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ABSTRACT

The dopamine transporter (DAT) is a presynaptic membrane 

phosphoprotein that terminates dopaminergic synaptic transmission by clearing 

dopamine (DA) back into presynaptic neuron by a reuptake process. DAT is also 

a molecular target for psychostimulants such as cocaine, amphetamine (AMPH) 

and methamphetamine (METH) that increase DA synaptic levels either by 

blocking reuptake or by inducing DA efflux. DAT phosphorylation and transport 

down regulation are best demonstrated with the treatment of Protein kinase C 

(PKC) activators such as (phorbol 12-myristate 13- acetate) PMA. Serine(s) and 

threonine(s) are known to be involved in DAT phosphorylation.

Pretreatment with psychostimulant substrates such as AMPH and METH 

have been shown to regulate DAT phosphorylation and DA transport activity. 

Here we have examined the effects of DA, cocaine and various other 

psychoactive transport blockers on DAT phosphorylation and regulation in rDAT 

expressing LLC-PKi cells by using 32P04 metabolic labeling and [3H] DA uptake 

assays. Pretreatment with cocaine or methylphenidate (MPH) had no effect on 

basal or PMA stimulated DAT phosphorylation and DA transport. GBR 12909 

suppressed PMA-induced DAT phosphorylation and internalization. Treatment 

with DA did not affect DAT phosphorylation while inducing PKC mediated DA 

transport down regulation. These results provide information on the potential for 

endogenous and psychoactive compounds to modulate DAT

XVI



CHAPTER I

INTRODUCTION 

Synaptic Transmission

Billions of neurons in the human nervous system communicate with each 

other to orchestrate complex behaviors, perceptions, reflexes, instincts, 

emotions, thinking and learning. Mostly, the communication occurs between 

neurons or between neuron and muscle through specialized junctions called 

“synapses” and the process by which one neuron communicates with other 

neuron is called “synaptic transmission”.

Synaptic transmission is initiated with a wave of depolarization along the 

axon called an action potential. Because the action potential cannot be 

propagated directly between the cells that are separated by a synaptic cleft, 

chemical messengers “neurotransmitters” are employed to communicate 

between one cell and the next. The synaptic transmission process includes the 

following events, namely the fusion of neurotransmitter containing synaptic 

vesicles with presynaptic plasma membrane, release of neurotransmitters into 

synaptic cleft, activation of post synaptic receptors and sequestration of released 

neurotransmitters.

Neurotransmitters are synthesized in the neuronal cell body and packaged 

into synaptic vesicles. The packaged vesicles are vectorially directed towards the 

presynaptic membrane and docked to specific regions of membrane called
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active zones. The docked vesicle undergoes maturation by a process called 

priming that enables the membrane fusion of vesicles. When an action potential 

reaches the nerve terminal, it induces the opening of voltage gated Ca2* 

channels which leads to rapid influx of Ca2+ into the cell. This leads to a spike in 

local intracellular Ca2+ levels and triggers the membrane fusion of synaptic 

vesicles and results in exocytosis of neurotransmitters into the synaptic space [1- 

3]-

The neurotransmitters released into synapse are readily available for the 

activation of the postsynaptic receptors that further stimulate depolarization in the 

postsynaptic neuron. In order to terminate synaptic transmission effectively, the 

released neurotransmitters must be degraded by specific enzymes or re­

accumulated into the presynaptic neurons or glial cells through specific 

membrane transporter proteins.

The Dopaminergic System

The dopaminergic system refers to the dopaminergic neurons that 

synthesize and release the neurotransmitter dopamine (DA). The dopaminergic 

system is involved in cognition, motor activity, and reward. Disorders associated 

with DA are attention deficit hyperactivity disorder (ADHD), motor/movement 

disorders such as Parkinson disease, addiction, schizophrenia, paranoia and 

autism [4]. In brain, dopaminergic neurons primarily originate from three areas 

that include the ventral tegmental area (VTA) of the mid brain, the substantia 

nigra pars compacta and the arcuate nucleus of the hypothalamus.



Figure 1. The Dopaminergic System. Dopaminergic system representing the 

dopaminergic neurons that primarily originate from the ventral tegmental area 

(VTA) of mid brain, the substantia nigra pars compacta and the arcuate nucleus 

of the hypothalamus. Neurons from these areas project axons to many areas of 

brain such as the cerebral cortex especially to frontal lobes, the striatum, and the 

median eminence or infundibular region.
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Image courtesy of Benjamin Cummings/ Pearson Education: Human physiology, 

3rd edition, Figure 9.19c, with permission 

Figure 1. The Dopaminergic System
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Neurons from these areas project axons to many areas of brain with four 

neural pathways namely the Mesocortical, Mesoiimbic, Nigrostriatal, and 

Tuberoinfundibular pathways (Figure 1). The mesocortical pathway originates 

from the VTA and spreads to the frontal lobes of cerebrum and is implicated ,n 

motivation and emotional response. The mesoiimbic pathway links the VTA and 

nucleus accumbens that is located in the striatum and is associated with reward 

circuits. Therefore, this pathway has been implicated in drug addiction process 

[5], The nigrostriatal pathway connects the substantia nigra with the striatum and 

is particularly important in motor control. The degeneration of these neurons 

leads to Parkinson disease. The tuberoinfundibular pathway contains neurons of 

the arcuate nucleus and projects into the median eminence (the 'infundibular 

region’). This pathway is known to regulate the secretion of prolactin from the 

anterior pituitary gland.

Metabolism of Dopamine

Dopamine, norepinephrine (NE) and epinephrine belong to the group of 

catecholamine neurotransmitters. Catecholamines act as neuromodulators 

and/or hormones in the central nervous system (CNS). NE is a biologically 

derived product of DA and acts as a precursor for epinephrine biosynthesis. 

Tyrosine, a precursor for biosynthesis of all catecholamines, is converted to 3, 4- 

dihydroxy-L-phenylalanine (L-DOPA) by a rate limiting enzyme tyrosine 

hydroxylase (TH). TH is present in ail catecholamine synthesizing cells and 

catalyzes the addition of a hydroxyl group to the meta-position of tyrosine. The



conversion of L-DOPA to DA is the final step of the catecholamine biosynthetic 

pathway in dopaminergic neurons, which is catalyzed by DOPA decarboxylase.

DA is synthesized in the cytosol and is present in low concentrations (pM 

range). The uptake of monoamines from the cytoplasm into vesicles is mediated 

by vesicular monoamine transporter 2 (VMAT2) along with an ATPase-generated 

proton gradient. Additionally, this mechanism concentrates intra-vesicular DA up 

to 0.5 M. During synaptic transmission, these vesicles release DA into the 

synaptic cleft by exocytosis. Termination cf DA synaptic transmission occurs 

through rapid reuptake of DA by a membrane bound carrier or transporter 

protein, the dopamine transporter (DAT), present on presynaptic membrane. DA 

is taken up into the cytosol and transported back into vesicles via VMAT2 for 

another round of exocytosis. During this process, some of the cytosoiically 

located free DA molecules are catabolized into 4-Hydroxy-3-methoxy- 

phenylacetic acid or homovanillic acid (HVA) by monoamine oxidase (htAO) and 

catechol-O-methyltransferase (COMT). Accumulation of HVA in the striatum is 

used as a biomarker to assess the progression of PD.

The reuptake of catecholamines was first described by Axelrod et al 

( iwwd) with usage of radiolabeled NE [6]. Synpatosomal accumulation of 

radiolabeled NE in the presence of catecholamine catabolic blockers, has 

demonstrated the first evidence of catecholamine uptake [7]. In contrast, cocaine 

treatment decreased the accumulation of radioactive NE suggesting that this 

transport is carrier mediated event [8]. Subsequent experiments have shown that

6



the uptake process is Ua* and Cl -dependent and exhibits Michaelis-Menten 

saturation kinetics [6, 9].

Cloning of DAT

Until 1990, synaptosomal preparations and/or Xenopus laevis oocytes 

injected with substantia nigra mRNA were used to study DAT or other 

neurotransmitter transporters [10J. Kanner et al (1990) were the first to done the 

gamma-amino butyric acid (GABA) neurotransmitter transporter 1 (GAT1/SLCA1) 

using the purified protein sequence and characterize GABA transport by 

expressing GAT1 in a heterologous system [11] The adoption of expression 

cloning strategy is expedited the cloning and characterization of the 

norepinephrine transporter (NET/SLCA2) [12], DAT (SLCA3) [13, 14] and 

serotonin transporter (SERT/ SLCA4) [15]. Based on cDNA sequence homology; 

DAT belongs to a Na* and CT - dependent solute carrier (SLC 6) family of 

plasma membrane neurotransmitter transporters that also includes GAT', NET, 

SERT, and the glycine transporter (GLYT) [16] The SLC6 family of transporters 

requires Na* in order to generate the electrochemical gradient and to drive 

transport of the neurotransmitters against their concentration gradient [17, 18]

DAT Structure

DAT contains 619 amino acids in rat (rDAT) and 620 amino acids in 

human (hDAT). The predicted topology indicated that DAT has twelve 

transmembrane domains (TMs) that are connected by intracellular (ILs) and 

extracellular loops (ELs) and N- and C-cytosolic tail domains (Figure 2). TMs are 

presumed to form a pore for substrate translocation. A large extracellular loop 2

7



Figure 2. Schematic Diagram of rDAT. This is a predicted topological 

representation of rat DAT structure. The structure of rDAT contains twelve TMs, 

and cytosolically located N- and C-terminai ta.l domains. A large extracellular 

loop is present between TMs 3 and 4 with four glycosylation sites.

Multiple serines (S), threonines (T) and tyrosines (Y) that may be involved in 

phosphorylation are shown in red, green and yellow respectively. The region 

highlighted with blue on the N-terminal cytosolic tail represents epitope 16 that 

was used for preparation of antibodies.

&



Figure 2. Schematic Diagram of rDAT.
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(EL2) connects TMs 3 and 4 and its glycosyfation is required for proper surface 

expression and DA transport activity [19]. fn addition to glycosyiation, DAT is also 

known to undergo a variety of post translational modifications including 

phosphorylation and ubiquitylation on cytosolic tail domains. The N- and C- 

terminai tail domains and ILs are rich with multiple potential phosphorylation sites 

[20],

Molecular Properties of DAT

A large body of evidence concluded that neurotransmitter transporters 

terminate synaptic transmission. DA uptake was demonstrated 35 years ago [8], 

but the development of specific radiolabeled ligands in 1980’s [26, 27] and 

cloning of DAT in 1990's have expedited the current understanding of DAT 

physiology.

DAT transports the substrate DA inwardly against a concentration gradient 

using the driving force of Na+ across the membrane. Two sodium ions and one 

chloride ion are co-transported along with one molecule of DA and make this 

process electrogenic [21]. The mechanism of DA translocation is proposed to 

occur through a cascade of conformational changes in DAT that allows the 

binding site to be alternatively accessible to extracellular or intracellular sides of 

the membrane [17]. This process keeps the DAT in an open conformation 

towards the extracellular side and in a closed conformation on the intracellular 

side. Binding of DA and ions to DAT induces a conformational change that 

results in a closed state on extracellular side and an open state on intracellular 

side. Following the release of DA and ions into the cytosol, DAT resets to an

10



open conformation on the extracellular side for a new transport cycle. In addition 

to forward transport, DAT can transport DA in the reverse direction (i.e., into the 

extracellular space) under some circumstances, such as following exposure to 

amphetamines [22],

Lack of three dimensional structure of DAT has limited the information 

about binding sites of DA, Na+, Cl' and transport blockers and conformations 

attained during substrate translocation and binding of transport blockers. 

Recently, Gouaux et al (2005) have crystallized and elucidated the structure of a 

ieucine transporter derived from Aquifex aeolicus (Leu TAa) that shares ~ 20% 

sequence identity with DAT and other SLC6 family transporters [23]. In spite of 

low sequence identity with DAT and other neurotransmitter transporters, a high 

resolution Leu TAa crystal structure has advanced the understanding of the 

structural basis of the transport mechanism. TMs1 and 5 and TMs 6 and10 in 

Leu TAa crystal structure exist as two superimposable internal structural repeats 

by rotation in the plane of membrane. These superimposable internal repeats 

interact with one another to form a permeation pathway. During this process, TM 

1 and TM 6 form the binding sites for substrate and Na+.

Many electrophysiological studies have revealed that DAT can mediate 

macroscopic ionic currents, which are not stoichiometrically linked to substrate 

movement [21, 24-26], and is a common property of ion channels. The transport 

current is elicited by DA and other substrates, which can be blocked by non 

substrate blockers. Additionally, a tonic leak conductance generates steady-state 

current, which is not coupled by substrates, but can be blocked by substrates
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and cocaine like drugs [25, 27]. Therefore physiological properties of DAT 

include the termination of neurotransmission by rapid reuptake of extracellular 

DA, reverse transport, and channel like properties [28].

Oligomerization of DAT

Experiments involving chemical crosslinking, mutagenesis, 

coimmunoprecipitation, and fluorescence resonance energy transfer (FRET) 

have demonstrated that DATs exist as oligomeric complexes [29-31]. The 

mutation of cysteine-243 in TM 4 and cysteine-306 in TM 6 results in decreased 

crosslinking ability of DAT suggesting that the interface of TM 4 and 6 may be 

involved in DAT oligomerization [31, 32]. The co-expression of non-functional 

cytosolic tail DAT mutant constructs with Wt DAT decreases the transport activity 

and surface expression of DAT. This dominant negative effect on transport 

activity was rescued by mutating a leucine zipper motif present in TM 2. These 

results indicate that the leucine zipper motif is important for oligomerization of 

DAT, and oligomerization is necessary for DAT surface expression and DA 

transport activity [29].

The substrate bound crystal structure of Leu T negates the possibility of 

formation of TM 4 and TM 6 interface during oligomerization, because these 

domains are deeply buried in this conformation. However, this interface may exist 

in conformations where DAT is not bound with substrates or blockers. Treatment 

with the substrates DA or AMPH reduced the cross linking ability of surface DAT 

demonstrating that substrates dissociate oligomerization of DAT [33].
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Pharmacology of DAT

Dopamine is a neurochemical mediator of critical functions such as 

movement, emotion and reward. Abnormal levels of DA are associated with a 

variety of pathological conditions and pharmacological treatments. DAT is a very 

important target for pharmacological or recreational psychoactive drugs (Figure

3).

Psychostimulant Substrates

The term amphetamines represents both AMPH and methamphetamine 

(METH) which are potent psychomotor stimulants originally developed to treat 

asthma, sleep disorders (narcolepsy) and hyperactivity. They stimulate the CNS 

and sympathetic division of the peripheral nervous system and increase the 

synaptic levels of DA and NE. The reinforcing properties produced by 

amphetamines are linked to the elevation of extracellular DA levels suggesting 

that AMPH or its derivatives promote nonvesicular release of DA into the 

synapse through DAT [34-36], AMPH is a non physiological substrate for DAT 

and chemically acts as a lipophilic weak base. The entry of AMPH into synaptic 

vesicles leads to collapse of the vesicular pH gradients followed by redistribution 

of DA from synaptic vesicle into the cytosol [37], METH has been shown to 

produce faster and longer-lasting effects than AMPH in comparable 

concentrations possibly due to its higher hydrophobicity.

