Work Papers of the Summer Institute of Linguistics, University of North Dakota Session

Hebrew 'Be Blessed' versus 'Bless Themselves'

Francis I. Andersen

SIL-UND

Follow this and additional works at: https:// commons.und.edu/sil-work-papers

Recommended Citation

Andersen, Francis I. (1971) "Hebrew 'Be Blessed' versus 'Bless Themselves'," Work Papers of the Summer Institute of Linguistics, University of North Dakota Session: Vol. 15 , Article 3.
DOI: 10.31356/silwp.vol15.03
Available at: https://commons.und.edu/sil-work-papers/vol15/iss1/3

Francis I. Andersen

Francis I. Andersen

1. The set of Hb words here called verbs (V) can be classified in various ways. Any $\varepsilon \mathrm{V}$ may be described as a stem ($\boldsymbol{E S}$ t) with or without affixes of various kinds. Subsets of V may be distinguished by constrastive-distinctive patterns of affixation. The most important kind of affixation is the affixation of pronouns.
2. The patterns of Pr affixation distinguish three major categories of V.
I. An infinitive absolute (IA) is a word which obligatorily has no affixation of any kind, Example: māsol, 'rule'.
II. Verbal nouns consist of an obligetory predicator realized by a stem with one optional pronoun suffixs, $\operatorname{PrSf} 5$. The set of PrSf 's is the same as the PrSf's used with nouns and prepositions.

There are three kinds of verbal noun. The infinitive construct (IC) has one optional PrSf which can manifest S or 0 of the VSt. IC are the least noun-like of verbal nouns. IC may be m_{0} or f. , that is, IC have obligatory gender; but they have no number, nor are they modified by the article or by attributive adjectives in apposition. Example: gezorr, '[to] cut'. gozro, 'his killing' or 'to kill him'.

The participles (Pt) have all the grammatical properties of regular nouns, or, rather, adjectives, since they have St-level obligatory Sf's of gender and number and receive optional modification by means of the article, etc. Example: mōšē, 'ruling' i.e. ruler, mošəə̄̄, 'female ruler'.

A residuel class of verbal noun (VN) resembles IC but may, in äddition receive optional modification by means of A. Example: memselet, 'to rule' which may heve a direct object like a verb. IC and Pt have direct paradigmatic connections with other V's, and so are easily described as part of the verb system from the morphological point of view. By contrast, VN's do not have direct morphological connections with the V system, and their V functions are of ten disclosed only in deep structure. For these reasons they will not be included in the following discussion.
III. Finite verbs $=4 \mathrm{P}: \mathrm{VSt}_{1}, 2,3+\mathrm{S}: \operatorname{PrSf}_{1,2,3} \pm 0: \operatorname{PrSf}$ consist of an obligatory predicator realized by a member of three sets of verb stems, plas an obligatory subject, reialized by a member of triee corresponding sets of pronoun affixes, plus an optional object, realized by a distinctive set of pronoun suffixes. The word, "corresponding" refers to the fact that each set of St's has as its obligatory S only one set of PrSf's, and vice versa. In other words, only three sets of V with $S: P r S f$ are involved. The word "affix" is used because one of these sets consists of discontinuous amphifixes.

In short, there are three sets of finite verbs.
Suffixed verbs (VS) $=+P:$ VStI $+S: \operatorname{PrSf}$ (the so-called "Perfect[-ive]") Example: ma̋šal~tī, 'I ruled ${ }^{1}$

Imperative verbs (VI) $n+\mathrm{P}_{\mathrm{BSS}}^{2},{ }_{2}+\mathrm{S}: \mathrm{PrSf}_{2}$
Example: moślū, ?rule! [m.plo]
 Example: timšō-nā, tyou/they will rule [f.pl.]. Strictly speaking, each affix in PrSf_{3} consists of both prefix and suffix, i.e., discontiruous amphifix. MA 4

Two additional categories of finite verb need to be distinguished. Their distinctiveness is often eviciont oniy on the level of syntax, of cil structure.

