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ABSTRACT

Evaluation of ultra-superheated-steam (USS) gasification efficiency o f coals to 

produce hydrogen enriched syngas is the research motive of this joint project between the 

University of North Dakota and Ohio University. A new USS bubbling fluidized bed 

gasifier was built in Ohio and several tasks were assigned to assess the gasifier’s 

performance and the feasibility of producing tar-free and hydrogen-rich producer gas.

This thesis presents a thermo-equilibrium model of USS gasification. The model 

calculates the syngas composition and heating value for the base case fuel Clarion 4A 

coal using input data from experiments completed at Ohio. The RGD3BS reactor module 

in ASPEN PLUS, which performs calculation using the Gibbs free energy minimization 

concept, is used to simulate the gasification process. The model compositions were then 

compared with the experimental syngas composition. The simulation was performed with 

four other coals and the output for all coals is compared on both wet and dry basis. A 

sensitivity analysis estimated the effect of temperature and steam flow rate variation on 

syngas composition and heating value on a wet and dry basis.

The model estimates the syngas composition of mainly 39% H2, 19% CO, 13% 

CO2 and 28% H20  and a heating value of 4300 Btu/lb (254 Btu/scf). The composition 

comparison among all coals provided a favorable syngas composition trend for the low- 

moisture Clarion 4A and Pittsburgh #8 coals, but gave almost the same H2 composition 

when gas compositions were compared on a dry basis. This implies that drying of high

xiii



moisture coal before gasification would improve gas composition. Temperature variation 

for all coals gives the same trend for gas composition and heating value. The data on 

temperature variation suggests that gasification at 1320°F gives the maximum H2 

composition in the syngas and a gasification temperature of 1410°F produces the highest 

heating value syngas for this gasifier. The steam flow rate was varied and the effect of 

H20/C  on syngas composition and heating value was evaluated and compared with 

experimental data. H2 concentrations decreased with an increasing H20/C  ratio on a wet 

basis due to dilution of the syngas with H20 , but increased by 6 mole% for simulation 

and 4 mole% for experiment over the H20/C  range of 0.85 to 3.5 compared on a dry 

basis.

Comparisons of model results to experimental data indicate a higher CO and 

lower H2 composition for the experimental data as compared to the model. This indicates 

the water-gas shift reaction may not be in equilibrium. Since this is a fast reaction it 

indicates there may be transport/diffusion limitations in the experimental gasifier.

This work tested two hypotheses. The first hypothesis, that a zero-order thermo- 

equilibrium model accurately predicts the performance of experimental set-up of USS 

gasifier at Ohio with syngas composition and heating value calculation was not valid. A 

tliree-dimensional model that includes both kinetics and transport phenomena is required. 

The model sensitivity analysis determined the maximum gasification temperature and 

H20  to carbon ratio for maximum hydrogen concentration in syngas. This proves the 

hypothesis that the model provides useful information for improvement of the 

experiment.
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CHAPTER 1

INTRODUCTION

Development of methods for gasification o f coal into a hydrogen enriched syngas 

for distributed combined-heat-and-power and hydrogen production is a contemporary 

research issue. The price volatility of natural gas enhances the interest to study the 

development of distributed hydrogen infrastructure. Life-cycle cost drivers are now 

changing the negative impression for coal gasification, making it a research priority. An 

ultra-superheated-steam (USS) gasifier at Ohio University was built to evaluate its 

efficiency on hydrogen production.

The USS reforming process produces an extremely hot steam flame (4000°F) and 

when it is injected into a coal fluidized bed it rapidly converts the coal into syngas 

enriched with hydrogen. The high temperature steam is able to cleave the high molecular 

weight tar components and convert it to gas resulting in low-tar syngas which is 

important for uses in a turbine. The USS gasification process is also expected to produce 

a higher heating value syngas as compared to current gasification processes.

Ohio University proposed several tasks to the Department of Energy (DOE) -State 

Technologies Advancement Collaborative (STAC) program designed to develop a 

comprehensive understanding of the USS process on Ohio Coals. Experimental work was 

done at Ohio University and modeling of USS gasification process to develop a complete 

understanding o f the thermodynamics and kinetics of the process was performed at the

1



University of North Dakota. The author is involved with the thermodynamic equilibrium 

modeling.

Coal gasification produces a syngas composed of mainly CO, H2, CO2, H2O, CH4 

and small amounts of other hydrocarbons. The most desired components are CO and H2. 

Higher temperature increases the CO generation and produces less CO2 which is an 

important factor from a carbon management viewpoint. Moreover, the syngas enriched in 

CO and H2 has a higher heating value which is one of the considerations in case of 

combustion turbines.

This hypothesis of my work is the model will accurately predict the performance 

of the experimental setup of the USS gasifier operating at Ohio and the model will 

provide information to allow evaluation and improvement of experiment. This hypothesis 

was evaluated using thermodynamic equilibrium modeling with ASPEN PLUS as the 

modeling platform. The model generated gives the output of syngas composition and the 

heating value. For this study the gasification temperature and steam flow rate was varied 

to study the effect of these parameters.

1.1 The Report Overview

Chapter two presents the background of gasification and a brief literature review 

on modeling. The gasification background includes the definition of gasification, 

gasifying agent, heating method and gasifier types. It also contains a short description of 

USS gasification and ASPEN PLUS features used in modeling. A review of relevant 

literature on equilibrium and kinetic modeling is presented. The third chapter gives a 

brief description of the experimental set-up and procedure used by Ohio University 

during gasification. Chapter four describes the model development with mass and energy

2



balance in detail. Chapter 5 presents the results from the model, its application for 

several coals and sensitivity analysis. Con elusions and recommendation for future works 

are detailed in Chapter 6.
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CHAPTER 2

BACKGROUND

This chapter provides background information related to gasification in general, 

ultra superheated steam gasification and modeling. It also summarizes previous 

gasification and modeling work.

2.1 Coal Gasification

Gasification is the conversion of solid fuel containing carbon into a clean gaseous 

fuel, typically called syngas. Usually coal, coke, biomass from different sources and 

waste material like municipal solid waste are used as feed or fuel for gasification along 

with one or more gasifying agents. Oxygen, air, steam or mixtures of these are the most 

common gasifying agents but some gasifiers use hydrogen, carbon dioxide or mixture of 

these gases [1]. Sometimes a catalyst is used to enhance the process and to get the desired 

composition. Basically, gasification can be described as the reaction of fuel with an 

oxidant at a substoichiometric fuel-to-oxygen ratio and elevated temperature designed to 

produce syngas which is composed of mainly CO, H2, CO2, CH4 and H2O [2], Coal is the 

feedstock and ultra superheated steam is the gasifying agent in the subjected research of 

ultra superheated steam (USS) gasification addressed here.

Gasification takes place over a temperature range from 1200°F with catalyst to 

about 2700°F for entrained flow gasifiers, with differences based on gasifier type, fuel 

and gasification agent. The syngas, mainly composed of CO and H2, can be used to

4



produce electricity, to provide electric power and heat in a combined heat and power 

(CHP) system, on a fuel cell and or other uses such as to produce synthetic natural gas, 

liquid fuel like methanol and gaseous fuel like H2 [2, 3].

2.1.1 Reactions

The gasification process was first developed in the early 1800s. In 1850 coal 

gasification was used to produce ‘town gas’ for light and heat in London [40]. However 

the development of natural gas supply and transmission lines hindered for that 

gasification technology use. During World War II, due to an acute shortage in petroleum 

supplies German scientists revived the gasification process to produce fuel [41], In the 

early 1950s, gasification techniques were used in refineries [42]. The rise in natural gas 

prices in 1970 was another stage in gasification evolution. The U.S. government provided 

financial support for several proof-of-concept gasification projects. Shell, Texaco, and 

Dow Chemical started research projects to develop gasification with solid fuel. Eastman 

Chemical Company built the first commercial scale gasification plant in 1984 [42], 

Dakota Gasification Company started their Synfuels plant operation in 1984 [43]. In the 

early 1990s, government agencies in the United States and Europe initiated programs to 

provide financial support to build commercial integrated combined cycle gasification 

(IGCC) projects. Currently, commercial developers are building IGCC power plants 

without government subsidies [40],

There are numerous reactions occurring during the gasification process. Not all of 

the reactions are reported and the same reactions do not occur for each fuel and are 

dependent on the gasification agent employed. The reactions typically taking place within 

the gasifier during the various stages of gasification are listed in Table 1 [2, 3].
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Tablel. List of Typical Gasification Reactions [2, 3]

Reaction name Reaction AH*f,
MJ/Kmol

Reaction
Type

Reaction
No.

Combustion

C + V2O2 — CO - 1 1 1 exothermic 1

C + O2 —► CO2 -394 exothermic 2

CO + ViG>2 — c o 2 -283 exothermic 3

Water-Gas Shift 
Reaction

CO + h 2o  -*  c o 2 + h 2 -41 exothermic 4

Steam
Gasification

c  + h 2o ^  c o  + h 2 +131 endothermic 5

Secondary
Reactions

H2 + Vz02 — h 2o -242 exothermic 6

C + C 0 2 -► 2CO +172 endothermic 7

C + 2H20  -> C 0 2 + 2H2 90 endothermic 8

Methanation
Reactions

C + 2H2 -+ CH4 -75 exothermic 9

CO + 3H2 — CH4 + H20 -75 exothermic 1 0

2CO + 2H2 -> 2 CH4+ 2C 02 -247 exothermic 11

Methane
Decomposition

CH4 + H20  —» CO + 3H2 +206 endothermic 12

CH4 + 2 0 2 — C 0 2 + 2H20 -803 exothermic 13

CH4 + C 0 2 — 2CO + 2 H2 +247 endothermic 14

2CH4 + 0 2 -*  2CO + 4H2 -72 exothermic 15

2.1.2 Stages in Gasification

Carbonaceous materials mainly go through two processes during gasification: 

pyrolysis and char gasification. If the fuel is combusted to provide heat for gasification 

there is one more stage, combustion.
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Pyrolysis is the decomposition of organic matter by heat. When the coal is heated, 

volatile materials such as CO, CO2, CHS plus other hydrocarbon gases fror tar and oils 

are released and the char, fixed carbon and mineral matter is left behind. 

‘Devolatalization’ and ‘carbonization’ are used as alternative names of coal pyrolysis. 

The amount and product composition of pyrolysis depend on coal composition,

temperature, heating rate, pressure and particle size distribution [4].

Pyrolysis is represented by the general reaction:

Coal —> Char + Tar, Light Oil, H2O, H2, CO CO2, and HC gases ................. (16)

Tar, Light Oil—»■ CH4 and other HC gases + CO+ H2 + CO2 ......................... (17)

After pyrolysis, volatile matter and some of the char reacts with oxidant to 

produce CO and CO2. In direct heating, the heat from the partial combustion of fuel 

provides heat for the endothe mic gasification reactions (reactions 1-3). This step is 

considered as a combustion stage in the gasification process and is exothermic.

In the gasification stage char goes through several reactions with the 

oxidant/gasifv' g agent and produces the syngas (reactions 4-15). The syngas is mainly 

compose of CO, H2, CO2, H2O and some hydrocarbons. In this research, the heat for 

gas? fication was provided externally through ultra superheated steam (USS), eliminating 

the need for combustion reactions of fuel. Details about USS are discussed latter in this 

chapter. The reactions mainly considered during USS gasification are:

Steam gasification: C + H2O —* CO + H2O ....................................................... (5)

Water-gas shift: CO + H2O —* CO2 + H2 .............................................................(4)

Boudouard: C + CO2 —*■ 2 CO ............................................................................(7)

Methane Decomposition: CH4 + H2O —> CO + 3H2 ....................................... (12)
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To drive the endothermic reactions within the gasifier, energy in the form of heat 

must be supplied either directly (internal) or indirectly (external). The gasifier design also 

varies with heating arrangements. In direct heating, the exothermic reaction between the 

gasifying media, typically air or oxygen, and the fuel supplies the heat for both pyrolysis 

and gasification.

The problem with the use of air is that nitrogen in the syngas will dilute the 

syngas and results in a lower calorific value syngas, typically less than 10 MJ/m3 [4], Air 

blown gasifiers usually produce a syngas gas with a calorific value ranging from 5 to 7 

MJ/m3 [5]. The calorific value can be increased by using oxygen instead of air. Direct 

heating also consumes a portion of the carbon.

In indirect heating, the energy is supplied from an external source, usually an inert 

solid or fluid carrier that is heated in a separate reactor or furnace. Steam, steam/air or 

steam/oxygen is generally used in indirect heating. The heat also may be supplied by heat 

transfer through the hot wall of furnace, from an electrical or a nuclear energy source [4], 

In steam reforming, the heat is sometimes provided with superheated steam. The product 

gas from indirect heated gasification is expected to have calorific values between 10 and 

15 MJ/m3 [4],

In the current thesis, the heat was assumed to be provided through production of 

ultra-superheated steam, consisting of H2O and CO2, in a separate burner. The 

temperature o f USS steam achieved from model calculations is 3718°F (2048°C). The 

details of USS generation are described latter in this chapter.

2.1.3 Method o f Supplying Heat

8



2.1.4 Gasifier

The fuel type, the gasifying media and method of transport of the fuel and media 

through the gasifier, fuel size and condition, temperature and pressure play a crucial role 

in choosing the gasifier. Basically, gasifiers are categorized as fixed-bed, entrained-flow 

and fluidized-bed gasifiers. Those are further classified based on feed conditions, either 

dry or slurry, and discharged ash, either dry or agglomerated.

2.1.4.1 Fixed-Bed Gasifiers

The gasifier consists of a fixed bed of carbonaceous fuel through which the 

gasification agent flows in the counter-current or co-current manner. Figure 1(a) shows a 

gasifier of this type. The Lurgi dry-ash fixed bed gasifiers were first demonstrated in 

Germany in 1936. Lurgi gasifiers are currently in operation in major installation at 

SASOL in South Africa and the Dakota Gasification Great Plains Plant in North Dakota 

[3].The other prominent suppliers include Riley-Morgan, Kellog and Woodall-Duckham 

[ 11-

Updraft gasification is the oldest and simplest gasification process. The fuel 

particles, ranging from lA to 2 lA inches in diameter, are introduced into the reactor from 

the top and move downward through a drying zone, pyrolysis zone, reduction zone and 

hearth zone. Oxidant is introduced at the bottom of the reactor [6]. The counter-current 

contact of fuel and oxidant results in high carbon conversion if fuel residence time is long 

enough for large particles to be consumed. High carbon conversion and low gas exit 

temperature are the advantages of this type gasifier. Product gas leaves the reactor around 

1100“F and this temperature is not high enough for cracking of all tars and oils. A high 

tar yield is a critical drawback of the gasifier. Both fuel input and syngas output occur at

9



Gasifier
Top

(at

Gas

Moving-3ed 
Gasifier 
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Gasifier
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EERC MS20641.CDR
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Entrained-Flow 
Gasifier
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Slag

500  1000 1500 2000  2500
TEM PERATU RE  —  °F

*This figure is obtained from Sondeal’s Report, EERC, UND (2006).

