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.. .and this time it vanished quite 
slowly, beginning with the end of the 
tail, and ending with the grin, which 
remained some time after the rest of it 
had gone.

“Well! I’ve often seen a cat without a 
grin, “thought Alice; “but a grin 
without a cat! It’s the most curious 
thing I ever saw in all my life!”

“Cheshire-Puss,... would you tell me, 
please, which way I ought to go from here?”
“That depends a good deal on where 
you want to get to”, said the Cat.
“I don’t much care where”— said Alice.
“Then it doesn’t matter which way 
you go,” said the Cat.
“—so long as I get somewhere,"
Alice added as an explanation.
“Oh, you’re sure to do that”, said the 
Cat, “if you only walk long enough.”

-Lewis Carroll
-Alice’s Adventures in Wonderland
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ABSTRACT

Chlamydomonas acidophila is a unicellular green alga of the order 

Chlamydomonadales. Our research efforts were allied along two lines:

(1) Characterization of the C. acidophila mitochondrial genome (mtDNA) and

(2) Elucidation of any molecular events responsible for C. acidophila’s heavy metal 

tolerance. The mitochondrial genomes of the protists have been underrepresented in the 

sequence databases. Among the protists, the alga genera Chlamydomonas shows a 

reduced mtDNA content with a highly rearranged gene structure. It was decided to 

sequence C. acidophila’s mtDNA to further elucidate the evolutionary paths among the 

Chlamydomonads and add to the protist sequence database. A 15 kb fragment of C. 

acidophila’s mtDNA was cloned and sequenced. The genes identified included 

apocytochrome b; partial sequences of subunits 2 and 5 and a complete subunit 1 of the 

NADH dehydrogenase complex; subunit 1 of the cytochrome oxidase complex; 

discontinuous and scrambled large and small subunit ribosomal rRNA; and four tRNAs 

whose anticodons specify tryptophan, glutamine, and 2 methionines (one of which 

appears to be a pseudogene). The mtDNA of C. acidophila, therefore, probably encodes 

a reduced gene coding capacity common among the Chlamydomonadales. In fact the 

basic gene order is colinear with that of C. eugametos. However, C. acidophila appears 

to have two distinctive features: (1) The reduced size of intergenic spacers, and (2) 

Non-synonymous insertion of a number of group I introns within the partial sequence.
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These differences suggest a recent divergence between C. acidophila and C. eugametos, 

and place them very close phylogenetically. It was also noticed that C. acidophila 

exhibits a higher tolerance for cadmium than do other Chlamydomonas species.

Cadmium is a potent environmental toxin and carcinogen that is accumulating in the 

environment through anthropogenic and natural means. Knowledge of the characteristics 

of metal tolerant species has yielded valuable insights into the nature of cadmium 

tolerance, and may one day aid in the safe disposal of this metal. In an attempt to 

understand the role of mtDNA during cadmium exposure, a 5 kb Hind III fragment of 

mtDNA was cloned onto a pGem vector (pJB2). That fragment was hybridized to 

Northern blots of cadmium challenged C. acidophila cells, and a transcript of -300 bp in 

size was shown to increase during cadmium challenge. Restriction studies and DNA 

sequencing has revealed that the transcript was produced from a 1500 bp region and 

appears to be rRNA.
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INTRODUCTION

One of the distinguishing characteristics of eukaryotes is the presence of subcellular 

organelles. Of those organelles, the chloroplast and mitochondria are distinctive in that 

they contain their own genetic systems. Mitochondria have come under further scrutiny 

because of the diversity of their genomes. The recent explosion of research in this area has 

revealed that mitochondrial genomes (mtDNA) vary almost as widely as the eukaryotic cells 

that house them. Size variability is enormous (-400 fold), ranging from the plant 

angiosperm Cucumis (muskmelon) at 2.4 Mb to the protist Plasmodium at 6 kb (Gillham, 

1994; Gray, 1992). At first glance there appears to be a dichotomy of evolutionary paths 

taken by different mtDNAs. On the one hand are the ‘animal like’ mtDNAs that appear to 

be geared toward size minimization, both by loss of genes and by the elimination of 

intragenic spacers. Animals typically possess small circular molecules ranging in size from 

about 14 to 39 kb (Gray, 1992). By contrast, ‘plant like’ mitochondrial genomes appear to 

be evolving in the opposite direction; they are the largest organelle genomes known (up to 

2400 kb). Their trend seems to be toward increased size, primarily by the accumulation of 

a large amount of non-coding DNA whose origin and function remain unknown (Gray et 

a i, 1998). As an aside, their structures appear to be circular and, interestingly, they are 

known to recombine actively to yield smaller circular molecules carrying only a subset of 

genes from the ‘master’ genome (Gillham, 1994).

Why should one be on the path of increasing mtDNA size and the other towards 

reduction? While this remains an interesting question, a more important aspect of organelle 

genomes is that of gene content. Mitochondrial genomes may grow larger, encoding
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various proteins and RNAs, but in all cases the full complement of genetic material required 

for their biogenesis is not located in the mitochondria. Indeed, genome size is not 

indicative of gene content. The largest gene repertoire so far investigated is that of 

Reclinomonas americana, whose mtDNA size is average at around 69 kb (Gray et al.,

1998; Lang et al., 1997). All other sequenced mtDNAs contain only subsets of R. 

americana’s genes, implying that this protist is closest to the ancestral proto-mitochondrial 

genome (Lang et al., 1997). Further studies indicate that gene loss has occurred to 

different extents in different lineages (Palmer, 1997).

Reductive Genome Evolution in Mitochondria

Organelles represent a special class of symbiotic relationship - they have lost their 

identity as individual organisms. Recent investigations have revealed that the closest 

known relative to modem mitochondria are the a-proteobacteria, specifically the Rickettsia 

(Andersson & Kurland, 1998; Andersson et al., 1998). Studies with the Rickettsia, as 

well as other obligate intracellular parasites in conjunction with organelles, have yielded 

valuable insight into the evolutionary mechanisms that influence organelle development. 

The loss of identity seems to involve two main themes. The first appears to be the loss of 

gene function either by the accumulation of mutations and/or the loss of DNA repair 

mechanisms. The other lies in the conservation of symbiotically useful genes through 

genetic redundancy.

The idea of an endosymbiotic origin of eukaryotic organelles was defended by 

Margulis (Margulis, 1975; Margulis, 1976) and others some 30 years ago. Since then, 

much information has been gathered, not only in defense of this hypothesis, but of the 

mechanisms by which endosymbiosis might proceed. An organism that leaves its free- 

living lifestyle faces a radically different environment once it adopts an intracellular 

existence conditioned by the host genome. Adaptation to this environment usually involves
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one of two different evolutionary routes (Andersson & Kurland, 1998). The organism 

may become an obligate parasite to its new environment at the expense of the host. Such 

relationships are common, with the Rickettsia, Chlamydia, Coxiella, etc. serving as 

examples (Andersson & Kurland, 1998). Alternately, the host may become dependent on 

some product produced by the activities of the symbiont’s genome. For example, the 

genus Buchnera has become an indispensable symbiont of aphids (Baumann et al., 1995). 

These bacteria reside in specialized cells called bacteriocytes that are maternally inherited 

from one generation to the next. Buchnera appears to supply the host with vital amino 

acids. If the aphids are treated with antibiotics, the result is either sterility or death. This 

relationship appears to be mutual in that cultivation of Buchnera outside its aphid host has 

not yet been achieved (Andersson & Kurland, 1998).

Regardless of the path of adaptation, a common theme emerges. Over the course of 

evolutionary time resident genomes are frequently involved in bottlenecks, manifesting in 

little opportunity for recombination between variants. Mutations under such conditions 

accumulate at a higher rate than in free-living organisms. The tendency of small asexual 

populations to accumulate deleterious mutations is known as Muller’s ratchet (Felsenstein, 

1974; Muller, 1964). This mechanism becomes an irreversible process within populations 

experiencing high mutation rates, lack of recombination and/or small population sizes. 

Accordingly, with the gradual accumulation of deleterious mutations, the most fit class of 

the population can be lost due to genetic drift. Andersson et al. (Andersson & Kurland, 

1998) have raised the question whether such obligate intracellular parasites have been 

driven to extinction because of the effects of Muller’s ratchet. Certainly Muller’s ratchet is 

a powerful concept to invoke in explaining the formation of organelles, but it constitutes 

only a partial story. If a mutually beneficial relationship is to be established, then there 

must be a way to conserve those aspects that confer increased fitness before gene extinction 

while removing those that decrease fitness or are superfluous.
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One possible way of conserving useful genes is to locate them in a stable genetic 

environment. Indeed this seems to be the strategy of eukaryotes. Much of the genetic 

material necessary for mitochondrial biogenesis and function is located within the nucleus. 

The process of mitochondrial gene migration to the nucleus has been defined differently by 

many authors (Brennicke et al., 1993; Gillham, 1994; Thorsness & Weber, 1996). For the 

process to occur several criteria must be met. First, genes in the mitochondria must be 

present in multiple copies. This redundancy is necessary to ensure that the loss of some 

gene copies does not upset the cellular metabolism.

The second step is the escape of genetic material from the mitochondria and transfer to 

the nucleus. The frequency of this occurrence is much higher than previously thought. In 

a clever experiment by Thorsness and Fox (Thorsness & Fox, 1990) a plasmid was 

transformed into a yeast mitochondria. The yeast was a non-reverting uracil auxotroph and 

the plasmid contained a functional copy of the gene ura3, which was capable of repairing 

uracil synthesis in this yeast. In order for the yeast strain to become a uracil prototroph 

ura3 would have to escape from the mitochondria and become localized in the nucleus. The 

transfer was shown to occur at a frequency of 2X1 O'5 Ura+ prototrophs per cell generation. 

Interestingly, the reverse does not appear to be favorable (DNA traveling from the nucleus 

to the mitochondria), apparently occurring at a rate 100,000 times less.

The last steps for the expression of mitochondrial genes in the nucleus probably 

represent the greatest barrier (Gillham, 1994). The gene must be capable of being 

transcribed by the nuclear machinery, translation must be able to occur on cytoplasmic 

ribosomes, and the product must be targeted back to the mitochondria. All of these events, 

according to Thorsness and Weber (Thorsness & Weber, 1996), should occur within a 

relatively short amount of time to prevent inactivation by random mutation.

Gene migration is evidenced from a number of different sources. In some cases of 

nuclear expression the mitochondrial gene counterpart was found intact, albeit inactive. In
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the soybean the cox II gene is expressed from the nucleus, while its mitochondrial 

counterpart is clearly present and seemingly intact (Covello & Gray, 1992). In the 

flowering plant Oenothera, rspl2 is expressed from the nucleus but about two-thirds of the 

gene can be found in the mitochondrial genome (Grohmann et al., 1992). So far no 

example for the expression of two functional genes from both the nucleus and mitochondria 

exists, but as sequencing efforts progress this possibility may become realized. Taken 

together, these data imply that equilibrium for gene transfer has not been reached by many 

organelles, and gene migration is an ongoing process.

Is there a lower limit to the gene capacity of mitochondria? The answer may be 

contingent on what particular ecological niche an organism occupies (Thorsness & Weber,

1996). The study of trichomonads (largely parasitic and flagellated organisms) has yielded 

the existence of hydrogenosomes. Hydrogenosomes, like their mitochondrial ancestors, 

produce ATP by substrate level phosphorylation. However, they lack a genome and are 

entirely dependent on the nucleus for function and biogenesis (Palmer, 1997).

Interestingly, they seem to have arisen from endosymbiotic origins. This argument has 

been strongly bolstered by finding that the Trichomonas nucleus contains one (Germot et 

al., 1996; Homer et al., 1996; Roger et al., 1996) or all three (Bui et al., 1996) of the 

mitochondrial heat-shock proteins HsplO, Hsp60, and Hsp70. These genes have been 

shown to be the best tracers of the eubacterial origin of mitochondria (Palmer, 1997).

Hydrogenosomes serve as an extreme example of reductive evolution, but most other 

mitochondria do contain a genome of some sort. Is it to be expected that all mitochondria 

eventually lose their genome? Further, why are some genes incarcerated within the 

confines of the mitochondria while others are not? Again, the ultimate barrier for genome 

transfer to the nucleus may reside within the ecological niche filled by the organism in 

question (Thorsness & Weber, 1996). The overall picture of these conservation rules is, at 

this time, still vague. However, some barriers to nuclear localization have become
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apparent. One good example is from a study in yeast by Claros and co-workers (Claros et 

al., 1995). Previous sequence examinations revealed that most mitochondrially encoded 

proteins were intrinsic membrane proteins with a large number of hydrophobic, membrane 

spanning domains (Popot & de Vitry, 1990). Saccharomyces cerevisiae was engineered to 

express apocytochrome b (cob) in the cytoplasm. Cob is an integral membrane protein 

normally encoded in the mitochondria. Even with the help of a mitochondrial targeting 

protein, the Cob protein failed to translocate into the mitochondria. This study supported 

the hypothesis that large stretches of hydrophobic residues, corresponding to three or four 

transmembrane domains, can effectively inhibit import into the mitochondria.

Genome Structure

Mitochondrial genomes show a great variety in size and structure. The first completely 

sequenced mitochondrial genomes belonged to the mammals (human, cow, and mouse) 

(Gillham, 1994), which exhibited an invariant gene order. Animal mitochondrial genome 

sizes typically range from 13.8 to 39.3 kbp (Gray, 1992), and are typically circular with 

the exception of the Cnidaria which are linear (Bridge et al., 1992). One of the hallmarks 

of animal genomes is their parsimony. Genetic information is packaged with a high 

information density, with coding regions directly adjacent to one another and in some cases 

overlapping (Gray, 1992). In most cases, over 90% of animal mtDNA have some coding 

function (Gillham, 1994). Until recently, it had been thought that animal mtDNA was 

devoid of intervening sequences. However, introns have been found in the mtDNA of a 

sea anemone (Gillham, 1994). Gene order is relatively constant within individual phyla but 

varies between phyla. Interestingly, although mammalian gene order is invariant, their 

mitochondrial genes diverge in sequence at an extremely rapid rate. This rate is 5-10 times 

the rate at which single-copy nuclear DNA diverges in the same species (Gray, 1992).
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Fungal mitochondrial DNAs range more steeply in size from about 17 kb to 176 kb, 

are typically circular, but show few differences in gene content (the most notable being the 

complete absence of any nad genes) (Gillham, 1994; Gray, 1992; Zimmer et al., 1984). In 

addition, gene order shows limited conservation between distantly related fungi (Clark- 

Walker, 1992). Most of the differences can be accounted for by two factors. The first is 

the expansion/contraction of AT-rich intragenic spacer regions, and the second is the 

presence or absence of introns. One of the most spectacular examples of this is intronic 

spacers within the cox 1 gene of Podospora anserina. This gene spans 24.5 kb (1.5 times 

the size of the entire human mitochondrial genome), makes up about 26% of the 94.2 kb 

Podospora mtDNA, and contains 16 introns that account for 93% of the cox 1 gene 

(Cummings et al., 1990).

The largest, most spacious and complex genomes belong to the plants, specifically the 

angiosperms (size ranges from 200 to 2400 kb) (Gillham, 1994). However, their size does 

not reflect their gene content. Indeed, much of the plant mtDNA contains introns and large 

intragenic spacers containing repeated blocks of sequence, some several kilobases long, 

present in both direct and inverted orientation, and appear to be recombinationally active 

(Gillham, 1994). Their genomes are typically circular, but they are known to recombine 

and form smaller genomes that contain only a fraction of the gene content from the ‘master 

genome’ (Gillham, 1994). Because of their large size, complete plant genome sequences 

are few. However sequences of individual genes are plentiful as well as other genetic 

analysis. Nonetheless our knowledge of plant mitochondrial genomes is lagging in 

comparison to the animal genomes. Apart from its large size, the most distinctive feature to 

date of plant mitochondrial genomes is their propensity for rapid structural change, while 

showing an extremely slow rate of sequence divergence (Palmer & Herbon, 1988). This is 

the complete opposite from what is observed in mammalian mtDNA. Studies with 

angiosperms reveals that mtDNA evolves about 10-fold less rapidly in sequence than single
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copy nuclear DNA of the same species, and about 4-fold less rapidly than plastid DNA 

(Palmer & Herbon, 1988). These studies show that the plant mitochondrial genome is the 

most slowly evolving cellular genome so far characterized (Wolfe et al., 1987).

Until recently, sequences of the mtDNAs of protists has been lacking. These 

organelles tend to be highly conserved. As of 1998, 63 complete mtDNA sequences were 

available through public domain databases. However, the sequences represented are both 

narrow and biased: 47 (75%) are from animal species; five (8%) from fungi; two (3%) 

from plants; and only nine (14%) from protists (Gray et al., 1998). To get some idea of 

the variability in gene content and even to catch a glimpse of intermediates in organelle 

evolution, it has become apparent that the protists and algae must be studied in greater 

detail. Indeed the recent explosion of protist sequences within sequence databases, in 

conjunction with formation of organelle genome sequencing consortiums (e.g. the 

Organelle Genome Megasequencing Program in 1992 (Gray et al., 1998)), has become 

apparent. Among all the studied mitochondrial DNA groups the protists are by far the most 

phylogenetically diverse (Gillham, 1994; Gray, 1993; Gray et al., 1998). The emerging 

data implies that the genome diversity of the protists is enormous and that unique 

characteristics found in other taxa are reflected within this group. An attempt to impart the 

various themes of mtDNA in protists would be counterproductive. The interested reader is 

directed to the excellent recent review by Gray et al. (Gray et al., 1998) on the diversity of 

this group. Suffice it to say that the study of protist mtDNAs is providing a fresh 

perspective on mtDNA evolution. Such questions as how the original mitochondrial 

genome may have been organized are becoming clearer as evidenced by the recent sequence 

of Reclinomonas americana (Lang et al., 1997), the most ancestral mtDNA resembling the 

eubacterial genome found to date.
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Translation

One of the consequences of retaining a genomic complement is the need for translating 

the encoded products. Various species have approached the problem in a variety of ways. 

All mitochondrial genomes studied thus far encode both large (LSU) and small (SSU) 

rRNAs, albeit a minority of protist mtDNAs encode rRNAs that deviate from the typical 

23S (LSU) and 16S (SSU) consensus. The trypanosomatid protozoa encode a 9S (SSU) 

and 12S (LSU) mitochondrial rRNA that are among the smallest and most structurally 

divergent known. In addition, their potential secondary structures contain only a few of the 

expected conserved structural motifs (Gutell. 1994; Gutell et al., 1993).

From there, species begin to diverge in their mtDNA resident protein translation 

machineries. Like animal and fungal mtDNAs, most protist mtDNAs lack a 5S rRNA gene 

(Gray et al., 1998). The current exceptions to this trend are the chlorophyte algae 

Prototheca wickeramii (Wolff et al., 1994) and Nephroselmis olivacea (Gray et al., 1998), 

the red algae Chondrus crispus (Gray et al., 1998), and Reclinomonas americana (Lang et 

al., 1997). This sporadic phylogenetic distribution suggests that this gene has been lost 

independently a number of times over the course of evolutionary history (Gray et al.,

1998).

Likewise, ribosomal protein genes have apparently undergone deletion in various 

lineages. Animal and fungal mtDNAs, with the exception of rps3 in Allomyces 

macrogynus (Paquin & Lang, 1996), do not encode ribosomal proteins (Gray et al., 1998). 

By contrast, plant mtDNAs typically encode their own set of ribosomal proteins (Gray, 

1992). The protists show more divergence, with the most notable examples being R. 

americana encoding all ribosomal proteins, P. wickeramii encoding about half, and the 

Chlamydomonads encoding none of the ribosomal proteins (Gray et al., 1998).

The presence of transfer RNAs (tRNA) show a high degree of divergence between 

taxa. Several protist mtDNAs do seem to contain a minimal tRNA set [Monosiga
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brevicollis, P. wickeramii, etc. (Gray et al., 1998)]. However, tRNAs recognizing one or 

more codons are absent from other mitochondrial genomes (e.g., Chlamydomonas sp.). In 

these cases, import from nuclear encoded DNA is usually invoked. In fact, import of 

tRNA into Tetrahymena mitochondria, long inferred from tRNA population studies 

(Suyama, 1986) has been shown experimentally (Rusconi & Cech, 1996). RNA editing 

must also be mentioned as an alternative possibility to tRNA variability. In this case 

opossum mitochondria serves as the archetype, in which tRNA-Gly undergoes partial 

C->U editing to generate tRNA-Asp (Bomer et al., 1996).

One of the more bizarre twists in the evolution of protein translation machines is that 

of discontinuous and scrambled rRNA genes. Bacteria and mitochondria typically organize 

their rRNA into operons structured as 16S-23S-5S. On occasion, tRNA genes are found 

in the spacer between the 16S and 23S genes (Srivastava & Schlessinger, 1990), and as 

mentioned, the 5S rRNA has been dropped from many mitochondrial genomes. 

Nevertheless the general structure is more or less conserved. A few mitochondrial 

lineages, as well as some bacterial ones, encode discontinuous rRNAs which are split into 

separate regions on the genome and are interspersed with other genes. Bacterial examples 

are usually confined to those with small genomes and low rRNA copy numbers such as R. 

prowazekii (Andersson et al., 1995). Mitochondrial examples include Paramecium aurelia 

(Figure 1) (Seilhamer et al., 1984), and Tetrahymena pyriformis (Heinonen et al., 1987). 

The most extreme cases of rRNA rearrangement seem peculiar to certain lineages. 

Chlamydomonas is an example of extreme divergence with discontinuous and scrambled 

rRNA coding regions (Boer & Gray, 1988b; Denovan-Wright & Lee, 1994; Nedelcu,

1997). Other examples of discontinuous and scrambled rRNAs are portrayed by 

Plasmodium (Feagin et al., 1992) as well as Euglena and Crithidia (Gray & Schnare, 

1990).
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A direct comparison of three rRNA coding regions in Figure 1 illustrates the concept of 

scrambled and discontinuous rRNA coding modules. E. coli encodes its rRNA operon as a 

continuous unit, and is transcribed as such. Post-transcriptional modifications result in 

functional 23s and 5s large (LSU) and 16s small subunits (SSU). Paramecium aurelia is 

an intermediate example of rRNA that is encoded discontinuously. Note that the rRNA is 

split into separate coding areas (divided by —11 kb of sequence), and is interspersed with 

other genes.

By contrast, C. eugametos encodes its rRNA modules discontinuously over a 14 kb 

stretch of DNA. These modules are interspersed with both protein and tRNA coding 

regions. Further, both LSUs and SSUs are scrambled. That is they do not obey the 

typical 5 '-3 ' architecture of other transcribed rRNAs. The C. eugametos rRNA has been 

labeled to denote how the subunits would piece together should they be continuously 

encoded and unscrambled. So the large subunit order would be L1-L2-L3-L4-L5-L6. 

Likewise, the small subunit would be S1-S2-S3. Region three of the C. eugametos map 

(Figure 1) has been enlarged to illustrate the scrambled coding within one of the modules. 

Note that not only are the L4 and LI coding regions out of order 5" to 3', but the small 

subunit region SI also separates them. There are a total of 4 separately encoded modules. 

The coding rRNAs within each module is as follows, Region 1: L3 and L2; Region 2: L6 

and S2; Region 3: L4, SI and LI; Region 4: L5 and S3.

One of the most distinctive features of gene loss and eventual migration to the nucleus 

is scrambling (Brennicke et al., 1993). Loss of coding integrity usually indicates the loss 

of a gene function that was either superfluous within the endosymbiotic environment or that 

has a backup redundancy. However, molecular modeling studies based on the secondary 

structure of E. coli rRNA have shown that the Chlamydomonads are capable of organizing 

their rRNA into a functional unit (Denovan-Wright & Lee, 1994). It is thought that the 

rRNA within Chlamydomonas sp. associates through hydrogen bonding associations.
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Figure 1. Ribosomal RNA coding regions from Escherichia coli, Paramecium aurelia, and Chlamydomonas eugametos.
Genes coding for rRNAs, tRNAs, and proteins are represented by cross hatches, black and shaded regions respectively. 
Region 3 of C. eugametos is enlarged for illustrative purposes and is not drawn to scale. See text for details.



Indeed, though evidence for intermolecular associations is still lacking, research has 

provided evidence that these rRNAs do associate with ribosomes in mitochondria 

(Denovan-Wright & Lee, 1995).

Electron Transport Genes

While the outer membrane of mitochondria is rich in enzyme activity (e.g. 

phospholipid biosynthesis), only inner membrane proteins have been found encoded on the 

mitochondrial genome. The electron transport chain includes four multimeric complexes. 

The composition of each complex has been studied and the sequence of electron transfer 

has been established. Further, with the increased sequence information provided from a 

variety of different mitochondrial sources, an evolutionary picture is emerging. The 

description of the electron transport complexes below are listed from the initial electron 

entry from either complex I or II, to the electron’s eventual transfer to molecular oxygen, 

resulting in the formation of water.

Complex I (NADH-ubiquinone reductase) catalyzes the oxidation of NADH 

(nicotinamide adenine dinucleotide) and is the entry point for electrons traveling from 

NADH into the electron transport chain. It has been described as one of the most complex 

enzymes ever characterized. For example, beef heart complex I contains around 41 

separate polypeptides (Fearnley & Walker, 1992). However, no more than 12 of these 

have ever been shown to be encoded by any mitochondrial genome (Gray et al., 1998).

The presence or absence of coding sequences for the nad genes shows no clear delineation 

along species lines. Interestingly, no nad sequences are present within the mtDNA of the 

yeasts Schizosaccharomyces pombe or Saccharomyces cerevisiae (Gray, 1992). Among 

the Chlamydomonads all species thus far characterized code for nad 1, 2 ,4 ,5 , and 6.

Complex II (succinate-ubiquinone oxidoreductase) is the second entry point of 

electrons through succinate from the citric acid cycle, and is the only citric acid cycle 

enzyme found on the mitochondrial inner membrane. Until recently, complex II had been
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missing from characterized mitochondrial genomes. The current representatives containing 

sdh 2, 3 and 4 of complex II are R. americana (Burger et al., 1996), the red algal 

rhodophytes Chondrus crispus and Porphyra purpurea (Burger et al., 1996; Gray et al.,

1998).

Complex III (ubiquinol-cytochrome C reductase) contains 8-11 subunits, depending 

on the species, and is in charge of reducing coenzyme Q by cytochrome C. Interestingly, 

one of the proteins is universally encoded by all species studied so far (Gray et al., 1998). 

That protein, apocytochome b, is highly hydrophobic with 8 to 9 membrane spanning 

domains (Popot & de Vitry, 1990). Conversely, none of the other proteins of this complex 

has ever been found encoded by any mitochondrial genome.

Complex IV (Cytochrome c oxidase) catalyzes the oxidation of reduced cytochrome c 

by molecular oxygen. Three of the polypeptides (Cox 1, 2, 3) of this complex are typically 

mitochondrial in origin and are the most hydrophobic (Gillham, 1994). While cox 1 is 

universally encoded in all mitochondrial genome studies thus far, cox 2 and 3 show some 

species variability. Most notable is the absence of cox 2 and 3 in the Chlamydomonads 

(Denovan-Wright et al., 1998) as well as Chlorogonium elongatum (Kroymann & Zetsche, 

1998).
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Introns

The discovery of introns was a major revolution in molecular biology. Not only had 

the model for the simple colinearity of the gene been shattered, but this intronic sequence 

was also capable of catalytic activity, a role that had been assigned only to proteins. Since 

their discovery, introns have been found in numerous DNA sequences. There are currently 

four recognized intronic types: (1) nuclear; (2) tRNA; (3) Group I and (4) Group II. Only 

group I and group II introns have been recognized in organellular DNA and will be the only

ones discussed here.



Both group I and group II introns are capable of inserting themselves into intronless 

alleles as well as transporting to other locations (Lambowitz & Belfort, 1993). However, 

both groups differ in secondary structure, consensus sequences at their splice sites, and 

types of reactions involved in splicing. Therefore, group I and II introns can be described 

in two aspects of their life cycle: intron mobility and catalytic abilities.

Group I Introns

Group I introns have the widest distribution phylogenetically of any class (Lambowitz 

& Belfort, 1993), and have been found in eubacteria, eukaryotes and possibly 

archaebacteria (Lykke-Andersen et al., 1997). One of the defining abilities of introns is 

their mobility. While the details of intronic horizontal transfer are still somewhat unclear 

(Gray, 1998), there is recent evidence that mass migrations may be more common than 

previously thought (Cho et al., 1998). The details of intracellular genomic transfer are 

becoming well characterized. A number of group I introns achieve mobility via an intron- 

encoded site-specific endonuclease (Dujon, 1989; Gillham, 1994; Lambowitz & Belfort, 

1993; Perlman & Butow, 1989). There are a number of intron-encoded site-specific 

endonucleases, each capable of cleaving an asymmetric target sequence. Four families of 

endonucleases have been defined for group I introns. The LAGLIDADG consensus 

sequence, which occurs as repeats, is present in the majority of endonucleases (Belfort & 

Perlman, 1995). The motif is phylogenetically widespread, occurring in all three 

kingdoms, and is present in archaeal introns, as well as in all four known group I intron- 

encoded maturases (Belfort & Perlman, 1995). The second group is the GIY-YIG 

proteins. The two components of the GIY-YIG motif are separated by 10-11 amino acids 

and occur upstream of a conserved sequence block of about 15 amino acids (Belfort & 

Perlman, 1995). The third motif, the H-N-H proteins, has the interesting property of being 

implicated in both group I and II introns (Lambowitz & Belfort, 1993). The H-N-H
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proteins display a consensus sequence spanning 30-33 amino acids with four highly 

conserved histidine residues. This region is contained within 50-80 amino acids of less 

well-conserved residues (Shub et al., 1994). The H-N-H motif also appears in a Zn2+ 

finger-like domain of group II introns. This reflects the coincidence of endonuclease 

functions in both group I and group II mobility pathways (Belfort & Perlman, 1995). 

