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Abstract 

The link between reading and mathematics achievement is well known, and an important 

question is whether readability factors in mathematics problems are differentially impacting 

student groups. Using 20 years of data from the National Assessment of Educational Progress 

and the Trends in International Mathematics and Science Study, we examine how readability 

factors – such as length, word difficulty, and pronouns – interact with student background 

characteristics – such as race/ethnicity, mathematics achievement, and socioeconomic status. 

Textual features that make problems more difficult to process appear to differentially negatively 

impact struggling students, while features that make language easier to process appear to 

differentially positively impact struggling students. It is critical that readability along various 

dimensions be considered when designing instruction and assessment. 

Keywords: achievement gap; language comprehension/development; NAEP; mathematics 

education 
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How Readability Factors Are Differentially Associated with Performance for Students of 

Different Backgrounds When Solving Mathematics Word Problems 

The strong relationship between reading and mathematics achievement is well known 

(e.g., Crawford, Tindal, & Stieber, 2001; Hecht, Torgesen, Wagner, & Rashotte, 2001; Jiban & 

Deno, 2007; Lerkkanen, Rasku-Puttonen, Aunola, & Nurmi, 2005). For example, analyses of 

student performance on the Programme for International Student Assessment (PISA; Kelly, 

Nord, Jenkins, Chan, & Kastberg, 2013), known to have a particularly high reading demand in its 

mathematics items, shows a correlation of 0.95 between PISA mathematics country mean scores 

and PISA reading country mean scores (Wu, 2010). This correlation was higher than the country-

by-country correlation between PISA mathematics scores and mathematics scores on the 

international assessment the Trends in International Mathematics and Science Study (TIMSS). 

This suggests that measures of reading achievement may actually predict mathematics 

achievement well, and in fact be better predictors than some complementary measures of 

mathematics achievement. 

One reason why mathematics achievement may be so closely linked to reading is that 

many mathematics problems involve considerable reading demands. Mathematical information is 

often presented in verbal (rather than symbolic) formats, with significant unraveling and 

decoding of the English language needed to extract relevant relations. Indeed, mathematics word 

problems (i.e., problems where a mathematical scenario is posed using language rather than or in 

combination with symbols) have long been considered notoriously difficult (Cummins, Kintsch, 

Reusser, & Weimer, 1988) and U.S. mathematics teachers cite word problems as a major 

weakness of students (Loveless, Fennel, Williams, Ball, & Banfield, 2008). A subset of word 

problems are story problems, which are situated in “real world” contexts that reference concrete 

people, places, and objects. International comparisons suggest U.S. students struggle with 

mathematics word problems (OECD, 2010). 

Large-scale mathematics assessments in the United States, such as the National 

Assessment of Educational Progress (NAEP), have also revealed enduring achievement gaps 
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between different student groups. Relatively small achievement gaps between males and 

females, favoring males, persist in some grade levels of mathematics (Robinson & Lubienski, 

2011). Large, persistent, and widening achievement gaps between students of low- and high-

socioeconomic status (SES) are particularly troubling (Reardon, 2011), as are continued gaps 

between Caucasian and Hispanic or African-American students (NCES, 2013; Provasnik et al., 

2012). Achievement gaps also exist with respect to English Language Learners (ELLs; Fry, 

2007), a fast-growing segment of the U.S. population. Finally, research has placed increasing 

emphasis on the importance of students’ attitudes towards mathematics – particularly their 

interest in learning mathematics – and its positive association with achievement (Kim, Jiang, & 

Song, 2015). 

These gaps in mathematics achievement may in part be explained by differences in 

reading and language background between student groups. Indeed, recent work highlights that 

students who have weak language skills have difficulty understanding the text in word problems 

(Vilenius-Tuohimaa, Aunola, & Nurmi, 2008), and that accommodations that reduce the reading 

demands of mathematics problems can result in higher performance for struggling students (e.g., 

Helwig, Rozek-Tedesco, Tindal, Health, & Almond, 1999). When considering that all students, 

including those from different demographic backgrounds, should understand mathematics and be 

assessed on their progress, it is critical to investigate how readability characteristics of 

mathematics problems may be differentially associated with performance. 

In the present study, we use almost 20 years of mathematics achievement data from the 

NAEP and TIMSS to examine how the reading level of mathematics word problems is 

differentially associated with performance for students from different demographic backgrounds. 

Examining approximately 1000 problems solved by three-quarters of a million 4th and 8th grade 

U.S. students, we look at the interaction of word problem readability, focusing on several key 

text-based indicators identified in prior research, and student background characteristics, 

focusing on characteristics where achievement differences are well-established. Pilot work we 

review suggests that readability measures do matter for students’ performance on mathematics 
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word problems. Thus, investigating whether these readability factors are differentially impacting 

students from different backgrounds is important for understanding and acting upon persistent 

achievement differences between groups. 

Literature Review 

Theoretical Framework  

Theoretical work on cognitive models for solving word problems has explicated why 

readability may be important. Early research revealed that slight variations in mathematics 

problem wording result in children using different strategies (Carpenter, Fennema, Franke, Levi, 

& Empson, 1999; Carpenter & Moser, 1984). Kintsch and Greeno (1985) developed a model of 

story problem solving where students first translate from a problem statement to a propositional 

textbase, which is a conceptual representation of the relationships in the text. Students then form 

a problem model or situation model that infers the information needed to solve the problem 

based on knowledge of the domain. Later research (Hegarty, Mayer, & Monk, 1995) recognized 

that unsuccessful problem solvers use direct translation strategies, operating on numbers and 

keywords from the text and bypassing intermediate formation of a model of the situation. In 

contrast, successful problem solvers use problem model strategies where they form a mental 

representation of the situation and use this model to plan and assess their strategies.  

Following this work, Nathan, Kintsch, and Young (1992) proposed a model of story 

problem solving where students coordinate three levels of representation: (1) the textbase or the 

propositional information given, (2) the situation model or mental representations of the 

relationships, actions, and events, and (3) the problem model of formal mathematical operands, 

numbers, and variables. The situation and problem models are thought to be mutually supportive, 

with students iteratively moving between the two representations. Thus, if students are able to 

extract a meaningful situation model from the problem’s text, this situation model can support 

and improve their formal mathematical computations. However, forming this situation model is 

heavily dependent on comprehension of the text itself, which is impacted by readability.  

Cognitive load theory also gives an important and related way of understanding the 
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demands of solving mathematics word problems. Cognitive load refers to the amount of mental 

effort expended in a learning or assessment task as working memory is utilized (Sweller, van 

Merrienboer, & Paas, 1998). While intrinsic cognitive load is the inherent difficulty level 

associated with understanding and processing particular mathematical concepts in a word 

problem, extraneous cognitive load describes the way in which cognitive load is further impacted 

by the manner in which the concepts are presented. Problem texts that are difficult to read may 

increase extraneous cognitive load as students struggle to decode the written language in order to 

form a situation model.  For example, Walkington, Clinton, Ritter, and Nathan (2015) describe a 

story problem where a character wakes up to find their basement flooded, and ends up comparing 

the rate of two plumbers. The contextual information at the beginning of the problem may have 

contributed to extraneous cognitive load, as such factors may not be directly related to learners’ 

processing and retrieval of relevant schemas. Thus, extraneous cognitive load from readability 

factors that are unrelated to retrieval of schemas may monopolize working memory, making 

these schemas more difficult to access. However, it is important to note that readability 

characteristics are not always extraneous – it may be unavoidable to add reading demands when 

explaining a complex mathematical situation, and confronting such problems may intrinsically 

involve reading skills. 

Relationship between Readability Measures and Performance on Large-Scale Assessments 

Several notable studies on readability and student achievement have been conducted 

using large-scale assessments. Using mathematics state standardized test items from Grades 4, 7, 

and 10, Shaftel, Belton-Kocher, Glasnapp, and Poggio (2006) found that use of vocabulary 

specific to mathematics, complex verbs, polysemous words (words with multiple meanings), 

pronouns, prepositions, and comparative words were associated with greater problem difficulty 

across all students in particular grades. The reading demands of TIMSS mathematics items have 

also been examined using 175 4th grade items, drawn from a year when the TIMSS was 

administered to the same students who received a reading assessment (Mullis, Martin, & Foy, 

2013). The reading demand of mathematics items was measured by the number of words, use of 
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technical vocabulary, amount of symbolic language, and the complexity of visual displays. The 

number of words was the most substantial contributor to reading demand based on discriminant 

function analysis. In addition to the number of words indicating the amount of information to 

process, the number of words may also indicate syntactic complexity (e.g., greater average 

number of clauses per sentence; Arnold, Losongco, Waswow, & Ginstrome, 2000). Overall, 

students with better reading proficiency performed better on mathematics items across all levels 

of reading demand than students with lower reading proficiency. However, the magnitude of the 

difference in performance on mathematics items by students of varying reading proficiency 

differed as a function of reading demand. For proficient readers, accuracy was consistent across 

levels of item reading demand. For poor readers, accuracy was higher for items with low reading 

demand.  

It is important to consider that reading difficulty and mathematical difficulty are often 

inexorably linked – problems with more complex mathematics may in turn require more 

complex language to describe the problem situation (see Walkington et al., 2015). This is not 

always the case – for example, there could be two nearly identical versions of a story problem 

about growth over time, one that models the growth using an exponential equation (e.g., 

increases by 50% every year) and one using linear growth (e.g., increases by 50 every year). 

Here, the reading demands would be similar, but the mathematical difficulty would be 

substantially different. Conversely, one could hold the mathematical difficulty of a word problem 

constant, but create new versions that reduce readability demands by, for example, using familiar 

or concrete words (Abedi & Lord, 2001). This latter case may be particularly useful for 

understanding readability factors.  

Abedi, Lord, and Hoffstetter (2001) researched 8th grade students who received versions 

of the 1996 NAEP test booklets that had either 29 standard mathematics items or matched items 

with their linguistic demand reduced. They found that students performed better on the 

linguistically modified items, and that item length seemed to be an especially important factor in 

linguistic demand. In a similar study, Abedi and Lord (2001) used 20 items from the 1992 NAEP 
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and modified them to be less linguistically complex. In both studies, they manipulated 

familiarity/frequency of non-mathematics vocabulary, active/passive voice, conditional and 

relative clauses, question phrases, and made abstract presentations more concrete. The items 

were administered to 1174 8th graders, and they found improved performance, with performance 

gains differentially impacting particular groups of students (described later). We next turn to a 

review of the literature on how the association of readability and performance may differ based 

on student characteristics, which is our primary focus. 

Relationship between Readability Measures and Student Background Characteristics 

There are reasons to expect that associations between readability and performance would 

vary by student characteristics, such as gender, cultural and linguistic background, SES, 

mathematics achievement, and mathematics attitudes. Prior research has mainly examined 

reading skill and ELL status as factors that moderate the relationship between readability and 

performance. We review existing evidence for each of these factors. 

Gender 

Numerous studies have indicated that girls typically have stronger reading skills than 

boys; this finding is noted across grade levels and in most countries, including the U.S. 

(Chatterji, 2006; Department for Education and Skills, 2007; Halpern, Benbow, Geary, Gur, 

Hyde, & Gernsbacher, 2007; Logan & Johnston, 2010; Mullis, Martin, Foy, & Drucker, 2012; 

Twist, Schagen & Hodgson, 2007). Text characteristics that ease readability may be more 

beneficial for boys than girls. For example, because girls are generally more fluent readers 

(Barth, Tolar, Fletcher, & Francis, 2014), girls may have less difficulty with longer texts. 

There are also gender differences in how language is perceived that may interact with 

reading word problems. Corpus analyses have indicated that females use more pronouns, with 

the exception of second-person pronouns, than males (Newman, Groom, Handelman, & 

Pennebaker, 2008). Girls may also be more likely to connect different ideas in a text together 

than boys (Clinton et al., 2014); therefore, girls may receive less benefit from pronouns in story 

problems than would boys, as pronouns can serve as linking mechanisms between sentences or 
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clauses. In addition, females may be more inclined to consider a word “concrete” and less 

inclined to consider a word “abstract” than males (Bauer & Altarriba, 2008). This may influence 

how different genders process words of varying levels of concreteness in word problems.  