Figure l.The Main Three Gasifiers and Their Temperature Variations with Height: (a) 
Fixed -Bed (b) Fluidized-Bed (c) Entrained-Flow) [3].
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the top of the gasifier; fine particles will be entrained with syngas and will not be 

converted. Cyclones are typically used to capture the fine particles.

There are a number of co-current gasifiers, named as downdraft gasifiers, in 

which both the fuel and the gasifying agents move in the same direction. The solids move 

downward through the same zones as updraft gasifiers. This gasifier yields low tar gas. 

The feature of non-uniform radial temperature profiles and local slagging problems 

makes the fixed bed gasifier unsuitable for large scale uses [1]. That’s why the fixed bed 

gasifier is considered a low throughput type design.

2.1.4.2 Entrained- Flow Gasifier

In the entrained-flow gasifier, the fine feedstock, either a dry-pulverized solid or 

an atomized liquid fuel or fuel slurry, flows co-currently with oxidant and/or steam from 

the top o f the vessel and reaction occurs. The gasification takes place in a dense cloud of 

very fine particles and converts the feedstock mainly to H2, CO, and CO2 with no liquid 

hydrocarbons in the syngas. The syngas leaves from the bottom of the reactor at high 

temperature (2300° F or greater) [7]. The high temperature system produces low amounts 

of methane and no tars. This type of gasifier is a high pressure, high temperature, and 

high throughput plug-flow reactor.

The entrained flow reactor usually uses oxygen as the oxidant and operates at 

temperatures above ash slagging conditions to ensure high carbon conversion. Ash slag 

removal mechanisms exist in the gasifier. The high temperature and high pressure allow a 

low residence time design compared to other types of the gasifiers. The gasifier uses 

more oxygen because of high temperature gasification.
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Entrained-flow gasification can gasify all types of coal irrespective o f rank or 

caking tendency by taking advantage oi the gasifier’s high temperature. The thermal 

efficiency of the entrained flow gasifier is low because of the cooling requirement of 

syngas. Figure 1(c) shows an example o f an entrained flow gasifier.

Texaco and Destec gasifiers are typical examples of entrained flow gasifiers [7]. 

The GE gasifier and the Conoco Phillips E-gasifier use coal slurry as feedstock. In the 

Shell pressured gasifier, dry pulverized coal is fed to the burners of an upward-fired 

gasifier and oxygen along with steam are added to the burners to control temperature.

2.1.4.3 Fluidized- Bed Gasifiers

Excellent gas-solid mixing and a uniform temperature within the bed make the 

fluidized bed gasifier attractive for many processes. The feed, oxidant and steam are 

introduced to the lower part of the reactor and back-mixing of solids results in uniform 

distribution of all components [7]. When the minimum fluidizing velocity is exceeded 

and the fuel gas flow rate reaches turbulent flow, the coal bed is fluidized. Fuel is gasified 

in the central zone of the reactor. Since the particle residence time is non-uniform and 

solid is entrained with gas, high carbon conversion is not achieved in a single fluidized 

bed [1]. Fuel throughput is higher than for the fixed bed gasifier but lower than that of 

entrained flow gasifier.

Fuel particles can be reduced in size to achieve uniform mixing and rapid 

conversion during gasification. Carry over of fines necessitates a cyclone to capture the 

entrained and unreacted particles from the syngas and return them to the gasifier. Figure 

1(b) shows a fluidized bed gasifier. Most bubbling fluidizing beds are equipped with an 

internal or external separator like a cyclone to improve carbon conversion and to reduce
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tar yield in the syngas. The extension of the bubbling bed concept to high fluidization 

velocities is the circulating fluidized bed (CFB). The bubbling fluidized bed with cyclone 

separator is used for USS gasification in this work.

The ash removed from the fluidized bed may be either dry or agglomerated. The 

temperatures are relatively low in the dry ash gasifier making it suitable for high reactive, 

low-rank coal. The temperature is high in an agglomerated ash gasifier making it more 

suitable for high-rank coal.

The U-gas, KRW (KELLOG-RUST-Westinghouse), and high throughput Winkler 

(HTW) process are well renowned examples of fluidized bed gasifiers [3], Considering 

the above mentioned features, the bubbling fluidized bed with cyclone separator was a 

good choice for the USS gasifier built in Ohio.

2.2 Ultra Superheated Steam Gasification 

Ultra superheated steam is a high temperature steam flame containing CO2 and 

steam. Steam reforming is another name for USS gasification. The USS gasification 

differs from other gasification in the sense that the oxygen is not the reactant to convert 

the fuel into syngas. The sensible heat in superheated steam is used to provide the 

external heat required for the endothermic C-H2O reaction [8]:

Ca HbOc + (a-c)*H20->  a*CO + (a+b/2-c)*H2 ................. (18)

In the late 1970s, The University of Illinois at Urbana Champaign performed 

research on coal gasification with 2060°F (1127°C) steam. In the mid 1980’s, the 

University o f Sheffield also started steam gasification research with steam of 1736°F 

(947°C) [8]. In both cases, a very high fraction of excess steam was required to provide 

the sensible heat for the endothermic gasification reactions, resulting in low process
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Hkic -.j c added moisture un [5]. he USS process (Patents pending)

which is under development by the University of Sheffield and F. Michael Lewis Inc. 

combines high exit temperature and high water vapor mole fraction to get benefits over 

conventional oxygen blown systems [5]. This would convert the high molecular weight 

tar and oils to low molecular weight syngas.

The basis of USS gasification is enhancing the C-H2O reaction through increasing 

the steam temperature to about 4000°F (2204°C). The process is a conventional burner 

that utilizes “synthetic air” , usually consisting of 21% O2 and 79% H2O, to bum fuel 

gas and produce a clear, colorless flame of 3389°F (1865°C) containing mainly CO2 and 

H2O [8], The USS is contacted with a carbonaceous material for rapid gasification. In the 

present research, the steam is injected into a bubbling fluidized bed where it reacts with 

coal to produce syngas. The resulting syngas has a high fraction of hydrogen which can 

be separated out for use in a fuel cell or other uses. This simple concept of increasing 

steam temperature helps to overcome the problem of higher cost in fabrication of a small 

scale gasifier.

There are some features o f the USS gasification systems that make the process 

unique. The carbon conversion increases through the cleaving of high molecular weight 

tars and oils and results in a low tar yield. Avoiding tar is important for both conversion 

efficiency and syngas quality. The CO and H2 yields are higher than O2 based 

gasification and H2 yield exceeds the amount of original hydrogen in the coal because of 

the hydrogen in the USS [10],

The burner based USS process offers the end user a flexible choice of reactor 

designs. No exothermic oxidization reaction occurs in the reactor and gasification
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through steam reforming resists tar formation [5]. Fushimi et al. describes the effect of 

steam gasification on C, H2 yield and energy distribution using Yalloum and Taiheiyo 

coals. In pyrolysis, 40-70% of the carbon remained as char. The yield of H2 was 

increased by high temperature steam gasification. It also increased the yield of CO at the 

expense of C 0 2 implying that the syngas composition is affected by the equilibrium 

conversion of the water-gas shift reaction. Fushimi defines the energy distribution as the 

calculated ratio of higher heating value (HHV) of products to that of original coal. Figure 

2 shows, pyrolysis converts 15-25% of the coal energy into gas and 50% of the energy 

remains in the char. Coal gasification converted 40-80% of the energy to hydrogen 

energy [9],
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Figure 2. Energy Distribution with Temperature and Processes in Gasification [9]

2.3 Overview of Modeling in ASPEN PLUS Software

ASPEN PLUS is a widely used modeling software for steady state simulation,

design, performance monitoring and optimization. It was originally developed by the

researchers at MIT’s Energy Laboratory in 1970 as a prototype for process simulation

and named the Advanced System for Process Engineering (ASPEN). It was
15



commercialized in 1980 with the establishment of the ASPEN TECH Company [11]. The 

simulation helps engineers predict the process behavior using the basic engineering 

relationships like mass and energy balances, phase and chemical equilibrium and reaction 

kinetics. Choosing an appropriate property method and thermodynamic data, and using 

real operating data as inputs help to simulate the actual plant more precisely.

In ASPEN PLUS, simulation is accomplished with three major steps: creating a 

flow sheet, specifying the components and operating conditions and running the 

simulation [12]. ASPEN PLUS uses preprogrammed unit operation blocks, user defined 

FORTRAN blocks, and design specifications to go through all three steps to get the 

simulation output.

There are several built-in unit operation blocks that represent the processes in 

actual plants like reactors, heat exchangers, pump, separators. There are also some blocks 

for the sake of simulation that may not be present in the actual process. The FORTRAN 

block and design specifications are used for iterative calculations and for inserting user 

created code. The FORTRAN block allows the user to enter some in-line statements for 

defined variables within the design specification value to get the specified value with 

feed-forward control. The design specification allows the user to set values for flow sheet 

variables like block and streams. The input block variable or stream value data is 

designed to go through manipulation to achieve the set value with the feed backward 

control. After all of those specifications, necessary calculations are executed to solve the 

process output [6, 7].

ASPEN uses a sequential-modular approach for flow-sheet convergence. Mass 

and energy balances are executed sequentially as in the process flow. When a recycle
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stream is encountered in the process, ASPEN assumes an initial guess value for the 

stream. Then it solves the variables iteratively until it converges to get the final value. A 

stream of this type is called a tear stream in ASPEN [6, 7],

ASPEN has some attractive features as a simulation tool. It has a vast built-in 

property databank containing thermodynamic and physical parameters. The databank 

contains parameters for more than 8500 components including organic, inorganic, 

aqueous and salt species and more than 37,000 sets of binary interaction parameters for 

4000 binary mixtures. ASPEN uses convergence analysis to analyze the flow-sheet. It 

selects a convergence method and then solves sequentially the blocks in the flow-sheet to 

calculate the tear stream.

ASPEN has a sensitivity analysis option that allows users to generate tables and 

plots to show the effect of operating parameter variation on output. The case study 

feature in ASPEN provides the advantage of allowing multiple simulations run with 

different inputs for comparison and analysis purposes.

2.4 Modeling

Mathematical modeling through computer simulation is based on fundamental 

equations of mass, momentum and energy and the established empirical conflations on 

those parameters. According to Souza -Santos, the significant and important properties of 

mathematical modeling are as follows [13]:

• Modeling requires less financial resources than experiments and can be 

extended to predict the process behavior far beyond the experimental range.

• Modeling can be applied to investigate conditions of inaccessible in 

experiment or real system where measurements are uncertain.
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• Modeling helps to get a better understanding of the experimental data and 

results.

• Modeling can be used to predict the optimized experimental condition and to 

avoid the experiments in the range of unexpected situations.

• Modeling can reduce the need of immediate pilot plant installation through its 

scale-up feature.

• The model can be updated to include an extended range of application, 

reliability without spending much time in experiments.

• Improvement of models is possible with more reliable experimental data. 

Mathematical simulations based on thermodynamics, mass, energy and

conservation laws and including constitutive equations are called phenomenological 

models. If the model considers space dimension as a variable then it can be one, two or 

three dimensional; otherwise, it is zero dimensional. The time consideration leads to a 

dynamic model and with exclusion o f time as variable the model becomes steady state 

[13]. The model developed in this thesis is zero-dimensional steady state.

The typical gasification model has two parts, equilibrium and kinetic. The kinetic 

model handles the reaction rates, mechanism and the concentration of the components in 

the system at any point and time. It represents the phenomena occurring inside the 

process and includes the change with time and dimension, axial or radial or both. On the 

other hand, an equilibrium model does not take dimension and time as variables. It 

predicts the conversion at equilibrium. The distribution of components in the product 

stream, temperature, and the enthalpy are based on thermodynamic and mass transfer 

constraints [14].
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2.4.1 Equilibrium Modeling

Schuster et al. [15] developed a model for a dual fluidized-bed steam gasifier 

using equilibrium calculations based on thermodynamics. Heat and mass balances were 

employed for both combustion and gasification zones. For the gasification zone, three 

independent reactions were considered for chemical equilibrium calculations. Gibbs 

energy minimization was the basis of equilibrium determination. They also showed the 

effects of gasification temperature, amount of fluidizing agent, water content in biomass, 

amount of char after the gasification zone, and fuel composition on product output.

Zainal et al. [16] predicted the performance of a downdraft gasifier for different 

biomass through equilibrium modeling. They employed the global gasification reaction, 

methane formation reaction, another reaction which was a combination of primary shift 

reaction and Boudouard reaction for mass balance, energy balance, and equilibrium 

constant calculation to predict the producer gas composition and the heating value. The 

predicted value is quite close to the experimental value. They also studied the variation of 

moisture content in biomass and the gasification temperature on gas composition and 

calorific values.

Babu and Sheth et al. [17] used Zainal’s model and performed sensitivity analysis 

of the model through variation of oxygen enrichment of air, preheated temperature of air, 

and the steam to air ratio and presented the effect of those on gas composition, reaction 

temperature and calorific values of gas. This model also compared reasonably well with 

experimental data as with the Zainal model.

Fang et al. [18] choose the district model for modeling of a bench scale CFB 

gasifier that is useful to describe the hydrodynamics and reaction in the CFB gasifier.
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They employed several equations and computational algorithms to calculate the model 

output in hydrodynamics and gasification kinetics parts with some general assumptions 

during the starting of model. They also studied the effect of variations in temperature, gas 

velocity, solids circulating rate and oxygen concentration on model output.

Mathieu et al. [19] presented a biomass gasification model with a fluidized bed 

gasifier which is based on Gibbs free energy minimization in the ASPEN PLUS 

simulator. The gasification process was split in four basic processes: pyrolysis, 

combustion, the Boudouard reaction and the gasification processes. They also performed 

a sensitivity analysis to study the influence of the O2 amount, air temperature, oxygen 

enrichment in air, operating pressure and steam injection on gasification efficiency, 

reaction temperature, syngas composition and air temperature.

Altafani et al. [20] developed an equilibrium model based on Gibbs free energy 

minimization. They did not consider the gasification reactions. They included the atomic 

balances for elements(C, H, O, N, and S), equation for total mole balance, the Gibbs free 

energy equations for the species and the energy balance equation. The equations were 

solved using numerical methods programmed in FORTRAN. The model prediction 

compared well with experimental data. They also performed sensitivity studies to show 

the effect of moisture content on product gas composition, heating value and efficiency. 

The study has been extended with a sensitivity study performed on a model developed 

with Cycle-tempo software.