Lastly, the Hys-Cys box motif contains 3 cysteine and 2 histidine residues in a conserved 

region about 30 amino acids long. The Hys-Cys box is likely to be a metal coordination 

site within the DNA binding domain (Johansen et al., 1993).

These site-specific nucleases are capable of mobilizing their introns in two ways. The 

first is homing, a process by which an intron in one gene introduces itself into the same site 

in a homologous gene. Homing has been confirmed in a number of studies (Clyman & 

Belfort, 1992; Szostak et al., 1983) and the mechanism has been extensively reviewed 

(Lambowitz & Belfort, 1993; Belfort & Perlman, 1995). Briefly, this mechanism occurs 

by creating a double stranded break in the intronless allele. The resulting DNA ends invade 

the intron containing allele to induce replicative transfer by a double-stranded break-repair 

process (Saldanha et al., 1993; Belfort & Perlman, 1995). The second mode of mobility is 

transposition, a process which occurs by the addition of an intron to a specific site in a 

nonhomologus gene lacking the intron, or into a different site in the homologous gene. 

Group I intron transposition has not yet been observed in its entirety, but partial reactions 

have been observed both in vitro and in vivo (Mohr & Lambowitz, 1991; Roman & 

Woodson, 1995; Thompson & Herrin, 1994).

The secondary structure of group I introns was determined (Davies et al., 1982; 

Michel et al., 1982) based on comparative sequence analysis. However, the former 

assumption that the intronic RNA first folds into a secondary structure and then settles into 

tertiary interactions from the unpaired bases has recently been challenged. In NMR studies 

with a segment of the Tetrahymena thermophila group I intron it was found that upon
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folding into the tertiary structure there was a rearrangement in secondary structure (Wu & 

Tinoco, 1998). This study indicates the need for investigation of intronic (indeed RNA in 

general) secondary and tertiary folding patterns. However, for this introduction, the 

accepted conventions will be observed in defining intronic secondary structure.

Group I introns have a characteristic conserved secondary structure of paired regions 

denoted PI -  P10, with elements of P3-P8 forming the intron’s catalytic core (Lambowitz 

& Belfort, 1993). These paired regions are designated P, Q, R and S. At the 5" and 3 ' 

ends of the intron are one of the unusual features of group I introns, particularly in the 

context of mobility. These intronic ends, called the internal guide sequence (IGS), pair 

with the flanking exon sequences at the 5’ and 3’ ends to form helices PI and P10 

respectively (Lambowitz & Belfort, 1993). While the core secondary structure is 

conserved, DNA sequences can display extreme divergence (Lambowitz & Belfort, 1993). 

This sequence divergence, especially among those evolutionary distant from the current 

representatives in the DNA sequence databases, makes intronic group determinations 

problematic (Lisacek et al., 1994). Nevertheless, the same secondary structure has been 

confirmed for numerous sequences.

In order to exist within the confines of a functional gene, introns must be capable of 

self-excision to impart no deleterious effects upon the gene transcript. Such interruptions 

would introduce sequences that would severely impair or destroy the function of the gene 

product. The catalytic nature of group I introns were first reported by Cech (Cech et al., 

1981) before it was even known to be a group I intron. The process of intronic excision 

has been extensively reviewed (Gillham, 1994; Lambowitz & Belfort, 1993). Briefly, 

group I introns operate via two guanosine-initiated transesterfication reactions. The first 

reaction is initiated by a guanosine residue, such as guanosine monophosphate, as the 

attacking nucleophile. This reaction releases the 5 ' exon, leaving a free 3 "-hydroxyl 

typically of a conserved uracil residue. The 5 ' exon attacks the phosphorus atom at the 3 '

17



splice site. Ligation of the exons and excision of the intron (which may either remain linear 

or circularize) is then completed.

Group II Introns

Group II introns have a wide distribution, have been found in fungal mitochondria 

(Michel & Ferat, 1995), are predominate in plant mitochondria and chloroplasts (Gillham, 

1994; Oda et al., 1992), and are abundant in Euglena gracilis chloroplasts (Hallick et al., 

1993). Group II introns, like their group I counterparts, initiate the removal of themselves 

from exonic RNA. However, group II introns differ in secondary structure as well as the 

mechanism for splicing. Like their group I counterparts the secondary structure of group II 

introns was determined by comparative sequence analysis (Michel et al., 1982; Schmelzer 

et al., 1983). Several excellent reviews have been presented for the structure and catalysis 

of group II introns (Gillham, 1994; Lambowitz & Belfort, 1993; Michel & Ferat, 1995) 

from which the following description has been drawn. Structurally, group II introns are 

characterized as 6 helical domains radiating from a central wheel. This structure is 

essentially conserved, but there is little sequence similarity between group II introns. 

Among the most conserved sequences are the 5 ' intron boundary sequence GUGYG 

(where Y is a pyrimidine) and the 3' boundary AY. But even these sequences have their 

exceptions (Michel & Ferat, 1995). Group II introns are capable of the same forms of 

mobility as group I introns (i.e., homing, transposition and deletion), but achieve mobility 

in different ways. Group II mobility has been associated with reverse transcriptase -like 

proteins, maturases and endonucleases with a Zn2+ domain.

Catalytically, group II introns operate by a pair of transesterfication reactions. The 

initiating nucleophile is a 2 '-hydroxyl of an adenosine residue in domain VI. This 

nucleophilic attack centers on the 5 ' splice junction and releases the 5' exon with a free 

hydroxyl end. A characteristic group II lariat is formed by the attachment of the 5 ' intron 

end to the above mentioned adenosine residue responsible for the initial excision reaction.
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The free 5" exon then attacks the 3 ' splice junction to produce the spliced exons plus the 

excised lariat structure.

The distribution of group I and group II introns has been identified in a number of 

different algal genera. Both group I and group II introns have been found in Scenedesmus 

obliquus (Kuck et al., 1990). Only group I introns have been found in Chlamydomonas 

eugametos (Denovan-Wright & Lee, 1994; Denovan-Wright et al., 1998), Chlamydomonas 

moewusii (Turmel et al., 1993), Chlamydomonas smithii (Colleaux et al., 1990), 

Chlorogonium elongatum (Kroymann & Zetsche, 1998), and Prototheca wickerhamii 

(Wolff et al., 1994). Chlamydomonas reinhardtii is postulated to contain a degenerate 

group II intron (Nedelcu & Lee, 1998) but is otherwise intronless (Michaelis et al., 1990). 

The current data is sketchy at best but a few generalizations have been forwarded. 

Positionally equivalent and structurally homologous coxl introns have been found in 

Monosiga brevicollis, Marchantia polymorpha and P. wickeramii, suggesting a vertical 

inheritance from a mitochondrial ancestor of fungi, green algae and plants (Wolff et al., 

1993). It is important to point out that while these introns are structurally conserved, their 

sequence is not. One of the characteristics of vertical transmission is thought to be an 

extreme sequence divergence over evolutionary time from the common ancestor. For this 

reason authors tend not to speculate much about the evolutionary origins of sequences that 

are highly divergent from those in the database. In contrast, horizontal transmission 

(especially recent transmission events) is thought to show a greater degree of similarity 

(implying homology) between the conserved core and intronic open reading frames. For 

example, Peperomia is distantly related to the angiosperm Veronica. Yet they both contain 

an intron of 92% identity inserted in the same position of the cox 1 gene (Cho et al., 1998). 

After the investigation of 335 diverse genera and inquiries into the sequence databases, Cho 

and colleagues (Cho et al., 1998) found that this intron showed a patchy phylogenic 

distribution. Their conclusion was that this intron had horizontally transferred over 1,000
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times during angiosperm evolution. Further, this massive wave of intron transfer is a 

recent occurrence. In summary, the origin and transfer of introns remains a hotly debated 

subject, and will only resolve with research efforts.

Mitochondrial Genomes of Alga

The relationship of the mitochondrial genomes in chlamydomondales to other algal 

taxa and embryophytes (land plants) raises certain fundamental evolutionary questions. 

Mitochondrial rRNA sequences of the green alga Chlamydomonas reinhardtii do not branch 

with the higher plants although nuclear and chloroplast rRNA phylogenies place 

Chlamydomonas and higher plants in the same branch (Cedergren et al., 1988). In fact, 

the question of whether mitochondria were of monophyletic or polyphyletic origin was for 

a time considered (Cavalier-Smith, 1992; Gray, 1988). However the recent sequencing of 

Prototheca wickeramii (Wolff et al., 1994) and other protists has demonstrated that plant 

mtDNA has an ancestral pattern that has been lost in the rapidly evolving and highly 

derived Chlamydomonas sp. (Gray et al., 1998). The division has been described by 

Denovan-Wright and co-workers (Denovan-Wright et al., 1998) as either ‘animal like’ in 

the chlamydomonadalean taxa or ‘plant like’ in Prototheca wickeramii and Platymonas 

subcordiformis. This borrowed analogy is used to reflect the differences in genome 

structure and organization. ‘Plant like’ algal taxa contain large mitochondrial genomes. By 

contrast, the ‘animal like’ division has a small mitochondrial genome size. However, this 

analogy fails to recognize the gene content divergence. The Homo sapiens mitochondrial 

mtDNA, for example, is a study in economy. Nearly all of its 16 kb of DNA codes for 

some gene (Gray, 1992), while Chlamydomonas reinhardtii encodes one of the lowest 

content of genes known (Gillham, 1994). Detailed genome analysis for a few chlorophytes 

including Chlamydomonas reinhardtii (Gray & Boer, 1988), Chlamydomonas eugametos 

(Denovan-Wright et al., 1998), Prototheca wickerhamii (Wolff et al., 1994), and
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Chlorogonium elongatum (Kroymann & Zetsche, 1998) has been completed and their 

sequences deposited in GenBank.

The genetic coding is strikingly similar among C. elongatum and the two 

Chlamydomonas species. All three encode seven subunits of the mitochondrial respiratory 

chain (nad 1 ,2 ,4 , 5, 6, cob, cox 1), three tRNAs (tRNAmet, tRNAtrp, tRNAgln), and the 

large (LSU) subunit and small (SSU) ribosomal RNAs. The latter are discontinuous and 

scrambled, interspersed with tRNA and protein coding regions.

The differences among the three taxa are equally as interesting. None of the three are 

colinear with respect to one another, implicating different evolutionary routes after splitting 

from some common ancestor. While C. eugametos and C. elongatum are circular and 

roughly equal in size (22.9 kb and 22.7 kb respectively), C. reinhardtii has a linear 

(Michaelis et al., 1990; Ryan et al., 1978) genome of about 15.8 kb. Further, this genome 

is flanked by characteristic inverted repeats with 3’ single-stranded, noncomplementary 

extensions of 39 to 41 nucleotides (Ma et al., 1992; Vahrenholz et al., 1993). Both C. 

eugametos and C. elongatum encode all their genes on a single strand of the mtDNA 

genome whereas C. reinhardtii transcribes bi-directionally. Additionally, C. reinhardtii 

encodes an rtl gene coding for a reverse transcriptase-like protein (Boer & Gray, 1988a). 

This gene is not present in either C. eugametos or C. elongatum. Further, only C. 

eugametos encodes an additional tRNAmet that is thought to be a pseudogene. No introns 

have been found in C. reinhardtii mtDNA, however one group I intron has been detected in 

the closely related, colinear but infertile strain C. smithii. By contrast, C. eugametos, C. 

elongatum and P. wickeramii have been shown to contain 9, 6, and 5 introns respectively.

The study of the evolution of various mitochondrial genome lineages is of increasing 

interest. In particular, the study of the highly derived Chlamydomonads has come under 

scrutiny because of their unique features. This laboratory chose to investigate the 

mitochondrial genome of C. acidophila in an attempt to further elucidate the various
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evolutionary pathways these alga have undertaken. To that end, a partial segment of C. 

acidophila’s mitochondrial DNA (~15 kb) was cloned and sequenced. The sequence was 

then subjected to various computer analyses. It is hoped that the knowledge of this 

sequence will contribute to the understanding of the evolution of mitochondrial genomes 

within the Chlamydomonads.
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Cadmium Tolerance

Many metals, such as copper, zinc and magnesium, are essential for biological 

processes. They participate in a number of different cellular homeostatic functions such as 

transcription, electron transport, and osmotic regulation. While any metal can be toxic 

above certain threshold values, some metals such as cadmium, mercury, and lead serve no 

known biologic function and can be cytotoxic even at low concentrations. Further, unlike 

other environmental pollutants such as pesticides, heavy metals tend to persist for long 

periods of time. One of the metals, cadmium, is a potent environmental pollutant and 

carcinogen and has come under recent scrutiny (Waalkes et al., 1992). It has a low crustal 

abundance but is present in all living organisms, albeit at concentrations that are extremely 

low and do not seem to hinder biologic function (Webb, 1979). Modern industrial 

operations have redistributed and concentrated cadmium into ecosystems not competent for 

high levels of this metal. The amount of cadmium present in soils is variable depending on 

location, but seems to be on the increase (Grant et al., 1998; Jones et al., 1992). Previous 

investigations have revealed that organisms exposed to cadmium contaminated sites contain 

high levels of this toxic metal (Grant et al., 1998; Webb, 1979). Some plants can 

accumulate relatively high levels of cadmium without adverse effects on growth (Bingham, 

1979; Kuboi et al., 1986). Strikingly, although plants do not require cadmium for growth 

or reproduction, the accumulation index of cadmium in many green plants exceeds that of 

all other trace elements (Kabata-Pendias & Pendias, 1992). The ability to accumulate



cadmium in food plants and its subsequent mobility through the food chain has put humans 

and other biota at a tangible risk.

The sites for cadmium damage are long and varied. Cataloging whether an effect is a 

primary cause for cell toxicity or just another in a long list of secondary consequences 

remains a daunting chore. It seems that cadmium is responsible for a multi-system 

breakdown of the cell. In mammalian cells, for example, cadmium at cytotoxic 

concentrations inhibits the biosynthesis of DNA, RNA, protein and induces lipid 

peroxidation (Beyersmann & Hechtenberg, 1997). At non-cytotoxic concentrations 

cadmium is weakly mutagenic, probably owing to the disruption of DNA repair enzymes 

(Beyersmann & Hechtenberg, 1997), and not due to direct DNA chemical damage.

Further, at concentrations as low as 1 pM, cadmium has been shown to activate the proto­

oncogenes c-jun, c-fos, and c-myc (Beyersmann & Hechtenberg, 1997). This metal/proto- 

oncogene interplay has been proposed to be the cause of carcinogenesis associated with 

cadmium (Beyersmann & Hechtenberg, 1997). In plants, photosynthetic inhibition is a 

common theme (Straton & Corke, 1979). Recently, Nagel and colleagues (Nagel et a i, 

1996) challenged C. reinhardtii with Cd109 and found that the metal localizes primarily in 

the chloroplast with a specific inhibition of photosystem II (Voigt et al., 1998). However, 

cadmium has also been shown to disrupt oxidative phosphorylation through inhibition of 

substrate oxidation and increasing proton leak in the mitochondria of potato tuber (Kesseler 

& Brand, 1994).
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Heavy Metal Tolerance

A metal toxic environment, either natural or anthropogenic provides an interesting 

problem for organisms. On the one hand an established, metal naive population suffering 

metal insult through pollution or other means will undoubtedly be forced through a strong 

selection sieve from which tolerant populations frequently arise (Macnair, 1993). On the



other hand, a metal competent population is forced to contend with a substance that is both 

unusable and toxic to the cellular environment. However, it must be stressed that metal 

contaminated environments may be viewed as an exploitable niche. An organism capable 

of survival within a metal toxic environment may have a selective advantage. Some 

organisms may have evolved to use these environments efficiently, to the exclusion of 

competing species. Indeed the conventional paradigms for certain metal metabolites may 

blur with increased study of biologically diverse niches. For example, cadmium is thought 

to be a universally unusable metal ion by biotic life. However, one study suggests that 

cadmium is able to replace zinc in marine phytoplankton (Lee & Morel, 1995). Still, as a 

general rule, certain metals (e.g. cadmium, mercury, arsenic, etc.) are toxic to most forms 

of life. In order to grow and reproduce in metal toxic environments organisms must be 

capable of negating the effects of metal toxicity.

Biotic life may employ a number of different defenses against metal toxicity. Perusal 

of the literature can be confusing especially in the categorization of metal defenses. Terms 

such as ‘resistance’ and ‘tolerance’ are used seemingly according to the author’s 

preference. These definitions are usually defensible within the context of the author’s field. 

However, crossing over to a different discipline may yield slightly different definitions or 

on different emphasis within the definitions. For example, Gadd (Gadd, 1992) clearly 

implicates metallothioneins and phytochelatins in metal ‘resistance’. By contrast, Macnair 

(Macnair, 1993) defines these as ‘tolerance’ mechanisms (indeed refusing to use the term 

‘resistance’ altogether), indicating the difficulty of agreement between fields. There are 

further definition lines among organisms and molecular mechanisms. Prudence dictates 

accepting those definitions that seem to have a consensus within a discipline.

The prokaryotes are replete with mechanisms capable of the specific elimination of 

toxic metals. Gadd (Gadd, 1992) defines ‘resistance’ as a microorganism’s ability to 

survive toxic effects of metal exposure via the direct response of some detoxification
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mechanism against the metal insult. It is important to note that Gadd never commits his 

terminology to a specific response mechanism for a specific metal or class of metals, 

though such mechanisms do seem to exist. Rather, this definition implies an ‘active’ 

response mounted against either the offending metal or the effects of that metal. Such 

mechanisms further imply an evolutionary history with metals. Indeed, Silver (Silver, 

1996) suggests that the early earth was metal polluted and it was then, shortly after the 

appearance of prokaryotes, that metal resistance arose.

Of the bacterial resistance mechanisms, Silver (Silver, 1996) makes three 

generalizations: (1) Heavy metal resistance is very specific, there is no general mechanism 

capable of producing resistance to all heavy metal ions. In this sense metal resistance is 

analogous to plasmid-mediated antibiotic resistance and sugar or amino acid metabolism.

(2) Metal-ion resistance has been found on plasmids of every bacterial group studied so 

far. Further investigations have revealed homologous genes on certain bacterial 

chromosomes. For example, the genome sequence of Haemophilus influenza 

(Fleischmann et al., 1995) includes genes predicted for arsenite reductase and mercury 

transport similar to those previously sequenced on bacterial plasmids (Silver & Keach, 

1982; Summers & Silver, 1972). (3) The mechanisms of resistance are generally efflux 

pumping and enzymatic detoxification converting a more toxic substance to a less toxic and 

less available metal. A clear and well-reviewed example of modification would be the 

bacterial reduction of Hg2+ to Hg() through a plasmid reductase gene (Silver & Misra, 1988; 

Summers, 1986). Transport examples include the CadA ATPase of gram positive bacteria, 

and the bacterial Czc antiporter system (Silver & Walderhaug, 1992).

These specific mechanisms are by no means the only defenses within a 

microorganism’s repertoire. In contrast to ‘resistance’, ‘tolerance’ has been defined as the 

ability of a microorganism to survive metal insult by the means of some intrinsic 

mechanism (Gadd, 1992). Intrinsic properties can be seen as some part of an organism’s
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life cycle, not intended for specific metal resistance, that is nonetheless capable of 

modifying the toxicity of metals. Examples include impermeable cell walls, extracellular 

polysaccharide, and metabolite excretion.

Eukaryotes seem to have adopted a different strategy. In contrast to the bacterial 

theme of efflux and toxicity modification, eukaryotes typically mount a defense based on 

metal binding peptides, in effect inactivating harmful metal species through complex 

formation. The major metal complexing enzymes, which may play a dual role in metal 

homeostasis and detoxification, are metallothioneins and phytochelatins. Metallothioneins 

comprise a family of low molecular weight cysteine-rich, ribosomally translated proteins, 

that may have a multifunctional role consisting of metal ion homeostasis, metal ion 

detoxification, and detoxification of oxygen free radical species. Metallothioneins contain a 

number of Cys-Xaa-Cys stretches thought to bind metal ions (where Xaa is any amino acid 

other than cysteine). There is much evidence for the protective role of metallothioneins 

against metal ions. Rat hepatocytes exposed to cadmium, zinc, arsenic, mercury, and 

nickel were shown to induce the production of metallothioneins many fold over the controls 

(Bauman et al., 1993). Resistance to cadmium toxicity in mammalian cell lines has been 

correlated with gene amplification (Crawford et al., 1985). Sensitivity to cadmium toxicity 

has been associated with metallothionein gene deletions in transgenic mice (Masters et al., 

1994; Michalska & Choo, 1993). However, the role of metallothionein-like proteins in 

plants remains controversial. Many of these metallothionein-like genes have been found in 

plants (Robinson et al., 1993). Zhou and Goldsbrough were even capable of restoring the 

cadmium and copper tolerance of yeast by complementation with genes coding for 

metallothionein from Arabidopsis thaliana (Zhou & Goldsbrough, 1994). But researchers 

such as Zenk have contended that there is no experimental evidence that these plant 

metallothioneins are involved in the detoxification of heavy metals in higher plants (Zenk, 

1996).
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Phytochelatins (class III metallothioneins, PC) are sulfur-rich peptides that are 

produced in plants, algae, and fungi. In contrast to Class I and II metallothioneins, 

phytochelatins are constructed not on ribosomes, but as a product of enzymatic reactions 

via a y-peptide linkage, rather than the a-amino and carboxyl linkage seen in polypeptides. 

Their structure consists of a variable number (2-7) of glu-cys dimers and a carboxyterminal 

glycine. There are at least three distinct enzymes in the formation of phytochelatins (Zenk, 

1996). The enzymes responsible for catalyzing the initial steps are y-glutamylcysteine 

synthetase and glutathione synthetase, the product of which is glutathione. Glutathione 

forms a useable pool for phytochelatin synthesis via phytochelatin synthase (Zenk, 1996).

Early investigations showed that phytochelatins might be protective against metals. 

Pulse chase experiments, where the cellular glutathione pool was tagged with 35S, show a 

loss of radiolabel from glutathione and a concomitant increase in radiolabeled phytochelatin 

when the organism was treated with cadmium (Robinson et al., 1993). While 

phytochelatin synthesis in response to metals has been shown in numerous organisms, 

their precise role in metal detoxification is still controversial. In an in vitro study by Kneer 

(Kneer & Zenk, 1992) plant enzymes tolerate 10 to 1000-fold the amount of cadmium in 

the presence of phytochelatins as compared to the free metal ion. In C. reinhardtii 

phytochelatins were shown to be protective against cadmium toxicity (Howe & Merchant, 

1992). The same study speculates that phytochelatin synthesis is an evolutionary 

adaptation because of the inability of glutathione to effectively bind cadmium ions with the 

stability required for cadmium detoxification (Howe & Merchant, 1992). In support of this 

idea, the affinity for cadmium increases with increasing phytochelatin peptide length. One 

of the most convincing results of the role of phytochelatins in metal detoxification is with a 

cadmium sensitive mutant of Arabidopsis thaliana (Howden et al., 1995). This mutant was 

sensitive to cadmium and deficient in its ability to form Cd-PC complexes while glutathione 

synthesis proceeded at the same rate as the wild type. An enzyme assay demonstrated that
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phytochelatin synthase was the defective enzyme. Interestingly, the role of phytochelatins 

is somewhat murky in other organisms. For example, cadmium sensitive clones of Silene 

vulgaris produced more phytochelatin upon exposure to cadmium than cadmium tolerant 

lines (De Knecht et al., 1994). This result is confirmed with similar results on zinc 

(Harmens et al., 1993).

Previous investigators have studied the genetic and physiologic basis of metal 

tolerance in the genera Chlamydomonas. For example, Collard and Matagne (Collard & 

Matagne, 1990) selected clones of C. reinhardtii tolerant to Cd. In addition to confirming 

the role of the cell wall in cadmium tolerance, they found two independent major genes, 

each of which was capable of imparting tolerance on its own and that acted additively. 

Previous investigations by this group provided evidence that these mutations were cross 

protective against copper and zinc but not nickel and cobalt (Collard & Matagne, 1990). 

Nagel and Voigt isolated cadmium tolerant clones after 9 months of selection in cadmium 

infused medium (Nagel & Voigt, 1989). Later investigations by this group showed that the 

tolerance mutation occurred within the photosynthetic metabolic pathway (Nagel et al., 

1996; Voigt et al., 1998). These results indicated that adaptive mutations could provide 

additional protection against cadmium toxicity by altering photosystem II. Two 

independent laboratories isolated cadmium sensitive mutants via transformation by 

insertional mutagenesis (McHugh & Spanier, 1994; Tang et al., 1995). However, 

localization of these insertions has yet to be determined.

In an attempt to add to this data and elucidate mechanisms of metal ion tolerance, this 

laboratory investigated heavy metal tolerance in C. acidophila. Previous investigations had 

shown that this alga was capable of withstanding algastatic concentrations of copper 20- 

125 times greater than those of the laboratory strains of C. reinhardtii. Further studies 

revealed that C. acidophila amplified a ~20 kb segment of DNA in response to cadmium 

exposure (Spanier, unpublished data). In an attempt to understand the role of this DNA
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during cadmium challenge we cloned a segment of the DNA and probed northern blots to 

obtain a profile of transcript production.
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Summary Statement

The research reported in this dissertation reflects two major projects. Previous 

investigations revealed a high degree of copper tolerance in the chlorophyte 

Chlamydomonas acidophila (Twiss, 1990). By inference, since many mechanisms of 

eukaryotes typically show cross protection to other metals, it was decided to test C. 

acidophila for cadmium tolerance. The studies in this laboratory focused on potential 

mechanisms for that tolerance. C. acidophila was shown to amplify DNA in response to 

cadmium challenge (Spanier, unpublished results). In order to ascertain transcript 

production from this DNA, total cellular RNA from cadmium exposed C. acidophila was 

isolated and investigated. This process involved the cloning of the amplified DNA and 

using it as a probe against northern blots to obtain a profile of transcripts being produced 

from this region. During this process one of the cloned segments of DNA was sequenced. 

Investigations of this sequence revealed some unique features. It was determined that this 

DNA may be the mitochondrial genome. In an effort to further characterize this DNA, an 

attempt was made to clone the entire molecule. The cloned DNA was sequenced and 

analyzed by various computer-aided procedures.



MATERIALS AND METHODS

Strains

Chlamydomonas acidophila strain #122 was supplied by Dr. Judy Acreman, 

University of Toronto Culture Collection, Toronto, Canada. Chlamydomonas cultures 

were maintained at 22°C under continuous light. For sub-cloning procedures E. coli 

SURE® cells (Stratagene) and XL 1-Blue (Stratagene) were used. For genomic cloning 

procedures E. coli strain LE392 (Promega) was used.

Plasmids and Cloning Vectors

Small DNA fragments were cloned onto pGEM®-3Zf+ vectors (Promega). This 

plasmid contains a gene for ampicillin resistance and also a multi-cloning site within the 

lacZ a-peptide gene that allows for blue/white screening of colonies. For the cloning of 

large genomic fragments LambdaGEM®-l 1 (Promega) was used. LambdaGEM®-l 1 is 

a derivative of EMBL3 that contains a multi-cloning site and is capable of holding large 

DNA fragments of 9kb to 23kb in size.

Growth Media

Minimal medium I (Sager & Granick, 1954) was used for all Chlamydomonas stock 

cultures. Two forms were used: (1) liquid and (2) solid media, in which washed
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(Spanier et al., 1992) Gibco Select Agar was used at a concentration of 1.5%. Escherichia 

coli strains were typically grown on Luria-Bertani (LB) (Maniatis et al., 1982) media (broth 

or agar plates) with or without ampicillin (50 gg/ml).

Cadmium Tolerance Studies 

Subcloning and Partial Digests

Two procedures were employed to clone DNA fragments into pGEM®. The first 

involved ligation of foreign DNA into pGEM®. Insert DNA was digested and fragments 

were separated by electrophoresis. The DNA was then quantitated by visualization of an 

ethidium bromide (EtBr) stained gel, containing standards of known amount. Based on 

this data the amounts of insert and vector DNA were estimated. Then both the insert and 

vector (cleaved with the appropriate enzyme) were mixed at a ratio of 1:3 of vector to insert 

ends, respectively. The two DNAs were then placed in 10 pi IX T4 DNA ligase buffer 

(supplied by the vendor). After mixing, 1 pi was removed (pre-ligation mix) and 1 pi T4 

DNA ligase (New England Biolabs, Inc.) was added. The mixture was then incubated 

overnight at 15-22°C. After ligation, 1 pi was removed (post ligation mixture) and both 

pre- and post-ligation mixtures were inspected on an agarose gel for confirmation of 

ligation.

Plasmid pJB 1 was isolated by inserting HindTH fragments of mtDNA (Spanier, 

unpublished results) and was initially used to probe C. acidophila total cellular RNA. After 

restriction analysis it was found that pJBl contained three Hindlll fragments.

Instead of ligating individual Hind III fragments from pJB 1 into new vectors, pJB 1 

was partially digested in an attempt to remove two of the fragments while retaining a third. 

Said another way, it was hoped that the partial digestion of pJB 1 with //m dlll would result 

in the enzyme cutting each plasmid an average of once or twice per unit time depending on 

the enzyme concentration. An effective enzyme concentration would cause two of the
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fragments to ‘drop out’ of the plasmid, after which the DNA could be religated and 

transformed into E. coli. The components of the digestion can be seen in Table 1. 

Following digestion, an equal volume of phenol/chloroform/isoamyl alcohol (25:24:1) was 

added to the reaction and the sample was mixed by hand for 30 seconds. After mixing, 

samples were centrifuged for 10 min at 14,000 rpm in an Eppendorf 5414 microfuge. The 

upper aqueous phase was removed and placed in a fresh 1.5 ml microfuge tube. The 

aqueous DNA was precipitated by adding 2 volumes of ethanol and 1/10th volume 3 M 

sodium acetate to the aqueous phase. The nucleic acids were allowed to precipitate for 1 

hour at -70°C. These samples were again centrifuged at 14,000 rpm for 30 minutes at 4°C. 