Linguistic, Cultural, and Socioeconomic Background 

It is well known that language and culture influence the interpretation of language 

(August & Shanahan, 2008; Delpit & Dowdy, 2002). If a student’s linguistic background differs 

from the standardized American English in which assessment problems are written, the language 

in a story problem may be particularly challenging. ELLs are more likely to struggle with 

reading compared to native speakers of English (Lesaux & Kieffer, 2010), so ELLs may have 

more difficulty with the language in a story problem (Fuentes, 1998). ELLs may perform less 

well on mathematics achievement tests because of problems with reading the problems despite 

understanding the mathematics (Abedi, Hofstetter, Baker, & Lord, 2001; Abedi, Leon, & 

Mirocha, 2001). Lengthy problems may also be especially troublesome for ELLs because of the 

increased effort involved in reading something in a second language (Bernhardt & Kamil, 1995). 

In addition, it is easier to learn concrete words than abstract words in a second language (De 

Groot & Keijzer, 2000). Given this, it is not surprising that ELLs more quickly comprehend 

concrete words than abstract words (Jin, 1990). Previous findings indicate that ELLs benefit 

more than native speakers of English from problems reworded to increase readability (Abedi & 

Lord, 2001).  

ELL students may also struggle due to difficulties adopting the “mathematics register” – 

the unique meanings and structures of everyday language, such as using “left” to mean either a 

direction or what is remaining (Khisty, 1995). In addition, students may think of mathematical 

terms, such as “face” or “product” as typical language and apply non-mathematical meanings. 

Prepositions may be particularly challenging—for example, one finds the area “of” a triangle, 

rather than “inside” a triangle (Pimm, 1987). Moreover, because mathematics register involves 

words with mathematical purposes (Pimm, 1994), it is particularly complex because language 

must be integrated with the symbols and notations of mathematics (Yore, Pimm, & Tuan, 2007). 
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The notion of the mathematics register is related to the idea of disciplinary literacy – an 

understanding of the technical vocabulary, language structures, and discursive elements that are 

specific to content areas like mathematics, and the associated specialized reading routines 

(Shanahan & Shanahan, 2008). Disciplinary literacy skills are less generalizable than basic 

reading skills, can be difficult to learn, are rarely explicitly taught, and are prominent in the 

Common Core State Standards (CCSS, 2010; Zygouris-Coe, 2012). Obtaining disciplinary 

literary is difficult for native speakers, and may present a particular challenge for ELLs. 

Martiniello (2008) analyzed six mathematics word problems that showed Differential 

Item Functioning (DIF) favoring non-English Language Learners (non-ELLs) over ELLs on a 4th 

grade standardized test. She found that stories that included complex, multiple clauses, as well as 

long noun phrases, led to comprehension difficulties for ELLs. In addition, unfamiliar 

vocabulary words, especially words that English-speaking students might learn at home (e.g., 

chores) or words relating to mainstream American culture (e.g., spelling bee) were difficult for 

ELLs, as were polysemous words. In a similar study that used a large bank of mathematics 

standardized test problems from Grades 4-8, Wolf and Leon (2009) found significant 

associations between DIF and number of words, amount of and reliance on verbal language in 

the problem (versus, for example, visuals, and graphs), and use of academic vocabulary. Abedi, 

Lord, Hofstetter, and Baker (2000) found that modifying mathematics items to be less 

linguistically complex may reduce the achievement gap between ELLs and non-ELLs.  

Moving beyond strictly language issues, cultural differences in how mathematics is 

utilized in school versus community settings may impact problem solving (Saxe, 1988; Taylor, 

2005). Boundaries between cultural knowledge and mathematical domain knowledge can 

obscure students’ mathematical understanding (Nasir, Hand, & Taylor, 2008). Gerofsky (2009) 

describes how word problems are a literary and pedagogical genre; the language they utilize and 

the knowledge they draw upon are inherently ambiguous, localized, and conditional, which has 

implications for students from different cultural backgrounds. Nasir et al. (2008) describe how 

when basketball players solved mathematics problems in a basketball context, they had greater 
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success and were able to invent powerful mathematical strategies. However, when the same 

problem was in an abstract mathematical context, they often misapplied formal algorithms. 

These authors make the case that school mathematics is a cultural activity that is structured to 

privilege certain communities and students over others. Mathematics word problems may thus 

privilege the experiences of the idealized Caucasian middle class (Ladsen-Billings, 1997) or 

incorporate a Eurocentric perspective (Tate, 1994).  

At the intersection of language and culture, some research suggests students who speak 

African American Vernacular English in the home may struggle with reading standard English if 

they have a lack of familiarity with standard English (Charity, Scarborough, & Griffin, 2004). 

This is similar to previously discussed issues with other populations who do not speak standard 

English in the home (e.g., ELLs). Students who are African American and use African American 

Vernacular English may read story problems differently than students whose linguistic 

background is a more standardized form of English.  For example, African American Vernacular 

English is more vivid and imageable than standard American English dialects (Ball, 1996). 

Students who have more experience with such concrete language could benefit when vivid and 

imageable terms are used in story problems, and struggle when language is abstract and 

decontextualized.  

Language, race, and culture are also inexorably tied to SES. SES is known to be an 

important predictor of academic achievement, including reading performance (Perry & 

McConney, 2010; Sirin, 2005). Students from low-SES backgrounds do less well on reading 

assessments than students from middle- or high-SES backgrounds (Noble, Farah, & McCandliss, 

2006). Given these issues, it is likely that students from low-SES backgrounds would benefit 

more from more readable problems. Research has shown that low-SES students benefited more 

from modifications to 8th grade mathematics problems to make them easier to read than other 

students (Abedi & Lord, 2001). Differences in responses to realistic constraints of story 

problems have also been found between working class versus more privileged students (Cooper 

& Harries, 2005). Frankenstein (2009) discusses how word problems contain “hidden messages” 
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(p. 111) about the sometimes taken-for-granted norms of society. For instance, a word problem 

about adding up prices at the grocery store contains the implicit message that it is normal to have 

money to pay for food, even though many children suffer from hunger. 

Ladsen-Billings (1995) describes differences in the way suburban and inner city students 

responded to the story problem, “It costs $1.50 to travel each way on the city bus. A transit 

system fast pass costs $65 a month. Which is the more economical way to get to work, the daily 

fare, or the fast pass?” (p. 131). Suburban students assumed that a person would commute to 

work 5 days a week, and concluded that the daily fare would be more economical. However 

inner city students opted for the transit pass, posing questions like “How many jobs does this 

person have?” “Do they have part-time jobs or full-time jobs?” Urban students also recognized 

that if the transit pass was purchased, family members could use it on evenings and weekends to 

go to stores, church, etc. Other studies have found that many “unrealistic” or “incorrect” 

responses students give to story problems represent unanticipated but valid interpretations of the 

story context based on their everyday cultural knowledge and diverse sense-making activities 

(Inoue, 2005; Kazemi, 2002).  

Mathematics Achievement and Mathematics Attitudes 

The association between readability measures and performance may also differ for 

students with different mathematics achievement levels. Mayer’s (2001) individual differences 

principle states that design effects, like making a text more readable, tend to be stronger for low-

knowledge learners because high-knowledge learners are better able to use prior knowledge to 

compensate for less support. Accordingly, research has shown that students in lower-level 

mathematics courses benefit more from mathematics problems designed to be easier to read than 

students in higher-level mathematics courses (Abedi & Lord, 2001). In addition, students 

struggling with algebra tend to benefit more from an intervention that personalized story problem 

texts to topics they found interesting (Walkington, 2013). Finally, mathematics and reading 

achievement are very highly correlated (Wu, 2010), so students with higher mathematics skills 

are likely to have stronger reading skills as well, and struggle less with difficult-to-read 
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problems. 

Students’ level of interest in learning mathematics may also moderate the effect of 

readability on performance. Interest is positively associated with making connections both within 

a text and between a text and a student's background knowledge (Clinton & van den Broek, 

2012), and thus may facilitate situation model construction. Durik and Harackiewicz (2007) 

found that an intervention designed to trigger interest by adding decorations was most effective 

for learners with low interest in mathematics, but hampered learners with high interest. 

Conversely, they found that an intervention that informed students of the value of the content 

was beneficial for high mathematics interest students, and detrimental for low interest students. 

In another study, Walkington, Cooper, and Howell (2013) found that adding relevant contexts 

and illustrations to mathematics story problems was most effective for students who had mixed 

attitudes towards mathematics – students who were not particularly positive or negative about 

learning math. Although there is not much research directly relating to readability, it is 

reasonable to assume that the effect of readability factors may differ based on students’ interest 

in mathematics.  

Pilot Studies 

There are potentially limitless ways that the readability of a mathematics story problem 

could be quantified. Coh-Metrix (McNamara, Louwerse, Cai, & Graesser, 2013), a widely used 

computer-based readability tool, calculates 108 different measures of readability, and there are 

other such tools available (e.g., the Linguistic Inquiry and Word Count (LIWC) software; 

Pennebaker, Chung, Ireland, Gonzales, & Booth, 2007).  Historically, the use of quantitative 

measures of readability has been controversial (e.g., Bailin & Grafstein, 2001; Bertram & 

Newman, 1981; Kirkwood & Wolfe, 1980). Some criticisms are specific to older measures of 

readability, such as the concern that traditional measures oversimplify word difficulty without 

considering semantics (Kirkwood & Wolfe, 1980) or the complexity of the words (Bertram & 

Newman, 1981). These concerns are addressed by contemporary computerized tools, which 

provide more detailed measures (e.g., Coh-Metrix), and thus are considered preferable to 
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traditional formulas (Benjamin, 2012). However, other concerns about quantitative readability 

measures include that they are limited in that they do not take into account the interaction 

between the reader and text (Schulz, 1981), and they may remove the deep meaning and beauty 

from language (McNamara, Graesser, McCarthy, & Cai, 2014).  

With these concerns in mind, there remain many advantages to quantitative measures of 

readability: they are objective, relatively quick to obtain, and provide assistance in modifying 

texts (Zamanian & Heydari, 2012). However, in order to conduct a study of how readability 

influences mathematics problem solving without significant inflation of Type 1 error, the list of 

potential readability factors to be tested must be narrowed down to a small set. We present two 

pilot studies that describe how we narrowed down readability factors to consider. 

Readability Factors in Algebra Curricula 

In prior work (Walkington et al., 2015) we examined 151 story problems from a widely 

used Algebra I curriculum, Cognitive Tutor Algebra, as well as a set of 60 algebra story 

problems from a middle school tutoring software MATHia. We entered the text of the story 

problems into two text analysis programs – Coh-Metrix and LIWC. We found that controlling 

for the mathematical difficulty of the problem, several measures of readability were significantly 

associated with performance. The difficulty of the words in the problem, measured by word 

concreteness and word polysemy was important, as was the length of the story text, measured by 

number of sentences and number of words. In addition, the presence of third-person singular 

pronouns was positively associated with performance, as was problem topics that were concrete 

and relatable (e.g., home, socializing) rather than topics related to work, finance, health, or 

business. However, these data were analyzed at the problem level, using a summary measure of 

performance for each problem. No information about student demographic characteristics was 

present. This study also examined only story problems (i.e., mathematics problems in real world 

contexts) and only problems that involved the mathematical content area of linear functions. 

Readability Factors in NAEP/TIMSS 

We also examined performance on the 4th and 8th grade released items on the NAEP and 
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TIMSS (Walkington, Clinton, Shivraj, & Yovanoff, 2015). These datasets simply gave an overall 

accuracy statistic for each problem averaged for every student who took the test. Thus, these 

datasets also did not give any information about how student background characteristics might 

impact problem solving, but did give enough information to correlate readability characteristics 

of the different problem texts to performance levels on those problems. For all available released 

problems (757 NAEP problems and 445 TIMSS problems), we calculated all measures of 

readability from Coh-Metrix and LIWC. We correlated these measures of readability with 

overall accuracy measures for each problem to narrow down a list of readability measures that 

were significantly correlated to performance. We then entered this narrowed list of readability 

measures as predictors into mixed-effects regression models predicting performance, including 

other problem characteristics (e.g., grade level, answer format, difficulty) as covariates. Results 

showed that on both the NAEP and TIMSS, a story problem that had more sentences or used 

second-person pronouns was significantly associated with lower performance levels. On the 

NAEP, as the average age of acquisition of content words in the story increased, performance 

significantly decreased. Also on the NAEP, as density of pronouns increased, performance 

significantly increased as well. Table 1 shows examples of NAEP problems that vary on problem 

length and use of pronouns. 

