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Abstract 

Purpose/Hypothesis: Exercise has been widely accepted for its key role in disease prevention 

and promotion of healthy lifestyle. Due to its relative ease and low cost, running continues to be 

one of the most popular forms of exercise today. Although running can have a significant impact 

on disease prevention, injury prevalence in running is high. Barefoot running is a relatively new 

form of exercise that has gained popularity amongst the running community. However, enhancing 

muscular activity at the hip is a rehabilitation strategy, which may reduce lower extremity injury.  

Research investigating the hip muscle activity and movement with barefoot running is lacking in 

literature; thus, giving rise to the purpose of this study. This multifactorial study was performed to 

explore the effect of barefoot training on the muscular activity of the gluteus medius (GM) and 

tensor fascia latae (TFL) in addition to the degree of lateral pelvic drop. Three hypotheses are 

being investigated: (1) Does running barefoot increase the activity of the GM, (2) decrease the 

activity of the TFL (3) decrease the amount of lateral pelvic drop. These hypotheses are being 

examined by comparing the EMG intensity during running trials both barefoot and shod, in 

addition to using the VICON, a three-dimensional motion analysis system, to assess lateral pelvic 

tilt. 

Materials/Methods: Fourteen subjects, 8 females and 6 males, with a mean age of 23.2 (1.41) 

completed the pre-testing electromyography (EMG) and VICON motion analyses. EMG muscle 

activity was recorded during a maximal isometric contraction, barefoot running and walking trial 

and shod running and walking trial. Lateral pelvic drop was analyzed during pre-testing with the 
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VICON system. Subjects were randomly assigned to a barefoot running group (N=7) and shod 

running group (N=7). Participants completed a 6-week training program consisting of running 

twice a week.  The first week of training will include 10 minutes of running followed by a 2-

minute increase each week totaling 18 minutes of running during the final week. Following the 

training program, post-test EMG and VICON was performed and analyzed.  

Results: No significant change in EMG activity of the GM and TFL was found between running 

barefoot and running shod during pre-testing and post-testing data collection. No significant 

training effect was found with the amount of lateral pelvic drop comparing pre- and post-testing 

VICON analyses.  

Conclusions: Due to no statistically significant change in EMG activity of the GM and TFL 

during pre- and post-test trials, further research is recommended to explore the impact of a 

training protocol on GM and TFL muscle activity and lateral pelvic drop.  

Clinical Relevance: This study provides insight to the muscle activity occurring at the hip when 

foot attire is altered during initial running trials. No statistically significant change was found 

between barefoot or shod walking and running which may indicate six weeks of training twice a 

week may not provide a great enough stimulus to impart significant change in muscle strength 

and activity. In addition, foot attire may not be a significant factor for altering the muscle activity 

patterns at the hip. Therefore, a greater impact may be found elsewhere, such as strike pattern 

rather than foot attire. Furtheresearch is recommended to study the impact of strike pattern on 

activity of the GM and TFL.
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Chapter I 

INTRODUCTION 

The movement pattern termed “running” has been present from the beginning of human 

creation. From hunting and gathering, to the first foot race in the ancient Olympic games in 776 

B.C. signifying the evolution of competitive sport, running has been considered a high value to 

the species.1 Currently, running has transformed into a primary method for achieving fitness and 

long-term exercise habits. Per the National Sporting Goods Association, 35.5 million Americans 

participated in running or jogging in 2010.1 The desire for health and wellness is on the verge of 

explosion as prevention becomes a rising revolution.2 The American Center for Sports Medicine 

recommends healthy adults ages 18 to 65 to partake in moderate physical activity for at least 30 

minutes, five days per week, or high intensity physical activity for at least 20 minutes, three days 

per week. For adults over the age of 65, intensity is modified per individual health status and a 

greater emphasis is placed on balance and flexibility.3 Exercise has been proven to have a 

positive impact on one’s fitness and reduce the incidence of cardiovascular disease, obesity, 

hypertension and many other chronic health problems.4,5 Running has become an exercise 

favorite due to its relative ease in performance and accessibility. Barefoot running has recently 

increased in popularity; therefore, our purpose of this study is to explore the effects of barefoot 

training on proximal hip musculature and biomechanics.  

 Although running can have a significant impact on disease prevention, it comes at a price. 

Rates may vary across studies; however, all yield uncomfortably high results. The low back, hip, 

knee and ankle all become sources of abnormal stress when non-optimal biomechanical patterns 
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are utilized.5,6 A systematic review published in the British Medical Journal analyzed 17 studies 

and found the overall incidence of reported lower extremity injuries was as high as 79%.5 The 

knee which is intended to be a relatively stable joint, takes the brunt of the force with an injury 

rate of 7.2-50%.5 Common injuries of the knee include patellofemoral pain syndrome, patellar 

tendonitis and meniscal injuries.7 A study performed by Cheng & Davis8 found, an alteration of 

foot strike pattern from rearfoot to forefoot, reduced symptoms and functional limitations related 

to patellofemoral pain. Moving distally, the injury rate to the lower leg (Achilles tendon, calf, 

and heel) was found to be 9.0-32%.5 In a study9 analyzing more than 2000 running injuries, the 

most common injuries to the lower leg included tibial stress fracture, medial tibial stress 

syndrome, Achilles tendinopathy and medial tibial stress syndrome. Injuries to the foot (also 

toes) were found to be 5.7%-39.3%, with metatarsal fractures and plantar fasciitis being the most 