After centrifugation a white pellet could be visualized at the bottom of the tube. The 

aqueous phase was aspirated (taking care not to disturb the pellet), and the pellet was 

washed 3 times with 70% ethanol. After each wash the tubes were centrifuged at 14,000 

rpm for 5 minutes. After the final spin, the pellets were air dried until the DNA became 

translucent, then resuspended in 10 pi sterile H20 . A 1 pi aliquot of linear DNA was 

removed from each tube and ligated with T4 DNA ligase (New England Biolabs, Inc.). In 

addition, the concentration of the DNA was kept intentionally low to prevent the formation 

of dimers. After ligation, resulting plasmids were inspected by gel electrophoresis and 

transformed into E. coli SURE® cells. White colonies were selected and grown for 

plasmid miniprep analysis.
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Table 1. Partial digest of pJBl.
Tube 1 Tube 2 Tube 3 Tube 4

Hind III lu/pl 0.2u/pl 0.04u/pl 0.0 lu/pl
pJBl
(305ng/pl)

10 pi 10 pi 10 pi 10 pi

Total volume 100 pi 100 pi 100 pi 100 pi
-Digests were conducted with 10X buffer supplied by Sew England Biolabs, Inc.
-Solution brought to a total volume of 100 pi with H20  in a 1.5 ml microfuge tube. 
-Hind III enzyme supplied from New England Biolabs, Inc. in aliquots of 20,000 u/pl.



DNA Fragment Isolation
33

On occasion it was necessary to isolate DNA fragments directly from agarose gels. 

Generally, the Geneclean® kit (BIO 101, Inc.) was used to isolate those fragments. 

Geneclean® employs ‘glassmilk®’, a silica matrix that binds DNA above a certain salt 

concentration. Size fractionated, EtBr stained DNA was visualized with UV light and 

desired bands were cut from agarose gels with a sterile razor blade. Gel slices were 

weighed, and gel slices totaling no more than 0.25 g (0.1 g equals approximately 100 pi) 

were placed into separate 1.5 ml microfuge tubes. To each tube 4.5 volumes of 6 M Nal 

was added followed by 1/2 volume of TBE modifier. These tubes were placed in a water 

bath between 45-55°C for 5 min. Usually 5 pi of ‘glassmilk’ was added (5 pi of glassmilk 

can bind ~5 pg of DNA; for each additional 0.5 pg of DNA, 1.0 pi of ‘glassmilk’ was 

added) and mixed into solution. The tubes were placed on ice for 5 minutes and mixed by 

inversion every 1-2 minutes during that time. Afterwards tubes were centrifuged and 

‘glassmilk’ pelleted at 14,000 x g for 5 minutes. The Nal supernatant was removed and 

the pellets were resuspended in 500 pi NEW Wash®. The tubes were again centrifuged at 

14,000 x g for 5 seconds. NEW Wash™ was removed and the washing procedure was 

repeated twice. After the final wash and aspiration of the supernatant, the tubes were again 

centrifuged to remove excess NEW Wash™. Finally, DNA was eluted by resuspending 

the pellet in sterile H20 in a volume equal to the volume of ‘glassmilk’. The tubes were 

incubated at 55°C for 3 min and spun at 14,000xg for 20 sec. The DNA-containing 

supernatant was removed to a fresh microfuge tube. This process could be repeated and 

typical DNA yields were 80% recovery after the first elution and an additional 10-20%

after the second.



Transformation

To produce competent cells, E. coli SURE® was inoculated into 5 ml LB broth (no 

ampicillin) and agitated overnight at 37°C. The following morning, 1 ml of the culture was 

removed and inoculated into 100 ml LB and grown to early log phase (3-4 hrs; 30-60 min 

after turbidity is detectable). The cells were centrifuged and the pellet was resuspended in 5 

mis TSS and stored on ice. The cells could either be used immediately or divided into 

aliquots (0.2 ml or 0.6 ml) and frozen at -70°C.

The transformation protocol was based on a calcium chloride method. Plasmid DNA 

was added to 300 pi TCM (10 mM each of Tris pH 8, CaCl2 and MgCL). Then 300 pi of 

competent cells were added, mixed gently and incubated at 4°C for 30 min. The cells were 

then transferred to 37°C for 10 min. For each transformation both negative (no 

transformed DNA) and positive controls (pGEM®-3Zf+ uncut vector plasmid) were 

included. LB plates containing ampicillin (50 pg/ml), 50 pi X-gal (20 mg/ml in 

dimethylformamide), and 20 pi IPTG (24 mg/ml in QH20 ) were inoculated with 10, 50, or 

100 pi of transformed cells. Plates were grown at 37°C for 14-18 hrs then refrigerated 

(before the onset of satellite colonies).

Large Scale Preparations of Plasmid and Genomic DNA

The procedure for isolating large amounts of plasmids (or other DNA forms) was as 

follows. An overnight culture of E. coli SURE® cells, containing the plasmid of interest, 

was inoculated into 250 ml LB broth and grown overnight, under the selective pressure of 

ampicillin (50 pg/ml). The cells were concentrated in a GSA rotor using a DuPont Sorvall 

RC-5B centrifuge at 5000 x g rpm for 5 min. The supernatant was removed, the pellet 

resuspended in 20 ml TE, and the contents moved to a 50 ml Oak Ridge tube. The 5000 x 

g spin was repeated for 5 min in an SS-34 fixed angle rotor. The supernatant was 

discarded and the pellet was resuspended in 7 ml of solution I (15% sucrose, 50 mM Tris
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pH 8.0, 50 mM EDTA) and 1/10* volume lysozyme (10 mg/ml in solution 1). The tube 

was mixed by gentle inversion and incubated at 25°C for 30 min. An equal volume of 

solution II (0.1% Triton, 50 mM Tris pH 8.0, 50 mM EDTA) was added, contents were 

mixed, and again incubated at 25°C for 30 min. The solution was centrifuged in the SS-34 

fixed angle rotor for 60 min at 16,000 rpm. The supernatant was transferred to a fresh 

50ml conical tube. Dry cesium chloride (CsCl) was added to 85.5% w/v and the solution 

was mixed until CsCl had dissolved. To the tubes 1.6 ml EtBr (10 mg/ml) was added and 

mixed. This solution was used to fill Beckman polyallomer quick-seal centrifuge tubes (16 

x 76mm). The tubes were balanced, heat sealed, and placed in a Beckman 70.1Ti rotor and 

centrifuged in a Beckman L8-70M ultracentrifuge. The samples were spun for 48-72 hrs at 

38,000 rpm at 20°C. After centrifugation, DNA bands were visualized with an UV light 

source and the plasmid band removed. To remove EtBr, plasmid DNA was washed 5 

times (or once after all color was gone from both phases) with H20  saturated n-butanol. 

Since n-butanol is less dense than water, the top (non plasmid containing) phase was 

discarded each time. The plasmid DNA was ethanol precipatated in 30 ml Corex tubes. 

After precipitation the plasmid pellet was washed three times with 70% ethanol and 

resuspended in sterile H20 .

Miniprep

E. coli cells containing recombinant plasmids were inoculated into 5 mis LB broth 

with ampicillin in glass test tubes and incubated in a Bellco roller drum overnight at 37°C.

A microfuge tube was filled with 1.5 ml of the overnight culture and centrifuged at 14,000 

rpm for 45 seconds (all centrifugations were performed in an Eppendorf microfuge for this 

protocol). The supernatant was removed with a pasteur pipette and discarded. The pellet 

was resuspended in 150 pi STE (100 mM NaCl, 10 mM Tris-HCl pH 8, 1 mM EDTA, pH 

8). To this suspension, 20 pi of fresh lysozyme (5 mg/ml) was added and the mix was
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incubated at 22°C for 15-20 min. An equal volume of phenol/chloroform/isoamyl alcohol 

(25:24:1) was added and gently mixed for 1 min. The solution was centrifuged at 14,000 

rpm for 10 minutes. The upper, plasmid containing, phase was removed and placed in a 

fresh 1.5 ml microfuge tube. An equal volume of chloroform/isoamyl alcohol (24:1) was 

added and vortexed for 45 seconds. The solution was centrifuged for 3 minutes and the 

upper phase was again removed to a fresh microfuge tube. An equal volume of 

isopropanol was added and the solution was mixed, followed by a 10 minute incubation 

period at 22°C. After precipitation, the tube was again centrifuged for 10 minutes. The 

supernatant was removed (taking care not to disturb the nucleic acid pellet) and the tube 

inverted to allow the nucleic acids to air-dry (10-15 min). Nucleic acids were resuspended 

in 40 pi sterile QH20 . The DNA could now be digested with the desired restriction 

endonucleases. Prior to agarose gel inspection, the sample was treated with RNAse (10 

mg/ml) at 22°C for 10 min to remove endogenous RNA.

DNA Gel Electrophoresis and Transfer to Nylon Membranes

Plasmid DNA was digested with restriction enzymes and loaded with a gel running 

buffer (0.25% bromophenol blue, 0.25% xylene cyanol, and 30% glycerol diluted in sterile 

water) into EtBr (0.5 pg/ml) stained agarose gels (SeaKem LE or NuSieve GTG, both 

supplied by FMC Bioproducts). DNA was separated by gel electrophoresis in either an IBI 

Multi-Purpose Horizontal Electrophoresis Apparatus (model MPH) or Hoefer Scientific 

instruments horizontal mini-gel model HE33. In each case the buffer of choice was 0.5X 

TBE (10X stock: 890mM Tris Base, 890 mM boric acid, 20 mM EDTA). Both gel units 

used an EC 500 power supply (E-C Apparatus Corporation) as a power source. After size 

fractionation, gels were inspected by UV light fluorescence of stained DNA on a Fotodyne, 

Inc. UV light box. As needed, the DNA was transferred to Nylon membranes (Hybond- 

N+™, Amersham Co.) by a capillary transfer procedure described by Southern (Southern,
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1975). Briefly, gels were soaked in several volumes of 0.25 N HC1 to ‘nick’ the DNA by 

depurination for 30 minutes. The gel was washed 3 times in several volumes of H20 .

Gels were washed in several volumes of a base wash (0.5 M NaOH, 1.5 M NaCl) for 30 

min to denature the DNA. The gels were again rinsed with H ,0  and subjected to 

neutralizing wash (0.5 M Tris pH 7.2, 3.0 M NaCl) for 30 minuntes. A large sponge was 

placed in a glass tray and the tray was filled with 20 X SSC (20X stock: 3 M NaCl, 0.3 M 

Na3 citrate, pH 7.4 with 2 N HCL). On top of the sponge was stacked four sheets of 

Whatman 3MM paper (equal size to the gel), the DNA gel, the nylon membrane, and two 

more sheets of blotting paper. During the placement of these layers care was taken to 

remove any bubbles between the layers. These layers were topped with a 5-8 cm high 

stack of paper towels. The capillary action was allowed to continue overnight and the 

following morning DNA was UV cross-linked to the nylon membrane by a UV Stratalinker 

1800.

Probe Construction

Large DNA templates were labeled by random primer labeling. Two microfuge tubes 

were used for each reaction. The first tube, containing probe DNA (20 to 200 ng), was 

brought to a volume of 9.4 pi with sterile dH20  (template/primer mix). To that was added 

a 6-mer random primer (d{N}6 where N=A,C,G,T from New England Biolabs, Inc.) to a 

concentration of 25 ng/pl. To the second tube (labeling mix) the buffer (10X = 75 mM 

Tris-HCl pH7.6, 55 mM dTT, 50 mM MgCl2) was added to a IX concentration. Next, all 

dNTPs were added to a 500 pM concentration (with the exception of dCTP). 2 pi of 

Radioactive a-32P dCTP (10 pCi/pl) was then added, followed by 2.0 pi of the Klenow 

fragment of DNA polymerase (5 units/pl). Tube 1 was boiled for 2-5 min, centrifuged and 

briefly placed on ice. After the template/primer mix had cooled it was added to the labeling 

mix. The solution was incubated at 22°C for 1-2 hours. Afterwards 80 pL of TE was
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added to halt the reaction. Unincorporated nucleotides were then separated from the labeled 

DNA by a spin column.

Spin columns were constructed by loading a 1-cc syringe (Becton Dickson and 

Company) with sterile glass wool to prevent loss of glass beads. Next, hydrated G50 

beads (Sigma) were added, and the columns were spun in a tabletop IEC (model HN) 

swinging bucket centrifuge for 20 sec. This process continued until the packed volume of 

G50 beads reached ~0.8 cc. The probes were added and the columns were spun for 45 

sec. The probe was collected in a catch tube and was ready for hybridization protocols.

Alternately, smaller fragments of DNA (e.g. oligomers under 100 bases in size) were 

end labeled. In this process, dephosphorylated 5’ ends (1-50 pmol) were added to a IX 

kinase buffer solution. To this mix y12P ATP was added to a final concentration of 3000 

Ci/mmol, 10-20 units of T4 polynucleotide kinase (New England Biolabs, Inc.) was 

added, and the solution brought to 50 pi with H20 . The reaction was allowed to continue 

at 37°C for 10 min. During this process T4 polynucleotide kinase catalyzes the transfer of 

the radioactive gamma phosphate from ATP to the 5’ terminus of the single stranded 

oligomers. Upon completion, a chelating agent (2 pi, 0.5 M EDTA) was added to stop the 

reaction and the radioactive oligomers were cleaned by two ethanol precipitations.

DNA and RNA Hybridizations

Immobilized DNA and RNA was inspected by two different methods depending on 

the probe used. For long oligomers (those labeled by random primer labeling) stringent 

aqueous hybridization was used. Nylon membranes containing immobilized DNA or RNA 

were placed in heat sealable bags with 10 ml hybridization buffer (0.5 M NaCl, 0.1 M 

N aP04 pH 7.0, 6 mM EDTA pH 7.0, 1% SDS and 100 pg/ml sonicated and denatured 

salmon sperm DNA). The bag was sealed and the membrane was allowed to agitate at 

65 °C for at least 1 hr. The bag was opened, 5 mis hybridization buffer was removed and 4
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mis sterile H ,0  was added. Probe DNA was boiled and added to the bag, which was 

resealed and again placed into the 65°C water bath for 18-24 hrs. The following day the 

nylon membrane was removed from the bag and placed into a glass dish. Roughly 300- 

500 ml wash buffer (2X SSC, 25 mM Na2H P04, 0.1% NaP pH 7.0, 6 mM EDTA pH 

7.0, 1%SDS), equilibrated to 65°C, was added to the membrane-containing dish and 

allowed to agitate at 65°C for 20 min. This process was repeated twice, followed by two 

washes with buffer at 1:2 and 1:5 dilutions for 5 min and 2 min respectively. Membranes 

were blotted with Whatman 3MM paper to remove excess liquid but allowed to remain 

damp. The membranes were then wrapped in plastic wrap and exposed to Amersham 

Hyperfilm™-MP autoradiograph film. The film was developed and visually inspected.

Hybridizations performed with short oligomers (those 5’ end labeled with y-ATP) 

were performed much like those with long oligomers except the hybridization buffer 

consisted of 10X Denhardt’s solution (0.02% bovine serum albumin, 0.02% 

polyvinylpyrrolidone, 0.02% Ficoll) and 6X SSC. The membrane was sealed in a plastic 

bag and incubated at 25°C overnight. The membranes were washed in 6X SSC at 25°C 

twice. If membranes still contained a high amount of nonspecific binding, the temperature 

of the wash buffer was increased in 5°C increments. Finally the membranes were 

autoradiographed, as above, and visually inspected.

RNA Extraction

C. acidophila cells were grown on minimal agar plates at 22°C under continuous light 

until the cell lawn had reached confluence and produced a deep green color. Cells were 

then scraped from the plates with sterile razor blades, and suspended in M broth to an 

optical density of ~0.110 at A750 (7 x 105 cells/ml). Cells were agitated in broth under 

continuous light overnight. The following morning, cells were treated with various
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concentrations (0 pM-200 gM) of Cd(N03)2 over an increasing amount of time (0 hr-8 hr) 

at 22°C under continuous light.

RNA is noted for its susceptibility to ribonucleases (RNAses), due to the ability of the 

2’ hydroxyl group to act as an intra-molecular nucleophile. Whereas deoxyribonucleases 

(DNAse) require metal ions for activity and can be inactivated by chelating agents (e.g. 

EDTA), many RNAses bypass the need for metal ions by taking advantage of the 2 ' 

hydroxyl group as the reactive agent. RNAse contamination is one of the primary reasons 

for the failure to isolate good quality RNA. Therefore the following precautions were taken 

to avoid RNAse contamination of naked RNA: (1) All glassware, spatulas, etc. were 

baked at 200°C for at least 8hrs; (2) Sterile, disposable plasticware was used where 

possible; and (3) Solutions were treated with 0.1% diethyl pyrocarbonate (DEPC) as 

previously described (Sambrook et a i, 1989), which operates by alkylating histidine 

residues that serve as the active site for most RNAses. Compounds with primary amine 

groups (e.g. Tris) will react with DEPC. Consequently, these materials were prepared 

from fresh sources and reserved specifically for RNA use. In addition, RNA was kept on 

ice during any experimental procedures, and frozen at -70°C for long term storage.

The RNA extraction was performed essentially as described by Keller (Keller, 1995) 

but with modifications. Flasks containing 250 mis of cells were placed into 250-ml bottles 

and pelleted for five minutes at 3000 x g with a Sorval GSA rotor. The liquid was 

aspirated and the pellet was resuspended in 5 mis of lysis buffer (50 mM Tris HC1 pH 8, 

0.3 M NaCl, 5 mM ethylene glycol bis(P-aminoethyl ether)-N,N'-tetraacetic acid [EGTA], 

and 2% sodium dodecyl sulfate [SDS]) with Proteinase K (40 pg/ml). The mixture was 

then transferred to a polypropylene Oak Ridge tube and mixed gently by inversion for 5 

minutes. Phenol/chloroform/isoamyl alcohol (25:24:1) was added at a 1:1 volume to 

separate the proteinaceous material from the RNA. The tubes were again mixed by 

inversion for 30 seconds and placed on ice for 10 minutes (mixing/vortexing every two
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minutes). Tubes were balanced and centrifuged in a Sorvall SS-34 rotor at 8000 x g for 

20 minutes. After centrifugation the upper aqueous layer was removed and transferred to 

another Oak Ridge tube. Chloroform/isoamyl alcohol (24:1) was added at a 1:1 volume, 

mixed by vortexing, and centrifuged again at 8000 x g for 15 minutes. The upper aqueous 

layer was removed and placed in a sterile 50 ml polypropylene conical tube. RNAse free 

CsCl (biotechnology grade, Fisher Scientific) was added at 1 g/ml of aqueous phase, and 

mixed until the CsCl had dissolved. This solution now contained all genetic material 

formerly within the Chlamydomonas cell. RNA would be separated from the rest of the 

genetic components by ultracentrifugation. The procedure was as follows: First 1 ml of 

CsCl cushion (5.99 M CsCl) was pipetted into a Beckman polyallomer quick-seal 

centrifuge tube (16 x 76 mm). The RNA sample (up to 5 mis) was gently laid over the 

CsCl cushion without disturbing the cushion/sample interphase. The volume of the sample 

was brought to within 3 mm of the centrifuge tube top with TE (10 mM Tris-HCl, 1 mM 

EDTA) or mineral oil. The tubes were balanced and sealed with a Beckman tube sealer.

The sealed samples were placed into a Beckman 70.1 Ti rotor and spun at 33,000 rpm for 

18.3 hours at 20°C. After centrifugation the tubes were removed and the whitish RNA 

pellet was located and marked at the bottom of the tube. The sealed tubes were decapitated 

with a hot razor and the liquid was aspirated, care being taken not to disturb the RNA 

pellet. The pellets were dissolved with approximately 200 pi TE and transferred to a fresh 

Corex 30 ml tube containing 2.8 mis of TE. Ammonium acetate was added to a final 

concentration of 0.4 M, 2 volumes of ethanol were added and the solution was placed at - 

20°C overnight (or alternatively at -80°C for one hour) to precipitate the RNA. The RNA 

was collected by centrifugation at 8000 x g for 20 min in a Sorvall HB-6 rotor. The 

precipitation procedure was repeated and the pellet was resuspended in -300 pi of RNAse 

free water. A 5 pi aliquot was removed and diluted to a 1:100 concentration in RNAse free 

water. The samples were placed in quartz cuvettes and the UV absorbance measured
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spectrophotometrically at a wavelength of 260 nm. RNA concentration (in pg/rnl) was 

determined by the equation: Total RNA=A260x 40 x df (where df = the dilution factor).

The purity of the sample could also be determined by reading the absorbance of the sample 

at A280, then calculating the ratio of A260/A280. RNA samples of good purity were usually 

between the range of 1.8 to 2.0.

Northern Analysis

RNA was analyzed by one of two methods: (1) Formaldehyde gel electrophoresis and 

(2) Dot blot analysis. Formaldehyde gels were essentially as described by Sambrook 

(Sambrook et al., 1989) but with modifications. Gels were prepared by melting the 

appropriate amount of agarose in water. For formaldehyde gels, Seakem LE agarose 

(FMC, Bioproducts) was used at 1.0 to 2.5% or NuSieve® GTG agarose (FMC, 

Bioproducts) at 2.0 to 3.5% . Because of the frothing usually associated with a high 

concentration of agarose, water was added to excess and then reduced during the melting 

process. Once the agarose was melted and cooled to ~60°C, formaldehyde (12.3 M stock 

concentration) and 10X MOPS [3-(N-morpholino) propane-sulfonic acid] gel running 

buffer (0.4 M MOPS, 100 mM sodium acetate, 5 mM EDTA) were added to yield their 

final concentrations of 2.2 M and IX respectively. The gel was then immediately cast into 

10 x 14 centimeter trays and allowed to set at least 30 minutes under a chemical hood. 

During the setting process, total C. acidophila cellular RNA was prepared by adding 10 pg 

RNA, 1 pi 10X MOPS, 3.5 pi formaldehyde, and 10 pi formamide to a fresh 

microcentrifuge tube. These samples were brought to a total volume of 20 pi with sterile 

DEPC treated H20 , and incubated at 65°C for 15 min. The samples were cooled on ice and 

centrifuged to collect all the liquid on the bottom of microfuge tubes. To each RNA sample 

2 pi of gel loading buffer (50% Glycerol, 1 mM EDTA, 0.4% bromophenol blue, 0.4% 

xylene cyanol) and 1 pi of EtBr (lmg/ml) was added. Before loading these samples the gel
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was submerged in a IX MOPS gel running buffer and prerun at 20 volts for 5 minutes.

The samples were immediately loaded onto the gel and RNA was separated by gel 

electrophoresis at 20 volts for 18-24 hrs. After electrophoresis, gels were photographed 

under UV light. RNA gels were then soaked in sterile H20  for 30 min and the RNA was 

transferred to nylon membranes (HyBond™-N+, Amersham) through capillary action 

much like the Southern procedure described above. Gels were placed on top of glass plates 

and 20X SSC was wicked up from the glass dish by Whatmann 3MM paper.

DNA Sequencing

RNA transcript production was found to originate from a 1500 bp Hae III fragment. 

This blunt end fragment was cloned into the Sma I site of pGEM® (pJB5) and sequenced. 

Although some of the sequencing was performed with Sequenase® (Amersham Life 

Sciences), the majority of sequence analyses was performed with fmol® (Promega), which 

is described here. It should also be noted that some sequence information, as well as 

confirmation of our previous efforts, was kindly provided on an ABI Model 377 automated 

sequencer by Scott Bingham of Arizona State University.

Because the 1500 bp fragment was cloned into pGEM® the initial sequencing efforts 

could be started at the ends of the insert. The plasmid pGEM has the T7 and SP6 promoter 

sites flanking the multi-cloning site, which contained the 1500 bp insert. Further, primers 

(T7 and SP6, Promega) for those regions are readily available. The sequencing efforts 

proceeded by ‘walking’ the insert and constructing primers from the derived sequence. 

Sequencing primers were constructed by Operon (Alameda, CA) and are listed in Appendix 

B.

The sequencing protocol utilizing direct incorporation of 35S was as follows. Four 

microcentrifuge tubes (G,A,T,C) were labeled and to each tube the appropriate d/ddNTP 

mix was added (the fmol® system substitutes 7-deaza dGTP for dGTP, which resolves
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band compressions associated with GC-rich regions). For example, the G tube contains a 

mix of all four dNTPs and a limiting amount of ddGTP. The rationale is that on occasion 

Taq polymerase incorporates one of these dideoxyribonucleoside triphospates. Because 

ddNTPs lack the terminal 3'-OH group necessary for chain elongation, the growing chain 

is terminated, in this case with a ddGTP. The following reagents were then added to a 

fresh tube (denoted primer/template mix): 500 fmol of the plasmid pJB5, 3.0 pmol of the 

appropriate primer, 0.5 pi a -3;!S dATP (10 pCi/pl) and 5 pi fmol® 5X sequencing buffer. 

The contents of the tube were brought to a volume of 16 pi with sterile H20  followed by 

the addition of 1.0 pi of sequencing grade Taq (5u/ml) and gently mixed. To each of the 

four d/ddNTP tubes 4.0 pi of the template/primer/enzyme mix was added and the entire 

contents covered with 20 pi mineral oil. The four d/ddNTP tubes were centrifuged briefly 

and transferred to a Coy thermocycler that had been preheated to 95°C. The typical 

thermocycler profile for sequencing was as follows. Tubes were initially heated to 95°C 

for 2 min. A programmed profile of 95°C for 30 sec, 42°C for 30 sec, and 70°C for 1 min, 

was repeated for 30 cycles and then brought to a final temperature of 4°C at the end of the 

run. After completion of the program, a stop solution containing EDTA and a sequencing 

gel dye was added.

The products of the fmol® sequencing reactions were separated initially on acrylamide 

gels, but later we utilized the Long Ranger™ gel solution from FMC Bioproducts because 

of this gel’s capacity for longer, cleaner reads. Usually a total of 4pl of sequencing 

samples were heated to 75°C, loaded and run on a 6% Long Ranger™ gel solution (42 g 

urea, 5 ml 10X TBE, 12 ml 50% stock Long Ranger gel solution, FLO to 100 ml, solution 

was degased and 50 pi TEMED and 500 pi 10% APS added prior to casting) through 0.5X 

TBE gel running buffer solution. Sequencing gels were typically run at 55 Watts until the 

dye front had reached the bottom of the gel, after which more samples could be loaded for 

extended reads into the DNA sequence. After the completion of electrophoresis, gels were
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mounted onto Whatman 3MM filter paper, wrapped in plastic wrap, dried at 70°-80°C for 

60 min and exposed to Amersham Hyperfilm-MP™ (with or without intensifying screen). 

From the autoradiograph, the DNA sequence was inspected and recorded manually. The 

sequence was compared to the DNA database at the National Center for Biotechnology 

Information website (NCBI, http://www.ncbi.nlm.nih.gov/) using the available suite of 

BLAST algorithms.
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Mitochondrial Genome Analysis 

Preparation of Mitochondrial DNA

Previous investigations led us to believe that the mitochondrion of Chlamydomonas 

acidophila was circular. Based on this information we attempted to retrieve mtDNA via 

alkaline lysis. Cells were spun down in a microfuge tube, and the supernatant was 

discarded. The cells were resuspended in 500 pi solution I (50 mM glucose, 50 mM tris, 

and 50 mM EDTA) and the resulting solution was split into 2 microfuge tubes (each 

containing -250 pi of sample). To each of the tubes 500 pi of solution II was added (0.2 N 

NaOH, 1% SDS), the samples were vigorously mixed (but not vortexed) and stored on ice 

for 10 minutes. After mixing, 375 pi solution III (3 M KC1 and 5 M NaOAc) was added to 

each tube, samples were mixed vigorously and stored on ice for 5 minutes. The microfuge 

tubes were then spun at 14,000 rpm for 5 minutes and the supernatant was harvested. This 

last step was repeated once.

The supernatant was extracted with an equal volume of phenol/chloroform/isoamyl 

(25:24:1). The solution was mixed by inversion for 5 minutes and spun at 14,000 rpm for 

15 minutes. After centrifugation, the upper aqueous phase was removed to a new tube and 

an equal volume of chloroform/isoamyl alcohol (24:1) was added, mixed, and again 

centrifuged at 14,000 rpm for 10 minutes. Chloroform extraction was repeated until the

http://www.ncbi.nlm.nih.gov/


entire interface became clear. To the aqueous phase was added 2 volumes of ethanol, 0.1 

volumes of NaOAc, and the solution was mixed and allowed to precipitate at -20°C 

overnight or at -80°C for 1 hour. Microfuge tubes were spun for 30 minutes, the 

supernatant removed and the pellet washed three times with 70% ethanol. The pellets were 

dried under vacuum desiccation and the DNA was resuspended in a total of 500 pi sterile 

H20. To the tube was added RNAse and incubated for 1 hour at room temperature. 

Phenol/chloroform extractions were performed, as above, after which the DNA was 

ethanol precipitated and resuspended in 50 pi H20 .

Cloning of C. acidophila mtDNA

Earlier investigations had suggested that C. acidophila’s mtDNA contained a single 

Bam HI site (Spanier, unpublished results). Mitochondrial DNA, isolated by alkaline 

lysis, was cleaved with Bam HI and cloned into LambdaGEM-11® from Promega 

(Madison, WI). Cloning procedures were performed according to manufacturer protocols. 

Briefly, mitochondrial DNA was ligated at a Bam HI site between LambdaGEM-11® arms 

(left arm: 20 kb; right arm 9 kb). Recombinant DNA was packaged into Packagene® 

Lambda DNA packaging extract according to manufacturer specifications. Phage was 

transfected into E. coli cells strain LE392, and titered. After determination of phage 

numbers, phage was added to E. coli and allowed to adsorb for 30 minutes at 37°C. To 

this mix molten LB top agar was added and immediately poured onto LB plates. Plates 

were incubated at 37°C until plaques were pinpoint in size (~3.5 hours), then removed to 

4°C for at least 1 hour to harden agar. Nitrocellulose filters were labeled, marked for 

orientation, and placed on agar. Filters were left on plates for 1-10 minutes at room 

temperature, removed and allowed to air dry at room temperature for 10-20 minutes. The 

filter was then moved to three trays each containing Whatman® 3MM saturated with the
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following solutions for each tray: (1) 0.2 M NaOH, 1.5 M NaCl; (2) 0.4 M Tris-HCl, 

pH 7.6, 2X SSC; (3) 2X SSC. Incubation times for each treatment were 1-2 min. 

