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ABSTRAC'

There exists a problem of accurately performing 

spirographic measurements under physical stress 

situations. Existing systems, which use mechanical 

structures in the measurement process, have response times 

that are too slow, or are too bulky to be considered 

portable.

The proposed system solves these problems and has a number 

of attractive characteristics. The system uses relatively 

inexpensive solid state electronic components which 

implies a minimal of mechanical parts; portability; and a 

linear, fast response time.

The system presented in this thesis determines the 

velocity and temperature fluctuations of the human breath 

by measuring the difference and sum of the transit times 

for two continuous sound waves travelling in opposite 

directions along the air path. The information about the 

transit times is contained in the phase differences of the 

two sound waves across the path. A phase-locked loop is 

used to keep the differences across the path constant, 

irrespective of air - and sound - velocity variations. 

Therefore, the phase information is converted to frequency 

variations in the phase-locked loop.

ix -



CHAPTER 1

The purpose' of this thesis is to develop the design procedure for a 

portable, accurate spirometer - an instrument for measuring the 

breathing capacity of the human lungs - for use under varying 

physical stress.

Present systems, which involve some mechanical structure in tne 

measurement process, have response times that are too slow, or are 

too bulky to be considered as portable.

The system designed solves these problems because of a number of 

attractive characteristics: relatively inexpensive solid state 

electronic components are used which implies a lack of moving parts 

and portability; and linear, fast response time and reliability.

The system determines the velocity and temperature fluctuations of 

the human breath by measuring the diiference and sum transit times 

for continuous sound waves travelling in opposite directions along 

the air path. The information about the transit times is contained 

in tiie phase difference of the sound waves across the path.

A phase-locked loop (PLL) is used to keep the x* 'se difference across 

the path constant, irrespective of air ~ and sound - velocity 

variations by changing the sound frequency. Therefore the phase 

information is converted to frequency variations.

-  1 -



- o -

Although the design is realizable with either an analogue or digital 

phase-locked loop, the digital phase-locked loop was choosen so that 

tiie frequency variation information is directly accessible in digital 

format. Thus, eliminating the need for analogue to digital 

converters. Digital information allows the use of a microprocessor 

for information proccssing/storage and, more importantly, digital 

control of the system.



CBAP1 A 2
BASIC INSTRUMENT OPERATION

In this chapter we will show how the information contained in the 

phase shifts across the acoustic paths are converted into frequency-

variations of userful form.

The total system can be divided into two identical parts, each half 

determines the transit time; of the sound waves traveling in one 

direction. Because there is no interaction between halves, this and 

all proceeding chapters will study the various responses of only one- 

half of the system.

Figure 1 shows a simplified diagram of one-half of the measurement 

system. T is the transmitter, R and R* are the two receivers. The 

phase detector (PD), sequential loop filter (F) and digital 

controlled oscillator (DCO) form the phase-iccked loop.

In general, a DPLL system consists of two main functional blocks, a 

phase comparator or detector, and a digital controlled oscillator. 

The DCO is set to operate at an angular frequency of in the

absence of a digital control signal. When a control signal is 

present, then' the instantaneous frequency deviation of the DCO is 

proportional to the control signal. The control signal comes from 

the PD whose output is proportional to the phase difference between 

two input sigials, one of which is the output of the DCO.

-  3 -
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To illustrate how a DPLL operates, assume; that the loop is in lock at 

t-0 (i.e. the input freq./phase and output froq./phase of the DCO 

are equal), and that at t=0+ the input frequency changes by w. At 

this time the phase uetector output will give a positive signal to 

the DCO which in turn increases the frequency of the DCO. A new 

equilibrium point will be reached when the frequency of the DCO is 

equal, to the_frequency of the input signa . A filter is usually 

included in the control signal path to smooth the control signal.

The time it takes for a given phase plane of the transmitted sound 

wave to traverse the distances to the receivers are given by

and

T = d /{c + v.cose)i i a ( 1 )

T = d / (c + v^cose)
7 2 d

(2)

where is the separation between the transmitter and the receiver, 

c is the velocity of propagation of sound in still air, and v cose is 

the velocity component of the air in the direction of the propagation 

of the bound.

The transmitted sound waves can be expressed as

T(t )  = Acos(ut  + <j>')

where u is the frequency in rad/sec and is the initial phase

output,
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Knowing that each acoustic path introduces a time delay ; the

received signals can be written as

P^(t) = Acos(w(t - T . ) + & ' ) .

Signal magnitude attenuation is neglectad because the magnitude 

variations are eliminated from the received signals upon entering the 

phase detectors - provided the magnitude is sufficient to trigger 

them. Notice that this implies that the transmitted signal need not 

be sinusoidal but only periodic.

The input phase to the phase-locked loop is given by

* «(T - T ) =2 1

K * w(d - d )/ (c  + v cosG} 
ds 2 1 a

where K ̂ . is the gain constant of the phase detector.

(3 )



(6)

Acoustic path and 
Transducers

Phase-locked loop

Figure 1. Schematic of one-half of system
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The phase error , assuming the reference phase is zero (without

loss of generality), is then given by

The phase-locked loop phase detector output is zero for a given phase 

difference 4> (for this case <T = [h ± n)n). If the differences

between distances d and d are adjusted, under zero air velocity
1 2

conditions, to give zero output from the phase detector, the output 

frequency will be the free running or center frequency ^ . Under

these conditions we obtain

where c ! is the velocity of propagation of sound at the time of 

adjustment.

Now, if ■!' 4 the phase detector output will adjust the output

frequency such that tends toward <p. Assuming perfect

The same procedure can be used to derive the governing equation for 

the second half of the systen.