prevalent.5,6 As for the proximal lower extremity (hamstring, thigh, and quadriceps) the injury 

rate was 3.4%-38.1%.5 IT band syndrome and hamstring strains are commonly reported findings 

proximally.6  

 The injury rate tied to running is uncomfortably high and in need of a solution. Recent 

studies indicate an omnipotent association of hip flexor and abduction weakness with lower 

extremity running injuries.7 In one study10 analyzing thirty injured runners with overuse injuries 

to thirty non-injured runners, muscle testing of all six hip muscle groups revealed that hip 

abductors and hip flexors were significantly weaker in the injured group in comparison to the 

non-injured control. The gluteus medius acts as stabilizer at foot strike, preventing the knee from 

moving into genu valgum.7 Proximally, the hip rotators also have been found to uphold greater 

stress and discomfort when gluteus medius weakness is present.7 During single leg stance, the 

force of gravity pulls the pelvis into relative adduction. The ipsilateral hip abductors provide a 
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counterforce to stabilize the pelvis and control the magnitude of pelvic drop.11 Eccentric strength 

has been emphasized as a successful treatment method to restore ideal biomechanics of gait.7 By 

strengthening the gluteus medius, one of the primary hip abductors, the amount of pelvic drop 

will be reduced, ultimately encouraging ideal mechanics of gait and reducing abnormal repetitive 

stress due to excessive motion of the pelvis.   

 The mission to reduce the injury rate of runners has led to the recent trends and 

exploration of minimalist running instead of the typical conventional shoe style. Forty-two 

experts from eleven countries, primarily consisting of researchers and health care practitioners, 

came to a consensus on a definition for minimalist shoes to clarify this term.12 Minimalist 

footwear was defined as “Footwear providing minimal interference with the natural movement of 

the foot due to its high flexibility, low heel to toe drop, weight and stack height, and absence of 

motion control and stability devices.”12 In shod (wearing shoes) running conditions, it is common 

to perform a rearfoot strike pattern where the heal contacts prior to the forefoot.13 To clarify, 

when discussing the foot complex the areas of the foot are commonly divided into three 

categories, the hindfoot or rearfoot (talus and calcaneus), midfoot (navicular, cuboid and 

cuneiforms) and forefoot (metatarsals and phalanges).11 Several studies 14,15,16,17 have found the 

foot strike position at initial contact to be the greatest difference between barefoot and shod 

runners. During this initial phase, barefoot runners strike the ground with a forefoot or midfoot 

strike and shod runners perform a rearfoot strike.18  Current literature has found that those who 

perform barefoot running, commonly adopt a forefoot strike pattern.19 With a forefoot strike 

pattern, the body absorbs the ground reaction forces with eccentric control as the ball of the foot 

strikes before the heel.20 Due to a smaller base of support, greater kinematic changes must be 

made proximally up the chain to stabilize the body against gravity when the foot strikes the 
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ground with the forefoot rather than rearfoot. This creates the potential for greater stabilization 

and activation of the hip musculature following a forefoot strike. This alteration would lead to an 

ideal adaptation that may enhance the bodies biomechanics with every step.  

When it comes to the rehabilitation of an injury, no runner wants to be told to stop 

training. In all reality, many will completely disregard this recommendation. What if changing 

the pattern of running could alter the pain and activation of muscles proximally and be used as a 

source of rehabilitation and prevention? A profound theory that would add, not take away. The 

purpose of the study is to explore the effects of a barefoot training protocol on the EMG activity 

of the gluteus medius and TFL in conjunction with a biomechanical assessment of lateral pelvic 

drop. 
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Chapter II 

LITERATURE REVIEW 

Kinematics 

Throughout the literature different strike patterns are discussed. The two most common 

strike patterns researched are forefoot strike pattern (FFS) and rearfoot strike pattern (RFS). 

Some literature also discusses a midfoot strike to describe a contact not clearly defined as 

forefoot or rearfoot. In shod distance running, approximately 75% of runners show a RFS, 20% a 

MFS and 5% a FFS.13 Forefoot strike and rearfoot strike have been found to engage different 

kinematic adaptions as methods to reduce impact.13 FFS adopts a plantar flexion strategy to 

absorb vertical ground reaction forces with eccentric contraction gastrocnemius and soleus.19 

RFS has been shown to fire the biceps femoris prior to the tibialis anterior to stabilize the body at 

contact.8 

Angular Displacement of Joints  

A study21 published in the Journal of Sports Medicine analyzed the immediate kinematic 

adaptations throughout a 30-minute barefoot training period broken down into three 10-minute 

intervals. They found anterior pelvic tilt and hip flexion significantly decreased by 3° and 4°, 

respectively. This change initiated at contact, continued through the barefoot training intervals 

and was retained during post-testing shod trials. Maintenance of change in degree of pelvic tilt 

indicate carryover of learning. This study provides insight to acute adaptations, however the 
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carryover of learning over a period of time is lacking. Thus, supporting the need for analyzing 

the impact of a training period of sufficient duration to impart lasting change. 

Kinetics 

Ground Reaction Forces (GRF) & Joint Forces 

Studies 8,17,19 have found there to be a reduced peak vertical impact ground reaction force 

and knee extension moment when running barefoot in comparison to running shod. In addition, 

average vertical loading rate (AVLR), and instantaneous vertical loading rate (IVLR) have also 

been found to be lower in runners with midfoot and forefoot strike patterns than those with a 

rearfoot strike pattern.8 As ground reaction forces react up the chain, the force transferred 

through knee has also been studied. An article18 comparing minimalist and maximalist shoe attire 

found the peak patellofemoral force to be significantly larger in maximalist shoes (4.74 ± 0.88 

BW, 13.59 ± 2.63 MPa), in comparison to minimalist attire (3.87 ± 1.00 BW, 11.59 ± 2.63 MPa). 