Mountouris et al. [21] employed the Gasif Eq model to predict the syngas 

production and an energy and exergy analysis. The process was externally heated, high- 

temperature gasification with waste material. They chose three equilibrium reactions,
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heterogeneous water shift, water-gas-shift, and methane decomposition reaction among 

the four reactions considered for this model. According to references from previous work, 

only two reactions are considered when no carbon formation is considered. In the case of 

solid carbon remaining after gasification, three independent equilibrium reactions are 

considered. Another consideration includes the favor of methane decomposition reaction 

in steam gasification. They used the global gasification reaction and three reactions for 

mass balance, energy balance and equilibrium constant expression and used the database 

of the Chemical Properties Handbook by Professor Carl L. Yaws of Lamar University, 

Texas. The model equilibrium constant values matched well with the literature values. 

They explained soot formation with the molar ternary of C-H-O diagram.

Melgar et al. [22] developed an equilibrium model based on thermal balance and 

chemical equilibrium. They used the global gasification reaction along with methane 

formation and the water-gas-shift reaction to predict the reaction temperature with energy 

balance and product composition at the reaction temperature. They were also able to 

calculate the moisture dissociated into hydrogen, the heating value of the product gas, 

and the cold gas efficiency. The model was validated with experimental data and after 

validation, the effect of moisture content and fuel/air ratio variation on product gas 

composition and the process characteristic was determined.

Kinchin [2] in his master’s thesis developed an equilibrium model using CHEM 

CAD software. His model comprised two sub-level models, a gasification model and a 

fuel cell model, based on Gibbs free energy minimization. In his model, he determined 

the moisture level and equivalence ratio that caused carbon deposition in fuel cells. He 

identified no carbon deposition for fuel containing 28% moisture or greater regardless of
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equivalence ratio and for equivalence ratios of 0.23 or greater regardless of the fuel 

moisture content.

Marek Sciazko [34] presented a static model of coal pyrolysis in a circulating 

fluidized-bed reactor. He assumed a quasy-equilibrium state based on process parameters 

within the range studied. He considered two events in a circulating fluidized-bed, partial 

gasification of circulating char and coal devolatilization. He developed an empirical 

correlation for Boudouard equilibrium using the carbon monoxide and carbon dioxide 

concentrations in the product gas from experimental data. He also determined 

correlations for volatile matter evolution using data for carbon bum-off and volatile 

matter content in char. He compared the calculated value with the measured value. He 

studied the effects of air/coal ratio on pyrolysis temperature, char and gas yield, volatile 

matter, ash content in char and calorific value.

H.-M. Yan et al. [35] extended their previously developed model for a bubbling 

fluidized-bed coal gasifier inserting an overall energy balance and some new features. 

The fluidized bed consists of two phases, the dilute phase and an emulsion phase. The 

gases in both phases were considered to be in plug flow. The dilute phase had jet and 

bubble phases to consider gas-solid mixing and the transport phenomena in the space 

above the bed distributor. The overall energy balance around the fluidized bed predicts 

the bed operating temperature. The simulation prediction of overall carbon conversion, 

operating bed temperature and gas composition for three pilot-scales and a full-scale 

fluidized bed gasifier compared well with experimental data as compared to two other 

models used for comparison. It was found that the water-gas-shift reaction regardless of 

kinetically driven or equilibrium in the dilute phase has significant effects on the model
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prediction for the pilot-scale air-blown gasifiers but little on a commercial-scale oxygen- 

blown gasifier. This implied the much faster oxidation rate of H2 and CO near the 

distribution for oxygen-blown gasifier to attain equilibrium state faster.

2.4.2 Kinetic Modeling

Kinetic modeling is very significant to evaluate a gasification process in a specific 

gasifier. Though the author did not develop a kinetic model, she did some literature study 

on this topic. This section presents the review of several models of various gasification 

processes.

Knutson [23] in his master’s thesis focused on kinetic modeling for a transport 

coal gasifier with North Dakota lignite coal. He made modifications to a model 

spreadsheet based on mass and energy balances previously developed by Sondreal to 

make it more flexible for users. Knutson used the reaction rate parameters and reaction 

rate constant data from two UND CHE theses by Hossain [37] and Carpenter [36] and 

also a TGA study performed by Timpe and Jacobson [38] to model the gasification 

mechanisms and the reaction rate in the gasification zone. He also tried to determine 

whether the gasification reaction was diffusion or kinetically controlled. His modeling 

efforts established the feasibility of Transport Reactor Development Unit (TRDU) as a 

gasifier.

Sanz and Corella [24] studied a kinetic model based on their previous developed 

model and calculated some process variables using the results from that model. The 

model predicted the gas composition, lower heating value (LHV), tar content and char 

concentration. They calculated the variables at the gasifier exit such as gas composition 

on dry basis, LHV, tar content, C content in fly ash and gas yield. They also showed the
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effects o f total equivalence ratio, 2nd air inlet height, percentage of second air inlet flow, 

biomass moisture and flow rate. ER values of greater than 0.35 may cause the presence of 

O2 in the product gas. The second air inlet height does not have significant effect on gas 

composition and LHV. The increase in secondary air percentage, for the same ER, results 

in high tar content at the exit, high gas yield and less carbon content in the fly ash. H2, 

CO2 and H2O contents increase with biomass moisture while CO decreases. The increase 

in biomass flow rate can decrease the tar content.

Watanabe et al. [25] developed a numerical model of coal gasification in an 

entrained flow gasifier. They simulated a three-dimensional model using three processes: 

pyrolysis, char gasification and gas phase reactions. To model the char gasification they 

used the Random Pore Model and used several transport equations to calculate mass and 

energy balances. The coal particle behavior was studied in a Lagrangian manner and 

radiative heat transfer using the discrete transfer equation. The equations were solved 

with the finite volume program, CFX. The model calculation on variation of gas 

temperature and product gas composition coincides well with the results of experiments. 

It also predicts the change of gasifier performance like the carbon conversion efficiency 

per pass, the heating value and cold gas efficiency with the gasifier air ratio.

Yu et al. [26] employs the kinetic theory of granular flow (KTGF) to simulate 

bubbling fluidized bed coal gasification. The model was based on the two-fluid model. 

The gasification behavior for the bubbling fluidized bed was derived using mass and 

momentum conservation equations. Particle collision and bed fluctuation was explained 

with KTGF. The three processes pyrolysis, heterogeneous char reactions and 

homogenous gas phase reactions were simulated. Heterogeneous reactions are modeled
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with the combination of Arrhenius rate, diffusion rate while homogenous reactions were 

modeled with turbulent mixing rate.

Liu et al. [27] clarified their previous work on char gasification kinetics at 

elevated temperature through modeling and characterization of char. The two phase 

modeling was performed using the gasification reaction rate data in the fluidized bed 

from experiments. The modeling revealed that increase in mass transfer resistance with 

temperature is not the main factor that contributes to a decrease in gasification rate at 

higher temperature. For char with an ash that has a high fusion temperature, the porosity 

and specific surface area increase with pyrolysis temperature and no ash accumulation 

occurs. At high temperature, char with ash having a low temperature ash fusion becomes 

smooth and ash accumulates near the surface. Char characterization performed in this 

work included pore structure characterization with nitrogen adsorption, surface 

morphology examination with Surface Electron Microscope (SEM) analysis and Electron 

Probe Microanalysis (EPMA).

This modeling review, both equilibrium and kinetic, helped the author to learn 

details about the gasification process. The assumptions regarding the process prior to 

modeling can affect the model output as described in the above models. The effect of 

gasifying agent, fuel on gasification reactions, syngas composition, and heating value was 

studied. The models approach helps to choose the reactions for modeling based on 

presence of carbon in syngas. Modeling the gasification process by splitting it into 

several steps helps to perform the modeling with more ease through modeling individual 

process phenomena with separate unit operation block. In some of the models, the 

approach of minimizing the Gibbs free energy minimization at equilibrium was explained
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in detailed which helped provide a clear understanding of the mathematical relation to 

reach at equilibrium. The effect of operating variables on tar content in syngas helped the 

author to choose which parameters to vary for sensitivity analysis.

No process reaches at steady state in real situation. However equilibrium models 

predict the thermodynamic limit which is very useful during evaluation and improvement 

o f a process. Though a kinetic model gives the mechanism, rates and takes time 

consideration, it can not predict the thermodynamic limit. Moreover, equilibrium 

modeling can save money and time with its prediction for a wide operating range with its 

sensitivity analysis.

Comparison of equilibrium model output with experimental data helps to 

determine the deviation from equilibrium in experimental runs. This is the considered 

behind choosing the equilibrium model to evaluate the newly built USS gasifier at Ohio 

University. Moreover kinetic modeling needs more experimental data than equilibrium 

modeling and these experimental data were not available.
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CHAPTER 3

EXPERIMENTAL PROCEDURE

This chapter summarizes the experimental procedures for the gasification work 

performed at Ohio University. This thesis work is part of a larger joint project between 

Ohio University and the University o f North Dakota. The project purpose is to evaluate 

the USS gasification efficiency on Ohio coals in a controlled setting. Four tasks were 

proposed to provide data for evaluation of the gasification process: 1) construction of an 

ultra superheated steam reactor; 2) modeling of the gasification process; 3) testing of 

product yields and ash LOI as a function of bed temperature; and 4) testing of product 

yields and ash LOI as a function of O2 in the oxidizing agent. The second task, 

gasification modeling was done at UND. The other three experimental tasks were done 

and will be done by the lead research team at Ohio University.

The objective of the work in this thesis was to develop an equilibrium model to 

predict the product gas composition and heating value. A summary of the experimental 

methodology is described here since data collected at Ohio University is used to verify 

the model developed. Input data for the gasifier’s operation is used in the model and 

model output is compared with the experimental output data. The author was not 

involved with the experiments performed at Ohio University.

3.1 Coal Analysis

Clarion 4A seam coal was used as fuel for the USS gasifier. The proximate and
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ultimate analyses are presented in Table 2.

Table 2. Proximate and Ultimate Analysis for Clarion 4A Seam Coal

Proximate Analysis, wt%

Moisture 6
Fixed Carbon 53
Volatile Matter 38

Ash 9
Ultimate Analysis, dry basis, wt%

Carbon 71
Hydrogen 5
Oxygen 9.5
Nitrogen 1.3

Sulfur 4.2
Ash 9

3.2 Procedure

Gasification process consists of two main steps, ultra superheated steam (USS) 

reforming and coal gasification.

3.2.1 USS Steam Reformation

Superheated steam at 356°F (180°C) is burnt with a fuel gas at 80°F (26°C) and 

oxidizer at 80°F (26°C) to create a steam flame of very high temperature, around 4000°F 

(2200°C). The model predicts 3718°F (2048°C). Figure 3 shows the patent pending USS 

burner technology from Enercon Systems. Usually recycled syngas is used as fuel gas; 

but since this study was done at the lab scale, natural gas was used. Oxygen was used as 

the oxidizer. The flow rate for methane, oxygen and steam were 5, 20 and 34 lb/h 

respectively.
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Figure 3. Ultra Superheated Steam Generation in a Burner [10]

3.2.2 Coal Gasification

The coal was first dried and sized to -1/4 to +1/16 inch. Coal is fed using a 

pressurized hopper. The fluidized bed is made with sand, coal ash and coal. The hot 

steam flame is injected through lances into the fluidized bed. The reaction zone near the 

lances rapidly converts the coal to synthesis gas. Then the syngas is sent to the cyclone 

where some of the ash components and unreacted carbon is separated from the syngas 

and recycled back to the bed. In this lab scale gasifier, recycling of unreacted char was 

not done yet. Figure 4 shows the schematic of the gasification process system at Ohio 

University.

The gasifier unit is approximately 12 inches in ciameter with 48 injection lances 

and is approximately 14 feet high. The initial bum gas is supplied from the lab’s 

pressurized natural gas. The steam is supplied from Ohio University’s internal steam 

network at 1 atm and 356°F. The oxygen is supplied from a liquid oxygen dewer located 

near the Ohio Coal Research Center. Figure 5 is a photograph of the gasifier.
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Experimental conditions and data are presented in chapter 5 along with results from the 

modeling work.

Figure 4. Schematic Presentation of USS Gasification Process at Ohio University 
[Personal Communication with Dr. David Bay less, Ohio University].

Figure 5. The Ohio University USS Reactor [10]
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CHAPTER 4

MODEL

This chapter describes the details of the methodology followed during the model 

development. In this modeling effort I built a zero-dimensional equilibrium model for 

USS gasification in a bubbling fluidized bed using the simulation software ASPEN PLUS 

2004.1. The model output has the gas composition and heating value of the product gas. 

Since it is zero-dimensional, no design information for the unit operation units was 

provided nor was hydrodynamic related output generated from the model. The mass and 

energy balance data for each block is shown in tabular form using the base case data to 

give the reader more comfort with the model development results.

4.1 Equilibrium Model

The modeling effort o f this thesis evaluates a new gasifier built at Ohio University 

which uses the USS technique for its bubbling fluidized bed reactor. The author has 

followed the suggestions of Souza-Santos [13]: “It is advisable to go from simple to 

complex, not the other way around.” A few numbers of effects should be considered and 

simplifications can be done based on several hypothesis. If the simulation results do not 

compare with experimental data well, then the hypothesis should be eliminated and 

checked the simulation results gradually. Therefore, a zero-dimensional equilibrium 

model was chosen as the model.

ASPEN PLUS was chosen as the model platform. ASPEN PLUS is a good choice
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because it has a rich database containing the properties of large number of compounds, 

can define the components outside the database using predictors, performs mass and 

energy balances using the thermodynamic property method and performs calculations for 

each unit operation section in sequential order. The steps followed for this modeling 

exercise included process flow-sheet development, stream specification, component 

specification, particle size range insertion if needed, property method selection, design 

specification, FORTRAN block insertion, convergence method selection and 

performance analysis if  desired.

4.1.1 Flow-Sheet Development

The process flow sheet was developed as the initial step of the modeling. There 

are some built in blocks in ASPEN PLUS which can be inserted to create the process 

flow sheet. Each block represents the individual unit operation phenomena occurring in 

the actual process. Reactors, columns, heat exchangers, separators are examples of 

several unit operation blocks. There are some blocks which are convenient for 

calculations which do not exist in real processes. The blocks can be connected to the next 

block with streams. There are three types of streams: material streams, heat streams and 

work streams. Material streams connect unit operation models and transfer material flow. 

Heat streams are used to supply heat to a unit operation block, to specify heat duty for a 

block and to provide information for heat duty calculation. Work streams are used to 

supply power specification to pump or compressor block. The streams are used to specify 

the feed and the initial estimate for tear streams are specified with stream specification. 

The function of unit operation blocks used in the model is described briefly in table 3. 