Consecutive suffixed verb (WS) has the same form as VS (same St, same Sf), but differs in as many as three features: (i) there is a contrast in stress pattern, at least far some members of the respective paradigms; (ii) WS has an obligatory conjunction wə- ~ 'and' and is always Cl initial, whereas VS can come anywhere in the Cl and the Cj is optional; (iii) VS refers to a past activity, WS future. Example: wogazárti, 'and I cut'; wogazartí, 'and I shall cut'.

Consecutive prefixed verbs (WP) have the same gencral shape as VP (same Sf, but not nocessarily same St); but they differ in as many as three features: (i) there is contrast in stress pattern, at least for some corresponding pairs of the respective paradigms; (ii) WP has an obligatory conjunction way- ~ 'and' always bound immediately to the verb (hence the symbol WP), and is always Cl initial, whereas VP can come anywhere in the Cl and the Cj is optional; (iii) VP refers to future activity, whereas WP refers to past. Example: yigzor, 'he will cut'; wayyigzorr, 'and he cut'.

The fact that VS and WP both refer to past, while VP and WS both refer to future, calls for a more detailed examination of the relationship between tense and aspect in classical Hb than we have room for here. The contrasts in stress patterns in these related forms do not work the same way for VS and VP. In WS stress moves, where possible, to the end of the word, and there are no changes in St vowels; in WP stress moves, where possible, nearer to the beginning of the word, and may be accompanied by changes in the phonetic shape of the St. For example: yaqum, 'he will stand up'; wayatqom, 'and he stood up'.

In examples like the last one the contrast between the two tonses is at its greatest. The distinctive-contrastive form of Cjused with WP always places the catcgory beyond doubt, and is sometimes the only signal of the difference between VP and WP; example: wo?egzor, 'and I shall cut'; we? egzor, 'and I cut'. However, the forms of Cj used with VS and WS do not contrast, so members of these sets are often homophonous; example: wəgäzar can mean eithèr 'and he cut' or 'and he will cut'. It is hard to draw the line between morphology and syntex in the Hb verb system. VP also occurs in a long (VC) and a short (VJ) form.

To sum up. The repertoire of Hb verbs may be represented by the matrix

$$
V=\{I \Lambda, I C, I t, V S, V I, V P, V C, V J, W S, W P\}
$$

V is thus a set of sets of grammatical words, including a pronoun subject suffix only when this is obligatory. All except IA realize Cl syntagmemes or Cl-level tagmemes (IC and Pt optionally) on word level.
3. These ten subsets of V are distinguished, not only by the distribution of their stems with respect to the five sets of distinctive pronoun affixes, and by further contrastive variations within the stems themselves, but also in some cases by contrastive distribution with respect to clause type and discourse function. The stems of Hb verbs are not morphemes. Analysis by the usual methods leads to the recognition of three different kinds of constituent morpheme manifesting stem-level tagmemes. Indeed, it is best to recognize three levels of structure between Wd and M.
3.1 A root (εR) is an element in a set R of morphemes.

$$
R=\left\{r_{1}, r_{2}, r_{3}, r_{4}, r_{5}, \ldots r_{n}\right\}
$$

All Hb roots consist of consonants only, roots or their allomorphs being 1, 2, 3, or at the most 4 consonants. When there is more than one C in the root allomorph, it is often discontinuous, for
example b...', 'come', g... Z...r, 'cut', the latter having allnmorphs gz...r and goozr. Every ε R has at least one allomorph with at least two consonants. We shall make no attempt here to classify roots along these lines. The following remarks apply to the set R as a whole. $n R$ is very large, but not infinite. Apart from limitations of size (roots with four consonants are very rare), certain combinations of consonants are never found. For example, there are no roots in which the first and second consonant are the same. There is no recursion, that is, no compound stems containing a combination of two or more roots. Each $\varepsilon V S t$ has one and only one ε.
3.2 Any ε R may be modified by a member of a set of root-extenders (E). These are consonantal morphemes, or at least are most characteristically realized by consonantal allomorphs. If the unmarked form of the εR is considered to be modified by a zero $\& E$, the set E is represented by the matrix

$$
E=\{\varnothing, D, \underline{h}-\}
$$

M-3
The combination of roots with extenders gives rise to a set of consonantal lattices (I). There are lattice syntagmemes on the level next above that of morpheme. Viewed as the multiplication of M-2 and M-3, this operation gives rise to a matrix of lattices (M-4), that is, the set I is a two-dimensional array.