AMPH induced DA efflux is thought to occur by an exchange diffusion 

model [38], This model is based on an alternating access model of DA uptake. In 

the alternating access model, binding of cargo (DA, Na\ and Cl ) to an
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extracellularly oriented transporter induces a conformational rearrangement to an 

intracellularly oriented transporter. This leads to release of cargo into the cytosol, 

thereby completing the transport process. DA efflux induced by AMPH is 

believed to result from the ability of AMPH to reverse this inward transport 

process, in that the inward transport of AMPH by DAT increases the number of 

“inward-facing” transporter binding sites and thereby increases the rate of 

outward transport of DA through an exchange process [39]. Therefore this 

process increases extracellular DA levels that in turn enhances the synaptic 

activity of postsynaptic receptors and eventually leads to positive reinforcement. 

For example, Khoshbouei et at. (2004) [40] recently reported that DAT N-terminal 

phosphorylation plays a critical role in AMPH-induced DA efflux but not in DA 

uptake. Theserdata suggest that AMPH-induced DA efflux mediated by the 

reversal of DAT is more complex than a simple exchange process [28].

Neurotoxins

In addition to psychostimulant drugs, DAT is also a target for neurotoxins 

that exert degenerative effects on DA systems such as the pathogenesis of 

Parkinson’s disease. Neurotoxins such as 6-bydroxydopamine (6-OHDA) and 1- 

methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) chemically damage 

dopaminergic neurons in vivo [41, 42] and have been shown to produce 

Parkinson disease symptoms in animal models [43]. 6-OHDA is a hydroxylated 

analogue of natural substrate DA. MPTP is a contaminant produced during the 

synthesis of MPPP (1-methyl-4-phenyl-4-propionoxypiperidine), an opioid 

analgesic drug. Following entry into living organism, MPTP will be converted into
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neurotoxic metabolite t-methyl-4-phenylpyridinium (MPP+) that produces toxic 

effects on cell. So MPP+ and 6-OHDA are selectively accumulated in 

dopaminergic neurons through DAT and increase the formation of reactive 

oxygen species. Reactive oxygen species inhibit the function of mitochondrial 

complex I that further leads to mitochondrial dysfunction and cell death [44, 45].

Uptake Blockers

Cocaine

Cocaine is a psychostimulant drug and it produces a wide range of 

emotional experiences and reinforcement properties in users. Cocaine occurs 

naturally as an alkaloid in the leaves of coca (Erythroxylon coca) and has been 

federally classified as schedule II controlled substance drug due to its 

exceptional potential for abuse. Although cocaine possession, cultivation, and 

distribution is illegal for non-medicinal and non-government sanctioned purposes, 

it has been used world wide in many cultural, social and personal settings.

Cocaine is a powerful reinforcer and this property is believed to contribute 

to cocaine abuse and dependence [46, 47]. The reinforcement properties of 

cocaine have been demonstrated in humans and animal models by self 

administration and other behavioral techniques. Various neurochemical and 

neuroanatomical studies have shown that dopaminergic mesolimbocortical 

neurons are important for the reinforcing properties of cocaine [48], Ligand 

binding studies have identified the DAT as one of the major cocaine receptors in 

brain [47], The inhibitory potencies of cocaine and related compounds for DAT 

have shown a correlation with behavioral potencies obtained from drug
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Figure 3. DAT Substrates, Neurotoxins and Psychostimulant Blockers. 

Representative chemical structures of (A) Psychostimulant Substrates (B) 

Neurotoxins (C) Psychostimulant blockers and (D) Psychoactive Therapeutic 

Agents.
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Figure 3. (A) DAT substrates, (B) Neurotoxins and (C, D) Psychostimulant 
Blockers.
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reinforcement studies [47]. Additionally, microdialysis studies have shown that 

cocaine treatment increases extracellular DA levels in the limbic area 

reconfirming that DAT is major site of action for cocaine (reviewed in [46]).

GBR 12909

GBR 12909 (1-{2-[bis~(4-fIuorophenyl) methoxy] ethyl]-4-(3-phenylpropyl) 

piperazine) is a noncompetitive, potent and selective inhibitor of DA uptake [49]. 

This compound was developed as a therapeutic for drug abuse to produce 

minimal or no euphoria, which may reduce abuse potential and dependence. 

GBR 12909 has been demonstrated to possess a different pharmacological and 

behavioral profile compared to cocaine [50]. When compared to cocaine, GBR 

12909 has much higher affinity for DAT [51]. The ora! administration of GBR 

12909 in normal human volunteers has shown a non stimulant profile that is 

different from the cocaine induced profile [52]. These properties have promoted 

GBR 12909 for preclinical and phase I clinical trials as a potential therapeutic 

agent for cocaine abuse [53, 54],

Mazindol

Mazindol is a tricyclic compound and has been used as an appetite 

suppressant for treatment of exogenous or short term obesity and as an orphan 

drug for the treatment of Duchenne muscular dystrophy. It stimulates the CNS to 

increase heart rate and blood pressure, and decrease appetite. The mechanism 

of mazindol action is not known, however it act as a reuptake inhibitor for 

monoamine transmitters [55], Mazindol was found to be non-addictive and it did
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not produce euphoria in clinical trials [56] But in monkeys, a subset of ail tested 

had shown the self-administration behavior [57]

Methylphenidate

Methylphenidate (WPH) is a generic therapeutic stimulant prescribed for 

ADHD. It is also used for daytime drowsiness symptoms of rarcotepsy and 

chronic fatigue syndrome. MPH acts on the CNS to reduce impulsive behavior 

and induce attention on work and other tasks [58]. The mode of MPH action in 

ADHD diagnosed individuals is not well understood. MPH blocks the transport 

activity of DAT and NET and increases synaptic dopamine levels that in turn 

stimulate the under activated brain regions [59].

Regulation of DA Transport and DAT Phosphorylation

The cloning of DAT and identification uf the crystal structure for a DAT 

homologue has provided the basis for current understanding of DAT structure 

and function. The cloning of DAT made it possible to characterize DA transport 

activity, DA efflux and mechanisms that regulate uptake or efflux. DAT functions 

are regulated by protein kinases, protein phosphatases, and protein- protein 

interactions.

Protein Kinases

The presence of multiple potential phosphorylation sites on cvtosolic tails 

and ILs of DAT suggested that protein kinases can regulate DAT function (Figure 

4). DA transport activity can be regulated by multiple signaling pathways, protein 

kinase A (PKA), protein kinase C (PKC), protein kinase G (PKG), 

calcium/calmoduiin dependent protein kinase (CaMK II) and mitogen activated
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Figure 4. Cytosolic Tail Domains of DAT Showing the Putative Phosphorylation 

Sites for Various Protein Kinases (A) N*terminal cytosolic tail domain (B) C- 

terminal cytosolic tail domain of DAT showing enlarged S/T sites. Some of the 

S/T sites are enclosed in boxes that represent the consensus recognition-motives 

for various protein kinases. Color of stars on the top of the box denotes the 

kinase specificity. (PKC = Red, PKA = Blue, CaMKtt = Black, CKII = yellow, 

ERK1/2 = Green)
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protein kinases (MAPK’s) [21, 60-62]. The down-regulation of transport activity 

has been well demonstrated by PKC activators in both striatal synaptosomes and 

heterologously expressing cells. Activation of PKC leads to decreased transport 

Vmax with no change in Km for DA. This decreased DA transport has been 

demonstrated to occur through trafficking dependent and independent 

mechanisms. The trafficking dependent mechanism involves the dynamin- 

dependent and clathrin-mediated endocytosis of DAT following the treatment with 

PKC activators leading to decreased surface expression. DATs present in 

detergent-resistant membrane raft populations are regulated by cholesterol 

dependent non-trafficking regulatory mechanisms. These studies suggest that 

multiple regulatory mechanisms are involved in regulation of DA transport 

activity.

Vaughan et al (1997) identified DAT phosphorylation both in rat striatum 

[63] and in cell lines [64] and this identification shed light on the possible role of 

phosphorylation in the regulation of DA transport. In vivo 32P metabolic labeling 

followed by phosphoamino acid analysis of DAT has demonstrated that serine(s) 

(Ser) and threonine(s) (Thr) are involved in both basal and PMA stimulated DAT 

phosphorylation [65]. The combination of in vitro proteolysis followed by 

phospho-peptide mapping demonstrated an N-terminai cluster of Ser(s) as the 

major site(s) of DAT phosphorylation. The truncation of the first 21 amino acids in 

DAT (A 21) leads to the loss of DAT phosphorylation while retaining PMA 

induced DA transport down regulation demonstrating that N-terminal 

phosphorylation is not required for down-regulation of DA transport activity [6 6 ].



Various studies have shown roles for other protein kinases including PKA, 

CaMK II and the extracellular signal regulated kinase (ERK) family of MAPKs on 

DAT phosphorylation and regulation, but far less is known about their role in DAT 

properties compared to PKC. Treatment of cells with PKA activators such as 8 - 

bromo-cAMP [67] and forskolin did not affect DA transport activity and DAT 

phosphorylation [63]. Although chemically synthesized N-terminus of DAT 

comprising of 1-27 aminoacid peptide has been shown act as in vitro substrate 

for CaMKII, phosphorylation sites involved in this process are not known [6 8 ]. In 

vivo pharmacological studies have shown that CaMKII regulates the DA transport 

activity [67]. In vitro studies have Acute treatment of synaptosomes or cells with 

phosphatidylinositol (PI) 3-kinase (PI3 Kinase) inhibitor decreased [3H]DA uptake 

and DAT surface expression, presenting a role of PI3 kinase in regulation of DAT 

function [69].

Moron et at (2003) have shown that the blockade of ERK activation using 

MAPK kinase (MEK) inhibitors U0126 or PD98059 resulted in decreased [3H] DA 

transport Vmax and surface expression of DAT [70]. Further, the transient 

transfection of a constitutively active MEK mutant increased DA uptake. 

Collectively, these results suggest that the activation of ERKs regulate DAT 

surface expression and DA transport activity. Interestingly, MEK inhibitors 

suppressed basal DAT phosphorylation without affecting PMA stimulated 

phosphorylation [71], showing that ERK regulates the constitutive 

phosphorylation of DAT.
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Protein Phosphatases

In addition to protein kinases, protein phosphatases are aiso known to 

affect DA transport and DAT phosphorylation. The treatment of synaptoscmes 

with pharmacological protein phosphatase inhibitor, okadaic acid tOA) increased 

DAT phosphorylation and decreased DA transport activity [63]. Treatment of 

striatal homogenates with punfied protein phosphatases 1 (PP1) and 2A tPP2A) 

leads to dephosphorylation of DATs [72]. These studies have suggested that 

DAT undergoes dephosphorylation and phosphorylation in native conditions. 

However the underlying mechanisms involved in this process are not known

DA T-Protein Interactions

Increasing evidence suggests that DATs are regulated through protein- 

protein interactions. Over the past few years, different proteins have been ~ 

identified that interact with cytosolic domains of DAT These DAT- protein 

interactions were shown to play a role in trafficking, subcellular distribution, 

compartmentalizaiton of DAT, and DA forward and reverse transport activity. The 

list of interactive proteins include receptor for activated C kinase-1 (RACK1), 

syntaxin [73], CaMKII [6 8 ]. PKC-(3 [74] and protein phosphatase PP2A [75] 

Various methods were followed to identify these interacting proteins such as 

yeast two-hybrid (Y2H) system, GST pull downs, and co-immunoprecipitation. 

Interestingly, many of these proteins were also shown to interact with other 

members of SLC6  transporter family [76-79],

The C-terminal tail of DAT acts as binding partner for CaMKII and this 

binding interaction has been shown to play a role in AMPH-induced DA efflux
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through N-terminai DAT phosphorylation [6 8 ]. The amino terminus of DAT has 

been reported to interact with a PKC substrate RACK1 and syntaxin, a member 

of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor 

(SNARE) family [73], The functional analysis of RACK1 binding has yet to be 

ascertained. Syntaxin is also shown to interact with both GAT1 and NET and 

negatively regulate their transport activities [78, 80]. Based on the shared protein 

sequence homology with NET, it can be presumed that DAT-syntaxin interaction 

may exert similar effects on DAT functional properties. Based on involvement of 

PKC in DAT functional and other properties, it can be assumed that PKC may 

interact with DAT. Recently; PKC-[3 has been shown to interact with DAT and 

regulate the amphetamine induced DA efflux [74],

In addition to protein kinases, protein phosphatases were also shown to 

regulate the DAT phosphorylation and regulation. Co-immunoprecipitation 

studies have shown that DAT forms a protein complex with protein phosphatase 

2Ac [75] and this result suggests that protein phosphatases may regulate DAT 

phosphorylation or function via protein-protein interaction.

Effects of Substrates and DA Efflux

The physiological substrate DA and psychostimulant substrates AMPH 

and METH induce DA transport down regulation and internalization of DAT in 

both synaptosomes and cell lines [81-83]. In addition to transport down 

regulation, pretreatment with AMPH or METH, but not DA induced DA efflux 

through DAT. Inclusion of bisindolylmaleimide (BIM), a general PKC inhibitor [84, 

85] or a PKC-P specific inhibitor LY379196 [74], blocked the AMPH- or METH-
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induced transport down regulation and DA efflux suggesting that AMPH- or 

METH-induced down regulation or DA efflux occurs via PKC dependent 

mechanisms. Additionally, the treatment of cells or striatal tissue with AMPH or 

METH increased DAT phosphorylation.

Interestingly, the truncation of the first 22 amino acids on the DAT N- 

terminal tail (A 22) abolished METH induced DA efflux and DAT phosphorylation 

while not affecting the functional down regulation of DAT [85]. Additionally, the 

simultaneous mutation of five Ser—► alanine (Ala) (S2, S4, S7, S12, and S13) on 

the N-terminal tail of DAT produced an 3/A background mutant that displayed 

impaired DA efflux similar to A 22 mutant [40]. In contrast, the individual mutation 

of A—► aspartate (Asp) on the S/A background mutant at 7 or 12 restored the 

significant amount of wild type DA efflux. These results suggest that N-terminal 

phosphorylation possibly at S7 or S12 is essential for AMPH-induced DA efflux. 

CaMKII has been shown to induce DA efflux [8 6 ]. The combination of 

biochemical and eiectrophysiological studies has shown that the binding of 

CaMKII to the C-terminus of DAT is important for regulation of AMPH-induced 

DA efflux [6 8 ],

In most of these studies, psychoactive drugs were examined in isolation 

for their effects on DAT phosphorylation or regulation, and less has been done to 

examine drug effects in combination with PKC activators to investigate potential 

biochemical interactions of the processes.

