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ABSTRACT

This study aimed to determine the level of genetic variation across the 

continental-wide range of the wood frog, Rana sylvatica. Levels of genetic 

differentiation between sampled populations were investigated as was the possible 

locations of glacial refugia for this species. DNA microsatellites were used as the genetic 

marker. This study found significant genetic differentiation across the geographic range 

of Rana sylvatica that increased with geographic distance. In addition three likely glacial 

refugia, Alaska, New York and the southern Appalachians, were identified.

A subset of the populations used in the geographic range study was used to 

investigate the patterns at a regional scale including North Dakota, Minnesota and 

Manitoba. While glaciation and recolonization would be expected to play a major role in 

the patterns seen at the geographic range it was unclear if these forces would play such an 

important role at a smaller scale. Microsatellite DNA showed that while glaciation and 

recolonization were likely important in the establishment of populations it appears 

current geographical barriers, such as the Red River of the North, are keeping populations 

on either side genetically divergent.
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CHAPTER I

GLACIATION, MICROSATELLITES AND PATTERNS

Introduction

One of the most important events in recent geologic history affecting both the 

distribution and population genetics of northern species is glaciation (Alsos et al. 2005). 

The transition from the Pleistocene to the Holocene (10,000 years ago) marks the end of 

the most recent glaciation, the Wisconsin glaciation. During the last glacial maximum a 

large ice sheet, called the Laurentide ice sheet (Figure 1), covered most of present day 

Canada and extended south of the Great Lakes (Schwalb and Dean 1998). The 

Laurentide ice sheet lay just east of the Cordilleran ice sheet or ice field that covered 

western Canada and possibly part of Alaska. Because of the amount of water sequestered 

in these and other ice sheets sea level was 85 to 130 meters below current level. Lower 

sea levels exposed more areas of continental shelves. A land bridge connecting Eurasia 

and North America lasted until approximately 15,500 years ago, following a period when 

the volume of ice in the world’s ice sheets decreased rapidly and sea levels rose (Pieiou 

1991).

Melting did not occur evenly over a period of time subsequent to glaciation. 

Periods of stagnation and reverses in the melting may have lasted centuries (Levesque et 

al. 1997). The ‘"prairie potholes” of the northern Great Plains are the result of small areas
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of ice left after the uneven retreat of the main ice sheet leading edge. Fossil evidence 

indicates many of the small lakes of this region contained fish and bivalves ten thousand 

years ago, most likely brought in by migrating waterfowl. In other parts of North 

America large proglacial freshwater lakes formed as the ice melted and the water was 

trapped (Fenton et al. 1983, Ashworth and Cvancara 1983). Although the exact dates of 

these lakes is disputed, it is clear that these large bodies of water continually changed 

over time, impacted the local climate at the time, and the landscape that exists in those 

areas today (Pielou 1991).

Figure 1. Estimate of the Laurentide Ice sheet at its maximum. Redrawn from Pielou 
(1991).

Around 12,000 years ago the Laurentide ice sheet had receded to roughly the 

Canada/United States border. Vegetation quickly colonized exposed land, though the 

type of vegetation varied by region. In some areas tundra developed, likely due to 

remaining permafrost. The rate of thawing of permafrost not only affected the vegetation
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in the area, but also the animal community. Because the permafrost thawed more 

gradually than the ice sheets there were associated gradual changes to temperate plant 

and animal communities. It was not until about 6500 years ago that the Laurentide ice 

sheet finally disappeared (Pielou 1991).

Following the disappearance of the ice sheets intermittent droughts occurred in 

the Rocky Mountains and the northern Great Plains that rivaled the intensity of the 

1930’s dustbowl (Laird et al. 1996). In contrast, the climate of the last 750 years is 

wetter and cooler than the preceding 1500 years (Laird et al. 1996, Valero-Garces et al.

1997). These changes in climate greatly affected the population genetics of the regional 

fauna due to local extinctions and recolonizations (Pielou 1991).

At the end of the Wisconsin glaciation populations could again expand into the 

newly available terrain. The nature of the range expansion and how quickly it occurred 

would affect the population structure of local species. Rapid northward expansion would 

lead to a reduction in allelic diversity in northern populations because the relatively few 

founders of new populations will likely not carry all of the alleles present in the original 

population (Nichols and Hewitt, 1994; Ibrahim et al, 1996; Hewitt 2001, 2004). Ibrahim 

et al.’s (1996) modeling study found rapid leptokurtic dispersal of individuals (i.e. long 

distance dispersal occurring more often that would occur under a normal distribution of 

dispersal distances) produced patches of homogeneity- Essentially long distance 

founders would be able to colonize an area and expand the population to fill that suitable 

habitat and nearby habitats. Because these few, subsequent founders would again carry 

fewer alleles than the original population or the secondary source population, these areas 

would experience genetic homogeneity.
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A more normal distribution of colonization distances, more recently called 

Hewitt's ‘‘phalanx” model (Nichols and Hewitt. 1994), expects recently founded 

populations to retain more genetic diversity and produce less population structure. In this 

type of recolonization founding individuals tend to colonize nearby suitable habitats more 

often and further away habitats less often. In this case, the main front of colonists rather 

than a few long distance colonizers expands to fill by nearby areas. This pattern of 

colonization allows more gene flow between the source and the newly founded 

populations and potentially larger numbers of colonists. Large numbers of colonists and 

increased gene flow would allow for retention of genetic variation seen in the refugial 

population. Populations in refugial areas would have been able to both diverge 

genetically and become geographically subdivided as genetic drift, mutation, nonrandom 

mating and lack of gene flow would all potentially have had time to act (Ibrahim et al, 

1996; Hewitt 2001, 2004).

These modes of recolonization have been supported by many studies of species 

occupying previously glaciated areas in North America. In the Stellar’s jay. Cyanociita 

stelleri, and chestnut-backed chickadee, Poecile rufescen, genetic similarity measured by 

microsatellites between populations in previously glaciated regions is not found in 

geographically proximal populations (Burg et al. 2005, Burg et al. 2006, respectively) as 

would be expected under the phalanx model of colonization. Chestnut-backed 

chickadees show significant genetic structure in the more recently colonized areas of their 

range, though the northwest song sparrow. Melospiza melodia, showed a different 

pattern. In the northwest song sparrow geographically close populations were the most 

genetically similar, suggesting a stepping-stone model of recolonization in which

4



A number of amphibians show a similar east-west split to song birds. In leopard 

frogs, Rana pipiens, there are two main genetic lineages seen in mitochondrial DNA, a 

western and an eastern lineage (Hoffman & Blouin 2004). The western refugia appears 

to be located in Nebraska, while the eastern refugia occurs from Illinios to New York. 

The zone of overlap between these lineages is in central Ontario. A study that included 

microsatellites also found that west and east leopard frogs were genetically dissimilar 

(Hoffman & Blouin 2004). A study of spring peepers revealed that northern population 

are closely related and probably originated from a single refuge, or from closely related 

refugial populations (Austin et al. 2002). Austin et al. (2002) concluded that dispersing 

spring peepers went north into eastern Ontario, then westward into Manitoba. The 

authors hypothesize that historical barriers to dispersal may have prevented western 

(Arkansas to Kansas to southwest Illinois) haplotypes from expanding north into Ontario 

and Manitoba. Diverse haplotypes in Virginia and Ontario suggested a possible recent 

colonization event from multiple refugia. The possibility that a single refugial population 

containing very high levels of genetic diversity or that gene flow is higher than 

previously thought in anurans cannot be ruled out (Austin et al. 2002). The evidence is 

less clear in the toad Bufo fowleri (Smith and Green 2004). In this species, populations 

on the Canadian shore of Lake Erie possess similar mitochondrial DNA haplotypes to 

populations on the opposite shore. Another population on the Canadian shore of Lake 

Erie is most similar1 to a population on Lake Michigan, geographically further away than 

other populations along the Canadian shore of Lake Erie. These patterns obscure 

postglacial routes of recolonization (Smith and Green 2004).
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There is limited evidence on which to base any inference of wood frog 

phylogeographic history. Currently, they are found throughout the Appalachian 

Mountains as far south as northern Georgia, as well as west of the Mississippi in Missouri 

(Stebbins 1985), and disjunct locations in Arkansas and northern Colorado/southem 

Wyoming (Figure 2) although there is some evidence that the Rocky Mountain 

populations may represent a separate species (Porter 1969). Wood frogs probably 

persisted during the Pleistocene in the southeastern (including southern areas of what is 

referred to as the Midwest) and south central plains regions of the United States, based on 

their current and historical distributions and may have survived glaciation northwest of 

the continental ice sheets as well (Stewart and Lindsay 1983). Colonization of the 

formerly glaciated parts of the range, therefore, may have come from multiple sources. 

One hypothesis is that populations in the glaciated northeast would have come north from 

the southern Appalachians or mid-Atlantic (an east of the Mississippi clade), whereas 

populations in the north central (northern plains north into Canada) and northwest 

(western Canadian provinces and Alaska) would have come from the south central plains 

and/or Rocky Mountains (a west of the Mississippi clade). Alternatively, the 

westernmost portion of the range (Alaska, northwestern Canada) may have been 

colonized from a northwestern refuge. The logic of the hypothesis of an east-west split 

stems from both the current or historical distribution and that the Mississippi River and 

glacial Lake Agassiz represented major barriers to dispersal. Habitat changes subsequent 

to the retreat of glaciers permitted the wood frog to persist in the southeast, but largely 

eliminated presumptive populations from the south-central plains.
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Supporting the east to west recolonization hypothesis, several morphological 

characters exhibit dines following an east-west pattern (Martof and Humphries 1959). It 

is possible; however, these characters may be under selection driven by climate or 

habitat, and may not simply reflect colonization history (Fishbeck and Underhill 1971). 

Based on museum specimens, Martof and Humphries (1959) found that body size 

decreases gradually going north from the southern Appalachians, with a weaker gradient 

in the western portion of Canada. Relative leg length shows the same overall pattern

Figure 2. Geographic range of Rana sylvatica outlined in the bold line. Redrawn from 
Stebbins (1985).