$$
\begin{aligned}
I= & +r_{1}+\emptyset,+r_{1}+D,+r_{1}+\underline{h-} \\
& +r_{2}+\emptyset,+r_{2}+D,+r_{2}+\underline{h-} \\
& +r_{3}+\emptyset,+r_{3}+D,+r_{3}+\underline{h-} \\
& \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
& +r_{n}+\emptyset,+r_{n}+D,+r_{n}+h-
\end{aligned}
$$

The first column constitutes the subset of unmodified roots, conveniently called ground-forms or G. D symbolizes the doubling of some feature of the root, and this subset can be referred to as D. The doubling of the middle consonant of a root X...Y... Z gives rise to the lattice X...YY... Z. Other kinds of roots are doubled in other ways; for example, biconsonantal X...Y + D \rightarrow X...Y....Y or X...YX....Y. Since some Hb consonants do not double, an εR containing one of them in mid position may have the G lattice and the D lattice indistinguishable in form -- still distinguished, however, in distribution. The D operation characteristically transitivizes or intensifies the meaning of the corresponding εR; for example, g...d...l, 'to be big', g...dd....l, 'to make big'. The right-hand column of M-4 is a subset of lattices made by extending R by means of the prefix h-, h...XY... Z. Verbs with such lattices may be called H forms. The h - operation also typically transitivizes a root, frequently in the causative sense. An intransitive εR becomes transitive; for example, b...', 'come', h...b...', 'bring'. A transitive ε R becomes a doubly transitive εI; for example, la......s, 'put on [clothes]', h...lb...s, 'make [someone] put on [clothes]'. But some H verbs are used intransitively (absolutely), in which case they often have an elative meaning -an action is performed to its fullest extent or a state is attained to its highest degree. In general G, D and H verbs do not have
such a simple pattern of grammatical functions or lexical meanings, uniform for the entire language. The meanings of many individual lattices conform to no pattern; their quite arbitrary meanings simply heve to be learnt. Nor is every known root attested in all three forms. The occurrence L-matrix has many vacant cells. M-L may be represented briefly

$$
L=\{G, D, H\} \quad M-5
$$

3.3 Thòre is another kind of consonantal root-extender which operates in a different semantic dimension from E. The modifiers n- (prefix) and -t(infix) secure a middlc or reflexive meaning/function for the root. The lattices in which they appear constitutc the subsets Gn (or \mathbb{N}), Dt, Ht.
3.4 Any onc of these six kinds of lattice sorves as a discontinuous consonantal framework for the verb stem (St). And St is formed by the interdigitation of vowcls with these consonants. Such a putative discontinuous vowel morpheme may be called a stem-former (F)

$$
S t=L \times F
$$

M-6
Example: $\varepsilon L=$ h..b...?

$$
\varepsilon F=\frac{\square \tilde{C} \ldots \bar{I}}{\square}
$$

$$
\varepsilon S t=\text { hebi? }
$$

$n \mathrm{~F}$ is small. Any $\varepsilon \mathrm{F}$ sccures more than the mere physical formation of a continuous stem; it sicnals also distinctions of moaning and function, and for this reason is recognized as morphemic in status. But this doos not moan that any εF is simply a stom-level morphome.