Patellofemoral force per mile was also found to be significantly larger in maximalist (251.94 ± 

59.17 BW) in relation to minimalist (227.77 ± 58.60 BW) shoe attire.18 Thus, clarifying that even 

though more steps may be taken when shifting to a forefoot strike utilized in minimalist running, 

the summation of force at the patellofemoral joint remained lower than the rearfoot strike 

pattern.  

Muscle activation 

Thus far, studies have been performed to analyze the EMG activity of vastus lateralis, 

biceps femoris, tibialis anterior, gastrocnemius and soleus; however, there is a lack of research 

studying the EMG of proximal hip musculature such as the gluteus medius and tensor fascia 

latae. With a modification of foot strike position, different patterns of muscle activation are used 

to accept the load through the lower extremity. The force vector of the ground reaction force in 
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relation to the joint center will lead to the recruitment of the appropriate musculature necessary 

to stabilize the body to keep the body erect and propel one forward for locomotion. Thus, 

changes in muscle activity throughout the lower extremity are expected in response to a shift in 

the joint centers in relation to the ground reaction force.11 

Prior to initial contact muscle activation patterns are changed. A study19 published in the 

Journal of Sports Sciences in 2016 found the tibialis anterior was active prior to the bicep 

femoris during a forefoot strike and the reverse was found during a rearfoot strike. The activation 

of vastus lateralis was not changed between techniques. However, following initial contact, 

changes were seen in intensity rather than activation order. EMG intensities differed throughout 

the movement pattern for forefoot and rearfoot strike patterns. In a study22 performed by Olin 

and Gutierrez, decreased activity of tibialis anterior and increased activity of gastrocnemius was 

documented during forefoot running. Barefoot and shod running do not lead to different muscle 

activation time patterns after foot strike, but they do change EMG intensity before foot strike.22 

Gluteus Medius Function 

Barefoot running has become an increasingly prevalent form of exercise over the past 15 

years. Electromyography (EMG) studies have been widely used to assess the muscle activation 

differences between shod and barefoot running. The muscles that have been studied through 

EMG analysis include medial gastrocnemius and lateral gastrocnemius, soleus, rectus femoris, 

vastus medialis and lateralis, fibularis longus, tibialis anterior, and biceps femoris.19, 21, 23-25 Two 

muscles that have not appeared in the EMG studies for barefoot running are gluteus medius 

(GM) and tensor fascia latae (TFL). GM activation has been well documented for shod running 

and weight bearing activities. The GM has the largest mean peak muscle force of all hip muscles 

during running. This peak mean muscle force occurs during the initial stance phase of running to 
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help control lateral pelvic tilt.26 The shape and size of the GM is favorable for a large abduction 

moment arm which is a key component to proper hip alignment and stability when performing 

weight bearing activities. 27 The stance phase of running recruits the GM to prevent excessive 

pelvic drop. Without sufficient GM activation during the stance phase of gait, excessive pelvic 

motion can result and may cause injury. 28 Sufficient control and activation of the GM may have 

a role in minimizing the risk of acquiring musculoskeletal syndromes such as patellofemoral pain 

syndrome, low back pain, and Achilles and gluteal tendinopathy. 

Gluteus Medius and Injury 

Patellofemoral Pain Syndrome 

Patellofemoral pain (PFP) is very common in sports medicine. A study of 2519 patients 

found that 5.4% sports medicine patients had PFP which accounted for ¼ of the knee injuries. 29 

In addition, females may be more susceptible to PFP during running. 9, 30 A study by Herrington 

31 found that females with patellofemoral pain had increased knee valgus during single leg squats 

and single leg hop landing. This increased injury prevalence may be due to decreased hip 

strength which can contribute to increased pelvic drop and knee valgus in the stance phase of 

gait.32 Increased proximal control at the hip from the GM may be a key factor in preventing 

excessive pelvic drop and knee valgus, thus resulting in the reduction and prevention of 

patellofemoral pain. 

Low Back Pain 

Low back pain (LBP) has been cited as the single most common cause of disability in the 

world. This may be due to the aging population since the highest prevalence of low back pain is 

seen in the elderly.33 Eighty percent of people will experience low back pain at some point in 

their life and 1 in 10 recreational runners will have low back pain within their first year of 
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running.34 Simons and Travell 35 found that myofascial pain of the GM has been associated with 

LBP. A study by Cooper 36 found GM to be significantly weaker and have increased tenderness 

to the gluteal and greater trochanter area in patients with chronic LBP. One of the most common 

interventions for LBP is strengthening and stabilization exercises which has been proven to be 

effective in terms of pain and functional improvement.37 Although core stabilization exercises 

have proven to be successful initially, 70% of people report having a recurrence of low back pain 

within a year. Since a correlation with low back pain and gluteus medius weakness has been 

shown, supplementing core stabilization exercise with pelvic stabilization and GM strengthening 

may result in better outcomes and a reduction of recurrent low back pain.36, 38 

Achilles Tendinopathy 

Achilles tendinopathy is a general term used to describe Achilles injuries that present 

with symptoms of morning stiffness, pain, tenderness, and changes noted on imaging.39 