(Martof and Humphries 1959). The middorsal white stripe present in most Alaskan and

northern Canadian individuals is absent from the southeastern portion of the geographic

range of wood frogs (Martof and Humphries 1959). Dorsal stripe is thought to be

inherited in a simple Mendelian fashion (1 locus, with 2 alleles, Browder et al. 1966), and
8



may, therefore, be treated as a single-locus genetic marker. The pattern (albeit based on 

limited sampling) appears to exhibit a relatively abrupt transition in the northern plains 

and in northeastern Canada, with striped individuals absent in the east and southeast, 

infrequent at midlatitudes in Canada, and common in the northwestern portion of the 

range. The Rocky Mountain populations also exhibit a high frequency of striped 

individuals, with Colorado and Wyoming populations apparently fixed for the striped 

allele (Martof and Humphries 1959).

Reconstruction of the biogeographic history of a species may be based on a 

variety of sources. Fossil evidence is available for some taxa (e.g., Holman 1995, Stewart 

and Lindsay 1983), but is generally limited both in spatial coverage and time period. 

Wood frog fossils dating to the Pleistocene are known from the central plains (Kansas, 

Nebraska), the Midwest (southern Indiana), as well as numerous sites in the Appalachian 

Mountains (Holman 1995), suggesting these areas as possible refugia. Genetic data have 

become the tool of choice for phylogeographic studies (Avise 2000) in the absence of or 

to complement fossil evidence.

The field of population genetics and in particular molecular population genetics 

has grown as a field of study in the last few decades due to the increasing understanding 

and use of molecular markers (Avise 2004). Molecular population genetics allows 

insights into the development of a species’ range and the impact of habitat and climatic 

change on the population genetics within a species. Understanding the history of a 

species’ response to historical environmental changes can also allow predictions of the 

potential impact of future environmental change (Davis and Shaw 2001).
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Microsalellites

Microsatellites are tandem repeats found throughout the genome. Microsatellite 

loci most often contain 5 to 40 repeats of 2-4 nucleotides. Microsatellites are highly 

variable (Selkoe and Toonen 2006 & refs therein, Eisen 1999). In many eukaryotes 

microsatellites occur almost entirely in noncoding regions (see Li et. al. 2002 for review). 

Triplet repeats, because they do not cause frameshift mutations, are more likely than 

dinucleotide or tetranucleotide repeats to be found in protein coding regions of the 

genome (Selkoe and Toonen 2006 & refs therein & Hancock 1999).

Microsatellites have generally been thought to mutate through one of two 

processes. The first is slippage during DNA replication and the second is genetic 

recombination (Selkoe and Toonen 2006, Eisen 1999, Hancock 1999). Studies in yeast 

and E. coli support replication slippage as the primary mechanism for microsatellite 

length change. Allele lengths often cluster, further supporting these findings (Hancock 

1999).

Microsatellites have desirable traits and advantages over other genetic markers. 

Microsatellites are preferable to allozymes and mitochondrial DNA for many applications 

because of their high mutation rate, which varies greatly between species, resulting in 

greater variation (Avise 2004, Zhang and Hewitt 2003) and more precise estimates of 

genetic distance between populations (Kalinowski 2002). Mitochondrial DNA is also a 

single locus while microsatellites offer more loci (Selkoe and Toonen 2006). More loci 

also allow more precise estimates of genetic distance between populations (Kalinowski 

2002).
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There are logistic advantages to microsatellites as well. Sample preparation is 

easier than for other genetic markers due to only small pieces of DNA being required to 

be amplified. Also, because of the small fragment size, DNA degradation is less of an 

issue (Selkoe and Toonen 2006). Because the primers for each locus are designed based 

on the DNA sequence flanking the microsatellite the chances of primers amplifying a 

region of DNA in other unrelated taxa during PCR is very low. Cross-contamination is 

therefore less of an issue as well (Selkoe and Toonen 2006). Additionally, microsatellites 

are inherited in a Mendelian manner and are generally presumed to be selectively neutral 

as they tend to occur in noncoding regions (Selkoe and Toonen 2006).

Like all genetic markers microsatellites are not without their drawbacks. Primer 

site mutations may cause alleles to be unamplifiable (null alleles), though primers can 

often be redesigned to overcome this (Selkoe and Toonen 2006). There is always the 

chance of homoplasy, aiieles that are identical in size but are not identical by descent 

(Avise 2004, Selkoe and Toonen 2006). Homoplasy is detectable if it can be detected 

when alleles are sequenced. Selkoe and Toonen (2006) state such detectable homoplasy 

is uncommon unless the repeat region of the microsatellite is either compound or 

interrupted. Undetectable homoplasy is a potential problem for all types of genetic 

markers (Selkoe and Toonen 2006).

Technical and human factors can both introduce errors to any study (Bonin et al. 

2004). Allele dropout and false alleles (stuttering) are additional problems that have 

recently been given more attention. Allele dropouts are alleles that do not amplify in 

heterozygotes, causing those individuals to appear as homozygotes (Broquet and Petit 

2004, Bonin et al. 2004). This type of error is locus specific and might be mitigated with
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rigorous screening of loci before their use (De Woody et al. 2006). False alleles are 

alleles that appear due to slippage during the initial cycles of the polymerase chain 

reaction (PCR) (Broquet and Petit 2004, Bonin et al. 2004). Bonin et al. (2004) found ten 

errors in genotyping in 1209 alleles in Scandinavian brown bears, Ursus arctos. Six of 

these errors were allelic dropouts while false alleles or contaminants accounted for the 

other four. These ten errors equate to a 0.8% error rate or 17.6% of 34 samples’ 

multilocus genotypes with at least one error. Error rates were higher for DNA extracted 

from fecal samples (Bonin et al. 2004). Stuttering can be especially troublesome with 

dinucleotide repeats. Extensive screening and elimination of loci with this problem is the 

easiest way to eliminate this issue (DeWoody et al. 2006).

Microsatellites were chosen as the genetic marker of choice in this study for a 

variety of reasons. These microsatellite markers were used in previous studies (Newman 

and Squire 2001, Squire and Newman 2002) and therefore were already available and 

determined to be potentially informative for this study. Mitochondrial DNA sequencing 

was not chosen because it is generally not as polymorphic as micro satellites (Avise 2004, 

Zhang and Hewitt 2003). Once this study was begun it was learned that a similar study 

using mitochondrial DNA was underway. The results from this study confirmed that 

mitochondrial DNA was too conserved to bring to bear on this study (Irwin, pers. 

comm.). At the time this study was begun other markers such as AFLPs and SNPs were 

not as commonly used as they are today; if this study were continued I would likely 

include these markers as well, but that is beyond the scope of this dissertation.
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Objectives

This study was undertaken to investigate the patterns of genetic variability and 

differentiation in R. sylvatica across its range. The patterns investigated were both 

continent wide (Chapter 2) and in the upper Great Plains region (Chapter 3). A corollary 

to the main goals of the project was a look at the usefulness of microsatellites, a marker 

generally used to investigate fine-scale structure (Newman and Squire 2001, Squire and 

Newman 2002), on species range-wide scale (Chapter 4). The specific hypotheses tested 

are as follows:

1. Genetic variation in R. sylvatica will be less in previously glaciated and more 

recently recolonized areas than in putative glacial refugial areas.

Morphological evidence shows clinal variation in a number of phenotypic traits. 

Body size decreases gradually going north from the southern Appalachians (a putative 

glacial refugia) with a weaker gradient in the western portion of Canada (Martof and 

Humphries 1959). Relative leg length shows the same overall pattern (Martof and 

Humphries 1959). The middorsal white stripe present in most Alaskan and northern 

Canada individuals is not found in individuals from the southeastern portion of the wood 

frog’s geographic range (Martof and Humphries 1959). The morphological evidence 

suggests significant differences in genetic variation across the range of this species. 

Based on the pattern of morphological variation a pattern of significant genetic 

differentiation across the geographic range of the species is expected. Additionally, 

populations exhibiting the same phenotype in the morphological traits described would 

be expected to be more closely genetically related than those not exhibiting the same 

phenotype.
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2. R. sylvatica found glacial refugia in the southern Appalachian region of the 

southeast United States.

Wood frogs are cold tolerant, typically found in wooded areas and are currently 

found at high elevations in the Appalachians. The southern Appalachians region also 

forms the southern boundary of the wood frog’s geographic range (Stebbins 1985). 

Martof and Humphries (1959) identified an Appalachian phenotype (among other 

phenotypes) and proposed possible refugia in this area. This glacial refugium should 

show a greater genetic diversity than more recently colonized regions, and possibly 

unique genotypes due to the longer time during which they accumulated mutations 

(Taberlet and Cheddadi 2002).

3. A genetic pattern should be apparent if Manitoba, Canada was a point of 

convergence for dispersing R. sylvatica during range expansion.

An area of convergence would show an increase in genetic variation over 

geographically proximal areas. In a previous study of Rana sylvatica, Dr. Jason Irwin 

found strong support for an eastern clade that included samples from the southeastern 

United States north through the Atlantic states into Canada, that was divergent from a 

western clade that included samples from the upper Midwest (Minnesota and North 

Dakota), western Canada, Alaska, and Colorado and Wyoming based on a 562 base pair 

sequence of the mtDNA cytochrome b gene. The zone of overlap appeared to be in 

Manitoba (Irwin, unpublished data). If the zone of overlap is in Manitoba then we should 

see a mixture between eastern and western alleles and higher allelic diversity than 

populations either east or west of this zone.
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CHAPTER II

RANGEWIDE ANALYSIS 

Abstract

Wood frogs, Rana sylvatica, are freeze tolerant. This trait has allowed this 

species one of the northernmost geographic ranges of all amphibians, providing an 

exceptional biological system in which to examine the effects of the retreat of the 

glaciers. Six microsatellite loci were used to identify large scale patterns of genetic 

variability and differentiation in the wood frog. These patterns have been affected by the 

pattern of glaciation, the location of glacial refugia, modes of recolonization, and areas of 

secondary contact.

Introduction

During the last glacial maximum the Laurentide ice sheet covered most of present 

day Canada and e? 'ded further south than the Great Lakes. The Laurentide ice sheet 

lay just east of the Cordilleran ice sheet or ice field that covered western Canada and 

possibly part of Alaska. By around 12,000 years ago the Laurentide ice sheet had 

receded to roughly the Canada/United States border but it was not until about 6500 years 

ago that this ice sheet finally disappeared (Pielou 1991). In the northern Great Plains the 

glaciers were followed by intermittent severe droughts lasting over a hundred years. It 

has not been until the last 750 or so years that a cooler and wetter climate has come about
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in this region (Laird et al. 1996). One of the most important events in recent geologic 

history affecting northern species range and genetic makeup is glaciation (Aisos et al. 