= K a i (d  -  d ) / ( c + V cose) ,  e d3 ? i a

t = K. id (d - d )/c U3 C 2 1 (5)

phase-lock, (i.e. $ = for all T
e

equations 4 and 5 we obtain
2

T , and equating

v cose c . a

c

c v coso c a

c c (7)
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Summing and differencing (6) and (7), we obtain
(l) - (il III " W
---------£} .....1-------£ L  = 2v,cose/c ’ (a)
u) w aCl Cl

'o * u) w - <oC? I CO
— ------ + - £ L -  2 ( c / c '  - 1) (9)u3 u)

C2 C2

where w ar.d w denote the two halves of the system.ci c?

The results of (6) and (7) shew that the distances drop out of the 

equations and only relative frequency’ variations exist and need be

pleasured.

Temperature variations are obtained from equation 9 using equation 

10, given in [3] as

c = 331.5 + .607 Tq m/sec. (10)

where T 0 is the temperature in degrees centigrade.

A closer inspection of the basic system shown in fioure 1 reveals 

that the system would operate in the same way if PD., were removed 

and only one acoustic path was incorporated into the system.. This is 

true, and this method is exactly how an anemometer was built as given

in [2].

'T’he major reasons for not using the Single Path Anemometer method is 

to reduce cost and size. The derivations given earlier in this 

chapter assume that the transducers and receivers introduce no time 

delay. This is never the case, and the added delay introduces an
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error in the desired response of the system.

There ore tv/o methods of reducing this error. One method is to use 

expensive condenser microphones as transducers with very small 

delays. This is what was cone in [3], at a very high cost (75% of 

the total system cost). The second method, which is used in this 

system, is to use relatively inexpensive matched Piezoceremic air 

transducers, which have a larger delay, and to reduce the effect of 

this delay by introducing a second acoustic path as a reference, 

within the PLL feedback path. Exactly how this is done is considered 

in cnapters 4 and 5.

/)t-Notice tliat the assumption of a perfect phase-lock is made in the s 

derivation of equations 8 and 9,. This assum^ion is guaranteed by 

using a second order phase-locked loop which is perfect phase-locked 

as long as the frequency variations stay within the lock range of the 

PLn. This requirement introduces the possibility that the system may 

not be stable. Chapter 5 will deal with trie stability of the

proposed system.



CHAPTER 3
SYSTEM EKST MPTICN m D JWDELJWG

In tlii.s chapter is a detailed description of the system and how each 

section is modeled. Figures 2 and 3 show the complete system 

schematic and a detailed schematic of the digital phase-locked loop,

respectively.

The model used for the digital phase-locked loop (DPLL) was taken 

directly from [4], Although the DPLL and analogue phase-locked loop 

perform the phase-locking function by entirely different methods, 

linear control systems models for the loops are analogus, enabling 

the system to be constructed in either the digital or analogue world. 

This model is shovn in figure 4. The parameters shown in figure 4 

are defined in appendix E.

It is known that the acoustic paths introduce a time delay between

the outputs and inputs of the transducers. Therefore, the input

frequency and initial phase to the receivers can be written as
c ( t )  - f 0 ( t  - Tf ; U D

= - f 0 (t  - Tj ) • Ti . (12)

Because the PLL model operator is the total phase angle, as it 

differs f’-om the rate caused by the loop center frequency f^, these

equations need to be modified for incorporation into the system model
-  10 -
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as follows.

The input phase <i>., due to changes in frequency input and initial 

phase angle is for each path

i>i =i o(f. - fc)dt + (j>i'

and the output frequency due to changes in rate of output 

* , aqain, for each path is

f0 = fc + dV dt-

(13)

phase

(14)

.V



(12)

Data/
control
lines

Figure 2. Complete system schematic.



(13)

Figure 3. Schematic of Digital Phase - locked Loop.



(14)

Figure 4. Linear controls systems model for second order Digital Phase-locked loop.
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Combining equations 10, .11, .13 into 12 we obtain for

!;i = Jo{ fc( t"7! )+d^0( t-Ti )/dt - fc(t)}dt - {fc(t-Ti)+<^0(t-Ti)/dt}Ti

where i represents the pad) taken. Taking the Laplace transform of 

:-i , assuming f c(t -  Tp = 0 for T^t, results in

' f-j(s) = <f>0 ( s ) (1 - sTi ) *exp( -s ib) - f c (s ){(sTi - 1 ) -exp( -sTi )+l}/s . (15)

If die gain transfer function of the transducers and any filter 

inserted into die fee<3 paths of the phase detectors to reduce noise 

is expressed in factored form as

n 2 ■ ?
T(s) = n ( b . s ‘ + b . s + b . ) / ( b . s ' + b . s + b . ) ,  (16)

i  = l  n  21 3 1 4 1  51 61

then die delay, using the definition given in (5], as

Tk * d(-$(m))/dw

:an be written as
1,. (oj) = E{(-b . (b . + b .ui )/((b . - (b ,uj)‘ )?+ (b > )? )}

i=l >1 31 11 31 1 1 2 1

+/ -b .(b . + b ,w? )/((b . - (b .uf~)2+ (b ) )}
5 1 6 1  <-*1 61 it 1 51

(17)

If die changes in the output frequency from the center frequency 

,J3C are very small Tk car. be approximated as a constant whos value 

is given by equation 17 with being replaced by w . Therefore, the
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model for the transducers and filters will be simply a constant delay

represented as expC-T^) .

The ideal transmitting response of a piezoceramic trasducer is

defined by Tj (s) in [6] as

Tt (s ) = Ks‘7 { s 2 + (unTs/0T ) + 0JnT}

The ideal receiving response; of a piezoceramic transducer T (s) is

given by [7] as

2 ?
Tr(s ) = K/{s + (wnRS/̂ R^ + wnR ^

where, in the previous equations, p is the resonance frequency and 

Q is the quality of the transducers. •

If ‘die crystals are operated at their resonance frequency the 

corresponding delay constant is

TK = 2^ T /wnT + QR/wnR^-

because die crystals have gain characteristics of a sharp bandpass 

filter, as shown in figure 5, further filtering is unnecessary.

