University of North Dakota

Ultrasonic Continuous Wave Spirometer

Todd A. Ell

Follow this and additional works at: https:// commons.und.edu/theses

Recommended Citation

Ell, Todd A., "Ultrasonic Continuous Wave Spirometer" (1983). Theses and Dissertations. 1163.
https://commons.und.edu/theses/1163

```
ULITRASONIC OONTINUOUS WAVE SPIROMETER by Todd A. Ell
Bachelor of Science, University of North Dakota, 1982
A Thesis
Submitted to the Graduate Faculty of the
University of North Dakota in partial fulfillment of the requirements for the Degree of Master of Science
Grand Forks, North Dakota May

This thesis submitted by Todd A. Ell in partial fulfillment of the requirements for the Degree of Master of Science from the University of North Dakota is hereby approved by the Faculty Advisory Committee under whom the work has been done.


This Thesis meets the standards for appearance and conforms to the style and format requirements of the Graduate School of the Universiy of North Dakota, ind is hereby approved.


\section*{Title Ultzasonic Continuous Wave Spirometer}

Department Electrical Engineering
Degree Master of Science

In presenting this thesis in partial fulfillment of the requirements for a graduate degree from the University of North Dakota, I agree that the Library of this University shall make it sreely available for inspection. I further agree that permission for extensive copying for scholarly purposes may be granted by the professor who supervises my thesis work or, in his absence, by the Chaiman of the Department or the Dean of the Graduate School. It is understood that any copying or puilication or other use of this thesis or part thereof for financial gain shall not be allowed without my written pemission. It is also understood that due recognition shall be given to me and to the University of North Dakota in any scholarly use which may be made of any material in my thesis.


Date Arid 28,1983

\section*{THBIE OR CONTENTS}
SECTHON Page
LTSY OF IILUSTKAITONS ..... vi
LIST OF TABLES ..... vii
ACKNONLEDCEMENTS ..... viii
ABSTRACT ..... ix
CHAPTER 1 INTRORUCTION ..... 1
ChAPTER 2 BASIC INSIPUMENT OPERATTON. ..... 3
CHAPTER 3 SYSTEM DESCPIPIION AND MODELING ..... 10
CHAPTER 4 STEADY-GTATE RESPONSE ..... 20
CHAPTER 5 DYNAMIC KESFONSE ..... 26
CAAPTER 6 SUMMARY ..... 33
APPENDIX A DERTVATION OF REAIIVE FREQUENCY SHIFTS ..... 36
APPENDIX B DERTVATTCN OF NODIFIED SYSTEM TRANSFER FUNCITON. ..... 37
APPENDIX C S-FINNE ROOT LOCUS PLOTS ..... 38
APPE:DIX D FORTRAN PROGRAM LISTING ..... 48
APPENDIX E PLI MODEL PARAMETER DEFTNITIONS ..... 56
REFERENCES ..... 58

\section*{List of Illustrations}
page
Figure l. Simplified diagram of one-half of system ..... 6
Figure 2. Complete system schematic ..... 12
Figure 3. Schematic of digital Phase-locked loop. ..... 13
Figure 4. Linear controls system model for second order digital Phase-locked loop. ..... 14
Pigure 5. Tdeal transmitting and receiving responses for a piezoelectric tranducer ..... 18
Figuxe 6. One-half the system in signal flow graph representation. ..... 19
Eigure 7. One-half of modified system in signal flow graph 
Figure 8. Modified system block diagram. ..... 37
Figure 9-17. S-piane Root Locus Plots. ..... 39-48

\section*{Lict of Tables}
Table page
1) Spirometeric volume flow rates. ..... 23
2) Spirometeric air velocities. ..... 23
3) System stability requirements. ..... 23

\section*{Acknowledgements}

The author wishes to thank Professors Joe Hootman and Nugy Bengiamin for their assistance in the preparation of the ideas presented in this thesis.

ABSTRACT

\begin{abstract}
There exists a problem of accurately performing spirographic measurements under physical stress situations. Existing systems, which use mechanical structures in the measurement process, have response times that are too slow, or are too bulky to be considered portable.
\end{abstract}

The proposed system solves these problems and has a number of attractive characteristics. The system uses relatively inexpensive solid state electronic components which implies a minimal of mechanical parts; portability; and a Iinear fast response time.

The system presented in this thesis determines the velocity and temperature filuctuations of the human breath by measuring the difference and sum of the transit times for two continuous sound waves travelling in opposite directions along the air path, The information about the transit times is contained in the phase differences of the two sound waves across the path. A phase-locked loop is used to keep the differences across the path constant, irrespective of ajr - and sound - velocity variations. Therefore, the phase information is converted to frequency variations in the phase-locked loop.

\section*{CHAPTEFR 1 \\ THETMOTUCTION}

The purpose of this thesis is to develop the design procedure for a portable, accurate spirometer - an instrument for measuring the breathing capacity of the human lungs - for use under varying physical stress.

Present systems, which involve some mechanical structure in the measurement process, have response times that are too slow, or are too bulky to be considered as portable.

The systeri designed solves these problems because of a number of attractive characteristics: relatively inexpensive solid state clectronic components are used which implies a lack of moving parts and portability; and linear, fast response time and reliability.

The system determines the velocity and temperature fluctuations of the human breath by measuring the dirference and sum transit times for continuous sound waves travelling in opposite directions along the air path. The information about the transit times is contained in the phase difference of the sound waves across the path.

A phase-locked loop (PLJ) is used to keep the \(\mathrm{r}^{2}\) "se difference across the path constart, irrespective of air - and sound - velocity variations by changing the sound frequency. Therefore the phase information is converted to frequerey variations.

Although the design is realizable with either an analogue or digital phase--locked loop, the digital phase-locked loop was choosen so that the frequency variation information is directly accessible in digital format. Thus, eliminating the need for analogue to digital Converters. Digital information allows the use of a microprocessor for information processing/storage and, more importantly, digital control of the system.

\section*{CHAPL © 2}

\section*{BASIC IRSTPRMMENT ORERATTOTI}

In this chapter we will show how the information contained in the chase shifts across the acoustic paths are converted into frequency variations of useful form.

The total system can be divided into two identical parts, each r.alf detemines the transit time of the sound waves traveling in one direction. Because there is no interaction between halves, this and all preceeding chapters will study the various responses of only one half of the system.

Figure 1 shows a simplified diagram of one-half of the measurenent system. T is the transmitter, \(R\) and \(R^{2}\) are the two recejvers. The phase detector (PD), sequential loop filter (F) and digital controlled oscillator (DCO) form the phase-locked loop.

In general, a DPLi systern consists of two main functional blocks, a phase comparator or detector, and a digital controlled oscillator The DCO is set to operate at an angular frequency of " \(c\) in the absence of a digital control signal. When a control signal is present, then the instantaneous frequency deviation of the DCO is proportional to the control signal. The control signal comes from the PD whose output is proportional to the phase difference between two input sigrails, one of which is the output of the DCO.
ro illustrate how a DPLI operaces, assume that the loop is in lock at t=-a) (i.e. the input freq./phase and output sreq./phase of the DCO are equal), and that at \(t=\emptyset+\) the input frequency changes by w. At this time the phase detector output will give a positive signal to the DCO which in turn increases the frequency of the DCO . A new equilibrium point will be reached when the frequency of the DCO is equal to the frequency of the input signa. A filter is usually included in the control signal path to smooth the control signal.

The time it takes for a given phase plane of the transmitted sound wave to traverse the distances to the receivers are given by
\[
\begin{equation*}
T_{i}=d_{i} /\left(c+v_{i} \cos \theta\right) \tag{1}
\end{equation*}
\]
and
\[
\begin{equation*}
T_{2}=d_{2} /\left(c+v_{a} \cos \theta\right) \tag{2}
\end{equation*}
\]
where \(d_{i}\) is the separation between the transmitter and the receiver, \(c\) is the velocity of propagation of sound in still dir, and \(v \cos \theta\) is the velocity component of the air in the direction of the propagation of the sound.

The transmitted sound waves can be exreessed as
\[
T(t)=A \cos \left(\omega t+\phi^{\prime}\right)
\]
where a is the frequency in rad/sec and \(\phi^{\prime}\) is the initial phase output.

Knowing that each acoustic path introduces a time delay \(T_{i}\); the received signals can be written as
\[
R_{i}(t)=\operatorname{Acos}\left(\omega\left(t-T_{i}\right)+t^{\prime}\right)
\]

Signal magnitude attenuation is neglectad because the magnitude variations are eliminated from the received signals upon entering the phase detectors - provided the magnitude is sufficient to trigger them. Notice that this implies that the transmitted signal need not be sinusoidal but only periodic.

The input phase to the phase-locked loop is given by
\[
\begin{align*}
\phi_{i}= & K_{d_{3}} \cdot w\left(T_{2}-T_{1}\right)= \\