2005.

The recolonization histories of a variety of North American species have been 

inferred from molecular markers (e.g.. Good and Sullivan 2001, MTot, et al. 2000, Nesbo 

et at. 1999, Stone et al. 2002). In addition to spatial dines in allele or haplotype 

frequencies resulting from expansion of colonists from refugial populations, populations 

in glaciated regions tend to exhibit lower differentiation among populations than among 

populations persisting in isolated glacial refugia, as well as reduced levels of genetic 

variability (reviewed in Hewitt 1999, 2000). Rapid northward expansion would lead to a 

reduction in genetic diversity in a species most northern populations. A slower 

recolonization would allow populations to retain more of their genetic diversity 

throughout their range and allow refugial areas time to both diverge genetically and 

become geographically subdivided (Hewitt 2001, 2004). Patterns of variation may be 

complex, however, depending on the number and location of refugial populations, routes 

and timing of colonization of formerly glaciated regions, and locations (if any) of zones 

of contact between colonists derived from different refugia (Ibrahim et al. 1996).

This study was undertaken to look specifically at three questions listed below'.

1. Is genetic variation in R. sylvatica less in previously glaciated and more recently 

recolonized areas than in putative glacial refugial areas?

Morphological evidence shows clinal variation in a number of phenotypic traits in 

R. sylvatica (Martof & Humphries 1959). The morphological evidence suggests 

significant differences in genetic variation across the range of this species with those
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populations exhibiting the same clinal traits will have similar alleles to those of other 

populations.

2. Does R. sylvatica have a glacial refugia in the southern Appalachian region of the 

southeast United States?

The southern Appalachians region forms the southern boundary of the wood 

frog’s geographic range and has been suggested as refugia for a number of species, 

including the Northern short-tailed shrew Blarina brevicauda (Brant and Orti 2003), the 

pygmy salamander Desmognathus wrighti (Crespi et. al. 2003) and the spring peeper 

Pseudacris crucifer (Austin et. al. 2002). Martof and Humphries (1959) identified an 

Appalachian phenotype (among others) and proposed possible refugia for Rcma svivatica 

in this area. This glacial refugia should show a greater genetic diversity than more 

recently colonized regions, and possibly unique genotypes (Taberlet and Cheddadi 2002).

3. Is there a point of convergence for dispersing R. sylvatica during range expansion in 

Manitoba, Canada?

An area of convergence would shew in increase in genetic variation over 

geographically proximal areas. Strong support for an eastern clade that included samples 

from the southeastern United States north through the Atlantic states into Canada, that 

was divergent from a western clade that included samples from the upper Midwest 

(Minnesota and North Dakota), western Canada, Alaska, and Colorado and Wyoming 

was found in a previous study with a possible zone of overlap in Manitoba (Irwin, 

unpublished data). If the zone of overlap is in Manitoba then we should see a mixture 

between eastern and western alleles and higher allelic diversity than populations either 

east or west of this zone.
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Methods

Sample Handling

A total of 547 samples were collected ,rom 25 populations (individual or 

neighboring ponds) across North America (see Figure 3 locations and the number of 

samples of each and Appendix 1A for collectors). Tissue samples (toe tips or hatchlings 

(one per egg mass)) were stored and transported in 95% ethanol. DNA was extracted by a 

standard phenol-chloroform extraction and an ethanol precipitation (Hitchings & 

Beebeel998). Six microsatellite loci were used (Table 1). PCR reactions were 

conducted in lOul volumes and contained IX buffer, 0.5 uM dNTPs, 2.5 mM MgCh, 

luM unlabeled primer, luM tluorescently labeled primer, and 0.5 units taq DNA 

polymerase (Promega). The PCR reactions were carried out in a BIORAD thermocycler. 

For Rs23 (Newman and Squire 2001) the cycles consisted of 3 minutes at 94°C', and 3 

minutes at 55°C for one cycle, 1 minute at 72°C, 1 minute at 94°C, 1 minute at 55°C for 

30 cycles and a 3 minute extension at 72°C. For all other primers (see Julian and King 

2003) the PCR reaction cycles were 3 minutes at 94°C for one cycle, 1 minute at 94°C, 30 

seconds at 54°C, and a final 1 minute at 72°C for 30 cycles, and a 2 minute extension step 

at 72°C. PCR products were run on a 2% agarose gel and stained with ethidium bromide 

(2ug/ml). Products in the correct size range were then run on an ABI model 3100 

(Applied Biosystems) using 0.5ul 500ROX as a size standard in each sample. ABI output 

was using ABI GeneScan software (version 3.7, 2000) and allele sizes determined by 

ABI Genotyper software.
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Table 1. Loci and primer sequences.
Locus Primer sequence
Rsl 1 F: 5 '-TTACTTTCAGTTTCAAAAGGCAG-3' 

R: 5'-TACACAGTGCTTCACAAGTTCC-3'
Rs23 F: 5’-C ACCG ATTTTTTTT A AT AC AG-3' 

R: 5'-AACCCGGTTAGTGTATTGTC-3’
Rs32 F: 5 '-GG AC AC AC AATTCCTTGGTTC-3'

R: 5'-GAGGAGATTTCCAAAACAATCC-3'
Rs55 F: 5 -GAGTTGGGACTCCTGAATAGAG-3' 

R: 5 AGT CTTT GCTTT GT A A ATT GGC-3'
Rs70 F: 5 '-CAAAGTGCACAGTCTATTTGTC-3' 

R: 5 '-T GG ACC ATTT GGTTT ATTT GTC-3'
Rs88 F: 5'-TCAATCCATCAGTCTGTCTGTC-3'

R: 5'-GGATTTTGTAAAGAATGCTCCTC-3'

Data Analysis

Characterization of genetic diversity (allele frequencies, genic diversity, tests for 

Hardy-Weinberg equilibrium) vvas conducted using GENEPOP version 4 (Rousset 2007). 

Levels of inbreeding (Fis), intrapopulation and interpopulation genetic variation were 

calculated and linkage disequilibrium between pairs of loci was tested for in GENEPOP 

using a log likelihood ratio statistic (Rousset 2007). GENEPOP was also used to test for 

differentiation in allele frequencies among pairs of populations using a Markov Chain 

Monte Carlo approximation of Fisher’s exact test (Raymond and Rousset 1995). Because 

of the large nunP r of pairwise tests involved, the significance of pairwise comparisons 

was determined using a sequential Bonferroni adjustment (Rice 1989). Pairwise Fst 

(averaged over loci) were estimated in GENEPOP and used in analyses of isolation by 

distance, with a Mantel test of significance in 1BDWS 3.14 (Jensen et al. 2005). Presence 

and estimation of null allele frequencies was examined in GENEPOP (Rousset 2007) and
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MICRO-CHECKER (Van Oosterhout 2004) was used to investigate the possibility of 

large allele dropout, evidence of scoring errors and presence of null alleles and estimation 

of null allele frequencies.

Bayesian methods implemented via STRUCTURE 2.2 (Pritchard et al. 2000), 

were used to delineate groups of individuals or clusters within the data set. STRUCTURE 

does not assume a mutational model or process but uses individuals' genotypes to 

determine the population(s) to which they should be assigned. The model accounts for 

Hardy-Weinberg or linkage disequilibrium by introducing population structure and 

attempts to find population groupings that are not in Hardy-Weinberg disequilibrium 

(Pritchard et al. 2000). The number of clusters or groups (K) was set from K=2 to K=25. 

For each setting for K the log transformed likelihood of the data matching that value of K 

was determined by STRUCTURE. All of the log likelihood values were plotted and the 

smallest value detennined the most likely K value. After the most likely number of 

groups was identified each group was subsequently separated and the most likely number 

of clusters within this grouping was determined. STRUCTURE 2.2 analyses were based 

on genotypes at 5 loci (Rsl 1, Rs23, Rs32, Rs55, Rs88). Locus Rs70 was removed from 

the STRUCTURE analysis. Removal of this locus was done to avoid introduction of the 

appearance of a departure from Hardy-Weinberg in the absence of true population 

structure as recommended by Pritchard et al. (2000).
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Figure 3. Sample locations and number of individuals. 1. North Carolina - 17; 2. Wisconsin - 25; 3. Ohiol - 36; 4. Ohio2 - 20; 
5. South Appalachial - 20; 6. South Appalachia2 - 20; 7. Quebecl - 20; 8. Quebec2 - 20; 9. Sheyenne National Grasslands - 
16; 10. Saskatchewan - 25; 11. Colorado - 16; 12. Michigan - 15; 13. Alberta - 21; 14. New York - 13; 15. SSP New York - 13; 
16. Alaska - 16; 17. Crookston - 20; 18. Rydell - 24; 19. Manitobal - 29; 20. Manitoba2 - 25; 21. Oakville - 41; 22. Hill Pond 
East - 47; 23. East Grand Forks - 23; 24. Turtle Mountains -  25; 25. Tennessee - 15



Results

One population, Tennessee, was excluded from the analysis because these 

individuals could be successfully genotyped at only one locus, Rs23. No bands were 

obtained for 5 of the loci in this population. Eighty individuals from with genotypes at 

fewer than three loci were also excluded. Populations ranged from zero individuals that 

could not be genotyped at two or more loci to a high of 19 individuals in Saskatchewan. 

Poor DNA extraction appeared to be the cause of the large number of failed attempts to 

genotype individuals from the Saskatchewan population. Numbers of individuals 

genotyped and number of alleles for each population and locus are in Table 2. The 

number of alleles in each population compared to the total number of alleles found across 

the range of this species is seen in Figure 4.

The Alaska population showed the lowest level of inbreeding (Fis = -0.1604) 

while Alberta and Saskatchewan showed the highest (Fis = 0.3885 and 0.3368, 

respectively). The degree of inbreeding for each population is shown in Figure 5. Please 

see Appendix B for all results.

Within population variation was lowest in the Alaska and Colorado populations at 

0.659 and 0.5453 respectively and highest in the second Manitoba population at 0.9223. 