Figure 6 shows die complete signal flow graph, for one-half of the

system.

Hie relationship of die DPLL to the analog PLL and why the digital 

was choosen over the analoge can be explained by referring to figure 

3. We see that if a divide-by-2LN counter with parallel outputs is
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incorporated into the phase-locked loop, the frequency offset 

information can be latched into a bank of registers by fQ this 

eliminates the need for converting the output frequency into digital 

form for processing by a microprocessor, thus reducing the components 

needed for conversion into a bank of latches. With this technique a 

higher degree of accuracy may be attained by adding more stages to 

trie divide-by-2LN counter and latch.
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Figure 5. ideal transmitting and receiving response for a piezoelectric transducer.
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- 1 
2LN

Figure 6. One-half the system in signal flow graph representation.



CHAPTER 4
STEMW-ST3VTE RESPONSE

In this chapter, we will show how equations 8 and 9 are realized by

the system under steady-state conditions (i.e. <j> = 0 , v =/0).ei d
We will first neglect transducer-filter delay and later address this 

problem in more detail. Under steady-state conditions $ is given

as [8]

&2 2 0 c  U2 C

Inserting equation 6 we obtain

<t> = (4K N){(v ccs0 )/c ' + c/c' - 1 >/K Me2 2 s ' ci2

and from trie other half of the system

i> D = (4K N){ (-v cose )/c ' + c/c’ - 1 >/K M .e2 B 2 a d2

The center frequencies must be different for each acoustic signal so 

that the signals do not interfere. The summing and differencing of

trie above equations yield

<>„ " ^  o = (8K N)(v cose/c*)/K Me' (18)e? e2B ?. a 02

and

* + ♦ B = (8K N)(c/ c ’ - 1 )/K M. (19)e2 e?B ?. d2

These equations assume perfect phase-locK, The second-order DPLL 

will track its incoming signal with zero phase error within its lock

t a n g e ’ -  20 -



21 ~

The second-order DPLL lock range is given in [8] as

if /f = (f - f )/f = M/8K N(1 + 1/2K ) Hz. (20)
max c °max c c 2 2

To determine proper values for the parameters, in the above equation, 

we must determine what range of values that can attain 

spicemetery. This is done in the next section.

Tables 1 and 2 list the average volume flew rates with the 

corresponding air velocities and average lung volumes respectively 

[9],F10],[11]. The following definitions will clarify the terms used 

in the tables.

Maximum expiratory/inspiratory volume flow rate (MEV/MJV) - the
maximum volume flew rate obtained after maximum

inspi rati on/expi. ration.

Maximum breathing capacity (MBC) - the maximum sustained volume

flew rate under physical stress.

Spontaneous breathing capacity (SBC) - the volume flew rate 

under quiet rest conditions.

Total lung capacity (TLC) - the total volume of lungs upon

maximur. inhalation.
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Vital capacity {VC} - the largest volume of air that can be

expired after a maximum inspiration.

Inspiratory reserve volaae (MV) - the volume capable of being

inspired after quiet expiration.

Expiratory reserve volueae (ERV) - the volume capable of being 

expired after quiet inspiration.

The air velocities given in table 1 were determined try the following

equation

v_. = volume flow r a t e ___= 4v (21)
cross sectional area 2

n d ' o
where v is the volume flow rate and d is the diameter of the

o

circular breathing tube, These air velocities were obtained if

breathing is done through a 1.5 inch diameter tubing, which is 

assumed not to affect the normal breath rates.

The lung volumes are determined by the system by integrating the air 

velocity over the cross sectional area used in equation 21. Table 2 

is included to give the range of volumes that will be encountered.
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Table 1. - Spiremeter Volume Flew Rates

volume

_velocitytmeteis/sec)
MEV 12.0 10.7

MIV 9.0 8.0

MBC 1.67 1.48

_£B£_____Stall___________________________________

Table 2. - Spirometeric Air Velocities

iyae_yplunfeUJ&ecsI
TLC 6.00

VC 5.0

IRV 2.5

_£EV_____ 2J&_______

Table 3. - Stability Requirements

T > T
2 1 2 2. 3 3

“„/f » 6<t2 - T,'/<T, - V
01 < /(2/3(T2 - T2 ))
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In this section we will check to see if the lock range of the DPLL is 

sufficient for our purposes.

Neglecting changes in c and setting cose= 1 equations 6 and 20

become

M/8K N(1 + HK } > v / c ' .
2 2 a

Using c = 343,57 m/s, ¥ = 8  (which is the minimum value of K for a2
K~counter using the SN74L8297 digital PLL filter), and setting the

system clocks equal (i.e, M = 4N), v satisfies
a

v < 20.21 m/sec a

which is true for the maximum value obtained in spirometery

(va(MEV)=10.7 m/s).

Transducer-filter Delay Affects

Now we will look more closely at the effect transducer-filter delays

(T ) have on toe static response of the system. Starting atk
equations 1 and 2 we must include the transducer delays T, as

T = d / ( c  + v.costf) + T ; i  a kj
and

T = d / (c  + v coscj>) + T 
2 2 a k2.
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Using the same argument.* as before, the phase error is given by

<|> - K, uj{(cl - d )/(c + v cose) + (T - T ) }. (22)ei 03 2 i a K2 ki

Substituting T = T - T , and follcwina the same steps which led
e k?_ ki

to equations 6 and 7 of chapter 2, we obtain for perfect phase-lock, 

(derivation given in Appendix A)

(w - ix) )/w = (c/c' + v cose/c' -1)' (i-(c + v coso)(T )/(d -d )) 1.(23)o c c  a a 6 2 2

By comparing this with equation 6 and knowing 10v < c, it is seen3
that the conditions for ideal resporise is

i (c T }/(d - d )j «  1. C 4)
e 2 i

Thus is necessary to maximize the separation of the receivers for any 

given transducer-filter delay. For c = 343.57 m/s (20 C 0.0%

humidity) (d^-d, )=0.01 m and Te = 2.5 microseconds the resulting 

error from the ideal of equation 21 is less than 1%.