26



Effects of Uptake Blockers

Compounds used to treat neuroiogical disorders or that lead to drug 

addiction including cocaine, 2|3-carbomethoxy-3f3-(4-fluorophenyl) tropane (P- 

CFT), GBR 12909, mazindol, and MPH can bind to DAT and inhibit substrate 

transport. Various studies have examined the effects of cocaine on DAT 

regulation and showed conflicting results. Pretreatment of cells with cocaine had 

no effect on [3H] DA uptake or surface expression [82, 83] while others have 

reported increased DAT surface expression and transport activity [87]. In 

contrast to psychostimulant substrates, cocaine has been reported to suppress 

PMA-induced DAT phosphorylation [8 8 ].

The present studies were focused on examining the effects of DA and 

~ uptake blockers such as cocaine, 2p-carbomethoxy-3(3-(4-fluorop'henyl) tropane 

((3-CFT), GBR 12909, mazindol, and MPH on PKC dependent and independent 

properties of DAT using rDAT expressing LLC-PK! cells. These studies are 

expected to identify the effects of drugs on DAT phosphorylation and DA 

transport activity, which potentially may be involved in differential behavioral 

responses that are regulated by DAT phosphorylation and drug pretreatments. 

These studies also compare the previously known effects of other monoamine 

transmitters on cognate transporter regulation or phosphorylation.

Although PMA treatment increased N-terminal DAT phosphorylation, it is 

not known if PKC is directly involved in this process. Additionally, the N-terminal 

tail of DAT contains multiple phosphorylation sites for various protein kinases, but 

it is not known if these protein kinases regulate the N-terminal phosphorylation.
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Previous studies have shown that phosphorylation of DAT occurs on Ser(s) and 

Thr(s) in vivo\ however, the sites involved in this process are not known. 

Therefore, the other section of present studies is designed to investigate the 

ability of serine/threonine protein kinases to phosphorylate a recombinantly 

expressed cytosolic N-terminal tail of DAT that may represent the N-terminus of 

in vivo DAT. The results of these studies will help in identifying the sites, protein 

kinases or protein phosphatases involved in N-terminal phosphorylation of DAT. 

Further, the correlation of obtained results with known in vivo findings will 

increase the understanding of DAT phosphorylation and its role in DAT function.
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CHAPTER I!

MATERIALS AND METHODS 

Materials 

Animals

Male Sprague Dawley rats (175-300 grams) were obtained from Charles 

River Laboratories (Wilmington, MA) and were maintained in compliance with the 

guidelines established by the University of North Dakota Institutional Animal Care 

and Use committee and the National Institutes of Health.

Reagents

Radiolabeled inorganic phosphate (H3[32P]04) and [y-32P] ATP (7000 

Ci/mmol) were purchased from MP Biomedicals (Irvine, CA). [3H] dopamine 

(45Ci/mmol), Protein A sepharose beads, High and Low range Rainbow 

molecular weight markers were obtained from GE Healthcare Life Sciences 

(Piscatway, NJ). (-)-Cocaine, 23-carbomethoxy-3p-(4-fluorophenyl) tropane (3- 

CFT), mazindol, methylphenidate (MPH), GBR 12909, dopamine and sulpride 

were from Sigma-Aldrich (St.Louis, MO). PMA, Bisindolylmaleimide I (BIM), OA, 

OAG, PKC classical isoforms (a, (31, 311, and y) (Specific activity for PKC 

isoforms: One unit is defined as the amount of enzyme that will transfer 1.0 n mol 

of phosphate to histone H1 per minute at 30°C, pH 7.4), PKA, PKG, CaMK II, 

ERK1/2, p38 kinase, JNK, GSK-33, Akt, Cdk-5 (Specific activity: One unit is
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defined as the amount of enzyme that will transfer 1 . 0  p mol of phosphate to the 

synthetic substrate GRTGRRNSI per minute at 30aC, pH 7.4), protein 

phosphatases (PP1, PP2A, and PP2B) (Specific activity for PP1 and PP2A: One 

unit is defined as the amount of enzyme that will hydrolyze 1.0 n mol of [3 2P] 

inorganic phosphate from 32P-Iabeled phosphorylase per min; specific activity for 

PP2B: One unit is defined as the amount of enzyme that will release 1.0 p mol of 

phosphate from the Rll phosphopeptide substrate per min at 30°C) and 

Endoproteinase Asp-N were from Calbiochem/EMD Biosciences (La Jolla, CA). 

EZ-Link Sulfo-NHS-LC-Biotin and Immobilized Neutravidin beads were from 

Pierce Biotechnology (Rockford, IL). Complete Mini Protease Inhibitor was 

purchased from Roche Applied Science (Indianapolis, IN). IMPACT-CN kit (Intein 

expression vectors etc.), all restriction enzymes and modifying enzymes were 

obtained from New England Biolabs (Ipswitch, MA). Site directed mutagenesis 

QuickChange® kit was purchased from Stratagene (La Jolla, CA). Synthesized 

oligonucleotides were from MWG Biotech, Inc (High Point, NC). Isopropyl (3-D-1- 

thiogalactopyranoside (IPTG) and all other fine chemicals were purchased from 

Sigma-Aldrich (St.Louis, MO) or Fischer Scientific (Pittsburg, PA).

Equipment

Centrifuges

The Beckman J6 -MI swinging bucket rotor was used to prepare the cross- 

linked Protein A Sepharose beads and to pellet the cell lines. Beckman Avanti J- 

25, 16.250 and 25.50 rotors were used for harvesting E.coli cells for both protein 

and plasmid isolation purposes. Refrigerated Beckman Microfuge R or a bench
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top Microfuge 18 were used for genera! tab procedures and 

immunoprecipitations.

Electrophoresis, Electroelution and Dialysis

Bio-Rad Mini-Protean ttl electrophoresis apparatus and Bio-Rad Mini trans 

blot electrophoresis transfer cell were used for SDS-PAGE get electrophoresis 

and protein transfers, respectively. Gibco/BRL Life Technologies 250 EX power 

supply was used to control electrophoresis and protein transfer.

Phosphorylated proteins were electroeluted from gel-slices using Bio-Rad 

electroeluter Model 422 containing 3.5 kDa fitter membranes. Electroeluted 

proteins or recombinantly expressed proteins were dialyzed using Pierce Slide A- 

Lyzer® 10 kDa or 2 kDa Cassettes respectively 

TLC electrophoresis

Hunter Thin Layer Peptide Mapping Electrophoresis System, CE (HTLE- 

7002) was used for two dimensional phosphoamino acid analysis 

Spectroscopy

A Beckman DU 640 spectrophotometer was used to quantify plasmid DNA 

and Molecular Devices Spectra Max 190 plate reader was used to quantify 

protein using the Bicinchonic acid (BCA) method. Radioactive incorporation in 

phosphorylated protein samples and in dopamine uptake assays was analyzed 

using Packard 1900 CA or Beckman LS6500 liquid scintillation counters 

Cell Culture, Molecular Biology and Miscellaneous

Mammalian cell lines were maintained in Nuair 2700-30 water-jacketed 

CO2 incubator and handled in sterile Nuair Class II type A/B3 laminar flow hood.
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A Mastercycler personal thermal cyder from Eppendorf was used for all 

Polymerase Chain Reaction (PCR) experiments. Bio-Rad Gel Dryer Model 583 

was used to dry the SDS-PAGE gels

Methods

Metabolic Phosphorylation of DAT 

LLC-PKt Cells Expressing rDAT 

Prior to labeling the rDAT expressing LLC-PKT cells, cells were 

preincubated in phosphate free medium for 30 min. HapPJO* was added to a 

final concentration of 0.5 mCi/ml and incubated for 2 h at 37®C. Test compounds 

were applied to cells for 30 min. PMA treatments to cells were performed as 

positive controls in parallel Cells were washed three times with 1 ml of ice cold 

sucrose phosphate buffer (Sr) consisting of 0.32 M sucrose and 10 mM sodium 

phosphate, pH 7.4, and lysed on ice for 15 min with 500 pi RIPA buffer. Lysates 

were centrifuged at 20,000 * g for 20 min at 4QC. The resultant supernatant was 

again centrifuged at 100,000 * g for 1 h. The supernatant was collected and 

immunoprecipitated with DAT specific antibodies. The immunoprecipitates were 

separated by SDS-PAGE and phosphorylated DATs were detected by 

autoradiography. Equal exposure times were followed for all autoradiographs to 

compare and analyze the phosphorylation intensities.

Rat Striatum

Male Sprague-Dawley rats (175-300 g) were decapitated and the striata 

were rapidly removed and weighed. The tissue was sliced into 350 pm slices 

using a McElvain Tissue Chopper, and equivalent amounts of tissue (4-8 slices)

32



were placed into wells of a 12-well culture plate containing oxygenated Krebs- 

bicarbonate buffer (KBB) consisting of 25 mM N3 HCO3 , 125 mM NaClr 5 mM 

KCI, 1.5 mM CaCI2, 5 mM Mg504r and 10 mM glucose, pH 7.3. Slices were 

preincubated for 30 min at 30°C, with shaking at 105 rpm, followed by exchange 

with fresh buffer containing 1 mCi/ml H3[3 2P]0 4, and continued incubation with 

shaking at 30°C for 90-120 min. Oxygen (95% 0 2 , 5% C02) was gently blown 

across the top of the plate during the incubation, and test compounds were 

added for the final 30 min. Test compounds (OA, and OAG) were dissolved at 

high concentrations in dimethyl sulfoxide (DMSO) followed by dilution in the 

incubation mixture to a final DMSO concentration of 0.1%. At the end of labeling, 

tissue slices were transferred to a microcentrifuge tube and centrifuged at 4°C at 

800 x g for 4 min. The supernatant fractions were removed, and 1 ml of ice-cold 

KBB was added to the slices. The tissue was disrupted by four passages through 

a 26-gauge needle; samples were centrifuged at 10,000 x g for 10 min at 4°C, 

and the supernatant fractions were removed from the sedimented membranes. 

For analyzing the DAT phosphorylation, the sedimented membranes were 

solubilized with 0.5% SDS sample buffer (60 mM Tris pH 6.9, 0.5% SDS, 10% 

Glycerol. 100 mM DTT) at 50 mg/ml original wet weight. The samples were 

centrifuged at 20,000 x g for 30 min to remove the insoluble material and soluble 

fraction was used for immunoprecipitation with DAT antibody 16 followed by 

SDS-PAGE and autoradiography. For in situ proteolysis sedimented membranes 

were resuspended in 50 mM Tris-HCI, pH 8.0, at 50 mg/ml original wet weight.
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[3H] DA Uptake Assay

Dopamine uptake assays were performed in rDAT expressing LLC-PK^ 

cells. Cells were washed twice with 1 ml of Krebs-Ringer HEPES (KRH) buffer 

(25 mM HEPES, 125 mM NaCI, 4.8 mM KCI, 1.2 mM KH2P04, 1.3 mM CaCI2, 

1.2 mM MgS04, 5.6 mM glucose, pH 7.4). Triplicate wells were pretreated at 

37°C for 30 min or other indicated times with 1 ml KRH containing vehicle, DA, 

drugs, BIM, or PMA prior to assay for transport. Test compounds (DA, (-)- 

cocaine, (3-CFT, mazindol, MPH) were prepared in deionized water, GBR 12909 

was solubilized in ethanol and diluted with buffer, and PMA and BIM were 

prepared at high concentration in DMSO followed by dilution to a final DMSO 

concentration of 01-0.5%. For these initial experiments, saturating 

concentrations of uptake biockers were used. At the end of the prcireatments, 

cells were placed on ice to minimize potential reversal of treatment effects and 

rapidly washed three times with 1 mi ice-cold KRH to remove the drugs prior to 

assay for DA transport. Uptake was initiated by adding 10 pi of a 100* DA stock 

solution to bring the final concentrations of [3H] DA to 10 nM and total DA to 

3 pM. 100 pM (-)-cocaine was used to determine Non-specific uptake and was 

subtracted from total uptake values to obtain the specific uptake. Uptake assays 

were carried out at 37°C for 8  min and terminated by rapidly washing the wells 

three times with 1 ml ice-cold KRH. Cells were solubilized in 500 pi of RIPA 

buffer consisting of 1% Triton X-100, 1% sodium deoxycholate, 0.1% SDS,

150 mM NaCI, 10 mM sodium phosphate, 2 mM EDTA, 50 mM sodium fluoride, 

0.2 mM sodium vanadate, 1 pM okadaic acid and one Complete Mini® Protease

34



Inhibitor Cocktail. Lysates were measured for incorporated radioactivity using a 

Packard 1900CA liquid scintillation counter at 62% efficiency.

Photoaffinity Labeling

Wild type rDAT expressing LLC-PKt cells were split into 6  well plates and 

were grown to 90-95% of confluence. Cells were washed twice with ice-cold KRH 

buffer and incubated with 5nM [12 5 l] RTI82 radioactive ligand, cocaine analogue 

on ice for 1h. Following the incubation, the lid of petri-dish was removed and the 

cells were exposed to UV light (254 nm) for 45 sec. Cells were washed with ice- 

cold KRH two times and solubilized with 500pl of RIPA containing Complete 

Mini® Protease Inhibitor Cocktail. The cell lysate was centrifuged at 20,000 * g 

for 30 min at 4°C. The soluble fraction extract was immunoprecipitated and used 

as a control for metabolic phosphorylation experiments.

Recombinant Cloning of Cytosolic Tails of DAT 

Fusion protein expression plasmids pTYB2 or pTYB12 obtained from NEB 

were used to clone and express DAT cytosolic tail fusion proteins in E.coli.

These plasmids allowed fusion of tag consisting of the intein and the chitin 

binding domain (CBD), to either the C-terminus (pTYB2) or the N-terminus 

(pTYB12) of the target protein. In the presence of thiols, such as DTT, the intein 

undergoes specific self-cleavage which releases the target protein from the 

chitin-bound intein tag. Customized oligonucleotide primers containing restriction 

sites were designed and obtained from MWG biotech to amplify the open reading 

frame encoding the rat N-terminal cytosolic tail (NDAT) (amino acids 1-65) and
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C-terminal cytosolic tail (CDAT) (amino acids 579-619) domains of DAT using 

PCR.

Cloning of NDAT

The open reading frame sequence of ~210 nucleotides corresponding to 

NDAT were amplified from the cDNA sequence of rDAT using sense primer 5 -  

GTCCATATGAGTAAGAGCAAATGCTCCG-3* (containing Nde I site) and 

antisense primer 5 -CAGCCCGGGCTTGCTCCAGGTCTCCCGCTCT-3' 

(containing Sma I site). The amplified sequence was purified and the identity of 

the sequence was verified by DNA sequencing (Alpha Biolabs, CA) and was 

subcloned into pTYB2 plasmid that produces an N-terminal tag to NDAT after 

expression. 2 pg of amplified PCR product or 250 ng of pTYB1 plasmid was 

subjected to sequential double digestion, first with 10U of Sma I at 25°C for 3 h 

and then with 10U of Nde i at 37°C in NEB buffer 4 overnight. After completion of 

the reaction, the pTYB2 plasmid mixture was dephosphorylated using 5U of 

Antarctic phosphatase (NEB) at 37°C to prevent the recircularization of the 

plasmid. The reaction products of both samples were purified using Min-Elute 

purification kit and eluted into DNase free water. Ligation was performed by 

adding 1:3 molar ratios of linearized pTYB2 plasmid and PCR product to the 

ligation reaction mixture consisting of ligation buffer and 10U of T4 DNA ligase at 

16°C overnight. Nova Blue™ (Novagen) competent cells were transformed with 2 

pi of ligation reaction mix and were grown on LB agar petri-dishes containing 100 

pg/ml of carbenecillin overnight at 37°C to screen for recombinant plasmid. The 

putative colonies were randomly selected and regrown in LB medium overnight
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to prepare plasmids as described below. The integration of insert and identity of 

the sequence of the purified plasmid was verified by DNA sequencing. The 

recombinant plasmid (NDAT-pTYB1) was used to transform the T7 express® E. 

coli cells (NEB) to express the fusion protein.