Within individual population was lowest in the Colorado population at 0.5068 and 

highest in the second Manitoba population at 0.8702.
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T able 2. Populations, with the number of different alleles (A) at each locus and the 
number of individuals genotyped at each locus (N).__________________________

R s l l Rs23 Rs32 Rs55 Rs70 Rs8S
A N A N A N A N A N A N

Alaska 5 11 2 11 5 5 6 13 0 0 5 1 1
Alberta 6 6 3 15 7 8 4 11 2 1 10 15
Colorado 4 10 3 12 10 3 11 7 11 3 12
Crookston 13 15 6 19 12 18 13 20 0 0 11 19
E Grand Forks 13 12 6 14 12 10 6 6 10 7 8 13
Hill Pond E 15 18 7 37 20 30 12 34 12 19 13 26
Manitoba 1 13 10 4 19 16 15 13 19 12 15 10 11
Manitoba 2 15 16 3 2 12 15 16 14 15 12 11 13
Michigan 20 14 4 15 10 13 11 14 11 14 11 14
North Carolina 11 12 7 13 10 14 9 10 14 13 9 14
New York 12 12 2 9 8 9 8 12 6 8 8 9
Oakville 15 33 5 14 16 38 13 35 11 22 10 32
Ohio 1 31 34 11 27 15 35 16 21 19 23 13 21
Ohio 2 20 20 7 20 9 20 10 13 9 12 12 13
Quebec 1 17 19 4 20 11 20 11 15 17 17 17 20
Quebec 2 15 20 7 18 13 20 11 18 13 13 14 19
Rydell 15 19 5 17 9 18 11 16 8 5 11 19
Saskatchewan 6 6 6 4 4 3 6 5 3 4 8 5
Sheyenne 11 16 4 16 9 16 10 14 8 15 7 16
S Appalachia 1 17 18 5 20 10 20 9 13 15 19 9 9
S Appalachia 2 19 16 9 16 11 15 3 2 8 8 5 4
SSP New York 6 7 1 5 8 9 10 10 6 5 11 9
Turtle Mountains 12 11 5 21 0 0 12 16 9 14 9 18
Wisconsin 16 12 7/ 16 13 14 12 11 15 16 11 16
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Figure 4. Allelic diversity across all loci. Red is the percentage of alleles present in the 
population compared to the total number of alleles found across the geographic range 
(blue).

Two pairs of loci, Rsll and Rs70, and Rsl 1 and Rs88 were found to be  ̂ 5 '.Auge 

disequilibrium. Each pair of loci in linkage disequilibrium did not have all populations in 

significant linkage disequilibrium (Table 3). ks! 1 and Rs70 were in disequilibrium in 

South Appalachia 1 and Oakville while Rsl 1 and Rs88 were in disequilibrium only in 

Oakville (see Appendix C). Rsl 1 and Rs70 also had one other population that was nearly 

significant (North Carolina’s unbiased estimate of the p-value of p=0.08Q4). In both 

cases at least one of the loci involved had a large number of missing genotypes in enough 

populations that a number of those populations could not be used to test for linkage 

disequilibrium. This smaller number of populations used in the calculations placed
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undue weight on a very low number of significant finding for that loci pair. For this 

reason all of the loci were used in most of the further data analysis.

Figure 5. Fis values across the geographic range. The yellow is the degree of inbreeding 
in each population.

Only populations from Colorado, Long Island, New York, Alaska, Manitoba 

(both populations) and East Grand Forks, Minnesota were in Hardy-Weinberg 

equilibrium. All other populations showed a significant heterozygote deficiency (Table 

4). All populations were significantly differentiated from all other populations in 

pairwise genotypic differentiation tests except for the six population pairs listed in Table 

5. Two populations in close geographic proximity, southern Appalachia 1 and 2, were 

significantly differentiated (p<0.001).
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Table 3. Linkage disequilibrium significance values across all population pairs for each 
pair of loci. Significant p-values are bolded. ______ ________________________

Rs23 Rs32 Rs55 Rs70 Rs88

Rsl 1 0.993 0.888 1.000
Highly
sign.

Highly
sign.

Rs23 1.000 0.729 0.556 0.980
Rs32 0.777 1.000 1.000
Rs55 0.212 1.000
Rs70 0.993

Table 4. Hardy-Weinberg estimation of p-values by Markov chain method by population 
over all loci. Non-significant values are bolded._____ _
Population p-value Population p-value
Alaska 0.8616 Ohio 1 0.0000
Alberta 0.0000 Ohio 2 0.0000
Colorado 0.1583 Quebec 1 0.0000
Crookston 0.0002 Quebec 2 0.0000
E Grand Forks 0.3708 Rydell 0.0001
Hill Pond E 0.0000 Saskatchewan 0.0002
Manitoba 1 0.3808 Sheyenne 0.0034
Manitoba 2 0.7196 S Appalachia 1 0.0003
Michigan 0.0185 S Appalachia 2 0.0000
North Carolina 0.0005 SSP New York 0.0177
New York 0.1368 Turtle Mtns 0.0022
Oakville 0.0000 Wisconsin 0.0000

The number of private alleles found in each population over all loci was relatively 

small, with the second Manitoba population having no private alleles and the first Quebec 

and one of the New York populations having seven private alleles (Figure 6).

Fst values ranged from 0 to 0.34 (see Appendix D). Of 276 pairwise Fst values, 

35 of these were greater than 0.20. Of these 35 pairwise combinations all but one 

involved Colorado or Alaska. The pairwise Fst values under 0.03 included 

geographically proximal populations gathered from the same state or province (Ohio (2), 

Quebec (2), Minnesota (3) and Manitoba (2)) except in the cases of North Carolina and
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New York. The pairwise Fst values for the three North Carolina populations range from 

0.0419 to 0.0264. The two New York populations had an Fst value of 0.1 i.

Table 5. Non-significant genotypic differentiation in population pairs.
Population pair Unbiased estimate of p-value
East Grand Forks, MN and Manitoba 2 0.085
Quebec 1 and Quebec 2 0.106
Crookston, MN and Manitoba 2 0.295
Crookston, MN and Rydell, MN 0.316
Manitoba 1 and Manitoba 2 0.338
Ohio 1 and Ohio 2 0.509

Due to small sample sizes in some populations and at some loci, not every 

population was able to be analyzed by MICRO-CHECKER to determine presence and 

frequency of null alleles. The GENEPOP estimation method also uses genotype failure 

rate information and was able to estimate null allele frequencies in more populations. 

Estimation of null allele frequencies performed in MICRO-CHECKER (Brookfield 1 

method from Brookfield et al. 1996) and GENEPOP (EM algorithm from Dempster et al. 

1977) gave similar results in all but two cases (Table 6). In each of these two exceptions 

the null allele frequency was under 0.2 in both estimations (Table 6). Rs70 was the locus 

with largest number of populations determined to have null alleles. This high frequency 

of null alleles at the Rs70 locus is likey the result of a large number of samples that did 

not produce a PCR product at this locus and a lack of heterozygotes in sampled 

populations. The Mantel test performed in IBDWS 3.14 showed a significant 

association between genetic and geographic distance (r=0.47, p=0.013). Pairwise Fst 

values for each pair of populations were plotted against geographic distance in kilometers 

in Figure 7.

27



Table 6. Frequency estimations for null alleles by population (for populations estimated to have null alleles) for each locus. 
GP is the GENEPOP value and MC is the MICROCHECKER Brookfield et al. (1996) value. Boxed values are those with 
greater than 10% difference between the two estimations.______________________________________________

Rs 11 Rs 23 Rs 32 Rs 55 Rs 70 Rs 88
Population GP MC GP MC GP MC GP MC GP MC GP MC
North Carolina 0.1525 0.1522
Wisconsin 0.1196 0.1869 0.1862
Ohiol 0.1196 0.1125 0.1666 0.1483 0.2569 0.2675
Ohio2 0.1854 0.1824 0.3171 0.3169 0.1113 0.102
S Appalachia 1 0.1136 0.1517 0.1476
S Appalachia2 0.3284
Quebec 1 0.3248 0.329 0.1171 0.1226
Quebec2 0.2963 0.2941 0.0787 0.0891 0.1795 0.1846 0.3168 0.3137
Sheyenne 0.2102
Saskatchewan 0.4 0.4683
Colorado 0.1133 0.1164
Alberta 0.1855 0.3825 0.3114
New York 0.2206 0.207
SSP New York 0.1931 0.1957
Crookston 0.119
Rydell 0.1596 0.1744 0.1115 0.1212
Oakville 0.1615 0.1462 0.1079 0.1027
Hill Pond E 0.1226 0.118 0.0975 0.097 0.0835 0.1325
Turtle Mtns 0.1287 0.1012



STRUCTURE 2.2 analyses were based on genotypes at 5 loci. The least 

admixture was found when K=2 (K=2, -9672.9; K=3, -9593.9, K=4, -9469.4; Figure 8). 

The data set was then divided into two groups, called “East” and “West” based on the 

proportion of membership in that group (Figure 9). In the East group 3 clusters were the 

best fit (K=2, -4387.1; K=3, -4702.1, K=4, -4363.1) while in the West group 6 clusters 

were the best fit (K=5, -4356.2; K=6 -4654.4; K=7 -4360.3). The East group was 

analyzed again without Alaska, Colorado and Alberta but this did not change the best fit 

of K.^3. When the West group was reanalyzed with Alaska, Colorado and Alberta, 

however, the best fit was K>2 (K=2, -5078.4; K=3, -4982.1; K=4, -4886).
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0 .6 0 -r

Figure 7. Pairwise Fst values plotted against geographic distance in kilometers. Mantel 
test r= r=0.47, p=0.013. Line represents the reduced major axis regression line used to 
calculate slope and intercept.

r

Figure 8. The log likelihood values for each value of K for all populations. The highest 
likelihood (and therefore lowest log likelihood) is K=2.
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Figure 9. In STRUCTURE output each individual represented by a vertical bar. The proportion of each individual’s 5 locus genotype 
(see text) that is most similar to each group is colored (see the y-axis for proportion). The population names are on the x-axis and the 
name is colored according to the group to which that population as a whole was assigned. The “East” group is green, the “West” 
group is red.
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Discussion

Significant genotypic population differentiation between most pairs of 

populations (exceptions listed in Table 5), the pairwise values of Fst, and the 

STRUCTURE result all indicate significant population structure in Rcina sylvatica. The 

Colorado and Alaska populations are of special interest because of their very high 

pairwise Fst values and the lowest within population genetic variation of any sampled 

population found in the Colorado population. The Colorado population is one of a tew 

remnant populations that are not continuous with the rest of the geographic range of the 

species (Figure 2). It may be that as little as 100 years ago those remnant populations 

were part of a continuous range. According to Martof and Humphries (1959) Rocky 

Mountains populations connected Colorado populations to the rest of the range until this 

time based on two poorly preserved museum specimens from Montana. A study done by 

Porter (1969) showed a high degree of interpopulation incompatibility between Colorado 

and Manitoba populations, based on interpopulational breeding crosses, that might be an 

indication of a more temporally distant split. Since the range’s contraction it is possible 

that a genetic drift, lack of gene flow or both have caused the Colorado population to 

differentiate from other populations.