& K_{d 3} \cdot \omega_{2}\left(d_{2}-d_{1}\right) /\left(c+v_{a} \cos \theta\right) \tag{3}
\end{align*}
\]
where \(K_{d 3}\) is the gain constant of the phase detector.
(6)


Figure 1. Schematic of one-half of system

The phase error \(\phi_{e}\), assuming the reference phase is zero (without loss of generality), is then given by
\[
\begin{equation*}
\phi_{e}=k_{d_{3}} \omega\left(d_{2}-d_{1}\right) /\left(c+v_{a} \cos \theta\right) . \tag{4}
\end{equation*}
\]

The phase-locked loop phase detector output is zero for a given phase difference \(\bar{\phi}\) (for this case \(\left.\bar{\phi}=\left(\frac{1}{2} \pm n\right) \pi\right)\). If the differences betweer distances \(d_{1}\) and \(\bar{d}_{2}\) are adjusted, under zero air velocity conditions, to give zero output from the phase detector, the output frequency will be the free running or center frequency \(\omega_{c}\). Under these conditions we obtain
\[
\begin{equation*}
\bar{\phi}=k_{d_{3}}{ }^{(j)} c_{2}\left(d_{2}-d_{1}\right) / c^{\prime} \tag{5}
\end{equation*}
\]
where \(c^{3}\) is the velocity of propagation of sound at the time of adjustment.

Now, if \(\mathrm{e}^{\neq 1}\) the phase detector output will adjust the output frequency such that \(\phi\) e tends toward \(\phi\). Assuming perfect phase-lock, (i.e. \(\phi_{e}=\vec{\phi}{ }^{\prime}\) ) for all \(T_{2}-T_{1}\), and equating equations 4 and 5 we obtain
\[
\begin{equation*}
\frac{{ }^{(1)-}{ }^{(\omega)} c}{\omega_{c}}=\frac{v^{c} \cos \theta}{c^{\prime}}+\frac{c}{c^{\prime}}-1 . \tag{v}
\end{equation*}
\]

The same proceaure can be used to derive the governing equation for the second half of the system.
\[
\begin{equation*}
\frac{{ }^{\omega_{1}-\omega_{c}}}{\omega_{c}}=\frac{v_{a} \cos \theta}{c^{1}}+\frac{c}{c^{1}-1 .} \tag{7}
\end{equation*}
\]

Sunming and differencing (6) and (7), we obtain
\[
\begin{align*}
& \frac{\omega^{\omega} \omega_{C 1}}{\omega_{C 3}}-\frac{\omega_{1}-\omega_{C 1}}{\omega_{C 1}}=2 v_{a} \cos \theta / c^{\prime}  \tag{3}\\
& \frac{\omega_{C 2}}{\omega_{C 2}}+\frac{\omega_{C 2}-\omega_{C 2}}{{ }^{\omega}{ }_{C 2}}=2\left(c^{\prime} / C^{\prime}-1\right) \tag{9}
\end{align*}
\]
where \(\omega_{C 1}\) and \(\omega_{C .2}\) denote the two halves of the system.
The results of (6) and (7) show that the distances drop out of the equations and only relative frequency variations exist and need be measured.

Temperature variations are obtained from equation 9 using equation 10, given in []] as
\[
\begin{equation*}
c=331.5+.607 T_{0} \mathrm{~m} / \mathrm{sec} \tag{10}
\end{equation*}
\]
where \(T_{0}\) is the temperature in ciegrees centigrade.

A closer inspection of the basic system shown in fioure 1 reveals that the system would operate in the same way if PD, were ranoved and only one acoustic path wat incorporated into the system. This is true, and this method is exactly how an anemometer was built as given in [2].

The major reasons for not using the Sjingle Path Anemometer method is to reduce cost and size. The derivation given earlier in this chapter assume that the transducers and receivers introduce no time delay. This is never the case, and the added delay irtroduces an
error in the desired response of the system.

There are two methods of reducing this error. One method is to use expensive condenser microphones as transducers with very small delays. This is what was cone in [3], at a very high cost (75\% of the total systen cost). The second method, which is used in this system, is to use relatively inexpensive matched Piezocerzmic air transclucers, which have a larger delay, and to reduce the effect of this delay by introducing a second acoustic path as a reference, within the PLL Eeedback path. Exactly how this is dore is considered in cnapters 4 and 5 .

Wotice that the assumption of a perfect phase-lock is made in the th derivation of equations 8 and 9. This assumption is guaranteed by using a second order phase-isxked loop which is perfect phase-locked as long as the froguency variations stay within the lock rarge of the Whi. This requirement introduces the possibility that the system may not be stable. Chapter 5 will deal with the stability of the proposed systern.

\section*{CHAPIER 3}

STSTEM DIEST :IPTICN AMED RODELTHG

In this chapter is a detailed descriation of the system and how each section is modeled. Figures 2 and 3 show the complete system schematic and a dotailed schematic of the digital phase-locked locp, respectively,

\section*{Digital Phase-locked Loop Model}

The mode' used for the digital phase-locked loop (DPLL) was taken directly from [4]. Although the DPIL and analogue phase-locked loop perform the phase-locking function by entirely differert methods, linear control systems models for the loops are analogus, enabling the systern to ve corstructed in either the digital or analogue world. This model is shown in figure 4. The parameters shown in figure 4 are defined in appendix \(E\).

\section*{Acousti Eath Moclea}

It is known that the acoustic paths introauce a time delay betwean the outputs and inputs of the transducers. Therefore, the input frequency and initial phase to the receivers can be written as
\[
\begin{equation*}
f_{i}(t)=f_{0}\left(t-T_{i}\right) \tag{11}
\end{equation*}
\]
and
\[
\begin{equation*}
\psi_{i}^{\prime}(t)=-f_{0}\left(t-T_{i}\right) \cdot T_{i} . \tag{12}
\end{equation*}
\]

Because the PLJ model operator is the total phase angle, as it differs from the rate caused by the loop center frequency \(f{ }_{c}\), these equations need to be modifind for incorporation into the system model
as follows.
The input phase \(\phi_{i}\), due to changes in frequency input and initial phase angle is for each path
\[
\begin{equation*}
\left.\phi_{i}=\int_{o\left(f_{i}\right.}^{t}-f_{c}\right) d t+\phi_{i}^{\prime} \tag{13}
\end{equation*}
\]
and the outpit frequency due to changes in rate of output phase \(\phi_{0}\), again, for each path is
\[
\begin{equation*}
f_{0}=f_{c}+d \phi_{0} / d t \tag{14}
\end{equation*}
\]


Figure 2. Complete system schomatic.


Frequancy Data

Figure 3. Schematic of Digital Phase - locked loop.


Figure 4. Linear controls systems model for second order Digital Phase-locked loop.

Conbining equations \(10,11,13\) into 12 we obtain for
\(\left.H_{i}=\int_{0}^{t_{f}} f_{C}\left(t-T_{i}\right)+d \phi_{0}\left(t-T_{i}\right) / d t-f_{C}(t)\right\} d t-\left\{f_{C}\left(t-T_{i}\right)+c_{0}\left(t-T_{i}\right) / d t\right\} T_{i}\)
where i represents the path taken. Taking the Laplace transform of \({ }_{i}\), assuming \(f_{c}\left(t-T_{i}\right)=0\) for \(T_{i}>t\), results in
\(\phi_{i}(s)=\phi_{0}(s)\left(1-s T_{i}\right) \cdot \exp \left(-s T_{j}\right)-f_{c}(s)\left\{\left(s T_{i}-1\right) \cdot \exp \left(-s T_{i}\right)+1\right\} / s\).

\section*{Transducer - filter model}

If the gain transfer function of the transducers and ary filter inserted into the feed paths of the phase detectors to reduce noise is expressed in factored form as
\[
\begin{equation*}
T(s)=\prod_{i=1}^{n}\left(b_{1 i} s^{2}+b_{2 i} s+b_{3 i}\right) /\left(b_{4 i} s^{2}+b_{5 i} s+b_{6 i}\right) \tag{16}
\end{equation*}
\]
then the delay, using the definition given in [5], as
\[
T_{k}=d(-\phi(\omega)) / d \omega
\]
can be written as
\[
\begin{align*}
T_{k}(\omega)= & \sum_{i=1}\left(\left\{-b_{i j}\left(b_{3 i}+b_{1 i} \omega^{2}\right) /\left(\left(b_{3 i}-\left(b_{1 i} i^{\omega}\right)^{2}\right)^{2}+\left(b_{2 i} \omega\right)^{2}\right)\right\}\right. \\
& \left.+i-b_{5 i}\left(b_{6 i}+b_{4 i} \omega^{2}\right) / i\left(b_{6 i}-\left(b_{4 i}(\omega)^{2}\right)^{2}+\left(b_{5 i}\right)^{2}\right)\right\} \tag{17}
\end{align*}
\]

If the changes in the output frequency \(\omega_{0}\) from the center frequency \({ }^{\omega} \mathrm{C}\) are very small \(T_{k}\) can be approxinadel as a constant whos value is given by equation 17 with being replaced by \({ }^{\omega}{ }_{c}\). Thercfore, the
model for the transducers and filters will be simply a constant delay represented as \(\exp \left(-T_{k} s\right)\).

The ideal transmitting response of a piezoceramic trasducer is cefined by \(T_{T}(s)\) in [6] as
\[
T_{T}(s)=k s^{2} /\left\{s^{2}+\left(u_{n T} s / Q_{T}\right)+\omega_{n T}\right)^{2}
\]

The ideal receiving response of a piezoceramic transducer \(T_{R}(s)\) is given by [7] as
\[
T_{R}(s)=k /\left\{s^{2}+\left(\omega_{n R} s / Q_{R}\right)+\omega_{n R}{ }^{2}\right\}
\]
whexe, in the previous equations, \(w_{n}\) is the resonance frequency and \(Q\) is the quality of the transuucers. .

If the crystals are operated at their resonance frequency the corresponding delay constant is
\[
T_{K}=2\left(Q_{T} / \omega_{n T}+Q_{R} / \omega_{n R}\right)
\]

5ecause the crystals have gain characteristics of a sharp bandpass filter, as shown in figure 5, further filtering is unnecessary.

Figure 6 shows the complete signal flow graph, for one-half of the syster.

The relationship of the DPLL to the analog PLU and why the digital was choosen over the analoge can be explained by referring to figure 3. We see that if a divide-by-2IN counter with parallel outputs is
incorporated into the phase-locked loop, the frequency offset informaition can be latched into a bank of registers by \(f_{0}\) this eliminates the need for converting the output frequency into digital form for processing by a microprocessor, thus reducing the components needed for conversion into a bank of latches. With this technique a higher degree of accuracy may be attained by adding more stages to the divide-by-2LN counter and latch.


Figure 5. Ideal transmitting and receiving response for a piezoelectric transducer.