Taken together, this study and the previous curricula study allowed us to narrow down a 

set of readability predictors to examine in the study we report here. Specifically, these studies 

suggest that word difficulty – expressed by measures such as concreteness, age of acquisition, 

and polysemy – is a critical factor. In addition, pronouns are an important readability factor; 

however, some evidence emerged that second-person pronouns seem to act in a contradictory 

manner to other pronouns. The length of the word problem – as measured by sentences or word 

count – is also an important readability measure. Finally, the study of curricula suggested that the 

problem’s topic mattered; however, this study included only problems in real world contexts. We 

did not see such effects for problem topic in the initial NAEP/TIMSS study, perhaps because the 

nature of standardized tests causes interest-eliciting characteristics to be less critical. So, in the 
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present study, we simply examine whether or not the problem was in a real world context, rather 

than any specific problem topic predictors. Prior research suggests that placing problems in real 

world contexts can improve accuracy and change strategy use (e.g., Koedinger & Nathan, 2004; 

Walkington, Sherman, & Petrosino, 2012), and these implications may differ for different 

student groups. Our final list included five factors: word concreteness, pronoun density, presence 

of second-person pronouns, word count, and presence of a “real world” context. Although there 

are a host of other readability measures that research has shown to be generally predictive of text 

comprehension, these measures were chosen because there was evidence that they were 

important when solving 4th and 8th grade mathematics word problems specifically.  

Research Questions 

Although previous studies have established the importance of our five key factors, the 

contribution of the study reported here is to look at how the associations between these 

readability factors and performance vary based on student background characteristics. We 

examine this interaction in a very large bank of story problems collected over decades of testing 

with nearly a million students. The specific background characteristics we examine include 

gender, race, SES, mathematics attitudes, language or birth status, and mathematics achievement, 

all of which have become important to national conversations surrounding equity, access, and 

achievement gaps. We compare and contrast results from two important and widely used test 

datasets – the NAEP and the TIMSS – across 4th and 8th grade. Our research questions are as 

follows: 

1) How are key readability factors differentially associated with performance for students of 

different demographic characteristics (i.e., race, language, SES, gender, mathematics 

attitudes and achievement) when solving mathematics word problems on the NAEP and 

TIMSS? 

2) How do results change when removing controls for mathematics achievement, which 

may under-represent the achievement gaps that students from different groups 

experience? 
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Method 

Overview of Sample 

Analyses drew upon student-level datasets from two sources – performance of 4th and 8th 

grade students on mathematics questions on the NAEP and on the TIMSS. A student-level 

dataset is a dataset that shows whether each student performed correctly on each problem they 

received, rather than giving summary measures for each student or problem. While the student-

level TIMSS datasets are publicly available, the student-level NAEP datasets are restricted use 

and were obtained through a data licensing agreement. Along with mathematics test items, the 

NAEP and TIMSS both include background questionnaires for students and teachers that assess 

contextual factors that impact student learning. Neither the NAEP nor the TIMSS come with 

direct consequences for students who take them, as they are not mandated. For this reason, 

readability may function differently on these assessments than on compulsory assessments, as 

students may, for example, be more likely to give up if a problem is difficult to read. 

The TIMSS, developed by the International Association for the Evaluation of Educational 

Achievement, provides written test data on the mathematics and science achievement of students 

in the U.S. and over 60 other countries. It has been administered every 4 years since 1995, and 

we include mathematics data from 1995, 1999, 2003, and 2011 (2007 released items were not 

available). The TIMSS aims to capture the breadth and richness of the mathematics taught in 

participating countries, and uncover improvement or decline in student performance over time. 

Students receive a sample of the total set of available mathematics items (see Mullis et al., 2009). 

The selection procedures for schools/classrooms for TIMSS are given in Jones and Foy (2012). 

Between 10,000 and 20,000 U.S. students typically take the TIMSS in each administration. The 

TIMSS data we used were limited to U.S. students taking English mathematics items. 

The NAEP, administered by the National Center for Education Statistics, provides 

written test data on the achievement of U.S. students in a variety of subjects, including 

mathematics. NAEP results are intended to serve as a common and continuous measure of 

performance for states over time. Long-term assessments began in 1986 and generally take place 
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every 2 years – here we analyze data from 1996, 2003, 2005, 2007, 2009, 2011, and 2013, as 

these are the years that released items and student-level data were available. Items given to an 

individual student are again drawn from a larger sample. The selection procedures for 

schools/students for NAEP are given in NCES (2009). Between 300,000 and 400,000 U.S. 

students typically take the NAEP in each administration. Because we were examining student-

level data and the NAEP dataset was so large, we took a random 10% subset of the data from 

each of the included years. This allowed for it to be computationally feasible to fit complex, 

mixed-effects models with precision. Supplementary analyses that selected multiple or different 

random subsets, including larger random subsets analyzed with less precise model-fitting 

techniques, yielded similar results to those presented here. A small percentage of students (7.6%) 

received some kind of accommodation while taking NAEP. Analyses were run with and without 

these students and results were similar, so they were left in the sample. Analyses were also run 

with and without the subset of students who received reading accommodations (4.3%) 

specifically– results were again similar either way, so students were left in the dataset. For the 

TIMSS, students with disabilities or students who had received instruction in the language of the 

test for less than one year were not tested, and thus were not included in the sample – this was 

typically around 4-7% of all students initially considered for TIMSS testing. 

Selection of Problems and Measures of Readability 

Our analyses only contain 4th and 8th grade mathematics problems from the 

aforementioned years that are released (i.e., made publicly available on the TIMSS website, 

nces.ed.gov/TIMSS/educators.asp, or the NAEP website, nces.ed.gov/NationsReportCard/nqt). 

In addition, analyses include only items that were multiple choice or short constructed response, 

and only items that had at least one sentence worth of words. As we used an automated text 

analysis software, we did not consider the visual representations or the symbols/equations – these 

were deleted when the problem was entered into the software. We also did not consider any text 

that occurred in the visuals or answer choices. Coh-Metrix is designed to be used with 

continuous text and the guidelines recommend that words in visuals be removed (McNamara et 
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al., 2014). As answer choices usually did not involve full sentences, they were also not 

considered. In supplementary analyses, we coded the visual along a variety of dimensions 

(number, type and location of visuals, and whether visual contained words), as well as presence 

of equations, but generally found these fine-grained predictors to be non-significant in 

exploratory analyses. We defined “one sentence worth of words” as a problem that, with visuals 

and symbols removed, was not a fragment and contained a subject and a predicate conveying a 

question, statement, or command. Also note that our narrowed list of factors contained only 

word-level readability variables (rather than cohesion measures that examine discourse level 

constructs), which we believe is appropriate given the relatively short length of most 

mathematics word problems. Only around 9% of TIMSS items and 6% of NAEP items did not 

have at least one sentence worth of words. 

The final set of problem texts included 428 TIMSS problems and 565 NAEP problems. 

Although we could have further decreased the problem bank by only considering problems from 

recent years on the NAEP and TIMSS, we considered this number of problems an appropriate 

but minimal sample size for full coverage of the readability measures, and thus did not want to 

decrease it further. Problems were entered into Coh-metrix and LIWC. Coh-Metrix is a 

computerized text-mining tool that provides a broad set of fine–grained readability measures 

(McNamara et al., 2013). Coh-Metrix provides 108 different indicators of text readability 

organized into categories that relate to surface features of the text, such as word concreteness, 

features of the textbase, such as pronoun density, and deeper features of the text, such as 

propositional structure or cohesiveness. The LIWC software (Pennebaker et al., 2007) is a 

dictionary-based computerized text-analysis program that counts words in more than 70 

categories, such as social process words (e.g., words relating to family or friends) and cognitive 

process words (e.g., words describing causation or certainty). LIWC’s output consists of the 

percentage of words in a text from each dictionary.  

As mentioned previously, for the analysis reported here we narrowed the Coh-Metrix and 

LIWC measures under examination to four – word count, pronoun density, word concreteness, 
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and presence of second-person pronouns. Word count (Coh-Metrix) is a numerical count of how 

many words the text contains, while pronoun density (LIWC) is the percentage of the total 

number of words in the problem that are pronoun words (including them/they/it). Word 

concreteness (Coh-Metrix) is a measure of the level at which one can interact with the concept 

represented by a word through the senses; for example, the word “ball” would have high 

concreteness, and the word “truth” would have low concreteness. Concreteness is calculated 

through ratings compiled in the Medical Research Council Psycholinguistic Database (Coltheart, 

1981). Concreteness values for each word are discrete and in the range of 100 to 700 with higher 

values indicating more concreteness. Coh-Metrix provides a measure of the average concreteness 

compiled across all content words1 in the text. All three of these measures were normalized, 

although we provide summary measures on their original scales in Table 2. Finally, presence of 

at least one second-person pronoun (i.e., the word “you”) was measured through a simple 0/1 

indicator, since there were relatively few problems containing these pronouns (around 5% of 

problems). 

In addition to the LIWC and Coh-Metrix categories, each problem was also coded for 

whether it contained a “real world” context (i.e., any reference to using mathematics in the world 

to understand objects or events), rather than using mathematics for abstract or academic 

purposes. For example, a problem asking for the area of a 3-by-4 unit rectangle would not be a 

real world problem, but a problem asking for the area of a 3-foot-by-4-foot “poster” would. 

Fifty-three problems were double coded by two coders for whether there was a real-world 

context and whether the problem contained at least one sentence worth of words. Raters agreed 

92.5% of the time about real-world contexts, and 100% for whether the problem contained one 

sentence of words. Summary statistics for these 5 measures are in Table 2. 

Student Variables used in Analyses 

When choosing student demographic variables to include in analyses, a primary concern 

                                                             
1 “Content words” include nouns, verbs, adjectives, and adverbs which have linguistic meaning. These are 
distinguished from function words (e.g., articles, prepositions, conjunctions) that express grammatical relationships. 
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was including measures that were available across all years that each test had been administered. 

If a measure (like racial category) had not been collected in one year, this would result in a large 

subset of our released problems being omitted from the analyses. This limited the demographic 

categories we could consider to those shown in Tables 3-4; these tables also give summary 

measures of how the student population in our final sample varied on each demographic factor, 

as well as how much data were missing. We discuss each demographic variable in turn. 

Gender. Gender information (male/female) was collected all years for both tests. There was very 

little (less than 0.1%) missing data. 

Race. Racial category was collected each year of NAEP, but only 2 of the 4 years were included 

for TIMSS. For this reason, our analysis of the TIMSS data does not include the Race variable. 

Racial categories were Caucasian, Black, Hispanic, Asian/Pacific Islander, and Other (American 

Indian/Alaska Native, two or more races) on the NAEP. For all analyses, categories were 

collapsed to Caucasian, African-American, Hispanic, and Other, due to small sample sizes. Race 

was missing for a small percent (1.7%) of students on NAEP (Table 3). 

Language. On the NAEP, a variable was available each year for “How often do people in your 

home talk to each other in a language other than English?” and it was rated on a 4-point scale 

from “Never” (1) to “All or Most of the Time” (4). This variable was collapsed into a 

dichotomous predictor of whether they indicated only English (1) or any amount of non-English 

(2-4). This value was missing for a small percentage (2.6%) of participants (see Table 3). We 

used this variable instead of the ELL status variable because it was better matched to the “Birth 

Status” variable available on the TIMSS. Note that ELL status has a specific meaning relating to 

a student currently having low English proficiency and being served in an assistance program. 

Birth Status. On the TIMSS, there was no similar variable available for language. However, a 

variable was available for whether the student was born in the U.S. or outside of the U.S. This 

value was missing only for a small percentage (2.0%) of participants (see Table 3). 