Each is composed of two parts; the receiver delay and the

transmitter delay. For each half of the system, as shown in figure 

1, the same transmitter is used for each path. Therefore, Tg is 

composed of only the difference between receiver delays. Eecause of 

the fine tolerences required in manufacturing piezoceramic air 

transducers closely matched transducers are not uncommon and any 

slight difference can be tuned to a very small difference, using 

common crystal tuning techniques.



CHAPTER 5
DYNAMIC RESPONSE

In this chapter we will study the stability requirements, hew the 

system obtains perfect phase-lock, and the maximum allowable step

change in air velocity.

Figure 6 siiows one-half the system in signal flew graph 

representation. Using Masons Loop Rule [12], we obtain the transfer

function

where

* / f  = SK, P(s) : ei c d3

(s + 2cui S + 0) ) - K (2cu> s + 10 )P(s) (25)rt n cl3 n n

P(s ) = exp(-sT ) ‘ (1 - sT ) - exp(-sT ) * (1 - sT ),1 : 2 2

e = /« )'V!'1 2

wn " “2 > >

U) = (K Mf (/(2K N),1 cii c 1

W * (K , Mf )/(4K ML).
2 U2 C 2

First, we will look at the stability requirements. The Routh-Hurwitz 

Stability Criterion [13] can be applied to this system only if the 

delay terms are approximated by a few terms of the power series 

exp(-sT) = 1 - sT + (sT)2/2: - (sT)3/3: + ....

- 26 -
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We will use the first three terms of the series. Therefore, the 

Routh-Hurwitz criterion will yield only approximate stability

information. Substituting into P(s) we obtain

P(s) = %{4s(T - T } - 3s" (T2 - 1 )  + sJ (T3 - T'")). (26)
2 1 2 1 2 1

At this point we come to the first major problem. Substituting 

equation 26 into 25, we find that the system, as it is configured, 

will always be unstable. This arises because of the minus sign in 

the denominator of equation 25. This problem is easily corrected, 

and in doing so we reduce the number of parts used in the system. 

What is done is shown in figure 7. We eliminate the t’-ird phase 

detector and place the second acoustic path inside the phase-lock 

loop feedback path. The following transfer function results from 

these changes

*e i / f c = ‘  sp (s >/(s2 + (2b»ns + wn2 )P(r)  (27)

The derivation of equation 27 is given in Appendix B.

Notice thcu. this modification has two effects; the minus sign is 

eliminated, and the order of the transfer function is reduced.

Substituting equation 26 into 27 we obtain

$ / f  “ -s ( (T3 - T3 )s?' - 3 ( /  - T2 )s + 4(1 - T )) (28)ei c 2 1 2 1 2 1
3 2

( A s  + A s  + A s + A )
3 2 1 0
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where

A = 2 r,u> (T3 - I 3 ),
3 rt 2 l

2 3 3 2 1 
A - w (T - T ) - 6Cm (T2 - T ),2 n 2 l n 2 l

p

A = 2 + 85w (T - T ) - 3« 2 (T - T?' ),
i n 2 i n 2 i

A0 = 4m 2 (T - T ).U M 2 1
ami



(29)

Figure 7. One-half of modified system in signal flow graph representation.
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The Routh-Hurwitz stability requirements are 

A . > 0 i = 0 to .!,

and
A A - A A > 0.

2 1 3 0

The first four requirements are fulfilled if

T > T 
2 1

2 2 3 3
0) /C > 6(T - T )/(T - I  )

n 2 1 2 1

< {2/(3(T3 - T3 })}^. n 2 i

Whether all five requirements can be fulfilled is dependent on the

values of T and T » These requirements are listed in Table 3.1 2

It is important to recognize that the steady-state response of the 

modified system does not differ from the response of the original

system,

Appendix C contains plots of s-plane root locations of the modified 

systen under varying conditions. As can fc>e seen from these plots, 

the system can usually be stabilized for typical system values and 

the stability range is highly dependant upon transducer delay and 

acoustic path distances. Two major points can be drawn from these 

s-plane plots. First, decreasing the transducer delays or decreasing
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acoustic path distances has a marked improvement on the system 

response at the cost of havirq to raise the DPLL resonance frequency 

which is determined primarily by the clock frequency of the 

DPLL-filter integrated circuit. Another method of raising the 

resonance frequency is to use different clock frequencies for the 

various DPLL components fi.e. M=AN), Both of these methods would 

reduce the resolution of the output (refer to equations 25 and 18).

Second, reducing the separation distance between the two receivers 

also improves the system response.

Appendix D contains the Fortran proa ran ,'nd parameter values used to 

generate the data points of the s-plane pic’-s.

Hie system response to a step change in c-ir velocity is controlled by 

a highly non-linear equation and evades simple analysis. The 

transfer function given by equation 28 does not give the response 

required l>ut is only used to determine the systems stability. What 

we would be looking for is the output's (4>eJ response to changes in 

air velocity. The steady-state response shows that this output is 

100% sensitive to changes in air velocity but tells us nothing on how 

this steady-state value is reached.

fk\2QJim_AilQwable ...Step Input

The next question we must answer is what is the maximum step change
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in air velocity v uiat is allowed before an ambiguity occurs in the

ihase difference. This occurs when > n. Starting with c =M i  V / X X .  JL. V - x .  V ,J .  tV rfV . 9  A. A. IX , U  V / V V U  i .  *-»  » *  *  * V *  1 I T  /Nel
c* neglecting ccsO and changes in cu (i.e. w = w ) we obtain

II I w (dC 2 d ) / Ci w (d - d )/c + v cose! - o 2 i a 1

i - v  (d - d ) / ( c ' )  | . d c 2 1

For c'~343.0 ny'sf a = 231 40I< rad/s, and d -o -0.01 m,
 ̂ 2 i

y > II(c 1) / ( uj (d - d )} » 147.0 m/s. a c 2 i

This is enourmous, and for smaller separation becomes even greater. 