Figure 6. One-half the system in signal flow graph representation.

CAAPIER 4
SITADX-STMTK RESTRONSE
In this chapter, we will show how equations 8 and 9 are realized by the system under steady-state conditions (i.e. \(\phi_{\mathrm{e} 1}=0, v_{\mathrm{a}} \neq 0\) ). We will first neglect transducer-filter delay and later address this problem in more detail. Under steady-state conditions \(\phi_{e_{2}}\) is given as [8]
\[
\phi_{e_{2}}=\left(4 K_{2} N\right)\left(f_{0}-f_{c}\right) / K_{d_{2}} M f_{c} .
\]

Inserting equation 6 we obtain
\[
\phi_{e_{2}}=\left(4 K_{2} N\right)\left(\left(v_{a} \cos \theta\right) / c^{\prime}+c / c^{\prime}-1\right\} / K_{d 2} M
\]
and from the other half of the system
\[
\phi_{e 2 B}=\left(4 K_{2} N\right)\left\{\left(-v_{a} \cos \theta\right) / c^{\prime}+c / c^{\prime}-1\right\} / K_{d 2} M .
\]

The center frequencies must be different for each acoustic signal so that the signals do not interfere. The summing and differencing of the above equations yield
\[
\begin{equation*}
\phi_{\mathrm{e}_{2}}-\phi_{\mathrm{e}_{2} \mathrm{~B}}=\left(8 K_{2} H\right)\left(v_{2} \cos \theta / c^{\prime}\right) / K_{\mathrm{d}_{2}} M c^{\prime} \tag{18}
\end{equation*}
\]
and
\[
\begin{equation*}
\phi_{e 2}+\phi_{e 2 B}=(8 K N)\left(c / C^{\prime}-1\right) / K_{d_{2}} M . \tag{19}
\end{equation*}
\]

These equations assume perfect phase-1cck. The second-order DPLL will track its incoming signal with zero phase error within its lock range,

The second-order DPLi. lock range is given in [8] as
\[
\begin{equation*}
\Delta f_{\max } / f_{c}=\left(f_{O_{\max }}-f_{c}\right) / f=M / 8 K_{2} N\left(1+1 / 2 K_{2}\right) \mathrm{Hz} . \tag{20}
\end{equation*}
\]

To detemine proper values for the parameters, in the above equation, we must detemine what range of values that \(v_{a}\) can obtain spironetery. This is done in the next section.

\section*{Soirometeric Parameter Ranges}

Tables 1 and 2 list the average volume flow rates with the corresponding air velocitics and average lung volumes respectively [9], [10], [11]. The following definitions will clarify the terms used in the tables.

Maximun expiratory/inspiratory valume flow rate (MOEV/MJV) - the maximum volume flow rate obtained after maximum inspiration/expiration。

Maxinum breathing capacity (MBC) - the maximum sustained volume fiow rate under physical stress.

Spontaneous breathing capacity (SBC) - the volume flow rate under quiet rest conditions.

Total lung capacity (TxC) - the total volume of lungs upon maximum inhalation.

Vital capacity (VC) - the largest volume of air that can be expired after a maximum inspiration.

Inspiratory reserve volume (uN) - the volume capable of being inspired after quiet expiration.

Expiratory reserve volume ([RRV) - the volume capable of being expired after quiet inspiration.

The air velocities given in table 1 were detemined by the following equation
\[
\begin{equation*}
v_{\bar{a}}=\frac{\text { volume flow rate }}{\text { cross sectional area }}=\frac{4 \dot{v}}{\pi d_{0}^{2}} \tag{21}
\end{equation*}
\]
where \(v\) is the volume flow rate and \(d_{0}\) is the diameter of the circular breathing tube, These air velocities were obtained if breathing is done through a 1.5 inch diameter tubing, which is assumed not to affect the normal breath rates.

The lung volumes are detemined by the system by integrating the air velocity over the cross sectional area used in equation 21. Table 2 is included to give the range of volumes that will be encountered.

\title{
Table 1. - Spirometer Volume FIow Rates
}
volume
type flow rate (liters/sec) velocity (meters/sec)
\begin{tabular}{lcc} 
MEV & 12.0 & 10.7 \\
MIV & 9.0 & 8.0 \\
MBC & 1.67 & 1.48 \\
SBC & 0.17 & 0.150 \\
\hline
\end{tabular}

Table 2. - Spirometeric Air Velocities
type volume(liters)
\begin{tabular}{ll} 
ITC & 6.00 \\
VC & 5.0 \\
IRV & 2.5 \\
ERY & 200 \\
\hline
\end{tabular}

Table 3. - Stability Requirements
\(T_{2}>T_{1}\)
\(\omega_{n} / f>6\left(T_{2}^{2}-T_{1}^{2}\right) /\left(T_{2}^{3}-T_{1}^{3}\right)\)
\(\omega_{n}<V\left(2 / 3\left(T_{2}^{2}-T_{2}^{2}\right)\right)\)

\section*{Lock Rance Requirements}

In this section we will check to see if the lock range of the DPLL is sufficient for our purposes.

Neglecting changes in \(c\) and setting \(\cos \theta=1\) equations 6 and \(2 \emptyset\) become
\[
M / 8 K_{2} N\left(1+\frac{1}{2} K_{2}\right)>v_{a} / c^{\prime} .
\]

Using \(c=343.57 \mathrm{~m} / \mathrm{s}, \mathrm{X}_{2}=8\) (which is the minimum value of K for \(a\) K-counter using the SN74Ls297 digital PLI filter), and setting the systen clocks equal (i.e. \(M=4 N\) ), \(v\) a satisfies
\[
v_{a}<20.21 \mathrm{~m} / \mathrm{sec}
\]
which is true for the maximum value obtained in spirometery \(\left(v_{a}(\right.\) MEV \(\left.)=10.7 \mathrm{~m} / \mathrm{s}\right)\).

\section*{Transcucer-fiIter Delay Affects}

Now we will look more closely at the effect transducer-filter delays \(\left(T_{k}\right)\) have on the static response of the system. Starting at equations 1 and 2 we must include the transducer delays \(T_{k}\) as
\[
T_{1}=d_{1} /\left(c+v_{2} \cos \phi\right)+T_{k_{1}}
\]
and
\[
T_{2}=d_{2} /\left(c+v_{a} \cos \phi\right)+T_{k 2} .
\]

Using the same argument: as before, the phase error is given by
\[
\begin{equation*}
\phi_{\mathrm{e} 1}=k_{d_{3}} \omega\left\{\left(d_{2}-\dot{d}_{1}\right) /\left(c+v_{a} \cos \theta\right)+\left(T_{k_{2}}-T_{k 1}\right)\right\} . \tag{22}
\end{equation*}
\]

Substituting \(T_{e}=T_{k 2}-T_{k 1}\), and following the same steps which led to equations 6 and 7 of chapter 2 , we obtain for perfect phase-lock (derivation given in Appendix A)
\(\left(\omega_{0}-\omega_{c}\right) / \omega_{c}=\left(c / c^{\prime}+v_{a} \cos \theta / c^{\prime}-1\right) \cdot\left(1-\left(c+v_{a} \cos \theta\right)\left(T_{e}\right) /\left(d_{2,2}-d_{2}\right)\right)^{-1}\).

By comparing this with equation 6 and knowing \(10 v_{a}<c_{\text {, }}\) it is seen that the conditions for ideal resporise is
\[
\left|\left(c T_{e}\right) /\left(d_{2}-d_{1}\right)\right| \ll 1
\]

Thus is necessary to maximize the separation of the receivers for any given transducer-filiter delay. For \(\mathrm{c}=343.57 \mathrm{~m} / \mathrm{s}(20 \mathrm{C} 0.0 \%\) hmidity) \(\left(d_{2}-d_{1}\right)=0.01 \mathrm{~m}\) and \(\mathrm{T}_{\mathrm{e}}=2.5\) microseconds the resulting error from the ideal of equation 21 is less than 18 .

Each \(T_{k}\) is composed of two parts; the receiver delay and the transmitter delay. For each half of the system, as shown in figure 1, the same transmitter is used for each path. Therefore, Te iu composed of only the jifference between receiver delays. Because of the fine tolerences required in manufacturing piezoceramic air transducers closely matched transducers are not uncommon and any slight difference can be tuned to a very small difference, usjng comon crystal tuning techniques.

\section*{CHAPTER 5}

\section*{DYIXAMIC RESSRCASE}

In this chapter we will study the stability requirements, how the system obtains perfect phase-lock, and the maximum allowable step change in air velocity.

\section*{Stability Reguirements}

Figure 6 shows one-half the system in signal flow graph representation. Using Masons Loop Rula [12], we obtain the transfer function
\[
\begin{align*}
& \phi_{e_{1}} / f \\
& c=s k_{d_{3}} P(s):  \tag{25}\\
&\left(s^{2}+25 \omega_{n} s+\omega_{n}^{2}\right)-K_{d_{3}}\left(25 \omega n_{n} s+\omega_{n}^{2}\right) P(s)
\end{align*}
\]
where
\[
\begin{aligned}
& P(s)=\exp \left(-s T_{1}\right) \cdot\left(1-s T_{1}\right)-\exp \left(-s T_{2}\right) \cdot\left(1-s T_{2}\right) \\
& \zeta=\frac{1}{2}_{2}\left(\omega_{1} / 2 L_{2}\right)^{\frac{1}{2}} . \\
&=\left(\omega_{1} \cdot \omega_{2}\right)^{1 / 2}, \\
& \omega_{n} \\
& \omega_{1}=\left(K _ { d _ { 1 } } M f _ { c } \left(/\left(2 K_{1} N\right),\right.\right.
\end{aligned}
\]
and
\[
\omega_{2}=\left(K_{d_{2}} \text { i价 }{ }_{c}\right) /\left(4 K_{2}, K L\right) .
\]

First, we will look at the stability requirements. The Routh-Hurwitz Stability Criterion [13] can be arplied to this system only if the delay terms are approximated by a few terms of the power series
\[
\exp (-s T)=1-s T+(s T)^{2} / 2!-(s T)^{3} / 3!+\ldots
\]

We will use the first three terms of the series. Therefore, the Routh-Hurwitz criterion will yield only approximate stability information. Substituting into \(P(s)\) we obtain
\[
\begin{equation*}
P(s)=v_{2}\left\{4 s\left(T_{2}-T_{1}\right)-3 s^{2}\left(T_{2}^{2}-T_{1}^{2}\right)+s^{3}\left(T_{2}^{3}-T_{1}^{3}\right)\right\} \tag{26}
\end{equation*}
\]

At this point we come to the first major problem. Substituting equation 26 into 25 , we find that the system, as it is configured, will always be unstable. This arises because of the minus sign in the denominator of equation 25. This problen is easily corrected, and in doing so we reduce the number of parts used in the system. What is done is shown in figure 7 . We eliminate the t'ird phase detector and place the second acoustic path insice the phase-iock loop feedback path. The following transfer function lesults from these changes
\[
\begin{equation*}
\phi_{e_{1}} / f_{c}=-s P(s) /\left(s^{2}+\left(2 \zeta \omega_{n} s+\omega_{n}^{2}\right) P(c)\right. \tag{27}
\end{equation*}
\]

The derivation of equation 27 is given in Appendix B.

Notice that this modification has two effects; the minus sign is eliminated, and the order of the transfer function is reduced. Substituting equation 26 into 27 we obtain
\[
\begin{align*}
\phi_{e 1} / f_{c}= & -s\left(\left(T_{2}^{3}-T_{1}^{3}\right) s^{2}-3\left(T_{2}^{2}-T_{1}^{2}\right) s+4\left(T_{2}-T_{1}\right)\right):  \tag{28}\\