Nitrocellulose filters were probed with pJB 1 and phage that appeared positive were isolated 

and amplified for further screening procedures.

Characterization of Recombinant Phage Clones

DNA isolated from phage particles, was screened according to two procedures. The 

first involved creating a restriction map of the isolated mtDNA. The second confirmed the 

insert size by the polymerase chain reaction, by using the GeneAmp® XL PCR kit from 

Perkin Elmer Applied Biosystems (Foster City, CA). Insert DNA amplifications were 

performed with the primers LLA20015 and LRA97 (Appendix B), both of which bound to 

DNA in the vector arm regions and amplified the inserted mitochondrial DNA between the 

arms. The reaction mix was in accordance with the manufacturer recommendations. 

Reaction mixes were placed in a Perkin Elmer GeneAmp® PCR System 2400 

thermocycler. The PCR cycling parameters were as follows: (1) Pre-PCR Hold: 94°C for 

1 minute. (2) 94°C for 15 seconds, 68°C for 10 minutes; 16 cycles. (3) 94°C for 15 

seconds, 68°C for 10 minutes (and increasing by 15 seconds each cycle) for 12 cycles. (4) 

72° for 10 minutes, 4°C until post-PCR analysis. After amplification, PCR products were 

inspected on EtBr stained agarose gels. After analyses, the recombinant clone F3 was 

selected for DNA sequencing. Both strands of the mtDNA insert were sequenced by 

Commonwealth Biotechnologies, Inc. (Richmond, VA).

DNA Sequence Analysis

DNA sequence analysis was accomplished by a number of different methods. Initial 

determination of coding regions was provided by both BLAST and FASTA search 

algorithms at the NCBI (http://www.ncbi.nlm.nih.gov/) and EBI
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(http://www.ebi.ac.uk/ebi_home.html) websites respectively (Altschul et al., 1990; 

Pearson, 1994b; Pearson, 1994a; Pearson & Lipman, 1988). Multiple sequence 

alignments for protein comparisons, the determination of intron insertion, and the search 

for group I intron conserved sequences was prepared by the CLUSTAL X program 

(Jeanmougin et al., 1998; Thompson et al., 1997). Determination of protein hydrophobic 

regions was provided by Gene Inspector™ (Textco, Inc.) The sequence in Figure 4 was 

constructed primarily by the Gene Construction Kit™ (Textco, Inc.). Codon bias tables 

were constructed with MacVector (Oxford Molecular Group). RNA folding and secondary 

structures were provided by the MULFOLD program (Jaeger et al., 1989; Jaeger et al., 

1990; Zuker, 1989). Visualization of RNA structures was provided by the LoopDLoop 

program written by D. G. Gilbert (Indiana University).
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RESULTS

Mitochondrial DNA Isolation

Previous investigations have suggested that the mtDNA of C. acidophila strain 122 

is circular and contains a single BamWl site (Spanier, unpublished data). Based on these 

data the decision was made to clone C. acidophila mtDNA by cutting with BamWl and 

ligating the linearized DNA into the cloning vector LambdaGEM-11®. Prospective 

clones containing mtDNA were identified by hybridizing a radioactive subfragment of 

the genome, called pJBl (Figure 11 A, page 99), to phage DNA attached to nitrocellulose 

filters. Of the candidates that showed hybridization to the probe, three clones were 

selected for further analysis.

Two methods were employed to determine which clone contained the largest insert. 

The first involved restriction digestion of each clone, size analysis of the restriction 

fragments, and construction of a map to estimate the total insert size. The second method 

used PCR amplification of the entire insert to estimate the size of the mtDNA fragments. 

Two primers, LLA20015 and LRA97, were designed to amplify DNA inserted within the 

lambda DNA vector arms. Figure 2 shows the results of this amplification. Lane 1 

contains lambda DNA cleaved with Hind III and serves as size markers. Lane 2 contains 

control insert DNA. Lanes 3 - 5  contain DNA amplified from C. acidophila mtDNA 

inserted within LambdaGEM-11. Lane 5 contained the slowest migrating DNA,
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Figure 2. Size classification of LambdaGEM-11® C. acidophila mtDNA insert.
Negative image of 0.6% Agarose gel stained with EtBr. DNA products were gener­
ated with GeneAmp® XL PCR. Lane 1: Lambda DNA digested HindlU, size of 
products are listed. Lane 2: Control amplification of lambda template DNA (~20 
kb in size). Lanes 3, 4, and 5 contains C. acidophila mtDNA cloned into 
LambdaGEM-11®. Isolates were designated B2, E2, and F3 respectively.



migrating DNA, designated F3. From both restriction mapping analysis and PCR 

amplification it was determined that the F3 clone contained the longest DNA insert. 

Therefore, F3 was selected for sequence analysis.
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Size and Genomic Organization of C. acidophila

Sequence analysis of the F3 clone indicated that it contained only part of the entire 

mitochondrial genome rather than the full compliment of genetic information. 

Consequently, the F3 fragment is represented as a linear entity in Figure 3 instead of a 

circular entity, which is believed to be the true configuration of the mitochondrial 

genome (Spanier, unpublished results).

The coding regions identified in the mitochondrial genome of C. acidophila were 

identified by sequence similarities with other organisms. These regions are indicated as 

linear map in Figure 3 and are defined in Table 2 below. The sequence of the F3 clone,

Table 2. Coding regions identified in C. acidophila mtDNA.____________
A. Ribosomal RNA gene pieces (5)

Small subunit rRNA in pieces rns a, m s c
Large subunit rRNA in pieces m l a, m l d, m l e______________________

B. Transfer RNA genes (4)
tRNAmetl (cau), tRNAmet2 (cau), tRNAlrp (cca), tRNAgln (uug)___________

C. Respiratory chain genes (5)
NADH dehydrogenase (nad 1, nad 2 [incomplete], nad 5 [incomplete]) 
Apocytochrome b (cob)
Cytochrome oxidase (cox 1)_______________________________________

D. Group I intronic ORF’s (7)
cob il orfl49  and o rfll2 , cox HI orj306, cox li2  orf358, nad 5 il orf229, 
nad5i2 orf296, nad5i3 orf267____________________________________

including defined regions, can be seen in Figure 4. The sequence spans 15,010 bp and 

has a G + C content of 32%. Based on the sequence data, the F3 clone contains five
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Figure 3. Linear map of mitochondrial DNA from Chlamydomonas 
acidophila.
Protein coding regions are in red. Ribosomal RNA and transfer RNA are shaded in dark 
blue and light blue respectively. Intronic regions are yellow. Abbreviations: nad2 - 
NADH dehydrogenase subunit 2; cob -apocytochrome b; cobil - intronic region of cob\ 
m l d -  ribosomal RNA, large subunit fragment d; rns a - rRNA, small subunit fragment 
a; m l a - rRNA, large subunit fragment a; tRNA metl - transfer RNA for methionine; 
tRNA met2 - tRNA for methionine (possible pseudogene); m l e - rRNA for large subunit 
fragment e; m s c - rRNA for small subunit fragment c; coxl - cytochrome oxidase 
subunit 1; co x lil and coxli2 - intronic regions of cox gene; tRNA trp - tRNA for 
tryptophan; tRNA gin - tRNA for glutamine; nadl - NADH dehydrogenase subunit 1; 
nad5 - NADH dehydrogenase subunit 5; ncid5il, nad5i2 and nad5i3 - introns within 
nad5.
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LambdaGEM-11 ®  vector 
right arm (9 kb)

(1241-2270) cob H

(3213-3320) ms a 
(3597-3669) tRNA mel1 
(3763-4150) rn le

(4939-6173) cox 1i1

(6753-7893) cox 1i2

(8820-8890) tRNA

(11151-12210)  nad 5i1

(12493-13749)  nad 5 i2

(13957-15007)  nad 5i3

nad 2 (3-785)

cob (812-2981)

rnl d (3006-3195) 
rnl a (3335-3500) 

tRNA me,z (3684-3756)

ms c (4231-4652)

cox 1 (4663-8571)

tRNA ,rP (8608-8681) 

nad 1 (8903-9793)

nad 5 (10713-?)

LambdaGEM-11 ®  vector 
left arm (20 kb)
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Figure 4. Nucleotide sequence of the C. acidophila F3 clone
Since C. acidophila codes all of its genetic elements on one strand, only the sense strand 
is shown. The deduced amino acid sequences are located below their coding DNA 
sequences. Nucleotide numbers are in regular typeface and located to the left of the DNA 
sequence. Amino acid numbers are also located to the left of the protein sequence but are 
in boldface type. An asterisk (*) indicates a termination codon. Ribosomal RNA, 
transfer RNA and intronic sequences are underlined, including the open reading frames 
contained therein. Important restriction enzymes are shaded and labeled. Repetitive 
elements are also shaded and labeled. The boundaries of all genetic elements are 
numbered.
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nad.2

1 ATATCATTCCTCAAATGATGATATTAATAGCACTTATGTTTAAGTTAGGGGGTGCTCCTT 
1> I  I  P Q M M I L I A L M F K L G G A P

61 TACATATATGGATGGTAGATATTTATAGTGGTGTAAAACGTCAATTATTAATGTATTTGT 
20> L  H I W M V D I Y  S G V K R Q L L M Y L

1 2 1  CTACAGCTCCTAAATTAAGCTTATTTGGTTTTTGGGTATCTACTTGGCATTCAGTATGGA 
40> S  T A P K L S L F G F W V S T W H S V W

1 8 1  CTGATTTTACATTATTTTTATTTGTAGCTTTATCTATGATTATTGGTTGTTTCGGTGCTT 
60>T  D F T L F L F V A L S M I I G C F G A

2 4 1  ATAATCAACCAACATTACGAGCGTTATTTGCATATAGTACAATAAATGAAATAGGGTTAA 
80>Y N Q P T L R A L F A Y S T I N E I G L

3 0 1  TGTTAATGGCTATTGAAACAGCTGGGTTTCATTCAATGTTTCAACATTTAAGTATATATA 
100>M  L M A I E T A G F H S M F Q H L S I Y

3 6 1  TAGTAACCATGTTGTTACTTTGGAATATAACAGATCATCGCTTTTTTTCTATTTTAGCTG 
1 2 0 > I  V T M L L L W N I T D H R F F S I L A

H i n d i I I
4 2 1  TTAGTTTAGCAGGATTGCCACCATTAGCTGGCTTTTTTGGTAAAGCTTGGATTTTTAATA 
140>V  S L A G L P P L A G F F G K A W I F N

4 8 1  GTGTAGCTATAGGTTCAATGGCTGGTCCCTACCTAGGGCTGTTATTAATCTCATTATTCT 
1 6 0 > S  V A I G S M A G P Y L G L L L I S L F

5 4 1  GTACAGGATTGTCTTTAGTATATTATTTACGTGTTTTTCGCTTATTTACGATGAGTAATC 
180>C  T G L S L V Y Y L R V F R L F T M S N

601  AAGTGAGTCGCAATAATATAATTTATCCTGTAGGTGTTGATGGTAGTGTAGGTAATCCTT 
200>Q  V S R N N I I Y P V G V D G S V G N P

6 6 1  ACAATATGTCAGTGGTTAGTCGTACTTATAATACTCATTTGGTTGATTTTAATATAAAAA 
220>Y  N M S V V S R T Y N T H L V D F N I K

7 2 1  TGACTTCTTTTTGTGTTATTTTCTTAATGTTTGCACCTTTATTCTATATTAAGCCTTTTG 
240>M  T S F C V I F L M F A P L F Y I K P F

7 8 8  812  cob e x o n  1
7 8 1  TGCTATAAAAAATTTACAAAAAAAATTAAAAATGCGTTTACATAATAAAATTCAAGTATT 
260> V  L *  1 > M R L H N K I Q V L

841  AAATTTATTAAATCATCATATTGGTGTTTATCCAACACCTATGAATATTAATTGGAATTG 
11>  N L L N H H I G V Y P T P M N I N W N W

9 0 1  GAGTTGGGGATCATTATCAGGTTTGGTTTTAGCCAGTCAAATAGTAACTGGTATATTGTT 
31>  S W G S L S G L V L A S Q I V T G I L L

9 6 1  GGCAATGCATTATGTTGGTCATGTTGATCATGCTTTTTCTAGTGTACAACATTTAATGGT 
51> A M H Y V G H V D H A F S S V Q H L M V

1 0 2 1  TGATGTACCTTCTGGTGTAATATTACGTTATGCTCATGCAAATGGTGCTAGTTTATTTTT 
71>  D V P S G V I L R Y A H A N G A S L F F
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1 0 8 1  TACCGTAGTTTATTTGCACGTGTTGCGTGGTTTATATTATAGTAGTGGTAATCAGCCTCG 
91> T V V Y L H V L R G L Y Y S S G N Q P R

1 1 4 1  TGAAATTGTATGGATTTCCGGTGTTGTTATTTTATTATTGATGGTAATTACAGCCTTTAT 
1 1 1 >  E I V W I S G V V I L L L M V I T A F I

1 2 4 1  cobil orfl49
1 2 0 1  TGGTTATGTGCTCCCTTGGGGTCAAATGAGCTTTTGGGGTATTCTATATTGCCCTAAATA 

1 3 1 >  G Y V L P W G Q M S F W G
1 > I  L Y  C P K Y

1 2 6 1  TGATTTTATATTTGTTTTTGTTGTTTTTATTCATCCACCAAAACGTTTGTTAGCTAAACA 
8 > D F I F V F V V F I H P P K R L L A K Q

1 3 2 1  ACGTATAGGTCCACATAATATTGATATATTGTCAATAATTGTTGGTTCTTTGTTGGGAGA 
28> R I G P H N I D I L S I I V G S L L G D

1 3 8 1  CAGTTATGCTGAAAAACGCAATGGATCTACACGTATACATTTTCAACAAGAAAGTTCAAA 
48> S Y A E K R N G S T R I H F Q Q E S S N

1 4 4 1  TCGAGAGCATTTATTGAATTGTTGGAAAATATTAAATAAAGGTAGTTATTGTTCTGATAT 
68> R E H L L N C W K I L N K G S Y C S D I

1 5 0 1  TGAACCAAAAATAGAAGAGCGTCTTGGAAAAGAAGGTAAAATACGTTTTTTATCTCGTTT 
88>  E P K I E E R L G K E G K I R F L S R F

1 5 9 6  orfll2
1 5 6 1  TAAAACATATTCTTTTTCAAGTTTCAATTGGATTCATGATGCTTTTTTATTTGAAACGCA 

1 0 8 >  K T Y S F S S F N W I H D A F L F E T Q
1 > M M L F Y L K R

1 6 2 1  AAAAGGTAGTTCCTTTAGATTTAATAAATCTTTTAACTCCTTTAGCATTAGCTATTTGGA 
1 28 >  K G S S F R F N K S F N S F S I S Y L D  

9 >K K V V P L D L I N L L T P L A L A I W

1 6 9 1
1 6 8 1  TAATGGATGATGGTACGTGGCAAGGATCAGGCGTTCGTATAGCTACTAATTGTTTTTCAT 

1 48 >  N G *
2 9 > I  M D D G T W Q G S G V R I A T N C F S

1 7 4 1  TCAATGAAAATAAATTATTGTGTTCATTATTAAATAAAAAATATAATTTATTTTGTACGG 
4 9 > F  N E N K L L C S L L N K K Y N L F C T

1 8 0 1  TGGTAAAAAATGGCAAAAACAAAGATCAAACGATAGCATATAATATATATATACATAAAC 
69>V  V K N G K N K D Q T I A Y N I Y I H K

1 8 6 1  AATCTATAATAGAATTACAAAAAATAGTAAAACCTTTTTTTGTTAAAAGTATGTTGTATA 
89>Q S I  I E L Q K I V K P F F V K S M L Y

1 9 3 4
1 9 2 1  AGATAGGCTTATAGTTAAATAAAATCATATAATTTATGTATGTATATATCTAATAACTTG 

109>K I  G L *

1 9 8 1  TACAAGAAAAGATATAATTTATATATAAGTAATGCAAGTGAAAACGGTTAAATTATGTAT



2 0 4 1  CTTTAAATAAAAGACCGTCAGTTTTGTACAAAACTGCTACAGATTAGAAATCTTCTGTTC 

2 1 0 1  AAGAAGCAGCACTTGTGGGTATCTGAAATGATGCTTAATGTATAATCGGAGTTTCAGTTT
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Seal
2 1 6 1  ATAATATATATTATAAGCAATAAGGCTTTAAGTAAATCCAGTACTGGTATTAAAGTACAT

2 2 7 1
2 2 2 1  TTAAAATAAAACAAAAAGAATTTAATTATATTTTGTTTTATTGAAACTTGGCTACAGTAA

1 4 4 >  A T V

c o b  e x o n  2
2 2 8 1  TTACAAGTTTAGTAACAACAGTACCCATCGTAGGAAAACAAATTGTTTTTTGGTTATGGG 

1 4 7  >1 T S L V T T V P  I V G K Q I V F W L W

2 3 4 1  GTGGATTTAGCATTGATCATCCAACATTAAATCGTTTTTACAGTTTGCATTATACATTAC 
167>G  G F S I D H P T L N R F Y S L H Y T L

S e a l
2 4 0 1  CTTTTGTGTTAGCTGCTTTAAGCATCTTTCATATAGCAGCATTACATCAATATGGTAGTl 

1 8 7  >P F V L A A L S I F H I A A L H Q Y G S

2 4 6 1  CTAATCCGTTAGGTATCAATACACAAAGCAGCACAATACATTTTGGAATTTACTTTTTAA 
2 0 7 > T  N P L G I N T Q S S T I H F G I Y F L

2 5 2 1  GTAAAGATTTATTAGCTCTATTATTCTTTATATTGGTTTTTGCCGTTTTAGTGTTTTTTT 
2 2 7 > S  K D L L A L L F F I L V F A V L V F F

2 5 8 1  ATCCTGAATGGTTAGGTCATCCTGACAATTTAATCCCTGCAAATCCATATTCAACTCCAC 
247>Y  P E W L G H P D N L I P A N P Y S T P

2 6 4 1  AACACATTGTACCTGAATGGTATTTCTTATGGGTTTATGCTATTTTACGTAGCATTCCTA 
267>Q  H I V P E W Y F L W V Y A I L R S I P

2 7 0 1  ACAAAGCCATGGGTTTTGTGGGTGTATTGTTGGTATTTGCGTGTTTAATAGCATTACCTT 
287>N  K A M G F V G V L L V F A C  L I A L  P

2 7 6 1  TCATTAGTGTAGTACAAGTAGGGTCTCCTCGTTTTCGTATAATATATGAACGTTTATTTT 
3 0 7 > F  I S V V Q V G S P R F R I I Y E R L F

2 8 2 1  GGGTATTAGTAGCTGATTTATTCTTATTAACTTGGGTAGGTGCTCAAGAAATTATGCCAG 
327>W  V L V A D L F L L T W V G A Q E I M P

2 8 8 1  CTACCGTATTATTAGGACAAATTTGTACCGTTGTATTGTTTGTCTATTTATTAGTCATAT 
347>A  T V L L G Q I C T V V L F V Y L L V I

2 9 8 5
2 9 4 1  TACCTTTTTTAGGTTGGTTAGAAACTGCTTTAGTATTAGCTTAACATACTAAAAATAAAA 

3 67>L  P F L G W L E T A L V L A *

3 0 0 4  m l  d
3 0 0 1  TTTAAAATCTTTCTTTTGGTAGCTAGGCGTTCTATTTTTTAAATTAATTTTTAATAAAAG

3 0 6 1  ATTATTATTAAATTGAATTTAGTTCAATTTTTTATGGAAACAATAAATAGAATTGAGACT

H a e l l l
3 1 2 1  GCTGACATTAGTAACTTTTAGTTTGAAAACGGCCGAAAGTCCGAGGGTTTTTTTAGTGAA
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3 1 9 2  3 2 1 3  rns a

3 1 8 1  TCGGTTAAATATTAGTTAATTTATTAAAATTAAAAATCAATTTATGATGAGTTTGATGCT 

3 2 4 1  GGCTCCGCAAAAATGCTTTTATTAAGGTTAATACATGCGAGTGATATAGAGTAACGTACG

3 3 2 0  3 3 3 5  m l  a
3 3 0 1  GGTGCGTAATATGCGAGTTTAAAAAAAAAATTAAAAATGAATTTAAGGTAACTGATAGTG 

3 3 6 1  AATTAATTAGGATTTTTATTCTTAATCAGTACAATGATGGAAACAATGAAATTATAACTT 

3 4 2 1  AGCTAATACAATAATAAAAATTATGTACCTTTTGCATCATGGGTCAGTCACTTAATAAAC

3 5 0 0
3 4 8 1  ATAAACTAAAGTTATTATAACTCTTCTAAAAAAATCGAACCTTTTTTCTTTTTTAAAGAA

35 9 7
3 5 4 1  AAACCGTGAGTAGCTTTCACATAAATTATAAACTTTTTTTTTCAACTTTATAATATTGGT

tRNAmetl
3 6 0 1  GATTAGCTCAATGGTTAGAGCATAGGTCTCATAAACCTATGGTTACGAGTTCAAGTCTTG 

3 6 6 9  3 6 8 4  tRNAmet2
3 6 6 1  TATCACCAAAATAAGATGTTAATTGGTATGATACCGAAGGGTAGAGGTAAGGGGTTCATG

3 7 6 3  rnl e
BstN l  3 7 5 6

3 7 2 1  CCCCCTGGTAAGCAGGTTCGAGTCCTGAGATACCAAAAATAACCGTACCACAAACCAACG

3 7 8 1  CAGGTGGAC TACAATCATATTGTTAGGCGTAGAATTAAC TATATATAGGGAAC TCGGCAA

3 8 4 1  AATGTTTTATAGACTTAGGTTTAATAAAATCCCTTTTTCAAGGGAATAATATAAAAGATA

3 9 0 1  GCTGCGACTGTTTACCAAAAACACATGACTATGCAAAGAAAAACCAAGTATATAGTCTGA

3 9 6 1  CACCTGCCCAAAGGCTATAGGCAAACGGCAGCCGTAACTCTAACGGTTCAAAGGTAGCAA

4 0 2 1  AATTCCTTGACGTTTAATTGGCGTCCTGCATGAAGGGTGTAACGATGGCTATGCTGTCCC

4 0 8 1  ATATATAGATTCAGTGAATTTGAATTACCCGTGCAGATGCGGGTTTTTAAGCACCGGACG

4 1 5 0
4 1 4 1  AAGAGACCCTGTGCACCTTTACATGTTGTTACAACGTAAAACACAATAGATCTTCAATGA

4 2 3 0  rns c
4 2 0 1  ATAGGTGGGAATAAATAAAAAAATTTAGAAAAGCATTGCATGGCTGACTAGCTGTTTTAT 

4 2 6 1  ATATTAGTAATAAATAAAGTATAACCAAAAAAGCTGCACAAGTCCGCATGGTCTTTATAA 

4 3 2 1  AGTGGGCTACACGTTTGCTACAATGGATGGTATAACATAAAAAATCATTCGTAGTCCAGA 

4 3 8 1  TTAAAAACCTGAAATTGGTTTTATTAAGGAGGAATCGCGAGTAATCGAAAATCAGACAAG 

4 4 4 1  TTTCGGTGAAGTTTTTGTTAATTTTGTAATCTTTTAATTATGAAATTATTAACTAATCTA

4 5 0 1  GTTGATCTCGTACTCACTGCCCGTCAAGGGCTTATAGAATTTAAGACGTCAAATTTTGAT
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t f a e l l l

4 5 6 1  ATTCTACTTTAGAAAAATTAAAAATAACGTCTTACGTTTGATAGGCCTTAAGTCGTAACA

4 6 5 2  4 6 6 3  coxl e x o n  1
4 6 2 1  AGGTAGGACTAGGGGAACCTGGTCCTGTGATATTTTAAACACATGGCAATTCGTTGGTTA

1> M A I  R W L

4 6 8 1  TATTCAACAAATCATAAAGATATTGGAATTTTATATTTATTATTAGCCTTATTTGCAGGT 
7 > Y S T N H K D I G I L Y L L L A L F A G

4 7 4 1  ATAATTGGTACTACTTTATCAATGTTTATTCGTTTAGAATTAGGTTTACCTGGTGAAGGT 
27> I  I G T T L S M F I R L E L G L P G E G

4 8 0 1  TTATTAAATGGAAATGGACAATTATATAATGTTATTATTACTGGACATGGTATTATTATG 
47> L L N G N G Q L Y N V I  I T G H G I  I M

4 8 6 1  TTATTATTCATGGTAATGCCTGCTTTGTTTGGCGGTTTTGGTAACTGGTTAGTTCCTATT 
67> L L F M V M P A L F G G F G N W L V P I

Xbal
4 9 3 9  coxlil

4 9 2 1  TTAATTGGTGCTCCTGATAATCTAGAGCTTTTAAATTATTATTCAATATTATTTACTACT 
87> L I  G A P D

> 1 N L E L L N Y Y S  I L F T T

orf306
4 9 8 1  TCATCAAATCTTTTAATGCACAATAACTTGCATTCAAACACTAAAATGGCTAGTTATTTA 

15> S S N L L M H N N L H S N T K M A S Y L

5 0 4 1  GCAGGTTTGTGGGAAGGTGACGGTCATATTGTTTTACCGACACACAATAATACACCCTGT 
35> A G L W E G D G H I V L P T H N N T P C

5 1 0 1  ATAGCTATTACTTTTTCTGATAAAAATGCACCTTTAGTTGATTTTTTAATAAAAAATTAT 
55> I A I T F S D K N A P L V D F L I K N Y

5 1 6 1  GGAGGTTGGGTTCGTATTAAAAAAAAGGAATCTTCACTTGTTTGGACAATAACAAAGCAA 
75>  G G W V R I K K K E S S L V W T I T K Q

5 2 2 1  ATTGATTTATTAAAGATCGTATGTTTACTTAATGGATATTTACGTACCCCTAAAATCCAT 
95> I D L L K I V C L L N G Y L R T P K I H

5 2 8 1  CAATTTAACATTCTTTTAAATTATTTGAAAACAAAATATTCGGATATATCCTTAAATATA 
1 15 >  Q F N I L L N Y L K T K Y S D I S L N I

5 3 4 1  CAAAAAGTAGATACTTCACCACTCTCTGAAAATGCCTGGTTAGCTGGTTTTATTGACGCT 
1 3 5 >  Q K V D T S P L S E N A W L A G F I D A

5 4 0 1  GATGGCTGTTTCAAAATACGTTATACAAAAGCAAAACATTGCGTAAACACTGGTAAGTGT 
1 55 >  D G C F K I R Y T K A K H C V N T G K C

5 4 6 1  ATTACAAAAGAACGTCTTGGGTTATCATTTACTATTGAGCAACAAATGATACATCTAAAA 
1 75 >  I T K E R L G L S F T I E Q Q M I H L K

5 5 2 1  ACACAAGAATCTTTTGAACCTATAATGAGTGAAATTGCTAAATTTTTAGATGTTAATTTA 
1 95 >  T Q E S F E P I M S E I A K F L D V N L



5 5 8 1  AGAATATGTAAACATTTAAAAAAAGGAAGTGTTGTAAACTTTTGGTGTATCGAATTAAGT 
2 1 5 >  R I C K H L K K G S V V N F W C I E L S

5 6 4 1  AGTTTTCAAAAAATAGATAAGTTAATAAAATATTTAGAAATTAATCACTTATTAACTGTA 
2 3 5 >  S F Q K I D K L I K Y L E I N H L L T V
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5 7 0 1  AAACGAATGAATTATATGGATTGGGTTAAGGCTTATGATATATTTAAACACAATTTGCAT 
2 5 5 >  K R M N Y M D W V K A Y D I F K H N L H

5 7 6 1  TTAACCGAAAAAGGTAAGAATTCTATTATTAATATTAAAACTCAAATGAATAGTAAACGT 
2 7 5 >  L T E K G K N S I I N I K T Q M N S K R

Xbal 5859
5 8 2 1  ATTGAATATGATTGGAGTTTTCTAGAATGTCCCTATTAAAATAACCTTTTAATAGGAAAT 

2 9 5 >  I E Y D W S F L E C P Y *

H i n d i I I
5 8 8 1  TGGGTTAATTGTCAAGAATCTCTTATTTAATAAATAAGACAACTTGCAGCGAAGCTTAGC 

5 9 4 1  TTAACACTATAAATGTTATTTATTTAATTATTAACATTTATGACCAATAAAAAGTAAGGT 

6 0 0 1  TTTAATACTTATTTTGTTGGAAAGCTAAGAACGTTCAACGACTAGGAAGTGAGTAGTGTT 

6 0 6 1  AACAATAATCTTCCCACGAACGCCCAACTGTTTTATAAAAACAGATGACATAGTCTAGAC

6 1 7 4
6 1 2 1  TTACTAGTGATAGTAAGAACTGAAATATAAACAATTTCAGGTTAATAATCTCGATGGCTT

93> M A

coxl e x o n 2
6 1 8 1  TCCCTCGTTTAAATAATATTAGTTTTTGGTTAAATCCATCTGCTTTAGGCTTATTATTAT 

95> F  P R L N N I  S F W L N P S A L G L L L

6 2 4 1  TGTCTACTATGGTAGAACAAGGTGCTGGTACTGGATGGACTGCATACCCACCATTAAGTA 
11 5 > L  S T M V E Q G A G T G W T A Y P P L S

6 3 0 1  TACAATCAACAGGAGCTTCTGTTGATTTAGCTATATTAAGTTTGCACTTAAATGGTTTAA 
1 3 5 > I  Q S T G A S V D L A I L S L H L N G L

6 3 6 1  GTTCCATACTAGGAAGCATAAATATTTTAGTAACAATAGCAGGAATGCGTGCTGTTGGTA 
1 5 5 > S  S I L G S I N I L V T I A G M R A V G

6 4 2 1  TGAAATTGTCTCAAATGCCCTTATTTGTATGGTCCATAGCTTTTACTGCTATTTTAGTAA 
175>M K L S Q M P L F V W S I A F T A I L V

6 4 8 1  TATTAGCCGTACCTGTATTAGCAGCTGCTTTAGTTATGTTATTAACAGATCGTAATTTAA 
1 9 5 > I  L A V P V L A A A L V M L L T D R N L

6 5 4 1  ATACTGCATATTTCTGTGAAAGCGGTGACTTAATATTGTATCAACATCTTTTCTGGTTCT 
215>N  T A Y F C E S G D L I L Y Q H L F W F

6 6 0 1  TCGGACACCCTGAGGTTTATATTTTAGTATTACCAGCTTTCGGAATCGTTAGTCATGTTA 
2 3 5 > F  G H P E V Y I L V L P A F G I V S H V

6 6 6 1  TTAGTTTTTTCAGCCAAAAACCCATTTTTGGTAACATGGGTATGATTTGTGCTATGGGTG 
2 5 5 > I  S F F S Q K P I F G N M G M I C A M G
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67 5 3  coxli2 orf 358