Cloning of CD AT

The open reading frame sequence of ~135 nucleotides corresponding to 

CDAT were amplified from the cDNA sequence of rDAT using sense primer 5'- 

GTACAGAATGCTTTCTGCAGCCTGCCGGGGT-3’ (Bsm I) and antisense 

primer 5 -GGGCCCCTCGAGTTACAGCAACAGCCAGTGACGC-3’ (Xho I). The 

amplified product was purified and the identity of the sequence was verified by 

DNA sequencing (Alpha Biolabs, CA) and was subcloned into pTYB12 plasmid 

that produces a C-terminal tag to CDAT after expression 2 pg of amplified PCR 

product or 250 ng of pTYB12 plasmid was subjected to sequential double 

digestion, first with 20U of Bsm I at 65°C for 4h and then with 10U of Xho I at 

37°C in NEB buffer 2 and 100 pg/ml of BSA overnight. After completion of the 

reaction, pTYB12 plasmid mixture was dephosphorylated using 5U of Antarctic 

phosphatase (NEB) at 37°C to prevent the recircularization of the plasmid. The 

reaction products of both samples were purified using Min-Elute purification kit 

and eluted into DNase free water. Ligation was performed by adding 1:10 molar 

ratios of linearized pTYB12 plasmid and PCR product to the ligation reaction 

mixture consisting of ligation buffer and 10U of T4 DNA ligase at 16°C overnight. 

Nova Blue™ competent cells were transformed with 2 pi of ligation reaction mix 

and were grown on LB agar petri-dishes containing 100 pg/ml of carbenecillin
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overnight to screen for recombinant plasmid. The putative colonies were 

randomly selected and sub-cultured in LB medium overnight to prepare the 

plasmid as described below. The integration of insert and the identity of the 

sequence of the purified plasmids were verified by DNA sequencing. The 

recombinant plasmid (CDAT-pTYB12) was used to transform the T7 express™

E. coli cells (NEB) to express the fusion protein.

Site-directed Mutagenesis

Mutant NDAT or rDAT expressing constructs containing threonine (T) 

substituted to alanine (A) were produced from pTYB2-NDAT and pcDNA- rDAT 

constructs using the Stratagene QuikChange& kit (La Jolla, CA). The 

oligonucleotide primers utilized to mutate codons were designed by using “The 

QuikChauge® Primer Design Program” (http://www.stratagene.com) and -  

synthesized by MWG Biotech. The QuikChange mutagenesis reaction was 

performed by sequential addition of reaction components mentioned below in 

Table 1 and by PCR. The PCR parameters were programmed in a thermocycler 

machine as mentioned in Table 2. Following the PCR reaction, 10U of Dpn I was 

added to the reaction mix and incubated at 37°C for 1 h to digest the template 

DNA. Nova Blue™ competent cells were transformed with 2 pi of reaction mix 

and grown on LB agar petri-dishes containing 100 pg/ml of carbenecillin 

overnight. Transformed bacterial colonies were randomly selected and sub­

cultured in LB medium overnight to prepare the plasmid as described below. The 

purified plasmids were sequenced for accuracy of mutagenesis (Alpha biolabs,
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CA), and were used to transform or transfect T7 express™ E.coli as described 

below.

Table 1. Quick Change® Reaction Mixture

Vol (pi) Reagent
5 10X Reaction buffer (100 mM KCI, 100 mM (NH^SO^ 200 mM 

Tris-HCI pH8 .8 , 20 mM MgS04, 1% Triton®, 1 mg/m! nuclease- 
free BSA)

2 0 Template DNA (5ng/pl)
1.25 Forward oligonucleotide primer ( 125ng)
1.25 Reverse oligonucleotide primer ( 125ng)
1 dNTP mix
21.5 Nuclease free water
50 Final Volume

Table 2. Quick Change® Thermal Cycling Parameters

Segment Cycles Temperature Time
1 1 95°C 30 sec
2 16 95°C 30sec

55°C 1 min
6 8 °C 8 min

Bacterial Transformation and Plasmid Preparation 

Nova Blue™ singles (Calbiochem) and T7 express™ competent cells 

(NEB) aliquots were transformed with 1-2 pi of plasmid DNA or ligation mix or 

PCR mix according the standard procedures described by the manufacturer. The 

LB agar petri-dish containing 100 pg/ml of carbenecillin was spread with 

transformed bacterial suspension and was incubated at 37°C overnight.

Transformed bacterial colonies were randomly selected from the LB agar 

petri-dish and were sub-cultured in glucose M9Y medium supplemented with 100 

pg/ml of carbenecillin at 30°C in a shaking incubator at 200 rpm for > 16 h. The 

bacterial cells were harvested from medium by centrifugation at 5000 * g for
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10min at 4°C. The plasmid was isolated by using Pure Yield® plasmid Midi prep 

system (Promega) or GenElute u Plasmid Miniprep Kit (Sigma). The isolated 

plasmid was electrophoresed on a 1% agarose gel containing 0.5 pg/ml ethidium 

bromide and separated plasmids were visualized by using GrabIT annotating 

grabber 2.04.6 (UVP Inc, Upland, CA). The quality and quantity of plasmid DNA 

was assessed using Beckman DU 640 spectrophotometer. The following formula 

was used to calculate cone, of DNA; [DNA pg/ml] = A26o (50) (dilution factor).

Expression and Purification of NDAT or CDAT

To express NDAT- CBD or CDAT-CBD intein fusion protein, E.coli 77 

express™ (NEB) cells were transformed with pTYB2-NDAT or CDAT-pTYB12 

respectively and colonies were selected on LB agar plate containing 50 pg/ml of 

carbenecillin. The transformed bacterial colony was inoculated in LB medium 

containing 50 pg/ml of carbenecillin and grown to an O.D6oo of 0 . 8  at 37°C. 

Fusion protein expression was induced with 0.5 mM isopropyl p-D-1- 

thiogalactopyranoside (IPTG) for 16 h at 16°C. The bacterial culture was 

centrifuged at 5000 * g for 10 min at 4°C to harvest cells. The bacterial pellet 

was resuspended with ice cold lysis buffer (50 mM Tris, 150 mM NaCI, 0.05% 

Triton X-100 and one Complete Mini® protease inhibitor Cocktail tablet) and the 

suspension was subjected to French press (160001b/ inch2) to prepare a crude 

extract. The crude extract was centrifuged at 20,000 * g for 30 min to separate 

the soluble supernatant fraction from cell debris.

The soluble fraction of lysate was passed through a 2 ml bed volume of 

chitin column resin that composed of chitin coated agarose beads (NEB).
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Stringent washings v ->re performed with 2 0  bed volumes of column buffer (50 

mM Tris, 500 mM NaCI, 1 mM EDTA) to enrich the fusion protein on column. The 

target proteins NDAT or CDAT were released from fusion tags by incubating the 

column with 3 bed volumes of the cleavage buffer (50 mM of DTT in column 

buffer) for 40 h at 4°C. Following the incubation, the elution fractions were 

collected and resolved by SDS-PAGE followed by commassie staining or 

immunoblot to verify the on column cleavage of target proteins. The eluted NDAT 

or CDAT fragment was dialyzed against 20 mM MOPS to remove DTT.

In Vitro Phosphorylation Assays 

PKC Classical Isoforms

1.5 pg of purified NDAT or 7.5 pg of histones was incubated in a reaction 

mixture consisting of 20 mM MOPS pH 7.4, DOPS (40 pg/ml), DAG ( r . 6  pg/ml), 5 

mM MgCI2, 300 pM CaCI2, 40 pM ATP and 0.22 U of PKC isoforms (a, pi, pll, 

and y). These reactions were initiated by adding 12 pCi of [y-3 2P] ATP and 

incubated at 30°C for 30 min. 100 mM EDTA was used to terminate reactions. 

Histones were used as a positive control to test the kinase specificity.

CaMK II

1.5 pg of purified NDAT was incubated in a reaction mixture consisting of 

20 mM MOPS pH 7.4, 2.4 pM calmodulin, 5 mM MgCI2, 300 pM CaCI2, 40 pM 

ATP and 100 U of CaMK II. These reactions were initiated by adding 12 pCi of [y- 

3 2P] ATP and incubated at 30°C for 30 min. 100 mM EDTA was used to terminate 

this reaction. Myelin basic protein was used as a positive control to test the 

kinase specificity.
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PKA

1.5 |jg °f purified NDAT was incubated in a reaction mixture consisting of 

20 mM MOPS pH 7.4, 5 mM MgCI2, 300 pM CaCi2, 40 pM ATP and 1250 U of 

PKA. These reactions were initiated by adding 12 pCi of [y-32PJ ATP and 

incubated at 30°C for 30 min. 100 mM EDTA was used to terminate the reaction. 

Histones were used as a positive control to test the kinase specificity.

PKG

1.5 pg of purified NDAT was incubated in a reaction mixture consisting of 

20 mM MOPS pH 7.4, 10 pM 8 -Br cGMP, 5 mM MgCI2, 300 pM CaCI2, 40 pM 

ATP and 5000 U of PKG. These reactions were initiated by adding 12 pCi of fy- 

32P] ATP and incubated at 30°C for 30 min. 100 mM EDTA was used to terminate 

the reaction. Histones were used as a positive control to test the kinase 

specificity.

ERK1/2, AM, Cdk-5, p38, and GSK-3p

1.5 pg of purified NDAT or CDAT was incubated in a reaction mixture 

consisting of 20 mM MOPS pH 7.4, 5 mM MgCI2, 300 pM CaCf2r 40 pM ATP and 

10,000 U of GSK-3P or 100 U of activated ERK1 or ERK2. These reactions were 

initiated by adding 12 pCi of [y-3 2P] ATP and incubated at 30°C for 30 min. 100 

mM EDTA was used to terminate the reactions. Myelin basic protein was used as 

a positive control to test the kinase specificity.

CKII

1.5 pg of purified NDAT was incubated in a reaction mixture consisting of 

20 mM MOPS pH 7.4, KCI, 5 mM MgCI2, 300 pM CaCI2, 40 pM ATP and 1000U
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casein kinase II. These reactions were initiated by adding 12 pCi cf [y~32P] ATP 

and incubated at 30°C for 30 min. 100 mM EDTA was used to terminate the 

reactions. Calmodulin (CaM) was used as a positive control to test the tonase 

specificity.

In Vitro Dephosphorylation Assays

In vitro phosphcrylated NDAT samples were subjected to 

immunoprecipitation using rabbit polyclonal antibody 16 generated against rDAT 

N-terminal amino acids 42-59 followed by dephosphorylation as described below

PP1 and PP2A

In vitro dephosphorylation assay was performed using immunoprecipitated 

complexes in a reaction mixture consisting of 20 mM MOPS pH 74, 200 pM 

MnCI2, 5 mM DTT, 100 pM EDTA, 0.2 >o BSA and 2.5 U of protein phosphatase 1 

or 0.02U of PP2A. Parallel experiments were perforr. *d with in vivo f 2P] 

metabolically labeled rDAT.

PP2B

In vitro dephosphorylation assay was performed on immunoprecipitated 

complexes in a reaction mixture consisting of 20 mM MOPS pH 7.4, 200 pM 

MnCI2. 5 mM DTT, 0 2% BSA and 500U of PP2B at 30°C for 2 h The assays 

were supplemented with 1 pM calmodulin and 1 mM CaCI2 5 min before initiating 

the reaction.

Cell Surface Biotinylation

LLC-PKt cells expressing rDATs plated in 6  well plates and grown until 

they attained 70-80% confluence. Cells were washed twice with KRH and treated
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with vehicle or test compounds (PMA, GBR 12909 ) at 37 C for 30 min,, then 

were washed twice with ice-cold PBS containing 0.1 mM CaCt2 and 1 m y MgCI2 

(PBS/Ca/Mg) and treated with EZ-Link® Sulfo-NHS-LC-Biotin (1 mg/ml in 

PBS/Ca/Mg) two times on ice for 35 min each.. The reaction was quenched by 

incubating the cells twice for 20 min with 1 mi of 100 mM glycine in PBS/Ca/Mg 

at 4°C. Cells were washed with 1mf of PBS/Ca/Mg and lysed with RIPA buffer 

containing protease inhibitor for 30 min on ice wvth constant shaking. The lysates 

were centrifuged at 20.000 * g for 20 min at 4”C and equal amounts of protein 

were used for affinity binding with 50 pi of 50% Immobilized Neutravidin beads 

(Pierce) for 1 h at room temperature to separate biotinylated and non-biotinylated 

proteins. The unbound non-biotinylated fractions were collected and beads were 

washed three times with RIPA buffer Biotinylated proteins were eluted from the 

beads with 50 p! Laemmli sample buffer for 3 min at 95°C Samples were 

subjected to SDS-PAGE, followed by transfer to PVDF membranes and 

immunoblotting for DAT using a highly specific DAT monoclonal antibody {89J.

In Situ Proteolysis

Striatal membrane suspensions labeled with 32P were treated with 10 

pg/ml of endoproteinase asp-N for 60 min, at 22°C Following proteolysis, 

membranes were centrifuged at 10,000 * g for 10 min at 4°C and supernatants 

were transferred to fresh tubes The sedimented membranes were washed with 

1 ml of KBB and solubilized with 0.5% SDS sample buffer (50 mg/ml). To remove 

the insoluble material, samples were centrifuged at 20000 * g for 30 min The
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soluble fraction was subjected to immunopreciprtation with DAT polyclonal 

antibody 16 followed by electrophoresis and autoradiography.

Immunoprecipitation, Electrophoresis and Autoradiography 

32P0 4-Iabeled cell lysates or in vitro phosphorylated reaction mixtures 

were immunoprecipitated with rabbit polyclonal antiserum 16 generated against 

rDAT N-terminal amino acids 42-59 [63] For peptide blocking experiments, 

diluted antiserum was preincubated with 50 pg/ml peptide 16 prior to addition of 

the sample. Immunopreciprtates were eluted with Laemli sample buffer (62 5 mM 

Tris-HCI, pH 6 .8 , 20% glycerol, 2% SDS, 5% p-mercaptoethanol, and 0.01% 

bromophenol blue) and were electrophoresed on 4-20% or 10-20% gradient SDS 

polyacrylamide gels with high or low range Rainbow molecular mass standards. 