& \left(A_{3} s^{3}+A_{2} s^{2}+A_{1} s+A_{0}\right)
\end{align*}
\]
where
\[
\begin{aligned}
& A_{3}=2 \zeta \omega_{n}\left(T_{2}^{3}-T_{1}^{3}\right) \\
& A_{2}=\omega_{n}\left(T_{2}^{3}-T_{1}^{3}\right)-6 \zeta_{n}\left(T_{2}^{2}-T_{1}^{1}\right) \\
& A_{1}=2+8 \zeta \omega_{n}\left(T_{2}-T_{1}\right)-3 \omega_{n}^{2}\left(T_{2}^{2}-T_{1}^{2}\right)
\end{aligned}
\]
and
\[
A_{0}=4 \omega n^{2}\left(T_{2}-T_{1}\right)
\]


Figure 7. One-half of modified system in signal flow graph representation.

The Routh-Hurwitz stability requirements are
\[
A_{i}>0 \quad i=0 \text { to } 3,
\]
and
\[
A_{2} A_{1}-A_{3} A_{0}>0 .
\]

The first four requirements are fulfilled if
\[
\begin{aligned}
& T_{2}>T_{1} \\
& \omega_{n} / \zeta>6\left(T_{2}^{2}-T_{1}^{2}\right) /\left(T_{2}^{3}-T_{1}^{3}\right) \\
& \omega_{n}<\left(2 /\left(3\left(T_{2}^{3}-T_{1}^{3}\right) i\right)^{\frac{1}{2}} .\right.
\end{aligned}
\]

Whether all five requi ements can be fulfilled is dependent on the values of \(T_{1}\) and \(T_{2}\). These requirements are listed in Table 3.

It is important to recognize that the steady-state response of the modified systan does not differ from the response of the original system.

Appendix C contains plots of s-plane root locations of the modified system under varying conditions. As can be seen from these plots, the systen can usually be stabilized for typical system values and the stability range is highly dependant upon transducer delay and acoustic path distances. Two major points can be drawn from these s-plane plots. First, decreasing the transducer delays or decreasing
acoustic path distances has a marked improvement on the system response at the cost of having to raise the DPLJ resonance frequency which is determined primarily \(b_{y}\) the clock frequency of the DPLI-filter integrated cixcuit. Another method of raising the resonance frequency is to use different clock frequencies for the various DPLis components (i.e. \(M-4 N\) ). Both of these methods would reduce the resolution of the output (refer to equations 25 and 18). Second, reducing the separation distance between the two receivers also improves the system response.

Appendix D contains the Fortran proocam nd parameter values used to generate the data points of the s-plane pi=:

\section*{Step Io put Response}

The systen response to a step change in cir velocity is controlled by a highly non-linear equation and evades simple analysis. The transfer Eunction given by equation 28 does not give the response required lut is only used to determine the systens stability. What we would be looking for is the output's \(\left(\phi_{e_{2}}\right)\) response to changes in air velocity. The steady-state response shows that this output is \(200 \%\) sensitive to changes in air velocity but tells us nothing on how. this steady-state value is reached.

Maximum Allowable Step Input

The next question we must answer is what is the maximum ster change

In air velocity \({ }^{2}\) a mat is allowed before an ambiguity occurs in the phase difference. This occurs when \(\left|\phi e_{1}\right|>\pi_{0}\). Starting with \(c=\) c' neglecting \(\cos \theta\) and changes in \(\omega_{0}\left(. e_{0} \omega_{0}=\omega_{c}\right)\) we obtain
\[
\begin{aligned}
\pi< & \left|\omega_{c}\left(d_{2}-d_{1}\right) r_{1}^{\prime}-\omega_{0}\left(d_{2}-d_{1}\right) / c+v_{a} \cos \theta\right|= \\
& \left|-v_{a_{c}}\left(d_{2}-d_{1}\right) /\left(c^{\prime}\right)^{2}\right| .
\end{aligned}
\]

For. \(\mathrm{c}^{\gamma}=343.0 \mathrm{~m} / \mathrm{s}_{y} \alpha_{i}=2 \pi \quad 40 \mathrm{Krad} / \mathrm{s}\), and \(d_{2}-\mathrm{c}_{i}=0.01 \mathrm{~m}\),
\[
v_{a}>\pi\left(c^{1}\right)^{2} /\left(\omega_{c}\left(d_{2}-d_{3}\right)\right) \approx 147.0 \mathrm{~m} / \mathrm{s} .
\]

This is enourmous, and for smaller separation becomes even greater. Therefore, this constraint presents no problems for most applications. This ambiguity occurs because of the saw-tooth shape of the phase detector transfer function.

\section*{CBAPIERR 6}

\section*{STMOARY}

In this thesis, we have been concerned with suantitative mathematical modeling of the various components of the ystem. The differential equations describing the dynamic and static performance of the system was utilized to construct this mathematical mor

Various design considerations are given if re text to aid in construction of the system with the desired characteristics. Major advantages resulting from the designs used include:
1) Only the air temperature at the time of system calibration need be known to completely determine air velocities and temperatures measured.
2) The cost of construction, as compared to other similar devi, \(\quad\), ; significantly reduced by configuring the system so that inexpensive piezoelectric transducers can be used.
3) long term reliability and durability results from the use of solid state electronic components and the absence of mechanical parts with the exception of the piezcelectric transducers.

Further considerations would be to determine energy balances by either
estimating or meawuring mass flow rates and appling the laws of thermodynamics thus enabling e the user to determine breathing efficiencies.

\section*{APPFEDIX A \\ DRZIVATION OP RESATIVE FRROUENCY SHIFIS}

The phase error under zero air velocity conditions is
\[
\begin{equation*}
\phi_{e}=\omega_{c}\left(\left(d_{2}-d_{1}\right) / c^{\prime}+T_{e}\right. \tag{1}
\end{equation*}
\]
and the phase error under non-zero air velocity conditions is
\[
\begin{equation*}
\phi_{e}=\omega_{0}\left(\left(d_{2}-d_{1}\right) /\left(c+v_{a} \cos \right)+T_{e}\right) \tag{2}
\end{equation*}
\]

Under perfect phase-lock conditions these two are equal, and can be equated. Doing this we get
\[
\begin{equation*}
w_{c}\left(\left(d_{2}-d_{1}\right) / c^{\prime}+T_{e}\right)=w_{0}\left(\left(d_{2}-d_{1}\right) /\left(c+v_{a} \cos \right)+T_{e}\right) . \tag{3}
\end{equation*}
\]

Rearranging (3) in, the following steps;
\({ }^{w_{c}}\left(d_{2}-d_{1}\right) / c^{1}-\omega_{0}\left(d_{2}-d_{1}\right) /\left(c+v_{a} \cos \phi\right)=T_{e}\left(\omega_{0}-\omega_{c}\right)\),
\(c+v_{a} \cos \phi-\omega_{0} c^{\prime} / \omega_{c}=c^{\prime} \cdot T_{e}\left(\omega_{0}-\omega_{c}\right) /\left(\left(d_{2}-d_{1}\right) \omega_{c}\right)\),
\(\omega_{0} / \omega_{c}=\left(c+v_{a} \cos \phi\right) / c^{2}+T_{e}\left(c+v_{a} \cos \phi\right)\left(\omega_{c}-\omega_{b}\right) /\left(\left(d_{2}-d_{1}\right) \omega_{c}\right)\),
\(\left(\omega_{0}-\omega_{c}\right) / \omega_{c}=c / c^{\prime}+v_{a} \cos \phi / c^{\prime}-1+T_{e}\left(c+v_{a} \cos \phi\right)\left(\omega_{c}-\omega_{0}\right) /\left(\left(d_{2}-d_{1}\right) \omega_{c}{ }^{\prime}\right.\),
\(\left(\left(\omega_{0}-\omega_{c}\right) / c_{c}\right)\left(1-\left(c+v_{a} \cos \phi\right)\left(T_{e}\right) /\left(d_{2}-d_{1}\right)\right)=c / c^{\prime}+v_{a} \cos \phi / c^{\prime}-1\), and finally,
\(\left(\omega_{0}{ }_{c} \omega_{c}\right) / \omega_{c} *\left(c / c^{\prime}+v_{d} \cos \phi / c^{1}-1\right) \cdot\left(1-\left(c+v_{a} \cos \phi\right)\left(T_{c}\right) /\left(d_{2}-d_{i}\right)\right)^{-1}\).

DERIVATION OR MODIFIED SYSIEA TRARSFER FUNCTION


Figure 8. Modified System Block Diagram.

Careful inspection of the two systems in figure 8 show that they are identical. The DPLL Transfer function is
\(\psi_{0} / \psi_{j}^{\prime}=N(s) / D(s)=\left(2 \zeta \omega_{n} s+\omega_{n}^{2}\right) /\left(s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}\right)\).
Also, \(\phi_{e}\) is defined as
\[
\begin{equation*}
\phi_{e^{\prime}} / \phi_{i}^{\prime}=s^{2} / 0(s) \tag{2}
\end{equation*}
\]

Fron figure 3 we obtain; \(\quad \phi_{i}{ }^{\prime}=-\phi_{i}+\phi_{0}\),
and from the text the acoustic path function is
\[
\begin{equation*}
\psi_{i}=P(s) \phi_{0}+P(s) f_{c} / s \tag{4}
\end{equation*}
\]

Combining (1) and (3); \(\phi_{i}=\phi_{0}(1-D(s) / N(s))\),
(1) and (2) \(\phi_{0}=\phi_{e} N(s) / s^{2}\),
and (4) and (5) \(P(s) f_{c} / s=\phi_{0}(1-D(s) / N(s)-P(s))\).
Finally, combining (1), (6), and (7) we obtain
\[
\begin{aligned}
& \mathrm{b}_{\mathrm{e}} / f_{\mathrm{c}}=-\mathrm{sP}(\mathrm{~s}) /\left(s^{2}+\right.P(s) N(s)) \\
&-37-
\end{aligned}
\]

\section*{APPRENDIX C}

S-RTANE ROOT LOCUS FLONS


Figure 9. S-plane Root locus Plot.
\(\zeta=.707, \omega_{\mathrm{n}}=76\) to \(1000 ., T_{k}=30 . \mathrm{ms}, d_{2}-d_{1}=1.0 \mathrm{~cm}\).


Figure 10. S-plane Root locus Plot.
\[
\zeta=.707, \omega_{n}=46 \text { to } 1000 ., T_{k}=30 . \mathrm{ms}, d_{2}-d_{1}=2.0 \mathrm{~cm} .
\]


Figure 11. S-plane Root lcaus Plot.
\(\zeta=.707, \omega_{n}=31\) to \(1000 ., T_{k}=30 . \mathrm{ms}, d_{2}-d_{1}=3.0 \mathrm{~cm}\).


Figure 12. S-plane Root locus Plot.
\[
\zeta=.707, \omega_{n}=480 \text { to } 1000 ., T_{k}=15 . \mathrm{ms}, d_{2}-d_{1}=0.5 \mathrm{~cm}
\]


Figure 13. S-plane Root locus Plot.
\(\zeta=.707, \omega_{\mathrm{n}}=300\) to \(1000, T_{k}=20 . \mathrm{ms}, d_{2}-d_{1}=0.5 \mathrm{~cm}\).


Figure 14. S-plane Root locus Plot.
\[
\zeta=.707, \omega_{n}=150 \text { to } 1000 ., T_{k}=30 . \mathrm{ms}, d_{2}-d_{1}=0.5 \mathrm{~cm}
\]


Figure 15. S-plane Root locus Plot.
\[
\zeta=1.00, \omega_{\mathrm{n}}=100 \text { to } 1000, T_{k}=30 . \mathrm{ms}, d_{2}-d_{1}=0.5 \mathrm{~cm} .
\]


Figure 16. S-plane Root locus Plot.
\(\zeta=2.0, \omega_{n}=60\) to \(1000 ., T_{k}=30 . \mathrm{ms}, d_{2}-1_{1}=0.5 \mathrm{~cm}\).


Figure 17. S-plane Root locus Plot.
\[
\zeta=2.83, \omega_{n}=46 \text { to } 1000 ., T_{k}=30 . \mathrm{ms}, d_{2}-d_{1}=0.5 \mathrm{~cm} .
\]

\section*{APPENDIX D}

FORIXAN PROGRAM L.ISTING
```