Tendinopathy is associated with chronic pain and potential swelling that is made worse with 

activity. The highest incidence of non-insertional Achilles tendinopathy is seen in runners and 

presents with pain above the insertion of the Achilles.40 The relation between GM control during 

running has been examined as a risk factor for Achilles tendinopathy. A study by Azevedo and 

Lambert 41 found that GM activity was significantly reduced following heel strike in the Achilles 

tendinopathy group when compared to the control group. Based on the study findings, increasing 

GM activity through a barefoot running program could potentially reduce the risk of developing 

Achilles tendinopathy. These results warrant further investigation into a correlation between GM 

EMG activity and risk of acquiring Achilles tendinopathy.  
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Hip Osteoarthritis 

Osteoarthritis (OA) can be defined clinically or radiographically. A clinical diagnosis is 

made through symptom analysis and physical examination.42 A radiographic diagnosis is made 

when osteophytes, or bone growths, are found in the joint.43 Almost 27 million people are 

affected by OA in the United States, making it one of the most prevalent pathologies in 

medicine. In fact, about 25% of people over the age of 45 have radiographically diagnosed OA.44 

Muscle weakness has been shown to be a risk factor for hip OA. Studies by Dwyer 45 and Sims 

both found that GM surface electromyography (sEMG) activity was higher in the hip OA 

patients as compared to the healthy control group when performing weight bearing activities. In 

the hip OA groups, the involved and uninvolved leg demonstrated higher GM sEMG activity. 

The increased GM activity is most likely not a causative factor of hip OA, but more so a 

compensatory strategy for general weakness when weight bearing. Patient’s with insufficient 

GM strength may require increased central nervous system input to the muscle in order to 

maintain proper pelvic position in stance, thus resulting in higher sEMG activity.46 Although 

running is one activity which can be used to improve one’s overall health, studies have found 

that running may cause an increased incidence of hip osteoarthritis (OA). A study of 27 elite 

runners, 9 bobsledders, and 23 sedentary patients found that the runners showed more hip OA 

compared to the bobsledders and sedentary group when viewed through radiographs.47 A further 

review of the literature does not support a link between running and hip OA. For example, Sohn 

and Micheli 48 compared the incidence of severe hip or knee pain 2-55 years following 

graduation in 504 collegiate cross-country runners and 287 collegiate swimmers. Two percent of 

the runners were symptomatic compared to 2.4% of the swimmers. 0.8% of the runners required 
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surgical treatment for OA as compared to 2.1% of the swimmers. For the symptomatic runners, 

there was no correlation found between mileage volume and joint pain.  

Surface Electromyography 

Surface EMG (sEMG) is the topical application of electrodes onto the skin that cover the 

muscle(s) to be analyzed.49 SEMG is used to measure the activation and muscle force 

contractions during static or dynamic activities.50 It is important to understand that SEMG is 

measures the electrical activity given off by a muscle and is not a strength or force measure. 

There are three types of electrode placements that represent how accurate electrodes can pick up 

EMG signals from a muscle. The three types of placements are general, specific, and quasi-

specific placement. The muscles examined by SEMG in this study are the gluteus medius and 

tensor fascia latae. Their placements are considered “specific” meaning they are superficial 

muscles that are easy to isolate, thus increasing the accuracy of the SEMG readings.51 A study 

performed by Czaprowski 52 examined the intra and inter-session reliability of using sEMG for 

the trunk extension-flexion ratio. The study found that sEMG had good reliability with a 

intraclass correlation range of .90 to .68 when measuring paraspinal activity during trunk 

extension and flexion. It should also be noted that experience between examiners plays a role in 

intra and inter-session reliability of sEMG. SEMG reliability and validity for GM during running 

was not examined in the literature.  

Tensor Fascia Latae 

Studies investigating TFL activity (via sEMG) during running and walking were not 

found during the literature review. The TFL is a pelvic muscle with actions including hip flexion, 

hip abduction, and hip internal rotation movements.  The TFL muscle belly joins with the 

iliotibial band (IT band) which acts as the insertion for the muscle crossing and attaching to the 
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lateral knee. Although TFL activity has not been researched in runners, the IT band has been 

identified as problematic for runners. ITBS is the number one cause of lateral knee pain in 

runners and is the second most common injury in runners.53 For example, a study of 2002 

runners found IT band syndrome (ITBS) to be the second most common injury in runners, which 

occurs due to overuse and biomechanical abnormalities that can occur during repetitive motions 

like running. 9  

Studies have found that ITBS in runners can be related to reduced hip adduction and knee 

flexion during running.54, 55 Barefoot running alters biomechanics by promoting a fore foot 

strike, thus resulting in increased knee flexion and a shorter stride length.56 It is possible that 

these biomechanical differences with barefoot running could result in a reduced risk of acquiring 

ITBS.  

Biomechanics  

Ideal Running Mechanics  

It is unrealistic to have a definitive set of rules to define ideal mechanics for running. 