The process flow sheet of the model is illustrated in figure 6.
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Table 3. A Brief Description of ASPEN PLUS Blocks Used in the Model

Block
Name

Description

RYIELD Used to model a reactor when its yield distribution is known but 
reaction stoichiometry and kinetics are unknown. It yields the 
components specified in the yield distribution. The model may have 
multiple numbers of inlet and one product material stream.

RSTOICH Used to simulate a reactor when reaction kinetics is unknown but 
reaction stoichiometry and molar extent of conversion is known for 
each reaction. It can have any number of inlet material streams but one 
product material stream. It can handle any number of reactions. It can 
also generate combustion reactions.

RGIBBS Used to model a reactor when all o f the reactions occurring inside the 
reactor are not known or too many components are involved in the 
process. It determines the phase and chemical equilibrium based on 
Gibbs free energy. It is specified with pressure and temperature or 
heat duty. It can perform three phase flash calculations.

REQUIL Used to calculate phase and chemical equilibrium when reaction 
stoichiometry is known and some or all reactions reach equilibrium. It 
can have any number o f inlet and two product material streams. It 
calculates the equilibrium constants for the reactions specified for this 
block.

CYCLONE Separates an inlet gas stream containing solids into a solid stream and 
a gas stream containing the remaining solid. It can have one inlet 
stream and two outlet material streams.

S SPLIT Used to split the inlet streams into two or more outlet streams based 
on specific split fractions.

HEATER Used to model heater, cooler, valves and pumps. Can have any 
number of material streams and one outlet material stream.

CLCHNG Used to change the stream class. It should have one inlet and one 
outlet material stream.

DUPL Copies one inlet material stream into multiple numbers of duplicate 
streams. It is required when one stream needs to be used in different 
processing units. It can duplicate heat and work streams also. Mass 
and energy balance are not maintained in this block.

4.1.2 Stream Specification

In ASPEN PLUS the stream class is defined based on component type specified 

by the simulator. It defines conventional components as “CONVEN”, non-conventional
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components as “NC”, conventional solids as “CEPSD” and non-conventional solids as 

“NCPSD”. When a component is defined in the ASPEN PLUS database and it is not a 

solid except those salts defined with chemistry, then it is considered conventional and 

defined as CONVEN. Oxygen and water are examples of CONVEN. The solid 

components outside the database are defined as non-conventional and defined as NC. 

Biomass and coal are examples of stream NC. The solid components which are defined in 

the database are conventional solids and defined as CEPSD. The solid components with 

known particle size distribution outside the database are non-conventional components 

and defined as NCPSD. Coal and solid wastes are examples of NCPSD stream.

ASPEN also allows users to define the stream having multiple type of 

components as “MIXNC”, “MIXCILSD”, “MIXNCPSD”, “MIXCIPSD”, “M KCINC” 

and “MCINCPSD” as per as users required.

The stream class was specified as “MCINCPSD” in this model which signifies 

streams having both conventional and non-conventional solids with known particle size 

distribution along with conventional stream [29].

4.1.3 Coal Property Characterization

Though ASPEN can handle non-conventional components such as coal or waste 

materials, it has no molecular structure for those compounds in its database. To define 

these components, the user needs to enter ultimate, proximate and sulfur analysis data. 

The ultimate analysis gives the elemental composition of carbon, hydrogen, oxygen, 

nitrogen, sulfur, chlorine and ash. The proximate analysis defines on the basis of fixed 

carbon, volatile matter, ash and moisture. The sulfur analysis provides the analysis data in
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pyritic, sulfate and inorganic sulfur forms. The Clarion 4A seam coal was defined with 

the ultimate and proximate analysis data provided by the Ohio University [Table 2].

For sulfur analysis, the Penn State coal database record for sample PSOC-198 was used 

[44], The particle size distribution (PSD) data for coal and ash were taken from previous 

work [32]. Tables 4 and 5 show the PSD data for Blacksville bituminous coal used in this 

model.

Table 4. Particle Size Distribution for Blacksville Bituminous Coal [32]

Interval Lower Limit 
(pm) Upper Limit (pm) Weight Fraction

1 0 100 0
2 100 200 0
3 200 500 0.2
4 500 1000 0.1
5 1000 2000 0.2
6 2000 5000 0.4
7 5000 10000 0.1

Table 5. Particle Size Distribution for Blacksville Bituminous Coal Ash [32]

Interval Lower Limit 
(pm )

Upper Limit 
( Pm)

Weight Fraction

1 0 100 0
2 100 200 0
3 200 500 0.2
4 500 1000 0.1
5 1000 2000 0.2
6 2000 5000 0.4
7 5000 10000 0.1

Property method choice is one of the most crucial parts of the modeling from a 

thermodynamics point of view. The property method allows the property calculation for 

each unit operation block. Fugacity and enthalpy are required for thermodynamic 

equilibrium calculation. Those are sufficient for mass and heat balance as well.
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Thermodynamics provides two property methods to represent fugacities from the phase 

equilibrium relationships with measurable state variables: the equation of state method 

and the activity coefficient method. Enthalpy and molar volume are calculated using 

phase equilibrium. The help topic of ASPEN PLUS 2004.1 recommends SYNFUEL as 

process type for coal gasification and it was selected in this model. There is a property 

method option choice for a specific process type which is considered the base. For 

SYNFUEL PR-BM, RKS-BM, BWR-LS were the options for the base property method. 

Both PR-BM and RKS-BM are cubic equations of state. PR-BM signifies the Peng 

Robinson cubic equation of state with the Boston-Mathias alpha function and RKS-BM 

signifies the Redlich-Kwong-Soave (RKS) equation of state with Boston-Mathias alpha 

function. BWR-LS uses the Benedict-Webb-Rubin equation of state which is a virial 

equation of state. Both PR-BM and RKS-BM are suitable as property methods for non

polar and mildly polar mixtures like hydrocarbons and light gases such as carbon dioxide, 

hydrogen sulfide and hydrogen. BWR-LS is also suitable for non-polar and slightly non

polar mixtures but it is more accurate for liquid molar volume and enthalpy calculations 

than PR-BM and RKS-BM. It gives good results for coal liquefaction applications. So 

either PR-BM or RKS-BM is preferred for the model and both of them gave the same 

output. PR-BM was chosen for this model using Pickett’s thesis as reference [6].

For non-conventional component coal, ASPEN needs a model specified for 

enthalpy and density calculations. HCOALGEN is a general method in ASPEN for 

enthalpy calculation and was chosen for enthalpy calculations. DCOALIGT is preferred 

for calculating the density which was the default choice for coal. The HCOALGEN
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model has several correlations that are used for heat of combustion and heat of formation

calculations. The preferred correlation is selected using numbered option codes [31].

Six correlations exist in HCOALGEN for heat of combustion calculations:

• Boie correlation

• Dulong correlation

• Grummel and Davis correlation 

® Mott and Spooner correlation

• IGT correlation

• User input value of heat combustion

The author prefered to enter heat of combustion values directly from experimental 

measurements but this were not available. Therefore, the Dulong formula was used for 

heat of combustion calculations gave reasonably accurate result for coal. The formula is:

Achjdm = [ aijWc.jdm + a2iWH,i dm + a3iWs,i dm + a^wo.i dm + asjWNj dm] 102 + as;......... (19)

Where defaults coefficient values are: 

o an = 145.44 

o a2i = 620.28 

o a3i = 40.5 

o a4i = -77.54 

o a5i = -16.0

Where the function terms are:

o wc,idm = weight fraction of Carbon on a dry, ash free basis 

o wH>i dm = weight fraction of Hydrogen on a diy, ash free basis 

o ws.i dm = weight fraction of Sulfur on a dry, ash free basis
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o w0,i dm = weight fraction of Oxygen on a dry, ash free basis

o wN.idm = weight fraction of Nitrogen on a dry, ash free basis

Two correlations exist for standard heat of formation calculations. Those are:

• Heat o f combustion based

• Direct

The help topics mention that 1% error in the heat of combustion based correlation may 

cause 50% error in heat of formation calculations [31]. Direct correlation is selected in 

this case. The direct correlation was developed using data from the Penn State Data Base 

and it uses ultimate, proximate and sulfur analysis data to calculate the heat of formation.

The Kirov correlation was chosen for heat capacity calculation from two options. 

Those are:

• Kirov Correlation

• Cubic Temperature Equation

The Kirov correlation is preferred because it considers coal proximate analysis and 

calculates the heat capacity as a weighted sum of those components from analysis. On the 

other hand, for the cubic temperature equation the data was selected from three lignites 

and a sub bituminous coal to develop the coefficient parameter in the formula. So it may 

not be suitable for all coals.

The enthalpy basis is:

• Elements at their standard states at 298.15 K and 1 atm

• Component at 298.15 K

The DCOALIGT model was selected for density calculation. It determines the density of

coal on dry basis using ultimate and sulfur analysis based on equations from IGT (1976).
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4.1.4 Component Specification

All components including intermediates, both conventional and non-conventional 

should be in the component list with ID and specific type. Twenty components were 

listed which contains 17 conventional components, 2 non-conventional components and 

one conventional solid. Table 6 presents the list o f components used as input and output 

in the model.

Table 6. Components in the USS Gasification Model

Component Name Type

Coal
Methane

Steam
Oxygen
Carbon

Hydrogen
Nitrogen

Sulfur
Ash

Carbon Monoxide 
Carbon Dioxide 

Hydrogen Sulfide 
Ammonia 

Sulfur Dioxide 
Sulfur Trioxide 

Phenol 
Naptha 

Oil
Nitric Oxide 

Nitrogen Dioxide

Non-conventional
Conventional
Conventional
Conventional

Solid
Conventional 
Conventional 
Conventional 

N on-conventional 
Conventional 
Conventional 
Conventional 
Conventional 
Conventional 
Conventional 
Conventional 
Conventional 
Conventional 
Conventional 
Conventional

4.1.5 Syngas Composition and Heating Value Determination 

The process flow-sheet created in ASPEN is quite different from the real flow

sheet because additional operation units are required for the sake of simulation purposes. 

The process flow-sheet is shown in figure 6 and all block specification and functions are
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Figure 6. ASPEN PLUS Model Flow Diagram of the USS Gasification Process



Table 7. ASPEN Block Descriptions for Gasification Unit Operations in the USS Model

Flow-Sheet Units Specifications Functions

DECOM(RYIELD) P= 1 a tm , 
T = 298.15K

Gives the yields of coal 
constituents like carbon, 
hydrogen, oxygen, nitrogen, 
sulfur and water using 
FORTRAN block GASIF. The 
heat stream Q-DECOMP is set by 
FORTRAN block DCOMP.

DEV OLT ZR(R YIELD) P= 1 a tm , 
Heat Duty = 0

Calculates the formation of 
phenol, naphtha and oil. It also 
yields the carbon, hydrogen, 
oxygen, nitrogen, sulfur, ash, 
water and carbon dioxide. The 
yields are set with FORTRAN 
block DEVOL.

BURNER(RSTOIC) P= 1 a tm , 
Heat Duty = 0

Simulates the stoichiometric 
reaction between methane and 
oxygen and generates USS steam 
consisting o f carbon dioxide and 
steam.

UNREACT(SSPLIT)

Stream UNREACTC 
Split Fractions: 

MIXED=0, 
CIPSD=0.05, 

NCPSD=0

Separates the 5% unreacted 
carbon from the stream, entering 
to the GASIFIER.

GASIFIER(RGIBBS) P = 1 atm , 
T =1116 K

Simulates the equilibrium 
calculation of gasification process 
based on minimum Gibbs free 
energy.

CYC 1 (CYCLONE) Efficiency = 0.7

Separates the ash from stream 
GASIF-FR produced from 
GASIFIER block. It is specified 
at design mode and Shepherd and 
Lapple correlations as calculation 
options.

ASHSPLIT(SSPLIT)

Stream UNREACTC 
Split Fractions: 

MIXED=0, 
CEPSD=0.05, 

NCPSD=0

Separates the remaining amount 
of non-conventional component 
ash from the stream allowing the 
stream class changing.

CLSCNVRS(CLCHNG) - Changes the stream class from 
MCINCPSD to MIX.
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Table 7. (Continued.)

Flow-Sheet Units Specifications Functions

STRMDUPL(DUPL) -
Duplicates the steam SGAS and 
allows to calculate the heating 
value.

STP(HEATER) P = 1 atm , 
T = 298.15 K

Cools the stream DBURN to 
STP condition.

COMB(RSTOIC) P= 1 a tm , 
Heat Duty = 0

Performs the combustion 
reaction of syngas with oxygen 
and generated the heat stream 
HEATNGVL which is used for 
heating value calculation.

GASFR W Q(REQUIL) P = 1 atm , 
T = 1116 K

Performs equilibrium calculation 
based on stoichiometric 
approach. It calculates the 
equilibrium constants for the 
defined reactions in this block.

described in table 7. The components of this flow sheet are broken down into process 

steps and discussed individually. The gasification process is simulated using the RGIBBS 

reactor that uses the approach of minimum Gibbs free energy. The RGIBBS reactor can 

not simulate non-conventional components; therefore the coal fuel needs to be converted 

to conventional components before entering to the RGIBBS reactor. To meet the 

requirement of being conventional for the RGIBBS reactor, the coal fuel is introduced to 

the RYIELD reactor named as DECOM (see figure7). This reactor gives the output for 

each element of coal using its ultimate and proximate analysis. A FORTRAN block, 

GASIF, performs the calculation of mass yield. FORTRAN blocks are calculator blocks 

and are not shown on the flow diagram. The code for each FORTRAN block is included 

in Appendix A. Now all of the elements in the stream INDEVOL are conventional except 

ash. Since ash does not participate in any reactions, it can be assumed as inert. The
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enthalpy of the stream INDEVOL is not same as that of the stream COAL. The 

differences in enthalpy of these two streams are calculated using the FORTRAN block 

DCOMP and then the heat stream Q-DECOMP is added to the gasifier. DECOM was 

specified at 77 °F temperature and 1 atmospheric pressure. The mass and energy balance 

of the DECOM reactor for the base case using Clarion 4A coal are shown in table 8. The 

figure 7 shows the block DECOM.