Colorado was likely a peripheral population, occurring near the outer boundary of 

the species range, before it became disjunct (Martof and Humphries 1959). Peripheral 

populations are subject to low'er gene flow and often different natural selection pressures 

compared to more central populations. Both of these will have the effect of causing 

peripheral populations to diverge from the central populations (Lessica and Allendorf 

1995).
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Since wood frog generation time is as little as 2 years (Berven 1990), it is 

conceivable that a significant loss of genetic variation due to genetic drift in the Colorado 

population has caused differentiation in as little as 100 years. A simulation study by 

Lacy (1987) showed that 25 identical populations each containing 120 randomly mating, 

hermaphroditic individuals lost an average 58% of their heterozygosity in 100 

generations (Lacy 1987). In fewer than 5 generations the New Zealand snapper, (Pagrus 

auratus), showed significant loss of genetic diversity and heterozygosity when effective 

population sized dramatically decreased due to overharvesting (Hauser et al. 2002).

These studies lend support to the hypothesis that a combination of isolation and drift 

caused differentiation of the Colorado population.

The Alaska populations were likely isolated during the last glacial maximum and 

became more differentiated with time. White spruce (Anderson et al. 2006), root voles 

(Brunhoff et al. 2003), tundra voles (Galbreath and Cook 2004) and arctic hares (Waltari 

and Cook 2005) all show evidence of an Alaskan refugium as well, often as part of a 

greater Beringean refugium. The Alaska populations show the lowest level of inbreeding 

in this study. The sample size from the Alaska population was low. More samples from 

more populations in Alaska have recently been gathered by R. Newman: future work will 

shed light on the genetic variability and pattern within Alaska.

Glacial refugia might also be expected to contain unique (private) alleles and high 

allelic richness. The Alaska population does not fit this profile with only 3 private 

alleles; however this may due to a small sample size. A number of other populations do 

have large numbers of unique alleles (Figure 6). It is likely that there was not a single 

refugial population, but that a refugial area contained multiple populations. When
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populations are combined with those in closest geographic proximity, the two New York 

populations have the highest combined number of private alleles and intermediate levels 

of allelic diversity (Table 7). New York may have been glacial refugium for wood frogs. 

This observation is consistent with the findings of Hoffman and Blouin (2004) in their 

study of Rana pipiens who also suggest a New York refugium for leopard frogs. The 

Southern Appalachian populations (North Carolina, S Appalachia 1 and S Appalachia2) 

when combined also show a relatively high number of private alleles (6) and a moderate 

level of differentiation from one another (Fsr = 0.0419 to 0.0264) based on levels of 

differentiation found in previous studies of R. sylvatica (Newman and Squire 2001,

Squire and Newman 2002). Both the number of private alleles and the Fst values are 

most likely an indication of a third. Southern Appalachian glacial refugia. The number of 

private alleles in North Dakota is also high. This might simply reflect the largest samples 

sizes in the study and the largest number of sampled populations. Alternatively, this may 

be due to a lack of gene flow between the populations that has caused new alleles to 

remain within a single population.

Table 7. Combined areas with large numbers of private alleles.
Area (number populations combined) Number private alleles
Manitoba (2) 5
Ohio (2) 5
Southern Appalachia (3) 6
Quebec (2) 9
North Dakota (4) 10
New’ York (2) 11

Generally, the populations nearest geographically are also those genetically most 

similar with a clear isolation by distance pattern (see Figure 7). This is consistent with a 

slow phalanx mode! of recolonization proposed by Hewitt (2001,2004). Under this

34



model we expect to see maintenance of genetic variation and no large geographic split 

and no corresponding genetic split. The pattern of genetic diversity and latitude is less 

clear. Many of the northern populations are no less diverse than the southern 

populations. The Manitoba populations in particular show greater diversity than many of 

the more southern populations. This increase in diversity could be an indication of a zone 

of secondary contact; however, our sampling is insufficient to determine this. Ontario, 

north of the Great Lakes, appears to be a zone of secondary contact in Rana pipiens 

(Hoffman and Blouin 2004). Austin et al. 2002 found that dispersing spring peepers went 

north into eastern Ontario, then westward into Manitoba and that barriers to dispersal 

may have prevented western haplotypes from expanding north into Ontario and 

Manitoba. With more sampling, particularly in Ontario, it might be possible to more 

accurately determine the existence and possible location of a zone of secondary contact.

STRUCTURE results showed that in the East group Alaska formed its own group 

with fair support for the inclusion of one of the New York populations. The inclusion of 

Alaska, Colorado and Alberta is unexpected. The inclusion of these three in the East 

group is most likely due in part to the fact that these populations are so different from all 

other populations, though Alaska is most closely related to the New York population.

This relationship may reflect a chance sharing of alleles and the small number of 

individuals sampled in the Alaska population. Because Alaska, Colorado and Alberta 

added more support to the formation of further groups when in the East group when K=2 

the clustering placed them in the East group. The removal of Alaska, Alberta and 

Colorado from the East group decreased the support for the remaining populations in that 

group. When forced to join the West group, Alaska, Alberta and Colorado formed a very
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well supported group with Sheyenne and Saskatchewan, a more geographically logical 

grouping. Additional samples from the New York populations in conjunction with more 

samples from Alaska might shed more light on these unexpected groups.

Like many other species, the recolonization history of wood frogs is complex. 

This study has found indications of three glacial refugia (Alaska, North Carolina, and 

New York) and at least one possible area of secondary contact in Manitoba. With more 

intensive sampling in future studies the pattern could become clearer.
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CHAPTER III

REGIONAL PATTERNS 

Abstract

Local geography had a major role in shaping the genetic structure of R. sylvatica 

in the upper Great Plains region of North America. Populations in Minnesota and 

Manitoba are most closely related to each other and less closely related to those of North 

Dakota, indicating a geographical barrier. No pattern of isolation by distance was seen at 

this scale.

Introduction

The “prairie potholes” of the northern Great Plains are the remains of small areas 

of ice left after the leading edge of the main ice sheet retreated. In other parts of North 

America large proglacial freshwater lakes formed as the ice melted and the water was 

trapped (Pielou 1991). One of these, Lake Agassiz, covered present day western 

Minnesota, eastern North Dakota and southern Manitoba (Ashworth and Cvancara 1983, 

Fenton et al. 1983, Pielou 1991).

How the range expansion following the emptying of Lake Agassiz occurred and 

how quickly it occurred would lead to different genetic patterns. Rapid northward 

expansion would lead to a reduction in allelic diversity in northern populations (Nichols 

and Hewitt 1994; Ibrahim et al. 1996; Hewitt 2001,2004). Rapid leptokurtic dispersal
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would produce patches of homogeneity, as predicted by Ibrahim et al. (1996). If 

populations expanded as in Hewitt’s “phalanx” model, they would retain more of their 

genetic diversity and produce less population structure while refugial areas would have 

time to both diverge genetically and become geographically subdivided (Nichols and 

Hewitt 1994, Hewitt 2001, 2004).

Amphibians require breeding ponds and have relatively low vagility; thus they are 

more likely to show evidence of phylogeographic structure on a small scale. In two more 

terrestrial amphibians, Bufo calamita (Rowe et al 2000) and Bafo woodhousei (Masta et 

al. 2003), this structure is evident at distances of a few kilometers using microsatellites to 

two hundred kilometers using mitochondrial DNA. A study by Brede and Beebee (2004) 

found Bufo bufo populations had significant interpopulation structure at distances of 

hundreds of kilometers w'hile Rana temporaria populations in the study at the same 

distance did not. Johansson et al. (2006) found interpopulation structure in Rana 

temporaria populations in Sweden though the structure was not strongly statistically 

significant. Rana iberica populations are structured on a scale of tens of kilometers 

(Martinez-Solano 2005).

The objective of this study was to observe the genetic patterns in R. sylvatica at a 

regional scale. While the authors have studied this question at a fine scale (tens of 

kilometers) in this species (Newman and Squire 2001, Squire and Newman 2002) and 

more recently at a geographic range-wide scale (Chapter 2) where significant population 

structure and an isolation by distance pattern was found in each study, the authors have 

not yet investigated the intermediate, regional scale for population structure.
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Methods

Sample Handling

A total of 250 samples were collected from 9 populations in Minnesota, North 

Dakota and Manitoba (see Figure 10 for locations). These sarnies are a subset of the 

samples included in Chapter 2. Tissue samples (toe tips or hi mlings (one per egg 

mass)) were stored and transported in 95% ethanol. DNA was extracted by a standard 

phenol-chloroform extraction and an ethanol precipitation (Hitchings & Beebeel998).

Six microsatellite loci were used (Table 1). PCR reactions were conducted in lOul 

volumes and contained IX buffer, 0.5 uM dNTPs, 2.5 mM MgCh, luM unlabeled 

primer, luM fluorescently labeled primer, and 0.5 units taq DNA polymerase (Promega). 

The PCR reactions were carried out in a BIORAD thermocycler. For Rs23 (Newman and 

Squire 2001) the cycles consisted of 3 minutes at 94°C, and 3 minutes at 55°C for one 

cycle, 1 minute at 72°C, 1 minute at 94°C, 1 minute at 55°C for 30 cycles and a 3 minute 

extension at 72°C. For all other primers (Julian and King 2003) the PCR reaction cycles 

were 3 minutes at 94°C for one cycle, 1 minute at 94°C, 30 seconds at 54°C, and a final 1 

minute at 72°C for 30 cycles, and a 2 minute extension step at 72°C. PCR products were 

run on a 2% agarose gel and stained with ethidium bromide (2ug/ml). Products in the 

correct size range w'ere then run on an ABI (Applied Biosystems) model 3100 using 0.5ul 

500ROX as a size standard in each sample. ABI output was using ABI GeneScan 

software (version 3.7, 2000) and allele sizes determined by ABI Genotyper.