 DTMENSION DELAY1(30),DELA`2(30),P1(30),P2(30
 , POLES(30)
20 DIMENSION PR(30),PI (30),D(22),ZEROS(30),ZR(3
0):ZI(30)
30 DIMENSION A (30),B(30),C(30),PLLNUM(30),P(30)
,E(25)
40C

50%
60 CHIS SECTION GENERATES THE POLYNOMIAL P(S
).
70 C
80 C
Y0C P(S)= COEFRICIEN'T POLYNOMIAL OE P
100 C IP = ORDER OF P
110 O
120 DO 100 III = 3,16
130 D1 = .05
140 D2 = . 055
150 CO = 343.0
160 VA = 0.0
170 ID = 2
180 TFIL = 30.E-3
190 Tl = Dl/ (VA + C0) + TEII
200 T2 = D2 / (VA + C0) + TFIL
210 CALL PDELTT(T1,ID,DELAY.L)
220 CALL PDELT(T2,ID,DELAY2)
230 P1(1)=1.0
240 P1(2)= -T1
250 [P] = 1
250 P2(1)=1.0
270 P2(2)=-T2
280 IP2=1
290 G = - 1.
300 CAGL ENUL(B,IB,DELAYL,ID,P1,IPL)
310 CALL PMUL (A,IA,DELAY2,ID,P2,IP2)
320. CALL RORM(G,A,IA,B,IB,P,IP)
330 C **