6 7 2 1  CCATTAGTATTTTAGGTTTCATTGTATGGGCTCAATTGGGTCTCCTGTCATGTGAATGTC 
275> A  I S I L G F I V W A

1 > Q L G L L S C E C

6 7 8 1  AGGCAACATATCTCTGCCATATGCTGGAAACATCTTTAATTTTTAACTCAAATAAAATAT 
10>Q A T Y L C H M L E T S L I F N S N K I

6 8 4 1  ATCAAACCACAATCTACTTAGTATTCTATATATATTGTTTAAGTTTTATTGGAAAAATGT 
30>Y Q T T I Y L V F Y I Y C L S F I G K M

6 9 0 1  TAAAAATAGATCAATCAGCAGGAAACGGTGTTATATACTGTATTCAAGGTTTAAACACTA 
50>L  K I D Q S A G N G V I Y C I Q G L N T

6 9 6 1  CAGTAGATTCTCTTAAAGAGTCCTTCGGGTTTGCCGGTTCCTCAGAGACTAGACGCAGAG 
70> T  V D S L K E S F G F A G S S E T R R R

7 0 2 1  TATCTTTTCTTAGCAACAATTTATCAAAATATGACCCTATTTTTCTTGATTGGTTCATTG 
90>V  S F L S N N L S K Y D P I F L D W F I

7 0 8 1  GTTTTACAGAAGGCGATGGAGGTTTTTATCATAATATTAAAGACGGACGTTTCTATTATA 
110>G  F T E G D G G F Y H N I K D G R F Y Y

7 1 4 1  AAATACGTCAAAAAAATCCTAAAGTGTTACTTTATATAAAAAAAAATTTAGGTATAGGAA 
130>K  I R Q K N P K V L L Y I K K N L G I G

7 2 0 1  CCCTTAAACTAGCTAAAGATAATTATTGGACTTATACAGTAACAGCCATTTCTGATATTG 
15 0 > T  L K L A K D N Y W T Y T V T A I S D I

7 2 6 1  AAATATTAATAAATATTTTTAATGGCAATCTTCTATTAGAAAAAACTAATTATCGTTTTG 
170> E  I L I N I F N G N L L L E K T N Y R F

7 3 2 1  TATCAGAGTGGCTTACTCCTTATAACAAAATGTATACAGATAAAGCTATAAAATATTTAG 
190>V  S E W L T P Y N K M Y T D K A I K Y L

7 3 8 1  GCCCTGGTACCTTTGTAGGGTTAAAGAATGCTTGGTTATGCGGATTTTCTGATGCAGAAG 
210>G  P G T F V G L K N A W L C G F S D A E

7 4 4 1  GCAGTTGTGGGTTTAAGTTAGTAGCTGATAAAACCCGTAAAAATGGTTATCGTTTACGCC 
230>G  S C G F K L V A D K T R K N G Y R L R

7 5 0 1  TTTTTTGGTACATTGATCAAACCGATGAAAAAGCTTTTTTTGATAAAATGAAACTGGTTT 
2 5 0 > L  F W Y I D Q T D E K A F F D K M K L V

7 5 6 1  TAGGATGGGGTTATATTGAAAAAAAACTTGCTAATGATACATCTTTTAAAGCAGATCCTA 
27 0 > L  G W G Y I E K K L A N D T S F K A D P

7 6 2 1  ATAAAAAAGCTTGGCGCTTTAAAACAGAAAGTAATCATATTGTTCAACAAATAGTTACCT 
290> N  K K A W R F K T E S N H I V Q Q I V T

7 6 8 1  ATTTTGATCAATATAATCCACATACTACCAAGCTTTATGTACGTTATATTCGATTACGAC 
310>Y  F D Q Y N P H T T K L Y V R Y I R L R

7 7 4 1  GTGTATTGAATTGGATAGTTAAAGATGGGTGGCATAGTCGATTGAAAGATATCAGCCATT 
330> R  V L N W I V K D G W H S R L K D I S H



78 2 9
7 8 0 1  TGATTCAGTTAAATAAGCGTTTAAGATAGTAGAATCTCTTTTTAAGAAAAAGATAAAGGT 

35 0> L I Q L N K R L R *
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7 8 9 4  coxl e x o n  3
7 8 6 1  ATAGTCCATTTAAGTGAATAATTTCACTTATTGCATCATATGTTTACTGTTGGTTTAGAT

2 86 > H H M F T V G L D

7 9 2 1  TTAGATACAATTGCATATTTTACCTCAGCTACTATGATTATTGCAGTACCCACTGGTATG 
2 9 5 >  L D T I A Y F T S A T M I  I A V P T G M

7 9 8 1  AAAATTTTCAGTTGGTTAGCCACTATTTACGGTGGTAGCGTATGGATGACAACACCTATG 
3 1 5 >  K I F S W L A T I Y G G S V W M T T P M

8 0 4 1  TGGTTTGCTGTTGGTTTCATTTGCTTATTTACTATTGGAGGTGTTACCGGTGTCGTGCTA 
3 3 5 >  W F A V G F I  C L F T I G G V T G V V L

8 1 0 1  GCTAACGCTGGTATTGACATGTTAGTACATGACACTTATTACGTAGTAGGTCACTTCCAT 
3 5 5 >  A N A G I D M L V H D T Y Y V V G H F H

8 1 6 1  TACGTATTAAGCATGGGAGCTTCCTTTGGTATATTTGCAGGTATTTACTTCTGGTTTGGT 
3 7 5 >  Y V L S M G A S F G I F A G I Y F W F G

8 2 2 1  TTAATGACTGGATTAAGTTACATAGAAAGTCGTGGTCAAGTTCAATTTTGGACCTTATTT 
3 9 5 >  L M T G L S Y I E S R G Q V Q F W T L F

8 2 8 1  ATTGGCGTTAACTTAACTTTCTTCCCTATGCATATGTTAGGTTTGGGCGGGATGCCTCGT 
4 1 5 >  I G V N L T F F P M H M L G L G G M P R

8 3 4 1  CGAATGTTTGATTATGCTGATTGCTTTTATGGATGGAATGCTATTGCCAGTTTTGGTGCT 
4 3 5 >  R M F D Y A D C F Y G W N A I A S F G A

8 4 0 1  TTAATTTCATTCCTATCCATTTTAATGTTAGCAGGCCCAATAAACTTTGTTCCAGAACAT 
4 5 5 >  L I S F L S I L M L A G P I N F V P E H

8 4 6 1  GACACAAAAGCGGCTAATTACCCACGCACTGCTACTACATTAGAATGGTTACAACCATGT 
4 7 5 >  D T K A A N Y P R T A T T L E W L Q P C

85 7 2
8 5 2 1  ACACCAGCAAGTCACGTCTTTACACAATTACCTGTAATACGTAGCTACTAATCATTTTTT 

4 95>  T P A S H V F T Q L P V I R S Y *

8 6 0 8  tRNAtrp
8 5 8 1  TTATCTCTTTTTTTAAAAAAAGGATATAGAAAGGTAGCTCAATTAGGTAGAGCATAGGAT

8 6 8 1
8 6 4 1  TCCAAATCCTAAGGTTGCAAGTTCAATTCTTGTTCTTTCTGTTCTAATATTCTTAATCTT 

8 7 0 1  GTATATTGGTTTCTATTTGAAATAATTTCAGCAATAAGAATGTAAAACATATTTATTTTG

8 8 2 0
8 7 6 1  CTATTATTTTAAATTAATTGTTTTTATACCTAAATAACACATTTTTACGCCATTACTTTT 

tRNAgln
8 8 2 1  GGGCTATAGCCAAGCGGTAAGGCACTGGGTTTTGGTCCCAATATCACAAGTTCGAATCTT



8 8 9 0  8 9 0 3  nadl
8 8 8 1  GTTAGCCCAGCTATTATTAATTATGATTATTTTATCTGTTTTAACAATTACAGTACCTGT

1> M I  I L S V L T I T V P V

8 9 4 1  ATTATTATCTGTAGCTTTTTTTACCTTAGCTGAACGTCAAATAATGGCAAGTATGCAACG 
14> L L S V A F F T L A E R Q I M A S M Q R

9 0 0 1  TCGTTTTGGACCCCATGTAAGCGGTATTGGTGGTGTTTTACAACCTTTTTGGGACGGTTT 
34> R F G P H V S G I G G V L Q P F W D G L

9 0 6 1  AAAATTAGGGGTAAAAGAACCAATACTACCTTCATTAAGTTCTTATGGCGCTTTTAGTGC 
54 > K L G V K E P I L P S L S S Y G A F S A

9 1 2 1  TGCCCCAATGATTAGTTTTATATTAAGCCAAATTTCCTGGTGTGGTATCTTTATATCAGA 
74> A P M I S F I L S Q I S W C G I F I S D

9 1 8 1  TGCTTCTTTTCAGGGTCTAGTTTTAATGGCTTTGAGTTCTTTAGCGGTTTATGGTGTGTT 
94> A S F Q G L V L M A L S S L A V Y G V L

9 2 4 1  ACTTGCTGGTTGGGCTAGCAACAGCAAATATGCTTTTTTAGGGTGTTTGCGCTCAGTTGC 
1 14 >  L A G W A S N S K Y A F L G C L R S V A

9 3 0 1  TCTAATGGTTTCATATGAGTTGAGCTTAGGAGCTGCTTTATTATCTATTGGCTTATTTCT 
1 34 >  L M V S Y E L S L G A A L L S I G L F L

9 3 6 1  AACGGACAGTACTGGTATGAAATGTTTATCTTTTTATGATGCGCCGTCTACTGTTCAATT 
1 54 >  T D S T G M K C L S F Y D A P S T V Q F

9 4 2 1  TGCTTTATTACCTTTATGTCATATTTTTTTGATTTGTATATTAGCTGAAACTAAACGTAT 
1 74 >  A L L P L C H I F L I C I L A E T K R I

9 4 8 1  ACCTTTCGATTTACCAGAAGCCGAAGCCGAATTAGTAGCTGGTTACAATGTAGAATTTTC 
1 94 >  P F D L P E A E A E L V A G Y N V E F S

9 5 4 1  ATCCTTAGGATTTGCCTTATTTTTCATAGCTGAGTATGCAAATATGGCCGTAATGAGTGC 
2 1 4 >  S L G F A L F F I A E Y A N M A V M S A

9 6 0 1  TTTAGCCTCCATTTACTTTTTAGGTGGTTTTTCTGCTTTAAAAATAACAGCTATATTTTT 
2 3 4 >  L A S I Y F L G G F S A L K I T A I F F

9 6 6 1  TGCGTTTGTCTGGACTCGAGGAACCTTACCACGCTATCGTTATGACCAATTTATGCGTTT 
2 54 > A F V W T R G T L P R Y R Y D Q F M R L

9 7 2 1  AGGTTGGAAAGCTTATTTACCACTTACACTTGCTATTTTTGCCATAAACGCTTGTTTTGA 
2 7 4 >  G W K A Y L P L T L A I F A I N A C F D

9 7 9 6
9 7 8 1  CGTTTTTGTTATTTAATTTAATCTTTTTAAACGGCGTTAATTTAATAATCTTTTATGTTT 

2 9 4 >  V F V I  *
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R e p e a t
9 8 4 1  TTATAAACGAAAAAACCAAACTTTAAAATTTTTCACCTTAATGAAAAAGTATAGAAGCGG 

9 9 0 1  AGGGTGAACCCCCTCCTTTCTATTTATATTCAATGGTTGACGTAGACTTTATATTCTCAT

R e p e a t
9 9 6 1  TTAATAAGTATTCTAGCCGCTTGAGCGTCATGGAAAAAATGCATAGAAAAAACCAAACTT



1 0 0 2 1  TAAAATTTTTCACCTTAATGAAAAAGTATAGAAGCGGAGGGTGAACCCCTCCTTTCTATT 

1 0 0 8 1  GAGAAAAAATTAAGAATCTATAAAAACAGATGAACTTATAAGCACTGTATACTTGTGTTT

R e p e a t
1 0 1 4 1  CTTATGATTACGCATCAGCTCTGCGTAATCTAATACCAAGTACACGGAGCTGACGCGGAG 

1 0 2 0 1  CTGACGCGGAGCTGACGCGGAGCTGACGCGGAGCTGACGCGGAGCTGACGCGGAAGTAAA 

1 0 2 6 1  GTCACAGGTTTTACCATAACTTAATAAGCATATTAGATTTTTATAATAAAAAAAGCAAAG 

1 0 3 2 1  GTGGGTGAGATAGAAACTAAGCAACGCTGGGTGGGGGAGAGGGGGGGAGGGGGAGAGCGG 

1 0 3 8 1  GTGTGGGGCTCTCCCCCCCTCTTTAATGCTATCAATAGATTATGCCATTATATACATATA 

1 0 4 4 1  TGCACCTAGTTTGAACTTGAATTTACAATGAATATGATCCGATAGTAAACGGTTAGAATG 

1 0 5 0 1  GTATTTTACTTAAAGGGCGGGCGGGGGTTAGGGGGTGGTGGTTCCGTCCCGGAAGGGAAA 

1 0 5 6 1  CCCCCTAGTAGAACATAGAATAGAGTTACTTTAGGCATTCAAGGTGGCTTAAAACTAAAG 

1 0 6 2 1  TAGCAACTAAATTGATAAATCAAAATGTTTTTGCACTACAAAAGCCATTGAATATACAAG

1 0 7 1 3  nad5 e x o n l
1 0 6 8 1  GTTTTGATGAACAAAGTCTATAAGAATTTAAAATGTATTTAATTCCTTTGTTGGCTACAT

1 > M Y L  I  P L L A T

1 0 7 4 1  TGATGAGTAGTATATTCGCAGGTGCTTTACCTATAACAGCTCGAAATTTAGGGCATCGTG 
10>L  M S S I F A G A L P I T A R N L G H R

1 0 8 0 1  GAGTTGCCGTCTTTTCCATAATAAGCCTAGTAATTGCTTTTCTAAGCAGTGCTTTAATTT 
30>G V A V F S I I S L V I A F L S S A L I

1 0 8 6 1  GGATTGATTTGTATATAGGGTCTTCACCTGTCTGGTTGGATTTATTTGGTGCTTGGTTTG 
50>W I D L Y I G S S  P V W L D L F G A W F

1 0 9 2 1  AAGTAGGAACTGTAACAGTTTCATGGGTGTTCTATTATGATTTGTTAACGGCCCATATGT 
70> E  V G T V T V S W V F Y Y D L L T A H M

1 0 9 8 1  TGTTTACGGTGACTAGTGTAAGCTTAGCAGTACACATTTATGCTGTTGTATATATGCGTA 
90>L  F T V T S V S L A V H I Y A V V Y M R

1 1 0 4 1  GTGATCCACATCTGACATTATTTATGTCATATCTTTCATTATTTACGTTTTTTATGTTAG 
1 1 0 > S  D P H L T L F M S Y L S L F T F F M L

1 1 1 5 1
1 1 1 0 1  TATATGTTTGTGGTGATAATTTGTTAGTAATGTTAGTCGGTTGGGAAGGTAAAATACATT 

130>V  Y V C G D N L - L V M L V G W E G
1> K I  H
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nad5il orf229
1 1 1 6 1  GCCTTAATGGTTTTGACAAAGAAATAATTATTTATGCAGGTGTTAGTATTCCAGGTAATA 

4>C L N G F D K E I I I Y A G V S I P G N

1 1 2 2 1  GTCGAAAAGGGCCACATAGTAGTTTATTTAAACAAATAATGGTGGGAGGTTTATTAGGAG
24 >S R K G P H S S L F K Q I M V G G L L G



1 1 2 8 1  ATGGTTGGTTGGAAAAACATGGAGCAGGAGCACGTTTTGGAATGTCATTTAAACATACTT
65

44>D  G W L E K H G A G A R F G M S F K H T  

1 1 3 4 1  ATAAAGATGTTGCTAATTGGTATCAGTTTATGTTGTATGCGTTAGGTTATCATCATAAAC
64>Y K D V A N W Y Q F M L Y A L G Y H H K  

1 1 4 0 1  TAAGTGTTGATGAGCCGTTGGAACGTATAACGAAACAAGGTAAAATAAGTAATTATTACC
84>L S V D E P L E R I T K Q G K I  S N Y Y  

1 1 4 6 1  AAGTGCGCACATTGACTTTTAACAGTCTATTGAAATATTATAACCTTTGGTATGTTAAAG
104>Q  V R T L T F N S L L K Y Y N L W Y V K  

1 1 5 2 1  TAGATGGACGTCGTCAAAAAGTAATACCACGTAATTTAGAAAATGATTTGACACCAATAA
124>V  D G R R Q K V I P R N L E N D L T P I  

1 1 5 8 1  GCTTAGCTTTGTGGTTGATGGGCGACGGTTCAGGTATGCGAGACGGTGGTTTTAAAATAG
1 4 4 > S  L A L W L M G D G S G M R D G G F K I  

1 1 6 4 1  CGACACATTCATTTTCAATAGAAGACAATTTATATTTAATTGATTTATTAAAAGAAAAGT
164>A  T H S F S I E D N L Y L I D L L K E K  

1 1 7 0 1  ATGGATTAAAAGCAAGCTTGCATAAAGATGGCAATAAAGTATGTATTTATATATGGAAAC
1 84  >Y G L K A S L H K D G N K V C  I Y I W K  

1 1 7 6 1  AATCGGTTCCTAAATTAAAGGCTATAGTATTACCATTTTTTCAAGAGTCATGTTTGTATA
204>Q  S V P K L K A I V L P F F Q E S C L Y

1 1 8 4 0
1 1 8 2 1  AATGGCGTCATGTAAAATAATAGTTCTTTTTGTCAAAAATCAAGTCTTATTTGTAAAAAC

224>K  W R H V K *

1 1 8 8 1 GGTATGAAAACACATAAAATAAAAAACGTTAAAAATTTTAACAAAATATATAATTTTGTT

1 1 9 4 1 AAATAATACAAATATTAAAACCTGACGGGGTTTTAACTTAAATTCTTTAAAATGTTATGT

1 2 0 0 1 TTTGTGAGTTTAAGAGGCGACATTGGTGAAAACGATTAAAGTCTTTAAGACAAGATCGTC

1 2 0 6 1 GGTTTTTTTTATGAAACCGCGACAGACTGGGTCACTGATGTGTGTCTGAAATGATGCATA

1 2 1 2 1 ATGTACAGTCGATATATCTTTTTCAAAAGTCGCGTAAGCGGCTAGCTTTTTTTTTAAAAA

1 2 1 8 1
1 2 2 1 1  nad.5 e x o n  2

AAATAAAAGCTTTTTCAAAACAAGATATGGATTGGTGTTTGTTCCTATTTATTAATAGGT
1 4 7 >  I G V C S Y L L I G

1 2 2 4 1  TATTATTCACATCGTTTAGCGGCTGTTAAAAGTGCTCAGAAAGCTATTTTAGTAAATCGT 
1 5 7 >  Y Y  S H R L A A V K S A Q K A I L V N R

1 2 3 0 1  GTTAGTGATGGCATGTTACTTTGGGGTGTGTTGTGGATTTGGTATTATGCCGGTAGTTTA 
1 7 7 >  V S D G M L L W G V L W I W Y Y A G S L

1 2 3 6 1  GAGTATGACTTAGTTTTGTTAAATCAAACATCAAGTATTAGTATGTTTATTGTCTTAAGT 
1 97 >  E Y D L V L L N Q T S S I S M F I V L S

1 2 4 2 1  GTATTAGTAGGTGCTATGGGTAAAAGTGCACAGATTTTGTTCCATGTATGGTTAGCAGAT 
2 1 7 >  V L V G A M G K S A Q I L F H V W L A D



1 2 4 9 3  nad5i2 orf 296
1 2 4 8 1  GCAATGGAGGGTTTGAATTACATAAAAAAGTTTCTAGTTATGTTATCAGGTTGGGTTATG 

2 3 7 >  A M E G
1 > L N Y  I  K K F L V M L  S G W V M

1 2 5 4 1  TCCGTCTGGTCTAAAATTATTTTTGATTTGATCTTGTGTTTTATTTGGGTGCTGTATTGG 
17 > S V W S K I I F D L I L C F I W V L Y W

1 2 6 0 1  GAGTGGGCTTGCTACCCCTGGTTAAATTTTTGTCAGGATTTTGTAGTCTGGGTTATTATG 
37> E W A C Y P W L N F C Q D F V V W V I M

1 2 6 6 1  GATTCTCGTGATTTTTCTTATCAAACACTTGACTTTAGTAATAATTTAGTACTATTTGCT 
57> D S R D F S Y Q T L D F S N N L V L F A

1 2 7 2 1  GCCTTTACAGGTCGAAAGAATGGTACTCAGGTAGCCACCCCTTATCAGTTAGAGGTTATT 
77> A F T G R K N G T Q V A T P Y Q L E V I

1 2 7 8 1  GCGGGTTTGTTACTATCAGATGGTTGCTTGCGTAATCCTAATAGTAATAAGCGTAGTACT 
97> A G L L L S D G C L R N P N S N K R S T

1 2 8 4 1  GGAAATTACCGCTTAGAGTTTACTTTTAAGTCTCCAGTATACGATTATATTACCTGGCTT 
1 1 7 >  G N Y R L E F T F K S P V Y D Y I T W L

1 2 9 0 1  AAATTTGATGTTTTGGGTAGTTTGTGTACAGATTCTTTGCCTACCCCTTATCCAAAGATC 
1 3 7 >  K F D V L G S L C T D S L P T P Y P K I

1 2 9 6 1  AATCCAAACCAATATTGGTTTGCCAGTCGAAGTATGTCCTTATTTACAGAATTGAACGAG 
1 5 7 >  N P N Q Y W F A S R S M S L F T E L N E

1 3 0 2 1  GTTTGGTATACCGTTATTGATAAAAAACGCGTTAAGGTTGTTCCAAGTAATCAAGTACTT 
1 77 >  V W Y T V I D K K R V K V V P S N Q V L

1 3 0 8 1  TCACCTTTGTTTACACCTATTTGTTTGGCTCACATGATAATGGGCGACGGTTATTGGGAT 
1 97 >  S P L F T P I C L A H M I M G D G Y W D

1 3 1 4 1  AACGATAGTAACACTATTCTTCTTTGTACTGAATGTTATACCAAGGAAGAAGTATTGCGT 
2 1 7 >  N D S N T I L L C T E C Y T K E E V L R

1 3 2 0 1  TTGATTGTTCTCTTGGACACTTGTCTAGGTATAAAAGCAACTTTAAAACGTCGTGTTTCT 
2 3 7 >  L I V L L D T C L G I K A T L K R R V S

1 3 2 6 1  GATAAAGGTATTATTAACTATCGTATTCGTATTAGCGGTGCTGCTGCTAATTTAGCGCTT 
2 5 7 >  D K G I I N Y R I R I S G A A A N L A L

1 3 3 2 1  ATTCGAGCTTTGGTAAAGCCACATATGCACCCTAGTATGTTCTATAAATTGGGAATAATT 
2 77  > I R A L V K P H M H P S M F Y K L G I  I

1 3 3 8 3
1 3 3 8 1  TAAGCTAATTAGCTTTCTTATAAAATTTTGGTTAAAAATAATTTTTATTATCTAGTTACT 

> *
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1 3 4 4 1  ATGTATAATAAATAGGGCCCTCCCTAAATTTCGCTGTATGCTGGAACACCCTAAAGCTTG 

1 3 5 0 1  GATTACGTATATTTTAATATACCCGTGAAAACATTCAAGATATAACAATGGGCAATCAGC

1 3 5 6 1  AAGAAACCAAACTATCTACTCATTTCAATCAAGGCTTTTTAGCCTTAATTTTTGTAGGTA



1 3 6 2 1  GATAGAAGTAGGATCTTCAGAGACTATGCGCGAAAATACCCTAAAAATGACGAAGTGATT

1 3 6 8 1  GCTATTTATAGCATTAAGATTAGGGTATATGATATAGTACGACTCTTTACGAAAGTTTAG 

1 3 7 5 0  nad5 e x o n  3
1 3 7 4 1  AGATTATTGCCTACCCCTGTGTCTGCTTTAATACATGCAGCTACATTGGTTACTGCAGGA 

2 4 1>  P T P V S A L I H A A T L V T A G

1 3 8 0 1  GTTTATTTAATGGTGCGCTTAGGGCCTTTTATGGCTGGATCTGATTTGGTGATTTTAATT 
2 5 8 >  V Y L M V R L G P F M A G S D L V I L  I

1 3 8 6 1  GGTAGTTTAACTGCTTTTATGGCTGGAATTTTTGGTTTTTTTCAAGCCGATTTAAAACGT 
2 7 8 >  G S L T A F M A G I F G F F Q A D L K R

1 3 9 5 7  nad5i3 orf267
1 3 9 2 1  GTAATTGCTTTTAGTACTTGCAGTCAATTAGGGTGGAATAGTCAAAAAAATACATTAAAT 

2 9 8 >  V I A F S T C S Q L G W
1 > N S Q K N T L N

1 3 9 8 1  TATAATAAAATGATTTCTTCAAATAATCTTTCTTATTTCAATGAAATAAATGTACGTAAC 
9 > Y N K M  I  S S N N L S Y F N E  I N V R N

1 4 0 4 1  TATTCAACAAAAATTGAAATAGAGTGCGATATATTACCAATAACATTTGTAGATAAGTTT 
29> Y S T K I E I E C D I L P I T F V D K F

1 4 1 0 1  GAGACTATTGTGGATGATCAAAAATATAATATAAAAAGTAAATATAAAAAAGTGGCCGTA 
49 > E T I V D D Q K Y N I K S K Y K K V A V

1 4 1 6 1  ATTTATTTATGGTATAATAAAGTTAACAACAAGTGTTATGTAGGTCGTTCAACAAATTTA 
69> I Y L W Y N K V N N K C Y V G R S T N L

1 4 2 2 1  GCCTCACGTTTGGAAAATTATTTTCGTGTTAAATATTTGAATGATATGAAAAATAAGATG 
89> A S R L E N Y F R V K Y L N D M K N K M

1 4 2 8 1  CCAATATGTAGCGCTTTATTGAAATATGGTTTAGATAATTTTATTTTATATGTACTTGAA 
1 09 >  P I C S A L L K Y G L D N F I L Y V L E

1 4 3 4 1  ATAATACCAACGGAGAATATAACAAAGCTACCAGAACGCGAGGATTATTATGTTTCAATA 
1 29 >  I I P T E N I T K L P E R E D Y Y V S I

1 4 4 0 1  GTTAAACCTAGTTATAACATAGCTAAAATAATAGACCAGTTTGTGGGTGCAAATCATCCC 
1 4 9 >  V K P S Y N I A K I I D Q F V G A N H P

1 4 4 6 1  CGTTATGGTAAAGTTATTTCACAAGAAGTGCGTGAAAAAATAAGTAAAGCATTAACTGGG 
1 6 9 >  R Y G K V I S Q E V R E K I S K A L T G

1 4 5 2 1  CGTACACTAACAAAGTTGGAAATAGAAAATCATCGTAAAGGTGCTCGAAAAAAAGTAGTA 
1 89 >  R T L T K L E I E N H R K G A R K K V V

1 4 5 8 1  TATTGTTATGATGTTACGTCCAAAAAGTTAGTAACCACTTTTGAATCAATGCGCGCTTTA 
2 0 9 >  Y C Y D V T S K K L V T T F E S M R A L

1 4 6 4 1  AGTCGTCAAATGAATATAAATCGAGGTATACTTTATCGAACTATTGATAAAAATAAACCA 
2 2 9 >  S R Q M N I N R G I L Y R T I D K N K P

1 4 7 0 1  ATTTATGTGAAATTTCAAGATAAAGAGTGTGCTTGGCTTTTATATTATAAACCTATTTAA 
2 4 9 >  I Y V K F Q D K E C A W L L Y Y K P I  *
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1 4 7 6 1
6 8

TTTAATGTATAAATAAATTCATATGCTCTACTTTAGTGTAAACTAAAGATATAAAATCTC

1 4 8 2 1 ACTGTATGCTGGAAAATCCTAAAGCTTATTTTGTTCTTGTTTTTCATAATAAAAGGTGGG

1 4 8 8 1 AAATAAAGTAAGATATTTTTTTTTTAAAGGTCGCACAAGCGGCTTTACTGGAGGTCTTCA

1 4 9 4 1 GTCCCTCAGGTAAGAAAATAATGGACAATCAGCAGGAAACCAATTTAAATGTTTAATAGT

1 5 0 0 1
1 5 0 1 0

AGGATCCTCG
BajiiHI b o u n d a r y  o f  20 k b  L am bdaG em -11®  l e f t  a r m



respiratory chain proteins (cob, cox 1, nadl and partial fragments of nad.2 and nad5), four 

tRNAs (one, tRNA met2, is a possible pseudogene), and discontinuous LSU and SSU 

rRNAs. In addition, seven open reading frames (ORFs) were identified within six introns 

interrupting the coding regions of C. acidophila mtDNA. In Addition, an intergenic 

region containing a number of repetitive elements and an elevated G + C content maps 

between positions 9794-10712. Finally, all genetic elements are encoded on one strand 

of C. acidophila’s mtDNA. The specific details of each element are discussed below.