Data Analysis

Characterization of genetic diversity (allele frequencies, genic diversity, tests for 

Hardy-Weinberg equilibrium) was conducted using GENEPOP version 4 (Rousset 2007).
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Levels of inbreeding (Fis), intrapopulation and interpopulation genetic variation were 

calculated and linkage disequilibrium between pairs of loci was tested for in GENEPOP 

using a log likelihood ratio statistic (Rousset 2007). GENEPOP was also used to test for 

differentiation in allele frequencies among pairs of populations using a Markov Chain 

Monte Carlo approximation of Fisher’s exact test (Raymond and Rousset 1995). Because 

of the large number of pairwise tests involved, the significance of pairwise comparisons 

was determined using a sequential Bonferroni adjustment (Rice 1989).

Figure 10. Sample locations and number of samples from each. 1. Sheyenne National 
Grasslands - 16; 2. Crookston - 20; 3. Rydell - 24; 4. Manitoba! - 29; 5. Manitoba2 - 25; 
6. Oakville - 41; 7. Hill Pond East - 47; 8. East Grand Forks - 23; 9. Turtle Mountains -  
25

Minnesota
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Pairwise Fst (averaged over loci) were estimated in GENEPOP and used in analyses of 

isolation by distance, with a MantePs test of significance in IBDWS 3.14 (Jensen et al. 

2005). Presence and estimation of null allele frequencies was examined in GENEPOP 

(Rousset 2007) and MICRO-CHECKER (Van Oosterhout 2004) was used to investigate 

the possibility of large allele dropout, evidence of scoring errors and presence of null 

alleles and estimation of null allele frequencies.

Clusters or groups were delineated via Bayesian methods as in Pritchard et al. 

(2000), via STRUCTURE 2.2. STRUCTURE does not assume a mutational model or 

process but uses individuals’ genotypes to determine the population(s) to which they 

should be assigned. The model accounts for Hardy-Weinberg or linkage disequilibrium 

by introducing population structure and attempts to find population groupings that are not 

in Hardy-Weinberg disequilibrium (Pritchard et al. 2000). The number of clusters or 

groups (K) was set from K=2 to K=10 to determine the likelihood of each.

Results

Genotypes were obtained for at least two loci from 204 of 250 individuals. The 

remaining 46 individuals with fewer than three loci genotyped were excluded from 

analysis (see Table 8 for the number of individuals genotyped at each locus and the 

number of different alleles at each locus). The number of different alleles for each 

population compared to the number of alleles seen among these populations is seen in 

Figure 11.

Inbreeding values (Fis) ranged from a low in Manitoba 2 of -C.009 to a high of 

0.1654 in Rydell. Please see Table 9 for all results.
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Figure 11. Alleles found in each population for all loci (red) compared to the total 
number of alleles found in for all populations for all loci (blue).

Table 8. Populations, with the number of different alleles (A) at each locus and the 
number of individuals genotyped at each locus (N).

R sll Rs23 Rs32 Rs55 Rs70 Rs88
A N A N A N A N A N A N

Crookston 13 15 6 19 12 18 13 20 0 0 11 19
E Grand Forks 13 12 6 14 12 10 6 6 10 7 8 13
Hill Pond E 15 18 7 37 20 30 12 34 12 19 13 26
Manitoba 1 13 10 4 19 16 15 13 19 12 15 10 11
Manitoba 2 15 16 3 2 12 15 16 14 15 12 11 13
Oakville 15 33 5 14 16 38 13 35 11 22 10 32
Rydell 15 19 5 17 9 18 11 16 8 5 11 19
Sheyenne 11 16 4 16 9 16 10 14 8 15 7 16
Turtle Mtns 12 11 5 21 0 0 12 16 9 14 9 18
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Table 9. The inbreeding value (Fis), within population variation (1-Q intra) and between
population variation (1-Q inter) for each population.

Population F,s 1 -Q intra 1 -Q inter
Crookston 0.1363 0.7409 0.8525
E Grand Forks 0.0136 0.8406 0.8502
Hill Pond E 0.1257 0.7408 0.809
Manitoba 1 0.011 0.8646 0.8521
Manitoba 2 -0.009 0.8702 0.9223
Oakville 0.1414 0.6556 0.7898
Rydell 0.1654 0.711 0.8031
Sheyenne 0.1378 0.6996 0.8106
Turtle Mtns 0.0946 0.7662 0.8284

All populations were found to be significantly differentiated from all other 

populations except for the population pairs in Table 10 (see Appendix E for all 

population pairs). Manitoba 2 and East Grand Forks are not significantly differentiated 

from each other but are close to the 0.05 significance value. Sheyenne, both Manitoba 

populations, and East Grand Forks were found to be in Haroy-Weinberg equilibrium at 

all loci (Table 11). Crookston was in Hardy-Weinberg disequilibrium at one locus, 

Turtle Mountains at two loci, Rydell and Oakville at three loci and Hill Ponds at four 

loci.

Populations p-value
Manitoba 2 and East Grand Forks, MN 0.062076

Manitoba 1 and Manitoba 2 0.127297

Crookston and Rydell. MN 0.13207

Manitoba 2 and Crookston, MN 0.161127

differentiation.
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Table 11. Global Hardy-Weinberg estimated p-values by Monte Carlo estimation by

Population p-value
Sheyenne 0.0013
Crookston 0.0006
Rydell 0
Manitoba 1 0.3864
Manitoba 2 0.7371
Oakville 0
Hill Pond E 0
E Grand Forks 0.3546
Turtle Mountains 0.0075

Two pairs of loci Rsl 1 and Rs88 and the pair Rs55 and Rs70 were found to be in 

linkage disequilibrium (Table 12). In each case only one population had a significant 

comparison (Oakville and Sheyenne, respectively) while each other population had a 

non-significant result (see Appendix F). All loci were used for further analysis.

Table 12. Linkage disequilibrium across all population pairs for each pair of loci. The 
significant values are bolded.
Locus pair Chi2 df d-value
Rsl 1 & Rs23 2.5845 10 0.9896
Rsl 1 & Rs32 6.9218 8 0.5451
Rsl 1 & Rs55 0.0000 8 1.0000
Rsl 1 & Rs70 5.3877 4 0.2498
R sll & Rs88 Infinity 8 Highly sign.
Rs23 & Rs32 8.1788 12 0.7710
Rs23 & Rs55 11.4490 16 0.7810
Rs23 & Rs70 8.0469 8 0.4289
Rs23 & Rs88 5.8379 16 0.9898
Rs32 & Rs55 4.0752 10 0.9439
Rs32 & Rs70 1.6063 8 0.9908
Rs32 & Rs88 0.4942 12 1.0000
Rs55 & Rs70 18.9656 8 0.0150
Rs55 & Rs88 1.1489 14 1.0000
Rs70 & Rs88 5.0939 10 0.8848
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Pairwise Fst values ranged from 0.0005 between the Crookston and East Grand 

Forks, MN populations to 0.1469 (Table 13). Of the pairwise Fst values 15 of 16 highest 

values involve either Oakville or Sheyenne and the highest is between these two 

populations. The Mantel test showed no significant correlation of geographic and genetic 

distance (r=-0.1616, p= 0.72; Figure 12).

Both MICRO-CHECKER and GENEPOP were used to estimate the frequency of 

null alleles at each locus for each population. The Brookfield 1 (Brookfield 1996) 

estimates were very similar to those of GENEPOP, therefore only the GENEPOP 

estimations of null allele frequencies are reported here. The population/loci combinations 

with evidence of null alleles and the estimate of the frequency of those null alleles are 

given in Table 14.

Figure 12. Pairwise Fst values plotted against geographic distance in kilometers. No 
significant pattern of isolation be distance was found (r=-0.1616, p= 0.72). Line 
represents the reduced major axis regression line used to calculate slope and intercept.
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Table 13. Pairwise Fst values for each population pair.

Sheyenne Crookston Rydell
Manitoba

1
Manitoba

2 Oakville
Hill Pond 

E
E Grand 

Forks

Crookston 0.0536

Rydell 0.0881 0.0007

Manitoba 1 0.0831 0.0181 0.0187

Manitoba 2 0.0374 0.0059 0.0239 0.0057

Oakville 0.1469 0.073 0.0716 0.0694 0.0812

Hill Pond E 0.0881 0.0268 0.0268 0.026 0.0309 0.0574

E Grand Forks 0.0774 0.0005 0.0125 0.0208 0.0092 0.0683 0.0095

Turtle Mtns 0.0798 0.0225 0.0274 0.0196 0.0262 0.069 0.053 0.0188



Table 14. Frequency estimations for null alleles by population (for populations estimated to have null alleles) for each locus. 
GP is the GFNEPOP estimate and MC is the MICROCHECKER Brookfield et al. (1996) estimate. Boxed values have a 
greater than 10% difference between the estimates.

Population

Rsl 1

GP MC

Rs23

GP MC

Rs32

GP MC

Rs55

GP MC

Rs70

GP MC

Rs88

GP MC

Sheyenne 0.210

Crookston 0.120

Rydell 0.160 0.174 0.112 0.121

Oakville 0.162 0.146 0.108 0.103

Hill Pond E 0.123 0.118 0.098 0.097 0.084 0.133

Turtle Mtns 0.129 0.101



The Bayesian clustering program, STRUCTURE, returned the highest probability for 

L—9 (K=8, -4789; K=9, -4933; K=10, -4872.1; Figure 13.) though many of the individuals could 

ot be strongly assigned to any one population. Because the most likely number for K was also 

ie number of population in the study no subdivision of groups was deemed necessary or seemed 

iologically relevant (Figure 14).

K value

2 3 4 5 6 7 S 9  10

igure 13. The log likelihood values for each value of K for all populations. The highest 
kelihood (and therefore lowest log likelihood) is K=9.
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4̂O
Figure 14. Visual representation of STRUCTURE results. Each individual represented by a vertical bar. The proportion of 
each individual’s genotype that is most similar to each group is colored (see the y-axis for proportion).