340 C
350 C
CK LOOOP
360 C
370 C
380 C
LOOP
390 C OMEGA2 = RESONANCE FREQUENCY OF SECON
b) LUOP
400 C OMEGAN = NATURAL RESONANCE FREQ. OF T
OTAL LOOP
This section generates the the phase-LO
TRANSEER EUNCTION POLYNOMIALS.
OMEGAI = RESONANCE FREQUENCY OF FIRST
OMEGA2 = RESONANCE FREQUENCY OF SECON
OMEGAN $=$ NATURAL RESONANCE FREQ. OF T

```
```

 FREQC = EREE RUNNING FREQ. OF PHASE-IOCK
 DAMP = DAMPING BACTOR OF PHASE-LOCKED L
 0OP
 430 C
 440 C PLLNUM (S) = NUMERATOR POLYNOMIAL OF PLL.
 450 C IPLLN = ORDER OF NUMERATOR
 460 C
 470 L = 1.0
 480 N = N N N / (2*L)
 490 M = 4*N
 500 EREQC = 40000.
 510 KL = 2**(III)
 52% K2=KL
 530 KDI=2
 540 KD 2 = 2
 550 OMEGAL = (KDI * M * FREQC) / (2 * KL * N)
 560 OMEGA2 = (KD2 * M * FREQC) / (4* K2* L * N
)
570 OMEGAN = SQRT (OMEGAI*OMEGA 2)
580 DAMP = SQRT (OMEGA1/OMEGA2) / 2.0
590 PLLNUM(1) = OMEGAN**2
60U PLLNUM (2)=2*DAMP*OMEGAN
610 IPLLN = i
620 C

630 C
6 4 0 \mathrm { C } THIS SECTION FORMS THE CHARACTERISTIC EQUATIO
iv
650 C OF ONE-HALF OF THE SXSTEM.
5 6 0 \mathrm { C } IT THEN EINDS THE LOCATION OF THE POLES OF TH
E
670 C SYSTEM IN THE S-PLANE.
680 C
690 C
700 C
710 C
720 C
730 C
740 G= 1.0
750 0(1)=0.0
760 D(2)=0.0
770 D(3)=1.0
780 IDD = 2
790 CALL PMUL(C,IC,PLLNUM,LPLLN,P,IP)
800 CALL, FORM(G,C,IC,D,IDD,POLES,IPOLES)
810 CALL PROOT (IPOLES,POLES,PR,PI,I)
820 PRINT 1, OMEGAN,DAMP
830 1 FORMAT (1X,'OMEGAN=',F15.5 , 2X,'DAMPING FACTO
R=',F15.5)

```
```

 840 PRINT 2
 850 2 PORMAT (1X,' ')
 860 PRTNT 3
 870
 --W')
 880
 890
 900
 910
 920
 930
 940
 950
 960
 970
 9 8 0
 990
 0
1000
10.10
1020
1030
W')
1040
1050
1060
1070C

