosen.

Cap Elastic Modulus

An increase in the cap elastic modulus will increase the numerator 

of equation (54) and the term in the denominator associated with the 

deflection due to shear force. The following equation is obtained by 

expressing equation (54) in terms of the elastic modulus:

84.8 E
k = ___________ cap________
K 373,000 + 0.00726 Ecap

2
where k and Ec have units of pounds/inch and pounds/inch , 

respectively.

The beam stiffness calculated from the above equation is plotted in

Figure 17 for values of the cap elastic modulus ranging from 0 to
2

60,000,000 pounds/inch . The beam stiffness computed from equation (55) 

is also plotted in Figure 17. When deflection due to shear force is 

neglected, beam stiffness is proportional to the elastic modulus. As 

shown in Figure 17, the difference between the beam stiffness values 

predicted from equations (54) and (55) increases with an increase in the 

elastic modulus. This can be explained by comparing the magnitude of the 

deflections due to the bending moment and shear force. At low values of 

the elastic modulus, the deflection due to shear force is negligible when 

compared with the deflection due to the bending moment. When this is the 

case, equations (54) and (55) will predict approximately the same value 

for the beam stiffness. As the elastic modulus is increased, the
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FIGURE 17 - BEAM STIFFNESS VS. CAP ELASTIC MODULUS
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deflection due to shear force becomes a significant factor. When the 

deflection due to shear force is important, equation (55) will yield a 

higher prediction for the beam stiffness than equation (54).

Cap Diameter

Using steel (E = 30,000,000 lb/in2) as the cap material, the 

following equation is obtained for the beam stiffness as a function of 

the cap diameter:

k = __________ 18.1(10)6d2________

373 + 941d2(1.813 - 0.443d)

where d has units of inches.

Beam stiffness values calculated from the above equation and from 

equation (55) are plotted in Figure 18 for cap diameters ranging from 0 

to 1 inch. When deflection due to shear force is neglected, increasing

the cap diameter by a factor of N will cause the stiffness to increase by
2

a factor of N . For small cap diameters, the deflection due to shear 

force is negligible and equations (54) and (55) yield approximately the 

same value for the beam stiffness. As the cap diameter is increased, the 

deflection due to shear force becomes an important factor in the 

determination of the beam stiffness and equation (55) no longer applies. 

Span Length

Using 3/8 inch diameter steel caps and varying the span length in 

equation (54), the following equation is obtained:

k = 2.54(10)9 

L3 + 3030L

where L has units of inches.

Beam stiffness values calculated from the above equation are plotted 

in Figure 19, along with the stiffness calculated from equation (55), for
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12,000

10,000

Equation (55) / y r

8,000

1 /  Equation (54)

6,000

4,000

2,000

(
1_______1_______1______ 1_______1_______1_______1_______L

) 0.25 0.5 0.75 1.0

Cap Diameter (in)

FIGURE 18 - BEAM STIFFNESS VS. CAP DIAMETER
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FIGURE 19 - BEAM STIFFNESS VS. SPAN LENGTH
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span lengths varying from 48 to 144 inches. For long span lengths, the 

term in the denominator that accounts for the deflection due to the 

bending moment is much greater than the term that accounts for the 

deflection due to shear force. When this is the case, equations (54) and 

(55) will yield approximately the same value for the beam stiffness. As 

the span length is decreased, the deflection due to shear force becomes 

more significant relative to the deflection due to the bending moment, 

and therefore, the difference between the beam stiffness values predicted 

from equation (54) and (55) increases.

Cap Centerline Distance

With 3/8 inch diameter steel caps and a 72 inch span length, the 

following equation for the beam stiffness as a function of the cap 

centerline distance is obtained from equation (54):

, _ 159,000 D* 2
K 373 + 132(0.5D - 0.354)

where D has units of inches.

In Figure 20, the beam stiffness computed from the above equation

and from equation (55) are plotted for cap centerline distances ranging

from 0 to 8 inches. When the deflection due to shear force is neglected,
2

the beam stiffness increases by a factor of N when the cap centerline 

distance is increased by a factor of N. As the cap centerline distance 

is increased, the deflection due to shear force becomes more significant 

in the determination of the beam stiffness. As this happens, equation 

(55), which is accurate for relatively small centerline distances, can no 

longer be used to predict the beam stiffness.

The effects of changes in the four parameters found in equation (55) 

have been discussed. It has been found that this equation and equation
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Cap Centerline Distance (in)

FIGURE 20 - BEAM STIFFNESS VS. CAP CENTERLINE DISTANCE
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(54) yield approximately the same beam stiffness value if the following 

conditions are satisfied: 1 ) low cap elastic modulus, 2) small cap 

diameter, 3) long span length, and 4) small cap centerline distance.

This statement leads to a conclusion that the deflection due to shear 

force is small when compared with the deflection due to the bending 

moment if the above four conditions are satisfied. As mentioned at the 

beginning of this section, the effect of a change in one parameter is 

dependent upon the values of the other parameters. For this reason it is 

difficult to place a numerical value on the four conditions described 

above.

Core Panels and Wrap

When the deflection due to shear force is not negligible, equation 

(54) must be used to obtain a prediction of the beam stiffness. Based on 

the captive column reference values presented earlier, equation (54) can 

be expressed as follows in terms of the core panel and wrap properties:

k = --------------

373 + 4.71(10)6

2.55(10)6

~ r̂7pT ~ ^ U e lJ
[(wG)wrap + (tG)panel]

2
where w and t have units of inches and G has units of pounds/inch .

The equivalent wrap width multiplied by the wrap shear modulus has 

previously been defined to be the wrap shear stiffness. In a similar 

fashion, the core panel thickness multiplied by the core panel shear 

modulus will be defined to be the core panel shear stiffness. An 

increase in either of these shear stiffnesses will result in an increase 

in the beam stiffness.

Equation (20), which was developed in Chapter 2 and is repeated 

below, is used to compute the wrap shear stiffness.
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(wG)wrap = P Ac E,s wrap sin<j> cos (j>

The above equation was developed for the case of no wrap pretension. If 

there is an ideal pretension applied during the wrapping operation, the 

effective width will be twice the value calculated above. If there is 

some pretension applied, but it is less than the ideal pretension, the 

effective width will fall within the range represented by the two values 

It will be assumed in the following discussion that the wrap is ideally 

pretensioned, and therefore the above equation will be multiplied by two 

The effect of pretension will be discussed more thoroughly later in this 

chapter.

By substituting the expression for the area of an individual wrap 

strand into the above equation and applying the pretension factor of two 

the following equation is obtained:

By increasing the wrap density, diameter or elastic modulus, the 

magnitude of the wrap shear stiffness is increased, thus increasing the 

beam stiffness. For constant values of the above three parameters, the 

wrap angle that maximizes the wrap shear stiffness can be determined by 

setting the first derivative of equation (56) with respect to the wrap 

angle equal to zero and solving for the wrap angle:

(56)

(wG)wrap

<f, = 35.3°

= constant
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When the wrap density is held constant, a wrap angle of 35.3 degrees 

will maximize the wrap shear stiffness, but this is not the only 

criterion to consider when choosing the wrap angle. The total amount of 

wrap material that is required to wrap a captive column will influence 

the total weight and the cost of the captive column.

The length of wrap material, 1, that is required per linear inch of 

captive column is computed by using the following equation:

1 = 8 p D csc<f) (57)

The wrap shear stiffness and the amount of wrap needed for a wrap 

density of 1 strand per inch are plotted in Figure 21 as functions of the 

wrap angle. As expected, the shear stiffness attains a maximum value at 

a wrap angle of 35.3 degrees. The amount of wrap needed decreases from a 

value that approaches infinity at 0 degrees to a minimum value at 90 

degrees, where the wrap shear stiffness is equal to zero.

To determine the wrap angle that will yield the maximum wrap shear 

stiffness for a given amount of wrap, equation (57) is solved for the 

wrap density in terms of the wrap length:

1 sin* 
p 8D (58)

The above expression for wrap density is substituted into equation (56) 

yielding the following:

(wG) = d^ E sin̂ di coŝ d> (59)v 'wrap 16D wrap wrap v v v '

The amount of wrap material, the cap centerline distance, and the wrap 

diameter and elastic modulus will now be held constant. By 

differentiating the above equation with respect to the wrap angle and 

setting the result equal to zero the following angle is determined:
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D = 4.0 in; p = 1.0 strand/in.; d = 0.0132 in; E = 18(10)® lbs/in2
W r a U  wrap

(wG) = d^ E sin<t> coŝ 'J' = 4930 sin<t> cos^f ' 'wrap 2 wrap wrap

1 = 8pD csc<t> = 32 esc*

FIGURE 21 - WRAP PARAMETERS FOR CONSTANT WRAP DENSITY
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where C = * 1 d2

(wG)wrap = c sin2<|> cos2<|>
d 2 2
d^(wG)wrap = 2C sin<f> cos<f>[cos $ - s i = 0

<j> = 45.0°

= constant.16D wrap wrap

The wrap shear stiffness and density for a constant amount of wrap 

are plotted in Figure 22 as a function of the wrap angle. The amount of 

wrap is based on a wrap density of 1 strand/inch and a wrap angle of 45 

degrees. The shear stiffness reaches a maximum value at 45.0 degrees.

The shift in the wrap angle that maximizes the wrap shear stiffness from 

35.3 to 45.0 degrees is due to the fact that the wrap density decreases 

as the wrap angle decreases.

From the above discussion, it is apparent that the optimum wrap 

angle for a captive column subjected to a flexural load is 45.0 degrees. 

This angle will maximize the wrap shear stiffness for a given amount of 

wrap.

The beam stiffness for a range of values of the wrap and core panel 

shear stiffnesses is plotted in Figure 23. These beam stiffness values 

are based upon the captive column described at the beginning of this 

section. The beam stiffness predicted from equation (55) is also plotted 

on Figure 23. Since equation (55) is not dependent upon the wrap or core 

panel shear stiffnesses, the beam stiffness is a constant value.

When the wrap and the core panel shear stiffnesses are both small, 

the deflection due to shear force will be greater than the deflection due 

to the bending moment, which will result in a low value for the beam 

stiffness. As the wrap and the core panel shear stiffnesses increase, 

the deflection due to shear force decreases, and therefore, the beam 

stiffness increases.
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1 = 8pD csc<|> = 32 esc 45° = 45.25 in/linear in

(wG)wrap TOT C a p  Ewrap sf"2* ’ 6970 sl'"2< COS

1 si n4> 
p 8D 1.414 sin<j>

FIGURE 22 - WRAP PARAMETERS FOR CONSTANT AMOUNT OF WRAP MATERIAL
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FIGURE 23 - BEAM STIFFNESS AS A FUNCTION OF CORE
PANEL AND WRAP SHEAR STIFFNESSES
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Figure 23 represents a good example of the interdependence of 

captive column design parameters. The core panel shear stiffness for 3/8 

inch thick balsa wood is 6750 pounds per inch. For this core panel shear 

stiffness the beam stiffness is very dependent upon the wrap shear 

stiffness. If 3/8 inch thick acrylic sheet is used as the core panel 

material, the core panel shear stiffness will increase to 65,000 pounds 

per inch. At this value, the beam stiffness is not very dependent upon 

the wrap shear stiffness. The reverse situation is also true. The wrap 

shear stiffness for the parameters listed at the beginning of this 

section is 17,400 pounds per inch. For this value the beam stiffness is 

very dependent upon the core panel shear stiffness. As the wrap shear 

stiffness increases, however, the beam stiffness becomes less dependent 

upon the core panel shear stiffness.

Cross-Section Geometry

A square cross-section captive column, oriented as in Figure 24A has 

been used to describe the effect of the various design parameters. If a 

square cross-section captive column is rotated about its longitudinal 

axis, or if a different cross-section is used, the effect of a change in 

any given parameter may not be the same.

Equations needed to determine the beam stiffness of a square captive 

column, rotated to the orientation shown in Figure 24B, are developed in 

Appendix D. An approximate beam stiffness equation, similar in form to 

equation (54), is also developed and is repeated below:

1 2 ird V  E
le „ _________  capk = —2 2

+ 3Lird̂ E B9H9 cap 2 2

_ 2 sj2(wG)wrap + (tG)panel 

[2(wG)wrap + (tG)panel]2

(60)

where



A) Square Cross-Section

FIGURE 24 - CAPTIVE COLUMN CROSS-SECTIONAL SHAPES
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H2 = 0.707D - 0.443d - 0.5wcenter 

Except for the second term in the denominator, which accounts for 

the deflection due to shear force, this equation is the same as equation 

(54). The beam stiffness computed from equation (60) will be slightly 

less than the stiffness computed from equation (54). Furthermore, the 

normal stress in two of the caps will be greater for the case when the 

captive column is rotated 45 degrees. This is due to the fact that the 

distance from these caps to the neutral axis increases as the captive 

column is rotated.

The above statements suggest that the best orientation for a square 

cross-section captive column is the one shown in Figure 24A. This 

conclusion is intuitively obvious due to the fact that two of the caps, 

as shown in Figure 24B coincide with the neutral axis when the captive 

column is rotated 45 degrees. These caps offer a negligible increase in 

the beam stiffness and in the load carrying capacity of the captive 

column.

A triangular cross-section captive column, as shown in Figure 24C, 

is also considered in Appendix D. An approximate beam stiffness equation 

is developed as well in the Appendix. The equation is repeated below:
2 2

6Trd^ E.
k = ~3 T+ 2l_7rd̂  E.

'cap

"cap(B3H3 + B4H4̂
(61)

where B 2 -309( " G>Wrap *  <tG>pane1

3 [2(wG)wrap + (tG)panel]

B ° -577< "GW a p  *  ( tG>panel

4 [(wG)wrap + (“ Vanel1

H- = 0.577D - 0.443d - 0.439w .3 center

H„ = 0.289D - 0.443d - 0.219w .4 center



91

If the deflection due to shear force is neglected, equation (61) becomes:

k =

? 2
6ird̂ D̂  E.'cap (62)

A comparison of equations (55) and (62) indicates that if all of the 

parameters are the same, a square cross-section captive column will be 

twice as stiff as a triangular cross-section captive column. By 

increasing the cap centerline distance of the triangular cross-section 

captive column by a factor of \fZ, the two captive columns will have 

equivalent beam stiffness.