Therefore, this constraint presents no problems for most 

applications. This ambiguity occurs because of the saw-tooth shape 

of the phase detector transfer function.



CHAPTER 6
SUMMARY

In this thesis, we have been concerned with ouanti tative mathematical 

modeling of the various components of the ysten. The differential 

equations describing the dynamic and static performance of the system 

was utilized to construct this mathematical mod

Various design considerations are given j.r me text to aid in 

construction of the system with the desired characteristics. Major 

advantages resulting ( corn the designs used include:

1) Only the air temperature at the time of system 

calibration need be known to completely determine 

air velocities and temperatures measured.

2) The cost of construction, as compared to other

similar devi. s significantly reduced by

configuring the system so that inexpensive 

piezoelectric transducers can be used.

3) Long term reliability and durability results 

from the use of solid state electronic components 

and trie absence of mechanical parts with the 

exception of the piezoelectric transducers.

Further considerations would be to determine energy balances by

ei tJher
- 33 -
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estimating or mecjsuririg mass flew rates and appling the laws of 

thermodynamics thus enabling • the user to determine breathing

efficiencies.
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APPENDIX A

DERIVATION OF RELATIVE FREQUENCY SHIFTS

The phase e r ro r  under zero a i r  v e lo c i t y  cond i t ions  i s

K  = u, ((d - d ) / c ' + T (1)
ti 2 l  G

and the phase e r ro r  under non-zero a i r  v e lo c i t y  cond i t ions  i s

<!>e = “>0 ( (d - d )/(c + vacos ) + T ). (2)

Under pe r fe c t  phase-lock cond i t ions  these two are equal,  and can be 

equated. Doing th is  we get

<v((d - d ) / c '  + T ) = to ((d - d )/ (c  + v cos )+T ). (3)
2 1 G 0 2 i 3 "

Rearranging (3) in , the  fo l low ing steps;

“'c (d2 - d; ) / c ‘ - wQ(dn - d_ )/ (c  + vacoS(j>) = Te (w0 - (uc ),

c + v costj) - uc'/u = c' ■ r ( w  - uy)/( (d  - d )u> ),a o u c 0 v* o } v-

u).,/wc = (c + v ĉosij) ) / c 1 + Te {c + vaC0S4> ) ( ojc  - u>j/((d  ̂ - d )uc ),

(w0 - wc )/wc -  c/c-' + vacos<p/c' - 1 + Te(c + vacos$)(wc-ui0 )/((d^-dj }uf ' ,

(U>0 - wc )/ c ) ( l  - (c + vacos4> )(Te )/(d -d )) = c / c '  + vacos$/c ' - 1, 

and f i n a l l y ,

(<»-<*> )/«*> * ( ° / c ' + v c o s t / C  - 1)-(1 - (c + v cos$) (T ) / ( d -d ) ) _1.u C C « a L 2 1
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APPENDIX B

DERIVATION OF MODIFIED SYSTEH TRANSFER function

Figure 8. Modif ied System Block Diagram.

Careful inspect ion  of the two systems in  f ig u re  8 show that they are

i d e n t i c a l .  The DPLL Transfer funct ion  i s

T0/T'i ' = N(s)/D(s) = (2cwns + u)n/ )/(s'+ 2cu)nS + u j  ). (1 )

A!so , * i s  def ined as e 2
+e/*i ’ = s /D(s). (2)

From f igu re  8 we obta in ;  $. ’ = ^  f (3 )

and from the tex t  the acoust ic  path funct ion i s

* i = P(5)*0 + P ( s ) f c/s .  (4)

Combining ( ! )  and (3); = $0 (1 - D (s )/N(s) ) ,  (5)

(1) and (2} 4>q = i>eN(s) /s ; , (6)

and (4) and (5) P ( s ) f  /s « ♦<j( l  - D(s)/N(s) - P ( s ) ) .  (7)

F i n a l l y ,  combining (1),  (G), and (7) we obtain 

V f c = '  sP (s ) / ( s '  + P (s )N (s )).
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S-PLAHE HOOT LOCUS PLOTS
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Figure 9. S-plane Root locus P lo t .

C = .707, u = 7G to 1000., T. = 30.ms, d -cl = .1.0 cm. n k 2 i



Figure 10. S-plane Root locus P lo t

C - .707, ton = 46 to 1000., T = 30.ms, d -d
K 2 1 = 2.0 cm.
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Figure 11. S-plane Root lc :us  P lo t .

t - .707 , co = 31 to 1000., T - 30 .ms, d - d  =3 . 0  n K 2 1 cm.
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Figure 12. S-plane Root locus P lo t .

t = .707. u = 4B0 to 1000., T. = 15.ni,, d -d = 0.5
* 2 1 cm.
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Figure 13. S-plane Root locus P lo t .

C - .707 , u)n = 300 to 1000., T = 20.ms, d -d = 0.5 cm.k 2 j
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Figure 14. S-plane Root locus P lo t .

» wn = 150 to 1000., T = 30.ms, d -d = 0.5 cm.
K 2 1t = .707



Figure 15. S-plane Root locus P lo t .

t = 1.00, wn 100 to 1000., T. = 30.ms, d -d =K 2 i 0.5 cm
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Figure 16. S-plane Root locus P lo t .

c = 2 -0 ’ wn = 50 to 1000., T = 30.ms, d -d = 0.5 cm.K 2 1



- Figure 17. S-plane Root locus P lo t .

t = 2.83, a) = 46 to 1000., T. = 30.ms, d -d = 0.5 cm.
"  K 2 1
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LO DIMENSION DELAYI(30) ,DELAY2(30) ,P1(30) ,P2(30

),POLES(30)
20 DIMENSION PR(30),PI(30),D(22).ZEROS(30),ZR(3

0),'ZI (30)
30 DIMENSION A ( 3 0 ) ,B (30) ,0(30' ,PLENUM(30) ,P (30)

,E (25)
4 0 C *************<•■**********************************

* *■ * *
50 C 
60 C

70 C 
3 0 C

THIS SECTION GENERATES THE POLYNOMIAL P (3 
(SEE TEXT OF. THESIS.)