Protein Coding Genes

N ad 2

The first gene in the F3 molecule is a portion of the nad2 gene. The rest of nad 2 

was probably lost during the cloning procedure. Interestingly, the intended BamHl 

ligation site at this end has been lost (data not shown). Similarity searches with BLASTX 

revealed strong sequence homology with other Nad2 proteins. The region of DNA that 

corresponded to the nad 2 gene mapped between nucleotide positions 3-788 (Figure 4) 

with the last three forming the ochre (TAA) stop codon. The DNA sequence of this 

region was converted to an amino acid sequence, albeit incomplete because of the amino- 

terminal truncation of the DNA molecule during the cloning procedure. The amino acid 

sequence was compared against the NCB1 database with the program BLASTP. The 

sequence, 261 amino acids in length, shows a high degree of similarity with the carboxy 

terminal end of other Nad 2 proteins (Table 3), most notably to the C. eugametos Nad 2 

counterpart. Hydrophobicity studies revealed this protein to contain at least five 

transmembrane segments. The five membrane spanning segments correspond to amino
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Table 3. Comparison of deduced NADH dehydrogenase subunit 2 (Nad 2) protein.
Organism Length in Identity (%) Similarity (%)

amino acids with C. acidophila with C. acidophila
Chlamydomonas acidophila 261*
Chlamydomonas eugametos 496 19% 91%
Chlorogonium elongatum 454 50% 67%
Chlamydomonas reinhardtii 382 52% 65%
Prototheca wickeramii 510 31% 48%
Chondrus crispus 497 26% 47%
Marchantia polymorpha 489 28% 44%
Reclinomonas americana 498 26% 48%
Rickettsia prowazekii 458 26% 45%
(NuoNl)

*nad 2 gene of C. acidophila is a partial sequence.

Table 4. Comparison of deduced apocytochrome b (Cob) protein.
Organism Length in Identity (%) Similarity (%)

amino acids with C. acidophila with C. acidophila
Chlamydomonas acidophila 380
Chlamydomonas eugametos 380 94% 98%
Chlorogonium elongatum 385 76% 87%
Chlamydomonas reinhardtii 381 73% 85%
Chlamydomonas smithii 381 73% 85%
Prototheca wickeramii 384 58% 73%
Marchantia polymorpha 404 59% 71%
Chondrus crispus 381 53% 72%
Reclinomonas americana 390 54% 69%
Rickettsia prowazekii (PetB) 398 48% 67%



acid residues 60-80, 100-130, 134-154, 169-189, and 238-358; other possible 

transmembrane segments map to amino acid residues 35-55 and 87-107.

Cob

Downstream of the nad2-coding region is a putative apocytochrome b {cob) coding 

gene. The gene is 2170 nucleotides (nucleotides 812-2981, Figure 4) and terminates with 

an ochre (TAA) codon, encoding a protein 380 amino acids in length. Apocytochrome b 

is one of the more conserved proteins across taxa as is evident from Table 4, with the 

closest match to C. acidophila being C. eugametos (94% identity and 98% similarity). 

Analysis of the Cob protein reveals that it contains at least seven transmembrane 

spanning segments. The seven membrane spanning segments correspond to amino acid 

residues 33-53, 112-132, 138-158, 181-201, 229-249, 289-309, and 353-373; in addition, 

two potential transmembrane segments mapped to amino acid residues 35-55 and 87-107.

Histidine residues are known to coordinate iron molecules for electron transfer, an 

important function of the Cob protein, and are highly conserved (Esposti et al., 1993). 

Multiple sequence alignments of the C. acidophila Cob protein against other known 

sequences (data not shown) indicate that the histidine residues at amino acid positions 82 

and 197 coordinate one iron molecule. A second iron molecule is bound by the two 

histidines at positions 96 and 183. The only other conserved region for apocytochrome b 

is the P-E-W triplet, which seems to be important for electron transfer at the ubiquinone 

redox site located outside the mitochondrial membrane (Esposti et al., 1993). This 

triplettypically exists in the loop that separates the fifth and sixth transmembrane 

segments (Esposti et al., 1993). In the C. acidophila Cob protein this triplet maps to
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positions 271-273 of the amino acid sequence. This region lies between the proposed 

transmembrane domains at positions 229-249 and 289-309, indicating the putative 

transmembrane domain between amino acids 80-100 may not traverse the membrane.

Cox 1

The region of the F3 molecule mapping between positions 4663-8571 (Figure 4) 

appears to code for the cytochrome oxidase subunit one gene (cox 1). The cox 1 exons 

are fragmented into three segments interspersed by two intronic regions (Figure 3 and 4), 

and encodes for a protein 510 amino acids in length ending in an Ochre (TAA) stop 

codon. The C. acidophila protein shows high similarity to other Cox 1 proteins (Table 5) 

with C. eugametos being the closest (93% identity, 96% similarity). The protein contains 

12 transmembrane segments and one possible segment. The twelve transmembrane 

segments are located at amino acid residues 16-36, 60-80, 100-120, 150-170, 180-200, 

240-260, 266-286, 297-317, 329-349, 380-400, 409-429, and 448-468; the possible 

transmembrane segment maps to amino acid positions 123-143.

Cytochrome oxidase is responsible for generating a transmembrane proton gradient. 

Cox 1 coordinates a heme (cytochrome a) and a bimetallic cytochrome a,/CuB for its 

active site (Castresana et al., 1994; Garcia-Horsman et al., 1994; Saraste, 1999; Saraste & 

Castresana, 1994). Six conserved amino acid residues are involved in the binding of 

these three metals. Multiple sequence alignments (data not shown) with known Cox 1 

proteins reveals that the cytochrome a heme is probably bound by two histidine residues 

at amino acid positions 62 and 374. A histidine residue at amino acid position 372 binds 

cytochrome a3 of the bimetallic active site, while the other copper- containing
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Table 5. Comparison of deduced cytochrome oxidase subunit 1 (Cox 1) protein.
Organism Length in 

amino acids
Identity (%) 

with C. acidophila
Similarity (%) 

with C. acidophila
Chlamydomonas acidophila 510
Chlamydomonas eugametos 509 93% 96%
Chlorogonium elongatum 510 82% 91%
Chlamydomonas reinhardtii 505 79% 87%
Prototheca wickeramii 515 61% 75%
Chondrus crispus 532 61% 76%
Marchantia polymorpha 522 62% 75%
Reclinomonas americana 531 62% 75%
Rickettsia prowazekii (CoxA) 534 60% 73%

Table 6. Comparison of deduced NADH dehydrogenase subunit 1 (NAD 1) protein.
Organism Length in 

amino acids
Identity (%) 

with C. acidophila
Similarity (%) 

with C. acidophila
Chlamydomonas acidophila 297
Chlamydomonas eugametos 295 92% 96%
Chlorogonium elongatum 296 78% 88%
Chlamydomonas reinhardtii 292 83% 92%
Prototheca wickeramii 328 51% 65%
Chondrus crispus 326 49% 67%
Marchantia polymorpha 328 50% 64%
Reclinomonas americana 333 47% 66%
Rickettsia prowazekii (NuoH) 339 48% 66%



cytochrome is bound by three histidines at amino acid positions 286, 287 and 372. 

Previous investigations have also shown that one of the ligands to this copper, a tyrosine 

residue, forms a covalent linkage (Tsukihara et al., 1995). In C. acidophila this tyrosine 

residue appears to be at position 241.

N a d i

Nad 1 is part of the NADH dehydrogenase complex and has a homolog in the C. 

acidophila mtDNA-coding region between nucleotides 8903-9796 (Figures 3 and 4).

This region is 891 nt in length, ending with an ochre (TAA) stop codon, and codes for a 

protein 297 amino acids in length. This protein has a strong similarity with other Nadi 

proteins in the database (Table 6), with the C. eugametos Nad 1 being the most notable 

(identity 92%, similarity 96%). Since Nad 1 is purported to be a transmembrane protein, 

hydrophobicity analyses were performed. The protein has six strong candidates for 

transmembrane domains and one potential segment. The transmembrane domains 

correspond to the amino acid residues 72-92, 98-188, 137-157, 169-189, 226-246, 277- 

297; and the potential transmembrane segment maps to positions 203-223.

N ad 5

The last protein coding region flanks the LambdaGEM-11® vector left arm. 

Sequence comparisons indicate that this region (Figures 3 and 4; nt 10713-15010) codes 

for the N-terminal domain of the nad 5 gene. This 927 bp fragment encodes a partial 

Nad5 protein 309 bp in length, as determined by BLASTP, with C. eugametos showing 

the strongest similarity (identity=83%, similarity=93%; Table 7). Hydrophobicity studies
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Table 7. Comparison of deduced NADH dehydrogenase subunit 5 (Nad 5) protein.
Organism Length in 

amino acids
Identity (%) 

with C. acidophila
Similarity (%) 

with C. acidophila
Chlamydomonas acidophila 309*
Chlamydomonas eugametos 576 83% 93%
Chlorogonium elongatum 544 69% 83%
Chlamydomonas reinhardtii 567 65% 77%
Prototheca wickeramii 689 44% 62%
Chondrus crispus 666 46% 61%
Marchantia polymorpha 669 40% 57%
Reclinomonas americana 670 44% 62%
Rickettsia prowazekii 
(NuoLl)

653 42% 60%

*nad 5 gene of C. acidophila is a partial sequence.



of C. acidophila’s Nad 5 give strong evidence for eight transmembrane domains. The 

transmembrane segments are located at amino acid residues 31-51, 84-104, 113-133, 136- 

156, 177-197, 205-225, 242-262, 273-293.

Codon Usage

Table 8 compares the codon usage pattern of C. acidophila to three closely related 

algal species (Chlamydomonas eugametos, Chlorogonium elongatum, and 

Chlamydomonas reinhardtii). The table takes into account only those protein-coding 

regions that could be determined with the C. acidophila cloned mtDNA. Therefore, care 

was taken to survey only similar coding regions from the other species, which include 

apocytochrome b {cob), cytochrome oxidase subunit 1 {cox 1), NADH dehydrogenase 

subunit 1 {ncid 1) and partial sequences of NADH dehydrogenase subunits 2 and 5 {nad 2 

and nad 5). In the case of nad 2 and nad 5 multiple sequence alignments were performed 

to obtain only those codons for which a counterpart had been sequenced in C. acidophila. 

Previous investigations have shown that the mitochondrial genome of both C. eugametos 

(Denovan-Wright et al., 1998), and C. reinhardtii (Boer & Gray, 1988; Michaelis et al., 

1990) use the standard genetic code and the same was assumed for both C. elongatum 

and C. acidophila. While a detailed picture of codon usage cannot be obtained from this 

data, biases can be explored. Indeed, codon tendencies for this partial set are very similar 

to previous studies of the Chlamydomonads taking into account all protein coding units 

(Denovan-Wright et al., 1998). Among all codons, the only one not used among all four 

algae is the opal termination codon (TGA), which is in agreement with complete codon
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Table 8. Codon usage table
Cod AA Cac Ceu Cel Cre Cod AA Cac Ceu Cel Cre

UUU Phe 106 109 63 46 UAU Tyr 59 60 55 24
UUC Phe 29 23 79 82 UAC Tyr 14 13 27 46
UUA Leu 193 204 212 0 UAA ter 4 3 4 3
UUG Leu 39 21 0 147 UAG ter 0 1 0 1
CUU Leu 8 8 22 16 CAU His 32 34 20 13
c u e Leu 1 2 1 1 1 CAC His 7 8 22 37
CUA Leu 12 16 16 71 CAA Gin 35 34 34 29
CUG Leu 2 2 0 10 CAG Gin 4 5 0 9
AUU lie 89 57 92 91 AAU Asn 43 45 18 2
AUC lie 8 11 28 36 AAC Asn 8 11 32 41
AUA He 51 89 1 0 AAA Lys 24 24 31 25
AUG Met 74 76 64 72 AAG Lys 2 2 0 1
GUU Val 52 31 58 42 GAU Asp 30 27 29 22
GUC Val 9 9 22 32 GAC Asp 10 11 11 17
GUA Val 71 91 80 74 GAA Glu 24 26 29 0
GUG Val 16 13 6 3 GAG Glu 5 3 2 28
UCU Ser 25 19 25 33 UGU Cys 16 17 12 7
u c c Ser 10 9 4 10 UGC Cys 3 4 3 14
UCA Ser 24 39 16 1 UGA ter 0 0 0 0
UCG Ser 0 1 2 1 UGG Trp 49 45 41 45
e c u Pro 42 22 23 8 CGU Arg 31 21 33 27
CCC Pro 6 7 2 3 CGC Arg 7 3 10 12
CCA Pro 23 40 45 55 CGA Arg 4 7 2 1
CCG Pro 2 2 1 4 CGG Arg 0 1 0 0
ACU Thr 37 19 53 60 AGU Ser 54 69 66 42
ACC Thr 10 13 21 33 AGC Ser 21 11 32 39
ACA Thr 38 49 23 0 AGA Arg 0 11 0 0
ACG Thr 5 3 0 0 AGG Arg 0 0 0 0
GCU Ala 88 50 83 110 GGU Gly 91 66 101 118
GCC Ala 20 22 31 53 GGC Gly 9 8 17 26
GCA Ala 30 54 25 1 GGA Gly 30 53 13 3
GCG Ala 7 12 3 2 GGG Gly 12 9 13 0

Comparison of codon usage with C. acidophila sequenced coding regions. Codons 
represent those taken from cob, cox 1, nad 1, and partial sequences from nad 2 and nad 5 
in C. acidophila (Cac), C. eugametos (Ceu), C. elongatum (Cel), and C. reinhardtii (Cre) 
mitochondria. Cod, codon. AA, amino acid.



tables for C. reinhardtii and C. eugametos. While most codons are used at similar 

frequencies in these algae, some show distinct biases across species lines. Some 

examples include UUA (Leu), UUG (Leu), AUA (lie), ACA (Thr), GCA (Ala), and GAA 

(Glu).

The C. acidophila mtDNA sequenced fragment appears to only encode three 

functional tRNAs, despite the fact that from this partial sequence all but six (including 

two stop codons) of the amino acid specifying codons are used in protein-specifying 

genes. These data indicate that the remaining tRNAs may be imported from the nucleus.

Introns and Intron Encoded Reading Frames

Introns are mobile genetic elements that typically encode their own maturases and 

nucleases. Defining intronic groups is a daunting task because of the instability of their 

nucleotide sequences. While introns may show little nucleotide similarity, their 

secondary and tertiary structures are conserved (Lambowitz & Belfort, 1993). 

Unfortunately, secondary structures are rarely published, probably owing to the difficulty 

in determining the intronic core sequence base-pairing interactions. However, intronic 

families may be inferred by two criteria: (1) Intronic open reading frames encoding 

maturases and/or endonucleases; and (2) intron insertion sites.

Intronic open reading frames, the first criterion, have been shown to encode 

maturases and endonucleases. Maturases have been implicated in aiding introns in 

splicing reactions (Lambowitz & Belfort, 1993; Lambowitz & Perlman, 1990), but 

conserved consensus sequences have not been identified. Many maturases contain 

endonucleases that target intronless alleles, giving these proteins a dual function. In
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contrast to maturases, endonucleases display a well defined motif. The two main families 

of nuclease motifs are the LAGLIDADG and GIY...YIG motifs. These enzymes are 

named by their acronyms that correspond to the genus and species from which they were 

isolated, preceded by the letter ‘I’ to denote an intron (Dujon et al., 1989). I-Sc^I, for 

example, corresponds to the first intron endonuclease to be discovered from a S. 

cerevisiae mitochondrial intron (Colleaux et al., 1986). Because maturases and 

endonucleases serve specific functions in RNA splicing and mobility, their amino acids 

tend to be conserved.

In discussing intron open reading frames (ORF) in the results below it should be 

noted that intronic ORFs are listed as either free standing (FS) or in frame (IF) with the 5 ' 

exon sequence. FS ORFs are not in frame with the 5" exon coding sequence as typified 

by the cobil orfl 12, which is in a +1 reading frame with respect to the 5" exon sequence. 

The IF ORFs are given in amino acid lengths commensurate with their starting position at 

the 5' exonic juncture. The reason for displaying this protein fusion is because all of C. 

acidophila ’s IF ORFs show similarity with yeast maturases. Maturases of group I and 

group II introns are typically in frame with their upstream exons. Previous investigations 

have shown that an active maturase may be synthesized as an exon/intron fusion protein 

(Banroques et al., 1987; Carignani et al., 1983; Weiss-Brummer et al., 1982). This mode 

of synthesis presumably results in feedback regulation, such that a slower rate of splicing 

leads to the production of more maturase, which in turn promotes splicing (Lazowska et 

al., 1980).

The second criterion for intron group inference is their site of insertion within the 

corresponding exon sequence. Figure 5 shows the putative secondary structure for the C.
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acidophila coxli2  intron, which is similar to the group IB2 class of introns. For the 

purpose of insertional criteria, note the PI loop. The boxed region corresponds to the 5 ' 

exon region. This sequence base pairs with a complementary region, also known as the 

internal guide sequence (IGS), of the intron. This interaction forms the PI loop. It is 

noteworthy to this study that intron splice-site recognition relies on this P 1 pairing 

(Lambowitz & Belfort, 1993). Therefore, the determination of insertion site is important 

because group I introns tend to insert into sequences that are capable of folding with the 

intron to form a PI loop.

The structure in Figure 5 was constructed by multiple sequence alignments with 

similar intronic sequences and visual adjustment of the nucleotide sequence data. Once 

sequences corresponding to the conserved intronic core were determined (P3-P8) a 

secondary structure of the entire RNA molecule was predicted with the help of the 

MULFOLD RNA folding program (Jaeger et al., 1989; Jaeger et al., 1990; Zuker, 1989). 

In addition, all structural elements are labeled by standard conventions according to 

Burke et al. (Burke et al., 1987).

Finally, intron and intron encoded protein nomenclature is as follows. Introns are 

named according to their position 5" -  3 ' in the corresponding coding strand. For 

example, the second intron of the cox 1 gene is referred to as cox 112. Internal intron 

open reading frames are named according to their amino acid length. The reading frame 

of the cox li2  is orf358. Initial referrals to intron open reading frames in this text are 

listed as cox li2  orf358, which is then truncated to orf358 for the remainder of the
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Figure 5. Predicted secondary structure of coxli2 of C. acidophila.
Nomenclature of structure was assigned according to Burke et al. (Burke et al., 1987). 
Catalytic core region was searched against the data provided by Michel and Westhoff 
(Michel & Westhof, 1990). Boxed sequences represent the adjacent exon. Arrows 
indicate splice sites. Internal guide sequence is located at PI. Catalytic core is P3-P8.
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chapter heading. Additional references to this protein in the rest of this work will carry 

the full label coxli2 orf358.

The partial sequence of C. acidophila reveals the presence of six introns. Based on 

sequence homology all six were classified as group I introns. One intron (cobil) was 

present within the apocytochrome b (cob) coding region, two (coxlil and coxli2) in the 

cytochrome oxidase subunit one (coxl) gene and at least three introns (nad5il, nad5i2 

and nad5i3) exist in the NADH dehydrogenase subunit five (nad5) region. A map of all 

introns is located in Figure 3 and complete sequences are marked in Figure 4.

Cob il

The cob il  intron is 1030 bp in length and is inserted between the exon sequences of 

cob at positions 1240-2271. The insertion shows the highly conserved ‘U’ residue of the 

5" exon sequence immediately preceding the intron, and the conserved ‘G’ residue at the 

last y  position of the intron immediately preceding the 3' exon nucleotides. A search for 

other organisms with identical insertional positions by multiple sequence alignment 

revealed that this insertion site is shared by the cob i2 introns of Chlorogonium 

elongatum and Saccharomyces cerevisiae and the cob i3 intron of Allomyces macrogynus 

(Table 9).

The cobil intron encodes two reading frames. The first is in frame with the 5" 

coding sequence of the cob gene. This region is 450 bp in length and terminates with a 

UGA stop codon producing a 149 amino acid product and is called cobil orfl49. 

BLASTP searches against the protein database returned a number of similar sequences.
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Table 9. Introns from other species with identical insertion sites.
C. acidophila Other species
Cob il  
ID/L

C h lorogon iu m  
e lon ga tu m  co b  i2 
ID/L (Y07814)

S a cch a ro m yces  
cere v is ia e  co b  i2 
ID/L (JO 1472)

A llo m yces  
m a cro g yn u s co b  i3 
ID/L (U41288)

Cox l i l  
IB/L

P o d o sp o ra
a n serin a
c o x l  i3  (X55026)a 
IB2/L

E m erice lla  
n idu lan s nox2  
(X00790)a IB4/L

Cox li2  
IB2/L

C. e lon gatu m  
cox  l i l  (Y13644) 
IB2/L

M arch an tia  
p o lym o rp h a  
cox  H 9  (M68929) 
ns/L

A. m a cro g yn u s  
co x  l i l 2  (U41288) 
ns/L

P. a n serin a
co x  l i l l  (X55026)
IB2/L

Nad 5il
ID/L

C. elon ga tu m  
n a d  5 i l  (Y13643) 
ID/L

C. eu g a m eto s  
n a d  5 i l  
(Af008237) 
ns/L

A. m a cro g yn u s  
n a d  5 i l  (U41288) 
ns/L

Nad 5i2 
IB/L

Nad 5i3
ns/G

C. elon ga tu m  
n a d  5 i2  (Y13643) 
IB/L

?

C. eu g a m eto s  
n a d  5i2  
(Af008237) 
ns/L

M. p o lym o rp h a  
n a d  5(7 (M68929) 
Ns/-

N eu ro sp o ra  c ra ssa  
n a d  5 i2  (X 05115) 
IB4/L

Intron subgroups and ORF types of group I intron mitochondrial genes with insertion 
sites shared by C. acidophila and other species.
G, an intronic open reading frame of the GIY-YIG type is encoded.
L, intronic open reading frame of the LAGLIDADG type.
-,no intronic open reading frame, 
ns, intron subtype not specified 
Accession numbers are in parentheses.
aP. anserina and E. nidulans do not share identical insertions but are located 6 bases 

downstream from C. acidophila insertion site.
Data for this table comes from Kroymann and Zetsche (Kroymann & Zetsche, 1998) and 
Michel and Westhof (Michel & Westhof, 1990).
? No introns with identical sites found.



In Figure 6A Allomyces macrogynus showed an identity of 59% and a similarity score of 

73%. Interestingly, two of the highest scores belonged to Chlamydomonas 

smithii (which contains only one known intron) and Chlorogatum elongatum. In all cases 

the scores reflected the homing endonuclease LAGLIDADG motif. The LAGLIDADG 

consensus typically occurs as repeats (PI and P2), which is evident in all returned 

matches of the motif in Figure 6A. However, orfl49  of C. acidophila contains only the 

PI repeat. The second open reading frame (cobil o rfll2 )  within the cobil intron begins 

at nucleotide position 1596 of the F3 clone with an AUG codon and is 339 bp in length 

terminating in a UAG codon, producing a protein of 112 amino acids. Interestingly, this 

sequence is in a +1 reading frame in respect to orfl49, and overlaps orfl49  by 95 bp.

The sequences returned by BLASTP in Figure 6B were extremely similar to those 

returned by orfl49  with only Allomyces macrogynus and Saccharomyces capsensis 

exchanging rank. Multiple sequence alignment showed that o r fll2  was missing the PI 

repeat while possessing the P2. From this data it may be inferred that orfl49  and o rfll2  

were, at one time, two parts of the same gene.

A comparison of the well-conserved LAGLIDADG PI and P2 protein motifs 

indicates that these two reading frames most closely resemble the I-CsmI class of homing 

endonucleases. Indeed, C. smithii encodes the archetype conserved repeats: 

IAVGLLLSDAHA (PI) and ALAYWIAGDGCW (P2). Taken together, the insertional 

and ORF data imply that this intron belongs to the group ID class of introns.
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O r g a n i s m  ( p a n ) M o t i f ORF
I d e n t i t y /
P o s i t i v e s

I n t r o n *
l o c a t i o n

A

C. acidophila orfl49 ( 3 9 ) IIVGSLLGDSYA 149
A. macrogynus ( 2 1 4 7 5 2 8 ) ( 4 4 ) IIFGSLLGDAFA (1 4 7 ) ALAIWIQDDGGA 233 59%/73% cobil
S. capensis ( 2 6 0 0 3 6 ) ( 8 2 ) IIYGSMLGDGHA ( 1 9 3 ) ALAIWIMDDGCK 2 8 0 47%/61%
C. smithii ( 2 9 6 7 1 9 ) ( 4 3 ) IAVGLLLSDAHA ( 1 4 6 ) ALAYWIAGDGCW 358 28%/43%
C. elongatum ( 2 1 9 3 8 8 9 ) ( 1 0 1 ) VAVGLLLSDAHA ( 2 0 9 ) SLRHAICGDGSS 292 32%/48% cobi2

B
L A G L ID L A G L ID .

C. acidophila orfll2 ( 2 4 ) ALAIWIMDDGTW 112
S. capensis ( 2 6 0 0 3 6 ) ( 8 2 ) IIYGSMLGDGHA ( 1 9 3 ) ALAIWIMDDGCK 2 8 0 50%/65%
A. macrogynus ( 2 1 4 7 5 2 8 ) ( 4 4 ) IIFGSLLGDAFA ( 1 4 7 ) ALAIWIQDDGGA 233 39%/56% cobil
C. smithii ( 2 9 6 7 1 9 ) ( 4 3 ) IAVGLLLSDAHA ( 1 4 6 ) ALAYWIAGDGCW 3 5 8 39%/59%
C. elongatum ( 2 1 9 3 8 8 9 )

c

( 1 0 1 ) VAVGLLLSDAHA ( 2 0 9 ) SLRHAICGDGSS 292 33%/51% cobi2

L I DADO® -'
C. acidophila orf231 ( 3 9 ) IIVGSLLGDSYA ( 1 4 2 ) ALAIWIMDDGTW 2 3 1
S. capensis ( 2 6 0 0 3 6 ) ( 8 2 ) IIYGSMLGDGHA ( 1 9 3 ) ALAIWIMDDGCK 2 8 0 45% /58%
A. macrogynus ( 2 1 4 7 5 2 8 ) ( 4 4 ) IIFGSLLGDAFA ( 1 4 7 ) ALAIWIQDDGGA 233 45%/60% cobil
C. smithii ( 2 9 6 7 1 9 ) ( 4 3 ) IAVGLLLSDAHA ( 1 4 6 ) ALAYWIAGDGCW 3 5 8 32%/48%
C. elongatum ( 2 1 9 3 8 8 9 ) ( 1 0 1 ) VAVGLLLSDAHA ( 2 0 9 ) SLRHAICGDGSS 292 31%/46% cobi2

oo
ON

F i g u r e  6 .  C o n s e r v e d  o p e n  r e a d i n g  f r a m e s  w i t h i n  t h e  C .  acidophila cobil i n t r o n .  N u m b e r  i n  p a r e n t h e s e s  
f o l l o w i n g  o r g a n i s m  n am e  ( p a n )  i s  t h e  p r o t e i n  a c c e s s i o n  n u m b e r  f r o m  t h e  NCBI d a t a b a s e .  N u m b er  i n  
p a r e n t h e s e s  p r e c e d i n g  t h e  a l i g n e d  s e q u e n c e s  i s  t h e  a m i n o  a c i d  p o s i t i o n  i n  t h e  p r o t e i n .  H i g h l i g h t e d  a m in o  
a c i d s  a b o v e  t h e  a l i g n e d  s e q u e n c e s  c o r r e s p o n d  t o  p r o p o s e d  h o m i n g  e n d o n u c l e a s e  c l a s s . D o t s  r e p r e s e n t  g a p s . 
(A) A l i g n m e n t s  a g a i n s t  C.acidophila's orfl49. (B) C. acidophila's orfll2, a  f r e e  s t a n d i n g  o p e n  r e a d i n g  
f r a m e  a t  +2 w i t h  r e s p e c t  t o  orfl49. (C) C. acidophila’s orfl49 a n d  orfll2 b r o u g h t  i n t o  t h e  s a m e  r e a d i n g  
f r a m e  b y  a  d e l e t i o n  o f  a n  'A '  r e s i d u e  a t  p o s i t i o n  3 2 4  w i t h i n  t h e  i n t r o n .  * W h e re  a v a i l a b l e .  O r g a n i s m  n a m e s  
a r e  a s  f o l l o w s :  Chlamydomonas acidophila, Allomyces macrogynus, Saccharomyces capensis, Chlamydomonas 
smithii, a n d  Chlorogonium elongatum.



Cox l i l
87

The cytochrome oxidase subunit one (cox 1) coding region contains two introns 

(Figure 3). The cox l i l  intron is 1235 bp in length and is inserted between the cox 1 exon 

nucleotides 4938-6174. The conserved ‘U ’ (nt 4938) and ‘G’ (nt 6173) residues as 

described above apply. A search for similar insertion sites among other species failed. 

However, it is significant that Podospora anserina and Emericella nidulans insert their 

introns cox Ii3 and nox 2 respectively, 6 bp upstream from the C. acidophila insertion 

site (Table 9).

Cox l i l  encodes one large reading frame named cox l i l  orf306. This coding region 

is in frame with the flanking coxl 5 ' exon sequence, producing a protein 306 amino acids 

in length. Interestingly, the ORFs of P. anserina cox li3  and E. nidulans nox2 are among 

the most similar to C. acidophila’s cox l i l  according to database searches with BLASTP. 