Members of the set (F) of contrastive (morphemic) stem-formers sccure distinctions in four indeponcent structural dimensions.
3.4.1 The form of εF changes for each of the six kinds of lnttice noted above, and so is part of the signal that places any given verb in one or other of these six subsete. For example, the vowels ..a...a... are found in many G stems (VS); the vowis ...in.e... in many D stems ($\overline{\mathrm{VS}})$, and so on. Sometimes the contrast in the stem vowels is the sole signal of the catcgory of otherwise similar verbs: for cxample, yābō?, 'he will come' (G[VP]), yābī?, 'he will bring' ($\mathrm{H}[\mathrm{VP}]$).
3.4.2 Within the set of verbs with a common εL, variations in the concomitant εF yicld stems with contrasting meanings and difforing grammatical functions which may be subsumed under the catcgory of voice. The H lattice of the root b...?, 'come', is h...b..?, 'bring'. It combines with ε F ... $\bar{c} .$. I.. to yield the stem and verb hēbi??' 'he brought', used in clauses in which the grammatical subject performs the action described by.the verb stem. Such a clause (and such a verb) may be called "active" (Act). When the same lattice combines with εF ...ü..ā..., it yields the stem and verb hübā?, 'he was brought', used in clauses in which the grammatical subject receives the action described by the verb stemSuch a clause (and such a vorb) may be callcd "passive" (Pas)n

Similar voice contrasts that correlnte with contrasts in the stom-forming vowels arc mot in verbs with G, D, and H lattices, but not in thosc with N, $D t$ and $H t$ lattices, since the latter constitute a third voice catcgory -- middlereflcxive (Mid).

Here we confront a remarkable typological fcature of the Hobrew verb systom -- nonisomorphism betwoen the phonetic shape and the grammetical function of the verb stems. The three voice categorics constitutc a matrix

$$
\text { Voice }=\{\text { Act, Pas, Mid }\} \quad M-7
$$

The formal realization of the elcmunts of this matrix in surfacc structure takes plece on different hierarchical levils of phonemic structurc, out of kecping with tinc gencral pattorns of scmitic, in which consonants nol vowels constitute virtucills two autonomous systems. The contrast between Act and Pes is roelized enti:cly by the contrast between $F_{A_{c t}}$ and $F_{\text {Pas }}$, which are vowels combining with the same lattice; But mide'lc forms have their own distinctive lattice, charactorized by n - or -t- (on tho same formal levcl as E), combined with $\mathrm{F}_{\mathrm{Mid}}$. This is why we did not include the voice affixes (n - and -t-) in the same matrix ($\mathrm{M}-3$) as the transitivizing affixes D and h-.

Historically, of course, and even descriptively in somc Scmitic languages, thase affixes may have hed to do with grades of transitivity, or with aspect. But the emergence of the passive voice has reorgnized the system.

Multiplication of $M-5$ and $M-7$ yiclds a matrix of stcms:

GAct	DAct	HAct	M-8
GPas	DPas	HPas	
GMid	DMid	HMid	

Since only one ε F combines with any εL which is $\varepsilon \mathbb{N}$ to produce ε St which is ε GMid, the symbol $N \mathrm{c}$? n be usuc to r fer to either the lntticc or the stom without ambiguity. But G, D, end H propurly refer to latticos; and the catogory of the corresponding stems ncuds to be estrablished by the further specification of the stom-former as cither Act or Pas or Mid.

M-8 is schametic of a synchronic systom thnt was nevor stabilized in the leafuefe as it devcloped historically. It contrins certnin unresolved tensions botween form and function thet contributed to the dynamics of furthor historical chnege. Tracitional grammer rccosnized only seven binyảnīm or "divisions", for HMid was never more then ? fossil in the classical poriod, roprescnted by only onc varb of nny frequency -- histahǎwà, 'he bowed himsclf down', which uses -sas an allomorph of $h-$, the crusetive root-extender -- ne the very existunce of GPes was entircly forgotten by the time the medieeval grammrinns did their work. The inturnll passives were an innovntion in West-Semitic (Ugnritic, Hebrow, Arabic), but Aremaic doveloped the originel midrle-rcflexives into passives. This happened in part in $H_{C} b r \mathrm{cw}$ also, where the original N (which could cvon bcome active and tronsitive with some roots) usurped the rolc of GPas, climinnting the letter as a livine form, nd losing its own midrlc function in the process. Hence not many N forms in classic?l Hebrew fit into M-8. This dcvelopm.nt was doubtless fostered by soic parallel phonological cievclopmonts. Originally GPas guzora was distinct from DPas guzzara. But the devclopment of sccondery doubling in the former, in conformity with rogular petterns of syllebilificntion and stross, produced homophony. Both became guzzar. Strugr ling with such ambizuity, GPas could not preserve its icentity. Forms which survived were iecntificd as DPas, and N (GMid) took the place of GPas as the passive of GAct.
[id. 8