When the deflection due to shear force is included, a comparison 

between equations (54) and (61) must be made. Again, the cap centerline 

distance of the triangular cross-section captive column will be increased 

by a factor of \/2. When this is done, equations (54) and (61) will be 

equivalent, except for the second term in the denominator. In general, 

the beam stiffness predicted from equation (61) will be slightly less 

than the stiffness predicted from equation (54). An exception to this 

rule occurs when the cap centerline distance to cap diameter ratio is 

large and the wrap shear stiffness is greater than the core panel shear 

stiffness. When these two conditions occur simultaneously, the beam 

stiffness predicted from equation (61) will be slightly greater than the 

stiffness predicted from equation (54).

With all other design parameters the same, a triangular 

cross-section captive column will have approximately the same beam 

stiffness as a square cross-section captive column if the cap centerline 

distance is increased by a factor of v/2. The amount of wrap, core panel, 

and core centerpiece material will be approximately the same for both 

cross-sections, and therefore, the weight and cost of the captive column
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will be lower if a triangular cross-section is used because of a 

reduction in the number of caps. This advantage is offset by the 

increase in size of the cross-section and the increase in the normal 

stress of the cap furthest from the neutral axis. Due to the above 

tradeoffs, a statement cannot be made concerning the selection of a 

square or triangular cross-section.

Other Design Parameters

An approximate equation for the determination of beam stiffness has 

been developed. Using this equation, it was found that the stiffness is 

very dependent upon a number of design parameters. Simplifications were 

made in the development of the approximate equation that eliminated the 

effect of some design parameters. Although these parameters have only a 

minor effect upon the stiffness, they will be briefly discussed here for 

completeness.

The significance of three terms was assumed to be negligible in the 

development of the approximate equivalent flexural rigidity; 1 ) the 

moment of inertia of the caps about their centroidal axes, 2) the 

flexural rigidity of the core panels, and 3) the flexural rigidity of the 

core centerpiece. Including these terms would increase the equivalent 

flexural rigidity, which would lead to an increase in the beam stiffness.

For the captive columns considered in this research effort, the 

moment of inertia of the caps about their centroidal axes is less than 

one percent of the moment of inertia of the caps about the cross-section 

centroidal axis. Including the moment of inertia of the caps about their 

centroidal axes will therefore lead to a very slight increase in the 

equivalent flexural rigidity.

The combined flexural rigidity of the core panels and core
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centerpiece is small when compared with the flexural rigidity of the 

caps. The centerpiece flexural rigidity is small because the neutral 

axis of the captive column passes through the centerpiece and the ratio 

of the centerpiece elastic modulus to the cap elastic modulus is low.

The core panel flexural rigidity is small when the core panel elastic 

modulus to cap elastic modulus ratio is low. The core significance, 

which is defined by equation (50), is less than two percent for all of 

the captive columns that were constructed with balsa wood core panels. 

With these captive columns, including the core panel and core centerpiece 

flexural rigidities would only slightly increase the beam stiffness.

When acrylic was used as the core panel material, the core significance 

was as high as twenty-three percent. In this case the core panel elastic 

modulus to cap elastic modulus is relatively high; thus the core panel 

flexural rigidity is more significant and including the core panels will 

lead to a relatively large increase in the beam stiffness.

Three simplifications were made in the development of the 

approximate term in equation (54) associated with the deflection due to 

shear force. An approximation was made for the following integral:

The first simplification concerned the integral, J^, from the neutral 

axis to the vertical distance h,. The equivalent width, b , of the 

core centerpiece and the wrap is large when compared with the equivalent 

width of the core panels and the wrap. Furthermore, the equation is 

integrated over a small range of vertical distance. The combination of 

the above two factors leads to a small value for this integral. The
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second simplification concerned the integral Jg. The equivalent width 

of the caps is very large in comparison with the equivalent width of the 

core panels and wrap. This alone leads to a small value for the 

integral. In the development of the approximate equations, the integrals 

and Jg were assumed to be equal to zero. In the computation of 

the integral over the core panel area, Jg, the first moment of area of 

the core panels and the wrap was assumed to be equal to zero. This is 

due to the fact that the incremental area, dA, of the core panels and 

wrap is much smaller than the incremental area of the caps.

If the above three simplifications are not made, the integral will 

have a slightly larger value, which would lead to a small decrease in the 

beam stiffness. The sum of the integrals and Jg is less than five 

percent of the integral Jg for the captive columns considered in this 

research effort. With this small percentage, the first two assumptions 

are valid. The third assumption is valid when the core panel and wrap 

shear stiffnesses are small. As these values increase, the first moment 

of area of the core panels and wrap must be considered.

Experimental Verification

Beam stiffness values determined experimentally and by using the 

analytical method of Chapter 2 were presented in Table 3 of Chapter 5. 

Subsets of this data will be used to verify the applicability of the 

analytical method in predicting the influence of individual design 

parameters.

All of the captive column test specimens are described in Table 1. 

The only reference to materials and dimensions that will be made in this 

chapter will refer to the particular parameter(s) under consideration. 

Unless noted otherwise, all other materials and dimensions are very
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nearly the same, with Table 1 being the source for the specific values.

Throughout the discussion, predicted beam stiffness will refer to 

the beam stiffness that is determined by using equation (47) or, in 

the case of triangular cross-section captive columns, equation (10 1).

When it is mentioned, relative error will be defined by the following 

equation:

k k
relative error = ■ -P-r-e— ~— X 100%

^exp

where k = predicted beam stiffness (no wrap pretension or ideal 
P wrap pretension)

keXp = experimentally determined beam stiffness.

Four square cross-section captive columns with a cap centerline 

distance of approximately 7.0 inches were built and tested at various 

span lengths. Captive column numbers 16, 17, and 18 had 3/8 inch 

diameter fiberglass reinforced polyester (FRP), 1/2 inch diameter FRP, 

and 1/2 inch diameter steel caps, respectively, with balsa wood used as 

the core panel material. The fourth specimen, number 19, also had 1/2 

inch diameter steel caps, but acrylic was used as the core panel 

material.

The experimentally determined beam stiffness is plotted in Figures 

25, 26, 27 and 28 for five span lengths for each specimen. The 

deflection of the bottom (tensile) cap was used in determining this 

stiffness. The predicted beam stiffnesses as a function of the span 

length are also plotted in each figure.

The absolute value of the relative error, based upon the predicted 

stiffness of either wrap pretension case, is less than twenty percent for 

all tests conducted with these specimens. Considering the complexities
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FIGURE 25 - BEAM STIFFNESS VS. SPAN LENGTH, CAPTIVE COLUMN NUMBER 16
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FIGURE 26 - BEAM STIFFNESS VS. SPAN LENGTH,
CAPTIVE COLUMN NUMBERS 17 AND 20
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FIGURE 27 - BEAM STIFFNESS VS. SPAN LENGTH,
CAPTIVE COLUMN NUMBERS 18 AND 21
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FIGURE 28 - BEAM STIFFNESS VS. SPAN LENGTH, CAPTIVE COLUMN NUMBER 19
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involved in analyzing a captive column, this is a fairly low relative 

error, which indicates that the analytical method adequately predicts the 

influence of the cap diameter, the cap material, the core panel material, 

and the span length.

Although the magnitude of the relative error is less than twenty 

percent for all of the tests, the range of error is different for each 

specimen. It has been previously stated that the deflection due to shear 

force is small in comparison with the deflection due to the bending 

moment when the cap elastic modulus is relatively low, the cap diameter 

is small, and the span length is long. This statement will be used to 

determine possible sources of error in the predicted beam stiffnesses.

The two predicted stiffnesses, one for no wrap pretension and one 

for ideal wrap pretension, bracket the experimentally determined 

stiffness for specimen number 18. For specimen number 19, which has 

acrylic core panels instead of balsa wood core panels, the experimentally 

determined stiffness is less than both predicted stiffnesses. For both 

specimens, the absolute value of the relative error, for either wrap 

pretension case, increases as the span length decreases. This increase 

in the error coincides with an increase in the significance of the 

deflection due to shear force, which suggests that there is room for 

improvement in the term of equation (47) associated with the deflection 

due to shear force.

The only major physical difference between specimens 18 and 19 is a 

change in the core panel shear stiffness. The range of relative error is 

different for the two specimens, which implies a need for refinement of 

the way in which the core panels are dealt with in the development of 

equation (47). Another possibility for the differences in the relative
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error is the use of incorrect balsa wood material properties. The 

properties of balsa wood are very dependent upon the weight density of 

the wood. This source of error will be discussed later in this chapter.

The experimentally determined beam stiffness is greater than the 

predicted stiffnesses when FRP is used as the cap material. Furthermore, 

the relative error is not nearly as dependent upon the span length for 

these specimens as it is for the specimens with steel caps. This is due 

to the fact that the deflection due to shear force is less significant 

because of the lower cap elastic modulus.

An error in the physical properties of the FRP rods is a possible 

source of error for the low predicted beam stiffness. The values for the 

elastic modulus and the shear modulus obtained from the manufacturer 

agree with values listed in other sources. If the value of the elastic 

modulus used in predicting the beam stiffness was increased by ten 

percent, the predicted stiffness would increase by approximately ten 

percent. This increase in the predicted stiffness may be possible due to 

the fact that the elastic modulus is dependent upon a number of 

manufacturing operations. The values obtained from the manufacturer are 

used due to the difficulties involved in experimentally determining the 

values.

Two triangular cross-section captive columns were built with a cap 

centerline distance of 10.0 inches, which is approximately sfl times 

greater than the size of the square cross-section specimens that were 

described above. Captive column number 20 had 1/2 inch diameter FRP caps 

and specimen number 21 had 1/2 inch diameter steel caps, with balsa wood 

core panels in both specimens.

Each captive column was tested twice, once with an apex up and once
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with an apex down, at three different span lengths. The analytical 

method predicts that the beam stiffness does not depend upon which 

orientation is used; the stiffness should be the same for both cases.

The experimentally determined stiffnesses, based upon the average 

deflection of the top and bottom caps, agree to within five percent of 

each other for the two test cases.

The experimentally determined stiffnesses are plotted in Figures 26 

and 27 for the tests performed with an apex up. According to the exact 

analytical equations, the stiffness for these specimens should be 

approximately ten percent less than the stiffness of the square 

cross-section captive columns. As seen in Figures 26 and 27, the 

experimental results agree with the predicted results.

The close agreement between the two test orientations and the 

agreement with the square cross-section results indicate that the 

analytical method can be used to predict the stiffness of triangular 

cross-section captive columns.

Ten captive columns, specimen numbers 1 through 10, were used by 

Kipp [2] in his research effort. These captive columns were retested, 

and the data is presented in Table 3. This data set can also be used to 

make comparisons concerning the cap material and diameter, the core panel 

material, the span length, and the cross-sectional geometry. In general, 

the results obtained from tests using these specimens agree with the 

conclusions drawn from specimen numbers 16 to 21. This indicates the 

ability of the analytical method in predicting the beam stiffness of 

captive columns with various cap centerline distances.

Three square cross-section captive columns were constructed with the 

only difference in the specimens being a change in the core panel
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thickness and core centerpiece width. Balsa wood with 1/4, 3/8, and 1/2 

inch thicknesses and Douglas fir with 3/4, 1, and 1-1/8 inch widths were 

used in specimen numbers 39, 47, and 48, respectively.

Each specimen was tested using three different span lengths. The 

experimentally determined beam stiffness, based upon the average 

deflection of the top and bottom caps, is presented in Table 5 for each 

test. If the core panel shear modulus is the same for each specimen, the 

analytical method predicts that the beam stiffness will increase as the 

core panel thickness increases. The beam stiffnesses for specimen 

numbers 47 and 48 are approximately equal at any given span length, with 

the value nearly twice as great as the stiffness of specimen number 39.

The fact that the experimentally determined stiffness does not 

change when the core panel thickness is increased from 3/8 inch to 1/2 

inch suggests that the shear modulus is not the same for the three 

specimens. The shear modulus and elastic modulus are plotted in Figure 

29 as functions of the weight density [8]. The values listed in Table 2 

are for balsa wood with a density of 7.0 pounds per cubic foot. The 

balsa wood used in specimen number 47 was purchased from a different 

supplier. This balsa wood had a density of 9.5 pounds per cubic foot, 

and therefore the material properties are higher.

The correct balsa wood material properties were used to obtain the 

predicted beam stiffness values listed in Table 5. The increase in the 

balsa wood shear modulus of specimen number 47 increased the predicted 

stiffness to the same values that are predicted for specimen number 48.

In all of the tests, the experimentally determined stiffness is 

approximately equal to the predicted stiffness for the case with no wrap 

pretension, which indicates that the analytical method accurately predicts



TABLE 5

BEAM STIFFNESS FOR CORE THICKNESS TESTS

Captive 
Column 
Number

Span (in)
Beam Stiffness (Ibs/in)

Experimental Analytical Method 
No Pretension Ideal Pretension

39 88 1520 1540 1850

39 72 2130 2170 2700

39 56 3210 3190 4100

47 88 2430 2460 2770

47 72 3750 3840 4470

47 56 6060 6350 7750

48 88 2400 2460 2780

48 72 3810 3840 4500

48 56 6210 6340 7810



FIGURE 29 - 
BALSA WOOD MATERIAL PROPERTIES

E l a s t i c  M o d u l u s  P a r a l l e l  to G r a i n  ( 1 0 ^  l b s / i n ^ )
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the influence of a change in the core panel shear stiffness.

The weight density of the balsa wood used in the captive columns was 

not determined for every specimen. Excluding the above case, the density 

was nearly 7.0 pounds per cubic foot for all specimens in which the 

density was determined. Incorrect balsa wood properties are a possible 

source of error for specimens in which balsa wood was used as the core 

panel material.