The electrophoresed gels were dried and subjected to autoradiography using-" 

Kodak Biomax X-ray or Hyperfilm MP film. In all metabolic labeling experiments, 

a parallel set of cells were photoaffinity labeled with the cocaine analog [I23f] 

RTI82 [90] and their lysates were subjected to immunoprecipitation and 

electrophoresis to confirm the extraction and electrophoretic mobility o f32P 

labeled DAT. Molecular Analyst software (Bio-Rad) was used to scan and 

quantify the autoradiograph regions of 100-110 kDa containing 32PC>4-labeled 

DAT [64, 85]. Phosphorylation intensities of treated samples were expressed as 

percent of the basal phosphorylation level, which was defined as 100% ± SE of 

triplicate values.
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Eiectroelution and Dialysis

Phosphorylated ana immunoprecipitated striatal DATs or NDATs were 

separated on 4-20% or 10-20% gradient tris-glycine gels by SDS-PAGE. The 

gels were dried at 80°C and at 25psi for 4-6 h and exposed to Hyperfilm MP for 

12-24 h. By comparing the autoradiographic image, the labeled bands at -80 

kDa or ~7 kDa correspond to striatal DAT or NDAT respectively were excised 

from gels and rehydrated with SDS-PAGE running buffer. The rehydrated gel 

slices were subjected tc eiectroelution using 3.5 kDa membrane cut-off at 10 mA/ 

tube for 6  h. The electroelutes were dialyzed using SlideA-Lyzer™ (Pierce) 10 

kDa or 2 kDa cut-off cassettes against distilled water with at least three changes 

over 24 h. The diaiysate was concentrated to -100 pi and subjected to acetone 

precipitation of proteins. —

Acetone Precipitation of Proteins

Three-four volumes of -20°C stored acetone was added to phosphorylated 

rDATs or NDATs followed by thorough mixing. The samples were stored at -20°C 

for at least 2 h and then centrifuged at 15000 x g for 10 min at 4°C. The 

supernatant was discarded and the protein pellets were air dried for 15 min at 

room temperature. Acetone precipitated protein pellets were used for 

phosphoaminoacid analysis.

Phosphoamino Acid Analysis

Phosphoamino acid analysis was performed using the method of Boyle et 

at. (1991) [91]. Metabolically labeled striatal DATs or in vitro phosphorylaK ' 

NDAT samples were immunoprecipitated with polyclonal antiserum 16, and
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electrophoresed on 10-20% gradient gels. After drying and autoradiography, the 

region of the gel containing phosphorylated striatal DAT or NDAT was excised, 

and the protein was eluted in to SDS-PAGE running buffer. Eluted samples were 

dialyzed against distilled water. Phosphorylated DATs or NDATs were 

precipitated from dialysate using standard acetone mediated protein precipitation 

procedures. The precipitated DAT or NDAT samples were acid hydrolyzed using 

5.7M HCI for 1 h at 110°C. Unlabeled phosphoamino acid standards (Ser(P), 

Thr(P), and Tyr(P)) (1 mg/ml) were dissolved in pH 1.9 buffer (acetic acid 7.8%, 

formic acid 2.5%) at 1:15 dilution and added to the unknowns. Samples were 

spotted onto cellulose thin layer plates and electrophoresed using a Hunter thin 

layer electrophoresis unit at 1.5 kV for 35 min at pH 1.9 (acetic acid 7.8%, formic 

acid 2.5%) in the first dimension and at 1.3 kV for 20 min at pH 3.5 (pyridine 

0.5%, acetic acid 5%) in the second dimension. Standards were visualized with 

ninhydrin, and the plates were subjected to autoradiography for 1-3 weeks.

Immunoblot Analysis

Cell lysates or immunoprecipitated DATs were electrophoresed on 4-20% 

or 10-20% gradient Tris-glycine SDS polyacrylamide gels at 150 volts and 30 mA 

for 1 h to separate the proteins. Following electrophoresis, proteins were 

electrophoretically transferred to 0.45 pm polyvinylidene difluoride (PVDF) 

membranes. Membranes were washed two times with distilled water and blocked 

with 3% BSA prepared in 10 mM phosphate-buffered saline (PBS), pH 7 4 

overnight. Membranes were probed with a highly specific DAT monoclonal 

antibody diluted 1:1000 in 3% BSA, 10 mM PBS, pH 7 4 for 1 h at room
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temperature. Blots were washed 3 times with 0.1% tween, 10 mM PBS, pH 7.4 

and then incubated for 1 h at room temperature with goat anti-rabbit IgG-Sinked 

alkaline phosphatase conjugate diluted 1:5000 in a 3% BSA, 10 mM PBS 

solution. After extensive washing, blots were developed using alkaline 

phosphatase chemiluminiscent substrate Immun-Star™ (Bio-Rad) or colorimetric 

substrate 5-bromo-4-chloro-3-indolyl phosphate/nitro blue tetrazolium 

(NBT/BCIP) for 5-15 min. Colorimetrically developed blots were dried, scanned 

and quantified with Molecular Analyst software (Bio-Rad). Blots developed with 

chemiluminiscent substrates were visualized and images captured using a Lumi- 

Imager (Mannheim Boehringer). Immunoreactive band intensities were 

determined using LumiAnalyst software and data were analyzed with Prism 3 

software. ~

Statistical Calculations and Graphs

Normalized phosphorylation values or [3H] DA uptake values from multiple 

experiments were averaged for statistical analysis by analysis of variance 

(ANOVA) or student t-test and graphed using Prism 3.0 software (Graphpad 

Software, Sandiego CA).

48



CH APTER  III

RESULTS

Effects of Uptake Blockers on DAT Phosphorylation 

Cocaine and fi-CFT Treatment

To examine the effects of uptake blockers on DAT phosphorylation, rDAT 

expressing LLC-PKi cells were metabolically labeled with 32P and treated with 

vehicle or 1 pM PMA in the presence or absence of 10 pM (-)-cocaine. 3 2P04 

incorporated DATs were immunoprecipitated and analysed by SDS-PAGE 

followed by autoradiography (Figure. 5, left). The cells treated with vehicle 

displayed a basal level of constitutive phosphorylation on DATs (100 ± 3%) that 

is defined as 1 0 0 % for comparison with the phosphorylation levels obtained 

under experimental conditions. Phosphorylation was stimulated to approximately 

two-fold by PMA (215 ± 9% of basal, p < 0.001), as previously reported [64, 85]. 

The addition of cocaine during the 30 min vehicle or PMA treatment had no 

discernable effect on the level of either constitutive phosphorylation (98 ± 12% of 

basal; p > 0.05 relative to basal) or PMA-stimulated DAT phosphorylation (177 ± 

24% of basal; p < 0.01 relative to basal, p > 0.05 relative to PMA). As similar set 

of studies were performed using high affinity cocaine analog p-CFT and the 

results are shown in Figure. 5, right. In these experiments PMA stimulated DAT 

phosphorylation levels were 184 ± 22% of basal (p < 0.01 relative to basal), while 

1 pM {3-CFT alone had no effect on constitutive
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Figure 5. Cocaine and p-CFT Do not Affect Basal or PMA-Stimulated DAT 

Phosphorylation. rDAT LLC-PI^ cells were metabolically labeled with 32P and 

treated with or without 10 pM (-)-cocaine, 1 pM P-CFT or 1 pM PMA as indicated 

for 30 min followed by immunoprecipitation, SDS-PAGE and autoradiography of 

DAT. Upper panel: autoradiographs of representative experiments; lanes 

correspond to treatments indicated directly below on histogram. Lower panel: 

summary of DAT phosphorylation levels relative to basal (means ± SE of four 

independent experiments for cocaine and three independent experiments for P- 

CFT, performed in triplicate). *p < 0.05 relative to basal; **p < 0.01 relative to 

basal; < 0.001 relative to basal; ANOVA
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Figure 5. Cocaine and P-CFT Do not Affect Basal or PMA-Stimulated DAT 

Phosphorylation.

Gorentla, B.K. and R.A. Vaughan. Neuropharmacology, 2005 49(6):p. 759-68
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phosphorylation (100 ± 10%, p > 0.05 relative to basal) or PMA-stimulated 

phosphorylation (174 ± 21% of basal; p < 0.05 relative to basal, p > 0.05 relative 

to PMA).

Shorter PMA treatment times were performed using the same 

combinations of drug and PMA treatments for 5 and 10 min (Figure. 6 ) to 

determine if cocaine effects are transient. In these experiments PMA-stimulated 

DAT phosphorylation to 178 ± 9% and 284 ± 33% of basal by 5 and 10 min 

respectively (p < 0.05 and p < 0.001 relative to basal). Addition of cocaine during 

5 or 10 min vehicle or PMA treatments did not show any difference in the levels 

of constitutive phosphorylation (99 ± 8 % and 108 ± 8 % of basal, both p > 0.05 

relative to basal) or PMA-stimulated phosphorylation respectively (210 ± 36% 

and 301 ± 25% of basal at 5 min and 10 min, p < 0.01 and p < 0.001 relative to 

basal; both p > 0.05 relative to matching PMA treatment time).

Mazindol, MPH or GBR 12909 Treatments

We then extended the above studies to different classes of DA uptake 

blockers by examining the effects of mazindol, MPH, and GBR 12909. Mazindol 

(Mazanor®) is a drug used clinically to treat obesity, which has been classified as 

an appetite suppressant and has beer, shown to exhibit similar behavioral and 

pharmacological effects as cocaine. Dells treated with Mazindol produced a 

similar DAT phosphorylation profile as cocaine produced in this study. In these 

experiments constitutive and PMA stimulated phosphorylation values were 100 ± 

5% and 257 ± 34%, respectively (PMA value p < 0.01 relative to basal). The 

addition of 1 pM mazindol did not affect constitutive phosphorylation
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Figure 6 . Cocaine Does not Affect Basal or PMA-Stimulated DAT 

Phosphorylation at Shorter Time Points. rDAT LLC-PK1 cells were metabolically 

labeled with 32P and treated with or without 10 pM (-)-cocaine or 1 pM PMA for 5 

or 10 min as indicated, followed by immonoprecipitation, SDS-PAGE and 

autoradiography of DAT. DAT phosphorylation levels were quantified by 

densitometry and results shown are the means ± SE of two independent 

experiments performed in triplicate. *p < 0.05 relative to basal; **p < 0.01 relative 

to basal; ***p < 0.001 relative to basal; ANOVA.
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Figure 6 . Cocaine Does not Affect Basal or PMA-stimuiated DAT 

Phosphorylation at Shorter Time Points.

Gorentla, B.K. and R.A. Vaughan. Neuropharmacology, 2005 49(6):p 759-68.
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Figure 7 Mazindol and Methyfphenidate Do no! Affect Basai or PMA-Stmnulated 

DAT Phosphorylation. rDAT LLC-PKT cells were metabolicalSy labeled with 32P 

and treated with or without 1 pM mazindol (left) or 10 pM MPH (right) in the 

presence or absence of 1 pM PMA for 30 min followed by immunoprecipitation, 

SDS-PA6 E and autoradiography of DAT. Upper panels: autoradiographs of “ 

representative experiments; lanes correspond to treatments indicated directly 

below on histogram Lower panel: summary of DAT phosphorylation levels 

relative to basal (means ± SE of three independent experiments for both 

compounds, performed in triplicate). *p < 0.05 relative to basal; **p < 0.01 

relative to basal: ANOVA.
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Figure 7. Mazindol and Methylphenidate Do not Affect Basal or PMA-Stirnulated 

DAT Phosphorylation.

Gorentla, B.K. and R A. Vaughan. Neuropharmacology. 20G5 49(6):p. 759-68
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(85 ± 14% of basal; p > 0.05 relative to basal) or PMA-stimulated phosphorylation 

(279 ± 49% of basal, p < 0.01 relative to basal, p > 0.05 relative to PMA) (Figure. 

7, left).

MPH (Ritalin®), a clinical drug used in the treatment of ADHD did not 

affect basal or PMA-stimulated DAT phosphorylation (Figure. 7t right) like 

cocaine, (3-CFT and mazindol The constitutive and PMA stimulated values were 

100 ± 7% and 275 ± 48% of basal, respectively (PMA p < 0.05 relative to basal). 

Inclusion of 10 pM MPH had no effect on the constitutive phosphorylation (109 ± 

15% of basal; p > 0.05 relative to basal), and PMA stimulated phosphorylation 

(253 ± 40% of basal; p < 0.05 relative to basal; p > 0.05 relative to PMA).

Treatment of cells with GBR 12909, a selective inhibitor for DA uptake 

displayed a different phosphorylation profile. The phosphorylation intensities of 

constitutive and PMA-stimulated samples were 101 ± 6 % and 186 ± 7% of basal, 

respectively (PMA value p < 0.001 relative to basal). The treatment of 1 pM GBR 

12909 had no effect on constitutive phosphorylation (111 ± 9% of basal, p > 0.05 

relative to basal), but suppressed the PMA stimulated phosphorylation by up to 

50% (147 ± 5% of basal; p < 0.001 relative to basal, p < 0.01 relative to PMA) 

(Figure 8 ).

Effects of Uptake Blockers on DA Transport 

Cocaine Treatment

Uptake blockers were used to examine their ability to affect transport 

activity or modulate PMA-stimulated DA transport down regulation. Drugs were 

added to cells in combination with vehicle or PMA and incubated for 30 min at
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Figure 8 . GBR 12909 Suppresses PMA-Stimulated DAT Phosphorylation. rDAT 

LLC- PKi cells were metabolicaliy labeled with 32P and treated with or without 

1 pM GBR 12909 or 1 pM PMA for 30 min followed by immunoprecipitation, 

SDS-PAGE and autoradiography of DAT. Upper panel: autoradiograph of 

iepresentative experiment; lanes correspond to treatments indicateirdirectly 

below on histogram. Lower panel: summary of DAT phosphorylation levels 

relative to basal (means ± SE of three independent experiments, performed in 

triplicate). ***p < 0.001 relative to basal; **p < 0.01 relative to PMA; ANOVA.
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Figure 8 . GBR 12909 Suppresses PMA-Stimulated DAT Phosphorylation. 

Goreniia, B.K. and R.A. Vaughan. Neuropharmacology, 2005 49(6):p. 759-68.
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37°C. Tc remove the test compounds, cells were washed thoroughly and 

subjected to [3H] DA uptake. The [3H] DA uptake obtained with vehicle treatment 

is considered the control which is defined as 1 0 0  % and is used to normalize the 

DA uptake values of other treatments. Pretreatment of cells with vehicle or 

cocaine did not affect the DA transport activity or PMA-induced transport down 

regulation (Figure 9A, top). The cells treated with 1 pM PMA decreased the DA 

transport values to 67 ± 3% of control (p < 0.001) resulting in PMA induced down 

regulation. Cells pretreated with 10 pM cocaine or cocaine plus PMA did not 

affect either control transport activity (96 ± 5% of control, p > 0.05 relative to 

control), or PMA induced down regulation ( 6 8  ± 3%, p < 0.001 relative to control; 

p > 0.05 relative to PMA).