Figure 7. The Unit Operation Block DECOM 

Table 8. Mass and Energy Balance for DECOM

Streams COAL INDEVOL Q-DECOMP

Mass Flow, lb/hr 22 22 N/A
Volume Flow, cuft/hr 0 240 N/A

Enthalpy, Btu/hr -873,000 -7,000 -866,000
Density, lb/ft3 90 0 N/A

Temperature,°F 80 80 80
Component Mass Flow

lb/hr
Carbon 0.0 14.6 N/A

Flydrogen 0.0 1.0 N/A
Oxygen 0.0 1.9 N/A
Nitrogen 0.0 0.3 N/A

Sulfur 0.0 0.9 N/A
Moisture 0.0 1.3 N/A

Ash 0.0 1.8 N/A
*N/A means not applicable
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USS generation was modeled using a RSTOICH reactor which is named as 

BURNER. Figure 8 shows the block with input and output streams. The operating 

condition is set at 1 atm pressure and 0 Btu/hr. The mass and energy balance for this 

block is presented in table 9. The reaction for the reactor was:

CH4 + 2 0 2------► C 0 2 + 2H20  .........................................(13)

Figure 8. The Unit Operation Block BURNER 

Table 9. Mass and Energy Balance for BURNER

Streams FGAS o 2 STEAM SPRHTSTM
Q-

BURNER
Mass Flow, Ib/hr 5 20 34 60 N/A

Volume Flow, cuft/hr 120 250 1200 8800 N/A
Enthalpy, Btu/hr -10,000 0 -194,000 -204,000 0.0

Density lb/ft3 0 0 0 0 N/A
Temperature,0 F 80 80 360 3720 -

Component Mass Flow,
lb/hr

Carbon Dioxide 0.0 0.0 0.0 13.9 N/A
Steam 0.0 0.0 0.0 45.7 N/A

Oxygen 0.0 20.3 34.4 0.1 N/A
Methane 5.0 0.0 0.0 0.0 N/A

*N/A means not applicable

The high molecular weight hydrocarbon formation, tars, was simulated using a 

RYEELD reactor named as DEVOLTZR. The FORTRAN block DEVOL was used to
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execute the formation calculation. DEVOLTZR is specified with 1 atm pressure and 0 

heat duty. The block in the model is shown in figure 9 and table 10 shows the mass and 

energy balance. The USS steam is introduced to the DEVOLTZR to provide heat for 

those hydrocarbon formations. The formation formula was taken from Pickett’s master’s

thesis [6]:

PHENOL = 0.002463 x COAFW .................................... (20)

NAPTHA = 0.007450 x COAFW ...................................... (21)

OIL = 0.02031 x COAFW .............................................. (22)

Where,

COAFW = mass flow rate of coal to the DEVOLTZR,

PHENOL = mass flow rate of phenol,

NAPTHA = mass flow rate of naphtha,

OIL = mass flow rate o f oil.

These three compounds were chosen because they are the typical tar 

compounds for the gasifier.

Figure 9. The Schematic of Block DEVOLTZR 
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Table 10. Mass and Energy Balance for DEVOLTZR

Streams INDEVOL SPRHTSTM INSEPRTR
Mass Flow, lb/hr 22 60 82

Volume Flow, cuft/hr 240 8800 8000
Enthalpy, Btu/hr -7,000 -204,000 -212,000

Density, lb/ft3 0 0 0
Temperature,°F 80 3720 2610

Component Mass Flow, lb/hr
Carbon 14.6 0.0 14.0

Hydrogen 1.0 0.0 1.0
Oxygen 1.9 0.1 2.0
Nitrogen 0.3 0.0 0.3

Sulfur 0.9 0.0 0.9
Steam 1.3 45.7 47.0

Carbon Dioxide 0.0 13.9 13.9
Ash 1.8 0.0 1.8

Phenol 0.0 0.0 0.1
Naphtha 0.0 0.0 0.2

Oil 0.0 0.0 0.4

The output stream INSEPRTR contains both USS components and coal elements 

including hydrocarbons. 5% carbon loss occurs in the gasification process and this carbon 

is separated using the block SSPLIT named as UNREACTC. Figure 10 shows the block 

and table 11 shows the mass and energy balance.

INSEPRTR
UNREACTC

S S P L IT

INGASIF \--------- Cj>

-U N R E A C T C ----------- O

Figure 10. The Figure of Block UNREACTC
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Table 11. Mass and Energy Balance for UNREACTC

Streams INSEPRTR INGASIF UNREACTC
Mass Flow, lb/hr 82 81 1

Volume Flow, cuft/hr 7950 7950 0
Enthalpy, Btu/hr -212,000 -213,000 1,000
Density, lb/cuft 0 0 141
Temperature,°F 2610 2610 2610

Component Mass Flow
lb/hr

Carbon 14.0 13.3 0.7
Hydrogen 1.0 1.0 0.0
Oxygen 2.0 2.0 0.0

Nitrogen 0.3 0.3 0.0
Sulfur 0.9 0.9 0.0
Steam 47.0 47.0 0.0

Carbon Dioxide 13.9 13.9 0.0
Ash 1.8 1.8 0.0

Phenol 0.1 0.1 0.0
Naptha 0.2 0.2 0.0

Oil 0.4 0.4 0.0

The gasification zone where the reaction between coal and USS takes place is 

modeled with a RGIBBS reactor named as GASIFIER. GASIFIER calculates the product 

composition based on Gibbs free energy of minimization with phase splitting. The 

equilibrium based on minimum Gibbs free energy implies in terms of thermodynamics is:

XdG/dnj = 0 .......................................................................................................  (23)

where, G is the Gibbs free energy and nj is the composition of the species i.

The gasifier was specified at latm pressure and 1550°F temperature. The option 

of phase equilibrium and chemical equilibrium options is used to calculate equilibrium so 

that reactions do not need to be specified. The RGIBBS is the only reactor in ASPEN 

PLUS that can candle solid-liquid-gas phase equilibrium. Figure 11 shows the GASIFIER
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block and Table 12 presents the mass and energy balance.

Figure 11. The Block GASIFIER 

Table 12. Mass and Energy Balance for GASIFIER

Streams INGASIF GASIF-PR Q-DECOMP Q-HEAT
Mass Flow, lb/hr 81 81 N/A N/A

Volume Flow, cuft/hr 7950 6780 N/A N/A
Enthalpy, Btu/hr -213,000 -222,000 -866,000 -857,000

Density, lb/ft3 0 0 N/A N/A
Temperature, °F 1550 1550 80 -

Component Mass Flow
lb/hr

Carbon 13.3 0.0 N/A N/A
Hydrogen 1.0 3.6 N/A N/A
Oxygen 2.0 0.0 N/A N/A
Nitrogen 0.3 0.0 N/A N/A

Sulfur 0.9 0.0 N/A N/A
Steam 47.0 23.5 N/A N/A

Carbon Dioxide 13.9 26.1 N/A N/A
Carbon Monoxide 0.0 24.5 N/A N/A

Methane 0.0 0.0 N/A N/A
Phenol 0.1 0.0 N/A N/A
Naptha 0.2 0.0 N/A N/A

Oil 0.4 0.0 N/A N/A
Hydrogen Sulfide 0.0 0.9 N/A N/A

Ammonia 0.0 0.3 N/A N/A
Ash 1.8 1.8 N/A N/A

*N/A means not applicable

In a fluidized bed gasifier some of the char and ash is entrained with the product
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gas. To capture those solids and recycle them to the gasifier a cyclone is added next to the 

gasifier. The CYCLONE is shown in figure 12 and table 13 presents the mass and 

energy balance. In the currently employed lab-scale gasification process, recycling of

Figure 12. The Block CYC1 

Table 13. Mass and Energy Balance for CYC1

Streams GASEF-PR GAS1 UNREACTD
Mass Flow, lb/hr 81 80 1

Volume Flow, cuft/hr 6780 6780 0
Enthalpy, Btu/hr -222,000 -222,000 0
Density, lb/cuft 0 0 218
Temperature, °F 1550 1550 1550

Component Mass Flow,
lb/hr

Carbon 0.0 0.0 0.0
Hydrogen 3.6 3.6 0.0
Oxygen 0.0 0.0 0.0
Nitrogen 0.0 0.0 0.0

Sulfur 0.0 0.0 0.0
Steam 23.5 23.5 0.0

Carbon Dioxide 26.1 26.1 0.0
Carbon Monoxide 24.5 24.5 0.0

Methane 0.0 0.0 0.0
Phenol 0.0 0.0 0.0
Naptha 0.0 0.0 0.0

Oil 0.0 0.0 0.0
Hydrogen Sulfide 0.9 0.9 0.0

Ammonia 0.3 0.3 0.0
Ash 1.8 0.6 1.2

49



solids was not performed. The cyclone is specified at design mode and efficiency was set 

at 70%. The Shepherd and Lapple correlation was used to calculate the solid removal 

efficiency.

The gas output from the cyclone still contains some ash. This remaining ash is 

separated using the block SSPLIT named as ASHSPLIT. Only the ash, which is 0.6 Ib/hr 

in mass, is separated in stream ASH. The other components are the same as the stream 

GAS1. Figure 13 shows the block ASHSPLIT. It is necessary to make this split because 

the gas stream needs to be ash free for accurate heating value calculation.

c£>----- [ GAS1 |--------- > ! g a s p u r e )---------- < /

Figure 13. The Block ASHSPLIT

Now all the components of the gas in the stream GASPURE are conventional. 

The stream class is changed from “MCINCPSD” to “MIX” inserting the manipulating 

block “CLCHNG” named as CLSCNVRS. The output is then duplicated using another 

manipulator named as STRMDUPL. This allows calculation of the heating value of the 

product gas. The output stream SGAS from the block CLSCNVRS and the stream 

DBURN from the STRMDUPL will be the same as the steam GASPURE. The stream 

DBURN will be cooled with a HEATER block named as STP (figure 14) and the output 

condition is 1 atm pressure and 77°F. The gas at standard condition is combusted in the 

RSTOICH block COMB with oxygen to produce C 0 2 and H20 . The COMB is specified
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Figure 14. The Block STP

Figure 15. The Block COMB 

Table 14. Mass and Energy Balance for COMB

Streams STPGAS BURNOXYG STDPR HTNGVL

Mass Flow, lb/hr 79 48 124 N/A
Volume Flow, cuft/hr 1330 580 640 N/A

Enthalpy, Btu/hr -302,000 0 -677,000 338,000
Density, Ib/cuft 0 0 0 N/A
Temperature, °F 80 80 80 80

Component Mass Flow, lb/hr
Hydrogen 3.6 0 .0 0 .0 N/A
Oxygen 0 .0 45.0 0.2 N/A
Steam 23.5 0 .0 56.9 N/A

Carbon Dioxide 26.1 0 .0 64.6 N/A
Carbon Monoxide 24.5 0 .0 0 .0 N/A

Methane 0 .0 0 .0 0 .0 N/A
Hydrogen Sulfide 0.9 0 .0 0 .0 N/A

Ammonia 0.3 0 .0 0 .0 N/A
Sulfur Dioxide 0 .0 0 .0 1.7 N/A
Nitrogen Oxide 0 .0 0 .0 0.6 N/A

*N/A means not applicable

at 1 atm pressure and 0 BTU/hr heat duty. The block COMB is shown in figure 15 and 

Table 14 presents mass and energy balance. The heat stream from this block will give the
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heating value that will be divided by the mass flow rate of the gas entering to the burner 

COMB to get the heating value per unit mass. For the base case, the heating value was 

determined to be 4300 Btu/lb. This is equivalent to 250 Btu/ft3.

4.1.6 Equlibrium Constants Determination 

The GIBBS reactor is useful if all o f the reactions taking place within the reactor 

are not known or they are too numerous because of so many components are involved in 

reactions. But the major four reactions for USS gasification are taken into consideration

for modeling as follows:

Steam gasification: C + H20  —» CO + H20  ........................................................(5)

Water-gas shift: CO + H20  -*■ C 0 2 + H2 .............................................................(4)

Boudouard: C + C 0 2 —*• 2 CO ..................... ..................................................... (7)

Methane Decomposition: CH4 + H20  —* CO + 3H2 ....................................... (12)

There is another equilibrium reactor in ASPEN PLUS, REQUIL that solves 

reaction equilibrium calculations to compute combined phase and chemical equilibrium 

when reaction stoichiometry is known. It calculates the reaction equilibrium constant 

(K*q) from the Gibbs free energy of the participating components in the reactions. These 

K«q values help to explain the model better and are presented in chapter 5.

Another process flow-sheet was generated modifying the former one which is 

described above. Everything including the specifications are the same except the 

replacement of the RGIBBS reactor GASIFIER with a REQUIL reactor named 

GASFREQ. The REQUIL reactor does the same job but it works based on different 

specifications. This reactor can not perform a three-phase flash calculation. The pressure 

and temperature were specified the same as the RGIBBS reactor. Only the four major
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reactions listed above were considered for this modeling and provided in the reaction 

specification. The equilibrium constants are defined as:

Keq= n  a, /  n  aj ................................... (24)
i= products i= reactants

where, a is activity coefficient and defined as:

aj = /* (mixture) / f  \ (pure, standard state) .................(25)

where, /  represents the fugacity. For chemical equilibrium calculation, the fugacity at 

standard state is 1 atm. So aj is the f\ in the mixture. Thus:

Keq= n fi / n /. ......... (26)
i-products i= reactants

The fugacities are in atm. Activities are unitless and so is Kcq
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CHAPTER 5

RESULTS AND DISCUSSION

In this section, the syngas composition and the heating value of the gasification 

process for the base case at which the gasifier is operated are presented. The operating 

conditions and flow rates of the input components are shown in tabular form. Results 

from a sensitivity analysis for the model with variation of gasifier temperature, steam 

flow rate and coal type are also described.

5.1 Results for Base-case Conditions

The baseline gasification experiments at Ohio University were performed at 

1550°F and latm. The input data is shown in table 15. The data were used as the base 

condition for the modeling efforts.

Table 15. The Model Input Data for Clarion 4A Coal

Feed Rate lb/hr

Coal 21.78
Methane 5.04
Oxygen 20.22
Steam 34.32

Gasification Temperature(°F) 1550
H20/C  Ratio (Molar) 1.25

On the basis of the above input data, the simulation results from ASPEN PLUS in 

the form of product composition and heating value on both wet and dry basis are 

presented in table 16.
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Table 16. The Product Composition and Heating Value at 1550°F

Molar Composition of
Wet Basis Dry Basis

Product Gas in % Simulation Experimental Simulation Experimental

CO 19 32 26 38
h 2 39 36 54 43

co2 13 17 18 20
h 2o 28 14 N/A N/A
c h 4 90 PPM NA 0 .0 NA
h 2s 0.6 0.8 0.8 0.9
n h 3 0.4 NA 0.6 NA
so2 9 PPB NA - NA

Higher Heating Value of 4 3 0 0 N A N A
Synthesis Gas (BTU/lb)
Higher Heating Value of 13300 NA NA

Coal (BTU/lb)
USS Temperature (°F) 3720 NA N/A NA

*NA indicates that the data is not available 
*N/A indicates not applicable

The gas concentration for H2 and C 0 2 from the simulation is quite similar to the 

experimental composition on a wet basis. But for CO and H20 , simulation and 

experimental data give somewhat different concentrations. The CO concentration from 

the model was 13 mole % less than that of the experimental while for H20 , it was the 

opposite.