Five square cross-section captive columns were built and tested to 

experimentally verify the influence of the wrap density. The wrap 

material was 0.0076 inch diameter Kevlar applied at a 45 degree angle 

with approximately 1.5 pounds of wrapping tension. The wrap densities 

were 0, 6.3, 18.9, 37.8, and 63.2 strands per inch for specimen numbers 

25, 26, 28, 30, and 31, respectively.

Each captive column was tested using a 54 inch span length. The 

experimentally determined beam stiffness, based upon the average 

deflection of the top and bottom caps, is plotted in Figure 30 for each 

test. The predicted stiffnesses are also plotted in Figure 30 as a 

function of the wrap density.

The experimentally determined stiffness is less than the predicted 

stiffnesses for all five tests. Furthermore, if the specimen without any 

wrap is disregraded, the relative error increases with an increase in the 

wrap density. This change in the relative error may be attributable to a 

relaxation of some of the wrap strands during the wrapping operation.

All of the strands are applied with the same amount of wrapping tension. 

The caps are drawn towards the core centerpiece due to this tension. As 

wrap is added, the amount of core deformation increases, which results in 

relaxation of the first strands that are applied. In effect, the
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FIGURE 30 - BEAM STIFFNESS VS. WRAP DENSITY
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pretension in the wrap strands that are applied last is equal to the 

wrapping tension and the strands that are applied first have little or no 

pretension, resulting in an average wrap pretension which is lower than 

the wrapping tension.

The relative error increases as the wrap density increases because 

of the decrease in the average wrap pretension. Furthermore, the amount 

of relaxation may be great enough to cause some of the wrap strands to 

become slack, and therefore the effective wrap density will be less. The 

predicted beam stiffnesses do not take into account this possible 

decrease in the wrap density.

Six square cross-section captive columns were constructed to 

experimentally determine the influence of the wrap angle. The cap 

centerline distance was 3.71 inches for specimen numbers 32, 33, and 34 

and 3.75 inches for specimen numbers 35, 36, and 37. The wrap density 

was approximately 17 strands per inch of 0.0076 inch diameter Kevlar with 

a wrapping tension of 4.0 pounds. Wrap angles of 60, 45, and 30 degrees 

were used on specimen numbers 32 and 35, 33 and 36, and 34 and 37, 

respectively.

Each captive column was tested using a 48 inch span length. Since 

the cap centerline distance is very nearly the same for each group of 

specimens, the experimentally determined and the predicted beam 

stiffnesses are also very nearly equal. The experimentally determined 

beam stiffness, based upon the average deflections of the top and bottom 

caps for each pair of specimens at a given wrap angle is plotted in 

Figure 31. The predicted stiffnesses, based upon an average cap 

centerline distance, is also plotted in Figure 31.

The average experimentally determined stiffness of the two specimens
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FIGURE 31 - BEAM STIFFNESS VS. WRAP ANGLE
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wrapped at a 45 degree wrap angle was equal to the predicted stiffness 

for the case of no wrap pretension. The average experimentally 

determined stiffness for the other two wrap angles is in the lower range 

of predicted stiffnesses. The maximum beam stiffness according to the 

experimental data is in the vicinity of 30 degrees. This supports the 

previously determined analytical optimum for a constant wrap density of 

35 degrees.

The relative error between the experimentally determined stiffness 

and either of the predicted stiffnesses is not the same for each wrap 

angle. This series of tests suggests that the analytical method 

incorrectly accounts for the influence of the wrap angle. An area that 

requires further study is the influence of the wrap angle in maintaining 

the cross-sectional geometry during the application of a load. A 

decrease in the cross-sectional deformation will lead to an increase in 

the beam stiffness. The wrap and the core resist cross-sectional 

deformation. It ..is logical to assume that the degree of deformation is 

dependent upon the wrap angle.

Nine captive columns were built and tested to determine the 

influence of the wrapping tension, and thus the wrap pretension. The 

wrap material was 0.0132 inch diameter Kevalar applied at a 45 degree 

angle. Three wrapping tensions, 1.5, 4.5, and 6.0 pounds, were used with 

each of three densities, 2.5, 7.5, and 15.0 strands per inch.

Each specimen was tested at span lengths of 88, 72, and 56 inches.
\

The experimentally determined beam stiffness, based upon the average 

deflection of the top and bottom caps, is plotted in Figures 32, 33, and 

34 for each test. The predicted stiffnesses as a function of the span 

length are also plotted in the figures.
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FIGURE 32 - BEAM STIFFNESS VS. SPAN LENGTH,
WRAP DENSITY = 2.5 STRANDS/INCH
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FIGURE 33 - BEAM STIFFNESS VS. SPAN LENGTH,
WRAP DENSITY = 7.5 STRAND/INCH
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The average wrap pretension is slightly less than the wrapping 

tension for specimens with a relatively low wrap density, with the 

difference between the average pretension and the wrapping tension 

increasing as the wrap density increases. According to the analytical 

method, the beam stiffness should increase with an increase in the wrap 

pretension. This predicted behavior is experimentally verified for the 

specimens wrapped with densities of 2.5 or 7.5 strands per inch. With 

1.5 pounds of wrapping tension, the experimentally determined stiffness 

is less than the predicted stiffness for the case of no pretension. The 

experimentally determined stiffness when the wrapping tension is 

increased falls between the two predicted stiffnesses with the upper 

bound in all cases the predicted stiffness for ideal pretension.

For the specimens wrapped with a density of 15.0 strands per inch, 

the experimental results indicate that 4.5 pounds of wrapping tension 

produces the maximum beam stiffness. As the wrapping tension is 

increased, the deformation of the cross-section during the wrapping 

operation will increase. The net effect of the increase in the 

pretension of the strands that were applied last and the increase in the 

relaxation of the strands that were applied first is a decrease in the 

average wrap pretension. It is possible that this decrease in the 

average pretension causes a decrease in the beam stiffness, which is 

apparent in the experimental results.

This change in the average pretension is also apparent in the 

results from the specimens wrapped with a density of 7.5 strands per 

inch. The increase in the stiffness when the wrapping tension is 

increased from 4.5 to 6.0 pounds is less than the increase in the 

stiffness when the tension is increased from 1.5 to 4.5 pounds. This
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would suggest that a further increase in the tension above 6.0 pounds 

would lead to only a very slight increase in the average wrap pretension. 

For the specimens with a density of 2.5 strands per inch, the increase in 

the beam stiffness is approximately the same for both increases in the 

wrapping tension, which suggests that the average wrap pretension will 

increase if the wrapping tension is increased.

It has been shown that an increase in the wrap density or wrapping 

tension can cause an increase in the amount of relaxation that occurs 

during the wrapping operation. The wrap angle will also influence the 

amount of relaxation that occurs. The amount of relaxation will increase 

as the wrap angle increases. This phenomenon was not taken into account 

in the discussion of the tests conducted with specimen numbers 32 

through 37 and it may help explain the change in the relative error.

Determining the extent of wrap relaxation during the wrapping 

operation is a complex subject in itself. The relaxation can be reduced 

by utilizing a core panel material with a high compressive elastic 

modulus in the direction perpendicular to the longituidinal axis or by 

increasing the core panel thickness. Either one of these measures will 

lead to a decrease in the cross-sectional deformation. If possible, a 

low density of wrap material with a relatively large cross-sectional area 

should be used instead of a high density of wrap material with a small 

cross-sectional area.

Sources of Error in the Analytical Approach

Various sources of error between the experimentally determined beam 

stiffness and the stiffness predicted by using the analytical approach of 

Chapter 2 were mentioned in the preceding section. The main sources of 

error that were identified dealt with incorrect material properties and
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the possibility of an incorrect application of some of the classical beam 

theory concepts. Two additional sources of error are localized 

discrepancies in the stress distributions and localized cross-sectional 

deformation. Both of these sources of error, which will be discussed in 

the following paragraphs, are related to the way in which the load is 

applied to the captive column.

As noted in Chapter 4, the experimental load is assumed to be 

equally distributed between two caps for a square cross-section captive 

column. The core and the wrap must transfer part of the load from these 

caps to the other two caps. The same situation occurs at each end 

support; the reaction is equally divided between two caps, with the core 

and the wrap transferring part of the reaction to the other two caps. In 

the case of a triangular cross-section captive column, the distribution 

of the load and the reaction is dependent upon the orientation of the 

member; the load or reaction is divided between all three caps or only 

two of the caps. The transfer of force from one cap to another cap 

causes inconsistencies in the predicted normal stresses and shear 

stresses in the vicinity of the concentrated load and the end supports.

The effect of these localized inconsistencies in the stress 

distributions is disregarded in the analytical method. It is expected 

that the deflection would increase if the localized inconsistencies were 

included in the analysis.

Deformation of the cross-section will also occur in the vicinity of 

the concentrated load and the end supports. The transfer of force from 

one cap to another is one possible explanation for this deformation. A 

second, and probably more significant explanation of the deformation is 

related to the line of action of the load or the reaction. The line of
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action of the load is inclined at a 45 degree angle to the core panels.

In addition to the vertical deflection of the cross-section as a whole, 

the two top caps will experience vertical and horizontal deflection 

relative to the core centerpiece. In effect, the core panels act as 

cantilevered beams, rigidly supported at the core centerpiece. This 

deflection of the caps relative to the centerpiece is resisted by the 

core panels and the wrap.

The above two types of cross-sectional deformation are local 

effects; they occur in the vicinity of the concentrated load and the end 

supports. The third type of cross-sectional deformation occurs at all 

cross-sections of the captive column. In a solid rectangular beam 

subjected to a pure bending moment, the longituidinal extension in the 

material on the convex side of the beam is accompanied by lateral 

contraction and the longituidinal compression on the concave side is 

accompanied by lateral expansion. The cross-sectional shape changes as a 

result of the lateral expansion and contraction. The vertical sides 

become inclined to each other and all straight lines parallel to the 

neutral axis curve so as to remain normal to the sides of the section, 

see Figure 35. In a captive column, it is expected that the 

longituidinal extension and compression of the member will result in a 

decrease or increase, respectively, in the cross-sectional area of the 

caps. An insignificant amount of deformation, as in Figure 35, will also 

be present, which will lead to a very slight increase in the deflection.

The analytical approach is unable to account for the cross-sectional 

deformation that occurs. The predicted deflection would increase if the 

deformation was included in the analysis.

The additional increase in the deflection attributable to the local
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A) Section of a Rectangular Beam Subjected to a 
Pure Bending Moment

Neutral Axis

Before Loading

B) Cross-Section of the Beam

FIGURE 35 - CROSS-SECTIONAL DEFORMATION DUE TO 
LATERAL EXPANSION AND CONTRACTION
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inconsistencies in the stress distributions and the cross-sectional 

deformation lead to a decrease in the beam stiffness. Since the 

analytical approach does not account for either increase in the 

deflection, the predicted stiffness values will be greater than the 

actual beam stiffness.

The experimental results verify the above statement. In the 

majority of the tests that were performed, the experimentally determined 

beam stiffness is below or in the lower range of stiffnesses predicted 

from the analytical approach. Furthermore, the predicted stiffness 

becomes greater, relative to the experimental stiffness, as the 

significance of the deflection due to shear force increases. This is an 

indication that the major cause of error is the local discrepancies in 

the shear stress distribution.



CHAPTER 7

COMPUTER MODEL RESULTS

Comparisons between the analytically predicted and the 

experimentally determined beam stiffnesses were made in Chapter 6. A 

brief discussion concerning the computer model predicted beam stiffness, 

relative to both the experimentally determined and the analytically 

predicted stiffness, will be covered in this chapter. There will also be 

a description of a method that may be used to model wrap pretension using 

the computer model, with comparisons between the stiffness obtained by 

using this method and the results from some of the flexure tests.

Computer Model Versus Experimentally Determined Beam Stiffness

Increases in the deflection due to localized discrepancies in the 

stress distribution and the deformation of the cross-section are included 

in the finite element analysis of a captive column in flexure. For this 

reason, it is expected that the computer model will yield a better 

prediction of the experimentally determined stiffness than the analytical 

approach.

As seen by an examination of Table 3 in Chapter 5, the 

experimentally determined stiffness is within the range of the computer 

predicted stiffness for 65 percent of the tests that were performed. For 

the tests in which the experimental stiffness is not bounded by the two 

extreme predicted stiffnesses, inaccurate material properties is the most 

likely source of error in the predicted results. This statement is based 

on the fact that FRP caps were used in the majority of the specimens in 

which the computer model predicted stiffnesses did not bound the

120



121

experimentally determined stiffness. In these cases, the experimentally 

determined stiffness is greater than the predicted stiffnesses. If a 

greater value was used for the FRP elastic modulus in the computer model, 

the predicted results would have been in better agreement with the 

experimental results, which is the same conclusion that was drawn from 

the analytical versus experimental results.

Computer Model Versus Analytical Beam Stiffness

The same material properties were used for all of the captive column 

components in the analytical approach and the computer model to obtain 

the predicted beam stiffness values for all of the flexure tests. By 

comparing the predicted stiffness values from both methods of analysis, 

errors in the material properties will be eliminated.

The beam stiffnesses predicted by using the analytical approach and 

the computer model are listed in Table 6. The deflection of the neutral 

axis and the average deflection of the top and bottom caps and the core 

centerpiece were used to obtain the stiffnesses by the two respective 

methods. Beam stiffnesses are listed for the cases of no wrap pretension 

and ideal wrap pretension for both methods.