MPH or Mazindol Treatment

DA uptake assays were extended to study the effect of MPH and mazindol 

on DA transport activity or PMA induced transport down regulation in a similar 

manner as cocaine treatments. The cells pretreated with MPH do not show a 

difference from control transport activity (93 ± 2% of control, p > 0 05 relative to 

control) (Figure 9B). The uptake values of PMA-induced down regulation (62 ± 

3% of control; p < 0 001 relative to control), were not different from a combination 

treatment with MPH and PMA (63 ± 4% of control; p < 0.001 relative to control, p 

> 0.05 relative to PMA). MPH pretreatment did not influence transport activity or 

PMA induced transport down regulation

Mazindol pretreatment decreased the subsequent [3H] DA uptake even 

after extensive washings (78 ± 2% of control; p < 0.001 relative to control)
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Figure 9. Effects of Cocaine, Methylphenidate and Mazindol on DA Transport 

Activity and PMA-Induced Down-Regulation of DA Transport Activity. rDAT LLC- 

PKi cells were treated as indicated with (A), vehicle, 1 pM PMA or 10 pM 

cocaine, (B). vehicle, 1 pM PMA or 10 pM MPH, or (C). vehicle, 1 pM PMA or 

1 pM mazindol for 30 min followed by washing to remove drugs and assay for 

[3H]DA transport. Results shown are means ± SE of three independent 

experiments for cocaine and two independent experiments for MPH and 

mazindol, performed in triplicate. **p < 0 . 0 1  relative to control; ***p < 0 . 0 0 1  

relative to control, #p < 0.05 relative to PMA, ®®®p < 0.001 relative to mazindol; 

ANOVA.
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Activity and PMA-Induced Down-Regulation of DA Transport Activity.
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(Figure. 9C). To study this decrease in uptake values, we performed [3HJ CFT 

ligand binding assays (not shown). Binding assays showed a 30% loss in [3H] 

CFT binding suggesting that the decrease of [3H] DA uptake may be due to the 

presence of residual drug in the cell preparation. PMA treatment showed 

transport down regulation to 72 ± 4% of control (p < 0.001 relative to control), but 

co-treatment with mazindol further decreased the PMA-induced transport down 

regulation (56 ± 2% of control; p < 0.001 relative to control, p < 0.05 relative to 

PMA, p < 0.001 relative to mazindol). This increase in PMA-induced transport 

down regulation could be due to presence of residual drug that also decreased 

[3 H] CFT binding. Although it is possible that this decreased f3H] DA uptake may 

also be due to the modulation of transport physiology by mazindol, our results 

show that mazindol does not subvert the effects of PMA.

GBR 12909 Blocks the Internalization of DAT 

In an attempt to study the effect of GBR 12909 on DA transport activity we 

performed [3H] DA uptake assays. Lack of binding reversibility of GBR 12909 

following washings resulted in 10% or less DA uptake values compared to 

control. In this experiment, [3H] DA uptake was minimal because of irreversible 

binding of GBR 12909, so we examined if this drug affects the cell surface 

distribution of DAT by using cell surface biotinylation. The control represents the 

amount of surface DAT on cells during vehicle treatment and is defined as 100% 

to compare with other treatments. Treatment of cells with PMA decreased the 

surface DAT levels to 67 ± 2% of control (p < 0.05) (Figure 10) suggesting that 

DAT undergoes internalization and these values are comparable with previous
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Figure 10. GBR 12909 Blocks PMA-Induced DAT Internalization. rDAT LLC-PKi 

cells were treated with the indicated combinations of vehicle, 10 pM PMA and 

10 pM GBR 12909 for 30 min followed by cell surface biotinylation and 

separation of biotinylated and non-biotinylated proteins. (A) Representative DAT 

immunoblot from the biotinylated fraction of cell lysates. (B) Summary of 

biotinylation levels (means ± SE of three independent experiments). *p < 0.05 

relative to control; **p < 0.01 relative to control; ANOVA.
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Figure 10. GBR 12909 Blocks PMA-Induced DAT Internalization.

65



studies. The co-treatment of GBR 12909 and PMA increased the surface 

expression of DAT suggesting that GBR 12909 blocks the PMA induced 

internalization of DAT. GBR 12909 treatment increased the surface expression of 

DAT to 130 ± 8 % of the control (p < 0.01). These results provide preliminary 

evidence that binding of GBR 12909 can affect DAT phosphorylation and DAT 

endocytosis.

Effect of DA on DAT Phosphorylation 

We have investigated the effects of DA on DAT phosphorylation by 

treating 32P labeled cells with DA in the presence or absence of PMA (Figure 

11). Addition of 10 pM DA did not affect DAT constitutive phosphorylation (90 ± 

8 % of basal, p > 0.05 relative to basal) or PMA stimulated phosphorylation (PMA 

value 198 ± 18% of basal, p < 0.01 relative to basal; PMA plus DA value 233 ± 

28% of basal, p < 0.001 relative to basal, p > 0.05 relative to PMA). In contrast. 

DAT substrates AMPH or METH induce DAT phosphorylation (85] and 5-HT or 

other SERT substrates suppress PMA-induced SERT phosphorylation [92].

Effects of DA on DA Transport

DAT has been shown to undergo functional transport down regulation with 

the pretreatment of DA in both synaptosomes and rDAT expressing HEK celts 

[81]. However, treatment of Madine-Darby canine kidney ceils (MDCK) [93] with 

DA did not affect normal DA transport activity. Here we examined if rDAT 

expressing LLC-PKt cells undergo DA-induced down regulation. The cells 

pretreated with 1-10 pM DA showed transport down regulation in a dose 

dependent manner up to 30-40% (Figure 12A). We have also verified that PMA-
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Figure 11. DA Does not Affect Basai or PMA-Stimutated DAT Phosphorylation 

rDAT LLC-PKi cells were metabolically labeled with 32PO« and treated with or 

without 10 pM DA or 1 pM PMA for 30 min, followed by immuncprecipitation, 

SDS-PAGE and autoradiography of DAT. upper panel: autoradiograph of a 

representative experiment, lanes correspond to treatments are indicated directly 

below the histogram. Lower panel: summary of DaT phosphorylation levels 

relative to basal (means ± SE of two independent experiments, performed in 

triplicate). *p < 0.05 relative to basal; **p < 0.01 relative to basal; ***p < 0 001 

relative to basal; ANOVA.
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Figure 12. DA and PMA Dose Response Curves for DA Transport Down- 

Regulation. rDAT LLC-PKt ceils were treated with the indicated doses of DA (A) 

or PMA (B), or (C). 10 pM DA with or without 10 pM cocaine, for 30 min followed 

by washing and assay for [3H]DA transport. Values shown are means ± SE of two 

(A and B) or three (C) independent experiments performed in triplicate for each 

compound, 'p < 0.05 relative to control: **p < 0.01 relative to control; ***p <

0.001, relative to control; *p < 0 05 relative to DA, ANOVA
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induced transport down regulation occurs in a dose dependent manner.which 

started at nanomolar concentrations (Figure 12B). We co-treated the cells with 

10 pM of DA and cocaine and assayed for [3H] DA uptake to examine if transport 

is required for DA induced down regulation. Cocaine significantly attenuated the 

DA induced down regulation in cells suggesting that this event requires active 

transport (Figure 12C). Previous studies have demonstrated that LLC-PKi cells 

express DA receptors and are known to activate the PKC dependent pathways 

[94], that can lead to transport down regulation. To test this possibility, we 

preincubated the cells with DA and D1 or D2 antagonists such as SCH 23390 or 

sulpride to block the activation of DA receptors and subsequently assayed for 

[3H] DA uptake. The presence of DA antagonists did not block DA induced 

transport down regulation (not shown) indicating that this process is not operating 

through dopamine receptor signaling.

DA-Induced Transport Down-Regulation Occurs Through PKC-Dependent

Mechanisms

We examined the combined effects of DA and PMA on transport activity to 

determine if they produce maximal levels of down regulation. In these 

experiments, we co-treated the cells with high or intermediate concentrations of 

DA and PMA. The individual pretreatments at higher concentration such as 15 

pM DA or 1 pM PMA induced transport down-regulation to 76 ± 6 % or 64 ± 3% 

of control, respectively (p < 0.01 and p < 0.001 relative to control) (Figure. 13A). 

When cells were co-treated with DA and PMA at the above concentrations no 

further decrease in transport activity was evident (61 ± 2 % of control, p < 0 . 0 0 1
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Figure 13. DA-Induced Transport Down-Regulation is not Additive with PMA and 

is PKC Dependent. rDAT LLC-PKi cells were treated as indicated with (A) 

vehicle, 1 pM PMA or 15 pM DA for 30 min, (B) vehicle, 0.3 nM PMA or 10 pM 

DATor 30 min, or (C) vehicle or 10 pM BIM 30 min followed by vehicle or 20 pM 

DA for an additional 30 min. Cells were washed to remove pretreatment drugs 

followed by assay for [3H]DA transport. Values shown are means ± SE of three 

independent experiments, performed in triplicate. *p < 0.05 relative to control; **p 

< 0 . 0 1  relative to control; ***p < 0 .0 0 1 , relative to control, **p < 0 . 0 1  relative to 

BIM plus DA; ANOVA.
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relative to control, p > 0.05 relative to DA only or PMA only) suggesting that each 

of these compounds achieved a maximal level of down regulation at this 

concentration and maximal effects couid not be exceeded by the addition of the 

other compound. Therefore, it is possible that cells may exert additive effects 

when compounds are applied in intermediate concentrations. Cells incubated 

with intermediate concentrations, i.e. 10 pM DA or 0.3 nM PMA induced transport 

down regulation to sub-maximal levels (DA value, 87 ± 2% of control, p < 0.05 

relative to control; PMA value, 80 ± 3% of control, p < 0.001 relative to control) 

(Figure. 13B). When co-treated, at these concentrations, higher levels of down 

regulation were not observed compared to individual treatments (86 ± 2% of 

control, p < 0.05 relative to control, p > 0.05 relative to DA only or PMA only). So 

an additive effect was not seen with co-treatment of DA and PMA even at 

intermediate concentrations suggesting that these individual down regulatory 

processes occur through a common mechanism.

To examine this possibility we incubated the cells with DA after PKC 

inhibitor bisindoylmaleimide I (BIM) pretreatment and assayed for [3H] DA uptake 

(Figure. 13C). DA uptake values with 20 pM DA or 10 pM BIM individual 

treatments were 74 ± 2% of control (p < 0.001 relative to control) or 94 ± 3% of 

control (p > 0.05 relative to control) respectively. When used in combination with 

DA, BIM effectively blocked DA-induced down regulation (91 ± 4% of control; p > 

0.05 relative to control, p > 0.05 relative to BIM, and p < 0.01 relative to DA) 

suggesting that DA induced down regulation requires PKC. At a 10 pM 

concentration, BIM can block the activity of PKA while also inhibiting PKC.
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However, previous results [63, 85] have shown that the treatment with the 

specific PKA inhibitor H89 did not affect the DA transport activity. Therefore, it is 

unlikely that inhibition of PKA by BIM accounts for blockade of DA induced down 

regulation. Together these results suggest that DA induced down regulation 

occurs by a PKC-dependent mechanism.

Purification and Immunochemical Characterization of NDAT

We have purified NDAT from precursor NDAT-CBD fusion protein that 

was expressed in T7 express bacteria. We have used standard methods to 

separate and purify NDAT from a crude lysate. Fractions of all the manipulations 

during the purification process were collected and analyzed using SDS-PAGE 

followed by commassie staining or immunoblot (Figure 14A). About 95% of the 

expressed NDAT-CBD fusion protein was found in the soluble fraction of crude 

extract (data not shown). The crude lysate from IPTG induced bacterial cultures 

showed a strong protein band at 62 kDa on commassie-stained gel (Figure 14A, 

lane 2, arrow a), while un-induced bacterial culture lysate did not display such a 

band in the corresponding region (lane 1) suggesting IPTG induced the 

expression of the fusion protein. To purify the NDAT-CBD fusion protein we 

passed the IPTG induced lysate through a chitin column and followed by 

stringent washes. Following washings we initiated the cleavage of NDAT-CBD 

fusion protein by incubating the column with 50 mM DTT for 40 h at 4°C.

The E1 and E2 elution fractions were collected from the chitin column, 

which showed a single NDAT protein band on commassie stained gel at 7 kDa 

with 95% purity (lanes 5, 6, arrow b). These fractions were immunobioted with a
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DAT-specific antibody that recognizes the N-terminal tail of DAT. Immunoblct 

analysis snowed immunoreactivity at ~7 kDa in lanes 7 and 8 that is comparable 

with commassie stained bands in lanes 5 and 6. Additionally, we found 

immunoreactive protein bands which represent uncleaved NDAT fusion protein. 

These results suggest that the expressed NDAT represents the N-terminal 

cytosolic tail of DAT.

Further, we immunochemically characterized the purified NDAT by 

immunoprecipitation and immunoblot analysis. NDATs were specifically 

immunoprecipitated by poly clonal antibody 16B that recognizes the N-terminal 

aminoacids 42-59 (lane 2, Figure 14B). The inclusion of immunizing peptide 

competitively blocked the immunoprecipitation of NDAT as shown in lane 3. The 

pre-immune serum did not immunoprecipitate NDAT (lane 4). These results 

were consistent with the immunoprecipitation profile of full length rDAT (upper 

panel, Figure 14B) suggesting that recombinantly expressed NDAT is indeed the 

N-terminal tail of full length DAT. We have achieved a final yield of 2-5 mg of 

NDAT per liter of culture.

Multiple Protein Kinases Directly Phosphorylate NDAT In Vitro

In an attempt to screen the protein kinase(s) that phosphorylate the N- 

terminus of DAT, we performed in vitro phosphorylation assays with 

recombinantly expressed NDAT with various purified serine/threonine kinases. 

The role of PKC has been well documented in DAT phosphorylation and 

regulation [63, 95], Therefore, we first started with PKCa to determine if it is able 

to phosphorylate NDAT in vitro. The in vitro phosphorylation was initiated with
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Figure 14. (A) Column Purification and SDS-PAGE Analysis of NDAT.

Expression of NDAT fusion protein was induced with 0.5 mM IPTG at 16°C for 16 

h. Total E.coli crude lysate was passed through chitin affinity column to purify 

NDAT-CBD fusion protein (an arrow on top left representing ‘a’). After washing 

the column, NDAT (bottom left arrow showing b’) was cleaved from fusion tag on 

column using buffer containing 50mM DTT. All the samples were analyzed by 

SDS-PAGE followed by commassie staining (left) or immunoblot (right). Lane 1, 

uninduced total lysate. Lane 2, totarfysate of cells induced with IPTG that was 

used as input of the chitin column. Lane 3, column flow through. Lane 4, 

represents column washing. Lanes 5-6 represents elution fractions E1 and E2. 

Lanes 7-8 represents immunoblot analysis of E1 and E2 respectively.