90 C P(S) = COEFFICIENT POLYNOMIAL
1.0 0 C
i 10 c

IP = ORDER OF P
120 DO 100 III = 3,16
130 D1 = . 0 5
140 D 2 = .055
150 CO = 343.0
16 0 VA = 0.0
17 0 ID = 2
180 TFIL = 30.E-3
190 T 1 = D1 / (VA + CO) + TFIL
20 0 T 2 = D 2 / (VA + CO) + TFIL
210 CALL PDELT(T 1, ID,DELAY!)
220 CALL PDELT (T 2,ID,DELAY2)
2 30 PI (1) = 1.0
240 PI (2) = -T1
250 EP1 = 1
260 P2 (1) = 1.0
270 P 2 (2 ) = -T2
280 IP 2 = 1
290 G = -1.
300 CALL PMUL (B , LIB,DELAY1,ID,P1,IP1)
310 LAijL PMUL(A,IA,DELAY 2,ID,P2,IP2)
3 20 CALL FORM(G, A , IA ,B,IB,P,IP)
3 30 C *****************:

********** 
340 C 
350 C 

CK LOOP 
360 C 
37 0 C 
380 C 
LOOP 
390 C 

D LOOP 
400 C 

OTAL LOOP

********

THIS SECTION GENERATES THE THE PHASE-LO 
TRANSFER FUNCTION POLYNOMIALS.

OMEGA1 = RESONANCE FREQUENCY OF FIRST 
OMEGA2 = RESONANCE FREQUENCY OF SECON 
OMEGAN = NATURAL RESONANCE FREQ. OF T
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410 C
ed l o o p

FREQC = FREE RUNNING FREQ. OF PHASE-LOCK

420 v- DAMP = DAMPING FACTOR OF PHASE-LOCKED
OOP
4 30 c
440 C PLLNUMl(S) = NUMERATOR POLYNOMIAL OF P L L .
4 50 C IPLLN = ORDER OF NUMERATOR
460 C
47 0 L = 1.0
48 0 N = 25 6 / (2*L)
49 0 M = 4*N
500 FREQC - 40000 .
510 K1 = 2** (Ill)
5 20 K2 = K1
530 KC1 = 2
5 4 0 KD2. = 2
5 50 OMEGA1 = (KD1 * M * FREQC) / (2 * K1 * N)
560 OMEGA2 = (KD2 * M * FREQC) / (4 * K2 * L *

)
570 OMEGAN = SQRT(OMEGAl*OMEGA2)
580 DAMP = SQRT(OMEGA1/OMEGA2) / 2.0
590 PLLNUM (1 ) = OMEGAN ** 2
60U PLLNUM(2) = 2*DAMP*OMEGAN
610 IPLLN = I
620 c *** *******************************************

*********
6 30 C
640 C THIS SECTION FORMS THE CHARACTERISTIC EQUATIO

N
650 C OF ONE-HALF OF THE SYSTEM.
660 C IT THEN FINDS THE LOCATION OF THE POLES OF TH

E
670 C SYSTEM IN THE S-PLANE.
680 C
690 C T ( S ) = CHARACTERISTIC EQUATION
700 C IT = ORDER OF T(S)
710 C U(S) = REAL ROOT ARRAY
720 C V(S) = IMAGINARY ROOT ARRAY
7 30 C
740 G - 1.0
750 D (1) =,.0.0
760 0(2) = 0.0
770 D (3) = 1.0
780 IDD = 2
79 0 CALL PMUL (C , IC , PLLNUM ,IPLLN ,P , IP)
800 CALL FORM(G,C,IC,D,IDU,POLES,I POLES)
810 CALL PROOT(IPOLES,POLES,PR,PI,1)
820 PRINT 1, OMEGAN,DAMP
830 1 FORMAT(IX,1OMEGAN= ' ,F15.5 ,2X,'DAMPING FACTO

R = ' ,F15.5)
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8 40 
850 
860 
87 0

- - W  )

880 
890 
900 
910 
920 
930 
940
9 50 
9 60 
970 
980 
990

0 '
1000 
1010 
1020 
1030 
W  )
1040 
10 50 
1060
J 07 0 C ******■*■***★*****■*******★★:****■■*. ★*■***■***’*****'★*'***
•k k k k k k
1080 SUBROUTINE N O R M P (X ,I X ,EP S )
1090 C THIS SUBROUTINE ZEROS COEFFICIENTS OF A POLYNO
MIAL
1100 C THAT ARE LESS THAT A THRESHOLD VALUE, THUS RED 
UCINGG
1110 C THE ORDER OF THE POLYNOMIAL.
H 2 0  C
1130 C X = COEFFICIENT ARRAY, CONSTANT FIRST
1140 C IX = ORDER OF POLYNOMIAL + 1
1150 C EPS = THRESHOLD OF THE SEARCH
1160 DIMENSION X (10)
1170 1 IF (IX) 4,4,2
1180 2 IF (ABS (X(IX)) - EPS) 3,3,4
1190 3 IX = IX - 1
1200 GO TO 1
1210 4 RETURN
1220 END
1230 C ****** * * ****************************************
■kk-k'k'kk-k'kkic
1240 SUBROUTINE PDELT(T,N,DELAY)
1250 C THIS SUBROUTINE GENERATES THE NTH ORDER POLY
NOMIAL