The analytically predicted stiffness is greater than the computer 

model predicted stiffness for the case of no wrap pretension for all of 

the specimens. For the case of ideal wrap pretension, the analytically 

predicted stiffness is greater than the computer model predicted 

stiffness for the majority of the specimens. The analytically predicted 

stiffness becomes greater, relative to the computer model predicted 

stiffness, as the significance of the deflection due to shear force 

increases. This statement supports the claim that the major source of
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TABLE 6

ANALYTICAL METHOD VS. COMPUTER MODEL

________________ Beam Stiffness (lbs/in)
Test Analytical Computer Model
Number No Ideal No Ideal

Pretension Pretension Pretension Pretension

1 270 279 259 283
2 469 492 442 500
3 911 979 827 999
4 807 880 683 843
5 1330 1500 1070 1410
6 2370 2810 1730 2590
7 1030 1170 837 1100
8 1630 1930 1260 1790
9 2740 3450 1970 3110

10 2260 2930 1570 2540
11 3210 4400 2220 3750
12 4760 6890 3280 5840
13 238 247 245 266
14 701 787 679 827
15 858 1000 826 1060
16 1620 2180 1530 2370
17 358 359 376 382
18 1350 1370 1270 1330
19 6630 6900 4640 5460
20 1720 2000 1460 1930
21 1840 2100 1450 1910
22 2250 2730 1830 2570
23 2530 3020 1870 2610
24 147 149 144 150
25 221 226 215 226
26 352 363 339 364
27 609 636 574 636
28 1170 1250 1060 1240
29 276 283 265 283
30 416 428 394 430
31 664 692 618 696
32 1150 1220 1040 1230
33 2210 2420 1890 2440
34 1120 1220 954 1180
35 1610 1800 1330 1730
36 2410 2780 1890 2640
37 3780 4580 2800 4260
38 6300 8150 4290 7350
39 1160 1190 1080 1160
40 1720 1780 1580 1720
41 2670 2800 2380 2670
42 4430 4720 3770 4400
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TABLE 6 (Continued)

________________ Beam Stiffness (lbs/in)__________

Test Analytical Computer Model
Number No

Pretension
Ideal

Pretension
No

Pretension
Ideal

Pretension

43 7980 8730 6250 7810
44 326 333 322 343
45 326 333 321 343
46 603 623 592 651
47 603 623 592 651
48 1284 1356 1240 1450
49 1284 1356 1240 1450
50 1320 1480 1170 1450
51 1320 1480 1160 1440
52 2230 2620 1890 2550
53 2230 2620 1890 2520
54 4120 5190 3260 4960
55 4120 5190 3240 4840
56 6210 7810 4430 6970
57 6350 8010 4500 7120
58 5360 6960 4290 6610
59 5360 6960 4250 6450
60 -1400- -978-
61 2180 2850 1570 2450

62,63,64 3430 4720 2240 4150
65 4710 6220 2870 5600
66 5800 7250 3390 6680
67 6430 8330 4230 6470
68 7760 10600 4900 8160
69 7460 10100 4650 7480
70 6460 8380 4260 6510
71 7780 10600 4940 8230
72 7470 10100 4700 7570

73,76,79 1540 1850 1170 1600
74,77,80 2170 2700 1600 2290
75,78,81 3190 4100 2270 3410
82,85,88 2090 2540 1530 2300
83,86,89 3120 3990 2160 3530
84,87,90 4890 6670 3170 5700
91,94,97 2540 2960 1850 2770
92,95,98 3990 4900 2690 4480
93,96,99 6670 8770 4090 7750

100 2460 2770 1960 2490
101 3840 4470 2890 3890
102 6350 7750 4440 6440
103 2460 2780 1920 2470
104 3840 4500 2820 3860
105 6340 7810 4340 6370
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error in the analytical approach is the local discrepancies in the shear 

stress distribution.

Cross-Sectional Deformation

The deflection of both the top and bottom caps was determined for 

approximately half of the flexure tests that were performed. The 

experimentally determined beam stiffnesses and the stiffnesses predicted 

by using the computer model, based upon the deflection of the top and 

bottom caps, are listed in Table 3 of Chapter 5. The relative error 

between the experimentally determined and the computer model predicted 

stiffnesses is approximately the same for the top caps and the bottom 

caps for any given test. This is an indication that the computer model 

correctly predicts the effect of the cross-sectional deformation.

The wrap and the core resist the deformation of the cross-section. 

Since the computer model includes this deformation in the analysis, it is 

expected that the wrap will have a much greater effect upon the computer 

model predicted stiffness than on the analytically predicted stiffness.

By comparing the range of stiffness values in Table 6 , with the lower 

bound being the case of no wrap pretension and the upper bound being the 

case of ideal wrap pretension, it is apparent that the wrap does affect 

the computer model predicted stiffness to a much greater extent. The 

range of computer model predicted stiffness is much greater than the 

range of analytically predicted stiffness, which indicates that the wrap 

has a much greater role in the computer model than resisting shear 

forces.

Wrap Pretension

During the application of a concentrated midspan load to a 

simple-supported captive column, approximately half of the wrap strands
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on the sides of the captive column will be subjected to a compressive 

force. Since the wrap strands can carry only tensile forces, these 

strands will merely relax and do not contribute to the beam stiffness of 

the captive column. If the wrap strands are pretensioned, they will be 

able to carry the compressive force. As the load is applied, the tensile 

force in the strands, due to pretension introduced during the wrapping 

operation, will be reduced because of the compressive force attributable 

to the load.

Ideal wrap pretension has been defined to be the pretension in the 

wrap needed to keep all of the strands in tension during a given load 

application. The computer model can easily be used to compute the ideal 

pretension. With all of the wrap truss elements in place in the finite 

element computer model, the design load is applied and produces tensile 

forces in some of the wrap truss elements and compressive forces in the 

other wrap truss elements. The wrap truss element is modeling a group of 

individual wrap strands. To determine the maximum compressive force in 

an individual wrap strand, the maximum compressive wrap truss element 

force is divided by the number of individual strands that the truss 

element is modeling. To keep this strand in tension for the given load, 

an equal tensile force must be applied to the strand. This tensile force 

is the ideal pretension.

The ideal pretension for a given captive column is dependent upon 

the load that will be applied to the member. As the load is increased, 

the compressive forces in the wrap truss elements will increase, and 

therefore the ideal pretension will increase.

The problem of wrap relaxation during winding was introduced in the 

previous chapter. The average wrap pretension is less than the wrapping
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tension because of the compressive forces that are exerted on the core 

during the wrapping operation. The average pretension can be determined 

in a relatively straightforward manner by using the thermal stress 

capabilities of the computer model. With all of the wrap truss elements 

in place in the computer model, a thermal stress is applied to the wrap 

truss elements. The thermal stress is equal to the product of the 

wrapping tension multiplied by the number of wrap strands that the truss 

elements are modeling. The thermal stress will compress the plane stress 

elements that represent the core panels, and thus the tension in each 

truss element will be reduced. The average wrap pretension is determined 

by dividing the reduced truss element tensile force by the number of 

strands that the truss element is modeling.

The process needed to determine the ideal wrap pretension and the 

average wrap pretension have been described. The maximum beam stiffness 

is obtained when the average wrap pretension is equal to the ideal wrap 

pretension. An increase in the average pretension, above the ideal 

pretension, will not increase the beam stiffness; it will only cause an 

increase in the force in each wrap strand and the compressive stress in 

the core panels. If the average wrap pretension is less than the ideal 

pretension, the beam stiffness will fall within the range of beam 

stiffness values bounded by the case where there is no wrap pretension 

and the case where there is ideal wrap pretension. The determination of 

this beam stiffness will be discussed in the following paragraphs.

For the following discussion, assume that the average wrap 

pretension is less than the ideal wrap pretension and that the load is 

gradually applied from no load to the design load. During the initial 

phase of the load cycle, all of the wrap truss elements are in tension
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and the beam stiffness is equal to the stiffness produced if there is 

ideal wrap pretension. As the load is applied, the tension in the truss 

elements is reduced due to the compressive forces induced by the load.

At some point in the load cycle, the tension in some of the truss 

elements is reduced to zero. These truss elements are then removed from 

the computer model, which reduces the beam stiffness. As the load is 

further increased, the tension in other truss elements is reduced to 

zero. These elements are also removed from the model causing a further 

decrease in the stiffness. This process is repeated until the design 

load is reached.

In essence, removing the wrap truss elements when their tension is 

reduced to zero causes a stepped decrease in the beam stiffness. An 

average beam stiffness can be determined by summing the products of the 

beam stiffness in each step multiplied by the load over which this 

stiffness was in effect. The quantity that is obtained is then divided 

by the design load to obtain the average beam stiffness.

The preceding methods for dealing with wrap pretension will be used 

to analyze some of the specimens that were built and tested in flexure.

A total load of 600 pounds was applied to captive column numbers 44, 45, 

and 46. At this load, the maximum compressive wrap strand force, when 

all of the truss elements are in place, is 2.16 pounds for each span 

length; 88, 72, or 56 inches. A wrap pretension of 2.16 pounds must be 

introduced into the wrap strands during the wrapping operation in order 

to achieve the maximum beam stiffness. Using the thermal stress 

capabilities of the computer model, it is determined that a 1 .0 pound 

wrapping tension results in an average wrap pretension of 0.72 pounds. 

Since the computer program is linear, a wrapping tension of 3.0 pounds
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(2.16/0.72 = 3.0) is needed to achieve the maximum stiffness.

If the wrapping tension is less than 3.0 pounds, the average beam 

stiffness will be between the two stiffnesses represented by the cases of 

no wrap pretension and ideal wrap pretension. In Figure 36, the beam 

stiffness is plotted as a function of the load for the case of a wrapping 

tension of 1.0 pound and a span length of 88 inches. The ideal wrap 

pretension, no wrap pretension, and average beam stiffnesses are also 

plotted. The average deflection of the core centerpiece node and the top 

and bottom cap nodes was used in the determination of the stiffnesses.

The average beam stiffness for an 88 inch span length is plotted in 

Figure 37 as a function of the wrapping tension. The experimentally 

determined beam stiffnesses, based upon the average deflection of the top 

and bottom caps, for three wrapping tensions are also plotted.

The beam stiffness predicted by the computer model is greater than 

the experimentally determined stiffness. This is possibly due to the way 

in which the pretension was modeled. In the method that was used, it is 

assumed that the pretension is the same for all of the wrap strands. In 

the actual specimen, the pretension is very nearly equal to the wrapping 

tension in the outer strands with little or no pretension in the inner 

strands. Some of the inner strands may be totally slack, and therefore 

the wrap density should be decreased until the tensile force due to the 

applied load causes these strands to become taut.

The analytical method of Chapter 2 can also be modified to account 

for the wrap pretension. The tension in the wrap strands due to the 

wrapping operation produces deformation of the core. A relationship 

between the wrapping tension and the average wrap pretension can be 

developed by examining the deformation of the core produced by the
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FIGURE 37 - BEAM STIFFNESS VERSUS WRAPPING TENSION
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wrapping operation. The ideal wrap pretension can be determined by 

relating the deformation of an equivalent wrap panel, due to the 

percentage of the shear force that the wrap panel carries, to the tensile 

and compressive forces in the wrap strands that make up the panel.

In a similar fashion, the beam stiffness for a captive column in 

which the average wrap pretension is less than the ideal pretension can 

be determined. The stiffness will be equal to the ideal pretension 

stiffness until the load is great enough to cause relaxation of some of 

the wrap strands. Since the shear force is uniform along the length of 

the captive column for a midspan load, all of the wrap strands that relax 

will relax at the same load. Instead of the multiple step decrease in 

the beam stiffness that is predicted from the computer model, there will 

be a one step decrease in the stiffness from the ideal pretension 

stiffness to the no pretension stiffness. After the load at which the 

decrease in the beam stiffness occurs is determined, an average 

stiffness can be found.

These methods for dealing with the wrap pretension are included here 

for completeness only. The computer model method requires multiple 

execution of the program, one execution for each beam stiffness, with a 

resulting increase in the necessary computer time. The use of the 

analytical method for predicting the effect of wrap pretension requires 

further study and is beyond the scope of this research effort. It is 

recommended that the effect of wrap pretension be disregarded in the 

initial design of a captive column for a specific application. After a 

preliminary design has been chosen, the effect of wrap pretension can be 

included, which may result in minor changes in the preliminary design to 

meet all of the design requirements.



CHAPTER 8

OTHER FLEXURAL LOADING CONDITIONS

The primary emphasis of this research effort has been the analysis 

of a captive column loaded as a simple-supported beam with a concentrated 

midspan load. The computer model can easily be used to model other 

flexural loading conditions by assigning the necessary boundary 

conditions and applying the desired load. The analytical development of 

Chapter 2 is limited to the determination of the midspan deflection of a 

captive column subjected to the previously described load condition. The 

applicability of the analytical approach for predicting the deflection at 

points other than the location of the load and for other flexural loading 

conditions will be investigated in this chapter.

Castigliano1s Theorem

Castigliano1s theorem states that the displacement of an elastic 

body under the point of application of a force, in the direction of that 

force, is given by the partial derivative of the total elastic strain 

energy with respect to that force [5]. For a captive column subjected to 

a flexural load, there is elastic strain energy due to normal bending 

stresses and shear stresses. Castigliano's theorem is represented by the 

following equation:

3U , 3U . normal L shear
3F 3F (63)

where 6 = deflection at the applied force in the direction of 
the force

F = applied force

= elastic strain energy due to normal bending stressesUnormal
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Ushear = e^astlc strairi energy due to shear stresses.

Equation (9), which was developed in Chapter 2 and is repeated 

below, can be used to determine the elastic strain energy due to the 

normal bending stress if the cross-section is uniform along the length of 

the member:

L

Unormal ■ /

M2 dx 
2 EI (9)

where M = bending moment due to the applied force, F, and 
any other loads

L = span length

El = flexural rigidity

The bending moment is the only term in equation (9) that is dependent 

upon the applied force, and therefore the derivative of the elastic 

strain energy due to the normal bending stress with respect to the force 

is equal to the following:

■ rtfM !rdx <“>
0

Substituting equation (12) into equation (5) results in the 

following expression for the elastic strain energy due to shear stresses:

“shear* / * ?  (t f ) dV <65>
Volume ' '

where G = shear modulus

V = shear force due to the applied force, F, and 
any other loads

Q = first moment of area

I = moment of inertia

b = width of the cross-section
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dV = incremental volume.