Socioeconomic Status. To capture SES, the only measures that were relatively consistent across 

years on NAEP and TIMSS were number of books and a presence of a computer in the home. 
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We called this indicator “Luxury Items” and scaled it as a continuous variable ranging from 0 to 

1, with half of the score coming from the books rating (rated on a 1-4 or 1-5 scale, with each 

rating level representing a different range of books) and half coming from the computer rating (a 

simple yes/no regarding whether students had a computer in home). On the 1996 NAEP, there 

was no computer question, so number of books was used alone to compute Luxury. On the 

TIMSS, there was no number of books measure for 1995 Grade 4, and no computer measure for 

1999 Grade 8, so only one measure was used to compute Luxury. This variable was missing for a 

small percentage of students on TIMSS (1.2%) and NAEP (2.1%).  

Mathematics Attitudes. For each year on the TIMSS, a measure was collected where the student 

responded to the text “I enjoy learning mathematics” on a 1-4 scale. This value was missing for a 

small percentage (2.96%) of participants (see Table 4). These values were normalized. Measures 

for attitudes are not included for the NAEP as they were not available in all years. 

Plausible Values/ Mathematics Achievement. All NAEP and TIMSS datasets include five 

“plausible values” that estimate students’ overall mathematics achievement based on their 

responses to the mathematics items answered. There were 5 such values because, as mentioned 

previously, students typically received different items, and any estimates of achievement contain 

measurement error. Plausible values use multiple imputations to show a likely distribution of a 

students’ proficiency, and cannot simply be averaged (see Von Davier, Gonzalez, & Mislevy, 

2009). We used these plausible values as a proxy for mathematics achievement. There were no 

missing PVs on the TIMSS, and a very small (0.3%) percentage of missing sets of PVs on the 

NAEP. These values were normalized. 

Problem Variables Used in Analyses 

We also used descriptive variables to control for characteristics of individual problems 

(see Table 5) that did not directly relate to readability. 

Problem Type. On the NAEP, problems were organized into 3 types: multiple choice, short 

constructed response, and extended constructed response. Extended constructed response items 

were few (30 total items), and differed substantially from the other two problem types – they 
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would ask students to write extended mathematical explanations. These were omitted from the 

analysis. On the TIMSS, there were constructed response and multiple choice items. While most 

of the constructed response items asked only for short “fill in the blank” answers, several asked 

for extended written explanations (15 total items) – these were also omitted. 

Problem Difficulty. On the NAEP, each problem had a Difficulty rating of Easy, Medium, or 

Hard given on the NAEP website. On the TIMSS, there was no such rating given explicitly, so 

Easy problems were defined as those with an international performance level of 67% or greater, 

medium had 34-66% correct, and high had 33% correct or less. Note that as these are 

international performance levels, we would not necessarily expect them to be directly indicative 

of U.S. students’ actual performance levels. Students in different countries have different 

opportunities to learn various mathematics concepts due to differences in curriculum, policy, and 

instruction. Also, as the TIMSS is offered in different languages, the language of the assessment 

itself may impact item difficulty. Thus, this is not a completely redundant measure when 

predicting U.S. item performance, and can be thought of as a broad measure of the difficulty of 

the mathematics problem independent of a country’s particular context.  

Problem Complexity. For 2005 and forward, NAEP explicitly rated the Complexity of their 

problems as Low, Moderate, or High. Prior to 2005, NAEP rated problems as Procedural 

Knowledge (which we mapped to Low), Conceptual Understanding (which we mapped to 

Moderate) and Problem Solving (which we mapped to High). The Moderate and High problems 

were later collapsed such that Complexity only had two levels – Low and High. NAEP 

differentiates complexity from difficulty: “Mathematical complexity is not necessarily related to 

item difficulty, which is based on actual student performance. Mathematical complexity should 

also be independent of curriculum, meaning it is determined assuming that students are familiar 

with the mathematical content of the item” (Neidorf, Binkley, Gattis, & Nohara, 2006, p. 30). 

The system for the TIMSS was more complex – they had 12 different “Cognitive Domain” 

categories, which evolved over the years the test was administered. However, we mapped these 

categories into Low (Knowing, Knowing Facts and Procedures, Performing Routine Procedures, 
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Solving Routine Problems, Using Routine Procedures) and High (Applying2, Communicating 

and Reasoning, Reasoning, Investigating and Solving Problems, Solving Problems, Using 

Complex Procedures, Using Concepts) Complexity. 

Grade Level. All problems were either Grade 4 or Grade 8. Grade 12 data were not considered. 

Grade level could be considered a proxy for age and thus a student variable rather than a problem 

variable. However, here this did not make sense because Grade 4 and Grade 8 had completely 

distinct problem sets, with different mathematical and reading demands, different uses of visuals, 

symbols, equations, etc. Thus, comparing differential effects of readability based on age using 

these problems would not be a sensible comparison. 

Content Domain. Both NAEP and TIMSS items were organized into mathematical content 

domains. The NAEP was organized into the 5 categories we use here, while the TIMSS had 

categories that were similar but shifted year-by-year in their wording. The TIMSS domains were 

grouped according to the five NAEP categories: Algebra (which included Patterns and 

Relationships), Data (which included Data Representation, Probability and Chance), Geometry, 

Measurement, and Number (which included Fractions and Proportions). 

Model Fitting Techniques 

Mixed-effects logistic regression models were used (Snijders & Bosker, 1999) and fit 

separately for the NAEP and TIMSS. We included random intercept terms for Problem ID and 

which year’s data the observation was drawn from (Tables 6-7). We did not fit a random effect 

for student ID, as the Plausible Value variable was a similar, and perhaps better, measure of 

student performance on the mathematics items on the test. The plausible value provided by 

NAEP/TIMSS had the advantage of being calculated based on students’ performance on all 

mathematics items, rather than only based on their performance on released items included in the 

analysis. The models for the NAEP included 1,511,700 observations of 705,600 students solving 

                                                             
2 The “Applying” category on the TIMSS had problems of disparate complexity, and the decision was made to call 
category “high complexity.” However, in practice, the cognitive complexity of the individual problems varied. 
Regression models were run both ways, and results were similar. 
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565 mathematics problems. The models for the TIMSS included 720,010 observations of 40,570 

students solving 428 problems (all samples rounded to the nearest 10). 

We also included all student and problem level variables as fixed effect predictors. The 

outcome variable was whether the student got the problem correct or incorrect, coded as a 0/1. 

For short constructed response items where partial credit was a possibility, we did not award any 

partial credit. Overall, on the TIMSS, students had an accuracy rate of 55.69%, while on the 

NAEP they had an accuracy rate of 51.39% correct. We first fit a null model, which included 

only our student and problem variables (Model 1). We then fitted a model that included our 4 

readability predictors and real-world context (Model 2), and a subsequent model that allowed 

these predictors to interact with student background characteristics (Model 3). We then fit a 

model that did not include the plausible value measures of mathematics achievement (Model 4) 

to examine how omitting this variable changed the results. Indeed, including a predictor for 

mathematics achievement to model performance on a problem, when that achievement measure 

was in part computed from performance on that problem, could be considered somewhat 

circular. However, given the well-known achievement gaps between diverse student groups, 

fitting the model with these plausible values seemed important as well. For the TIMSS, Model 4 

was fit with Student ID as a random effect, as we were using the entire dataset. However, in the 

NAEP, there were too few observations per student (because we were using a 10% subset) for a 

random effect for Student ID to be computationally feasible. We also fit some additional models 

(described later) to explore alternative hypotheses about results that arose. 

Models were implemented using the binomial family in the glmer() function in the lme4 

package (Bates, Maechler, Bolker, & Walker, 2014) in Revolution R Enterprise (Revolution 

Analytics, 2014). Fitting models with plausible values involves special techniques for model 

computation. There are 5 plausible values, so each model is fit 5 separate times, once using each 

value. These models are then compiled by averaging the regression coefficients to obtain overall 

regression coefficients. Computation of the error term of these new coefficients was computed 

by combining the sampling variance and imputation variance, as outlined in Mislevy, Beaton, 
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Kaplan, and Sheeham (1992). We also implemented p-value corrections, given the large number 

of significance tests we were conducting. We used the False Discovery Rate (FDR) procedure, 

described in Benjamini and Hochberg (1995), also described in the NAEP technical 

documentation (http://nces.ed.gov/nationsreportcard/tdw/). The FDR is a multiple comparison 

procedure that holds the significance for a set of comparisons at a certain level (here α = 0.05) by 

controlling for the expected proportion of errors from among the rejected null hypotheses. 

As the models were logistic, d-type (standardized mean difference) effect sizes were 

estimated using the procedure outlined in Chinn (2000), where the coefficient is divided by 1.81. 

While this is straightforward for indicator variables or variables that range from 0 to 1, it is more 

difficult to interpret for variables that take a continuous range. For our normalized variables (3 of 

our readability variables, mathematics attitudes and plausible values) we took the difference 

between +1.5 and -1.5 standard deviations to compute this effect size measure.  

In Cohen (1988), effect sizes of 0.2, 0.5, and 0.8 are considered small, medium, and 

large, respectively. However, as Hill, Bloom, Black, and Lipsey (2008) argue, it is important to 

consider benchmarks for effect size in the unique context of our study. They show that in 

educational research, effect sizes found using broad standardized mathematics tests often range 

from 0.1 to 0.3. Prior research on mathematics story problems (Walkington et al., 2015) suggests 

that the effects for readability measures are likely to be small, even when the effects of several 

measures are grouped together. When using text analysis tools, individual measure effect sizes 

near to d = 0.1 have been considered reasonable for practical significance (e.g., Newman et al., 

2008). The combined effect of several readability measures that vary together may be more 

considerable and practically meaningful in the context of problem design. 

Results 

Findings for Null Models 

Models 1 and 2 in Table 8 (NAEP) and Table 9 (TIMSS) are two null models that do not 

have interaction terms between readability factors and student background characteristics. Model 

1 includes only student and problem variables, and shows similar results across the NAEP and 
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TIMSS. Unsurprisingly, medium and high difficulty problems have significantly lower accuracy 

than low difficulty problems, and high complexity problems have significantly lower accuracy 

than low complexity problems. On both tests, males score significantly higher than females, 

owning more luxury items is associated with significantly higher accuracy, and higher plausible 

values (mathematics achievement) are associated with significantly greater accuracy. On the 

NAEP, short constructed response problems are associated with significantly lower accuracy 

than multiple choice problems, African-American and Hispanic students score significantly 

lower than Caucasian students while students of other race/ethnicities score significantly higher, 

and Grade 8 has significantly lower accuracy than Grade 4. 

Model 2 adds in readability predictors, with models from both datasets showing that the 

presence of second-person pronouns is associated with significantly lower accuracy (d = -.18 for 

NAEP and d = -.42 for TIMSS). The NAEP models additionally show that higher word counts 

are associated with significantly lower accuracy (d = -.17), more concrete words are associated 

with significantly higher accuracy (d = .12), and a greater pronoun density is associated with 

significantly higher accuracy (d = .13). The effect of a “real world” context is not significant in 

either model, but is directionally positive in NAEP and directionally negative in TIMSS. 

Research Question 1: Differential effects of Readability Based on Student Characteristics 

Model 3 in Table 8 gives the findings for the interaction of readability and student 

characteristics for the NAEP. In terms of gender differences, positive associations between real 

world contexts and accuracy and between pronouns and accuracy are higher for males than 

females (d = .03 and d = .02). However, these effect sizes are negligible. In addition, negative 

associations between word count and accuracy and second-person pronouns and accuracy are 

stronger for males than females, but again effect sizes are small (d = -.07, d = -.04). In terms of 

racial differences, positive associations between pronouns and accuracy are higher for African-

American students than Caucasian students (d = .07). However, positive associations between 

concrete words and accuracy are lower for African-American students than Caucasian students, 

although the effect size is negligible (d = -.03). Finally, we see that negative associations 
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between second-person pronouns and accuracy are stronger for African-American students (d = -

.11) or Hispanic students (d = -.08) than Caucasian students. Thus, the difficult readability factor 

of second-person pronouns might be differentially negatively associated with performance for 

these groups. For language status, we see that negative associations between word count and 

accuracy are higher for students with a language other than English spoken at home than other 

students, although the effect size is negligible (d = -.03). Also, negative associations between 

second-person pronouns and accuracy are stronger as students have fewer luxury items, although 

the effect size is very small (d = -.05). 