Discussion

Rydell, Oakville and Hill Pond East populations were found to be in Hardy- 

Weinberg disequilibrium for at least half of the loci due to heterozygote deficiency 

(Table 11). Hardy-Weinberg disequilibrium is unlikely to be due to small sample size: 

Hill Pond and Oakville had the highest numbers of individuals genotyped. This 

deficiency may be due, in part, to the presence of null alleles; however, the estimation of 

null allele frequencies for those loci in those populations were not high (0.1615 and 

under). Another possibility is a recent decrease in population size increasing the effect of 

genetic drift. All three populations are in or adjacent to agricultural lands which might 

also limit gene flow. It is likely that inbreeding has a role in the heterozygote deficiency 

as all three populations have a high level of inbreeding (Fis= 0.1654 Rydell, 0.1414 

Oakville, 0.1257 Hill Pond East; Table 9).

The two Manitoba populations were not significantly differentiated from each 

other. This similarity may be due to gene flow keeping these two populations 

undifferentiated in spite of possible barriers to dispersal such as roadways. Alternatively, 

it is also possible that the two populations were founded from the same or (very similar) 

source popuiation(s) and have not yet had time to differentiate. Currently there is not 

enough data (population size, dispersal rates, time since founding, number of founders, 

etc.) to determine whether gene flow or founder effects play a larger role with these 

populations.

Results from STRUCTURE analysis show evidence of population differentiation 

not found by use of the Fst statistic. STRUCTURE attempts to place individuals within 

K populations to minimize both Hardy-Weinberg disequilibrium and admixture. It is
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evident that each population is an independent unit in spite of very low Fst values in a 

few comparisons. As a group individuals are assigned by STRUCTURE to the 

population from which they originated, verifying population independence.

The Fst values found in this study are close to those reported in studies such as 

Johansson et al. (2006). In this study the authors found an overall Fst value of 0.1 in 

Rana temporaria in Sweden over similar geographic distances. \  global Fst value of 

0.1078 was found in Rana catesbeiana by Austin et al. (2004). A study of Bufo bufo and 

Rana temporaria in England found higher Fst values than reported here in Bufo bufo 

(mean 0.265) but higher in Rana temporaria (mean 0.051) (Brede and Beebee 2004).

While R. sylvatica has shown significant isolation by distance at smaller 

geographic scales (tens of kilometers) (Newman and Squire 2001) and at the continental 

scale (Chapter 2) none was found at the intermediate, regional scale. The genetic pattern 

of this region may be reflecting the effects of landscape and geography.

Until approximately 7500 years ago proglacial Lake Agassiz covered the central 

portion of this region, bounded on the northeast side by the Laurentide ice sheet (Pielou 

1991), that may have acted as a barrier to gene flow to wood frog colonizers. After the 

disappearance of Lake Agassiz the Red River of the North and other smaller lakes and 

rivers in the area remained as barriers. The fact that the Minnesota populations appear to 

be more closely related to the Manitoba populations (8 of the 9 lowest FSt values are 

between Minnesota and Manitoba populations) than to the geographically closer North 

Dakota populations may be due to this barrier.

Many landscape features form barriers for amphibians. Columbia spotted frogs, 

Rana luteiventris, in the western USA have movement limited by mountain ridges
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between valleys (Funk et al, 2005). The stream-breeding salamander, Dicamptodon 

tenebrosus, has lowered genetic variation and reduced population density due to forest 

clearing in British Columbia (Curtis and Taylor, 2004).

Sheyenne and Oakville populations are the two populations most different from 

each other (Fst = 0.1469) and from all of the other populations. The Sheyenne 

population is the southernmost of those in this study and is at the periphery of the species 

range. Climatic oscillations causing successive bottlenecks and possible loss of genetic 

diversity in the founding of this population are possible reasons for the Sheyenne 

population’s differentiation. Peripheral populations are subject to lower gene flow and 

often different natural selection pressures compared to more central populations. Both of 

these will have the effect of causing peripheral populations to diverge from the central 

populations as well (Lessica and Allendorf 1995). Increased sampling and further study 

would be necessary to provide more information in this particular system.

The Oakville population is found in two small ponds surrounded by a small patch 

of native prairie and agricultural lands. Stevens et al. (2006) found that agricultural land 

is a barrier for the juvenile natterjack toad (Bufo calamita) while Scribner et al. (2001) 

found agricultural land reduced genetic variation in the common toad {Bufo bufo). Open 

landscape appeared to prevent dispersal of Rana sylvatica into apparently suitable 

breeding habitat (Gibbs 1998). Genetic drift acting in a small population coupled with a 

lack of gene fiow may have allowed the Oakville population tc differentiate from 

neighboring populations.
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CHAPTER IV

CONCLUSIONS

The pattern of colonization o f the range o f R a n a  s y lv a t ic a  following glaciation is 

:omplex. This pattern is not unlike that o f other species including the spring peeper,

3se u d a c r is  c ru c ife r ; mitochondrial DNA showed four main clades and divergent 

laplotypes in some populations (Austin el al. 2002). B ufo fo w le r i  shows a pattern at the 

lorthem limit o f  its range consistent with two separate colonizations, and possibly 

lybridization with Bufo a m e r ic a n u s  as well (Smith and Green 2004). Steller’s jays 

C y a n o c it ta  s te l le r i ) show a genetic pattern consistent with recolonization from multiple 

■efugia (Burg et al. 2005).

Some findings are more clear. Alaska was likely a glacial refugium for R. s y lv a tic a .  

In spite o f small sample size it appears the sampled population is significantly genetically 

differentiated from all other populations, even those as close as Alberta, Canada. The 

Rocky Mountains are likely a barrier to recolonization from the Alaskan refugium. 

Bayesian clustering reflects this history, placing Alaskan frogs consistently in their own 

population though further sampling is needed to lend more support to these findings.

Other source areas were revealed during this study as well. Both New York and 

southern Appalachia are likely glacial refugia. The New York populations are 

genetically differentiated from one another and have a high number o f private alleles.

One o f the Quebec populations is more closely related to both New York populations
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than the New York populations are to each other based on Fsr values. Due to the 

geographic distance between these populations current gene flow is unlikely. In this case 

it is possible this Quebec population was colonized by populations from New York. The 

southern Appalachian populations are also differentiated from one another, indicating 

that these were populations isolated from one another in another glacial refugium.

Rana sylvatica shows a clear pattern of isolation by distance at a continental scale 

(Chapter 2), as well as a local scale (Newman and Squire 2001). At the intermediate, 

regional level in the northern Great Plains there is no evident isolation by distance 

pattern. This is not surprising given the geologic history of the region. Lake Agassiz, the 

enormous proglacial lake covering much of the area and bounded on the northeast side by 

the Laurentide ice sheet, would have acted as a barrier to gene flow. Following the 

disappearance of the ice sheets were periods of significant droughts (Laird et al. 1996) 

that would likely prevent the recolonization and maintenance of amphibian populations. 

After warmer, moister weather prevailed, the Red River of the North remained as a 

barrier, with smaller rivers and streams forming a less insurmountable barrier. That 

Minnesota populations appear to be more closely related to the Manitoba populations 

than to the geographically closer North Dakota populations may be due to these barriers.

A secondary goal of this project was to determine the usefulness of microsatellites 

at this scale for this species. Mitochondrial DNA was able to discern an overall pattern 

of eastern and western groups (Irwin unpublished data). This project has shown 

microsatellites’ utility in this type of study, has located putative glacial refugia. and 

reconstructed historical patterns on a regional level.
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These studies also indicate, however, microsatellites, like all genetic analysis 

tools, are not flawless. Hardy-Weinberg disequilibrium can have multiple causes 

(Wahlund effect or inbreeding for example), including one or more alleles that fails to 

amplify during polymerase chain reaction (PCR) due to mutations in the primer binding 

sites, null alleles. The likely presence of null alleles produces artifacts in the form of low 

numbers of heterozygotes (Selkoe and Toonen 2006). This artificial result increases the 

amount of Hardy-Weinberg disequilibrium seen in many of the populations, particularly 

at locus Rs70.

While most studies report the presence of possible null alleles and estimate their 

frequencies, few actually attempt to directly verify the presence of null alleles or 

determine the reason for their failure to amplify in PCR (Dakin and Avise 2004). Callen 

et al. (1993) sequenced alleles at microsatellite loci on human chromosome 16 and found 

30% of the microsatellite loci sequenced had null alleles. One of these null alleles was 

due to an 8 base pair deletion in the primer binding region (Callen et al. 1993). 

Sequencing of a null allele in the grey-sided vole, Clethrionomys rufocanus, found two 

base pair substitutions in and another adjacent to the primer binding region (Ishibashi et 

al. 1996). Offspring that are heterozygous for a null allele may not appear to have any 

alleles in common with a parent who is also heterozygous for a null allele (Dakin and 

Avise 2004). Studies that determine the effect of those null alleles on levels of 

heterozygosity and populations differentiation will be important for further work in this 

discipline.
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APPENDIX A

Sample locations and collectors:
1. Buladean, North Carolina - Gene Spears
2. 3 miles northeast of Two Rivers, Wisconsin -  Joanne Kline
3. Adams County, Ohio -  Jason Irwin
4. Adams County, Ohio -  Jason Irwin
5. 6 km east of Dillingham, Buncombe County, North Carolina -  Jim Petranka
6. 4 km north of Topton, Graham County, North Carolina -  Jim Petranka
7. Lake Hill, Mont Saint-Hilaire, Quebec -  Martin Ouellet
8. East Hill, Mont Saint-Hilaire ,Quebec -  Martin Ouellet
9. Sheyenne National Grasslands, North Dakota -  Robert Newman
10. Saskatchewan -  Allison Puchniak
11. 4494035N 428695E Zone 13, Larimer County, Colorado -  Ken Kehmeier
12. 46.23N 89.42W, Gogebic County, Michigan -  Mitch Bergeson
13. 55.07 113 deg-min, Near South Calling Lake, Alberta, Canada -  Brian Eaton
14. 40.45.515 73.44.763 deg-dec min, Long Island, New York -  Russell Burke
15. 40.50.302 73.32.030 deg-dec min, Long Island, SSP New York -  Russell Burke
16. Alaska -  Jason Irwin
17. Crookston, Minnesota -  Tina Squire
18. Near Rydell National Wildlife Refuge, Minnesota -  Tina Squire
19. 50.098N 96.016W Seven Sisters Falls, Manitoba -  Tina Squire
20. Highway 308 south of Highway 1, Manitoba -  Tina Squire
21. 5305201N 627351E Zone 14, Grand Forks, North Dakota -  Tina Squire
22. 5319839N 578583E Zone 14, Petersburg, North Dakota -  Robert Newman
23. 48.05409N96.93239W, East Grand Forks, Mirmesota- Tina Squire
24. 541296IN 414370E Zone 14, Turtle Mountains -  Robert Newman
25. 8 km east of Townsend, Blount County, Tennessee - Jim Petranka

56



APPENDIX B

The inbreeding value (FisX within individual variation (1-Q intra) and within population 
variation (1-Q inter) for each population.