If the cross-section is uniform along the length of the member, then the 

shear modulus, first moment of area, moment of inertia, and cross-section 

width will all be independent of the axial position. Furthermore, the 

shear force is not a function of the cross-sectional shape, and equation 

(65) can be simplified to the following expression:

L

area 0

The shear force is the only term in equation (66) that is dependent upon 

the applied force, and therefore the derivative of the elastic strain 

energy due to the shear stress with respect to the force is equal to the 

following:

Substituting equations (64) and (67) into equation (63) yields the 

following:

In this equation, equivalent quantities were used for the flexural 

rigidity, moment of inertia, first moment of area, and cross-section 

width. From the development of equation (42) in Chapter 2, the following 

expression is obtained for a square cross-section captive column:
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/

2
dA = 2[Jj + J 2 + J 3 ] (69)

area

The integrals J^, J2, and are defined by equations (43), (44), and 

(45) respectively. From the development of equation (94) in Appendix D, 

the following expression is obtained for a triangular cross-section 

captive column:

The integrals through Jg are defined by equations (95) to (100), 

respectively.

After the equivalent flexural rigidity and the term represented by 

equation (69) or (70) have been determined, equation (68) can be used to 

determine the deflection at any location on the longituidinal axis of a 

square or triangular cross-section captive column subjected to any 

flexural loading condition. The deflection curve for two loading cases 

will be considered in the remainder of this chapter.

Cantilevered Beam, Uniform Load

Consider a captive column loaded as a cantilevered beam with a 

uniform load of W pounds per linear inch. It is necessary to determine 

the lateral deflection at a distance xq from the support. In order to 

do this, an arbitrary force F will be applied at the distance xQ in the 

direction in which the deflection is desired, see Figure 38. The 

arbitrary force will be set equal to zero after the integration in 

equation (68) is performed and therefore the force will not add to the 

deflection of the captive column.

The total bending moment and shear force are represented by the

d _

(70)

following expressions:
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M = yr (L-x)2 + F(x-xq), 0 < x < xQ

M = (L-x)2 , xQ < x < L

V = W(L-x) + F, 0 < x < xQ

V = W(L-x), xQ < x < L

The above equations are used to obtain the following results:

L x_

M dx = (L-x) 2 + F(x-xQ) (x-xQ) dx + (L-x)2 (0) dx

W x.
- (6L‘

F x.
4L x + x„ ) + o o (71)

+ F](1) dx + /[W(L-x)](0) dx

xo

+ F (72)

Setting F equal to zero in equations (71) and (72), and substituting 

these equations into equation (68) yields the following:

Wx.
6 =

24(EI) <6L ' 4L xo + xo >
eq

(73)
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By making the appropriate substitutions, the lateral deflection at the 

distance x q can be obtained from equation (73). By varying xQ from 0 to 

L in equation (73), the total deflection curve is obtained. 

Simple-Supported, Concentrated Midspan Load

Equation (46), which was developed in Chapter 2, can be used to 

determine the lateral deflection of the midspan of a captive column 

loaded as a simple-supported beam with a concentrated midspan load. In 

order to determine the entire deflection curve, Castigliano1s theorem 

must be used.

As in the previous example, an arbitrary force F will be applied at 

a distance xQ from the left support, see Figure 39. When xq is less than 

one-half of the span length, the total bending moment and shear force are 

represented by the following expressions:

0 < x < x
o

X < X < -7) 0 2

0 < x < xo

x„ < x < 4  0 2

The above equations are used to obtain the following results:
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M If dx = / — r~dx + / t

L/2 L

Px XQ(L-X) dx + f  P(L-x) xo<L-x>

o

Iff <3l2 - 4*o2 >

dx

(74)

L xn L/2 L

pH) r p (-xo> d x +r/ 2 L dX J 2 L
0

✓
0 xo L/2

-P
"7

< - * 0 > dx

Px.
(75)

In the development of equations (74) and (75), the arbitrary force F was 

set equal to zero after the derivatives with respect to the force were 

obtained, but before the integration was performed. This method is 

easier to use than the method used in the previous example and will yield 

the same end result. Substituting equations (74) and (75) into equation 

(68) results in the following:

2 ^ . 2Px ~ ~ Px

6 = 48(El) (3L " 4xo  ̂ + 2Gv 'eq cap

Ecap
r n req /fe)

area' H/

dA (76)

Equation (76) can be used to obtain the lateral deflection for xq 

in the range from 0 to L/2, with the symmetry of the loading being used 

to obtain the deflection from L/2 to L. For x q equal to L/2, with 

equation (69) being used to compute the cross-sectional area integral, 

equation (76) reduces to equation (46), which is the expected result.
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These are just two of the many possible flexural loading conditions 

that a captive column may be exposed to. With the aid of Castigliano's 

theorem, the analytical development of Chapter 2 can be used to obtain 

the deflection curve for all loading conditions.



CHAPTER 9

CONCLUSION

A method for applying classical beam theory to the prediction of the 

stiffness of a captive column loaded as a simple-supported beam with a 

concentrated midspan load has been presented in this thesis. Results 

obtained from tests performed using a number of captive column specimens 

indicate that, in general, the method yields predicted beam stiffness 

values that are in agreement with experimental results. The test results 

were also used to verify that the analytical method adequately predicts 

the effects of changes in individual design parameters.

Although the discussion provided in this thesis answers a number of 

questions concerning the structural behavior of captive columns, many 

questions are still unanswered. Recommendations regarding future 

research efforts are presented in this chapter.

Physical Testing

There are three areas of physical testing that require further study 

in order to fully verify the applicability of the analytical method 

presented in this thesis. The first area involves the construction and 

testing of more captive column specimens. The captive columns that were 

built and tested in this research effort were limited to square and 

triangular cross-sections with balsa wood and acrylic sheet, FRP and 

steel rods, and Kevlar used as the core, cap, and wrap, respectively. As 

previously mentioned, these cross-sectional shapes and component 

materials represent a small part of the many possible design 

alternatives. Captive columns with other cross-sectional shapes and

141
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different materials should be constructed. Results obtained from tests 

performed1 using these specimens will indicate the ability of the 

analytical method in predicting the structural behavior of captive 

columns with the new design parameters.

Testing of the component materials should be conducted in 

conjunction with the above area of study. The use of incorrect material 

properties for some of the materials was a possible, and very probable, 

source of error between the experimental results and the analytical or 

computer model results. It is recommended that whenever possible, the 

mechanical properties obtained from a manufacturer be verified by 

experimental testing.

The second area of study may be conducted with new or existing test 

specimens. In the preceding chapter, equations were developed for 

applying the analytical method to the prediction of the deflection curve 

of a captive column subjected to any flexural loading condition. Results 

obtained from physical testing using loading conditions other than a 

simple-supported beam with a concentrated midspan load should be compared 

with the analytically predicted results, thus yielding information 

concerning the applicability of the analytical method for other loading 

conditions.

The determination of the stresses within the individual components 

is the final area of study recommended. This will involve the use of 

strain gages and strain rosettes to determine the strain distribution, 

and thus the stress distribution, in each component. Results obtained 

from physical testing can then be compared with analytical and computer 

model predicted values. Some work has been done in this area. Results
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obtained from these tests can be found in previous reports concerning 

captive column structural behavior [2,3].

Analytical Development

The analytical method presented in this thesis is a great 

improvement over the previous method that was used to predict captive 

column beam stiffness. Including the deflection due to shear force in 

the computation of the stiffness is the main reason for this improvement.

It has been suggested that deformation of the cross-section and 

inconsistencies in the stress distribution in the vicinity of the 

concentrated load or the end supports are possible sources of error 

between the experimental and analytical results. The analytical method 

neglects the increase in the deflection caused by these localized 

effects. To obtain predicted stiffnesses which are in better agreement 

with experimentally determined results, these localized effects should be 

included in the analysis.

Although the conservation of energy approach is based upon the 

normal stress and shear stress distributions, the determination of these 

distributions is not explicitly obtained in the development found in 

Chapter 2. By expanding the development of Chapter 2, the stress 

distributions may be determined for the entire captive column 

cross-section. Stresses obtained in this fashion may be compared with 

experimental results and results obtained from the computer model.

Special attention will be required to account for the localized 

inconsistencies in the stress distribution.

The determination of the wrap pretension due to the wrapping tension 

and the load at which the pretensioned wrap strands become slack is 

related to the above determination of the stress distributions. By
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determining these two factors, the beam stiffness within the range 

represented by the cases of no wrap pretension and ideal wrap pretension 

may be obtained.

Computer Model

A number of element combinations were considered by Kipp [2] before 

the current model was obtained. The current model was chosen because it 

yielded relatively accurate predictions of actual captive column 

structural behavior and was adaptable to a wide variety of captive column 

geometries, component materials, and loading conditions. In this 

research effort, a method has been developed to account for the effect of 

wrap pretension. Including the effect of wrap pretension narrows the 

predicted beam stiffness from a range of stiffness values, no wrap 

pretension stiffness to ideal wrap pretension stiffness, to a single 

value.

It is the author's belief that improvements in the computer model, 

beyond the inclusion of the effect of wrap pretension, are not possible 

with the finite element program (SAP IV) that is currently being used.

If improved results using the computer model are desired, one of the 

following course of action should be taken: 1) modify SAP IV to improve 

the results, 2) use other commercially available finite element 

structural analysis programs, or 3) develop a specialized finite element 

program for captive columns. If either of the first two courses of 

action are taken, it is recommended that the program be modified to allow 

for easier data input and specialized data output.

Dynamic Analysis

Very little investigation has been performed concerning the response
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of captive columns to dynamically applied loads. There are three main 

areas of interest that will be addressed in the following paragraphs.

The first area of interest is the determination of the natural 

frequencies of a captive column. Exciting a structure as its natural 

frequency leads to increases in the amplitude of vibration and may result 

in premature failure of the structure. The effect of rotary inertia and 

deformation due to shear stresses should be included in the determination 

of the natural frequencies of the overall captive column. Furthermore, 

the natural frequencies of individual components may be an important 

factor.

The second area of interest is the expected life of a captive column 

subjected to cyclic loading. A different material may be used for each 

component in a captive column, with various methods used to bond the 

components into an integral structure. The effect of cyclic loading of 

each component, as well as the bonds holding the components together, 

must be understood in order to properly design a captive column.

The last area of interest is the rate of application of a load. In 

the development found on Chapter 2 it was assumed that the concentrated 

load was gradually applied to the captive column, and therefore the 

external work was equal to one-half of the total load multiplied by the 

deflection. If the load is suddenly applied, the external work will be 

different. Impact factors are used to account for the sudden application 

of a load. The behavior of a captive column subjected to suddenly 

applied loads may be different that conventional structures, and 

therefore a new set of impact factors may have to be developed.
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MOMENT OF INERTIA EQUATIONS
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The equations needed to determine the moments of inertia of the 

caps, the core panels, and the core centerpiece for square and triangular 

cross-section captive columns are presented in this appendix. The 

equations are obtained from standard moment of inertia equations. Due to 

the symmetry of the cross-sections, the moment of inertia is independent 

of the angular orientation of the members.

Square Cross-Section
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Triangular Cross-Section
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FIGURE 40 - CAPTIVE COLUMN CROSS-SECTIONS



WRAP SHEAR STIFFNESS AND EQUIVALENT WIDTH

APPENDIX B
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In the development of the relationship for the stored elastic strain 

energy due to shear force, an equivalent wrap width must be developed for 

a panel of wrap strands. The development of the equivalent width is 

based on the angular distortion of a wrap panel due to an applied shear 

stress.

Four rigid links connected by frictionless pins are shown in Figure 

41A, with the wrap strands, for one direction of wrap only, connected to 

the links. The application of a shear stress will produce the 

deformation shown in Figure 41B, where n is a number between zero and 

one. An equivalent load case is obtained by multiplying the shear stress 

on each side of the wrap panel by the area of each respective side. The 

components are vectorally added to obtain the equivalent forces, P , 

shown in Figure 41C:

P (77)eq sin<(>

angle = <f>

where P„„ = equivalent force eq ^

t  = shear stress

D = length of vertical edge (corresponds with cap 
centerline distance)
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wwrap = ecluivaTent wraP width 

<f> = wrap angle.

For small deformations in the elastic range, the shear stress is 

equal to the shear modulus multiplied by the shear strain, which is the 

angle of deformation, y. Substituting this definition of the shear 

stress into Equation (77) and simplifying yields the following 

expression:

p = yD(wG)wrap 
eq sin<(> (78)

where y = shear strain

G = equivalent wrap shear modulus 

(wG)Wrap = wrap shear stiffness.

The wrap strands provide resistance to the deformation of the 

assemblage in the form of axial tensile forces. The shear strain 

increases as the equivalent force increases, which results in an increase 

in the tensile force in each wrap strand. An expression can be developed 

for the equivalent force in terms of the number of strands and the 

tensile force in each strand. The system shown in Figure 41D, which is 

statically equivalent to the system of Figure 41C, will be used for this 

development. Setting the summation of forces in the vertical and 

horizontal directions, and the summation of moments about any point equal 

to zero results in the two reactions shown in Figure 41E. A free body 

diagram is obtained by passing a cutting plane through pin 2 and the 

wrap strands, see Figure 41F. The tensile force is the same for each 

wrap strand, and therefore the total force due to the wrap strands is equal 

to the force in one strand multiplied by the number of strands. This force 

acts at any angle <p to the horizontal through the midpoint of the link.
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The following expression is obtained by setting the summation of moments 

about pin A equal to zero:

where N

p
NFs coS(j> - D —2“̂  cos4* = 0

peq = NFs <79> 

= number of wrap strands.

The force in each wrap strand is determined by considering the 

geometry of the deformed and undeformed assemblage. Two links and one 

wrap strand are shown in Figure 41G, with the length of the wrap strand 

given by the following equation:

where i

1 - sin* <80> 

= length of wrap strand.

The application of the equivalent force produces the deformation shown in

Figure 41H. The following relationship is obtained from the Cosine law:

where A

2
U  + A )2 = z2 - 2 ^  cos (90° + Y) (81) 

= change in the wrap strand length.