The strongest effects for differential findings for readability characteristics are for 

mathematics achievement (measured by plausible values). Negative associations between word 

count and accuracy, and second-person pronouns and accuracy are less strong for higher 

achievement students (d = .19, d = 0.54). In addition, positive associations between concrete 

words and accuracy are lower for higher achievement students (d = -.11). Finally, positive 

associations between presence of a real-world context and accuracy are higher for higher 

achievement students, although the effect size is very small (d = .05). This suggests that stronger 

students have less negative associations between their performance and readability factors that 

make a problem difficult to read, while weaker students have stronger positive associations 

between their performance and readability factors that facilitate easy reading. 

Model 3 in Table 9 gives the findings for the interaction of readability and student 

characteristics for the TIMSS. In terms of gender, negative associations between word count and 

accuracy are stronger for males than females; however, this has a negligible effect size (d = -.03). 

In addition, negative associations between second-person pronouns and accuracy are stronger for 

males than females, although this too has a very small effect size (d = -.07). As in the NAEP 

data, there is evidence in the TIMSS that males are more negatively impacted than females by 

textual factors that make reading the problem more difficult, although the effects are very small. 

In terms of birth status, negative associations between second-person pronouns and accuracy are 

stronger for students not born in the U.S. This suggests that difficult readability factors may have 
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a stronger association to performance for non-U.S. born students than other students, which has 

some similarity to the language finding in the NAEP. However, the effect size is again very 

small (d = -0.07). For mathematics enjoyment, the positive association between concrete words 

and accuracy is significantly greater for students who enjoy mathematics more (d = .08), and the 

negative association between word count and accuracy are significantly less strong for students 

who enjoy mathematics more (d = .01). Although the latter result has a negligible effect size, 

there is some evidence that enjoying mathematics allows for stronger positive associations 

between performance and textual characteristics that make a problem easier to read, even when 

controlling for other background variables like mathematics achievement. 

Finally, in terms of mathematics achievement (i.e., plausible values), we see that negative 

associations between word count and accuracy are less strong for higher achievement students, 

and this has a considerable effect size (d = 0.34). Further, negative associations between second-

person pronouns and accuracy are less strong for higher achievement students (d = 0.30). There 

is also some evidence that positive associations between pronoun density and accuracy are lower 

for higher achievement students, but this has a negligible effect size (d = -.04). Overall, having 

higher mathematics achievement is associated with student performance having a weaker 

association with difficult readability factors, whereas students with lower mathematics 

achievement may be differentially negatively impacted by these factors. 

Results for the NAEP and the TIMSS on Research Question 1 are summarized in Table 

10. Note that, surprisingly, there were few significant interactions for SES (luxury items), 

language spoken at home, or birth status. This may be because controls for mathematics 

achievement were masking these differences. We explore this issue next. 

Research Question 2: Differential Effects of Readability without Mathematics Achievement  

For the analysis for Research Question 2, we omitted the Plausible Value (mathematics 

achievement) variable from the models. This is because there are well-known achievement gaps 

between students of different race, genders, and SES, and language backgrounds. The inclusion 

of this predictor may mask the differential effects of readability these students actually 
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experience, as much of the inequity is likely explained by falling behind in mathematics 

knowledge. The results for this analysis are in Model 4 in Tables 8 (NAEP) and 9 (TIMSS). Here 

we focus on results that are new or different between these models and the previous models. 

In the NAEP models, the biggest difference when removing the mathematics 

achievement controls was the interaction effects that appeared for luxury items (our proxy for 

SES). Results showed that for students who own fewer luxury items, there is a stronger positive 

association between accuracy and more concrete words (d = .09) and the same held for more 

pronouns (d = .06), compared to those who owned more luxury items. Students who owned more 

luxury items had a weaker negative association between second-person pronouns and 

performance (d = 0.16). In terms of findings related to race, the new models did not detect a 

significant interaction between the racial category of African-American and word concreteness, 

but did find that African-American students had a stronger negative association between 

increased word count and decreased performance (d = -.06), compared to Caucasian students. 

The opposite trend was true for students of “Other” races/ethnicities, compared to Caucasian 

students (d = .07). Finally, the interaction between male students and second-person pronouns 

was no longer significant. Overall, when controls for mathematics achievement are removed, we 

see stronger differential readability impacts for luxury items (SES), and some racial differences. 

In the TIMSS models, we see a similar trend that luxury items (our proxy for SES) are 

now more important for differential readability effects. The negative association between word 

count and accuracy is less strong for students with more luxury items students (d = .10). 

Similarly, the negative association between word count and accuracy is stronger for students 

born outside of the U.S., although the effect size us very small (d = -.05). This suggests that the 

inclusion of mathematics achievement may have been masking some of the difficulties that 

students with fewer luxury items (low SES) and students born outside the U.S. experience with 

difficult-to-read word problems. In addition, two more interactions that were very close to 

significance in Model 3 now show as significant in Model 4 – the positive association between 

pronoun density and accuracy is stronger for students who enjoy mathematics more (d = .05), 
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and the association between presence of a real-world context and accuracy is significantly more 

positive for males than females, although the effect size is negligible (d = .02). 

Additional Analyses 

Exploring Word Count and Second-Person Pronouns 

The strongest and most consistent effects in the above models tended to be for word 

count and presence of second-person pronouns. One hypothesis is that problems that are more 

mathematically difficult tend to have more words, and tend to use second-person pronouns, thus 

the interactions we are detecting are actually between problem difficulty and student 

characteristics, not problem readability and student characteristics. While it is not clear whether 

there is a purely “mathematical” difficulty for a problem that is completely distinct from the 

“reading” difficulty of the problem, or whether it would even be sensible to try to separate these 

components, we present some additional explorations in this section. 

We examined the problems that tended to be especially long or short and the problems 

that tended to have second-person pronouns. Examples of such problems were shown in Table 1. 

Problems that used second-person pronouns sometimes put the reader into the problem (e.g., the 

problem was a story about something “you” did). However, more often, these problems were 

using second-person pronouns to give the reader specific technical instructions (e.g., round your 

answer) or more general instructions to show their work or steps. Problems that had low word 

counts tended to give brief information for a simple calculation or definition, or had a small 

amount of text because they referred the reader to a visual. Problems that were long tended to 

describe a complex mathematical situation or give a significant amount of procedural instruction 

to the reader. Note that the presence of a real-world context was controlled for in all models, thus 

the findings were not being driven by an increased tendency of longer problems or problems 

with second-person pronouns to be in a real-world context. 

This suggests that word count and second-person pronouns may be associated with 

mathematical aspects of the problem’s difficulty and complexity. In addition, these readability 

factors may be more likely to occur when the question is short answer (rather than multiple 
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choice). Thus, we next did analyses that controlled for interactions between all student 

background characteristics and the variables that were included for problem difficulty, problem 

complexity, and problem type (multiple choice or short constructed response). It is important to 

note that categorizations of difficulty and complexity were not necessarily made based on 

mathematical structure alone, and also likely involved aspects of the text’s readability; indeed, 

the link between mathematical difficulty and reading difficulty is impossible to untangle in word 

problems that are not artificially experimentally manipulated. 

Models Controlling for Interactions between Student Characteristics and Problem Difficulty 

When the NAEP models were fit with the additional student background by problem 

difficulty interactions, we found slightly different results than in Models 3 and 4. The interaction 

effects that were lost included the interaction between gender and presence of second-person 

pronouns and between luxury items and second-person pronouns. A new significant interaction 

between presence of a real-world context and African-American students was detected, but had a 

negligible effect size (d = -.02). In addition, new interactions were detected between luxury and 

real world contexts and luxury and word count, but also had negligible effect sizes (d = .03 and d 

= .04). Finally, there was a new, significant interaction between mathematics achievement and 

pronoun density (d = 0.14), which suggested a stronger positive association between pronoun 

density and performance for higher achievement students than lower achievement students. 

Overall, for the NAEP, we see limited evidence that some of the interactions detected for 

second-person pronouns were interactions with problem difficulty. Second-person pronoun 

interactions remained significant for mathematics achievement (d = .21) and racial/ethnic 

categories (d = -.10 for African-American students and d = -.08 for Hispanic students). 

When TIMSS models were fit with the additional student background by problem 

difficulty interactions, we again found similar results to those found in Models 3 and 4. The 

interaction effects that were lost included the interaction between mathematics achievement and 

pronouns and the interaction between mathematics achievement and second-person pronouns (ps 

> 0.5). In turn, the model showed a new, significant interaction between word concreteness and 
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mathematics achievement, suggesting that the positive association between word concreteness 

and accuracy was less strong for high achieving students (d = -.10). Overall, there is little 

evidence in the TIMSS data to suggest that interactions detected between readability and student 

background characteristics were interactions between problem difficulty and student background. 

Discussion 

 We conducted analyses of nearly 20 years of mathematics achievement data from the 4th 

and 8th grade NAEP and TIMSS, and explored whether the readability characteristics of 

mathematics word problems (length, pronouns, word difficulty, and real world context) tend to 

differentially impact different student groups. The key student demographic characteristics we 

examined were gender, race, mathematics achievement, mathematics attitudes, language(s) 

spoken at home, birth status, and luxury items (SES). Here we focus on results that were 

replicated across both datasets, and/or results that had effect sizes nearing practical significance. 

Gender 

Although there was some suggestion in both datasets that males tend to benefit more 

from readability characteristics that make problems easier to read (i.e., pronouns that are not 

second-person pronouns) and tend to be harmed more by readability characteristics that make 

problems harder to read (i.e., more words and second-person pronouns), effect sizes were all 

very small (ds < .08). These differential effects for readability based on gender may stem from 

reading achievement differences favoring females, which have been documented in numerous 

studies (Chatterji, 2006; Department for Education and Skills, 2007; Halpern et al., 2007; Logan 

& Johnston, 2010; Mullis et al., 2012; Twist et al., 2007). 

Race 

Differential effects of readability based on racial/ethnic background were only examined 

for the NAEP. However, this analysis suggested that African-American students and Hispanic 

students may tend to suffer more from readability characteristics that make a mathematics word 

problem less readable – specifically, second-person pronouns. Here, effect sizes were bordering 

practical significance. An analysis of problems that contained second-person pronouns suggested 
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that these problems often give the students instructions (e.g., show your work) that take them 

outside of the mathematical scenario and ask them to consider the manner in which they are 

approaching the problem and presenting their solution.  

Language and Country of Birth 

Although language(s) spoken at home (from NAEP) and country of birth (from TIMSS) 

are clearly very different background measures, in both cases we found few statistically or 

practically significant differential effects for readability characteristics of word problems. This is 

surprising given previous work on language and story problems (e.g., Abedi et al., 2000; 

Martiniello, 2008). It is important to note that neither of these measures were technically a 

measure of ELL status, and that the TIMSS measure was likely only indirectly related to 

language background.  

Socioeconomic Status 

When the models included controls for mathematics achievement, we found few 

differential effects based on owning luxury items (our proxy for SES). The strong relationship 

between SES and mathematics achievement is well-known. However, when mathematics 

achievement was removed as a variable, we saw effects in the expected direction in both 

datasets. Students with fewer luxury items seemed to benefit more from readability 

characteristics that made problems easier to read (i.e., more pronouns and more concrete words). 

Correspondingly, they were negatively impacted more by readability characteristics that made 

problems harder to read (i.e., more words and second-person pronouns). This makes sense given 

that students of lower SES struggle more in reading and mathematics than students of higher 

SES (Noble et al., 2006; Perry & McConney, 2010; Sirin, 2005).  

Mathematics Attitudes  

We only had mathematics attitudes data in the TIMSS, which was the smaller dataset. 

However, students with more positive mathematics attitudes tended to benefit more from 

concrete words. It is important to note that these analyses controlled for mathematics 

achievement. Previous findings have indicated that positive attitudes can increase focus and 
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attention towards material (Pekrun, Goetz, Titz, & Perry, 2002) and are positively associated 

with students making connections within a text and between a text and their background 

knowledge (Clinton & van den Broek, 2012). Positive attitudes may thus allow students to 

engage more deeply with the problem situation, which may allow the benefits of concrete words 

for situation model construction to be realized.  