1080
1090 C
MIAL.
1.100C THAT ARE LESS THAT A THRESHOLD VALUE, THUS RED
UCINGG
1110 C
1120 C
1 1 3 0 \mathrm { C } = \mathrm { X } = COEFFICIENT ARRAY, CONSTANT FIRST
1140C IX = ORDER OF POLYNOMIAL + I
1150 C
1160
DIMENSION X(10)
1170 I IF (IX) 4,4,2
1180 2 IF (ABS (X (IX)) - EPS) 3,3,4
1190 3 IX = IX - 1
1200 GO TO I
1210 4 RETURN
1220 END
1230
1240
1.250 C THIS SUBROUTINE GENERATES THE NTH ORDER POLY
NOMIAL

```

1260 C APPROXIMATION TO A DELAX（I．E．EXP（－TS））．
1270 C
1280 C DELAY＝POLYNOMIAL APPROXIMATION OF DELAY
\(1290 \mathrm{C} \quad \mathrm{N}=\) ORDER OF POLYNOMIAL \(\mathrm{N}[=10\)
\(1300 \mathrm{C} \quad \mathrm{T}=\mathrm{DELAY}\) TIME
1310 C
1.320 DIMENSION DELAY（11）
\(1330 \quad \mathrm{EACF}=1\).
\(1340 \quad\) SIGN \(=1.0\)
\(1350 \quad\) MINUS \(=-1.0\)
\(1360 \quad \mathrm{DO} 10 \mathrm{I}=1, \mathrm{~N}\)
\(1370 \quad\) SIGN \(=\) SIGN＊vINUS
\(1380 \quad \mathrm{EACT}=\mathrm{FACT} * I\)
139010 DELAY \((I+1)=S L G N *(T * * I) / E A C T\)
\(1400 \quad\) DELAY \((1)=1\).
1410 REIURN
1420 END
\(1430 \mathrm{C} * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\)
＊＊＊＊＊＊＊＊＊＊＊
1440 SUBROUTINE \(\operatorname{FORM}(G, A, N, B, M, C, I X)\)
1450 C THIS SUBROUTTNE FORVS THE WEIGHTED SUM OE TWO P OLYNOMIALS
1460 C
\(1470 C C(S)=B(S)+G * A(S)\)
\(\begin{aligned} & 1480 \mathrm{C} \\ & 1496\end{aligned} \quad G=\) SCALER WEIGITING EACTOR
SUA \(A\) POLYNOMIAL COEFFICIENT ARRAY FOR A（
3），CONSTANT FlRST
\(1510 \mathrm{C} \quad N=\) ORDER OF \(A(S), N[=10\)
\(1520 \mathrm{C} \quad \mathrm{B}=\) POLYNOMIAL COEFFICIENT ARRAX FOR B（
S），CONSTANT ETRST
\(1530 \mathrm{C} \quad M=\) ORDER OF \(B(S), M[=10\)
\(1540 \mathrm{C} \mathrm{C}=\) POLYNOMIAL COEFEXCIENT ARRAY FOR RE
SULTING C（S）
\(1550 \mathrm{C} \quad I X=\) ORDER OF C（S）
1560 C
1570 DIMENSION \(A(11), B(11), C(11)\)
\(1580 \quad \mathrm{IF}(\mathrm{N}-\mathrm{N}) \quad 1,2,2\)
\(1590 \quad 1 I X=M+1\)
1.600 GO TO 3
\(1610 \quad 2 \quad I X=N+I\)
\(1620 \quad 3 \mathrm{DO} 4 \mathrm{I}=1, I X\)
\(1630 \quad A C(I)=B(I)+G * A(I)\)
\(1640 \quad I X=I X-I\)
\(\therefore 650\) RETURN
1660 END
1670 C \(\quad 1 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ~\)
＊必＊＊\(火 火 火 火\)
1680 SUBROUPINE \(\operatorname{PEXCG}(A, I A, B, I B)\)

1690 C THIS SUBROUTINE REPLACES A WITH B (A IS DESTROY ED)
1700 C
\(1710 \mathrm{C} \quad A(S)=B(S)\)
1720 C
\(1730 \mathrm{C} \quad \mathrm{A}=\mathrm{ARRAX}\) OF \(\mathrm{A}(\mathrm{S})\)
1740 C
1750 C
1760 C
1770 C
1730 DIMENSIUN A(1), B(1)
\(1790 \quad J J=I B+1\)
1800 DO \(1 I=I, J J\)
\(1810 \quad \mathrm{~A}(\mathrm{I})=\mathrm{B}(\mathrm{I})\)
\(1820 \quad[\mathrm{~A}=\mathrm{TB}\)
1830 RETURN
1840 END
1850 C
*******
1860 SUBROUTINE PMUL ( \(2, I Z, X\), IXA, Y,IYA)
1870 C THIS SUBROUTINE FORMS PRODUCT OF TWO POLYNOMIAL S
1880 C
\(1890 \mathrm{C} \quad \mathrm{Z}(\mathrm{S})=X(S) * Y(S)\)
1900 C
1910 C
NSTANT FERST
1920 C
1930 C
ANT: FIRST
1940 C
1950 C
ANT EIRST
1960 C IXA = ORDER OF Y
1970 C
1980 DIMENSION \(\therefore(10), Y(10), 2(10)\)
\(1990 \quad[X=1 X A+1\)
\(2000 \quad T Y=T Y A+1\)
2010 IE (IX*IY) 10,10,20
2020 10 IZ \(=0\)
2030 GO 2O 50
\(2040 \quad 20\) IZ \(=I X+I Y\)
2050 DO \(30 I=1, I Z\)
\(206030 \mathrm{Z}(\mathrm{I})=0.0\)
2070 DO \(40 \mathrm{I}=\mathrm{I}, \mathrm{IX}\)
\(2080 \quad\) DO \(40 \mathrm{~J}=1\), IY
\(2090 \quad \mathrm{~K}=\mathrm{I}+\mathrm{J}-1\).
\(2100 \quad Z(K)=X(I) * Y(J)+Z(K)\)
\(2110 \quad 40\) CONTINUE
\(2120 \quad \mathrm{IZ}=\mathrm{IZ}-2\)

2130 50 REPURN
2140 END
2150 己 ******
2160 SUBROUTINE PROOT ( \(\mathrm{N}, \mathrm{A}, \mathrm{U}, \mathrm{V}, \mathrm{IR}\) )
2170 C THIS SUBROUTINE USES A MODIEIED BARSTOW MA'THOD
TO FIND
2180 C THE ROOTS OF A POLYNOMIAL.
2190 C
2200 C
\(2210 \mathrm{C} \quad A=\) POLYNOMIAL COEFFICIENT ARRAY.
\(2220 \mathrm{C} \quad \mathrm{U}=\) REAL ROOT ARRAY
\(2230 \mathrm{C} \quad \mathrm{V}=\) IMAGINARY ROOT ARRAY
2240 C IR \(=+1\) IF POLYNOMIAL WRITREN AS: \(A(1)+A(2\) ) \(5+A(3) S * * 2+\ldots\)
\(2250 \mathrm{C}=-1\) IF POLYNOMIAL WRITTEN AS; A(1)S**iv +A(2)S**(N-1)+..
2260 C
2270
)
2280 IREV \(=T R\)
\(2290 \quad \mathrm{NC}=\mathrm{N}+1\)
2.300

2310
2320
2330
2340
2350
2360
2370
2380
2390
DO \(1 \mathrm{I}=1, \mathrm{NC}\)
\(I H(I)=A(I)\)
\(\mathrm{P}=0\).
\(Q=0\).
\(\mathrm{R}=0\).
3 IE ( \(\mathrm{E}(1)\) ) 4,2,4
\(2 N C=N C-1\)
\(V(\mathrm{NC})=0\).
\(\mathrm{U}(\mathrm{NC})=0\).
DO \(1002 \mathrm{I}=1\), NC
\(24001002 \mathrm{H}(I)=\mathrm{H}(\mathrm{I}+1)\)
2410 GO TO 3
2420 4 TE (NC - 1) 5,100,5
\(2430 \quad 5 \mathrm{FF}(\mathrm{NC}-2) 7,6,7\)
\(2440 \quad 6 \mathrm{R}=-\mathrm{H}(1) / \mathrm{H}(2)\)
2450 GO TO 50
\(2460 \quad 7 \mathrm{IF}(\mathrm{NC}-3) \quad 9,8,9\)
\(2470 \quad 8 \mathrm{P}=\mathrm{H}(2) / \mathrm{H}(3)\)
\(2480 \quad Q=H(1) / H(3)\)
2490 GO TO 70
\(25009 \mathrm{IF}(\mathrm{ABS}(\mathrm{H}(\mathrm{NC}-1) / \mathrm{H}(\mathrm{NC}))-\mathrm{ABS}(\mathrm{H}(2) / \mathrm{H}(1))) 10\),
19.19
\(2510 \quad 10\) IREV \(=-\) IREV
\(2520 \quad M=N C / 2\)
\(2530 \quad\) DO \(11 \mathrm{I}=1, \mathrm{M}\)
\(2540 \quad \mathrm{NL}=\mathrm{NC}+1\) -
\(2550 \quad \mathrm{H}=\mathrm{H}(\mathrm{NL})\)
2560 H(NL) =H(I)

2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690
2700
2710
2720
2730
2740
2750
2760 2770 2780 2790 2800 2810 2820
2830
2840 2850 2860 2870 2880 2890 2900 2910 2920 2930 2940 2950 2960 2970 2980 2990 3000 3010 3020 3030 3040 3050 3060

11H(I) \(=F\)
IE (Q) 13,12,13
\(12 p=0\).
GO TO 15
\(13 P=P / Q\)
\(Q=1 . / Q\)
\(15 \mathrm{IF}(\mathrm{R}) 16,19,16\)
\(16 \mathrm{R}=1 . / \mathrm{R}\)
\(19 E=5 . E-10\)
\(B(N C)=H(N C)\)
\(C(N C)=H(N C)\)
\(B(N C+1)=0\).
\(C(N C+1)=0\).
\(N P=N C-1\)
\(20 \mathrm{DO} 49 \mathrm{~J}=\mathrm{I}, 1000\)
DO \(21 \mathrm{IL}=1, \mathrm{NP}\)
\(I=N C-I I\)
\(B(I)=H(I)+R * B(I+I)\)
21. \(C(I)=B(I)+R * C(I+1)\)

IF \((A B S(B)(1) / H(1))-E) 50,50,24\)
24 IF (C(2)) \(23,22,23\)
\(22 \mathrm{R}=\mathrm{R}+\mathrm{I}\)
GO IO 30
\(23 R=R-B(1) / C(2)\)
30 DO 37 II \(=1, N P\)
\(\mathrm{I}=\mathrm{NC}-\mathrm{II}\)
\(B(I)=H(I)-P * B(I+1)-Q * B(I+2)\)
\(37 C(I)=B(I)-P * C(I+1)-Q * C(I+2)\)
JF (H (2)) 32,31,32
31 IF (ABS (B(2)/H(1)) - E) \(33,33,34\)
32 IF ( \(\mathrm{ABS}(\mathrm{B}(2) / \mathrm{H}(2))-\) E) \(33,33,34\)
33 IF ( \(\mathrm{ABS}(\mathrm{B}(1) / \mathrm{H}(1))\) - E) \(70,70,34\)
\(34 \mathrm{CBAR}=\mathrm{C}(2)-\mathrm{B}(2)\)
\(D=C(3) * * 2-C B A R * C(4)\)
IF (D) \(36,35,36\)
\(35 \mathrm{P}=\mathrm{P}-2\)
\(Q=Q *(Q+1)\)
GO TO 49
\(36 \mathrm{P}=\mathrm{P}+(\mathrm{B}(2) * \mathrm{C}(3)-\mathrm{B}(1) * \mathrm{C}(4)) / \mathrm{D}\)
\(Q=Q+(-B(2) * C B A R+B(1) * C(3)) / D\)
49 CONTINUE
\(\mathrm{E}=\mathrm{E}^{*} 10\).
GO TO 20
\(50 \mathrm{NC}=\mathrm{NC}-1\)
\(\mathrm{V}(\mathrm{NC})=0\).
IF (IREV) 51.52,52
\(51 U(N C)=1 . / R\)
GO TO 53
\(52 U(N C)=R\)
53 DO \(54 \mathrm{I}=\mathrm{J}, \mathrm{NC}\)
```