The gas compositions were compared on a dry basis. The comparison shows more 

CO and less H2 from the experiment than the simulation. One explanation could be that 

the water-gas shift reaction did not reach at equilibrium in the experiment. An elemental 

mole balance o f input components and product components for both simulation and 

experiment was done to further investigate the differences between simulation and 

experiment results. Table 17 presents the elemental mole balance.
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Table 17. Elemental Mole Balance for the Base Case Input, Output and Adjusted 
Experimental Compositions (Values Are in Mole Percent, Normalized to 100%).

Adjusted Experiment
Gas

Composition
Input
Data

Simulation Experiment 1 2 3 4

CO 0 19 32 32 26 24 2 2

C 0 2 0 13 17 17 14 13 12

h 2 0 39 36 36 30 28 26
h 2o N/A 28 14 14 28 28 28
CH4 N/A 0 - 1 -- -\ c 7.6 11.3

0 2 N/A 0 0 N/A N/A N/A N/A
Coal N/A 0 0 N/A N/A N/A N/A

A in % Input
Data Simulation Experiment 1 2 3 4

CO N/A 0 51 51 33 24 18
C 0 2 N/A 0 26 26 7 -1 -8
h 2 N/A 0 -8 -8 -26 -34 -41

h 2o N/A 0 -68 -68 -1 -1 0
CH4 N/A 0 200 200 200 200

Elemental
Balance

Input
Data Simulation Experiment

1

Adjusted Experiment 
2 3 4

C 13 13 21 2i 17 17 17
0 30 30 35 34 33 30 27
H 56 56 44 45 50 54 56

A in % Input Simulation Experiment 1 2 3 4
Data

C 0 46 46 24 24 23
0 0 0 13 10 9 -3 -11
H 0 0 -24 -22 -12 -5 0

*N/A indicates not applicable 
* A = (experiment-simulation)* 100/experiment

The table shows that the fraction of C in the experimental product exceeds the 

fraction of C in the input. In the case of simulation output on wet basis the C is 0.52%

less than the input accounting for the 5% C loss assumed in the model.

The molar percent of CH4 and H2O for the experiment was adjusted and then the 

difference (A) between experimental and simulation were compared. The adjusted 

compositions are highlighted on table 17. The same comparison and difference
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calculation was done for the elemental mole balance. Nitrogen and sulfur were ignored 

front the comparison calculation shown on table 17 because those are considered as 

minor species. For the first adjusted experimental composition, only CH4 was added as 

1.6 mole %. CH4 might be the reason of imbalance because the CH4 concentration for the 

experiment was not reported for the base case. However, CH4 was measured in the 

product gas from subsequent tests. Also, it is expected that the gasifier does not operate at 

equilibrium. CH4 would be expected to be present in the product due to this non- 

eouilibrium condition. The difference (A) from the elemental mole balance shows that 

CH4 at the measured value of 1.6% does not change the mole balance much.

Next, the experimental H20  value was adjusted from 14 mole % to 28 mole % 

along with the 1.6 mole % CH4 adjustment. It was suspected that the measured H20  

values may be low. 28% was chosen as it represents the equilibrium H20  content from 

the product gas. The elemental values obtained from the comparison determined that 

change of H20  to the simulation value brings the mole balance into reasonable agreement 

with those of simulation values.

Two more adjustments in experimental composition were done keeping the H20  

value the same but varying the CH4 concentration 7.6 mole% and 11.3 mole %. The 

adjustments to H20  and CH4 content from the data bring the elemental balance into 

reasonable agreement. This indicates that the H20  and CH4 may be under reported for the 

experimental data.

These adjustments were made to allow a better comparison between the simulated 

and experimental data. For this purpose, adjusted experiment number 2 was used. 

Number 2 was chosen for the comparison since the CH4 is in line with what was
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measured in other tests. Adjusted experiment number 2 shows the experimental data are 

high in CO and low in II2 when compared to the simulated results. This implies the 

water-gas-shift reaction may not be in equilibrium. This could be due to channeling of 

steam from the steam lances, rather than creating a well mixed reactor.

The gasifier was not run for long periods of time and may not have reached 

equilibrium conditions. A continuous NOVA C 0 /C 02/0 2/H2 analyzer was used to 

measure the gas composition and H2 composition was calculated by TCD differentiation. 

So any error in other components analysis, including F 20 , would be reflected in the H2 

concentration. A moisture free gas is needed for the analyzer. The gas is condensed and 

weighed to obtain the moisture content. While this technique gives a run average for 

moisture content, it may have low accuracy if the gasifier is not ax steady-state operation. 

Also, for varying operation, the conditions for the product gas measurements may not 

represent the “average” operating cond'.ions.

The equilibrium constant for major four reactions were determined using the 

REQUIL block. The values for each individual reaction are listed in table 18. The data 

show that the water-gas shift reaction (#2) plays a significant role in the component yield 

TablelS. The Equilibrium Constant Values at 1550°F and 1 atm.

Reaction No. Reactions
Thermo

Equilibrium
constant

Kinetic
Rate

Constant

Kinetic
Rate

1 C + H20  -*■ CO + h 2 12 1.1E-04 slow
2 CO + H20  — C 0 2 + H2 0.9 1.6E05 very fast

3 C + C 0 2 —► 2 CO 13 1.4E-09 very slow

4 CH4 + H20  -»  CO + 3 H2 439 3.1E-06 Moderately
slow

*kinetic rate constant for reactions 1-3 was taken from Mann’s Paper [39] 
*kinetic rate constant for reaction 4 was calculated from Probstein and Hicks [4]
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and reaches equilibrium fast, producing more CO2 and H2 and consuming the CO. Under 

good mixing conditions, it is expected that the water-gas shift reaction will reach 

equilibrium. Mass diffusion limitations, or poor mixing, could explain a non-equilibrium 

water gas shift. The kinetic rate constant for Boudouard reaction shows that it takes 

longer to reach equilibrium and if it does not achieve equilibrium it would consume less 

CO2, producing less CO. Moreover reaction (4) might not reach equilibrium which 

produces both CO and H2. The presence of CH4 in the product gas is an indication that 

the gasification reactions are not at equilibrium. Non-equilibrium of reaction (4) results in 

less CO in the product gas.

5.2 Comparison of Several Coal Types

Table 19. Proximate, Ultimate and Sulfur Analysis Data for Various Coals [6 , 39]

Coal Types Clarion
4A

Pittsburgh
# 8

Illinois
# 6

Spring
Creek

North Dakota 
Lignite

Proximate Analysis, wt%

Moisture 6 6 18 24 33
Fixed Carbon 53 49 45 51 45

Volatile Matter 38 39 44 43 44
Ash 9 12 11 6 11

Ultimate Analysis,dry basis, wt%

Carbon 71 73 69 70.3 63
Hydrogen 5 5 5 5 4.5
Oxygen 10 5 1 0 18 19
Nitrogen 1 1 1 1 1

Sulfur 4.2 3.3 4.3 0.4 1 .2

Chlorine 0 0 .1 0 0 0

Ash 9 12 11 6 11

Sulfur Analysis, wt%

Pyritic 1 .8 1 .6 1.9 0 .1 0.4
Sulfate 0 .1 0 .1 0 .1 0 .1 0.4
Organic 2.3 1 .6 2.4 0 .1 0.4
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The same input data was applied to four other coals along with base case fuel, 

Clarion 4A coal. The coals were Pittsburgh# 8  and Illinois # 6  Bituminous, Spring Creek 

Subbituminous, and North Dakota Lignite. Pittsburgh # 8  is similar to Clarion 4A in its 

composition. The analysis data for the five types of coals are shown in table 19. The 

simulation results for these five coals are presented in the tables 2 0  and 2 1  and figures 16 

through 2 0 .

The motive behind the USS gasification at Ohio University is to enhance 

hydrogen production compared to other gasifiers. Syngas with a high heating value is 

desirable especially for electricity production. The figures show that when considered on

Table 20. Product Composition and Heating Values for Various Coals on Wet Basis

Molar Composition of 
Product Gas in %

Clarion
4A

Pittsburgh
# 8

Illinois
# 6

Spring
Creek

ND
Lignite

CO 19 2 0 15 13 9
h 2 39 40 35 33 28

co2 13 12 14 15 15
h 2o 28 26 35 39 48
CH4 0 .0 0 .0 0 .0 0 .0 0 .0
h 2s 0 .6 0.4 0.5 0 .0 0 .1

n h 3 0.4 0.4 0.3 0.3 0 .2
Higher Heating Value -  Ash 

Free, Wet Basis (BTU/lb) 4300 4500 3600 3200 2500

Table 21. Product Composition and Heating Values for Various Coals on Dry Basis

Molar Composition of 
Product Gas in %

Clarion
4A

Pittsburgh
# 8

Illinois
# 6

Spring
Creek

ND
Lignite

CO 26 28 23 2 2 18
h 2 54 55 54 54 53

co2 18 17 2 2 24 29
c h 4 0 .0 0 .0 0 .0 0 .0 0 .0
h 2s 0 .8 0 .6 0 .8 0 .0 0 .2
n h 3 0 .6 0.5 0.4 0.4 0.5

Higher Heating Value -  Ash 
Free, Dry Basis (BTU/lb) 5900 6100 5500 5100 4600
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Figurel8 . CO2 Concentration for Coals from ASPEN Simulation of USS Gasifier at 
1550°F

60  -r----------------------------------------------------------------------------------------------------------------------

ND
Lignite
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Figure 20. Heating Value Comparison for Product Gas from ASPEN Simulation of USS 
Gasifier at 1550°F

a wet basis, Clarion 4A and Pittsburgh # 8  coals favor the production of syngas containing 

more CO and H2 which are considered as the main components of syngas. The lignite 

coal gives the highest composition for H20  and C 0 2. The lowest heating value for 

product gas was for lignite coal also. For lignite ccal, drying of coal before gasification 

may improve the syngas composition and the heating value, too. In that case, the heat 

provided for gasification is not wasted to vaporize the moisture in coal.

An alternative way to utilize the syngas is to condense the water from the product

and use the dry gas. In this the comparison between heat needed to condense the moisture

and the increase of heating value for syngas after moisture separation are needed to check

the energy efficiency of this technique. The gas composition was compared on dry basis.

A comparison on dry basis shows higher concentrations for CO and H2 For CO, the

Pittsburgh coal still gives the highest molar percent in the gas output. For H2, all coals
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give almost the same output as Pittsburgh #8 . ND lignite gives the highest CO2 yield than 

other four coals on dry basis as well as on wet basis. This is probably due to the higher 

oxygen content in the coal converting more CO to CO2. On the basis o f all plots 16 

tluough 20, Pittsburgh # 8  is found to produce the maximum CO and H2 and the 

minimum CO2 and H20  and also has the maximum heating value.

5.3 Sensitivity Analysis

A sensitivity analysis was performed varying the gasification temperature and the 

steam flow rate to the BURNER (H2O/C). The effect of those variations on product gas 

composition and heating value were studied. The temperature variation was performed 

for all of the above mentioned coals. Steam flow rate were varied only for Clarion 4A 

coal which is the base fuel for this modeling and compared with the experimental results 

for the same steam flow rates.

5.3.1 Temperature Variation

Figure 21 shows the syngas composition for the base case fuel Clarion 4A as a 

function of gasification temperature. It shows H2 content increasing with temperature up 

to 1320°F and then it starts to decline resulting in an increase in H2O concentration. The 

reaction equilibrium for the exothermic water gas shift reaction decreases with increasing 

temperature and may be the reason for the decrease in H2 composition. The increase in 

temperature favors CO production with consumption of CO2 produced in the water gas- 

shift reaction and the secondary gasification reaction. The CH4 composition diminishes 

from a negligible amount to zero. The syngas enriched in CO and H2 provides more heat 

when it is combusted in a turbine and results in a higher heating value. Figure 22 

illustrates the heating value trend with increase in temperature. For Clarion 4A, the
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heating value increases with temperature up to 1500°F and remains steady. The increase 

in heating value trends to 1320°F and less can be explained with the increasing trend of 

both CO and Ft2. After 1320°F the rate of increase declines with the decrease in H2 

composition, and for this portion the increasing CO composition is the cause of the 

increasing trend of heating value up to 1410°F. After 1410°F, the CO composition 

increase is offset by the decreasing H2 and the heating value remains relatively constant. 

Figures 23 through 28 show the comparison among different coals for increasing 

temperature and its effect on syngas composition and heating value. Each coal has similar 

trends as the base Clarion 4A coal. Tables containing the composition and heating values 

for respective temperatures for all coals on wet basis found in Tables 22 through 26 of 

Appendix B.

Temperature, °F

Figure 23. CO Concentration for Various Coals with Temperature on Wet Basis
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Gasification Temperature,°F

Figure 24. H2 Concentration of Various Coals with Temperature on Wet Basis

Temperature, °F

Figure 25. CO2 Concentration of Various Coals with Temperature on Wet Basis
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The product composition for the coals was also calculated on a dry basis and these 

give the same trends as with the wet basis. Figures 29 through 33 illustrate the trend of 

syngas composition and heating value as a function of temperature on a dry basis and 

tables 27 through 31 in Appendix B show the numerical values. In this case, it gives the 

CO composition ranging from 6  to 36 percent. The output for H2 ranges from 46-58 

percent and for CO2 it is 10-38 percent. On a wet basis, the CO composition ranges from 

13-25 % and H2 from 24-37 for different coals and temperatures. The comparison of CO 

and H2 trends and heating value on wet and dry bases showed that the dry basis trends are 

less variable with respect to coal types but have the same general trend as on a wet basis.
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Temperature, °F

Figure 33. Heating Value o f Syngas for Various Coals with Temperature on Dry Basis 

On the basis of the above discussions, it can be said that 1320°F (715°C) is the 

maximum temperature if H2 production is the main focus such as for use in a fuel cell. 

The gasification temperature of 1500°F (815°C) is the optimal temperature to generate 

syngas with a higher heating value for use in turbines.

5.3.2 Steam Flow Rate Variation

The simulation for Clarion 4A was performed at different steam flow rates to 

check the effect o f the H2O to carbon ratio on produced syngas composition. These 

simulation results were compared with the experimental data. In all cases, the trend of 

concentration with steam flow rate was the same but the numerical values were different. 

Figures 34 through 40 illustrate the trend for burner temperature, syngas composition and 

heating value change with increase in H20/C  ratio on wet basis. Table 32 in appendix C 

presents the numerical values. There are several possible explanations for these
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Figure 34. BURNER Temperature Variation with Steam Flow Rate
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Figure 35. CO Concentration Variation with Steam Flow Rate on Wet Basis
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Figure 40. Heating Value Variation with Steam Flow Rate for Model Output on Wet 
Basis
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differences. The presence of C f^  in the experimental output indicates the experimental 

data was not equilibrium conditions and might be one of the significant reasons behind 

the differences. Figure 39 predicts the CH4 composition for the base case experimental 

condition at a H20/C  ratio of 1 .4 mole%.