Every individual varies in body size and structure and uses different techniques in order to 

attempt to be the most efficient in their running form. However, attempting to return to the 

desired running form may assist in injury prevention. Supination is when the foot rolls outward 

in the gait cycle, it is a combination of inversion, plantarflexion and adduction. Pronation is 

when the foot rolls inward during the gait cycle is a combination of eversion, dorsiflexion and 

abduction. Ideally, at heel strike the foot is in a supinated position and transitions into foot 

pronation during stance phase. During pronation, the arch height drops in order to provide 

natural shock absorption and allows the great toe to approximate the ground. Great toe 
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approximation is significant because the great toe provides 80-85% of the foot’s primary support 

and is used as a ridged lever to push off during supination. 57 When the foot contacts the ground 

in front of the body elastic energy is stored. Ground reaction force is at its greatest once the 

runner hits mid-stance and the foot is directly under the body. The release of the stored elastic 

energy occurs from mid stance to push off. This requires dynamic control of the hip stabilizers.57  

Undesirable Running Mechanics  

Eighty-two percent of runners will sustain a running related injury at some point in their 

life, which may be attributed to faulty running biomechanics.57 Many runners are told that they 

either over-supinate or over-pronate. These foot positions can have great impacts on a runner’s 

biomechanics. Runners who over-supinate tend to land on the outside of the foot, which reduces 

their natural shock absorption attributes and may increase the prevalence of a tibial stress 

fracture. Alternatively, overpronator’s may have too much shock absorption when landing which 

may cause high forces to be transmitted through unstable lever arms. Overpronation may lead to 

genu valgus or “knock-knees” which in turn may lead to an increased Q-angle. The Q-angle is 

the intersection of two lines that cross at the patella. Proximal line landmarks include the anterior 

superior iliac spine (ASIS) and the center of the patella, while the distal line landmarks includes 

the center of the patella and the tibial tuberosity. It is hypothesized that the greater the Q-angle 

the greater the lateralization force on the patella which may cause compression of structures and 

breakdown of cartilage leading to osteoarthritis.58 According to Huberti and Hayes,59 with every 

10% increase in Q-angle there is a 45% increase in patellofemoral stress. Increasing hip abductor 

strength and activation may reduce the Q-angle and prevent osteoarthritis. For example, gluteus 

medius activation reduces pelvic drop and hip adduction, which may reduce the Q-angle. If our 

hypothesis is correct and barefoot running increases the activation of gluteus medius, barefoot 
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running would be a good intervention technique to reduce Q-angle and its associated knee pain.  

In addition, a common problem many runners have is overstriding. Overstriding is where the 

runner’s foot contacts the ground too far forward and the foot stays on the ground longer than it 

should. This causes increased vertical motion, which in turn leads to more energy expended and 

a greater chance of injury due to the increased forces when re-contacting the ground. A runner’s 

optimal vertical translation is 1.5-2.3 inches for most efficient running.57 A study by Francis et 

el,60 compared stride length and lower extremity kinematics in trained distance runners during 

barefoot and shod running. This study found that barefoot running decreases stride length by 6-

8% which may reduce the likelihood of lower extremity injuries.  

Barefoot Running Mechanics 

Approximately 80% of shod runners have a rear foot strike.61 Barefoot running promotes 

a forefoot strike along with a more plantarflexed ankle.62 Forefoot strike runners have lower 

loading rates of the ground reaction force than rear foot strike runners. However, due to highly 

cushioned heels in standard running shoes most runners adopt the rear foot strike pattern. 

Forefoot strike runner allows for overall more efficient biomechanics. It increases stride 

frequency and may allow for shorter contact time with the ground. Forefoot strike runners also 

have a greater bend at the knee and a more plantarflexed ankle when landing which helps to 

shorten the stride length.56 Barefoot running has become increasingly popular in the last decade. 

Many studies have been published, both supporting and not supporting, the effects of barefoot 

running. For example, Sinclair et al63 compared the effects of barefoot running, barefoot inspired 

footwear and conventional running footwear on joint stiffness. Joint stiffness has been correlated 

with an increased risk of injury, therefore, is an undesirable effect. Sinclair et al63 identified 15 

male subjects who were analyzed with an 8 camera motion analysis system running over a force 
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plate at 4 meters per second. Running barefoot identified a higher rate of overall joint stiffness, 

especially knee stiffness. However, conventional shoes showed greater ankle stiffness compared 

to barefoot running.  The authors of this study theorized that the increased joint stiffness in 

barefoot running is due to the decreased stance time that typically occurs. Therefore, decreased 

limb compression occurs in conjunction with similar ground reaction force values between 

footwear and this may lead to the increased joint stiffness. De Wit et al62 preformed a study 

comparing barefoot running mechanics with shod running mechanics with nine trained male 

distance runners. Video analysis and ground reaction force were measured, in addition, a 

pressure mat was using during barefoot running. De Wit et al62 found that barefoot running has 

been shown to shorten stride length, shorten foot-ground contact time and increase stride 

frequency, which may improve overall efficiency and decreases injury risk.  

Shoe Mechanics  

For years, shoe mechanics have been on the forefront of running injury prevention. 