Mathematics Achievement  

We saw the strongest differential effects for readability for students with different 

mathematics achievement levels. Students who were weaker in mathematics tended to benefit 

more from factors that made problems easier to read (i.e., concrete words and pronouns). These 

students tended to suffer more from factors that made problems harder to read (i.e., more words 

and second-person pronouns). These results make sense given that learners with high 

mathematics knowledge can better compensate for fewer supports in the environment (Mayer, 

2001), and that mathematics and reading achievement are closely related (Wu, 2010). 

Limitations 

 There are a number of methodological limitations to this analysis. First, all analyses are 

strictly correlational, thus only associations can be examined, and no conclusive evidence for 

causation can be gleaned. Studies of this type should be supplemented by experimental research 

where readability characteristics of word problems are systematically varied, and performance is 

examined on mathematically-matched problems that vary only with respect to a readability 

characteristic. However, it is difficult to do this type of experimental study on a scale that allows 

for a sensible examination of how readability characteristics differentially impact different 

student groups, and very large sample sizes would be needed to get enough students with each 

combination of demographic characteristics. This is the strength of the NAEP and TIMSS data – 

although correlational, we have the sample size needed to make sensible comparisons between 

student demographic groups across a variety of demographic variables. 

 A second limitation was the demographic measures that were available. We did not have 

a measure of reading ability, we only had racial background in one dataset, we did not have a 
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measure of ELL status that was available in both datasets, and SES was approximated based on 

books and computer in home variables. A more robust set of demographic variables certainly 

would have strengthened the analysis. However, having enough mathematics word problems 

such that we had appropriate variance on all of our problem-level and readability predictors was 

essential, and another important strength of using these large-scale datasets without omitting 

years where less or different demographic data were collected. Because of problem sample size 

considerations, we were also unable to look at how the impact of readability may have changed 

over time, for particular groups of years; this would be an interesting direction for future work if 

problem banks of sufficient size become available. 

 A third limitation was the problem-level variables that were available in the NAEP and 

TIMSS. Specifically, there was no sensible way to separate problem “mathematical” difficulty 

from “reading” difficulty. In prior work (Walkington et al., 2015), we analyzed a corpus of 

problems that all covered the same narrow mathematical concept – linear functions. This allowed 

us to put in careful controls for aspects of the problem’s mathematical structure, but at the 

expense of greatly hindering the generalizability of any results we detected. Both types of 

analyses are needed to understand how readability of mathematics word problems is related to 

student performance.  

 A fourth limitation is the narrow scope of readability variables examined. Both to avoid 

Type I errors and for methodological reasons, only a select number of variables were examined. 

Unfortunately, this meant many sentence-level variables that may be especially important in the 

short texts used in these analyses were not considered, such as the number of words before the 

main verb and the number of phrases (McNamara et al., 2013). It is possible that the variable of 

text length used in this study encompassed some of these important sentence-level measures as 

more words before the main verb and a greater number of phrases would likely lead to a greater 

number of words. Moreover, many of the cohesion metrics in Coh-Metrix require multiple 

paragraphs and at least 300 words to be valid (McNamara et al., 2014). In addition, future work 

in variables known to be important for readability in short texts, such as the number of 
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propositions and the length of propositions (Miller & Kintsch, 1980), would contribute to better 

connecting fields of text comprehension and mathematical problem solving. As discussed earlier, 

our analyses and results are ultimately limited by how to measure and operationalize 

“readability,” and the inherent limitations therein. 

Implications 

 Findings support previous work indicating the importance of reading comprehension in 

solving story problems (Hecht et al., 2001; Lerkkanen et al., 2005). Reading comprehension is a 

complex, multidimensional construct (Kintsch, 1998), and traditional measures of reading 

difficulty provide only a coarse estimate of the amount of information a reader needs to process, 

but do not capture the nuance of language (Graesser, McNamara, Louwerse, & Cai, 2004). 

Readability tools like Coh-Metrix provide fine-grained measures that can specify different 

features of readability. Knowing these specific features allows for more targeted interventions to 

improve the readability of mathematics items. 

Our analyses suggest that readability characteristics of mathematics word problems are 

differentially impacting different student groups. Groups of students that have historically 

stronger performance in mathematics or reading – including Caucasian students and higher SES 

students – tend to see less impact on their performance on mathematics test items when the 

reading difficulty of the mathematics problem is greater. This is also true for females who have 

stronger academic performance in reading, which suggests that more developed mathematical 

knowledge may allow these students to compensate for difficult textual and linguistic structures, 

facilitating situation and problem model construction. On the other hand, students from groups 

who have historically performed less well in mathematics and reading – including African-

American and Hispanic students and lower SES students – tend to benefit more when problems 

are concrete, concise, and understandable. This is also true for males, who have weaker academic 

performance in reading. Such characteristics may support the challenging task of constructing a 

situation model and coordinating it with a problem model. These types of readability 

modifications may be critical to fairly teaching and evaluating students from diverse groups. 
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Explicit considerations of reading difficulty when evaluating students’ mathematical knowledge 

via assessments may be crucial to using assessments to create meaningful targets and 

interventions to improve mathematics instruction. 

Although we evaluated pre-selected readability categories here, it seems likely that 

effects would be similar for other factors that are known to make texts more or less easy to read 

for students – such as other measures of word difficulty and measures of similarity and overlap 

between ideas in sentences. It was also interesting to find that the effect of a real-world context 

was not pronounced as a main effect and only produced a few, very weak interactions that 

suggested these contexts may benefit male students, Caucasian students, and higher SES 

students. Although such contexts have been hailed as making mathematical ideas more 

accessible compared to mathematical abstractions by allowing for the support of a situation 

model (Walkington et al., 2012), if not designed and written with diverse students in mind they 

may serve to further alienate these students. 

Given that readability matters for mathematics word problems, and readability issues 

differentially impact different student groups, how can mathematics instruction be designed to 

support all students? One idea is that teachers can focus on a few critical readability factors when 

posing problems that cover mathematics concepts they know will be challenging and new for 

students. Results here suggest that shortening the problem text and including concrete words and 

scenarios may be particularly important to support struggling learners.  

In addition, several interventions to support students in reading mathematics word 

problems have been proposed. In schema-based instruction (Fuchs et al., 2004), students learn to 

identify different types or classes or word problems before choosing strategies to solve them. 

Solve It! is another such intervention where “Students are taught how to read the problem for 

understanding, paraphrase by putting the problem into their own words, visualize the problem by 

drawing a picture or making a mental image, set up a plan for solving the problem, estimate the 

answer, and compute and verify the solution” (Montague, Warner, & Morgan, 2000, p. 111). 

These interventions are intended to move students away from direct translation and keyword-
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type strategies, and encourage careful reading of the problem situation and the formulation of a 

sensible situation model, a key element of the theory of successful word problem solving we 

discussed. To form accurate situation models, students need significant experiences making 

sense of meaningful mathematical scenarios, discussing alternative interpretations, reading 

critically, defending claims with evidence, and drawing out misconceptions. This kind of 

engagement, detailed in a recent discussion of Anticipation Guides for reading mathematical 

texts (Adams, Pegg, & Case, 2015), can help deepen students mathematical understanding while 

simultaneously developing their reading skills. In these guides, students determine whether 

statements are true or false using evidence they recorded from the text, by reading interactively 

and drawing upon their mathematical knowledge. 

Our results also raise questions about how reading and mathematics instruction should be 

intertwined. Mathematics teachers could develop an understanding of what factors make reading 

mathematics problems difficult, and implement strategies to assist students in overcoming these 

difficulties. Particularly, discipline-specific reading behaviors that are endemic to the genre of 

mathematics story problems could be developed and cultivated (see Shanahan & Shanahan, 

2008). The Common Core Standards for English Language Arts, while perhaps not familiar to all 

mathematics teachers, include discipline-specific reading standards for technical texts, like 

“Determine the meaning of symbols, key terms, and other domain-specific words and phrases as 

they are used in a specific scientific or technical context…” (CCSS, 2010). The departmentalized 

nature of secondary mathematics instruction may make the divide between reading and 

mathematics particularly wide, and new models for collaboration and joint planning could be 

explored. Having students take on the role as the author and creator of mathematics story 

problems may be another promising approach to help students understand the discursive 

structure of story problems. Indeed, Walkington (in press) reports an intervention at a diverse 

urban school with a high proportion of ELLs, where students posed their own algebra story 

problems related to their interests, and then showed improved post-test performance on standard 

story problems compared to a control group. Additionally, embedding compelling mathematical 
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tasks that are motivated by complex reading passages, such as model-eliciting activities (Lesh & 

Harel, 2003), into the curriculum with appropriate support for the reading demands can allow 

students to gain exposure to and experience with difficult reading in the mathematics classroom. 

A recent article in the New York Times (Hartocollis, 2016) titled “New, Reading-Heavy 

SAT Has Students Worried” discussed the College Board’s newly released SAT. The test has 

raised concerns among some that it may contain lengthier and more difficult reading passages 

and mathematics word problems. These changes are thought to differentially impact some of the 

most vulnerable student populations on a test that has compelling implications for college and 

careers. It is critical to continue to investigate and understand how the verbal structure of 

mathematics word problems may impact the performance and access of different student groups. 
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Tables 

Table 1. Example Problems from different readability categories 

 Example 1 Example 2 Example 3 
Problems 
Using 
Second-
Person 
Pronouns 

On average, thunder is heard in 
Tororo, Uganda, 251 days each year. 
What is the probability that thunder 
will be heard in Tororo on any day? 
(1 year = 365 days) Give your 
answer to the nearest percent. 

There is only one red marble 
in each of the bags shown 
below. Without looking, you 
are to pick a marble out of 
one of the bags. Which bag 
would give you the greatest 
chance of picking the red 
marble? 

Use 2 of the triangle tiles 
to make one large black 
triangle. Then show what 
you did with your tiles by 
shading in your triangle 
below. 

Problems 
with Low 
Word 
Count 

There are 600 balls in a box, and 1/3 
of the balls are red. How many red 
balls are in the box? 

Write the names of shapes A, 
B, and C in the spaces 
provided. 

On the grid, draw a line 
parallel to line L. 

Problems 
with High 
Word 
Count 

In a car rally two checkpoints are 160 
km apart. Drivers must travel from 
one checkpoint to the other in exactly 
25 hours to earn maximum points. A 
driver took 1 hour to travel through a 
40 km hilly section at the beginning 
of the course. What must the average 
speed, in kilometers per hour, be for 
the remaining 120 km if the total 
time between checkpoints is to be 25 
hours? 

In a game, Mysong and 
Naoki are making problems. 
They each have four cards 
like these. The winner of the 
game is the person who can 
make the problem with the 
largest answer. Write 
numbers in the squares below 
to show how you would 
place the cards to beat both 
Mysong and Naoki. 

On this grid, find the dot 
with the circle around it. 
We can describe where 
this dot is by saying it is 
at First Number 1, Second 
Number three. Now find 
the dot with the triangle 
around it. Describe where 
the dot is on the grid in 
the same way. Fill in the 
numbers we would use. 