F,s 1 -Q intra 1 -Q inter
Alaska -0.1604 0.7958 0.659
Alberta 0.3885 0.6414 0.8029
Colorado 0.0553 0.5068 0.5453
Crookston 0.1363 0.7409 0.8525
E Grand Forks 0.0136 0.8406 0.8502
Hill Pond E 0.1257 0.7408 0.809
Manitoba 1 0.011 0.8646 0.8521
Manitoba 2 -0.009 0.8702 0.9223
Michigan 0.0093 0.8475 0.8532
North Carolina 0.1074 0.778 0.8697
New York 0.0776 0.7361 0.8085
Oakville 0.1414 0.6556 0.7898
Ohio 1 0.2106 0.7069 0.8969
Ohio 2 0.1845 0.6551 0.8508
Quebec 1 0.1695 0.6668 0.8244
Quebec 2 0.3031 0.5967 0.8902
Rydell 0.1654 0.711 0.8031
Saskatchewan 0.3368 0.575 0.8935
Sheyenne 0.1378 0.6996 0.8106
S Appalachia 1 0.0775 0.8003 0.8759
S Appalachia 2 0.2482 0.6319 0.9159
SSP New York 0.1559 0.6029 0.7634
Turtle Mtns 0.0946 0.7662 0.8284
Wisconsin 0.1675 0.7738 0.9186
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A PPEN D IX  C

Linkage disequilibrium for ail populations for loci pairs with significant linkage

Pop Locus Pair p-value
North Carolina Rsl 1 & Rs70 0.0804
Ohio 1 Rsl 1 & Rs70 1
S Appalachia 1 Rsl 1 & Rs70 0
S Appalachia 2 Rsl 1 & Rs70 1
Quebec 2 Rsl 1 & Rs70 ■*i
Sheyenne Rsl 1 & Rs70 1
Colorado Rsl 1 & Rs70 1
Oakville R s ll & Rs70 0.04631
North Carolina Rsl 1 & Rs88 1
Ohio 1 Rsl 1 & Rs88 1
Ohio 2 R s ll & Rs88 1
Quebec 2 R s ll & Rs88 1
Sheyenne R s ll & Rs88 1
Colorado R s ll & Rs88 0.88849
Alaska R s ll & Rs88 1
Rydell R s ll & Rs88 1
Oakville R s ll  & Rs88 0
E Grand Forks R s ll & Rs88 1
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APPENDIX D
Pairwise Fst values.
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Wisconsin 0.0301
Ohiol 0.0254 0.0222
Ohio2 0.0258 0.03&6 0
S Appalachia 1 0.0419 0.0461 0.0306 0.0406
S Appalachia2 0.0264 0.0282 0.0129 0.0291 0.0293
Quebec 1 0.0482 0.0417 0.0454 0.0422 0.0734 0.0437
Quebec2 0.0452 0.025 0.0371 0.0454 0.0531 0.0163 0.0208
Sheyenne 0.1272 0.0611 0.0948 0.1255 0.1148 0.1238 0.1571 0.1068
Saskatchewan 0.0612 0.041 0.0357 0.0519 0.0648 0.0445 0.0813 0.0565 0.1148
Colorado 0.2481 0.2084 0.2043 0.2369 0.2362 0.2176 0.2634 0.2102 0.2557 0.3015
Michigan 0.0854 0.0297 0.0651 0.0952 0.1034 0.0801 0.0878 0.0761 0.1024 0.0834 0.248
Alberta 0.0886 0.0562 0.0839 0.0792 0.0924 0.0814 0.1194 0.0711 0.0907 0.043 0.2794 0.1327
New York 0.1097 0.0929 0.0932 0.1134 0.1088 0.1073 0.1429 0.0764 0.1469 0.1371 0.2721 0.1326
SSP New York 0.1417 0.1091 0.1194 0.1405 0.1366 0.1149 0.123 0.0479 0.1727 0.1504 0.2834 0.1598
Alaska 0.22 0.1692 0.1647 0.1975 0.1895 0.1902 0.2319 0.1619 0.2054 0.1728 0.3437 0.2236
Crookston 0.0964 0.0631 0.0707 0.1076 0.0921 0.0811 0.1273 0.086 0.0536 0.0601 0.2434 0.0604
Rydell 0.1201 0.0871 0.0962 0.1343 0.1213 0.1187 0.1472 0.1139 0.0881 0.0976 0.2903 0.0816
Manitoba 1 0.1057 0.0806 0.0761 0.1154 0.0892 0.0967 0.1316 0.0892 0.0831 0.0723 0.2486 0.0754
Manitoba2 0.058 0.0315 0.032 0.0588 0.0583 0.0479 0.063 0.0511 0.0374 0.0561 0.2405 0.0214
Oakville 0.1432 0.1178 0.1093 0.1485 0.1141 0.1424 0.1556 0.1341 0.1469 0.1461 0.2925 0.1197
Hill Pond East 0.1188 0.0925 0.0973 0.137 0.1058 0.1164 0.1466 0.1073 0.0881 0.1162 0.2635 0.079
East Grand Forks 0.1002 0.0756 0.0746 0.112 0.0873 0.0843 0.1331 0.0921 0.0774 0.0961 0.2669 0.0712
Turtle Mountains 0.1081 0.0811 0.085 0.1249 0.0904 0.1037 0.1485 0.0983 0.0798 0.0866 0.2182 0.1003



Pairwise Fst values, continued.
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New York 0.1704
SSP New York 0.1862 0.1178
Alaska 0.2318 0.1381 0.1624
Crookston 0.1315 0.1127 0.1414 0.1717
Rydell 0.1701 0.1551 0.1767 0.2209 0.0007
Manitobal 0.1379 0.141 0.165 0.2083 0.0181 0.0187
Manitoba2 0.0635 0.0851 0.1164 0.1517 0.0059 0.0239 0.0057
Oakville 0.1969 0.1558 0.2015 0.2285 0.073 0.0716 0.0694 0.0812
Hill Pond East 0.1744 0.1468 0.1684 0.2186 0.0268 0.0268 0.026 0.0309 0.0574
East Grand Forks 0.1468 0.1332 0.167 0.2167 0.0005 0.0125 0.0208 0.0092 0.0683
Turtle Mountains 0.1458 0.1411 0.164 0.2091 0.0225 0.0274 0.0196 0.0262 0.069

0.0095
0.053

03 w  

<3W

0.0188



A PPE N D IX  E

Population differentiation for each population pair arranged by Fisher’s method 
estimation o f the p-value. Non-significant p~value estimations are bolded.

Population 1 Population 2 Chi2 df p-value

Crookston Manitoba! Infinity 10 Highly sign.

Crookston Oakville Infinity 10 Highly sign.

E Grand Forks Turtle Mtns Infinity 10 Highly sign.

Hill Pond E Turtle Mtns Infinity 10 Highly sign.

Manitoba 1 E Grand Forks Infinity 12 Highly sign.

Manitoba! Hill Pond E Infinity 12 Highly sign.

Manitoba 1 Oakville Infinity 12 Highly sign.

Manitoba2 Oakville Infinity 12 Highly sign.

Oakville E Grand Forks Infinity 12 Highly sign.

Oakville Hill Pond E Infinity 12 Highly sign.

Oakville Turtle Mtns Infinity 10 Highly sign.

Rydell Hill Pond E Infinity 12 Highly sign.

Rydell Oakville Infinity 12 Highly sign.

Sheyenne Crookston Infinity 10 Highly sign.

Sheyenne E Grand Forks Infinity 12 Highly sign.

Sheyenne Hill Pond E Infinity 12 Highly sign.

Sheyenne Manitoba! Infinity 12 Highly sign.

Sheyenne Manitoba2 Infinity 12 Highly sign.

Sheyenne Oakville Infinity 12 Highly sign.
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Population differentiation for each population pair arranged by Fisher's method

Population 1 Population 2 Chi2 df p-value

Sheyenne Rydell Infinity 12 Highly sign.

Sheyenne Turtle Mtns Infinity 10 Highly sign.

Crookston h i l l  Pond E 63.742 10 0.0000

Manitoba2 H ill  Pond E 51.511 12 0.0000

Rvdell** E Grand Forks 41.719 12 0.0000

Manitoba 1 Turtle Mtns 37.289 10 0.0001

Crookston Turtle Mtns 32.376 8 0.0001

Manitoba2 Turtle Mtns 31.676 10 0 0005

Rydell Manitoba 1 33.920 12 0.0007

Hill Pond E E Grand Forks 30.772 12 0.0021

Rydell Turtle Mtns 27.396 10 0.0023

Rydell Manitoba2 26.959 12 0.0078

Crookston E Grand Forks 23.855 10 0.0080

Manitoba2 E  Grand Forks 20.274 12 0.0621

Manitoba! Manitoba2 17.633 12 0.1273

Crookston Rydell 15.000 10 0.1321

Crookston Manitoba2 14.268 10 0.1611
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A PPE N D IX  F

Linkage disequilibrium for all populations for affected loci pairs. Significant values are 
bolded.
Population Locus 1 Locus 2 p-value
E Grand Forks Rsl 1 Rs88 1
Oakville Rsl 1 Rs88 0
Rydell Rsl 1 Rs88 1
Sheyenne Rsl 1 Rs88 1
Hill Pond E Rs55 Rs70 0.24958
Manitoba 1 Rs55 Rs70 1
Oakville Rs55 Rs70 0.50852
Sheyenne Rs55 Rs70 0,0006
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