However, new technology may hinder a runner's biomechanics and may increase the risk of 

injury. For example, some shoe manufacturers develop shoes with a medial post or medial 

cushioning. This medial post may cause the point of contact to shift to the medial foot. This shift 

to the medial foot may increase medial knee force and require stronger hip stabilizers to 

overcome the genu valgus.  In addition, most standard running shoes have higher heels, the heel 

is usually two times higher than the forefoot, this forces the soleus and gastrocnemius to work in 

a shortened position, which may lead to injury. Furthermore, standard running shoes generally 

have a fair amount of cushioning. Excess cushioning may compromise the foot’s proprioception 

and muscle firing patterns. Decreased proprioception may lead to decreased stability which may 

cause injury. Often, standard running shoes have a narrow toe box. A narrow toe box may 
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decrease leverage during push off because the great toe has an increased lateral angle. With 

barefoot running the foot and toes land with a wider base of support which allows for more 

leverage and stability.57 

Vicon  

Quantitative gait analysis is most accurately measured by three-dimensional motion 

analysis systems.64 The motion analysis system used in this study is the VICON system. The 

VICON system uses 10 cameras to assess the 3D movement of the retroreflective markers that 

are placed on predetermined anatomical landmarks. A study by Collins et al64 analyzed the intra-

rater reliability and inter-rater reliability of the VICON system. Gait analysis of eight subjects 

with no gait altering injuries was preformed twice a day on two separate days. Two different 

raters preformed separate gait analysis's each day.  As a result, the VICON system was reliable 

in both intra and inter-rater reliability. The repeatability was shown to be higher in the hip 

assessment and lowest in the knee most likely due to the subjects’ knees not being locked when 

the markers were being placed. The VICON system is often used as the gold standard to compare 

other 3D motion analysis systems. For example, in a study by Bouillod et al65 a 3D motion 

analyzer used for bike fitting was compared to the VICON system. Three cyclists participated in 

the study and cycled at three different cadences (60, 90 and120 rpm) for ten seconds each. 

Kinematic measurements were taken simultaneously from the two systems. Measurements were 

taken five times at each pedaling cadence. The two devices demonstrated a high reliability with 

no significant differences. The minor differences were attributed to the altered alignment of the 

VICON system's retroreflective markers during dynamic movement.  
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Chapter III 

METHODS 

Participant Selection 

Participants were recruited via an in-class presentation outlining the study. Study details 

were shared with the University of North Dakota first and second year physical therapy students. 

Inclusion criteria and study information was distributed through email communication. In order 

to participate individuals must be (1) a rearfoot striker, (2) currently complete between 2-15 

miles of running per week, (3) age 20-30. Those with (1) a significant injury to the lower 

extremity in the past 6 months, (2) use of NSAIDS, (3) cardiopulmonary pathologies or 

significant medical history were excluded.  

Protocol 

Prior to training, participants completed a pre-test data collection consisting of VICON 

movement analysis and EMG recordings. The VICON system was used to analyze lateral pelvic 

drop and pelvic tilt. The EMG recordings included gluteus medius and TFL activity. Participants 

ran in the morning two days a week for a six-week training period, which took place at the UND 

Wellness Center. They began with a warm-up for three minutes on a stationary bicycle and then 

completed a dynamic stretching warm-up (Figure 1). The running protocol began with a three- 

minute warm up walk, then transitioned into a one-minute warm-up at a four-mph pace followed 

by one minute at five-mph. The speed was then increased to six-mph for the remainder of the run. 
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A three-minute walk followed the running period to ensure adequate cool down. The session was 

then completed with a series of static stretches (Figure 2). The first week of training included ten 

minutes of running, followed by a two-minute increase each week totaling 18 minutes of running 

during the final week. Following the six-week training period, runners performed post-test 

VICON and EMG data collection followed by a brief post-survey.  

Figure 1. Dynamic Stretches (a) hip abduction/adduction leg swings, (b) hip flexion/extension 

leg swings (c) lunge with a twist, (d) knee to chest hug, (e) lunge with a twist toward ceiling 

 

(a)                                                          (b) 

 

(c)                                       (d)               (e) 
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Figure 2. Static Stretches (a) gastrocnemius, (b) soleus, (c) quadricep (d) hip flexor (e) 

hamstring, (f) piriformis 

 

(a)                                    (b)                                   (c) 

 

(d)       (e)                                    (f) 

 

EMG  

Procedure  

All participants completed an informed consent. Height and weight were measured, BMI 

was calculated, and foot dominance was recorded. Barefoot and shod running and walking were 

investigated with participants randomly selected to begin with shoes or barefoot first. The 
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following section will describe the electrode placement utilized to assess GM and TFL firing, as 

well as MVC process and data collection.  

Electrode Placement 

Each electrode skin placement area was prepped by brushing sandpaper over the area five 

times and thoroughly cleaning the area with alcohol. Once electrodes were placed over each 

muscle, the electrical impedance was tested using the NORAXON Electrode Impedance 

Checker. If electrode impedance was greater than 50k, the electrodes were removed and the 

procedure repeated. A ground electrode was placed over the left iliac crest and shared a lead with 

the left TFL. Foot contact sensors were applied to each participant's right foot. Sensors were 

placed on the first metatarsal head, fifth metatarsal head and the heel, to identify ground contact. 

This allowed for correct distinction between stance and swing phases of gait.   

o Lead one- Left TFL and ground electrode 

o Lead two- Right TFL 

o Lead three- Left Gluteus Medius 

o Lead four-  Right Gluteus Medius  

Gluteus Medius 

The greater trochanter and iliac crest were palpated and the distance between was 

measured in centimeters. A mark was made one-third of the total distance from the iliac crest 

inferiorly. This process was performed bilaterally. The skin was then prepped by swiping each 

landmark five times with sandpaper and then vigorously wiping with a towel and alcohol. Two 

electrodes were placed at each gluteus medius marking bilaterally and placed as close as possible 

so the center of each electrode was about 2 cm apart.51  
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TFL  

The ASIS was located bilaterally and a dot was placed 2 cm distally. The skin was 

prepped in the same manner as the gluteus medius with the sandpaper and towel with alcohol. 