(B) Immunochemical Characterization of NDAT: NDAT or rDAT was 

immunoprecipitated with DAT poly 16 antibodies (Ab16), poly 16 antibody 

preabsorbed peptide 16 (p16), or with preimmune serum (PI). The immune 

complexes were analyzed by SDS-PAGE followed by western blot. Upper panel 

shows the immunochemical reactivity of rDAT compared with NDAT in lower 

panel.
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purified PKCa and incubated for 30 men at 30°C. Reactions were terminated with 

the addition of EDTA and NDATs were subjected to immunoprecipitatiors,, SD S- 
PAGE and autoradiography or immunobiot (Figure 15). The results showed that 

PKCa phosphorylates NDAT in vitro (lane 1) while the addition of EDTA 

completely blocked NDAT phosphorylation suggesting that PKCa specifically 

phosphorylated NDAT (lane 2). Other reactions that received only NDAT or only 

PKCa did not show any phosphorylated band and represent negative controls 

(lane 3t 4) to show that the NDAT preparation or the purified kinase do not 

contain any contaminating proteins that may lead to misinterpretation of NDAT 

phosphorylation. The presence of equal amounts of NDAT in these reactions was 

demonstrated by immunobiot analysis (bottom panel)

We extended these studies to other protein kinases to detect if these 

kinases phosphorylate NDAT in vitro Figure 16A shows the in vitro 

phosphorylation of NDAT by PKC isoforms (a, fJI„ fill, and y), CaMK Ha, ERK1/2, 

PKA, PKG, CKII and GSK-3f3. All the tested protein kinases phosphorylated 

NDAT and were easily detectable with equal specific activities of these protein 

kinases; however GSK-3p did not phosphorylate the NDAT. Surprisingly, ERK1/2 

isoforms phosphorylated NDAT to greater extent than any other protein kinase. 

These results suggest that multiple protein kinases may directly phosphorylate 

the N-terminal tail of DAT in vi. o Additionally, immunobiot analysts of ERK 

phosphorylated NDAT displayed a discrete upward shift in electrophoretic 

mobility compared to unphosphorylated NDAT or NDATs that were 

phosphorylated by other kinases (bottom panel, Figure 16A). This result

79



Figure 15. PKCa Phosphorylates NDAT In Vitro. NDAT was phosphoryfated in 

vitro by incubation with PKCa at 30°C for 30 min in the presence of 20 mM 

MOPS, pH 7.4, buffer containing 5 mM MgCI2r 300 pM CaCI2, DOPS (40 pg/mi), 

DAG (1.6 pg/mi), 40 pM ATP and 12 pCi of [y-32P] ATP. Foliowing the reaction 

samples were analyzed by immunoprecipitation followed by autoradiography 

(upper panel) or immunobiot (lower panel). Lane 1, represents the reaction mix 

that contains NDAT and PKCa. Lane 2, sample that received EDTA. Lane 3- 4, 

samples that did not receive either NDAT or PKCa.
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Figure 15. PKCa Phosphorylates the NDAT In Vitro.
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suggests that ERK mediated phosphorylation may promote different 

conformation for NDAT.

ERKs are classified as proline-directed serine/threonine kinases, which 

specifically phosphorylates on S/T that immediately precedes a proline (S/T-P) 

[96, 97]. Such sites are also present in the distal region of NDAT, which are 

amenable for phosphorylation by other proline directed protein kinases including 

p38a kinase, JNK2, and Cdk 5. Although there is no evidence for these protein 

kinases to regulate DA transport activity in vivo, it is possible that they may play a 

role in N-terminal phosphorylation of DAT that is involved in DA efflux. Therefore 

we tested if these protein kinase(s) are involved in NDAT phosphorylation. 

Additionally we have also tested the ability of Akt1 to phosphorylate NDAT.

Varied levels of phosphorylation were achieved on NDATs when 

incubated with different protein kinases of equal specific activity (Figure 16B).

The phosphorylation levels achieved on NDAT by these protein kinases were 

represented as ERK = p38a kinase > JNK2 > Cdk > Aktf. Additionally, p38a 

kinase and JNK2a2 phosphorylated NDATs have an electrophoretic shift on 

immunoblot that matches the migration of ERK1-phosphorylated NDAT.

However, Cdk5 and Akt 1 phosphorylated NDATs did not show this shift on the 

immunoblot. These results suggest that ERK1, p38 and JNK2 may share the 

same phosphorylation site on NDAT

Because of the demonstrated regulatory roles of ERK1 and PKCa in DAT 

phosphorylation and /or DAT function, we focused further studies on PKCa 

and/or ERK.
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Figure16. Multiple Kinases Phosphorylate NDAT In Vitro. NDAT was 

phosphorylated in vitro by incubating with different protein kinases (A) PKCa, pi, 

pll, y, ERK1/2, CaMK II, PKA, PKG, GSK-3p, and CKII (B) ERK1, p38 kinase, 

JNK2, Cdk5, anti7\kt1 at 30°C for 30 min in the presence of 20 mM MOPS, pH 

7.4, buffer containing 5 mM MgCI2, 300 pM CaCi2, 40 pM ATP and 12 pCi of [y- 

32P] ATP. Following the reaction, samples were analyzed by immunoprecipitation 

followed by autoradiography (upper panel) or immunoblot (lower panel). The 

lanes correspond to protein kinase treatments that are indicated directly above 

the autoradiograph.
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In Vitro Dephosphorylation of NDAT 

The application of protein phosphatase inhibitors in cell lines [63] or 

treatment of cell homogenates with purified protein phosphatases [72] have 

demonstrated the role of protein phosphatases on DAT phosphorylation and DA 

transport activity. Here we attempted to dephosphorylate in vitro phosphorylated 

NDATs by using in vitro dephosphorylation assays with exogenous protein 

phosphatases. We initiated the in vitro dephosphorylation reaction by adding 

purified protein phosphatases PP1, PP2A or PP2B to the reaction mixtures 

consisting of PKCa or ERK1 phosphorylated NDATs or 32P labeled rDATs. 

Following the reaction, the reaction products were separated by SDS-PAGE and 

detected by autoradiography. The phosphorylation levels in control samples that 

did not receive protein phosphatase were defined as 100% for comparison with 

phosphorylation levels obtained following treatments. The results show that 

PKCa-phosphorylated NDAT was completely or partially dephosphoryiated by 

PP1 or PP2B respectively. However, PP2A was not able to dephosphorylate the 

PKC phosphorylated NDAT (Figure 17B). A similar dephosphorylation profile was 

found with 32P04 labeled rDAT samples suggesting that PP1 and/or PP2B may 

regulate the PKC mediated phosphorylation of DAT in vivo (Figure 17A). 

Treatment with PP1 displayed a significant amount of dephosphorylation in PKCa 

phosphorylated NDAT (20.2 ± 9.6 % of control; p< 0.001 and p< 0.01 relative 

control and PP2A respectively) and in 32P04 labeled rDAT (12.3 ± 5.7 % of 

control; p< 0.001 and p< 0.05 relative control and PP2A respectively; with 

treatment of PP1. PP2B was able to dephosphorylate PKCa-phosphorylated
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Figure 17. In Vitro Dephosphorylation of NDAT. (A) 32P metabolically labeled 

rDAT samples or (B) PKCa or (C) ERK1 in vitro phosphorylated NDAT samples 

were subjected to immunoprecipitation using rabbit polyclonal antibody 16. The 

immunoprecipitated complexes subjected to dephosphorylation in a reaction 

mixture consisting of 20 mM MOPS pH 7.4, 200 pM MnCI2, 5 mM DTT, 100 pM 

EDTA, 0.2% BSA and PP1 or PP2A or PP2B at 30°C for 2 h. PP2B assays were 

supplemented with 1 pM calmodulin and 1 mM CaCh, 5 min before initiation of 

the reaction. Following the reaction, the samples were analyzed on SDS-PAGE 

followed by immunoblot (upper panel) or autoradiography (middle panel). The 

lanes correspond to treatments indicated directly below on histogram. Summary 

of NDAT or rDAT phosphorylation levels relative to control (means ± SE of three 

independent experiments). *p < 0.05 relative to control; **p < 0.01 relative to 

control; ***p < 0.001 relative to control; ANOVA.
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Figure 18. Phosphoamino Acid Analysis of (A) PKC a and (B) ERK 

Phosphorylated NDAT. PKC a or ERK1 phosphorylated NDATs were purified by 

immunoprecipitation and gel electrophoresis. Autoradiographs displayed the 

phosphorylation pattern demonstrated in Fig. 2A. DAT bands were excised, 

eluted, and subjected to acid hydrolysis. Cerenkov counting of the hydrolysates 

showed counts/min of 500 and 800 in the PKC a and ERK1 samples, 

respectively. Aliquots of the hydrolysates were mixed with phosphoamino acid 

standards, and amino acids were separated by two-dimensional electrophoresis 

on thin layer cellulose plates. Plates were subjected to autoradiography, and 

phosphoamino acid standards were visualized with ninhydrin (dotted circles). X, 

origin; S, phosphoserine; T, phosphothreonine; Y, phosphotyrosine.
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NDAT to 50% of control (64.5 ± 18.0 % of control; p< 0.05) which is consistent 

with rDAT (64.8 ± 12.3% of control; p< 0.01).

We extended these studies to examine if ERK-phosphorylated NDATs 

undergo dephosphorylation. None of the tested protein phosphatases were able 

to dephosphorylate ERK phosphorylated NDAT or alter the upward shift in 

electrophoretic mobility (Figure 17C). Taken together, these studies suggest that 

multiple protein phosphatases may regulate DAT dephosphorylation and different 

sites display differential sensitivity for DAT dephosphorylation

Phosphoamino Acid Analysis of NDAT 

From previous studies it is known that Ser and Thr residues are involved 

in DAT phosphorylaton in vivo [65]. To identify the amino acid residues involved 

in NDAT phosphorylation, we performed phosphoamino acid analysis of 

phosphorylated NDATs. Following the in vitro phosphorylation of NDAT by PKCa 

or ERK1, the products were purified by immunoprecipitation and gel 

electrophoresis. The purified products were electro-eluted from gel pieces and 

hydrolyzed in 6N HCI and the hydrolysate was electrophoresed on two- 

dimensional thin layer plates along with phosphoamino acid standards After 

electrophoresis, ninhydrin was applied to the TLC plates to identify the free 

phosphoamino acid spots and the plates were exposed to film for 

autoradiography. The results showed that PKCa phosphoryiates NDAT only on 

Ser(s) (Figure 18, left), and ERK1 phosphoryiates exclusively on Thr(s) (Figure 

18, right). The combination of these two results were consistent with the 

presence of phospho-S and phospho-T in the phosphoamino acid analysis of full
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length DAT [65] suggesting that PKCa and ERK1 may directly phosphorate the 

N-terminal tail of DAT in vivo on these residues.

MAPKs Phosphoryiate NDAT on T53 

To further characterize the ERK phosphorylation, we mutated NDAT 

Thr(s) (T43, T46, T53, and T62) individually to Ala by site directed mutagenesis 

Standard procedures were used to express and purify the mutant NDATs The 

purified mutant NDATs were subjected to in vitro phosphorylation and was 

analyzed by SDS-PAGE followed by autoradiography. Figure 19A displays that 

ERK1 did not phosphoryiate the T53A mutant NDAT. while other mutants were 

phosphorylated to comparable levels as wild type NDAT. Similarly, p38 kinase 

and JNK2 did not phosphoryiate the T53A mutant (not shown) suggesting that 

T53 is a MAPKs phosphorylation site in vitro. Additionally, we did not observe an 

upward shift in electrophoretic mobility with the T53A mutant on immuooblots as 

was found with wild type and other mutants (bottom panel). Interestingly. T53 is 

located in an ERK consensus recognition motif (P-X-S/T-P) suggesting that T53 

is an optimal site for ERK phosphorylation in vivo. However, ERK can also 

phosphoryiate at a minimal consensus sequence that contains S/T preceded by 

proline (X-S/T-P). Such a minimal sequence is also present on the C-terminal 

cytosolic tail of rat DAT at T593 in addition to N-terminus T53. It is also possiole 

that the phosphorylation at T593 can contribute to the presence of T 

phosphorylation in full length DAT [65]. To test this possibility we recombinantly 

expressed rat DAT C-tenninal tail domain and examined if it undergoes ERK 

mediated phosphorylation in vitro. The in vitro phosphorylation results showed
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Figure 19. (A) ERK 1 Phosphoryiates NDAT In Vitro on T53. Equal proteins cf 

Wt or T to A mutant NDATs were phosphoryfated in vitro by incubating with 

ERK1 at 30X  for 30 min in the presence of 20 mM MOPS, pH 7.4, buffer 

containing 5 mM MgC2, 300 pM CaCI2r 40 pM ATP and 12 pCi of [y-^PJ ATP. 

Following the reaction samples were analyzed by immunopreciprtation followed 

by autoradiography (upper panel) or immunoblot (lower panel). Lane 1, 

represents the reaction mixture that had NDAT and PKCa. Lane 2, sample that 

received EDTA. Lane 3- 4, samples that do not receive either NDAT or PKCa. 

The type of NDAT mutants are indicated directly above the autoradiograph. (B) 

ERK 1 Does not Phosphorylate CDAT In Vitro. Equal amounts of NDAT or CDAT 

were phosphoryiated in vitro by incubating with PKCa or ERK1 at SOX for 30 

min as described in methods. Following the reaction samples were analyzed by 

immunoprecipitation followed by autoradiography (upper panel) or immunoblot 

(lower panel). The lanes correspond to treatment were indicated directly above 

the autoradiograph.



Figure 19. (A) ERK 1 Phosphorylates NDAT In Vitro on T53. (B) ERK 1 Does not 

Phosphorylate CDAT In Vitro.
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that ERK1 did not phosphorylate C-DAT (Figure 19B) suggesting ERK1 may not 

phosphorylate the C terminal tail of DAT in vivo even though it has a minimal 

consensus sequence.

N-terminal tail threonine(s) are involved in DAT phosphorylation in vivo

DAT contains multiple Ts on cytosolic tail domains, intracellular loops and 

TMs. Our mutational analysis showed that T53 is a MAPK phosphorylation site in 

vitro; however it is not known if T53 undergoes phosphorylation on full length 

DAT in vivo.

Here we attempted to localize the threonine phosphorylation on native DAT using 

in situ proteolysis with Asp-N followed by phosphoamino acid analysis. Asp-N 

treatment was previously shown to proteolytically cleave DAT at D174 and yield 

an intact 19 kDa N-tei.ninal peptide (Asp-N fragment) (89], For this experiment, 

we metabolicaily labeled rat striatal tissue in presence of OA/OAG and performed 

in situ protelolysis of striatal membranes with endoproteinase Asp-N as 

described in the methods. Following proteolysis, we solubilized the membranes 

and purified DATs and Asp-N fragments by immunoprecipitation using polyclonal 

16B antibody that recognizes the DAT N-terminal cytosolic tail. 

Immunoprecipitates were subjected to electrophoresis and autoradiography. Asp- 

N cleavage of DAT resulted in the production of a 19kDa phosphorylated Asp-N 

fragment (Figure 20A, right) consistent with our previous studies [89].