Figure 34 shows the experimental burner temperature higher than the simulation 

result. The model calculates the adiabatic temperature, so the opposite should be true 

since in the real situation heat losses were experienced. If the steam flow rate is over 

reported in the experimental data then it might give the higher burner temperature than 

the simulated burner temperature calculated using the same steam flow rate data. Another 

possibility may be localized hot spots in the flame due to less than perfect mixing. There 

may have been some problems with the thermocouples used for temperature 

measurements in the burner section.

For CO, the trend for both simulation and experiment was the same but 

concentrations were different. This difference might be explained with the same 

component mole balance approach. Ohio University used a Nova CO/CO2/O2/H2 

analyzer to measure gas concentration and H2 concentration is determined by TCD 

differentiation. The gas was dried with a condenser and the moisture was measured by 

condensation. This presents the run average H20  composition and may give a moisture 

concentration with low accuracy which could explain the lower H20  concentration in the 

experimental product gas. The error in H20  analysis technique would impact the 

reported H2, CO and C 0 2 concentrations. More importantly, the trend of H2 composition 

was decreasing in both simulation and experimental output. As discussed previously, the
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high CO and low H2 values from the experiment as compared to the model indicates the 

water-gas shift reaction was probably not at equilibrium.

For CO2, the concentration trend from simulation with H2O/C differs from the 

experiment. For simulation, the CO2 maintained its increasing trend for a H2O/C ratio up 

to 2  and within that range the model concentration for CO2 was higher than experimental 

CO2. After a H20/C  ratio of 2 , the CO2 component gave a decreasing trend and the 

concentration values were less than the CO2 concentration from the experiment.

The CH4 concentration decreases with H20/C  ratio, which favors the hypothesis 

that steam gasification favors the methane decomposition reaction. The presence of CH4 

in the experimental output indicates the gasification reactor did not achieve equilibrium. 

The heating value trend with an increase in H2O/C ratio in figure 40 shows that it 

decreases due to H2O in the product gas for the model. The experimental heating value 

was not available.

To separate the effects of dilution due to the higher flow rates of H2O, the gas 

analysis was compared on a dry basis. Figures 41 through 45 compare the dry gas 

composition and heating value for the simulation and experimental results. Table 33 in 

appendix C presents the numerical values of syngas composition and heating values on 

dry basis. For CO concentration, the dry basis gives almost the same trend and 

concentration difference between experimental and simulation results. The CO decreases 

with increasing H2O/C ratio. For H2, the dry basis presents an increasing trend and the 

trend was similar for both simulation and model concentration while the trend was 

decreasing on a wet basis. This implies that increasing steam flow rate offsets the
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increase of H2 concentration when it was calculated on wet basis and demonstrates that 

higher steam flow rate favors H2 production.

For CO2 concentration, the dry basis gives an increasing trend for both 

experimental and simulation output while the trend for simulation after a H2O/C ratio of 2 

was decreasing on a wet basis. This can be explained with the same offsetting reason for 

H2 with increase in H2O at high H20/C  ratio. As the H20  feed concentration increases, 

the water-gas shift reaction moves to the right favoring higher H2 and CO2 at the expense 

of CO.

The CH4 concentration gives the similar trend on both wet and dry basis which 

again supports the assumption that steam gasification favors the methane decomposition 

reaction.

The heating value gives the decreasing trend on dry basis same as on wet basis.

On dry basis, the heating value ranges from 5200 Btu/lb to 6100 Btu/lb while the heating 

value range was 2200 Btu/lb to 4900 Btu/lb on a wet basis.

It can be concluded that steam gasification favors H2 production in the sense that 

H2 in the product gas exceeds the original H2 in the coal because of using steam. But 

increasing the steam flow rate (H2O/C ratio) gives a syngas higher in H20  and lower in 

H2 and decreases the heating value due to the dilution effect of the H20 . If the extra 

moisture can be condensed and separated from the syngas then, H2 concentration is found 

to give a higher yield and a higher heating value as the H20/C  ratio increases.

On a wet basis, H2 concentration for the experimental output varies in the 

decreasing range from 41 to 35% and for simulation output H2 gives the range of 41 to 

24% for H20/C  ratios from 0.9 to 4. On a dry basis, H2 varies from 46 to 50% for
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experimental data and varies from 53 to 59% for simulation output over the same range 

o f H2O/C iatios. H2 concentration increases most rapidly for a H2O/C ratio up to 2.6, after 

which the concentration increases little followed a nearly constant concentration for 

H20/C  ratios of 3.5 and 4 on a dry basis. This implies an optimized H2O/C ratio of 3.5 for 

H2 enriched syngas.
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CHAPTER 6

CONCLUSIONS AND FUTURE RECOMMENDATIONS 

6.1 Conclusions

The research issue of this project was to evaluate the new gasifier built at Ohio 

University which performs USS gasification. A thermo equilibrium model was developed 

in ASPEN PLUS to predict the syngas composition and heating value. Results from this 

modeling were used to test the following hypotheses:

• The zero-order thermodynamic equilibrium model will accurately predict the 

performance of experimental set-up of USS gasifier at Ohio with syngas 

composition and heating value calculation.

* The model will provide information to allow evaluation of the experiment with 

sensitivity analysis.

The model determined the product composition calculation first and then 

combusted the gas with oxygen lowering its temperature to 77°F (25°C). The base case 

fuel Clarion 4A coal gives the syngas composition of 39% H2, 19% CO, 13% CO2 and 

28% H2O. The comparison gives the different syngas composition for experimental and 

simulation output. The difference was explained with dry gas analysis data, elemental 

mole balance and adjusted experimental data, equilibrium constant values. This analysis 

indicated that a zero-order model cannot predict the performance of the USS gasifier and 

a 3-dimensional model that includes both kinefic and transport capabilities is required.
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This model proves the feasibility of USS gasifier for H2 enriched syngas. 3.5 moles H2 

was present in the syngas for every mole of hydrogen in the coal because of using USS as 

gasifying agent.

The USS gasifier produces a medium calorific value gas with a higher heating 

value of 4300 Btu/lb (254 Btu/scf) on ash free basis for the base case of a 1.25 H20/C  

ratio and 1550°F gasification temperature. Typical air blows gasifiers produce syngas 

with a higher heating value ranging from 130 Btu/scf to 190 Btu/scf. This supports the 

use of USS gasifier as energy efficient for producing higher heating value gas with USS 

gasification compared to air gasification.

The gasification simulation was done with Pittsburgh #8, Illinois # 6, Spring 

Creek Subbituminous and ND Lignite coals. The gas composition and heating value were 

compared for all five coals on a dry and weight basis. Pittsburgh# 8 and Clarion # 4A 

were quite similar in composition and gave more favorable syngas compositions 

consisting of more CO and H2 compared with the others. These coals also produce of 

higher heating value syngas. A comparison of the product gas on a moisture free basis 

indicates the simulation gives nearly the same H2 composition for all coals. So it implies 

that drying of coals before gasification can improve the syngas composition and also the 

heating value due to absence of the dilution effect of H20  in the syngas.

A sensitivity analysis was performed varying the temperature and steam flow rate. 

The temperature variation for the base fuel Clarion #4A suggests the gasification at 

1320°F gives the maximum H2 in the product gas. Gasification at 1410°F produces the 

highest heating value for syngas and after 1407°F, the heating value remains the same.
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For the other four coals used in this modeling, the trend for composition and heating 

value was found similar to that found for the Clarion 4A coal.

The steam flow rate was varied and the effect of H2O to carbon ratio on gas 

composition was compared between model and experimental data. The trend was similar 

on a wet basis for both model and experimental output except for CO2. For CO2, the 

model trend was increasing up to a H20/C  ratio of 2 that was similar with the trend o f the 

experiment. Above a H20/C  ratio of 2, the CO2 concentration for the model exhibits a 

decreasing trend. The heating value also decreases with increase in H2O/C ratio primarily 

due to the dilution effect of extra moisture.

A comparison between experimental and simulation composition on a dry basis 

shows a similar trend for both but gives different trends for some components from the 

wet basis. On dry basis, the CO2 keeps an increasing trend even after H2O/C ratio o f 2 

and for H2 it gives the increasing trend which was decreasing on a wet basis. The 

increasing trend of H2 and C 0 2 for the H20/C  ratio of 0.9 to 4.0 can be explained with the 

absence of H2O in syngas composition on a dry basis. The increase of steam flow rate 

offsets the increasing trend of H2 and CO2 above a H2O/C ratio of 2 with increase of H2O 

in syngas on a wet basis. The calculation on a dry basis implies that the H20/C  ratio of 

3.5 is the optimal for H2 enriched syngas.

On the basis of the above discussion based, the sensitivity analysis is found to be 

useful for operating conditions preferable for higher H2 concentration in syngas. This 

proves the hypothesis that the model provides useful information for improvement of the 

experiment.
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6.2 Recommendations

The model presented in this report performs its calculation for the USS 

gasification process based on minimum Gibbs free energy which conveys the system at 

equilibrium. In practical situations, no process reaches equilibrium. Moreover, the 

experimental tests are short tests and may not be at steady state. This could cause a big 

difference between experimental composition and that of simulation output. Only the 

flow-rates and pressure and temperature of gasification were known. To get a complete 

idea about the process, including kinetic of reaction mechanisms and continuous product 

composition, several more experiments should be performed. The kinetic rate constants 

and equlibrium constants from the results indicates the water-gas-shift and methane 

decomposition reaction reaches equlibrium faster using all reactants than the Boudouard 

reaction. So development of a kinetic model with transport phenomena consideration 

with data verified by the required experiments would provide a valuable tool for 

complete evaluation of the USS gasifier.

Though USS gasification is expected to convert all hydrocarbons into syngas, 

some tars are still formed during gasification. If tar formation could be measured 

spontaneously then it might be possible to develop predictors for some of the major tars. 

In the present model one unit operation block, a RYIELD reactor named as DEVOLTZR 

is inserted to calculate the tars using equations presented by Pickett [6]. Actual data from 

the USS gasifier would help predict the tar formation and allow development of the 

required cleaning measures.

The model does not give detailed information about the reaction mechanisms for 

either the major reactions or other reactions involving undesired side products. A three
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dimensional model which can show the events tak.ng place during gasification within the 

fluidized bed reactor is the suitable tool to give a clear understanding along with the 

present equilibrium model. Since water-gas-shift reaction plays a signific?int role in 

gasification and it reaches equilibrium fast, the equlibrium of this reaction is supposed to 

be controlled by diffusion limitation. To develop an accurate three-dimensional model 

some experimentation would be needed to get the data for model input.

The temperature is assumed to be constant throughout the whole gasifier because 

of uniform mixing characteristics of fluidized bed. Several thermocouples could be added 

along with bed height to check the temperature. If the temperature is not the same in the 

top, middle and bottom part o f the reactor then each section of the gasifier can be 

modeled with each individual unit operation block with its own design specification.
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APPENDIX A

FORTRAN STATEMENTS

In this section the FORTRAN statements used in the model are reported. The 

statements with variable definition for FORTRAN blocks DCOMP, GASIF and DEVOL 

are presented.

CALCULATOR BLOCK: DCOMP

SAMPLED VARIABLES:
HCOAL : MOLE ENTHALPY IN STREAM COAL SUBSTREAM NCPSD 
HCOMP : MASS ENTHALPY IN STREAM INDEVQL SUBSTREAM MIXED 
HDCOMP : SENTENCED ARAM V ARIABLE=NET-DUTY IN UOS BLOCK 

DECOM
MCOAL : TOTAL MASSFLOW IN STREAM COAL SUBSTREAM NCPSD 

FORTRAN STATEMENTS:

HDCOMP = (HCOAL - HCOMP)* MCOAL
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CALCULATOR BLOCK: GASIF

SAMPLED VARIABLES:
ULT : COMPONENT-AT VEC IN STREAM COAL SUBSTREAM NCPSD ID: 

ULTANAL
WAT : COMP-ATTR-VA IN STREAM COAL SUBSTREAM NCPSD ID: 

PROXANAL
WATR : SENTENCE-MASS-YIELD VARIABLE-YIELD ID 1 -MIXED 

ID2-STEAM IN UOS 
BLOCK DECOM

ASH : SENTENCE-MASS-YIELD VARIABLE-YIELD ID 1 -NCPSD ID2-ASH 
IN UOS

BLOCK DECOM
CARB : SENTENCE-MASS-YIELD VARIABLE-YIELD ID1-CIPSD ID2-C IN 

UOS BLOCK 
DECOM

H2 : SENTENCE-MASS-YIELD VARIABLE-YIELD ID 1-MIXED ID2-H2 IN 
UOS

BLOCK DECOM
N2 : SENTENCE-MASS-YIELD VARIABLE-YIELD ID1-MIXED ID2-N2 IN 

UOS
BLOCK DECOM

SULF : SENTENCE-MASS-YIELD VARIABLE-YIELD ID 1-MIXED BD2-S IN 
UOS BLOCK 

DECOM
02 : SENTENCE-MASS-YIELD VARIABLE-YIELD ID 1 -MIXED

LD2-OXYGEN IN UOS 
BLOCK DECOM

FORTRAN STATEMENTS:
C FACT IS THE FACTOR TO CONVERT THE ULTIMATE ANALYSIS TO
C A WET BASIS.