Two electrodes were placed at each TFL marking bilaterally and placed as close as possible so 

the center of each electrode was about two cm apart. A ground electrode was also placed on the 

left iliac crest for a total of nine electrodes on each subject.51  

Maximum Voluntary Contraction     

Following electrodes placement, participants completed bilateral Gluteus Medius and 

TFL maximum voluntary contractions (MVC). In order to assess participant's MVC of the 

gluteus medius muscle, participants were positioned in sidelying, with 30 degrees of hip 

abduction, neutral hip rotation, and zero degrees of hip extension (Figure 3). Two trials were 

performed in this position. A similar position was utilized to assess the MVC of the TFL muscle, 

which included 30 of abduction, neutral hip rotation, and 45 degrees of hip flexion (Figure 4). 

Two trials were performed in each position. Participants were asked to slowly lift leg until 

contacting support belt and push maximally for five seconds. The process was repeated on both 

lower extremities. A goniometer was used for each patient to ensure proper hip positioning. Prior 

to EMG testing, participants were randomly selected, via a random number generator, to start the 

pre- and post-test with or without shoes. Each participant walked on the treadmill at three-mph 

for 40 seconds and progressed to running at six-mph for 40 seconds. The first 20 seconds of 

walking and running was used to normalize each subjects gait and the final 20 seconds was 

recorded for data collection. The participant then donned or doffed their shoes depending on 

their random selection, and repeated the walking and running trials.    
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Figure 3. MVC of Gluteus Medius  

Subjects were tested in a position with 30 degrees of hip abduction, neutral hip rotation, and zero 

degrees of hip extension. 

 

Figure 4. MVC of TFL 

Subjects were tested in a position with 30 of abduction, neutral hip rotation, and 45 degrees of 

hip flexion. 

 

Data Collection 

Surface EMG electrodes were placed over the GM and TFL bilaterally through a 

standardized method. EMG data was collected using an eight channel Noraxon Telemyo 2400 

system. The EMG signals were rectified, smoothed (RMS 50), and then normalized to the 

respective maximal voluntary contraction prior to analysis. 
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Vicon  

Procedure 

One static and five dynamic trials were recorded. The static frame consisted of a 

calibration frame necessary to collect reference points. Three trials were performed for each of 

the five different dynamic trials. These included walking barefoot, running barefoot normal, 

running barefoot with forefoot strike, walking with shoes, and running with shoes. Participants 

were instructed to keep normal stride and pace as comfortable. Cues for forefoot strike included 

run on your toes and avoid allowing your heel to contact the ground. 

Placement 

Prior to sensor application, participants skin was cleansed with alcohol. Sensors, one-

centimeter in diameter were applied to participant’s ASIS, PSIS, lateral joint line of knee, 

calcaneus, navicular tuberosity and first metatarsal head (Figure 5). One researcher, an 

experienced physical therapist applied the ASIS, PSIS and lateral joint line of the knee. A second 

researcher checked each sensor placement to assure accuracy. A third researcher applied the 

sensors to the calcaneus, navicular tuberosity and first metatarsal head. A fourth researcher 

checked each sensor placement to assure accuracy. This check-recheck method was enforced to 

increase reliability of sensor placement. Sensors were applied with carpet tape to ensure 

adherence. All sensors were applied directly to the skin and spandex clothing was worn to avoid 

interference with sensors.  
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Figure 5. Sensor Placement for Pelvis 

Sensors were applied to participant’s ASIS, PSIS, lateral joint line of knee, calcaneus, navicular 

tuberosity and first metatarsal head. 

        

Data Collection 

 Data was extracted by a team of two researchers using the VICON system for analysis. In 

order to calculate the degree of lateral pelvic drop, the path of the ASIS was observed on an X, 

Y, Z graph on the VICON system. The lowest point in the Z plane was found for each step. The 

X, Y, Z coordinates of each hip was recorded at this exact point. The coordinate points were 

recorded into a trigonometric function to produce the total degrees of drop in a 3-dimensional 

plane.  

 Each participant performed three trials of each dynamic condition. The last two trials 

were used for data analysis avoid data inconsistencies due to novelty of the first trial. For each 
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trial, lateral pelvic drop was calculated for 3 steps on each limb. An average of all steps recorded 

in the two trials was computed for statistical analysis.  

Statistical Analysis 

Data collected from pre- and post-testing was analyzed using the Statistical Package for 

Social Sciences (SPSS) software. Independent variables included whether the subject was placed 

in barefoot or shod running group. Dependent variables included lateral pelvic drop and EMG 

activity of TFL and gluteus medius. All dependent measures were considered bilaterally. 

Confounding variables include adverse effects during the study, subject running outside of the 

study, running surface, and efficacy of retraining program. Independent sample t-tests were used 

to measure significance of change in lateral pelvic drop and EMG activity of gluteus medius and 

TFL between barefoot and shod training groups, with an α level of less than 0.05. 
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Chapter IV 

RESULTS 

 This chapter includes the results of this research in regard to the two primary questions of 

this research: Does a barefoot training program reduce degree of lateral pelvic drop height, and 

Does barefoot training alter EMG activity of the gluteus medius and TFL? Each of the research 

questions were analyzed using independent sample t-tests to determine clinical significance 

(p<0.5). The pre- and post-test results for one subject in the barefoot group were dropped for 

both the VICON and EMG assessment, reducing the group to six subjects (N=6).   

Question One: Does a barefoot raining program reduce degree of lateral pelvic drop 

height?  