P. anserina had the top score with an identity of 34% and a similarity of 56% over a 285 

amino acid overlap (Figure 7A), while E. nidulans showed a 31% identity and 50% 

similarity. Sequence alignments with Clustal X revealed a clear LAGLIDADG motif 

(Figure 7A). However, C. acidophila’s LAGLIDADG sequences appear to be somewhat 

degenerate. The closest match appears to that of the 1-SceIII homing endonuclease of S. 

cerevisiae.

Cox 7/2

The coxli2  intron is the second intronic region of the coxl gene. C oxlil spans 

1142 nucleotides, and is inserted between nucleotide positions 6752-7894. Again the 

conserved ‘U’ (nt 6752) and ‘G’ (nt 7893) residues are present. Sequence alignments



O r g a n i s m  ( p a n ) M o t i f ORF
I d e n t i t y /
P o s i t i v e s

I n t r o n *
l o c a t i o n

A
c o x  lil

^ ^ ^ ^ ■ l a g l i d a d g ^ ^ ^ H ^ ^ ^ ■ l a g l i d a d g ^ ^ H
C. acidophila orf306 ( 3 3 ) YLAGLWEGDGHI ( 1 4 7 ) WLAGFIDADGCF 306

P. anserina ( g 4 8 3 2 0 8 ) ( 2 6 ) YLAGLYEGDGHI ( 1 4 4 ) WLSGFIDSDGSF 296 34%/56% c o x  Ii3

E. nidulans ( g 8 3 7 2 6 ) ( 6 5 ) YLAGLIEGDGTI ( 1 8 4 ) WLSGFIEADGSF 334 31%/50% nox 2

S. cerevisiae ( g 4 5 0 0 8 0 ) ( 1 8 ) YLAGLIEGDGSI ( 1 5 0 ) WLAGMTDADGNF 321 26%/45%

S. cerevisiae ( g 3 2 0 8 7 3 ) ( 2 9 ) WLAGLIDGDGYF ( 1 3 5 ) WFVGFFDADGTI 258 25%/46%

B
c o x  Ii2

^ ^ ^ ^ ■ l a g l  I  dadg^ ^ ^ H ^ ^ ^ ■ l a g l i d a d g ^ ^ H
C. acidophila orf358 ( 1 0 7 ) WFIGFTEGDGGF ( 2 2 1 ) WLCGFSDAEGSC 358

C. elongatum ( g 3 4 1 3 8 0 5 ) ( 1 4 6 ) WVLGFIEGDGGF ( 2 5 8 ) WFLGFIEADGSL 338 39%/56% cox lil

S. pombe ( g l 4 1 0 3 4 ) ( 8 9 ) YLAGLIDGDGHF ( 2 0 0 ) WLAGFSDADASF 323 39%/56%

P . anserina ( g 4 8 3 1 9 4 ) ( 6 0 ) WFIGFAEGDGAI (17  9 ) WLSGFTDAEGCF 321 27%/43% cox lill

A. macrogynus ( g 2 1 4 7 5 5 6 ) ( 8 8 ) WFIGFAEGDGAI ( 2 0 1 ) WVSGFTDAEGCF 342 26%/45% nad 5il

F i g u r e  7 .  C o n s e r v e d  o p e n  r e a d i n g  f r a m e s  o f  C. acidophila  w i t h i n  t h e  t w o  i n t r o n s  o f  coxl  c o d i n g  g e n e .
N um ber  i n  p a r e n t h e s i s  f o l l o w i n g  o r g a n i s m  nam e ( p a n )  i s  t h e  p r o t e i n  a c c e s s i o n  n u m b e r  i n  t h e  NCBI d a t a b a s e .  
N um ber  i n  p a r e n t h e s i s  p r e c e d i n g  t h e  a l i g n e d  s e q u e n c e s  i s  t h e  a m i n o  a c i d  p o s i t i o n  i n  t h e  p r o t e i n .  
H i g h l i g h t e d  a m i n o  a c i d s  a b o v e  t h e  a l i g n e d  s e q u e n c e s  c o r r e s p o n d  t o  p r o p o s e d  h o m i n g  e n d o n u c l e a s e  c l a s s .  
*W here  a v a i l a b l e .  (A) F i r s t  i n t r o n  ( c o x  lil) i n  C. acidophila's cox 1 c o d i n g  r e g i o n .  (B) S e c o n d  i n t r o n  
( c o x  Ii2) i n  coxl. S p e c i e s  n a m e s  a r e :  Podospora anserina, Emericella nidulans, Saccharomyces cerevisiae, 
Chlorogonium elongatum, Schizosaccharomyces pombe, Allomyces macrogynus.



show that a number of other species share identical insertion sites with this intron (Table 

9). They include: Chlorogonium elongatum (cox l i l ) ,  Marchantia polymorpha (cox 7/9), 

Allomyces macrogynus (cox l i l )  and P. anserina (cox l i l l ) .

Cox li2  contains a single large open reading frame called cox 7/2 orf358 (Figure 

7B). This open reading frame produces a protein 358 amino acids in length. A search 

with BLASTP using C. acidophila’s orf358  returned matches for ORFs within introns 

that insert at the same site in cox 1. Among the highest scoring was that of C. elongatum, 

which showed an identity of 39% and a similarity score of 56% over a 331 amino acid 

overlap. Multiple alignments of the protein sequence data revealed a LAGLIDADG 

motif. However, while the sequence alignments showed some conservation, these 

comparisons failed to suggest a possible endonuclease designation without ambiguity. 

Information from the insertional position, ORF similarity and structural data (Figure 5) 

confirm that this intron belongs to intronic group IB2.

Nad 5/7

The NADH dehydrogenase subunit 5 coding region (nad 5) in the F3 clone contains 

at least 3 intronic regions. The first intron nad 5 il is 1060 bp in length, and is inserted 

between exon nucleotide positions 11150-12211. The conserved residues ‘U’ (nt 11150) 

and ‘G’ (nt 12210) are both apparent. Multiple sequence alignments with similar introns 

revealed that three other organisms share identical insertion sites. They include the nad 

5 il of C. elongatum, the nad 5 il of Chlamydomonas eugametos and the nad 5 il of A.

89

macrogynus (Table 9).



Nad 5 il contains an in frame coding region, called nad 5 il orJ229, that is proposed 

to produce a protein product of 229 amino acids. BLASTP searches with C. acidophila’s 

putative orf229 returned results that were in agreement with the insertional data. Strong 

similarities (Figure 8A) were noted from C. eugametos’s nad 5 il encoded 

protein (identity 61%; similarity 74%) and C. elongatum’s nad 5 il (identity 48%; 

similarity 72%). Multiple sequence alignments of these proteins revealed a 

LAGLIDADG motif, which shows some similarity to the I-SceIV homing endonucleases. 

Based on the intron insertion site and high similarity scores with the other LAGLIDADG 

motifs, this intron is proposed to belong to the group ID class of introns.

Nad 5i2

The nad 5i2 intron of C. acidophila is 1275 bp in length and is inserted between 

nucleotides 12492-13750 of the F3 clone. Once again, conserved ‘U’ and ‘G’ residues 

reside at nucleotide positions 12492 and 13749 respectively. Identical exon insertions 

(Table 9) among other organisms include the nad 5i2 of C. elongatum, C. eugametos’s 

nad 5i2, M. polymorpha’s and Neurospora crassa’s nad 5 il and nad 5i2 respectively.

Nad 5i2 contains an in frame sequence capable of producing a protein 296 amino 

acids in length (nad 5i2 orf296). BLASTP searches (Figure 8B) with orf296 of C. 

acidophila’s nad5i2 showed the strongest identity (51%) and similarity (65%) with the 

protein product of orj231 of Allomyces macrogynus. Strong similarities were also noted 

with the open reading frames of both C. elongatum’s and C. eugametos’s nad 5i2. 

Interestingly, the researchers listed the nad 5i2 intron of C. eugametos (Denovan-Wright 

et al., 1998) as having two open reading frames. Multiple alignment of a number of
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I d e n t i t y /  I n t r o n *
O r g a n i s m  ( p a n ) M o t i f ORF P o s i t i v e s l o c a t i o n
A
Nad 5il
C. acidophila orf229 ( 3 6 ) IMVGGLLGDGWL ( 1 4 4 ) SLALWLMGDGSG 2 2 9
C. eugametos ( 2 8 6 5 2 6 3 ) ( 4 8 ) ILTGLLLGDGWL ( 1 5 2 ) ALAIWLMGDGSG 283 61%/74% nad 5il
C. elongatum ( 3 4 8 3 0 5 4 ) (4 )  IWGCLLGDGHL ( 1 1 5 ) ALALWCMGDGSA 180 48%/72% nad 5il
S. capensis ( 2 6 0 0 3 6 ) ( 8 2 ) IIYGSMLGDGHA ( 1 9 3 ) ALAIWIMDDGCK 280 38%/55%
A. macrogynus ( 2 1 4 7 5 3 7 )  

B

( 6 6 ) VIFGSLLGDSHL ( 1 7 7 ) ALAIWFMDDGSK 2 6 1 28%/47% nad 5il

Nad 5i2 ^ ^ ^ ^ ■ l a g l i d a d g ^ ^ I ^ ^ ^ ^ ■ l a g l i d a d g ^ ^ ^ H
C. acidophila orf296 ( 9 5 ) VIAGLLLSDGCL ( 2 0 4 ) CLAHMIMGDGYW 2 9 6
A. macrogynus ( 2 1 4 7 5 2 7 ) ( 4 0 ) AINGLLLSDGHV ( 1 4 5 ) TLAFWIMGDGFW 2 3 1 51%/65%
C. elongatum ( 3 6 4 6 3 4 7 ) ( 7 0 ) AIAGLMFSDGHI ( 1 8 8 ) SLAFAIMGDGYW 283 41%/55% nad 5i2
C. eugametos ( 2 8 6 5 2 6 2 ) ( 5 9 ) AITGLMLSDGHL 145 52%/65% nad 5i2
C. eugametos ( 2 8 6 5 2 6 5 ) ( 3 5 ) ALAFMIMGDGYW 119 45%/63% nad 5i2
C. humicola ( 3 1 2 2 0 3 4 ) ( 1 0 ) LIFGSLLGDGNL ( 1 2 1 ) ALAYFYIDDGAL 2 1 8 28%/45%

c
Nad 5i3 3 5 3 OT5
C. acidophila orf267 ( 6 7 ) AVIYLWYNKVNNKCYVGRSTN(8 8 ) 2 6 7
C. eugametos ( 2 8 6 5 2 5 4 ) ( 8 4 ) AGVYLIYDNLTHDFYVG. . S A (1 0 3 ) 3 0 6 26%/43%
P . anserina ( 4 7 8 0 9 3 ) ( 8 7 ) SGIYMIVNKVTKDYYIG. . S A (1 0 6 ) 3 0 1 25%/43%
N. crassa ( 4 7 8 0 9 3 ) ( 2 3 2 ) SGVYMIINKTTKDYYIG. .S A ( 2 5 1 ) 4 4 8 23%/41%
C. elongatum ( 2 1 9 3 8 8 8 ) ( 7 2 ) SGVYLVRNDINGNCYVG. . S A (9 1 ) 299 25%/43%

F i g u r e  8 .  C o n s e r v e d  o p e n  r e a d i n g  f r a m e s  w i t h i n  C .  acidophila's  t h r e e  nad5  i n t r o n s .  N u m b e r  i n  p a r e n t h e s e s  
f o l l o w i n g  o r g a n i s m  nam e i s  t h e  p r o t e i n  a c c e s s i o n  n u m b e r  f r o m  t h e  NCBI d a t a b a s e .  N u m b er  i n  p a r e n t h e s e s  
p r e c e d i n g  t h e  a l i g n e d  s e q u e n c e s  i s  t h e  a m i n o  a c i d  p o s i t i o n  i n  t h e  p r o t e i n .  H i g h l i g h t e d  a m i n o  a c i d s  a b o v e  
t h e  a l i g n e d  s e q u e n c e s  c o r r e s p o n d  t o  p r o p o s e d  h o m i n g  e n d o n u c l e a s e  c l a s s . D o t s  r e p r e s e n t  g a p s . *W h e re  
a v a i l a b l e .  (A) C. acidophila's o p e n  r e a d i n g  f r a m e  w i t h i n  t h e  f i r s t  i n t r o n  o f  nad 5 (nad 5il). (B) C. 
acidophila's o p e n  r e a d i n g  f r a m e  w i t h i n  nad 5i2. (C) C. acidophila's o p e n  r e a d i n g  f r a m e  w i t h i n  nad 5i3.
O r g a n i s m  n a m e s  a r e  a s  f o l l o w s :  Chlamydomonas acidophila, Chlamydomonas eugametos, Chlorogonium elongatum, 
Saccharomyces capensis, Allomyces macrogynus, Chlamydomonas humicola, Podospora anserina, Neurospora 
crassa.



similar sequences revealed that these two open reading frames probably once formed a 

single coding region (Figure 8B). Support for this is that the first and second open 

reading frames of C. eugametos nad 5i2 shows strong similarity to the PI and P2 region 

of LAGLIDADG motifs belonging to the l-Chul (Chlamydomonas humicola) class of 

endonucleases. Based on the insertional and LAGLIDADG similarities, the nad 5i2 

intron appears to belong to the group IB class of introns.

Nad 5i3

The entire nad 5i3 intron of C. acidophila was probably truncated in the cloning 

procedure, however, enough of the intron was present to analyze. What is present of the 

intron is 1051 bp in size, and is inserted at the exon nucleotide position 13956, and is 

assumed to separate amino acid positions 309-310 on the Nad5 protein. A search for 

similar insertion sites across taxa failed (Table 9). In Addition, the typically conserved 

‘U’ residue at the 5" splice site (nt 13956) is replaced with a ‘G \

C. acidophila’s nad 5i3 contains an inframe coding sequence, called nad 5i3 orf267, 

that produces a protein predicted to be 267 amino acids in size. A search for ORF 

proteins with BLASTP searches of the orf267 returned very low but distinguishable 

similarities with proteins from both the C. eugametos and C. elongatum cob il  intron 

(Figure 8C). Further, multiple sequence alignments revealed that the C. acidophila 

orf267 had a highly degenerate GIY...YIG homing endonuclease motif. Unfortunately, 

because of the truncation of this sequence, inference of intronic core sequences is 

difficult. However, using the available data, this intron is speculated to be either a group
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Transfer RNA Genes

The sequence of the F3 clone contains four tRNA coding regions. They are 

tRNAmeU(CAU) (nt 3597-3669), tRNAme'2 (CAU) (nt 3684-3756), tRNAup (CCA) (nt 

8608-8681) and tRNA8'" (UUG) (nt 8820-8890). The structure of the four tRNAs was 

predicted using the MULFOLD RNA folding program (Jaeger et al., 1989; Jaeger et al., 

1990; Zuker, 1989) (Figure 9), which predicts folding RNA based on energy 

minimization, and tRNAs were numbered according to standardized numbering (Sprinzl 

et al., 1996). Folding procedures required the manipulation of certain tRNA sequences 

within the MULFOLD program. For example, in some instances certain nucleotides 

were forced to pair in order to achieve a conserved secondary structure. Only tRNA8'" 

required no modifications and a final free energy state o f -17.2 kcal/mole was obtained 

after folding. The final structure of tRNAtrp required some modifications and had an 

initial folding structure energy o f -15.4 kcal/mole. To obtain the final structure positions, 

33(U) and 39(A) were prohibited from interacting within the anticodon loop. The free 

energy was raised to -13.7 kcal/mole which was still well within acceptable limits. The 

tRNArae“ also required some modifications to achieve a final conserved structure. Initial 

folding yielded a structure with an available free energy of -16.7 kcal/mole. The final 

structure was obtained by forcing an interaction between position 7(U) and 66(A), and 

inhibiting an interaction between positions 26(A) and 44(U). The resulting structure had 

a free energy o f -15.6 kcal/mole. The final structure for tRNAmet2 could not be forced 

into a final conserved secondary structure. However a close representation could be 

formed with the following modifications. Positions 6(U) - 67(A), 10(A) -  25(U), and
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Figure 9. tRNA deduced secondary structure from tDNA sequences identified in the 
C. acidophila mtDNA. Nucleotides involved in Watson-Crick base-pairs are indicated 
by (-), G:U pairs are indicated by(D ) and purine:purine base-pairs are indicated by (x). 
See text for details.



27(U) -  43(A) were forced to base pair, while positions 9(A) -  25(U) were prohibited 

from interacting.

Three of the C. acidophila mitochondrial encoded tRNAs (tRNAmetl, tRNA8'", and 

tRNA1̂ ) show the normal pattern of invariant and semi-invariant nucleotides recognized 

in other conventional tRNAs (McClain, 1993). The C. acidophila tRNAmel2, however, 

contains a number of unusual features that include: (1) 8(G) rather than the invariant 

8(U); (2) the lack of potential tertiary interactions between 8(A) and 14(A); (3) the 

normally present base pairs of 7(G):66(G) and 49(G):65(A) cannot occur as seen in 

Figure 9. Taken together, the inability to fold tRNAmet2 into a stable secondary structure 

with MULFOLD, and the unusual features of this tRNA with respect to other tRNAs 

seems to suggest that tRNAmet2 is a pseudogene. Finally, it appears that the 3’ CCA 

terminus is added post-transcriptionally to the C. acidophila mitochondrial tRNAs as 

indicated earlier in both C. eugametos and C. reinhardtii (Denovan-Wright et al., 1998).

Ribosomal RNA

The rRNA genes were identified according to their similarity at the primary 

sequence level with their counterparts from C. eugametos. A secondary structure was not 

attempted due to the lack of a complete sequence set of either large subunit (LSU or rnl) 

and small subunit (SSU or ms) coding regions. The rRNA subunits that are absent from 

the sequence data are believed to be part of the C. acidophila mtDNA that was not cloned 

into the LambdaGEM-11® vector. Finally, the exact 5 ' and 3 ' termini could not be 

determined and can only be resolved with experimental data. It should be mentioned that 

BLASTN search and alignment parameters were employed using reduced gap penalty
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costs. The rationale for this generous estimate was to increase BLASTN sensitivity to 

divergent sequences. While this approach worked in some cases, it overestimated 

sequence identities in others.

The rRNA sequence that is present shows an orientation characteristic of its 

Chlamydomonad counterparts. The coding sequences are scrambled and discontinuous 

with respect to each other and are divided into two regions. Region one contains m l d, 

m s a , rnl a and is separated by 250 bp from region two, which contains m l e and m s c 

(Figures 3 and 4). Table 10 shows identity between C. acidophila and C. eugametos 

rRNA coding regions. Coding pieces are listed in the same order as they appear on each 

respective genome (i.e., they are colinear).
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Table 10. Identity of rRNA between C. acidophila and C. eugametos.
m l d m s a m l a rnl e m s c

Chlamydomonas acidophila 189 bp 108 bp 166 bp 387 bp 422 bp
Chlamydomonas eugametos 175 bp 102 bp 170 bp 480 bp 508 bp
Identity 72% 79% 80% 86% 71%
bp = base pairs.

Ribosomal RNA Region 1 (rnl d. rns a. rnl a)

Ribosomal RNA coding region 1 of both species contains the same 3 rRNAs.

The first, m l d, was predicted to be 189 bp long from the 175 bp C. eugametos m l d.

This discrepancy in size is not due to the random insertion of nucleotides along the length 

of C. acidophila m l d. Instead, a localized area between nt 3066-3095 of C. acidophila 

seems to contain more nucleotides than the C. eugametos counterpart. Whether C. 

acidophila gained these nucleotides or C. eugametos experienced a reduction within this



area is unclear. The m s a region in C. acidophila is located at positions 3213-3320.

Both genes are roughly equivalent in size for rns a and no particular stretch of DNA has a 

pattern for areas of insertions or deletions. Likewise, m l a genes of both species are 

roughly equivalent in length and show an 80% identity.

Ribosomal RNA Region 2 (rnl e. rns cl

BLASTN searches revealed that C. acidophila m l e is encoded at positions 3763- 

4229 and shows an 83% identity with its C. eugametos counterpart. However, empirical 

evidence in this laboratory refutes this alignment. During heavy metal induction 

experiments, radiolabeled oligomers were hybridized to total RNA extracts from C. 

acidophila. Two oligomers, Praer 998 and PFL5, hybridize in flanking positions to the 

coding strand of C. acidophila mtDNA. Praer 998 is a 15-mer capable of hybridizing to 

C. acidophila RNA produced from the template strand at 4136-4150. PFL5, a 15-mer, 

hybridizes to RNA produced from the template region located at 4151-4165. When both 

were independently hybridized to total C. acidophila RNA (see Figure 14) only Praer 998 

showed hybridization with the rRNA. In contrast, PFL5 showed no hybridization, 

indicating that an RNA transcript was not produced from this region. These results show 

that rnl e is shorter than that represented by BLASTN alignments and probably stops 

coding around base pair 4150 of C. acidophila mtDNA. These data also indicate the 

danger in defining coding regions on identity data alone. Adjusting this coding region to 

better fit the hybridization data, the positions 3763-4150 were assigned for m l e. Identity 

searches with this region yielded a slightly better identity (86%) over a shorter span of
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Lastly, similarity searches place m s c at positions 4230-4652. Major differences 

between the two species include: (1) The 5 ' coding region of C. acidophila is missing 

the equivalent 5' C. eugametos 37 base pairs. (2) C. acidophila is missing 88 base pairs 

of m l c that are present at the 3' end of C. eugametos. (3) Internally, sequence 

alignments showed large gaps missing from C. acidophila m l c as compared to the C. 

eugametos counterpart. The two major gaps in C. acidophila exist around 4345 (missing 

19 base pairs) and 4481 (missing 16 base pairs). In addition, a small gap of 6 base pairs 

is missing between positions 4453-4454.

Intergenic Regions

C. acidophila contains one very large intergenic region (nt 9797-10712). Sequence 

analysis of this region failed to find any counterparts within DNA or protein databases. 

Since C. eugametos and C. elongatum (Denovan-Wright et al., 1998; Kroymann & 

Zetsche, 1998) were both shown to encode repetitive sequences within their intergenic 

regions, the same analysis was applied to C. acidophila. Contained within this region are 

a number of unique elements found only within this segment of DNA. Figure 10 Al 

shows the G-C content of the entire F3 clone. Note the large peak centered between 

nucleotides 10,000 -  11,000. Closer inspection (Figure 10 A2) reveals that this region is 

composed of three peaks representing high (close to 80%) G-C content. The first peak 

appears at around nucleotides 10188-10249 and corresponds to the repeating element 

‘ACGCGGAGCTG’ in Figure 10 B2. This element repeats 5 complete times and is 

flanked by portions of itself on the 5 ' and 3' ends. Peaks two and three in Figure 10 A2 

map to around nucleotides 10338-10398 and nucleotides 10504-10560,

98



99

A1

B1
9 8 4 9  GAAAAAACCAAACTTTAAAATTTTTCACCTTAATGAAAAAGTATAGAAGCGGAGGGTGAACCCCCTCCTTTCTATT 9 9 2 4

. I I I I I I I I I I II I II I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I l l l l l l l l l l l
1 0 0 0 6  gaaaaaaccaaactttaaaatttttcaccttaatgaaaaagtatagaagcggagggtgaacccc - t c c t ttc t a t t  1 0 0 8 0

B2
1 0 1 8 5  cggagctgacgcggagctgacgcggagctgacgcggagctgacgcggagctgacgcggagctgacgcgga  1 0 2 5 4

Figure 10. Sequence elements of intergenic region of C. acidophila mtDNA nt 
9797-10712. A l. G-C content of entire F3 clone. A2. G-C content of intergenic 
region enlarged. B 1. 76 nt direct repeats. B2. 11 nt repetitive element is alternated in 
red and black for easier visualization. Numbers indicate the first and last bases of the 
elements and refer to their positions in the complete F3 genomic sequence.



respectively. These areas of high Ci-C content do not correspond to any large repetitive 

sequences in F3.

Figures 10 B1 and 10 B2 show repetitive elements in the C. acidophila intergenic 

region. Figure 10 B1 shows two large direct repeats, separated by 83 nucleotides. The 

repeat at position 9849-9924 is 76 nucleotides long, while the repeat at position 10006- 

10080 is 75 nucleotides long. This discrepancy can be accounted for by the ‘C’ residue 

at position 9913 of the longer molecule which is absent from the short one. Many other 

short direct repeat regions (8-17 mers) were present, however, none were analyzed 

further.

One of the most striking differences between the C. acidophila and C. eugametos 

mitochondrial genomes is the reduced amount of intergenic space in C. acidophila 

mtDNA. Examples include the large intergenic region around the tRNAmet coding region 

of C. eugametos. This region is completely absent from the C. acidophila counterpart.

Cadmium Challenge of C. acidophila Strain 122

Previous investigations revealed that C. acidophila amplifies its mtDNA in response 

to cadmium exposure (Spanier, unpublished results). The amplified DNA was isolated 

and cleaved by the restriction enzyme HindlU into many subfragments. Three of those 

Hindlll fragments were cloned into the vector pGEM-3zf® and the resulting plasmid was 

named pJBl. Figure 11 A shows pJBl with the three cloned Hindlll fragments of 1.6,

1.7 and 5.5 kb in size.

Broth cultures of C. acidophila cells (7 X 105 cells/ml) were exposed to Cd(N 03)2 at 

0, 25, 50, and 100 gM concentrations over a span of four hours. After cadmium
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Hind III

B 1 2 3 4 5  6 7 8 9 1 0 1 1 1 2 1 3

to 10 ---------- 5.5 kb

j g ---------- vector

■ t .1.7 kb 

1.6 kb

Figure 11. Derivation of pjb2.5. Three Hindlll fragments were cloned into the vector 
pGEM-3Zf®. pJB 1 was partially digested with Hindlll which resulted in isolation of the 
the three Hindlll fragments into separate vector molecules. (A) restriction maps of pJB 1 
and plasmids pJb2.5, pJb2.17, and pJb2.16. (B) Negative image of an EtBr stained gel 
showing results of partial digestion. Lane 13 is a control containing three Hindlll 
fragments and vector DNA. Lanes 2, 3 and 12 contain the DNAs of interest 1.7, 1.6, and 
5.5 kb respectively.



exposure total RNA was isolated, size fractionated on 1.2% agarose gels, and transferred 

to nitrocellulose. When 32P labeled pJBl was used as a probe (Figure 12), one small 

transcript (-350-400 bp) was strongly induced. Based on densitometry analysis, this 

transcript increased between fifteen and fifty fold compared to the control, depending on 

the cadmium treatment.

In order to localize the origin of this transcript, subfragments of pJB 1 were used to 

probe Northern blots containing the amplified RNA. To obtain the subfragments, 

plasmid pJBlwas partially digested with Hindlll, religated and transformed into E. coli. 

White colonies, indicating that a fragment had been retained with the vector molecule, 

were selected and plasmid minipreps were prepared. Following isolation, the plasmids 

were completely digested with Hindlll and size fractionated on 0.7% agarose gels by 

electrophoresis. Inspection of the gel in Figure 11 B reveals that three plasmids (lanes 2,

3 and 12) retained single Hindlll insertions of the desired size classes (1.7, 1.6 and 5.5 

kb). These clones were isolated and tested by Southern hybridization. Probes were 

constructed from the 1.6 kb, 1.7 kb, 5.5 kb, and vector DNA by random primer labeling 

with 32P. DNA was transferred to nylon membranes and hybridized with each of the 

constructed probes in succession. As expected, each probe hybridized only to those 

regions corresponding to the fragments from which they were constructed (data not 

shown). The plasmids containing the appropriate inserts were named pJb2.5, pJb2.17 and 

pJb2.16.

Hybridization of these fragments to RNA gels revealed that pJb2.5 contained the 

DNA coding for the amplified transcript of interest (data not shown). Further localization 

of the coding region for this transcript was accomplished by restriction mapping of the
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Figure 12. RNA induction of C. acidophila strain 122 by cadmium. Total RNA was 
isolated, quantitated, size fractionated (10 pg/lane) at 20V in a 1.2% agarose formalde­
hyde gel for 18 hrs, and transferred to a nylon membrane. The resulting blot was probed 
with 32P labeled plasmid pJB 1. Lane numbers indicate Cd(NOs), concentration (pM) 
and exposure time (hour) prior to RNA isolation. Lane 1 (labeled '0') is the total RNA 
isolated from unexposed C. acidophila control.



5.5 kb insert. Figure 13 shows a restriction map of the 5 kb region. In addition, since 

this insert was ultimately sequenced, coding regions are illustrated by color. For 

continuity, regions are described according to their map locations from the F3 clone. All 

regions of interest, including restriction endonuclease sites, can be viewed in the mtDNA 

map and the complete mtDNA sequence (Figures 3 and 4, respectively). However, the 

fragment sizes are listed according to size in the legend to Figure 13.

The insert is 5469 bases in size, mapping between and including nucleotide positions 

464 -  5932 of the F3 mtDNA sequence, and contains a number of putative coding 

regions. This region includes 323 bp of the nad2 3' coding region, full copies of the cob, 

rnl d, ms a, rnl a, tRNA met 1 and 2, rnl e, rnl c genes, and 1270 bp of the 5’ cox 1 coding 

region. The first round of analysis included probes prepared from fragments A l, A2, B 1, 

B2 and C (Figure 13). Northern analysis revealed that the 2482 base ScaUXbal fragment 

C encoded the strongly induced transcript. As seen in Figure 13, fragment C contains 

525 bases of the 3’ end of cob, complete coding regions for rnl d, rns a, rnl a, both 

tRNAs, rnl e, rns c, and 279 bases of the cox 1 gene. Fragment C was then cleaved by 

the blunt end endonuclease HaeWl. Three fragments obtained from the digestion (D l, D2 

and D3) were labeled and used as probes against northern blots. Fragment D3, which 

contains 40 bases of the 3' end of rnl d, complete copies of rnl a and e, rns a and c, and 

both tRNAs was shown to contain the region of interest. Finally, the fragment D3 was 

cut by BstN 1 once, producing fragments El and E2 and effectively bisecting the RNA 

coding regions.