 

 

Table 2. Descriptive Statistics for Readability Variables on NAEP (left) and TIMSS (right) 

 NAEP TIMSS 
Variable Average (SD) Min/Max Average (SD) Min/Max 
Word Count  26.82 (16.4) 4/147. 24.06 (13.4) 5/75 
Word Concreteness  401.9 (52.6) 255/612 394.8 (58.2) 225/599 
Pronoun Density  7.3 (5.2) 0/33 8.9 (7.0) 0/40 
 No. Problems 

Present (%) 
No. Problems Not 

Present (%) 
No. Problems 
Present (%) 

No. Problems Not 
Present (%) 

Second-person 
Pronouns (0/1 factor) 

30 (5.3%) 535 (94.7%) 26 (6.1%) 402 (93.9%) 

Real World Context 
(0/1 factor) 

312 (55.2%) 253 (44.8%) 186 (43.5%) 242 (56.5%) 

Note. In the models word count, word concreteness, and pronoun density were normalized, whereas here we provide 
unmodified values to allow for comparability to Coh-Metrix documentation. 
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Table 3. Descriptive Statistics for Student Demographic Variables on NAEP (left) and TIMSS (right) 

 NAEP TIMSS 
Variable Levels Number of 

Observations  
Number of 
Students 
(%)  

Average 
% 
Correct 

Number of 
Observations  

Number of 
Students 
(%)  

Average 
% 
Correct  

Sex Male 765,120 357,730 
(49.3%) 

52.05 355,450 20,550 
(50.6%) 

56.5 

Female 745,890 347,560 
(50.7%) 

50.72 364,570 20,030 
(49.4%) 

54.9 

Missing 680 310 (.04%) 49.00  0 0 NA 
Race Caucasian 890,930 414,510 

(58.7%) 
56.76 242,470 13,240 

(32.6%) 
61.4 

African-
American 

257,870 120,840 
(17.1%) 

39.75 62,660 3,400 
(8.4%) 

46.9 

Hispanic 235,350 110,840 
(15.7%) 

43.55 101,070 5,470 
(13.5%) 

50.5 

Other 102,860 47,620 
(6.7%) 

52.20 36,080 1,940 
(4.8%) 

61.2 

Missing 24,680 11,790 
(1.7%) 

50.75  277,740 16,520 
(40.7%) 

54.5 

Language Speaks 
only 
English 

830,770 387,500 
(54.9%) 

52.75 Not avail. Not avail. Not 
avail. 

Speaks 
another 
language 

642,180 300,060 
(42.5%) 

50.02 Not avail. Not avail. Not 
avail. 

Missing 38,740 18,040 
(2.6%) 

45.07  Not avail. Not avail. Not 
avail. 

Birth 
Status 

U.S. Born Not avail. Not avail. Not avail. 630,670 35,440 
(87.3%) 

56.9 

Non-U.S. 
Born 

Not avail. Not avail. Not avail. 75,960 4,330 
(10.7%) 

48.1 

Missing Not avail. Not avail. Not avail. 13,400 810 (2.0%) 44.0 
Note. The overall average percent correct for NAEP was 51.39%, and for TIMSS was 55.69%. 

 

Table 4. Descriptive Statistics for Student Demographic Variables that are Continuous on NAEP (left) 
and TIMSS (right) 

 NAEP TIMSS 
Variable No. 

Observ 
Avg 
(SD)  

No. 
Missing 
Observ 
(%) 

Avg % 
Correct -
Missing 

No. 
Observ 

Avg 
(SD)  

No. 
Missing 
Observ 
(%) 

Avg % 
Correct -
Missing 

Plausible 
Values 
(Normalized)  

1,507,010 0 (1) 4,680 
(0.31%) 

35.7  720,010 0 (1) 0 (0%) NA 

Luxury 1,479,330 0.75 
(0.26) 

32,360 
(2.14%) 

46.4 711,270 0.39 
(0.27) 

8,750 
(1.2%) 

43.0 

Enjoy 
Mathematics 
(Normalized) 

Not avail. Not 
avail. 

Not avail. Not avail. 698,680 0 (1.0) 21,330 
(2.96%) 

43.5 

Note. The overall average percent correct for NAEP was 51.39%, and for TIMSS was 55.69%. 



READABILITY & STUDENT BACKGROUND  54 
 

 

Table 5. Descriptive Statistics for Problem Variables on NAEP (left) and TIMSS (right) 

  NAEP TIMSS 
Variable Levels No. of 

Observ 
No. of 
Problems 
(%) 

Avg % 
Correct  

No. of 
Observ 

No. of 
Problems 
(%)  

Avg % 
Correct 

Difficulty Easy 633,150 230 (40.7%) 72.1 142,430 82 (19.2%) 79.3 
Medium 500,540 189 (33.5%) 45.4 467,140 276 (64.5%) 55.3 
Hard 378,000 146 (25.8%) 24.6 110,440 70 (16.4%) 26.9 

Complexity Low 803,090 287 (50.8%) 57.9 335,750 201 (47.0%) 59.5 
High 708,600 278 (49.2%) 44.1 384,270 227 (53.0%) 52.4 

Type Multiple 
Choice 

1,062,230 390 (69.0%) 55.8 462,840 279 (65.2%) 60.5 

Constructed 
Response 

449,470 175 (31.0%) 41.1 257,170 149 (34.8%) 47.1 

 Content 
Domain 

Algebra 287,970 108 (19.1%) 46.9 105,550 63 (14.7%) 53.8 
Data 195,770 74 (13.1%) 54.9 100,940 59 (13.8%) 66.0 
Geometry 275,700 102 (18.1%) 52.2 142,740 89 (20.8%) 54.6 
Measurement 279,060 109 (19.3%) 52.3 78,140 48 (11.2%) 44.9 
Number 473,180 172 (30.4%) 51.7 292,650 169 (39.5%) 56.2 

 

 

Table 6. Descriptive Statistic for Problem/Student Variables on NAEP 

Variable Levels Number of 
Observations  

Number of Students 
(%) 

Number of 
Problems (%) 

Average % Correct  

Year 1996 11,590 7,470 (1.1%) 44 (7.8%) 39.6 
2003 376,870 162,570 (23.0%) 108 (19.1%) 53.6 
2005 265,630 125,960 (17.9%) 80 (14.2%) 52.8 
2007 359,620 156,690 (22.2%) 102 (18.1%) 50.5 
2009 107,390 57,240 (8.1%) 59 (10.4%) 50.9 
2011 172,730 85,280 (12.1%) 88(15.6%) 49.6 
2013 217,860 110,380 (15.6%) 84 (14.9%) 49.5 

Grade 4 768,750 368,460 (52.2%) 264 (46.7%) 51.7 
8 742,940 337,150 (47.8%) 301(53.3%) 51.1 

Overall 1,511,690 705,600 565 51.4 
 

 

Table 7. Descriptive Statistics for Problem/Student Variables on TIMSS 

Variable Levels Number of 
Observations  

Number of Students 
(%) 

Number of 
Problems (%) 

Average % Correct 

Year 1995 118,710 6,980 (17.2%) 63 (14.7%) 49.7 
1999 144,980 8,780 (21.6%) 70 (16.4%) 57.5 
2003 228,260 12,480 (30.8%) 156 (36.4%) 57.3 
2011 228,070 12,340 (30.4%) 139 (32.5%) 56.0 

Grade 4 355,550 20,060 (49.4%) 205 (47.9%) 58.8 
8 367,580 20,510 (50.6%) 223 (52.1%) 52.7 

Overall 720,010 40,570 428 55.7 
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Table 8. Mixed Effects Logistic Regression Results for NAEP dataset 

 

Model 1 – 
Null 

Model 2 - 
Readability 

Model 3 – 
Readability 
Interactions 

Model 4 – No 
Plausible Values 

Random Intercepts Var. Var. Var. Var. 
Problem 0.3767 0.3565 0.3720 0.2771 
Year 0.0182 0.0170 0.0171 0.0040 
Fixed Effect Est. (SE) Sig Est. (SE) Sig Est. (SE) Sig Est. (SE) Sig 
(Intercept) 2.038 (0.0901)* 1.887 (0.0968)* 1.9134 (0.0984)* 0.5251 (0.0584)* 

Grade-4 (ref.) (ref.) (ref.) (ref.) 
Grade-8 -1.383 (0.0525)* -1.306 (0.0535)* -1.3142 (0.0542)* 0.0126 (0.0434) 

Type-MultipleChoice (ref.) (ref.) (ref.) (ref.) 
Type-ConstructedResponse -0.590 (0.0583)* -0.471 (0.0608)* -0.4786 (0.0624)* -0.4428 (0.0494)* 

Difficulty-Easy (ref.) (ref.) (ref.) (ref.) 
Difficulty-Medium -1.420 (0.0602)* -1.364 (0.0594)* -1.3584 (0.0607)* -1.1744 (0.0443)* 

Difficulty-Hard -2.520 (0.0677)* -2.446 (0.0678)* -2.4568 (0.0687)* -2.1288 (0.0522)* 

Complexity-Low (ref.) (ref.) (ref.) (ref.) 
Complexity-High -0.209 (0.0586)* -0.153 (0.0586)* -0.1439 (0.0597)* -0.1465 (0.0448)* 

Domain-Algebra (ref.) (ref.) (ref.) (ref.) 
Domain-Data 0.054 (0.0871) 0.057 (0.0886) 0.0528 (0.0913) 0.0212 (0.0634) 

Domain-Geometry 0.104 (0.0806) 0.102 (0.0807) 0.0897 (0.0829) 0.0666 (0.0577) 

Domain-Measurement 0.006 (0.08) -0.085 (0.0805) -0.1002 (0.0827) -0.1094 (0.0564) 

Domain-Number 0.062 (0.0724) 0.005 (0.0717) -0.0009 (0.0737) -0.0296 (0.0501) 

Sex-Female (ref.) (ref.) (ref.) (ref.) 
Sex-Male 0.031 (0.0043)* 0.031 (0.0043)* 0.0049 (0.007) 0.0712 (0.0063)* 

Race-Caucasian (ref.) (ref.) (ref.) (ref.) 
Race-AfricanAmerican -0.027 (0.006)* -0.027 (0.006)* -0.0064 (0.0099) -0.6788 (0.0088)* 

Race-Hispanic -0.022 (0.0068)* -0.022 (0.0068)* -0.0219 (0.0114) -0.4467 (0.0101)* 

Race-Other 0.021 (0.0094)* 0.021 (0.0094) 0.0253 (0.0149) -0.084 (0.0131)* 

Lang-EnglishOnly (ref.) (ref.) (ref.) (ref.) 
Lang-OtherLang 0.0002 (0.0047) 0.0002 (0.0047) -0.002 (0.0079) 0.0079 (0.0071) 

LuxuryItems 0.045 (0.009)* 0.045 (0.0090)* 0.0268 (0.0145) 1.013 (0.0127)* 

MathAchievement 1.230 (0.0036)* 1.230 (0.0036)* 1.2009 (0.0054)* 
 

RealWorldContext  
0.122 (0.0638) 0.0789 (0.0668) 0.1141 (0.0502) 

WordCount  
-0.104 (0.0325)* -0.1156 (0.0345)* -0.1636 (0.0275)* 

WordConcreteness  
0.069 (0.0284)* 0.0904 (0.03)* 0.1097 (0.0254)* 

PronounDensity  
0.080 (0.0283)* 0.0827 (0.03)* 0.0934 (0.0246)* 

2ndPersonPronoun  -0.328 (0.1144)* -0.3948 (0.1256)* -0.4268 (0.0703)* 

Sex-Male: RealWorldContext   
0.0499 (0.0094)* 0.0369 (0.0086)* 

Sex-Male: WordCount   
-0.0399 (0.0049)* -0.0262 (0.0044)* 

Sex-Male: WordConcreteness   
-0.0076 (0.0045) -0.0067 (0.0041) 
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Sex-Male: PronounDensity   
-0.0134 (0.0044)* -0.0109 (0.0041)* 

Sex-Male: 2ndPersonPronoun   
-0.0667 (0.0207)* -0.032 (0.0181) 

Race-AfricanAmerican :RealWorldContext  
-0.025 (0.0136) -0.018 (0.012) 

Race-Hispanic: RealWorldContext   
0.01 (0.0157) 0.0038 (0.0139) 

Race-Other: RealWorldContext   
-0.0022 (0.0201) -0.0211 (0.018) 

Race-AfricanAmerican: WordCount   
-0.0146 (0.0073) -0.0362 (0.0064)* 

Race-Hispanic: WordCount   
-0.011 (0.0083) -0.0109 (0.0072) 

Race-Other: WordCount   
0.0045 (0.0105) 0.0393 (0.0092)* 

Race-AfricanAmerican: WordConcreteness  
-0.0184 (0.0064)* -0.0004 (0.0057) 

Race-Hispanic: WordConcreteness   
0.0083 (0.0074) 0.0128 (0.0066) 

Race-Other: WordConcreteness   
-0.0061 (0.0097) -0.0092 (0.0087) 

Race-AfricanAmerican: PronounDensity  
0.0402 (0.0065)* 0.04 (0.0057)* 

Race-Hispanic: PronounDensity   
0.012 (0.0071) 0.0089 (0.0065) 

Race-Other: PronounDensity   
0.0081 (0.0095) 0.0043 (0.0086) 