FACT = (100 - WAT) / 100 
WATR = WAT/100 
ASH = ULT (1) / 100 * FACT 
CARB = ULT (2) / 100 * FACT 
H2 -U L T  (3 )/ 100* FACT 
N2 -U L T  (4 )/1 0 0 *  FACT 
CL2 = ULT (5) / 100 * FACT 
SULF = ULT (6) / 100 * FACT 
02 -U L T  (7 )/1 0 0 *  FACT
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CALCULATOR BLOCK: DEVOL

SAMPLED VARIABLES:

PHENOL : PHENOL MASSFLOW IN STREAM INGASIF SUBSTREAM MIXED 
NAPTHA : NAPTHA MASSFLOW IN STREAM INGASIF SUBSTREAMMIXED 
OIL : OIL MASSFLOW IN STREAM INGASIF SUBSTREAM MIXED 
CD VOL : C MASSFLOW IN STREAM INGASIF SUBSTREAM CIPSD 
H2DVOL : H2 MASSFLOW IN STREAM INGASIF SUBSTREAM MIXED 
02D V 0L : OXYGEN MASSFLOW IN STREAM INGASIF SUBSTREAM 

MIXED
COAFW : TOTAL MASSFLOW IN STREAM INDEVOL SUBSTREAM MIXED 
FUSSTM : TOTAL MASSFLOW IN STREAM SPRHTSTM SUBSTREAM 

MIXED
USTR : STEAM MASSFLOW IN STREAM SPRHTSTM SUBSTREAM MIXED 
UC02 : C02 MASSFLOW IN STREAM SPRHTSTM SUBSTREAM MIXED 
STDVO : STEAM MASSFLOW IN STREAM INGASIF SUBSTREAM MIXED 
C 02D V 0 : C02 MASSFLOW IN STREAM INGASIF SUBSTREAM MIXED 
U 02 : OXYGEN MASSFLOW IN STREAM SPRHTSTM SUBSTREAM

MIXED
N2DVO : N2 MASSFLOW IN STREAM INGASIF SUBSTREAM MIXED 
SDVO : S MASSFLOW IN STREAM INGASIF SUBSTREAM MIXED 
ASHDVO : ASH MASSFLOW IN STREAM INGASIF SUBSTREAM NCPSD 
CDCOM : C MASSFLOW IN STREAM INDEVOL SUBSTREAM CIPSD 
02D C0M  : OXYGEN MASSFLOW IN STREAM INDEVOL SUBSTREAM 

MIXED
H 20D C0 : STEAM MASSFLOW IN STREAM INDEVOL SUBSTREAM MIXED 
N2DCOM : N2 MASSFLOW IN STREAM INDEVOL SUBSTREAM MIXED 
SDCOM : S MASSFLOW IN STREAM INDEVOL SUBSTREAM MIXED 
ASDCOM : ASH MASSFLOW IN STREAM INDEVOL SUBSTREAM NCPSD 
H2DCO : H2 MASSFLOW IN STREAM INDEVOL SUBSTREAM MIXED

FORTRAN STATEMENTS:
C FACT2 IS THE FACTOR TO CONVERT THE MASS FLOW TO 
C MASS FRACTION.

FACT2 = I / (COAFW + FUSSTM)
PHENOL = 0.002463 * COAFW * FACT2 
NAPTHA = 0.007450 * COAFW * FACT2 
OIL = 0.02031 * COAFW * FACT2
CD VOL = CDCOM*FACT2 - PHENOL*72/94 - NAPTHA* 132/142 - 

OIL* 120/138
H2DVOL = H2DCO*FACT2 - PHENOL*6/94 - NAPTHA* 10/142 - OIL* 18/138 
02DVOL = 02DC0M*FACT2 + U02*FACT2 - PHENOL* 16/94
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STDVO = (USTR + H20DC0)*FACT2 
C 02D V 0 = UC02*FACT2 
N2DVO = N2DCOM*FACT2 
SDVO = SDCOM*FACT2 
ASHDVO = ASDCOM*FACT2
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APPENDIX B

MODEL OUTPUT FOR TEMPERATURE VARIATIONS 

In this section the product gas composition and heating value with temperature 

variation is presented for various coals in tables 22 through 31 will show those results.

Table 22. Effect of Temperature Variation on Clarion 4A Coal on Wet Basis

Gasifier
Temperature Molar Composition in Percent Heating

Value
°F CO h 2 C 0 2 H20 c h 4 Btu/lb

1050 7 33 22 30 6 3940

1140 11 38 19 27 3 4120

1220 14 41 17 26 1 4240

1320 16 41 16 26 0.24 4280

1410 17 40 14 27 0.06 4290

1500 18 39 13 2b 0.02 4290

1550 19 39 13 28 0.01 *290

1590 19 39 12 29 0.01 4290

1680 20 38 12 29 0.00 4290

1770 21 37 11 30 0.00 4290

1860 21 37 10 31 0.00 4290

1950 22 36 10 31 0.00 4280

2040 22 36 10 32 0.00 4280

2130 23 35 9 32 0.00 4280

2220 23 35 9 32 0.00 4280

2240 23 35 8 33 0.00 4280
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Table 23. Effect of Temperature Variation on Pittsburgh #8 Coal on Wet Basis

Gasifier
Temperature Molar Composition in Percent Heating

Value
°F CO h 2 C 0 2 h 2o c h 4 Btu/lb

1050 8 33 22 29 7.2 4140

1140 12 39 19 25 3.5 4340

1230 16 42 17 24 1.2 4470

1320 18 42 15 24 0.3 4520

1410 19 42 14 25 0.1 4530

1500 20 41 13 26 0.0 4540

1550 20 40 12 26 0.0 4540

1590 21 40 12 26 0.0 4540

1680 21 39 11 27 0.0 4540

1770 22 39 11 28 0.0 4530

1860 23 38 10 28 0.0 4530

1950 23 37 9 29 0.0 4530

2040 24 37 9 29 0.0 4530

2130 24 37 9 30 0.0 4530

2220 25 36 8 30 0.0 4530

2240 25 36 8 30 0.0 4530
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Table 24. Effect of Temperature Variation on Illinois #6 Coal on Wet Basis

Gasifier
Temperature Molar Composition in Percent Heating

Value
°F CO h 2 C 0 2 H20 c h 4 Btu/lb

1050 5.83 32.19 21.46 35.62 4.01 3380

1140 8.79 36.53 19.52 32.73 1.57 3510

1230 10.95 37.78 17.84 32.16 0.44 3580

1320 12.38 37.34 16.55 32.79 0.11 3600

1410 13.48 36.47 15.48 33.71 0.03 3600

1500 14.44 35.58 14.53 34.61 0.01 3600

1550 14.95 35.08 14.03 35.11 0.00 3600

1590 15.28 34.75 13.69 35.45 0.00 3600

1680 16.04 34.00 12.93 36.20 0.00 3600

1770 16.72 33.32 12.26 36.88 0.00 3600

1860 17.33 32.71 11.64 37.49 0.00 3600

1950 17.88 32.16 11.09 38.04 0.00 3600

2040 18.38 31.66 10.60 38.54 0.00 3600

2130 18.83 31.22 10.15 38.98 0.00 3600

2220 19.24 30.81 9.74 39.39 0.00 3600

2240 19.34 30.71 9.64 39.49 0.00 3600
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Table 25. Effect of Temperature Variation on Spring Creek Coal on Wet Basis

Gasifier
Temperature Molar Composition in Percent Heating

Value
°F CO h 2 co2 h 2o c h 4 Btu/lb

1050 5 31 21 39 3.0 3020

1140 8 35 20 36 1.1 3130

1230 9 36 18 36 0.3 3170

1320 11 35 17 37 0.1 3180

1410 12 34 16 38 0.0 3190

1500 13 33 15 39 0.0 3190

1550 13 33 15 39 0.0 3190

1590 13 32 14 40 0.0 3180

1680 14 32 14 40 0.0 3180

1770 15 31 13 41 0.0 3180

1860 15 30 12 42 0.0 3180

1950 16 30 12 42 0.0 3180

2040 16 29 11 43 0.0 3180

2130 17 29 11 43 0.0 3180

2220 17 29 10 43 0.0 3180

2240 17 28 10 44 0.0 3180
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Table 26. Effect of Temperature Variation on ND Lignite on Wet Basis

Gasifier
Temperature Molar Composition in Percent Heating

Value
°F CO h 2 C 0 2 H20 c h 4 Btu/lb

1050 4 29 20 46 1.4 2420

1140 5 30 19 45 0.4 2480

1230 6 30 18 45 0.1 2500

1320 7 30 17 46 0.0 2500

1410 8 29 16 47 0.0 2500

1500 9 28 15 47 0.0 2500

1550 9 28 15 48 0.0 2500

1590 10 27 15 48 0.0 2500

1680 10 27 14 49 0.0 2500

1770 11 26 14 49 0.0 2500

1860 11 25 13 50 0.0 2490

1950 12 25 12 50 0.0 2490

2040 12 25 12 51 0.0 2490

2130 13 24 12 51 0.0 2490

2220 13 24 11 52 0.0 2490

2240 13 24 11 52 0.0 2490
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Table 27. Effect of Temperature Variation on Clarion 4A Coal on Dry Basis

Gasifier
Temperature Molar Composition in Percent Heating

Value
"F CO h 2 C 0 2 c h 4 Btu/lb

1050 11 48 32 9.1 5370

1140 16 53 27 4.0 5480

1230 20 56 23 1.2 5600

1320 22 56 21 0.3 5710

1410 24 56 20 0.1 5800

1500 26 55 19 0.0 5890

1550 27 55 18 0.0 5930

1590 27 55 18 0.0 5960

1680 29 54 17 0.0 6030

1770 30 54 16 0.0 6090

1860 31 53 15 0.0 6150

1950 32 53 15 0.0 6200

2040 33 53 14 0.0 6240

2130 34 52 13 0.0 6290

2220 35 52 13 0.0 6330

2240 35 52 13 0.0 6330
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Table 28. Effect of Temperature Variation on Pittsburgh #8 Coal on Dry Basis

Gasifier
Temperature Molar Composition Heating

Value
°F CO h 2 C 0 2 c h 4 Btu/lb

1050 11 47 32 10.2 4200

1140 16 53 26 4.7 4270

1230 21 56 22 1.5 4340

1320 23 56 20 0.4 4400

1407 25 56 19 0.1 4470

1497 27 56 17 0.0 4530

1550 28 55 17 0.0 4560

1590 28 55 16 0.0 4580

1680 30 55 16 0.0 4640

1770 31 54 15 0.0 4690

1860 32 54 14 0.0 4730

1950 33 53 13 0.0 4780

2040 34 53 13 0.0 4820

2130 35 53 12 0.0 4860

2220 36 53 12 0.0 4890

2240 36 52 12 0.0 4900
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Table 29. Effect of Temperature Variation on Illinois #6 Coal on Dry Basis

Gasifier
Temperature Molar Composition Heating

Value
°F CO H 2 C 0 2 c h 4 Btu/lb

1050 9 51 34 6.3 4970

1140 13 55 29 2.4 5060

1230 16 56 27 0.7 5160

1320 19 58 26 0.2 5260

1410 21 56 24 0.0 5340

1500 22 55 23 0.0 5420

1550 23 55 22 0.0 5460

1590 24 55 21 0.0 5490

1680 25 54 21 0.0 5550

1770 27 53 20 0.0 5610

1860 28 53 19 0.0 5670

1950 29 53 18 0.0 5720

2040 30 52 17 0.0 5770

2130 31 52 17 0.0 5810

2220 32 52 16 0.0 5850

2240 32 51 16 0.0 5860



Table 30. Effect of Temperature Variation on Spring Creek Coal on Dry Basis

Gasifier
Temperature Molar Composition

Heating
Value

°F CO h 2 C 0 2 c h 4 Btu/lb

1050 8 52 35 4.9 4670

1140 12 55 31 1.7 4760

1230 15 56 29 0.4 4850

1320 17 56 27 0.1 4940

1410 19 55 26 0.0 5010

1500 21 55 25 0.0 5090

1550 22 54 24 0.0 5130

1590 22 54 24 0.0 5150

1680 24 53 23 0.0 5220

1770 25 53 22 0.0 5270

1860 26 52 21 0.0 5330

1950 28 52 20 0.0 5380

2040 29 52 20 0.0 5420

2130 30 51 19 0.0 5470

2220 31 51 19 0.0 5500

2240 31 51 18 0.0 5510
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Table 31.Effect o f Temperature Variation on ND Lignite on Dry Basis

Gasifier
Temperature Molar Composition Heating

Value
°F CO h 2 C 0 2 c h 4 Btu/lb

1050 7 53 37 2.6 4200

1140 9 55 34 0.7 4270

1230 12 55 33 0.2 4340

1320 13 55 32 0.0 4400

1410 15 54 31 0.0 4470

1500 17 54 30 0.0 4530

1550 18 53 29 0.0 4560

1590 18 53 29 0.0 4580

1680 20 52 28 0.0 4640

1770 21 52 27 0.0 4690

1860 23 51 26 0.0 4730

1950 24 51 25 0.0 4780

2040 25 50 25 0.0 4820

2130 26 50 24 0.0 4860

2220 27 49 23 0.0 4890

2240 27 49 23 0.0 4900

10 2



APPENDIX C

MODEL OUTPUT FOR STEAM VARIATIONS 

In this section, the effect of steam flow rate on the product composition and USS 

steam temperature is presented. Table 31 shows the comparison between the 

experimental output and simulation output on a wet basis. Table 32 shows the 

comparison on a dry basis.

Table 32. Effect o f H2O/C ratio on Syngas for Clarion 4A Coal at 1550°F on Wet Basis

Steam Flow 
Rate

h 2o /c
Ratio

Burner Temperature
(°F)

Heating 
Value,Btu/lb CO, mole%

Kg/h Experiment Model Model Experiment Model

11 0.9 4329 4450 4893 37 25

18 1.4 3958 3474 3978 32 17
25 2.0 3659 2896 3351 28 12
32 2.6 3414 2511 2893 24 9

36 2.9 3306 2361 2710 23 8
43 3.4 3117 2120 2403 21 6

50 4.0 2955 1933 2159 19 6

Steam Flow 
Rate

h 2o /c
Ratio

H2,mole% c o 2, imole%

Kg/h Experiment Model Experiment Model

11 0.9 41 41 9 12

18 1.4 41 37 11 13

25 2.0 40 34 13 13

32 2.6 39 31 14 13

36 2.9 38 29 14 13

43 3.4 37 27 15 12

50 4.0 36 25 16 11
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Table 32. (Continued)

Steam h 2o /c H20 , mole% CH4, mole%

Flow Rate Ratio

Kg/h Experiment Model Experiment Model

11 0.9 10 21 1.6 0.02

18 1.4 14 32 1.4 0.01

25 2.0 17 40 1.2 0

32 2.6 21 47 1.1 0

36 2.9 22 49 1.1 0

43 3.4 26 54 1 0

50 4.0 28 58 1 0

Table 33. Effect of H2O/C ratio on Syngas for Clarion #4A Coal at 1550°F on Dry Basis

Steam Flow H20/C CO, mole% H2, mole%
Rate, Kg/h Ratio

Experiment Model Experiment Model

11 0.9 42 32 46 53

18 1.4 38 25 48 55

25 2.0 34 20 49 57

32 2.6 31 17 49 58

36 2.9 30 16 50 59

43 3.5 28 14 50 59

50 4.0 26 14 50 59
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Table 33. (Continued)
Steam 

Flow Rate, 
Kg/h

h 2o /c
Ratio CO2 , mole% CH4 , mole%

Heating 
Value, Btu/lb

Experiment Model Experiment Model Model

11 0.9 10 15 1.8 0.0 6100

18 1.4 13 20 1.6 0.0 5770

25 2.0 16 23 1.5 0.0 5550

32 2.6 18 25 1.4 0.0 5410

36 2.9 19 25 1.4 0.0 5350

43 3.5 20 27 1.4 0.0 5260

50 4.0 22 27 1.4 0.0 5180
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