When D3 was hybridized to total RNA from cadmium challenged C. acidophila 

cells, a number of signals were evident as in Figure 14 A. The top (larger sized) band
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Figure 13. Restriction map and probe construction.
Diagram of restriction mapping for the pJb2.5 insert. Each fragment was labeled with 32P 
and used to localize the origin of the 350-400 base RNA transcript produced in response 
to cadmium. These probes were: A1 = Hindl\\/Scal fragment (1739 bp), A2 = Seal/Seal 
fragment (257 bp), B1 = XbaVHindlll fragment (91 bp), B2 = Xbal/Xbal fragment (900 
bp), C = ScaVXbal fragment (2482 bp), D1 = Scal/Haelll fragment (693 bp), D2 = 
Haelll/Xbal fragment (336 bp), D3 = Haelll/Haelll fragment (1453 bp), El = 
Haelll/BstNl (573 bp), E2 = BstNl/Haelll (880 bp). The restriction enzyme 
abbreviations are: H = Hindlll. S = Seal, Ha = HaeIII, B = BsfNl, X = Xbal. Blunt end 
HaeIII fragment (D3*) was cloned into the blunt end Smal site of pGEM-3Zf® (pl500). 
Numbers flanking the top map are; Top numbers = actual length of the insert. Bottom 
numbers = Map positions of C. acidophila mtDNA as seen in Figure 3.
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represents the strongly induced transcript of interest. When an identical lane of RNA was 

probed with fragment E2 (Figure 14 A) the lower bands disappeared, indicating that the 

transcript of interest originated from either the m l e coding region or the m s c. Since the 

putative coding sequence for both these regions are so close in size (m l e = 396, rns c 

348) it was difficult to separate them on agarose gels. To discover which of the coding 

regions was responsible for producing the signal, oligomers from previous sequencing 

efforts were end labeled with y-3~P and used to probe dot blots containing total cellular 

RNA of cadmium challenged C. acidophila cells.

Figure 14 B shows an autoradiograph of the dot blot hybridization experiments.

Two samples are shown for each experiment. The bottom dot of each lane contains the 

plasmid p i500, which includes fragment D3 from the above experiments as a positive 

control (see Figure 3). The top dot of each blot contains 10 |ig/dot of total cellular RNA 

isolated from C. acidophila cells challenged with 100 |lM Cd(N03)2. The cellular RNA 

was then hybridized to primers complementary to the coding strand. Figure 14 B shows 

the results of these hybridization efforts. Blots one and two hybridized to oligomers 

targeting the m l e gene and showed a strong signal. PFL5 of lane 3 is a 15 nucleotide 

oligomer that overlaps the putative m l e coding region by 3 bases, with the remaining 12 

nucleotides overlapping an intergenic region. This hybridization produced no signal, 

which was used to modify our sequence coding determinations. Blots four and five were 

probed with oligomers targeted against the m s c transcript. The blots revealed that 

transcript production from the m s c coding region are many fold lower than that of the 

m l e coding region. As a control for the amount of RNA loaded into the blot, all blots 

were stripped of probe and rehybridized with y-32P PFL7, which had been shown
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Figure 14. Localization of Cd(N03)2 induced transcript. (A) Nylon strips of 
cadmium-induced RNA (10 pg/lane). Strip one was probed with 32P p i500 (fragment 
D3 - Figure 13). Strip two was probed with ,2P BstN\IHae\\\ fragment (fragment E2 - 
Figure 13). (B) Dot blot of cadmium induced RNA (10 pg/dot) probed with ,2P labeled 
oligomers. Top dot = cadmium-induced RNA, bottom dot = control p i500 DNA.
Lanes are labeled with: Top - oligomer names; Bottom - the targeted rRNA transcripts as 
determined by DNA sequencing. PFL5 corresponds to putative intergenic region 
between m l e and m s c.



previously to produce a strong radioactive signal (Lane 1, Figure 14 B). All dot blots 

showed similar levels of radioactivity by autoradiography, indicating that similar 

amounts of intact RNA were loaded into each dot. Taken together, these results indicate 

that the rRNA large subunit fragment rnl e is the transcript produced in response to 

cadmium challenge.
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DISCUSSION

In this study two aspects of Chlamydomonas acidophila were investigated. The first 

involved C. acidophila’s mitochondrial genome. Previous experiments have suggested 

that this molecule is circular and roughly 20 kb in size (Spanier, unpublished results). An 

attempt to clone the molecule resulted in the isolation of a 15 kb fragment. This fragment 

was sequenced and encoded genetic elements were shown to be essentially colinear with 

the C. eugametos mitochondrial genome. However, a number of distinct differences 

appear in the mitochondrial genomes of both species. The differences include a 

decreased amount of intergenic space in C. acidophila relative to C. eugametos and 

intronic variation between the two species. The second subject of study focused on the 

relatively high cadmium tolerance of C. acidophila. Previous investigations had shown 

that a segment of DNA amplifies its copy number in response to cadmium (Spanier, 

unpublished results). This DNA has been shown to be the C. acidophila mitochondrial 

genome (this work). Part of this genome was cloned and found to encode rRNA species 

that increases its copy number (primarily m l e) in response to cadmium.

Mitochondrial Genome

Sequence analysis reveals that the 15 kb mtDNA fragment contains only a partial set 

of genetically encoded mitochondrial genes. Figure 15 directly compares the partial 

sequence of the C. acidophila mitochondrial genome with the equivalent region of the
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Figure 15. Direct comparison of the C. acidophila and C. eugametos 
mitochondrial genomes.
Regions of significant difference between the two genomes are highlighted in bold type. 
Intron names and open reading frames are listed in the Results section. 
a The C. eugametos nad 2 gene is 1491 nucleotides in length. 
b The C. eugametos nad 5 gene is 3897 nucleotides in length (including introns).
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Figure 15
Region C . a c id o p h i la C . e u g a m e to s

nt position Length nt position Length
n ad2 3-788 786 6969-7754“ 786
I n t e r g e n ic 7 8 9 -8 1 1 2 3 7 7 5 5 -7 8 6 6 112
co b

Exon 1 812-1240 429 7867-8259 393
I n tr o n 1 2 4 1 -2 2 7 0 1 0 3 0 8 2 6 0 -9 5 0 0 1 2 4 1
Exon 2 2271-2984 714 9501-10250 750

Intergenic 2982-3003 22 10251-10304 54
rn l d 3004-3192 189 10305-10479 175
Intergenic 3193-3212 20 10480-10519 40
m s  a 3213-3320 108 10520-10630 111
Intergenic 3321-3334 14 10631-10661 31
m l a 3335-3500 166 10662-10831 170
I n t e r g e n ic 3 5 0 1 -3 5 9 6 9 6 1 0 8 3 2 -1 1 2 9 7 4 6 6
tR N A me" 3597-3669 73 11298-11370 73
I n t e r g e n ic 3 6 7 0 -3 6 8 3 14 1 1 3 7 1 -1 2 2 7 0 9 0 0
tR N A me'2 3684-3756 73 12271-12343 73
Intergenic 3757-3762 6 - -

rnl e
Exon 1 3763-4150 388 12344-12595 252
In tr o n - - 1 2 5 9 6 -1 3 1 3 2 5 3 7
Exon 2 - - 13133-13360 228

Intergenic 4151-4230 80 13361-13425 65
m s  c 4230-4652 423 13426-13933 508
Intergenic 4653-4662 10 13934-13968 35
cox  1

Exon 1 4663-4938 276 13969-15063 1095
I n tr o n  1 4 9 3 9 -6 1 7 3 1 2 3 5 1 5 0 6 4 -1 6 0 6 6 1 0 0 3
Exon 2 6174-6752 579 16067-16501 435
I n tr o n  2 6 7 5 3 -7 8 9 3 1 1 4 1
Exon 3 7894-8571 678

Intergenic 8572-8607 36 16502-16518 17
tRN A'rp 8608-8681 74 16519-16591 73
I n t e r g e n ic 8 6 8 2 -8 8 1 9 1 3 8 1 6 5 9 2 -1 6 5 9 8 7
tR N A gln 8820-8890 71 16599-16669 71
I n t e r g e n ic 8 8 9 1 -8 9 0 2 12 1 6 6 7 0 -1 6 7 4 0 71
n a d  1

Exon 1 8903-9796 894 16741-17340 600
I n tr o n 1 7 3 4 1 -1 7 6 5 5 3 1 5
Exon 2 17656-17943 288

Intergenic 9797-10712 916 17944-19000 1057
n a d  5

Exon 1 10713-11150 438 19001-19438 438
Intron 1 11151-12210 1060 19439-20596 1158
Exon 2 12211-12492 282 20597-20878 282
Intron 2 12493-13749 1257 20879-21886 1008
Exon 3 13750-13956 207 21887-22093b 207
I n t r o n  3 1 3 9 5 7 -1 5 0 0 7 1 0 5 1 (? )

Total 3-15007 15005 6969-22093 15125



C. eugametos mitochondrial genome. While the remainder of the C. acidophila 

mitochondrial genome has yet to be sequenced, the fragment that has been sequenced 

bears a striking resemblance to the mitochondrial genome of C. eugametos (Denovan- 

Wright et a i, 1998). The two genomes are essentially colinear and share the sequence 

order of: nad 2, cob, rnl e, m s a, m l a, tRNAme" and tRNA'ne'2, m l e, m l c, cox 1, tRNA,rp, 

tRNAsln, nad 1 and nad 5.

C. eugametos contains additional genes than those contained in Figure 15. Those 

genes include the rRNA genes m s b, m l b, m l c, m l / ,  and the electron transport proteins 

nad 4 and nad 6. These genes, including the missing coding regions for nad 2 and nad 5, 

account for about 8 kb of DNA missing from the F3 clone. This places C. acidophila’s 

mitochondrial genome close in size to C. eugametos at about 23 kb. Considering the 

colinearity of these two species and low sequence divergence in protein coding regions, 

C. acidophila is predicted to contain these gene sequences.

The reason why only 15 kb of sequence, rather than the entire mitochondrial 

genome, of C. acidophila was cloned is unclear. Previous investigations suggested that 

the mitochondrial genome of C. acidophila is circular (Spanier, unpublished results). 

Circularity was proposed from three independent lines of evidence: (1) restriction 

analysis, (2) partial digest with BamHl that reportedly cut the mtDNA only once, and (3) 

the isolation of the mtDNA by alkaline lysis. In preparation for the cloning procedure, 

mitochondrial DNA was isolated by alkaline lysis then cut with BamHl. C. acidophila's 

entire mtDNA should have been ligated within the BamHl site of LambdaGem-11®. 

Further, all isolated clones were truncated to some extent and each lost one of their 

BamHl sites during the cloning procedure. One possibility for the loss of sequence may

113



be attributed to the amplification procedure. Phage particles were amplified in the E. coli 

strain LE392. Strain LE392 has been reported to create anomalous recombination with 

eukaryotic DNA. The cloning procedure may have best been served by using E. coli 

strain KW251 which has mutations in a number of recombination pathways. Another 

possibility is that the mitochondria of C. acidophila is populated with mtDNAs in 

different forms, including linear DNA. This possibility has been addressed in a number 

of different reviews (Bendich, 1993; Nosek et al., 1998), and the actual form (or forms) 

of C. acidophila’s mitochondrial genome may need to be revisited.

Apart from the rtl (reverse transcriptase like) gene of C. reinhardtii, an identical set 

of mitochondrially encoded genes are encoded by C. eugametos (Denovan-Wright et al., 

1998), C. moewusii (Lee et al., 1991), C. reinhardtii (Gray & Boer, 1988), C. smithii, and 

Chlorogonium elongatum (Kroymann & Zetsche, 1998). While the remaining coding 

regions of the electron transport chain (nad 4 and nad 6) and ribosomal RNA (m s b, rnl 

b, rnl c, rnlf)  have yet to be sequenced from the C. acidophila mitochondrial genome, 

those genes are expected to be present. This suggests that the common ancestor of the 

above named species already possessed a highly reduced coding capacity compared to 

other green algae, e.g., Prototheca wickerhamii (Wolff et al., 1994).

Phylogenetic studies with nuclear and chloroplast rRNA have indicated that C. 

eugametos, C. moewusii, and C. elongatum are more closely related to each other than to 

C. reinhardtii and C. smithii, and also indicated that Chlamydomonas is not monophyletic 

(Buchheim et al., 1996). This data is corroborated by the recent sequencing of both C. 

eugametos and C. elongatum’s mitochondrial genomes (Denovan-Wright et al., 1998; 

Kroymann & Zetsche, 1998). The data gained by this investigation indicates that the
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closest relative to C. acidophila ’s mitochondrial genome is C. eugametos followed by C. 

elongation. Indeed a number of similar characteristics are evident in these three species. 

All three have been suggested to be circular. C. acidophila and C. eugametos are 

colinear and while C. elongatum does not share this colinearity, the breakpoints for the 

rRNA coding regions and many of the protein coding genes are identical (Kroymann & 

Zetsche, 1998). For example, C. elongatum encodes m l d, m s a, m l a, tRNAmet, rnl e 

and m s c in a module similar to C. eugametos and C. acidophila. By contrast, C. 

reinhardtii contains a linear ~15 kb mitochondrial genome which, though fragmented, 

shows no relationship to the gene arrangement in C. acidophila.

Another characteristic feature shared among C. acidophila, C. eugametos, and C. 

elongatum is that all three encode their genes head-to-tail on a single strand. In contrast, 

C. reinhardtii transcribes nad5, nad4, and cob from one strand of DNA while the other 

genes are transcribed from the other (Michaelis et al., 1990). Other protists such as 

Acanthamoeba castellanii, Dictyotelium discoideum, Monsiga brevicollis, and 

Pedinomonas minor share this single stranded coding (Gray et al., 1998). It has been 

suggested that this represents a special property of these mitochondrial genomes, such as 

a single promoter from which all genes are transcribed (Denovan-Wright et al., 1998; 

Kroymann & Zetsche, 1998). However, the differential expression of the rnl e and rns c 

genes under cadmium challenge in Figure 14 weakens this argument. The results of the 

cadmium induction experiments suggest that C. acidophila may contain a number of 

transcriptional units. Unfortunately, no promoter element has been identified in either C. 

eugametos or C. elongatum, and no promoter regions were defined in this study.
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Intergenic Regions
116

Intergenic spacers in C. acidophila can be small (e.g. 23 base pair spacer between 

nad 2 / cob) or as large as 916 base pairs (nad 1 / nad 5 spacer), and together with 

introns account for over half of the nucleotides in the C. acidophila 15 kb segment of the 

mitochondrial genome (8161 total bp = 6774 bp intronic + 1387 bp intergenic spacer). 

Database searches at both NCBI and EBI with both BLAST and FASTA search methods 

revealed no similarities with other intergenic regions. One of the most prominent 

features of the C. eugametos intergenic regions is the presence of two copies of large 

direct repeats in the two largest intergenic regions of the mitochondrial genome. 

However, counterparts in the C. acidophila mitochondrial genome could not be found. 

Indeed, these two direct repeats have no equivalent in any Chlamydomonas species 

studied so far. Furthermore, none of the repetitive structures reported in C. eugametos or 

C. elongatum show any equivalents in C. acidophila.

C. acidophila does have two direct repeats (Figure 10 B l) but they show no 

relationship to C. eugametos. Also, the two repeats are separated by only 83 bp and 

reside in the same intergenic region. In contrast, the linear mtDNA of C. reinhardtii 

possesses terminal inverted repeats of about 530 base pairs as well as an internal 86 base 

pair repeat of the two outermost sequences. It has been suggested that the internal repeat 

plays a role in the replication of this linear molecule (Vahrenholz et al., 1993).

C. acidophila’s largest intergenic region is characterized by an elevated G + C 

content with respect to the rest of the F3 fragment, especially towards the coding region 

of nad 5. In Figure 10 A2 three spikes of elevated G + C content can be seen. The first 

of these spikes contains the short tandem repeat sequence (STR) (ACGCGGAGCTG)5,



which occurs only in this part of the C. acidophila mitochondrial genome. Database 

searches returned similarities for this sequence, however, none carried the tandem 

repeated nature of this sequence and no counterpart could be found in any 

Chlamydomonas species, including Chlorogonium elongatum. While the etiology of this 

sequence is unclear, its repetitive nature may be attributed to slip-strand mispairing which 

occurs in combination with inadequate DNA mismatch repair pathways (Strand et al., 

1993). Repetitive DNA has been reported to contain a ‘peculiar’ tertiary structure 

(Coggins & O'Prey, 1989). This structure allows mismatches between neighboring 

repeats, and depending on the strand orientation, repeats can be inserted or deleted during 

DNA duplication (Chiurazzi et al., 1994; Henderson & Petes, 1992; van Belkum et al., 

1998).

While no homologue for this sequence could be found, STRs are becoming 

increasingly recognized in DNA sequences (Bork et al., 1998; Epplen et al., 1998; van 

Belkum et al., 1998). Repeated sequences sharing a long evolutionary history to a 

genome have even been shown to adopt important functions (Britten, 1997). Such 

functions have been postulated in C. eugametos (Kroymann & Zetsche, 1998). However, 

the lack of conservation of any repetitive element between C. eugametos and the closely 

related C. acidophila seems to preclude this. This observation is corroborated by 

Kroymann and Zetsche who suggest that these elements are simply mobile ‘selfish DNA’ 

within the mitochondrial genome (Kroymann & Zetsche, 1998). However it may be 

premature to invoke a ‘junk’ or ‘selfish’ DNA function for these repeated DNAs. It must 

be offered that the sequence analysis for the F3 fragment was rather limited, and may not 

have been sensitive enough to the similarities between the species. One possibility may

117



be the retention of information via a higher order structure than primary sequence. The 

precedence for this is easily observed in introns. Related introns may show very little 

sequence similarity, but the information for function is retained in the secondary and 

tertiary structures.

Introns

All intronic regions of C. acidophila were shown to belong to the group I class of 

introns and account for nearly half of the DNA sequence in the F3 clone (6774 base 

pairs). These introns showed little relationship with each other, indicating that lateral 

transfer within the C. acidophila mitochondrial genome was unlikely. However they did 

show sequence and structural homology to group I introns of other species. The lack of 

published information on the intron subtypes of the closely related C. eugametos makes it 

difficult to infer the movement of these introns. The only other closely related species 

shown to possess introns are C. smithii and C. elongatum. Investigation of their 

mitochondrial introns suggests a common ancestry for some of the introns.

Ancestry of introns (and their open reading frames) can result from either vertical 

transmission or lateral transfer between taxa. A high degree of similarity of both introns 

and open reading frames should be expected when lateral transfer occurs. For example, a 

transfer between an alga and fungus should show a high degree of similarity if the 

transfer does not date too far back in the past. In contrast, little similarity should be 

observable in two cases: ( 1 ) when introns in different taxa are vertically inherited from a 

common ancestor, and the respective taxa evolve independently of one another for a long 

period of time, and (2) when lateral transfer dates far back in the past. Ohta et al. (Ohta
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et al., 1993) drew the conclusion that vertical transmission was the simplest explanation 

for the presence of cognate introns in liverwort and fungal mitochondrial genomes.

Of C. acidophila, C. eugametos, and C. elongatum the most similar introns in 

insertion site and open reading frames are nad5il and nad5i2. This low level of 

divergence implies that these introns are a recent addition to the Chlamydomonas lineage. 

Further, if vertical inheritance is postulated, then the insertion event of these introns 

predates the split of these three species.

Of the remaining group I introns, the C. acidophila cobil and coxi2 share sequence 

similarity and an identical insertion site with C. elongatum's cobi2 and coxlil. It is 

interesting to note that C. eugametos contains no introns at these insertion sites. Since C. 

acidophila is clearly a closer relative to C. eugametos than to C. elongatum it is tempting 

to speculate that these two introns originated in this clad prior to the C. eugametos/C. 

acidophila split from C. elongatum. This would imply that C. eugametos did possess 

these introns, but lost them some time after the split with C. acidophila.

The remaining two introns in C. acidophila, coxlil and nad5i3, seem to have no 

counterpart in any other Chlamydomonas species. The sequences in the NCBI database 

showing the most similarity to coxlil were from Emericella nidulans and Podospora 

anserina. However, organisms with an identical insertion site were not found. It is 

interesting to note that E. nidulans and P. anserina insert their introns (nox2 and coxli3  

respectively) six base pairs downstream from the C. acidophila insertion site.

An even more puzzling intron in C. acidophila is nad5i3. Not only does it contain a 

highly degenerate GIY YIG homing endonuclease motif, but no other organism with an 

identical insertion site could be found. In addition, the insertion site of nad5i3 is atypical.
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The most conserved nucleotides displayed by group I introns include an exonic ‘U’ 

preceding the 5’ splice site, and an intronic ‘G’ residue preceding the 3’ splice site. 

Preceding the 5’ splice site in nad5i3 the ‘U’ residue is substituted by a ‘G’.

Substitutions such as these have been reported for other introns. An intron in the cox 1 

gene of Aspergillus for instance shows ‘C’ as the replacing residue at the 5’ splice site. 

Investigations revealed that the intron did not edit the ‘C’ residue to achieve a ‘U’ at the 

5’ splice site (Hur et al., 1997; Hur & Waring, 1995). Other studies show that some 

group I introns are capable of self splicing in vitro even when an experimentally 

introduced ‘A’ was substituted for the ‘G’ at the 3’ splice site (Beagley et al., 1996; 

Golden & Cech, 1996; Michel et al., 1989). It remains to be determined if the atypical 5’ 

splice site of nad5i3 in C. acidophila undergoes RNA editing or if self splicing activity is 

affected.
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Cadmium Tolerance

Chlamydomonas acidophila was shown by previous investigators to be more tolerant 

of high cadmium concentrations than C. reinhardtii (Spanier and Braunner, unpublished 

results). The present study explored the molecular mechanisms that respond to cadmium 

toxicity. One way to analyze cadmium response mechanisms is to characterize the 

induction of specific RNA transcripts when cells are exposed to cadmium. Previous 

experiments had shown that C. acidophila increases the copy number of its mitochondrial 

genome in response to cadmium (Spanier, unpublished results). To ascertain if any 

transcripts were induced from this DNA, cloned mtDNA fragments were used to probe 

the northern blots of cadmium challenged C. acidophila cells.



A number of small transcripts were shown to be induced in response to cadmium. 

Those transcripts originated from the regions encoding ribosomal RNA {ml c, m l a, m l 

e, m s a and m s c). Further, the transcript showing the greatest induction seemed to 

originate from the m l e region. It must be mentioned that this induction did not manifest 

during every cadmium exposure, indicating that some other variable may need to be 

accounted for (data not shown).

Further analysis revealed that m l e was induced in response to cadmium, though it 

may not be the most highly induced transcript (i.e., induced to the highest copy number). 

Initial transcript inspection was carried out by probing with DNA labeled by random 

primer labeling. This procedure incorporates 32P labeled dCTP into the probing 

molecule. Transcripts, depending on length, could hybridize a disproportionate amount 

of 32P dCTP. For example, m l e is proposed to be 388 nucleotides long and (in an 

idealized situation) could hybridize 81 3:P dCTP residues. In a similar fashion m l a 

could hybridize 21 32P dCTP residues. Theoretically, m l e could hybridize ~4 fold more 

radioactive dCTPs than m l a, creating the illusion that m l e is present in a higher copy 

number than m l a. In fact, the total number of potentially hybridized 3:P dCTP for the 

ribosomal RNA transcripts m l d, m l a and m s a is 78 which is still less than the 81 32P 

dCTP hybridized by m l e. In order to remove this bias, hybridization procedures could 

be repeated by constructing a single end labeled radioactive probe. In this way one 

transcript would be labeled with only one radioactive moiety. Therefore, transcript copy 

number would be better represented in the autoradiograph. End primer labeling was 

eventually employed but only in discerning m l e from m s a.
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The results of the induction experiments beg two questions. (1) What is the role of 

mitochondrial rRNA transcript production in response to cadmium exposure; and (2)

Why doesn’t rns c show an induction pattern similar to the other rRNA transcripts? One 

of the caveats of this study resulted from not obtaining control data on mitochondrial 

transcript production during dark cycles. Cells were grown under continuous light both 

during maintenance and experimental procedures. Previous studies have indicated that 

plant mitochondria are transcriptionally inactive during light phases. Mitochondrial 

genes have been shown to express their transcipts mainly in the dark when the energy 

demands of the cell cannot be met by photosynthesis (Salganik et al., 1991). Data on this 

phenomena in C. acidophila would have been helpful.

Previous investigations have indicated that cadmium localizes mainly in the 

chloroplast (Nagel et al., 1996) and that this is a major site of cadmium toxicity in C. 

reinhardtii (Voigt et al., 1998). One possible scenario in C. acidophila is that the loss of 

energy generation by the inhibition of photosynthetic activity is compensated for by the 

increased activity of the mitochondria. During Northern analysis, when total RNA was 

probed with pJB 1, only ribosomal RNA was shown to be highly induced. Cloned onto 

the plasmid pJB 1 are, in addition to the genes for rRNA, the coding regions for cob, nad 

2 and cox 1. Since these genes for the electron transport chain failed to show high 

induction rates similar to the rRNA, a translational control mechanism might be 

postulated. This data is in conflict with other research that has demonstrated that dark 

grown plant cells showed increased transcript production for the electron transport 

proteins cox 1 and 2, cob and ATPase (Salganik et al., 1991). Clearly more research on
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One of the more confounding results is the high level of expression of some of the 

rRNA transcripts, while the transcript production of m s c was almost non-existent. One 

would expect that all of the rRNA transcript segments should be produced at equal ratios. 

Equal ratios of C. acidophila’s fragmented rRNA should be necessary to construct a 

complete and functional ribosome. Interpretation of this phenomena may indicate that 

this response mechanism is a side effect of cadmium. In order to more clearly define this 

cadmium response, data on the normal function of the mitochondria during both light and 

dark phases are necessary.
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APPENDICES



APPENDIX A 
Media

M media (minimal)
Component Stock *Stock wt Volume
trace metal mix lOx see below 1 . 0  ml
Na citrate*2H20 1 0 .0 % 50.0 gr 5.0 mis

FeCl3 '6H20 1 .0 % 5.0 gr 1 . 0  mis

CaCl2 ’2H20 5.3% 26.5 gr 1 . 0  mis

MgSO 4 ‘7H,0 1 0 .0 % 50.0 gr 3.0 mis
n h 4 n o 3 1 0 .0 % 50.0 gr 3.0 mis
k h 2 p o 4 1 0 .0 % 50.0 gr 1 . 0  mis
k 2 h p o 4 1 0 .0 % 50.0 gr 1 . 0  mis

^stocks are w/v; per 500 mis

Trace minerals solution
Component grams/liter stock solutions
H3 BO 3 0 . 1 0 0

ZnSO 4 *7H20 0 . 1 0 0

CoC12 -6H20 0 . 0 2 0

Na2 MoO 4 *2H20 0 . 0 2 0

CuS0 4 0.004
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APPENDIX B 
Oligomers

Olieomer name
Lensth

(nt) Sequence 5'-3'
LLA20015b 23 CGC AAC TCG TGA AAG GTA GGC GG
LRA97b 29 CCA GAG GTT CAT TAC TGA ACA CTC GTC CG
PACM Llb 19 GGA CAA TCA GCA GGA AAC C
PACM Rlb 18 CGC TCG TAA TGT TGG TTG
PA Tlb 15 GAG TTC CAG ACC AAC
PAT2b 18 CTC GAA GTC CTT CTC CAG
PFL3abc 15 CGA GTC GAT ATA GAG
PFL5abc 15 CAT GTA AAG GTG CAC
PFL5.1abc 2 0 AGC TAG TCA GCC ATG CAA TG
PFL5.2a,b,c 2 2 CAG CTA GTC AGC CAT GCA ATG C
PFL7abc 15 ATT TTG CCG AGT TCC
PFR3abc 15 CCG AAA CTT GTC TGA
PFR4ab,c 15 TCA TGG GTC AGT CAC
PFR6 ab,c 15 TAC CAC AAA CCA ACG
PFR1140b 2 1 GCT GCA CAA GTC CGC ATG GTC
PL5ACb 15 GCT GCG ACT GTT TAC
PRAER756bc 17 CTG TTT ACC AAA AAC AC
PRAER998bc 15 AGG GTC TCT TCG TCC
PS3ACb 15 GCT ACA ATG GAT GGT
SP055-1 (SP6 )ab 19 GAT TTA GGT GAC ACT ATA G
SP070-1 (T7)a,b 17 AAT ACG ACT CAC TAT AG

a = Oligomer used in sequencing 
b = Oligomer used in PCR 
c = Oligomer used as probe
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APPENDIX C
Amino Acid Single Letter Code

Alanine A

Arginine R

Asparagine N

Aspartic acid D

Cysteine C

Glutamic acid E

Glutamine Q

Glycine G

Histidine H

Isoleucine I

Leucine L

Lysine K

Methionine M

Phenylalanine F

Proline P

Serine S

Threonine T

Tryptophan W

Tyrosine Y

Valine V
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APPENDIX D 
List of Abbreviations

ATP Adenosine triphosphate

bp base pairs

Cd cadmium

cob = apocytochrome b

cox = cytochrome oxidase

ddNTPs dideoxy nucleotide triphosphates

dNTPs deoxy nucleotide triphosphates

DNA Deoxyribonucleic acid

g gravity

HSP heat shock protein

kb kilobases

LSU (or m l) = large subunit ribosomal RNA

pM micromolar

M Molar

pi microliter

ml milliliter

mM = millimolar

mtDNA = mitochondrial DNA
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List of abbreviations (continued)
129

N ~ normality

nad = NADH dehydrogenase

ng = nanogram

nt = nucleotides

OD = optical density

orf = open reading frame

PCR = polymerase chain reaction

RNA = ribonucleic acid

rpm = revolutions per minute

rtl = reverse-transcriptase like

S = Svedberg unit

SSU (or ms) = small subunit ribosomal RNA

STR = short terminal repeat

tRNA = transfer ribonucleic acid

ura — uracil
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