3．4．3 Any nne of the nine cells in hi－8 represents a stell type or set of stems whnse members include all the paradigmatic varietiesrepresented by $\mathbb{M}-1$ ．Multiplicatinn $n f$ M－l and in－8 yields M－9，a three－dimensinnal matrix of ninety verb types classified by lattice（transitivity），stem－fnrmer（voice）and paradicm（tense， aspect，mood）．Every nne of the ninety cells in M－9 has its own distinctive 6 F．Typical fnrms are shown in the follnwing chart．

	GAct	GPas	N
IA	qät̄1	qutọol	hiqqātōl，niqț̄1
IC	qəṭべ	－．	hiqqātēl
Pt	qñtēl	qāțūl，quṭ［t．］ảl	niqtai
VS	qātolal	quṭtal	niqṫal
VI	qəセ七へ1	－	hiqquàtel
VP	yiqṭ̂	yuqtal（？）	yiqqātēl
VC	niqṭəla	回．	niqqätola
VJ	yiqtol－	－－	yiqqāṭel
Wis	wəqàtal	wəquttal	woniqṫal
WP	wayyiqtol	wayyuqtal	wayyiqqāṭ̂el
	DAct	DPas	DMid
IA	qattō1	qutō̊	hitqattel
IC	qattell		hitqattel
Pt	məqattel	məquttoal	mitqattel
VS	qittei	quttol	hitqattel
VI	qatotel		hitqattel
VP	yoqattel	yəquttol	yitqattel
VC	nəqattola	－－	nitqattolā
VJ	yoqattel－	－－	yitqattel－
WS	wəqaṭtel	wəquttal	wəhitqattel
WP	wayoqåttel	wayaquttol	wayyitqattel
	HAct	HPas	HMid
IA	haqtel	hoqtel	＊${ }^{--}$
IC	haqtil	－－	＊hištaqțēl
Pt	maqtil	moqtolal	＊mištaqtel
VS	hiqtil	hnqṭal	＊hištagtel
VI	haqtēl	－	＊hištaqțel
VP	yagtil	ynqtal	＊yistaqtel
VC	naqtīla	－－	＊ništaqtola
VJ	yaqṫē	h	＊yistagtel－
WS	wohiqtil	wəhoqtal	＊Wohistaqtel
WP	wayyaqtēl	wayynqtol	＊wayyistaqṭel

Notes：（i）Participles are cited in unsuffixed sg．m．forms．
（ii）Infinitive cnnstructs are cited in unsuffixed forms．
（iii）Finite verbs（except VC）are cited in 3rd sg．m．forms．
（iv）Cnhortative verbs are cited in lst pl．fnrms．
（v）Fillers for some of the cells in M－9 are not attested， and may never have existed．Nntably absent are passives in the precative mnods．
（vi）D and H participles are characterized by the combination of the noun prefnrmative m－with distinctive stem－forming vowels．This prefix m－could have been analysed as annther rnot－extender，fnrming snme of the participle lattices，and sn included in $M-3$ ．But it dnes nnt in－ vnlve the same semantic dimensinn as $\mathbb{M}-3$ ；rather，as a participle－fnrmer it partakes $\cap f$ the paradigmatic distinctinns of $M-1$ ．Furthermnre，m－functinns as a viA 9
nominalizer apart from the verb system. and is best recngnized as a general noun-forming derivatinnal inorpheme.
3.4.4 Each of the cells in M-9 represents a set of verbs class-
ified by lattice type, vnice, and paradigm. Empirically each cell includes all the attested verbs, of whatever ront, with that coabinatinn. Fnr any given rnot, the cell includes all the suffixed forms, and these vary from paradigm to paradigm. IA, being unsuffixed, is the nnly word in its cell for any nene root. There are four participles (fnr gender and number) and any of these may be further suffixed by pnssessive pronouns. The finite verbs have obligatnry pronoun subjects with categnries of person, number and gender. $n n l y$ ne representative of any such paraaigm is shown in the chart.