By assuming that the shear strain is small, Equation (81) can be solved 

for A in the following way:

- 2 - 2 - tan* v

‘ 2 + 214 - fi£* * 0
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A

As

-£±£ /1 + - J &-—
tan <j>

■£ + £ 1 1  +( - ^ 1 )
\ £ tan 4> /

YP _ yD s i n <j) 
£tan<j> tan

As yP COS<(> ( 8 2 )

A relationship for the axial deflection of the wrap strand as a function 

of the force in the wrap strand and the geometric and material properties 

is shown below:

A = Fs‘
A E s wrap

( 83 )

where Ag = cross-sectional area of the wrap strand

Ewrap = elastic modulus of the wrap.

Equating Equations (82) and (83) and simplifying results in the following 

equation

Fs*

'wrap

Fs D
A E sin* s wrap v

=  yP COS0

Fs " yAs Ewrap s1n* cos* <84>

Substituting Equations (78) and (84) into Equation (79) and simplifying

results in the following:
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y D ( wG ) r v ;wrap
s i n<f) ■ Nv \ Ewrap sin* cos*

(wG)wrap = 5  fls Ewrap s1"2+ cos+ (85)

The number of wrap strands is equal to the wrap density multiplied by the 

length of a horizontal link. The final equation for the wrap shear 

stiffness is obtained by substituting this expression into equation (85):

w = pD _ pD cosij) 
tan<j> sin<|)

(wG)wrap = pAs Ewrap s1n+ cos2+ <86>

where p = wrap density.

By dividing this equation by the equivalent shear modulus of the wrap, an 

equivalent wrap panel width is obtained:

w.wrap

A E 2p s cwrap sin<j> cos <)>
Gwrap

(87)

Equations (86) and (87) represent the shear stiffness and equivalent 

width, respectively, of a panel of wrap strands for one direction of wrap 

only. Both directions of wrap are shown in Figure 42A. Linder the 

application of the shear stress, the strands in the direction from pin 1 

to pin 3 will be subjected to tensile force and the other strands will be 

subjected to compressive. Since the wrap strands cannot carry 

compressive forces, the strands that are subjected to compressive force 

will merely relax. If there is pretension in all of the strands, the



FIGURE 42 - PANEL OF WRAP STRANDS, TWO DIRECTIONS OF WRAP
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compressive force will decrease the tensile force due to the pretension. 

In this case, all of the wrap strands will be able to resist the shear 

stress.

The load case shown in Figure 42B can be divided into the two cases 

shown in Figure 42C. The summation of the stiffnesses from these two 

cases will be the total shear stiffness. The analysis of the case where 

the strands are subjected to compressive force is similar to the 

previously developed analysis. It can be shown that the total shear 

stiffness or equivalent wrap width is equal to twice the values computed 

from Equations (86) and (87), respectively.
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The solution of the three integrals needed in Equation (42) of 

Chapter 2 are found in this Appendix. Equations (18) and (19) are used 

to obtain the equivalent first moments of area and the equivalent widths 

of the cross-section. Equations (39), (40), and (41) are used to obtain 

the incremental areas.

First Integral

0

Q,
+ ŵ^center + ^ 2  " ^  ̂ ŵ(̂ wrapeq =

cap

beq
2(wG)wrap +^w(̂  center

cap

dA = 2(wG)Wrap + ŵG^center 
G__cap

h

0

2

J
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c 2 = (h32 ' h22) (wG)cap + ^ (h22 " hl2) {tG)panel

+ ~ T  (wG)center + h22 (wG)wrap 

c3 = \  (wG)cap + (wG)wrap

Second Integral

2 , 2
s (wG)cap + ^ (h22 - y2> <tG>panel * V  ~ / > W

2 2 ,

wrap
eq cap

2(wG) + 2(tG) ,k _ 'wrap v ' panel
eq GM cap

dA . ?(wG>wrap + ^ anel
dy

cap

r  2 2
J2 = c4 (c 5 ‘ c6^ ) dy

J2 = c4 c5 ^h2 hl̂  " 3 C5C6 ĥ2 " hi ) + ~T~ ^h2 h,5)

(wG) + 2 (tG) , ___'wrap______ v 'panel

2 Gcap [(wG)wrap + (tG)panel1
c5 ^h32 " h22) ŵG^cap + h22 ^  <tGW l  + (wG)wrap

C6 = 72 (tG)panel + (wG)wrap
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Third Integral

J 3 - / f e l «

^eq = (h32 - "cap

b = 2 w eq cap

dA = 2 "cap ^

■ !

J3 = c7 j (c8 - cg y ) dy 

h,

J3 = c7 ^ c 8 ^h3 " M  " 1 c8c9^h3 “ h2  ̂ + 5 ^h3 - h2 ^

C-, =7 " F w.cap

c0 = h32 "cap

Co = w9 cap
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The development of the equations needed to find the elastic strain 

energy due to shear force for a square cross-section captive column 

rotated 45° and for a triangular cross-section captive column can be 

found in this appendix. The development will begin with Equation (17) 

and will continue in a similar fashion to the development in Chapter 2. 

The equations needed to determine the beam stiffness for the captive 

columns can also be found in this appendix, along with approximate beam 

stiffness equations.

Square Cross-Section Rotated 45°

The square cross-section captive column shown in Figure 43A is 

simplified to the cross-section shown in Figure 43B. The equivalent wrap 

width is determined by using Equation (21). Since the equivalent wrap 

panels are oriented at a 45° angle to the neutral axis, the wrap panels 

are treated in the same way that the core panels were treated in 

Chapter 2.

In general, the shear modulus of the core panels is much smaller 

than the cap shear modulus, and therefore, the core panels that lie along 

the neutral axis will be neglected in this analysis. Furthermore, the 

two caps that lie on the neutral axis are transformed into rectangular 

regions with the height equal to the core centerpiece width and the width 

equal to the dimension necessary to have equivalent area in the round and 

rectangular regions. The above two approximations are made in order to 

simplify the analysis. Any error introduced by making these two 

simplifications will be insignificant.



FIGURE 43 - SQUARE CROSS-SECTION CAPTIVE COLUMN, ROTATED 45°
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^shear

Caps

Q(0,h1)

w _ v/id
cap

w ird
cap 4 wcenter

wcenter

h2 ‘ ^  - “cap> /2

h3 = ( + “cap> 12

- “ 'cap <hl2 - &  +W- F  <h32 - h22> 

Q(hj,h2) = ^  (h32 - h22)

Q(h2,h3) - -£|£ (h32 - y2)

Q(0,hj) = - ^ 1  (h/ - hj2)

Core Panels



169

Q(hj,hg) - -EfSSl (h22 - y2)

Core Centerpiece
Q(h2 ,h3) = 0

w
Q(0,hj) , - " f e z  ( h [2 . y2)

QOij.hj) = 0

Wrap

Q ( ° , h l )  = ^ w wrap ( h /

Q ( h1 ’ h3 = ^  wwrap

hi2)

y 2 )

Q(h2 ,h3) = 0

b„„

’ 3CXIII forcaps cap

b , = w forcaps cap

^panel = ^panel

b = 2 wwrap wrap

bcenter
= w

center

0<y<h1

h2<y<h3

dA =

dA =

[ 2 ( w  G ) cap + ( w G ) c e n t e r ]

Gcap

[2^ wG)wrap + ( t 6 )Pane1^ 

Gcap

dA = dycap J

dy for 0<y<h^

dy for h^<y<h2 

for h2<y<h3
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Using the horizontal plane of symmetry, and dividing the integral 

into three parts, the following equation is obtained:

Ushear K[J^ + ( 8 8 )

where

By substituting the appropriate values into the three integrals and 

performing the integrations, the following results are obtained:

J1 cl^c2 hl " I t'2t'3ri 1
2 . 3 , C3 .5-, (89)

hP  “ 3 c5c6^h2 " hl ) + 5 (h2 " hl ^
2

^2 = c4^c5 (^2 ” (90)
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J3 c7^c8 ^h3 “ h2̂  " I  c8c9^h3 " h2  ̂ + 5 ^h3 ' h2 ^ (91)

where
cl=

Gcap [2{w G)cap + (wG)center]

Co = {w G)cap +

(wG) center
2

(tG),

o (wG) 
hl' + — 2 (h 2 h,2)

^ “G>„rap + (h22 - hx2)

(wG)

:3 = <w G^cap + ----T
center

c4 =
2 s/2(wG^wrap (t6)panel

71

(wG)
Cr =

Gcap[2(wG)wrap + (tG)panel]‘

(h 2 - h 2) h- [V2(wG)t * '“"ganel
o L I V

(tG),

2 '"3 '2 ' |_ 'wrap

c = — 6^caP + v/2 (wG)
'wrap

C-7 =7 wcap

, - h 2 
'8 h3

. - WcgP 
'9 2

The solution to the integrals may be obtained in a similar fashion to the 

solution found in Appendix C.
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The above equation for the elastic strain energy is similar to 

Equation (42), with the differences found in the constant values c^ 

through Cg. The elastic strain energy due to the bending moment is 

found by using Equation (11). Equation (47) is used to find the beam 

stiffness for a square captive column in either orientation, provided 

that the appropriate constant values are used.

The method outlined in the beginning of Chapter 6 will now be used 

to develop an approximate beam stiffness equation. The moment of inertia 

is independent of the angular orientation, and therefore Equation (51) is 

used to find the approximate moment of inertia. The integrals and 

will be set equal to zero. By neglecting the first moment of area 

of the core panels and the wrap, the following equation is obtained for 

the integral

J2

h1

(92)

where

_ D /if d wcenter
2 "/2 ' 4 2
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Approximate equations have been developed for the equivalent 

flexural rigidity and the integral J^. By setting = J3 = 0, 

substituting Equations (51) and (92) into Equation (47), and simplifying, 

the, following approximate equation for beam stiffness is obtained:

k

2  2
12irdV E ______  cap

L3 + 3LdZ E b7 h„ cap 2 2

(93)

Triangular Cross-Section

The triangular cross-section captive column shown in Figure 44A is 

simplified to the cross-section shown in Figure 44B. The equivalent wrap 

panels and the core panels below the neutral axis are treated in a 

similar fashion to the way in which the core panels were treated in 

Chapter 2. The triangular centerpiece is transformed into a square 

region with the same cross-sectional area as the actual centerpiece. As 

before, this transformation is made in order to simplify the analysis.

Any error introduced by making this transformation will be negligible.

area

wwrap

w.

pAgE sinfcos <p 

Gwrap 

_\fn d
cap

1 31/4Ul = -—-- Ul
center 2 center

tan 30° = —  = 0.577
73

_ 2
73

1.155 —  = 2.309
7 3



NA "-J-P*

FIGURE 44 - TRIANGULAR CROSS-SECTION CAPTIVE COLUMN
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Caps

^1 3 w center 0*439 wceiT(-er

h2 = 0.577 D -

h3 = 0.577 D +

^4 3 w center 0.219 wcen|-er

0.577D - w

h5 =
cap

0.577D - 
hc = ------ a--

Q(0,h2) = ^  (h32 - h22)

Q(h2,h3) = (h32 - y2)

Q(0,h5) = wcap (h62 - h52) 

Q(h5,h6} = wcap (h62 - y2)

Q(0,h1) = (h22 - h^)

Q(^l ,h2) (h22 - y2)

Q(0’h4) = 2 tpanel ^h5 " O  

Q ( h4 Jh5) = 2 tpanel (h52 - y2)

Core Panels
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Core Centerpiece

Q(h2,h3) = Q(h5 ,h6) = 0

w
QfO.h.) = -center (h 2 _ y2)

Q(0,h4) = w_center

Q(h1 ,h3) = Q(h4 ,hg) = 0

Wrap

0(0,h2) ■=J  wwr.ap (h22 - / )

« ° * h5> ■ J  wwrap <h52 - 

Q(h2 ,h3) = Q(h5,h6) = 0

Above Neutral Axis

b = w cap cap

bpanel _ bpanel

Below Neutral Axis

center = w center

bwrap = 2 wwrap

bcap = 2 wcap

bpanel = 2
1
t *1 panel

1

center = w center
bwrap = 2 wwrap

[2.309(wG) + (w G) .^  _ ______  'wrap v 'center

^cap
dy for 0<y<h^
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dA - [2-3°9(wG)wrap + (tGU e 1 

Gcap
dy for h^<y<h2

dA = „cap dy for h2<y<h3

[2.309(wG) + (w G) .
dA = ---------- ------------ c • dy for h2<y<h3

cap

[2.309(wG) + 4(tG) ,
dA = ---------- —  dy for h4<y<hg

cap

dA = 2 wcap d* for h5<y<hg

Dividing the integral into six parts, the following equation is 

obtained:

Ushear = f  + J2 + J3 + J4 + J5 + J6] (94)

where K = P2L
4G

hl

'cap

L(EI)eqJ

0

Jo =
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By substituting the appropriate values into the six integrals and 

performing the integrations, the following results are obtained:

J! " C1 ^c2 hl " 3 C2C3 hl + 5 hl ^ (95)

J2 = c4 [c52(h2 - hx) - |  c5c6(h23 - hj3) + -|- (h25 - hT5)] (96)

J3 = Cy [c82 (h3 - h2) - |  c8cg(h32 - h23) + -|- (h35 - h25)] (97)

J4 c10 ^ 1 1 ^ 4  ' 3 cllc12h43 + h45^ (98)

3 , 3, , 15 /. 5 . 5,
J5 c13 -̂c14 ^h5 " h4̂  " 3 c 14c 15 ĥ5 " h4  ̂ + 5 ^h5 " h4 ^
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2,L L v 2 /L 3 L 3v , l18 5
J6 ‘ c16 ^c17 ĥ6 " h5̂  " 3 C17C18^h6 h5  ̂ + I ”  (h6

where C1
2-309("G>wrap + (" ^center 

Gc a p ^ w(̂ wrap + G ĉenter-̂

(wG)
c2 = ---(h32 - h22) +

(tG) panel (h22 - hj2)

(w G)center , 2
hl + ‘- I S S ^ U p  h2

(w G)
c3 ' + 1.155(wG)wr.ap

c 2.309(wG}Wrap + (tG) pa[|e1 

4 Gcap[2("G>wrap + <tGW l ]2

Cr =
(wG) 2 p (tG)
— p t  (h32 - h/) ♦ i.i s s(w g ) + — epl- h'wrap

= .(tG)panel + 1 1 5 5  (wG)
wrap

C-7 =7 wcap

= ^ £ E  h- 2 

c9

Co =8 ----T  3

C10 = C1

h56)] (100)

2
2
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(w G)

C11 (“G)cap (h62 " h52) + 2 (tG,panel " '"s'1

2
\ 2 + l-155(wG)wrap h52

c12 c3

c 0 - 5 7 7 ( w G ) w r a p  + ( t t k n e i  

13 G c a p t < " G >wrap + <t G > p a ^ ?

c14 ' (“G>cap(h62 - h52> + 2[0.57 7(wG)wrap + (tG)pane,] h /

c1K = 2 [0.577(wG) + (tG) .]15 L v 'wrap v 'panel-1

1
16 2wcap

c17 = "cap h62 

c18 ’ "cap

The solution to the integrals may be obtained in a similar fashion to the 

solution found in Appendix C.