PRINT 2
2 FORMAT(IX,' ')
PRINT 3

3 FORMAT(IX,’POLES: SIGMA J
PRINT 4, (PR (I) ,PI (I ) , 1 = 1, I POLES )

4 FORMAT(10X,F15.5,2X,F15.5)
E (1) =0.0
E (2) = -1.0 

■ IE = 1
CALL PMUL(ZEROS,I2EROS,E,Ih ,P ,IP)
CALL PROOT(I ZEROS,ZEROS,ZR,ZI,1)
PRINT 2
IF (IPOLES.GT.I ZEROS) J = IPOLES 
IF (I ZEROS.GE.I POLES) J = I ZEROS 
DO iOO I = 1, J
IF (PR(I)+PI (I)+ZR(I)+ZI (I) .EQ-.0.0) GOTO 10
WRITE(8 ,* ) PR (I) ,PI (I) ,ZR (I) ,ZI (I)

100 CONTINUE 
PRINT 5

5 FORMAT(IX,'ZEROS: SIGMA J-
PRINT 4, (ZR (I) ,ZI (I) , I = 1 , I ZEROS)
STOP
END



52 -

1260 C
1270 C
1280 C
1290 c
130 0 c
1310 c
13 20
1330
13 40
1350
13 6 0
137 0
.138 0
13 9 0
14 00
1410

APPROXIMATION TO A DELAY (I.E. EXP(-TS)).

DELAY = POLYNOMIAL APPROXIMATION OF DELAY 
N = ORDER OF POLYNOMIAL N [= 10 
T * DELAY TIME

DIMENSION D E L A Y (11)
FACT = 1.
SIGN = 1.0
MINUS = -1.0 
DO 10 I = 1 ,N 
SIGN = SIGN * MINUS
FACT = FACT * I

10 DELAY (I I-1) = SIGN * (T**I) / FACT
DELAY(I) = 1.
RETURN

1420 END
1430 C ************************************************
***********
1440 SUBROUTINE FORM(G,A,N,B,M,C,IX)
1450 C THIS SUBROUTINE FORMS THE WEIGHTED SUM OF TWO P
OLYNOMIALS 
14 6 0 C
1470 C C (S) - B (S) + G * A (S)
148 0 C
14 90 G
x ij sj j A
S ),CONSTANT FIRST 
1510 C N
15 20 C ' B
S),CONSTANT FIRST 
1530 C M
15 4 0 C C
SULTING C(S)
1550 C IX
1560 C

= SCALER WEIGHTING FACTOR 
= POLYNOMIAL COEFFICIENT ARRAY FOR A{

= ORDER OF A (S) , N [= 10 
= POLYNOMIAL COEFFICIENT ARRAY FOR 8{

= ORDER OF 8 (S) , M[= 10 
= POLYNOiMIAL COEFFICIENT ARRAY FOR RE

= ORDER OF C(S)

1570 DIMENSION A (11),B(11),C(11)
1580 IF(N-M) 1,2,2
15 y 0 i IX=M+1
1600 GO TO 3
1610 2 IX=N+i
1620 3 DO 4 1=1,IX
1630 4 C (I)=B (I) +G*A (I)
1640 IX=IX-1
1650 RETURN
1660 END
16 7 0 C k k k k k k k k -k k -k k k k k k -k k k k k k k k k k ********** **•* *********
*********
1680 SUBROUTINE PEXCG(A ,IA,B ,IB)
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L690 C 
ED)
17 0 0 C 
1710 C 
17 20 C 
L730 C 
L740 0 
1750 C 
1760 C
17 7 0 C 
1730 
1790 
1800 
1810 
1320 
1830
18 40
18 S 0 C  ̂ k -i k k k k -k -k k k k -k k k
k k k k k -k k
1860 SUBROUTINE P M U L (Z ,I Z ,X ,IXA,Y ,IYA)
18 7 0 Ce* THIS SUBROUTINE FORMS PRODUCT OF TWO POLYNOMIAL
o
1880 C
1890 C Z (S ) = X (S) * Y (S)
1900 C
1910 C Z = RESULTING C O E F F I C I E N T  A R R A Y ,  CO
NSTANT FI RST
19 20 C IZ -= ORDER OF Z, [ = 8
19 30 C X « COEFFICIENT ARRAY OF X(S), CONST
ANT FIRST
19 40 C IXA = ORDER OF X
19 50 C Y = COEFFICIENT ARRAY OF Y{S), CONST
ANT FIRST
1960 C IYA = ORDER OF Y
1970 C
1980 DIMENSION L (10),Y (10),2(10)
19 90 IX=IXA+1
2000 IY=IYA+i
2010 IF {IX *IY) 10,10,20
20 20 10 IZ = 0
2030 GO TO 5C
2040 20 IZ = IX + IY
2050 DO 30 I = 1, IZ
20 60 30 Z (I ) = 0.0
2070 DO 40 I = 1, IX
2080 DO 40 J = 1, IY
2090 K = I + J - 1
210 0 Z (K) = X (I) * Y (J) + Z (K)
2110 40 CONTINUE
2120 rz = iz - 2

THIS SUBROUTINE REPLACES A WITH B (A IS DESTROY

A{S) = B(S)

A = ARRAY OF A ( S )
IA = ORDER OF A
B -- ARRAY OF B(S)

IB = ORDER OF B

DIMENSION A (1),8(1) 
JJ=IB+1 
DO 1 I = 1,JJ 

1 A (I)- B {I )
I A=IB
RETURN
END
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2130 50 RETURN
2140 ^ END
X ****** * * *****
2160 SUBROUTINE PROOT(N,A,U,V,IR)
2170 C THIS SUBROUTINE USES A MODIFIED BARSTOW METHOD
TO FIND
2180 C THE ROOTS OF A POLYNOMIAL.
2190 C
2200 C N = DEGREE OF POLYNOMIAL, N [=19
2210 C A = POLYNOMIAL COEFFICIENT ARRAY.
2220 C U = REAL ROOT ARRAY
2230 C V = IMAGINARY ROOT ARRAY
2 24 0 C IR = +1 IF POLYNOMIAL WRITTEN AS: A(l)+A(2
)S+A (3) S** 2+ . . .
225 0 C = -1 IF POLYNOMIAL WRITTEN AS; A(1)S**N
+A (2)S * 
2260 C

* (N-1)+..