But all of the stems in each cell dn not necessarily have the phonetic fnrm shown. In the first place, the vowel stemformers vary with the shape of the ront: qätal, 'he killed', bānā, 'he built", qām, 'he arnse' are all GÅctVS. The several stem-formers are in cniplementary distributinn, cnnditinned by the kind of ront, and sn do nnt secure any morphemic contrast. we shall not attempt to give here a full statement of the numerous alloforms that might be involved in some instances.

In the secnnd place, each paradigm has its own pattern of affixatinn (i) in the fnrm of the affixes, (ii) in phnnetic changes in the stem (stwess pnsitinn and vowel length), sn that the form of the stem fnrmer varies down the paradigm. Thus gātal, 'he killed", but qātəlā, 'she killed'. Thus there may be several allnstems, differing nnly (or mainly) in the vowels; but these variatinns are nnt mnrphemic either. Hence M-9 indicates that the verb system involves no more than ninety distinctive stem-f \cap rmers, even thnugh many of these may have several allofnrms.
3.4.5 There is one area in M-9 (GAct verbs) whose stems manifest variatinns which are nnt phonologically conditinned, but which are said to secure real semantic and grammatical contrasts. A classificatinn of verbs with respect to grade of transitivity winld cut across M-8. Any of the three active sets ("tAct, DAct, HAct) includes individual verbs with zero, ne, or two degrees of transitivity. These distincti~ns are not secured in any way in the morpholngy of the verb; that is, there are no distinctive stem-formers that signal the contrasts in grade of transitivity. In GAct verbs, however, there is a distinctinn between active (Tro or Trl, rarely Tre) and stative or qualititive (always Tro). This distinctinn is signalled by the stem-iorming vowels. Some examples will illustrate the point.

GActVS
transitive qätol, 'he killed' stative kābēd, 'he is heavy'
qualitative qāț̄̄n, 'he is amall:

GActVI
qəț゙̄コ
kəbad
qəṭan

GActVP
yiqtol
yikbad
yiqtan

Traditinnal graminar makes a great deal of these distinctinns. But there is no reasnn to regard them as morphemic. The three kinds of F in GActVS (twn in GActVI and GActVP) never realize a minimal pair with the same ront; that is, their distribution is morphemically cnnditinned, and the differences in meaning assnciated with the vovels could more appropriately be assigned to the roots. This is a matter for lexicnn, nnt graminar.
3.4.6 We dn nnt need to discuss here other variatinns in stem forms which are phnnolngically conditinned (for example, yišlah, 'he will send' resembles GStaVP by assimilatinn of the thematic vowel to the laryngeal), nor alternate forms which occur in free fluctuatinn, or which may represent gengraphical nr historical dialectal variants. These are not relevant to the main point of this paper, which is the morphemic status of the constituents of the verb stems.
4. Tn sum up. Each verb stem is a constructinn nf nbligatnry cnnstituents which realize fnur distinct semantic dimensinns.
4.1 The classical methnds of structural linguistics establish the morphemic status of ronts without equivocaticn.
4.2 M-9 represents a three-dimensinnal semantic-grammatical grid imposed upon the total field of meaning of any given ront. Its three dimensinns, represented by $\mathbb{M}-1, \mathbb{M}-5$ and $\mathbb{M}-7$ depend in part for the specific distinctirns they make on the specific meaning of any given ront. Snme cells in M-9 are never filled for any ront. Snme are filled for one ront, but not for another. And verbs assigned to any one cell in M-9 on formal grounds do not necessarily differ only in the meaning of the root. In this respect the arbitrariness of the language system involves many different intercnnnectinns between semantic structure and formal structure. At this pnint we are nnt cnncerned with this problem, but begin by assuming that each cell in $M-9$ represents a unique point of intersectinn of the matrices $M-1, M-5$ and $M-7$, that is, a unique combinatinh of one of the categories of voice (M-7), transitivity ($M-5$) and tense-aspect-mood (M-1). [We do not endeavnur to distinguish tense, aspect and mond as three distinct dimensions, although this could profitably be done.]
4.3 If all the distinctinns required by M-l (ten distinctions of tense-aspect-mond), $M-7$ (three distinctirns of voice), and
M-5 (three grades of transitivity) were secured by unique contrastive-distinctive segmental mnrphemes, only sixteen wnuld be needed. They would nccur nbligatnrily in sets of three in each stem, ninety combinatinns in all (thenretically). But the nonront parts of the stems dn not admit of analysis segmentally in this simple way. Nor, on the other hand, can these non-root portinns of the stems be called pnrtmanteaux in which three putative merphemes are unanalysably fused. In sone parts of the system we can analyse three distinct morphemes as recurring partials, and in other parts of the system we have complete fusion. In between these extremes we have all pnssible gradatinns. We can identify h - as the 'causative' mnrpheme in the H subsystem; but it is not present in all members $n f$ that system. Similarly, there is $n n$ 'passive' mnrpheme identifyable as a recurrent partial feature of all stems with passive meaning, except in the very general sense that all passive verbs contain at least ne back voviel ($\underline{n}, \underline{\bar{O}}, \underline{u}, \underline{\bar{u}}$), while nn active verb comtains \underline{u} or $\underline{\underline{u}}$ and no passive verb contains ín í.
4.4 M-9 includes a plane of thirty cells for stems of active verbs. Since we have associated vnice with F "morphemes" the thirty stem formers in these cells (sone of which themselves have several allnmorphs) cnuld be described as allnmorphs of the "active" stemforming morpheme. But three of them alsn lie in a plane of nine IiA 11
cells containing all the VS stems (or any other element in $\mathbb{M}-1$). By the same reasnning, in sn far as tense-aspect-mond also is simnalled by the stem-fnrming vovels, these cnild be described as allnmorphs of the "past-tense" morpheme. But again, ten of these thirty "active" cells lie alsn in a different plane of thirty "factative" [D] verbs, and so cnuld be described as so e of the allomorphs of the factative stem-forming morpheme. This feature of the system has to be kept in mind, in order to be able to describe verbs whnse D classificatinn is shown, not by any doubling of cnnsnnants, but snlely by the stem-forming vowels, or verbs whose H classificatinn is shown, not by the morpheme h-, which is nnt present at all, but solely by the stem-forming vowels.

Tn sum up. The mncphemic status of the stem-forming vovels is different in different parts of the system. In snme reginns the consrnantal patterns realize distinctinns in the transitivity dimensinn, while the stem-fnrming vowels are a prrtmanteau of vnice and tense-aspect-mnod. In other parts of the system, or for some kinds of ront, the stem-forming vowels are pnrtmantequx of transitivity, vnice and tense-aspect-mnnd.

Annther way of putting it is to say that the total pattern of any verb signals what it is, not so much by what that pattern is as by what it is nnt. Just as a phnneme is nnt sn much a discrete entity as a point of cnitrast in a tntal and systematic network of contrasts, sn anv given verb is nnt so much a bundie of mnrphemes as a point $n f$ formal contrast in a tntal and systematic network of contrasts. It wnuld seem that the best way to describe the system is tn exhibit all these cnitrasts fully in a matrix, and to review them in detail in all the dimensions involved. Analysis into discrete segmental morphemes is not possible withnut the intolerable complexity and artificiality of numerous zeros, arbitrary decisinns abrut morpheme bnundaries, and almost as many allnmnrphs as there are forms. Descriptinn in terms of tntal fusinn into portmanteaux dnes nnt dn justice to the data either, because it dnes nnt r cognize the fact that snme measure of descriptinn incterms of segmental mnrphemes is pnssible.