The above equation for the elastic strain energy is similar to 

Equation (42), with the differences found in the constant values c^ to 

Cg, the addition of three integrals (J^, Jg, and Jg), and the 

multiplication factor of one-half. The elastic strain energy due to the 

bending moment is found by using Equation (11). An equation for the beam 

stiffness may be found by substituting Equation (11) and Equation (94) 

into Equation (3) and making the appropriate simplifications:

—  = I) + U2 normal shear
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48(El)eg_

12 E
( 101)

L [1 +
l  Gca p ^ ^ e q

(Ji + Jo + Jo + J* + Jr + Jr)]

An approximate beam stiffness equation will now be developed. If 

all three caps have the same diameter and are made of the same material, 

the approximate flexural rigidity is given by the following equation:

it E d2D2

(EI>e, ‘ ^ ---- <102>

The integrals Jj, Jg, J^, and Jg will be set equal to zero. By 

neglecting the first moments of area of the core panels and the wrap, the 

following equations are obtained for the integrals Jr, and J^:

ir2d4D2G
Jo * -----P B 0H48 3 3 (103)

2 4 2 ir a u b
Jc = -----B,H48 4 4 (104)



where
2.309(wG) + (tG) , g __________ wrap v 'panel

3 [2<wG>wrap + <tG>panel^

° - 577(" G)wrap + (tG>parel

[(wG)wrap + (tG)panel]2

H, = 0.577 D - 0.439 w .3 4 center

„ 4 = 0.289 D - ^  - 0.219 wcenter

Approximate equations have been developed for the equivalent 

flexural rigidity and the integrals and J^. By setting 

Jl = J3 = J4 = Jg = 0, substituting Equations (102), (103), and 

(104) into Equation (90), and simplifying, the following approximate beam 

stiffness equation is obtained:
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THE FOLLOWING VARIABLES ARE REQUIRED AS INPUT DATA.

TPANI  CORE PANEL THICKNESS ( I N )
EPAN: CORE PANEL EL ASTIC MODULUS (L B S / IN )
GPAN: CORE PANEL SHEAR MODULUS (L B S / IN )
WCEN: CORE CENTERPIECE WIDTH ( I N )
ECEN: CORE CENTERPIECE ELA ST IC  MODULUS (L B S / IN )  
GCEN: CORE CENTERPIECE SHEAR MODULUS (L B S / IN )  
DCAP: CAP DIAMETER ( I N )
ECAP:  CAP ELA ST IC  MODULUS (L B S / IN )
GCAP: CAP SHEAR MODULUS (L B S / IN )

DWRAP: WRAP STRAND DIAMETER ( I N )
EWRAP: WRAP STRAND EL ASTIC MODULUS (L B S / IN )

RHO: WRAP DENSITY (STRANDS/INCH)
PHI !  WRAP ANGLE (DEGREES)

D: CAP CENTERLINE DISTANCE ( I N )
NSPAN: NUMBER OF TEST SPANS

L I  LENGTH OF TEST SPAN ( I N )

THE FOLLOWING VARIABLES ARE DETERMINED WITHIN THE PROGRAMS.

a c a p : 
i c a p : 
a p a n : 
i p a n : 
a c e n : 
i c e n : 
a s t r : 

w g c a p : 
t g p a n : 
w g c e n : 

w p g c e n : 
c i  t o  c i b :

CAP CROSS-SECTIONAL AREA
CAP MOMENT OF INE R T IA  ABOUT THE NEUTRAL AX IS  
CORE PANEL CROSS-SECTIONAL AREA
CORE PANEL MOMENT OF IN E R T IA  ABOUT THE NEUTRAL A X IS  
CORE CENTERPIECE CROSS-SECTIONAL AREA
CORE CENTERPIECE MOMENT OF IN E R T IA  ABOUT THE NEUTRAL A X IS
CROSS-SECTIONAL AREA OF ONE WRAP STRAND
CAP SHEAR STIFFNESS
CORE PANEL SHEAR STIFFNESS
CORE CENTERPIECE SHEAR STIFFNESS (SQUARE CROSS-SECTION)
CORE CENTERPIECE SHEAR STIFFNESS (TRIANGULAR CROSS-SECTION)  
CONSTANTS USED IN THE DETERMINATION OF THE EL ASTIC STRAIN 
ENERGY DUE TO SHEAR STRESSES, CIO TO C18 USED FOR 
TRIANGULAR CROSS-SECTIONS ONLY

THE FOLLOWING VARIABLES ARE OUTPUT DATA FROM THE PROGRAMS.

E IP A N:  CORE PANEL FLEXURAL R I G I D I T T Y  <LBS*IN**2)
E IC EN :  CORE CENTERPIECE FLEXURAL R I G I D I T Y  (LBS*IN**2)
E IC A P I  CAP FLEXURAL R I G I D I T Y  (LBS*IN**2)

E IE Q :  EQUIVALENT FLEXURAL R I G I D I T Y  (LBS*IN##2)
E I A P P :  APPROXIMATE FLEXURAL R I G I D I T Y  (LBS*IN**2)

CORSIG:  CORE SIGNIFIC ANCE (PERCENT)
r : r a d i u s  o f  g y r a t i o n  ( i n >

J1 TO JG:  INTEGRALS USED IN THE DETERMINATION OF THE ELA ST IC  STRAIN 
ENERGY DUE TO SHEAR STRESSES, J4 TO JG USED FOR TRIANGULAR
CROSS-SECTIONS ONLY ( IN**G)

JAPP!  APPROXIMATE SOLUTION FOR THE INTEGRALS ( IN**6)  
K: BEAM STIFFNESS (L B S / IN )
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" THIS PROGRAM DETERMINES THE STIFFNESS OF A SQUARE 
" CROSS-SECTION CAPTIVE COLUMN LOADED AS A SIMPLE-SUPPORTED 
" BEAM WITH A CONCENTRATED MIDSPAN LOAD.
" THE FOLLOWING UNITS ARE USED:
" ELA ST IC  AND SHEAR MODULI-  1 ,000,000 PSI 
" ALL LENGTH DIMENSIONS' INCHES
" WRAP DEN SITY -  STRANDS/INCH, WRAP ANGLE-  DEGREES
" FLEXURAL R I G I D I T I E S -  LB*IN**2
" CORE S IG N IF IC A N C E -  PERCENT
" S T IFF N E S S -  LB/IN

DIMENSION J l ( 2 ) ,  J 2 ( 2 ) ,  J 3 ( 2 ) ,  JA P P < 2 ) ,  L <10),  SHEAR( 5 ) ,  K(5)  
REAL IO C A P , ICAP ,  IOPAN,  IPAN,  ICEN,  J 1, J 2 ,  J3 ,  JAPP,  K, KK, L 
PI=3.1416

" INPUT ALL NECESSARY DATA 

WRITE 1B,1)
1 FORMAT( / ,  ' ENTER CORE PANEL EL AST IC  MODULUS, SHEAR MODULUS AND THI 

CKNES3' )
READ(5,*> EPAN, GPAN, TPAN 
EPAN=EPAN#1000000 
GPAN=GPAN#1000000 
W R IT E (G ,2 )

2 FORMAT( ' ENTER CORE CENTERPIECE E LA S T IC  MODULUS, SHEAR MODULUS AND 
W I D T H ' )

READ( 5 , * )  ECEN, GCEN, WCEN 
ECEN=ECEN#1000000 
GCEN=GCEN#1000000 
W R IT E (6 ,3 )

3 FORMAT( ' ENTER CAP ELAST IC  MODULUS, SHEAR MODULUS AND DIAMETER' )  
READ( 5 , * )  ECAP,  GCAP, DCAP
ECAP=ECAP*1000000 
GCAP=GCAP*1000000 
W R IT E (G ,4 )

4 FORMAT( ' ENTER WRAP ELAST IC  MODULUS, DIAMETER, DENSITY AND ANGLE ' )  
RE AD (5 ,* )  EWRAP, DWRAP, RHO, PHI
EWRAP=EWRAP#1000000 
P H I =P H I*0.01745 
W RIT E (G ,5 )

5 FORMAT( ' ENTER DISTANCE BETWEEN ADJACENT CAP CENTERS' )
READ(5 ,* )  D
W R IT E (G ,S )

G FORMAT( ' ENTER NUMBER OF TEST SPANS' )
READ( 5 , * )  NSPAN 
WRITE( 6 , 7 )

7 FORMAT( '  ENTER TEST SPANS, ONE VALUE PER L I N E ' )
DO 10 1=1,NSPAN 
READ(5,*> L ( I )

10 CONTINUE
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" DETERMINE CROSS-SECTIONAL AREAS, MOMENTS OF 
" IN E R T I A ,  FLEXURAL R I G I D I T I E S ,  CORE S IG NIF IC A N C E ,  
" AND RADIUS OF GYRATION

I0CAP=PI*DCAP**4/64 
ACAP=PI*DCAP**2/4 
ICAP=4*I0CAP+2*ACAP*(D*0.7071)**2 
HGHT =1.4142* < D/2) - ( DCAP+WCEN) /2 
I0PAN=(TPAN*HGHT**3)/G+(HGHT*TPAN**3)/G 
APAN=TPAN*HGHT
IPAN=I0PAN+2*APAN*<( WCEN+HGHT) / 2 ) **2
IC EN=( WCEN#*4) /12
EIPAN=IPAN*EPAN
EICEN*ICEN*ECEN
EICAP=ICAP*ECAP
EIEG=EIPAN+EICEN+EICAP
EIAPP=4*ECAP#ACAP*( D/2) **2
C0RSIG=100*(EIPAN+EICEN)/EIEG
ACEN=WCEN**2
AEEQ=4*ACAP*ECAP+4*APAN*EPAN+ACEN*ECEN 
R=SQRT(EIEQ/AEEQ)

" OUTPUT THE FLEXURAL R I G I D I T I E S

20
21
22
23
24
25 
2G 
27

WRITEI6 
WRITE(6 
WRITE(6 
WRITEC6 
WRITEIG 
WRITEtG 
WRITE(G 
WRITE(S 
FORMAT( 
FORMAT( 
FORMAT( 
FORMAT( 
FORMAT( 
FORMAT( 
FORMAT( 
FORMAT(

, 20 )

,2 1 )

, 22)

,23)
,24)
,25)
,26)
,27)

E l  PAN
EICEN
EICAP
EIEG
EIAPP
CORSIG
R

/ , 8 X , ' E l  OF THE 
'  CORE= 
' CENTERPIECE* 
' CAPS* 
' EQUIVALENT* 
' APPROXIMATE*

COMPONENTS')
, F 1 5 .0 )
, F 1 5 .0 )
,F 1 5 .0 )
, F 1 5 .0 )
, F15. 0 )

/ , '  CORE S IG N IF IC A N C E * ' , F 8 . 4) 
' RADIUS OF G Y R A T I O N * ' , F 8 . 4)
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" DETERMINE SHEAR STIFFNESSES AND 
" INTERMEDIATE TERMS FOR THE INTEGRALS

ASTR=PI*DWRAP**2/4
WGWRAP=RHO*ASTR*EWRAP*SIN(PHI)*COS(PHI)»*2
WCAP=SORT(PI )*DCAP/2
WGCAP=WCAP*GCAP
WGCEN=WCEN*GCEN
TGPAN=TPAN*GPAN
HI=WCEN/2
H2=( D-WCAP) /2
H3=( D+WCAP) /2
H3H2=H3-H2
H3H22=H3##2-H2**2
H3H23=H3**3-H2**3
H3H25=H3**5-H2**5
H2H1=H2-HI
H2H12=H2**2-H1**2
H2H13=H2**3-H1**3
H2H15=H2**5-H1**5

" DETERMINE AND OUTPUT THE INTEGRALS 

DO 30 1=1,2
C1=1/(GCAP*(2*WGWRAP+WGCEN))
C2=H3H22#WGCAP+1.4142*H2H12*TGPAN+0.5*H1**2*WGCEN+H2**2*WGWRAP
C3=0.5*WGCAP+WGWRAP
C4=< WGWRAP+1 . 4142#TGPAN) / ( 2*GCAP*( WGWRAP+TGPAN> **2) 
C5=H3H22*WGCAP+H2**2*(1. 4142#TGPAN+WGWRAP) 
C6=1.4142*TGPAN+WGWRAP 
C7=1/(2*WCAP)
C8=H3#*2*WCAP
C8=WCAP
J 1C I ) = C1# ( C2**2*Hl -0.G67#C2*C3*H1#*3+0.2#C3##2#H1*#5)
J 2 ( I ) =C4*( C5**2*H2H1 - 0 . 667#C5#CS*H2H13+0.2*CG*#2#H2H15)
J3<I)=C7*(C8**2*H3H2-0.G67*C8*C8*H3H23+0.2*C9**2*H3H25> 
JAPP( I)=C4*(WGCAP+H3H22) #*2*H2H1 
WGWRAP=2*WGWRAP 