3070
3080
3090
3100
3110
3120
3130
3140
3150
3160
3170
3180
3190
3200
3210
3220
3230
3240
3250
3260
F))
3270
3280
3290
3300
3310
3320
3330
3340
3350

```
```

$54 \mathrm{H}(\mathrm{I})=\mathrm{B}(\mathrm{I}+1)$

```
\(54 \mathrm{H}(\mathrm{I})=\mathrm{B}(\mathrm{I}+1)\)
    GO 'TO 4
    GO 'TO 4
    \(70 \mathrm{NC}=\mathrm{NC}-2\)
    \(70 \mathrm{NC}=\mathrm{NC}-2\)
        IF (IREV) 71,72,72
        IF (IREV) 71,72,72
    \(71 \mathrm{QP}=1 . / \mathrm{Q}\)
    \(71 \mathrm{QP}=1 . / \mathrm{Q}\)
        \(P P=P /(Q * 2.0)\)
        \(P P=P /(Q * 2.0)\)
        GO TO 73
        GO TO 73
    \(72 Q P=Q\)
    \(72 Q P=Q\)
        \(P P=\Gamma / 2.0\)
        \(P P=\Gamma / 2.0\)
    \(73 \mathrm{~F}=(\mathrm{PP}) \star * 2-\mathrm{PP}\)
    \(73 \mathrm{~F}=(\mathrm{PP}) \star * 2-\mathrm{PP}\)
    IE (E) 74,75,75
    IE (E) 74,75,75
    \(74 \mathrm{U}(\mathrm{NC}+1)=-\mathrm{PP}\)
    \(74 \mathrm{U}(\mathrm{NC}+1)=-\mathrm{PP}\)
        \(\mathrm{U}(\mathrm{NC})=-\mathrm{PE}\)
        \(\mathrm{U}(\mathrm{NC})=-\mathrm{PE}\)
        \(\mathrm{V}(\mathrm{NC}+1)=\operatorname{SQRT}(-\mathrm{F})\)
        \(\mathrm{V}(\mathrm{NC}+1)=\operatorname{SQRT}(-\mathrm{F})\)
        \(V(N C)=-V(N C+1)\)
        \(V(N C)=-V(N C+1)\)
        GO TO 76
        GO TO 76
    75 IF (PP) 81,80,81
    75 IF (PP) 81,80,81
    \(80 \mathrm{U}(\mathrm{NC}+1)=-\operatorname{SQRT}(\mathrm{F})\)
    \(80 \mathrm{U}(\mathrm{NC}+1)=-\operatorname{SQRT}(\mathrm{F})\)
        GO TO 82
        GO TO 82
    81. \(\mathrm{U}(\mathrm{NC}+1)=-(\mathrm{PP} / \mathrm{ABS}(\mathrm{PP}))^{*}(\mathrm{ABS}(P \mathrm{P})+\mathrm{SQRT}(\)
    81. \(\mathrm{U}(\mathrm{NC}+1)=-(\mathrm{PP} / \mathrm{ABS}(\mathrm{PP}))^{*}(\mathrm{ABS}(P \mathrm{P})+\mathrm{SQRT}(\)
    82 CONTINUE
    82 CONTINUE
        \(V(\mathrm{NC}+1)=0\).
        \(V(\mathrm{NC}+1)=0\).
        \(U(N C)=Q P / U(N C+1)\)
        \(U(N C)=Q P / U(N C+1)\)
        \(\mathrm{V}(\mathrm{NC})=0\).
        \(\mathrm{V}(\mathrm{NC})=0\).
    76 DO 77 I = 1, NC
    76 DO 77 I = 1, NC
    \(77 \mathrm{H}(\mathrm{I})=\mathrm{B}(\mathrm{I}+2)\)
    \(77 \mathrm{H}(\mathrm{I})=\mathrm{B}(\mathrm{I}+2)\)
        GO TO 4
        GO TO 4
    100 RETURN
    100 RETURN
        END
```

 END
    ```

\section*{APPENDIX E}

\section*{PLI MODEL PARAMETER DEFINITIONS}
\begin{tabular}{|c|c|c|}
\hline Symbol & Definition & Units \\
\hline K \({ }_{\text {d }}\) & Gain of phase detector number 1. & cycles \({ }^{-1}\) \\
\hline \({ }_{\mathrm{k}}^{\mathrm{d} 2}\) & Gain of phase detector number 2 . & cycles \({ }^{-1}\) \\
\hline \({ }^{4} \times 3\) & Gain of phase detector number 3. & cycles \({ }^{-1}\) \\
\hline ME & clock frequency of programmable counters. & Hz \\
\hline \(\mathrm{Mf}_{q} / \mathrm{K}\) & Gain of programmable divide-by- \(\mathrm{K}_{1}\) counter. & cycles \\
\hline \(\mathrm{ME}_{2} / \mathrm{K}\) & Gain of programmable divide-by-K counter. & cycles \\
\hline 1/N & Gain of divide-by-N counter. & cycles/cycle \\
\hline 1/L & Gain of divide-by-i councer. & cycles/cycle \\
\hline
\end{tabular}

\section*{REFERENCES}
[1] R.C. West, CRC Handbook of Chemistry and Physics. Boca Raton, Florida: CRC Press Inc., 1979, yage F-117.
[2] S.F. Irarsen, F.W. Weller and J.A. Businger, B Thase-Locked Loop Continuous Wave Sonic Anemonemeter-Thermometer. Journal of Applied Meteorology, Vol. I8, pages 562-568, April 1979.
[3] Tbicl., page 567.
[4] D. G. Trohn, Digital Phase-Locked Loop Design Using SN54/74LS297. A Texas Instrments Application Report. Nallas, Texas: Texas Instruments, 1981, page 14.
[5] G. Daryanani, Erinciples of Active Network Synthesis and Desig:- Mew York: Jonn Wiley and Sons, 1976, page 86.
[6] Eink, Electronic Engineers' Handbook. New York: MoGraw-Hill Inc. . 1975, pages 25-112.
[7] Ibid., pages 25-114.
[8] D.G. Trohn, page 13.
[9] P. Rossier, A. Buhlmann, K. Wiesinger, Bespiration Physiologic Principles and Their Clinical Apolications. St. Iouis: The U.V. Mosby Company, 1960, page 189.
[16] J.G. Scadding, G. Cumming, Scientific Foundations of Respiratory Medicine. Rhaladelphia: W.R. Saunders Company, 1981, page 126.
[11] S.W. Jacob, C.A. Francone, W.J. Iossow, Structure and Function in Man. Phuladelphia: W.R. Suunders Company, 1978, pages \(436-438\).
[12] R.C. Dorf. Mudern Control Systems. Peading, Massachusetts: Aduison-Wesley Publishing Company, 1981, pages 57-58.
(13) Ibid. page 148.```