Race-AfricanAmerican: 2ndPersonPronoun  
-0.2071 (0.0321)* -0.3088 (0.0272)* 

Race-Hispanic: 2ndPersonPronoun   
-0.1501 (0.0348)* -0.206 (0.03)* 

Race-Other: 2ndPersonPronoun   
-0.0805 (0.0433) -0.0623 (0.0363) 

Lang-OtherLang: RealWorldContext  0.0006 (0.011) 0.0036 (0.0098) 

Lang-OtherLang: WordCount   
-0.0171 (0.0057)* -0.0188 (0.005)* 

Lang-OtherLang: WordConcreteness  
-0.0085 (0.0051) -0.003 (0.0047) 

Lang-OtherLang: PronounDensity  
-0.0083 (0.005) -0.004 (0.0046) 

Lang-OtherLang: 2ndPersonPronoun  
0.0284 (0.0235) 0.027 (0.0207) 

LuxuryItems: RealWorldContext   
0.0335 (0.0199) -0.0208 (0.0172) 

LuxuryItems: WordCount   
0.0288 (0.0112)* 0.1285 (0.0096)* 

LuxuryItems: WordConcreteness   
-0.0163 (0.0094) -0.0543 (0.0083)* 

LuxuryItems: PronounDensity   
-0.0096 (0.0092) -0.035 (0.0082)* 

LuxuryItems: 2ndPersonPronoun   
0.0653 (0.0466) 0.2831 (0.037)* 

MathAchievement: RealWorldContext  0.0292 (0.0074)*  
MathAchievement: WordCount  

 
0.0382 (0.0041)*  

MathAchievement: WordConcreteness  -0.0213 (0.004)*  
MathAchievement: PronounDensity  0.0067 (0.004)  
MathAchievement: 2ndPersonPronoun  

0.3239 (0.0193)*  
Note. (ref.) denotes the reference category to which all comparisons are made. Each column gives the estimated 
coefficient from the logistic regression in log-odds format, along with its standard error and significance. All 
significance levels are denoted by a single “*”, as our method for p-value corrections does not allow for direct 
interpretation of the magnitude of the p-value. Instead, this method simply gives a binary significant/not significant 
ruling. The following variables have been normalized: Mathematics Achievement, Word Concreteness, Pronoun 
Density, and Word Count. The “Mathematics Achievement” rows are calculated using the Plausible Values for 
estimated mathematics ability on the NAEP provided with the dataset. 
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Table 9. Mixed Effects Logistic Regression Results for TIMSS dataset 

 

Model 1 – 
Null 

Model 2 - 
Readability 

Model 3 – 
Readability 
Interactions 

Model 4 – No 
Plausible 
Values 

Random Intercepts Var. Var. Var. Var. 
Problem 0.47668 0.4465 0.4500 0.4564 
Year 0.03073 0.0263 0.0274 0.1399 
Student ID    1.1768 
Fixed Effect Est. (SE) Sig Est. (SE) Sig Est. (SE) Sig Est. (SE) Sig 
(Intercept) 1.871 (0.1479)* 1.911 (0.1449)* 1.8944 (0.1487)* 1.6481 (0.2299)* 
Grade-4 (ref.) (ref.) (ref.) (ref.) 
Grade-8 0.016 (0.0875) -0.009 (0.0855) -0.0092 (0.0863) -0.2907 (0.0868)* 
Type-MultipleChoice (ref.) (ref.) (ref.) (ref.) 
Type-ConstructedResponse -0.129 (0.0776) -0.053 (0.0788) -0.0546 (0.0794) -0.0505 (0.0809) 
Difficulty-Easy (ref.) (ref.) (ref.) (ref.) 
Difficulty-Medium -1.433 (0.0894)* -1.376 (0.0875)* -1.3617 (0.0884)* -1.3662 (0.0913)* 
Difficulty-Hard -3.003 (0.1251)* -2.862 (0.1242)* -2.8747 (0.126)* -2.9014 (0.1307)* 
Complexity-Low (ref.) (ref.) (ref.) (ref.) 
Complexity-High -0.234 (0.0697)* -0.231 (0.0693)* -0.2308 (0.0696)* -0.2238 (0.0707)* 
Domain-Algebra (ref.) (ref.) (ref.) (ref.) 
Domain-Data 0.335 (0.1228)* 0.385 (0.1258)* 0.4012 (0.1273)* 0.4159 (0.1336)* 
Domain-Geometry -0.178 (0.1129) -0.233 (0.1116) -0.2349 (0.1125) -0.2102 (0.1179) 
Domain-Measurement -0.68 (0.1333)* -0.715 (0.1299)* -0.7137 (0.1309)* -0.7106 (0.1353)* 
Domain-Number -0.053 (0.102) -0.067 (0.0989) -0.072 (0.1008) -0.0510 (0.1051) 
Sex-Female (ref.) (ref.) (ref.) (ref.) 
Sex-Male 0.027 (0.0111)* 0.027 (0.0111)* 0.0205 (0.0129) 0.1371 (0.0137)* 
U.S. Born (ref.) (ref.) (ref.) (ref.) 
Non-U.S.Born 0.024 (0.0167) 0.024 (0.0167) 0.0357 (0.0205) -0.5196 (0.0228)* 
LuxuryItems 0.043 (0.0143)* 0.043 (0.0143)* 0.0684 (0.0201)* 0.9726 (0.0294)* 
MathAchievement 1.116 (0.0043)* 1.116 (0.0043)* 1.1159 (0.0062)*  
EnjoyMath -0.002 (0.0039) -0.002 (0.0039) -0.0022 (0.005) -0.1188 (0.0071)* 
RealWorldContext  -0.107 (0.0854) -0.1056 (0.087) -0.0984 (0.0891) 
WordCount  -0.011 (0.0417) -0.0128 (0.0426) -0.0221 (0.0432) 
WordConcreteness  0.042 (0.0395) 0.0524 (0.0403) 0.0438 (0.0407) 
PronounDensity  0.027 (0.0402) 0.0164 (0.041) 0.0313 (0.0414) 
2ndPersonPronoun  -0.762 (0.1431)* -0.7878 (0.1475)* -0.6962 (0.1527)* 
Sex-Male: RealWorldContext   0.0303 (0.0145) 0.0385 (0.0145)* 
Sex-Male: WordCount   -0.0174 (0.0077)* -0.0224 (0.0077)* 
Sex-Male: WordConcreteness   -0.0099 (0.007) -0.0026 (0.0069) 
Sex-Male: PronounDensity   -0.0031 (0.007) -0.0014 (0.0069) 
Sex-Male: 2ndPersonPronoun   -0.1173 (0.0264)* -0.1284 (0.0262)* 
Non-U.S.Born: RealWorldContext   -0.0112 (0.0246) 0.0030 (0.0239) 
Non-U.S.Born: WordCount   -0.0099 (0.0134) -0.0320 (0.0130)* 
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Non-U.S.Born: WordConcreteness   -0.0206 (0.0112) -0.0205 (0.0113) 
Non-U.S.Born: PronounDensity   -0.007 (0.0117) -0.0034 (0.0112) 
Non-U.S.Born: 2ndPersonPronoun   -0.1316 (0.0477)* -0.2295 (0.0444)* 
LuxuryItems: RealWorldContext   -0.0635 (0.0334) -0.0447 (0.0319) 
LuxuryItems: WordCount   0.0355 (0.0177) 0.0628 (0.0173)* 
LuxuryItems: WordConcreteness   -0.0137 (0.0144) -0.0188 (0.0141) 
LuxuryItems: PronounDensity   0.0222 (0.0149) -0.0054 (0.0145) 
LuxuryItems: 2ndPersonPronoun   0.1055 (0.0551) 0.0098 (0.0543) 
EnjoyMath: RealWorldContext   -0.0003 (0.0075) -0.0020 (0.0075) 
EnjoyMath: WordCount   0.0118 (0.0039)* 0.0081 (0.0039) 
EnjoyMath: WordConcreteness   0.0162 (0.0036)* 0.0183 (0.0036)* 
EnjoyMath: PronounDensity   0.0075 (0.0036) 0.0097 (0.0036)* 
EnjoyMath: 2ndPersonPronoun   0.0146 (0.0147) 0.0133 (0.0143) 
MathAchievement: RealWorldContext  -0.0189 (0.0117)  
MathAchievement: WordCount   0.0687 (0.0052)*  
MathAchievement: WordConcreteness  -0.0074 (0.0043)  
MathAchievement: PronounDensity   -0.026 (0.0047)*  
MathAchievement: 2ndPersonPronoun  0.1837 (0.0179)*  

Note. (ref.) denotes the reference category to which all comparisons are made. Each column gives the estimated 
coefficient from the logistic regression in log-odds format, along with its standard error and significance. All 
significance levels are denoted by a single “*”, as our method for p-value corrections does not allow for direct 
interpretation of the magnitude of the p-value. Instead, this method simply gives a binary significant/not significant 
ruling. The following variables have been normalized: Mathematics Achievement, Word Concreteness, Pronoun 
Density, and Word Count. The “Mathematics Achievement” rows are calculated using the Plausible Values for 
estimated mathematics ability on the TIMSS provided with the dataset. 

 

  



READABILITY & STUDENT BACKGROUND  59 
 

Table 10. Summary of Results of Interaction between Background Characteristics and 
Readability Categories from NAEP and TIMSS 

Comparison NAEP TIMSS 
Males 
compared to 
Females 

1) Positive associations between real world contexts and 
accuracy are higher for males than females (d = .03) 

2) Negative associations between word count and 
accuracy are more strong for males than females 
(d = -.07) 

3) Positive associations between pronouns and accuracy 
are lower for males than females (d = -.02) 

4) Negative associations between 2nd person 
pronouns and accuracy are more strong for males 
than females (d = -.04) 

1) Negative associations between 
word count and accuracy are 
more strong for males than 
females (d = -.03) 

2) Negative associations between 
2nd person pronouns and 
accuracy are more strong for 
males than females (d = -.07) 

African-
American 
students 
compared to 
Caucasian 
students 

1) Positive associations between concrete words and 
accuracy are lower for African-American students 
than Caucasian students (d = -.03) 

2) Positive associations between pronouns and 
accuracy are higher for African-American students 
than Caucasian students (d = .07) 

3) Negative associations between 2nd person pronouns 
and accuracy are more strong for African-American 
students than Caucasian students (d = -.11) 

Not available 

Hispanic students 
compared to 
Caucasian 
students 

Negative associations between 2nd person pronouns and 
accuracy are higher for Hispanic students than 
Caucasian students (d = -.08) 

Not available 

Home 
Language or 
Birth Status 

Negative associations between word count and accuracy 
are higher for students with a foreign language spoken at 
home than other students (d = -.03) 
 

Negative associations between 2nd 
person pronouns and accuracy are 
higher for students not born in the 
U.S. than other students (d = -.07) 

Poverty Level 
(as measured by 
Luxury items) 

Negative associations between 2nd-person pronouns and 
accuracy are less strong as students have more luxury 
items (d = .05) 

Nothing significant 

Mathematics 
achievement (as 
measured by 
Plausible 
values) 

1) Positive associations between presence of a real 
world context and accuracy are higher for higher 
achievement students (d = .05) 

2) Negative associations between word count and 
accuracy are less strong for higher achievement 
students (d = .19) 

3) Positive associations between concrete words and 
accuracy are lower for higher achievement students 
(d = -.11) 

4) Negative associations between 2nd-person 
pronouns and accuracy are less strong for higher 
achievement students (d = 0.54) 

1) Negative associations between 
word count and accuracy less 
strong for higher achievement 
students (d = 0.34) 

2) Positive associations between 
pronouns and accuracy are 
lower for higher achievement 
students (d = -.04) 

3) Negative associations 
between 2nd-person pronouns 
and accuracy are less strong 
for higher achievement 
students (d = .30) 

Mathematics 
Enjoyment (1-4 
scale) 

Not available 1) Positive associations between 
concrete words and accuracy are 
greater for students who enjoy 
mathematics more (d = .08) 

2) Negative associations between 
word count and accuracy are 
less strong for students who 
enjoy mathematics more (d = 
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.01) 
Note. Results that replicate in both datasets are bolded.  
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