227 0 
)
2280

DIMENSION A (20 ) ,U(20) ,V(20) ,H(21) ,3(21) ,C(21

IREV * IR
2290 NC = N + 1
2300 DO 1 1 = 1 ,  NC
2 310 1 H(I) a A (I)
2320 P ' * 0 .
2330 0 - 0 .
2 3 40 R = 0.
2 350 3 IF (H (1) ) 4,2,4
2 Jo 0 2 NC = NC - 1
2370 V (NC) = 0.
2 38 0 U(NC) a 0.
2390 DO 1002 I a I, NC
2400 1002 H (I ) = H (I + i)
2410 GO TO 3
2420 4 IF (NC - 1) 5,100,5
24 30 5 IF (NC - 2) 7,6,7
2440 6 R = -H(.l)/H(2)
24 50 GO TO 50
2 4 6 0 7 IF (NC ~ 3) 9,8,9
2470 8 P = H (2 ) / H (3) '
2480 Q = H (1) / H (3)
2490 GO TO 70
2500
19,19

9 IF (ABS (H (NC-1)/H (NC) ) -ABS (H (2) /H (1) ) ) 10,

2510 10 IREV = -IREV
2520 M a NC / 2
2530 DO 11 I = 1, M
2540 NL = NC + 1 - I
2550 V = H (NL)
2560 H (NL) = H (I)
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2570 11 H(I) = F
2580 IF (Q) 13,12,13
2590 12 P = 0.
260 0 GO TO 15
2610 13 P = P/Q
26 20 Q = 1. / Q
26 30 15 IF (R) 16,19,16
2640 16 R = 1. / R
26 50 19 S = 5.E-10
2( 60 B(NC) = H(NC)
2670 C (NO) = M(NC)
2630 B (NC + 1 ) = 0.
2690 CfNC+1) = 0.
2700 NP = NC - 1
2710 20 DO 49 J = 1, 1000
2720 DO 21 11 = 1, NP
2730 I = NC - 11
2740 B (I) = H (I } + R*B (I + 1)
2750 21 C (I ) = B (I) + K*C (1 + 1}
2760 IF (ABS (B(1)/H(1)) - E) 50,50,24
2770 24 IF (C ( 2 ) } 23,22,2 3
2780 22 R = R + 1
2790 GO TO 30
2800 23 R = R - B (1) /C ( 2)
2810 30 DO 37 II = 1, NP
2820 I = NC - 11
2830 a (i) = h (i) - p *b (i+l) ~ Q*B (1 + 2)
28 40 37 C(I) = B (I) - P*C(I + 1) - Q*C (1 + 2)
28 50 IF (H (2)} 32,31,32
28 60 31 IF (ABS (B ( 2 ) /H (1-) ) - E) 33,33,34
28 7 0 3 2 IF (ABS (B (2)/H (2) ) - E) 3 3,3 3,3 4
2880 33 IF (ABS (13 (1) / H (1) ) - E) 70,70,34
2890 34 CBAR = C (2) - B (2)
2900 D = C (3)* * 2 - CB A R * C {4)
2910 IF (D) 36,35,36
2920 35 P - P - 2
29 30 Q = Q * (Q+l)
2940 GO TO 49
29 50 36 P = P + ( B (2) *C ( 3 ) - B(1)*C(4)) /
2960 Q = Q + (~B(2)*CBAK + B (1)* C (3)) ,
2970 49 CONTINUE
2980 E = E * 10.
2990 GO TO 20
3000 50 NC = NC - 1
3010 V (NC) = 0.
30 20 IF (IREV) 51,52,52
30 30 51 U(NC) = 1. / R
3040 GO TO 53
3050 52 U (NC) =- R
3060 53 DU 54 I = 1, NC
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3070 54 H (1) = 3(1 + 1)
3080 GO TO 4
3090 70 NC = NC - 2
3100 IF (IREV) 71,72,72
3110 71 QP = 1. / Q
3120 PP = P / (Q * 2.0)
3130 GO TO 73
3140 72 QP - Q
3150 PP = r / 2.0
3160 73 F = (PP) ** 2 - OP
317 0 IF (F) 74,75,73
3180 74 U (MC + 1) = -PP
3190 U(NC) = - PP
3200 V (NC + 1) = SQRT(-F)
3210 V (NC) = -V (NC + 1)
3220 GO TO 76
3230 7 5 IF (PP) 81,80,81
3240 80 U (NC + 1 ) = -SQRT (F)
3250 GO TO 82
3260 
F ) ) 
327 0

81 U (NC + 1 ) = -(PP / ABS(PP)

82 CONTINUE
.*28 0 V (NC + 1) = 0.
3290 U (NC) = QP / U (NC+1)
3300 V (NC) = 0.
3 310 76 DO 77 1 = 1 ,  NC
3 320 77 H (I) = B (1 + 2)
3 3 3 0 GO TO 4
3340 100 RETURN
3 350 END

+ S Q R T (



APPENDIX E

PLL MODEL PARAMETER DEFINITIONS

Symbol Def inition Units

K di Gain of phase detector number 1. . -1 cycles

K d2 Gain of phase detector number 2, cycles

K , _ 0-3
Gain of phase detector number 3.

_1cycles

Mf Clock frequency of programmable Hz
counters.

Mf J  K 1 Gain of programmable divide-by-K 
counter, '

cycles

Mf /K 2 Gain of programmable divide-by-K^ 
counter. 2

cycles

1/N Gain of divide-by-N counter. cycles/cycle

1/L Gain of divide-by-L counter. cycles/cycle
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