When analyzing the degree of lateral pelvic drop, during walking trials the greatest 

amount of drop was observed during push off on the measured hip. As for the running trials, the 

most significant drop occurred during single leg stance of the contralateral limb. When 

investigating the impact of training on pelvic drop comparing pre- and post-testing, no 

statistically meaningful change in amount of pelvic drop was identified. Upon first glance, it 

appears as if shod has a lesser degree of pelvic drop both pre- and post. However, this may be 

misleading. After randomization, those with a lesser degree of pelvic drop ended up being 

designated to the shod group, thus making it appear as if shod consistently had a lesser degree of 

pelvic drop. A focus of this study was to identify the impact of training on everyday functional 
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life. Therefore, we chose to analyze the shod walking trials since majority of an individual’s day 

is spent walking in shoes. As you can see in Table 1 below, the degree of pelvic drop remained 

relatively consistent from pre- to post testing.’ 

Table 1. Vicon Pelvic Drop  

This table depicts the average degree of lateral pelvic drop in millimeters.  

 

 

Question Two: Does barefoot training alter EMG activity of the gluteus medius and TFL? 

When comparing the training effect of barefoot vs shod running on the activation of 

Gluteus Medius and Tensor Fascia Latae, no statistically significant results were noted. A 

depiction of results is demonstrated on the graphs included in Table 2. Gluteus medius activation 

decreased in the shod training group's walking and running post-test, however, this included both 

barefoot and shod post-test results.  Interestingly, the barefoot training group increased gluteus 

medius activation in both barefoot and shod post-testing.  This may be clinically significant in 

that barefoot running training may increase the activation and utilization of the gluteus medius. 
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Tensor fascia latae activation increased for both the barefoot and shod training groups when 

running shod. In addition, the barefoot training group had a decrease in TFL activation when 

walking and running barefoot and walking shod. The shod training group saw increases in TFL 

activation for walking and running whether barefoot or shod. Activation of the TFL when 

running shod was the greatest change from pre-testing to post-testing for both the barefoot and 

shod training groups. 
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Table 2. EMG Results TFL 

(a) Walking Barefoot, (b) Walking Shod, (c) Running Barefoot, (d) Running Shod 

 

(a) 

 

(b) 
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(c) 

 

(d) 
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Table 3. EMG Results Gluteus Medius  

(a) Walking Barefoot, (b) Walking Shod, (c) Walking Barefoot, (d) Walking Shod 

 

(a) 

 

(b) 
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(c) 

 

(d) 
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Chapter V 

DISCUSSION 

Conclusion  

This study proposed barefoot training would decrease the degree of lateral pelvic drop, as 

a result of an increase in gluteus medius activity and decrease in TFL activity. However, this 

proposal was not found to be statistically significant upon statistical analysis following the six-

week training period. Overall, a general training effect was exhibited, but no statistically 

significant differentiation was able to be made between barefoot and shod running.   

Limitations 

There were limitations that affected this study. The pre-test and post-test EMG data of the 

gluteus medius and TFL cannot be directly compared to each other, due to the fact that the post-

test electrodes may not have been placed in the exact same spot as the pre-test. Therefore, the 

identical muscle fibers may not have been tested for their amount of activation during pre- and 

post-testing. In addition, the machine used to measure electrical impedance between the 

electrodes was used for pre-testing, but malfunctioned during the post-testing. Therefore, it was 

not used. One subject missed five training sessions due to foot pain. Another subject missed one 

training session due illness. In addition, in week five and six the study participants had only one 

training session to allow their legs to rest. These inconsistencies in training participation and 

training sessions per week are additional limitations to the study. Furthermore, all study 
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participants had different fitness levels and training regimens that may have impacted the degree 

of treatment effect across the group. 

 Furthermore, the power of this study was limited due to the small sample size (n=14). 

This sample size was limited to physical therapy students which did not allow for a diverse 

sample. Due to time constraints, the training period was only six weeks. A longer training period 

may have allowed a more significant progression of intensity and an increased treatment effect.  

Adverse Effects 

When starting any training program there is a risk for adverse events. Metatarsal pain was 

the main complaint from many of the study participants. One participant dropped out of the 

training program due to metatarsal pain, the participant completed 5 out of 10 training sessions. 

In addition, certain participants selected for barefoot running had blisters throughout the study. 

This may be attributed to the facility requiring the barefoot runners to wear socks when on the 

treadmill. None of the subjects had prior experience barefoot running, so their feet were not 

accustomed to this type of running thus potentially adding to increased risk of acquiring foot 

blisters.  

Recommendations for Future Research 

It may be useful in the future to analyze the immediate impacts for muscle activity 

performing barefoot running versus shod running rather than looking at a training effect. This 

would eliminate the inevitable placement errors for electrodes when measuring EMG activity. It 

would also be easier to recruit more subjects from multiple academic disciplines for this study 

format since the study is less time intensive due to no post-testing or training. The previous study 

compared the training effect for many variables which were as follows: TFL and GM shod and 

barefoot walking for shod training group, TFL and GM shod and barefoot running for shod 
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training group, TFL and GM shod and barefoot walking for barefoot training group, TFL and 

GM shod and barefoot running for barefoot training group. This made the results analysis more 

difficult and limited the strength of our results since we compared so many different areas. By 

studying the immediate impacts of barefoot versus shod running, the only variables to analyze 

are walking and running barefoot versus walking and running shod.  
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Appendix A: IRB Approval & Informed Consent
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