30 CONTINUE 
W R ITE (6r4 0)
W R IT E (S ,4 1 )  J 1 (1)  , J 2 ( 1 ) ,  J 3 ( l ) ,  J A P P ( l )
WRITE<6,42) J l ( 2 ) ,  J 2 ( 2 ) ,  J 3 ( 2 ) ,  J A P P (2 )

40 FORMAT </ ,30X,  ' J1 M O X ,  ' J2 M O X ,  ' J3 ' , 8 X ,  ' J - A P P ' )
41 FORMAT( ' NO WRAP PRETENSION ' , 4 F 1 2 . 4 )
42 FORMAT( ' IDEAL WRAP PRETENSION ' , 4 F 1 2 . 4 )
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" DETERMINE AND OUTPUT THE BEAM STIFFNESS VALUES

W RIT E (6 ,5 0 )
WRITE<6,51)
W R IT E (6 r 52)

50 FORMAT(/ r16X> 'B E A M  S T I  F F N E S S V A L U E S ' )
51 FORMAT( ' 

I M A T E ' )
TEST BENDING EXACT APPROX

52 FORMAT( ' 
IDEAL H P T ' )

SPAN ONLY NO WPT IDEAL WPT NO WPT

DO 60 I =1,NSPAN
KK=24*ECAP**2/(L<I )**2*GCAP*EIEQ)
SHEAR(1)  =0
S H E A R (2 )= K K * ( J 1 ( 1 ) + J 2 ( 1 ) + J 3 ( 1 )  )
S H E A R ( 3 ) = K K * ( J 1 ( 2 ) + J 2 ( 2 ) + J 3 ( 2 ) )
KK=KK*EIEQ/EIAPP
SHEAR(4)=KK#JAPP(1)
SHEAR(5)=KK#JAPP(2)
DO 65 J = 1 r 5
K ( J ) = 4 8 * E I E Q / ( L ( I ) # # 3 # ( 1 +SHEAR( J ) )  )
I F ( J . E Q . 4 . 0 R . J . E Q . 5 )  K ( J ) = K ( J ) *E IA P P / E IE Q  

65 CONTINUE
W R IT E (6 ,7 0 )  L ( I ) »  ( K ( J ) , J = 1 , 5 )

70 F O R M A T ( lX iF 6 . 1 r 5 F 1 2 .0 )
60 CONTINUE 

END
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" THIS  PROGRAM DETERMINES THE STIFFNESS OF A TRIANGULAR 
" CROSS-SECTION CAPTIVE COLUMN LOADED AS A SIMPLE-SUPPORTED 
" BEAM WITH A CONCENTRATED MIDSPAN LOAD 
" THE FOLLOWING UNITS ARE USED:
" EL AST IC  AND SHEAR MODULI-  1,000,000 PSI 
" ALL LENGTH DIMENSIONS-  INCHES
" WRAP D EN SITY -  STRANDS/INCH, WRAP ANGLE-  DEGREES
" FLEXURAL R I G I D I T I E S -  LB*IN**2
" CORE S IG N IF IC A N C E -  PERCENT
" S T IFF N E S S -  LB/IN

DIMENSION J 1 ( 2 ) ,  J 2 ( 2 ) ,  J 3 ( 2 ) ,  J 4 ( 2 ) ,  J 5 ( 2 ) ,  J 6 ( 2 )
DIMENSION L ( 1 0 ) ,  JA PP<2) ,  SHEAR(5)  , K(5 )
REAL IOCAP,  IC AP ,  IOPAN,  IPAN,  ICEN,  J l ,  J2 ,  J 3 ,  J4 ,  J5 ,  J S ,  JAPP,  

K, KK, L
P I = 3 . 1416

" INPUT NECESSARY DATA 

W R I T E ( G , 1)
1 F O R M A T !/ , '  ENTER CORE PANEL EL AST IC  MODULUS, SHEAR MODULUS AND THI  

CKNESS' )
READ(5 ,* )  EPAN, GPAN, TPAN 
EPAN=EPAN*1000000 
GPAN=GPAN*1000000 
WR ITE( G,2 )

2 FORMAT! '  ENTER CORE CENTERPIECE EL AST IC  MODULUS, SHEAR MODULUS AND 
W IDTH ' )

READ( 5 , * )  ECEN, GCEN, WCEN 
ECEN=ECEN*1000000 
GCEN=GCEN*1000000 
W R IT E (6 ,3 )

3 FORMAT! '  ENTER CAP ELAST IC  MODULUS, SHEAR MODULUS AND DIA METER' )  
RE AD (5 ,* )  ECAP, GCAP, DCAP
ECAP=ECAP*1000000 
GCAP=GCAP*1000000 
W R IT E (6 ,4 )

4 FORMAT! '  ENTER WRAP EL AST IC  MODULUS, DIAMETER, DENSITY AND ANGLE ' )  
READ( 5 , * )  EWRAP, DWRAP, RHO, PHI
EWRAP=EWRAP*1000000 
P H I= P H I* 0 .01745 
W R IT E (6 ,5 )

5 FORMAT! '  ENTER DISTANCE BETWEEN ADJACENT CAP CENTERS' )
READ( 5 , * )  D
WR ITE( G ,6)

G FORMAT! '  ENTER NUMBER OF TEST SPANS' )
RE AD (5 ,* )  NSPAN 
W R IT E (6 ,7 )

7 FORMAT! '  ENTER TEST SPANS, ONE VALUE PER L I N E ' )
DO 10 1 = 1 , NSPAN 
RE AD (5 ,* )  L ( I )

10 CONTINUE
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" DETERMINE CROSS-SECTIONAL AREAS, MOMENTS OF 
" I N E R T I A ,  FLEXURAL R I G I D I T I E S ,  CORE S IG NIF IC A N C E ,  
"  AND RADIUS OF GYRATION

I0CAP=PI*DCAP**4/64
ACAP=PI*DCAP**2/4
ICAP=3*I0CAP+1. 5*ACAP#(D/1.7321)**2
HCEN=WCEN/1.7321/2
HGHT = D / 1.7321-HCEN-DCAP/2
IOPAN=( TPAN#HGHT**3)/12+(HGHT*TPAN*#3)/12
APAN=TPAN*HGHT
IPAN=1 .5 * IOPAN+1 . 5*APAN*( HCEN+HGHT/2) **2
ICEN=1.7321*WCEN**4/9G
ElPAN=IPAN#EPAN
EICEN=ICEN*ECEN
EICAP=ICAP*ECAP
EIEQ=EIPAN+EICEN+EICAP
EIAPP=1.5*ECAP*ACAP*(D/1.7321)**2
C0RSIG=100*(EIPAN+EICEN)/EIEQ
ACEN=1.7321*WCEN**2/4
AEEG=3*ACAP*ECAP+3*APAN*EPAN+ACEN*ECEN
R=SGRT(EIEQ/AEEQ)

" OUTPUT THE FLEXURAL R I G I D I T I E S

20
21
22
23
24
25
26 
27

WR ITE( G 
WRITE(6 
WRITE(G 
WRITE(6 
WRITEI6 
WR ITE( G 
WRITE(6 
WRITE!G 
FORMAT! 
FORMAT! 
FORMAT! 
FORMAT! 
FORMAT! 
FORMAT! 
FORMAT! 
FORMAT!

,20 )

, 2 1 )

,22)
,23)
,24)
,25)
,26)
,27)

EIPAN
EICEN
EICAP
EIEQ
EIAPP
CORSIG
R

/ , 8 X , ' E l  OF THE 
' CORE2 ' 
' CENTERPIECE=
' CAPS2 ‘ 
' EQUIVALENT = ‘ 
' APPROXIMATE2 ‘

COMPONENTS')
,F 1 5 .0 )
,F 1 5 .0 )
, F 1 5 .0 )
,F 1 5 .0 )
,F 1 5 .0 )

/ , '  CORE S IG N IF IC A N C E = ' , F 8 . 4 )  
' RADIUS OF GYRATION2 ' , F 8 . 4 )
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" DETERMINE SHEAR STIFFNESSES AND 
" INTERMEDIATE TERMS FOR THE INTEGRALS

ASTR=PI*DWRAP**2/4
WGWRAP=RHO*ASTR*EWRAP*SIN( P H I ) *COS( PHI)**2
WCAP=SQRT( P I ) *DCAP/2
WGCAP=WCAP*GCAP
WPCEN=3**0.25*WCEN/2
WPGCEN=WPCEN»GCEN
TGPAN=TPAN*GPAN
H1=WPCEN#0.667
H2=D/1 . 7321-WCAP/2
H3=D/1.7321+WCAP/2
H4=Hl/2
H5=D/1.7321/2-WCAP/2
H6=D/1.7321/2+WCAP/2
H3H2=H3-H2
H3H22=H3**2-H2**2
H3H23=H3**3-H2**3
H3H25=H3**5-H2**5
H2H1=H2-H1
H2H12=H2**2-H1**2
H2H13=H2**3-H1**3
H2H15=H2#*5-H1**5
H6H5=H6-H5
H6H52=H6**2-H5**2
HGH53=H6**3-H5**3
H6H55=HG#*5-H5**5
H5H4=H5-H4
H5H42=H5**2-H4**2
H5H43=H5**3-H4**3
H5H45=H5**5-H4**5

" DETERMINE AND OUTPUT THE INTEGRALS 

DO 30 1=1,2
C1=(4/1.7321*WGWRAP+WPGCEN)/(GCAP*(2*WGWRAP+WPGCEN)**2) 
C2=(H3H22*«GCAP+H2H12*TGPAN+Hl**2*WPGCEN)/2+1.1547*H2**2*WGWRAP 
C3=WPGCEN/2+l. 1547*NGWRAP
C4=(4/1.7321*UGWRAP+TGPAN)/(GCAP*(TGPAN+2*WGWRAP)*#2) 
C5=H3H22*WGCAP/2+H2**2*(TGPAN/2+l. 1547*WGWRAP>
CS=TGPAN/2+l . 1547*WGWRAP
C7=1/WCAP
C8=H3**2*WCAP/2
C9=WCAP/2
C10=C1
Cll=H6H52*WGCAP+2*H5H42*TGPAN+H4**2*WPGCEN/2+l. 1547*H5**2*WGWRAP 
C12=C3
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□13=(WGWRAP/1. 7321+TGPAN) / (GCAP*(TGPAN+WGWRAP)*#2) 
C14=H6H52*WGCAP+2#H5##2#( TGPAN+WGWRAP/1.7321)
C15=2#(TGPAN+WGWRAP/1.7321)
C16=1/(2#WCAP)
C17=HG**2*WCAP
C18=WCAP
J 1 ( I ) =C1#(C2##2#H1-0.667#C2*C3#H1##3+0.2#C3##2#H1#*5)
J2(I)=C4#(C5**2*H2H1-0.6G7*C5*C6*H2H13+0.2*C6**2*H2H15)
J3(I)=C7*(C8**2*H3H2-0.667#C8*C9*H3H23+0.2*C9**2*H3H25)
J4(I)=C10*<C11**2*H4-0.G67*C11*C12*H4**3+0.2*C12**2*H4#*5)
J5(I)=C13*(C14**2*H5H4-0.6G7*C14*C15*H5H43+0.2*C15**2*H5H45)
JG(I)=C16*(C17#*2*H6H5-0.667*C17*C18*H6H53+0.2*C18*#2*HGH55)
J A P P ( I ) =C4*( WGCAP*H3H22/2) #*2*H2H1+C13*( WGCAP*H6H52) #*2#H5H4 
WGWRAP=2*WGWRAP 

30 CONTINUE 
WR ITE( G r 40)
WR ITE(6 r 41) J i (1)  f J 2 ( 1 ) f J 3 ( 1 ) , J 4 ( l ) ,  J 5 ( l ) ,  J 6 ( l ) ,  J A P P ( l )  
W R IT E (G f 42) J l ( 2 ) ,  J 2 ( 2 ) f J 3 < 2 ) ,  J 4 ( 2 ) ,  J 5 ( 2 ) ,  J G ( 2 ) f J A P P I2 )

40 FORMAT(/,30Xf'J 1 ',IOXf'J 2 'f10Xf'J 3 'f1 0 X ,'J 4 ',1 0 X ,'J 5 'f10X,'J6 ' f8X, ' 
J - A P P ' )

41 FORMAT( ' NO WRAP PRETENSION ' , 7 F 1 2 . 4 )
42 FORMAT( ' IDEAL WRAP PRETENSION ' . 7 F 1 2 . 4 )

" DETERMINE AND OUTPUT THE BEAM STIFFNESS VALUES

WR ITE( 6 ,5 0 )
W R IT E (6 f51 )
W R IT E (G ,52)

50 FORMAT( / , IGXf 'B E A M  S T I F F N E S S  V A L U E  S ' )
51 FORMAT( ' TEST BENDING EXACT APPROX

I M A T E ' )
52 FORMAT( ' SPAN ONLY NO WPT IDEAL WPT NO WPT

IDEAL WPT' )
DO GO 1=1,NSPAN
KK=12*ECAP**2/(L<I )*#2*GCAP*EIEG)
SHEAR(1)=0
SHEAR( 2 ) =KK*(J1 ( 1 ) + J 2 ( 1 ) + J 3 ( 1 ) + J 4 ( 1 ) + J 5 ( 1 ) + J 6 ( 1 ) )
S H E A R ! 3 ) = K K * ( J 1 ( 2 ) + J 2 ( 2 ) + J 3 ( 2 ) + J 4 ( 2 ) + J 5 ( 2 ) + J 6 ( 2 ) )
KK=KK*EIEG/EIAPP 
SHEAR(4)=KK*JAPP<1)
SHEAR(5)=KK*JAPP(2)
DO 65 J = 1,5
K ( J ) =48#EIEQ/( L ( I ) ##3*( i+SHEAR( J ) ) )
I F (  J . E Q . 4 . 0 R .  J . E Q . 5 )  K ( J ) = K ( J ) - » E I A P P / E I E G  

G5 CONTINUE
W R IT E (6 ,7 0 )  L ( I ) ,  ( K ( J ) , J  = 1, 5)

70 FORMAT( I X fF S . 1,5F12.0 )
GO CONTINUE 

END
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