We subjected the full length DAT and Asp-N fragment to standard 

phosphoamino acid analysis followed by autoradiography. The results showed 

the presence of phospho-T along with phospho-S in both the full length DAT (left)
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Figure 20. Threonine Phosphorylation was Found on the N-terminal Region of 

DAT. (A) In Situ Proteolysis of DAT. Membranes from striatal slices labeled with 

32P04 and treated with 10 pM OA plus 10 pM OAG were subjected to proteolysis 

with 10 pg/ml of endoproteinase Asp-N for 1 h at 22°C. The membranes were 

sedimented, solubilized, immunoprecipitated with poly clonal 16 antibodies, and 

analyzed by electrophoresis and autoradiography on an 8-16% Tris-Tricine gel. 

The arrow on the right denotes the position of immunoprecipitated 

phosphopeptide fragments at ~19 kDa. (B) Phosphoamino Acid Analysis of Full 

Length DAT and Asp-N Fragments. 32P metabolically labeled full length DATs or 

Asp-N fragments were purified by immunoprecipitation and gel electrophoresis. 

Autoradiographs displaying the phosphorylation pattern are demonstrated in Fig. 

20A. DAT bands were excised, eluted, and subjected to acid hydrolysis. 

Cerenkov counting of the hydrolysates showed counts/min of 250 and 100 in the 

full length DAT and Asp-N fragment samples, respectively. Aliquots of the 

hydrolysates were mixed with phosphoamino acid standards, and amino acids 

were separated by two-dimensional electrophoresis on thin layer cellulose plates. 

Plates were subjected to autoradiography, and phosphoamino acid standards 

were visualized with ninhydrin (dotted circles). X, origin; S, phosphoserine; T, 

phosphothreonine; Y, phosphotyrosine.
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Figure 20. Threonine Phosphorylation was Found on N-terminal Region of DAT. 

(A) In Situ Proteolysis of DAT. (B) Phosphoamino Acid Analysis of Full Length 

DAT and Asp-N Fragment.
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and the Asp-N fragment (right) (Figure 20B).We also performed control 

experiments in parallel to verify that phospho-T was indeed coming from DAT but 

not from contaminating proteins. For this experiment we subjected DATs to 

immunoprecipitation with either polyclonal 16B or pre-immune serum followed by 

phosphoamino acid analysis. The phosphoamino acid analysis of DATs that were 

immunoprecipitated with polyclonal 16B showed the presence of phospho-S and 

phospho-T, whereas pre-immune immunoprecipitated samples did not show any 

phosphorylation signals (not shown). This result strongly argues that phospho-T 

was coming from DAT, and not from any contaminant.

The 19 kDa Asp-N fragment representing the N-terminal cytosolic tail,

TMs 1-3, EL1, IL1 and proximal portion of EL2 contains T residues. Because 

protein kinase accessible Thr(s) (T43, T46, T53, and T62) are present only on ~ 

the N-terminal cytosolic tail, it is very likely that phospho-T may be derived from 

one of these four threonines. Collectively, these results suggests that T53 is a 

putative DAT phosphorylation site in vivo.

Effects of MEK Inhibitors or MEK Mutants on DA Transport Activity 

We independently investigated if ERKs can regulate DA transport activity 

in cell lines by treating with pharmacological inhibitors of MEK or by transient 

transfection of mutant MEK constructs.

For these studies, we inhibited MEK activity with PD98059 which 

suppresses phosphorylation of ERK. We incubated rDAT-expressing LLC-PKj 

cells with vehicle or PD98059 or PMA for 30 min at 37°C. Following treatments 

cells were subjected to [3H] DA uptake. Treatment of cells with 50 pM PD98059
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decreased DA transport values to 63 ± 2.4% of control (p<0.001) (Figure 21 A) 

that is consistent with previous studies [70]. Cells treated with 1 pM PMA showed 

decreased DA transport values of 72.7 ± 2.1% of control (p<0.001) consistent 

with previous findings [64], In addition we analyzed the levels of phospho-ERK in 

cell lysates of this experiment using western blot analysis. Consistent with 

previous reports [70], phosphorylated forms of ERK were markedly decreased 

with the treatment of PD98059 compared to control (as shown in Figure 21B, 

right).

Mansour et al., (1994) have shown that transient transfection of 

constitutively active MEK mutant S218E-S222D (MEK-CA) resulted in increased 

levels of phosphorylated p44 and p42 forms of MAPK relative to those 

transfected with the wild-type mutant [98]. We examined the effects of MEK 

mutants on DA transport. For these studies, we transiently transfected rDAT- 

expressing LLC-PKt cells with His-taged wild-type MEK or MEK-CA or a kinase- 

dead mutant K97M (MEK-KO) and incubated the cells for 36 h. One set of MEK- 

WT transfected cells were treated with PD98059. Following transfection and/or 

treatments, cells were subjected to [3H] DA uptake. We verified the success of 

transfection by western blot analysis using anti-His specific antibody. Western 

blot results showed that cells transfected with Wt or mutant MEKs constructs 

expressed equal amount of Wt or mutant MEK protein (not shown). The cell 

lysates from this experiment were analyzed for phospho-ERK levels. Phospho- 

ERK levels (Figure 21 B, upper panel) and [3H] DA uptake values (Figure 21 B, 

bottom panel) of MEK-WT or MEK-CA transfected cells were not significantly
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Figure 21. Effects of MEK Inhibitor or MEK Mutants on DA Transport Activity. (A) 

rDAT LLC- Pl^ cells were treated as indicated with vehicle, 50 pM PD98059, or 

1 pM PMA for 30 min followed by [3H] DA transport assay(B) rDAT LLC- PKi 

cells were transfected as indicated with MEK-WT, MEK-CA, or MEK-KO and 

subjected to immunoblot (upper panel) or [3H] DA transport assay (bottom pane!) 

after 36 h. Uptake values shown are means ± SE of three (A) or eight bottom (B) 

independent experiments, performed in triplicate. ***p <0.001 relative to control, 

**p < 0.001 relative to control; ANOVA.
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Figure 21. Effects of MEK Inhibitors or MEK Mutants on DA Transport Activity.
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different from mock transfection (p>0.05 relative to control, n=8). Cells 

transfected with MEK-KO showed a significant level of transport down regulation 

(76.6 ± 4.5 % of control; p<0.001) compared to control, white not affecting the 

phospho-ERK levels. However, the cells that were treated with MEK inhibitor 

showed a decrease in transport (70.8 ± 3 % of control; p<0.00 ) and phospho- 

ERK levels consistent with previous studies [70, 98]. In this study, phospho-ERK 

levels do not show correlation wiih the type of transfected MEK constructs. 

Therefore, we were not able to make a conclusion regarding the effects of ERKs 

on DA transport activity in this experiment.

Effects of BDNF or MEK Inhibitor on DAT Phosphorylation 

We attempted to examine if ERK activation or inhibition affects the DAT 

phosphorylation. For Lhese studies, we used brain-derived growth factor (BDNF) 

to activate the MAPK kinase pathway that results in the activation of ERKs. To 

inhibit the activation of ERKs we used MEK inhibitor PD98059. Therefore, we 

metabolically labeled rat striatal slices with 32P04 and then treated with vehicle or 

1 pM OA or 200ng/mg BDNF or 50pM PD98059. 32P04 incorporated DATs were 

immunoprecipitated and analyzed by SDS-PAGE followed by autoradiography 

(Figure. 22, left). In addition, we analyzed the levels of phospho-ERK in crude 

lysates using immunoblot analysis. Tissues treated with vehicle displayed a basal 

level of constitutive phosphorylation on DATs (100 ± 3.6%), while the OA 

treatment leads to a 2-3 fold increase in DAT phosphorylation (264 ± 7% of 

control; p<0.001) compared to vehicle as previously reported [63, 65]. Treatment 

with PD98059 marginally decreased DAT phosphorylation to 83 ± 5.4 % of
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Figure 22: Effects of BDNF or MEK Inhibitor on DAT Phosphorylation. (A) Rat 

striatal slices labeled with 32P04 were treated with vehicle, 10 pM OA, 50 pM 

PD98059 or 200 ng/ml BDNF. followed by immunoprecipitation, SDS-PAGE, and 

autoradiography (upper panel). The bottom panel represents immunoblot 

analysis of crude striatal lysates for phospho-ERK (bottom panel). Equal 

amounts of sample from treated and untreated tissue were subjected to 

immunoprecipitation, electrophoresis, and autoradiography or immunoblot. 

Molecular mass standards for all gels are shown in kDa. (B) Quantitation of DAT 

phosphorylation. The data from three independent experiments are normalized, 

averaged, and expressed as the ratio of 32P04 incorporation relative to the basal 

sample ± S.E. ***p < 0.001 relative to control, *'p < 0.001 relative to control; 

ANOVA.
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Figure 22: Effect of BDNF and MEK Inhibitor on DAT Phosphorylation
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controf and these values are statistically insignificant compared with control 

(F.gure 22, left). The addition of BDNF increased basal DAT phosphorylation 

levels to 126.9 ± 9.6% of control (Figure. 22,. right) (p<Q„Q1). In addition,, the 

immunoblot results showed that BDNF or PD98059 treatments increased or 

decreased the phospho-ERK levels respectively. These results are consistent 

with previous reports [99)



CHAPTER IV

DISCUSSION

Differential Effects of DA and Psychoactive Drugs on DAT Phosphorylation and

Regulation.

This study investigated the acute effects of multiple DA uptake blockers on 

basal and PKC-stimulated DAT phosphorylation and transport regulation To our 

knowledge this is the first such study to examine p-CFT, maztndol. or MPH with 

respect to most of these properties. Our results show that (-)-cocaine. p-CFT. 

mazindol, or MPH do not affect the levels of basal and PMA stimulated DAT 

phosphorylation in rDAT LLC-PKi cells, in contrast. Cowell et al (2000) have 

reported that cocaine suppressed PMA stimulated phosphorylation in striatal 

synaptosomes [88]. These investigators used a cocaine plus PMA treatment time 

of 45 s. presenting the possibility that cocaine might affect an -:arly phase of 

PMA-induced DAT phosphorylation or specific cocaine inducible processes in 

brain that are not present in cell lines. If cocaine suppresses PMA-stimulated 

phosphorylation only at shorter PMA treatment times, our results suggest that 

these effects are transient and rapidly become masked or reversed by sustained 

activation of PKC. Such a possibility is supported by the biphasic regulation of 

SERT transport activity and phosphorylation by PKC with distinct effects 

observed at shorter (1-5 min) and longer (3u min) PMA treatment times [100]. If 

the different results of the DAT studies are related to cocaine-induced processes
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cocaine users, acute presence of drug would not directly affect these or related 

activities. Radiotracer analogs of {3-CFT are widely used in clinical and 

experimental in vivo imaging studies [103] image and quantify transporter 

availability with positron emission tomography (PET) or single-photon emission 

computed tomography (SPECT). The results of these studies indicate little 

potential for cocaine-based imaging agents to directly produce effects on 

subcellular location or binding capacity of DAT that might complicate image 

interpretation.

We also examined the acute effects of other classes of DA uptake inhibitors that 

are in current clinical and preclinica! use. Like cocaine, neither mazindol nor MPH 

affected basal or PMA-stimulated DAT phosphorylation. MPH and mazindol 

pretveatment were also without effect on DA transport, as previously found for 

MPH [83], and MPH and possibly mazindol did not affect PMA-induced transport 

down-regulation. Thus there is no evidence from in vitro studies to suggest that 

these physiological processes would be acutely affected in patients using these 

drugs. Both of these drugs induce self-administration and other cocaine-like 

behaviors [47, 48], which may potentially relate to the similar lack of effects on 

DAT phosphorylation and regulation.

We have also examined the acute effects of GBR 12909, a potent DA 

noncompetitive inhibitor designed to treat cocaine abuse. GBR 12909 did not 

affect basal DAT phosphorylation, but it strongly suppressed PMA-stimulated 

phosphorylation and cell surface biotinylation. These results indicate that GBR
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12909 prevents PMA-induced down-regulation and may induce upregulation of 

the DAT surface expression.

Although the GBR compound acts as a DA uptake blocker similar to 

cocaine, the pharmacological properties of this drug are not clearly properly 

understood. The basis for differentia! effects of GBR 12909 has oeen 

hypothesized to involve ligand binding kinetics and/or binding sites [104, 105]. 

Unlike cocaine displacement, GBR compounds were not displaced due to their 

higher hydrophobicity and therefore they cannot be removed from cells or 

membranes in wash-out procedures. Hydrophobic partitioning of GBR in the 

membrane may generate a continually available reservoir of ligand that results in 

pseudo-irreversible binding to DAT and long-term blockade of DA transport 

activity [53]. Such long-lasting binding to DAT may affect its phosphorylation or 

endocytosis properties, which in turn may play a role in drug-induced behavior.

The suppression of PMA-stimulated phosphorylation by GBR 12909 may 

be due to its non-specific effect on membranes. So GBR compounds alter the 

ability of DAT to interact with kinases, phosphatases, or endocytic proteins. This 

could also explain the unaffected basal phosphorylation during GBR treatment. 

Increasing evidence indicates that cocaine or GBR 12909 binding sites are at 

least partially distinct [104, 106]. Irreversible GBR analogs bind to DAT in 

transmembrane domains 1 or 2 [90], suggesting the potential for binding to 

induce a DAT conformation that affects phosphorylation of the adjacent N- 

terminal tail [65]. The suppression of PMA-induced phosphorylation and 

endocytosis by GBR compounds suggests that this class of compounds could
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attenuate functions controlled by PKC. GBR has been demonstrated to block 

AMPH-iriduced DA efflux [88], but the potential functional significance of acute 

GBR inhibition of this function is not obvious.

Further, we examined the effects of substrate DA on DAT phosphorylation 

and DA transport activity. DA concentrations from 1-20 pM show significant dose 

dependent down regulation in transport activity. The extent of DA-ind jced down 

regulation is consistent with previous findings [81]. However DA did not affect 

either basal or PMA stimulated DAT phosphorylation. In contrast, 

psychostimulant substrates AMPH or METH induce DAT phosphorylation while 

affecting transport down regulation [66, 85]. One caveat for absence of DA effect 

on DAT phosphorylation is that a low level of phosphorylation induced by DA 

treatment may be masked by the overall signal or may be missed if the samples 

were dephosphorylated during processing [72]. Additional studies are needed to 

clarify these issues. These results are related to the necessity for DAT 

phosphorylation to permit efflux [40] and the differential ability of AMPH but not 

DA to induce substrate channels in DAT [27].

Pretreatment with DA or PMA at sub-maximal or maximal concentrations 

produced down-regulation responses that are not different from down regulatory 

responses produced by co-treatments at respective concentrations. If these two 

compounds exert their effects independently, it is expected that co-treatment of 

DA and PMA will produce a much stronger additive effect. However, this did not 

occur at sub-maximal and maximal concentrations suggesting that DA- or PKC- 

induced down regulation mechanisms occur via a common pathway. Additionally,
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blockade of DA-induced transport down regulation by BIM supports this idea and 

Tiese results were consistent with AMPH or METH induced down regulatory 

mechanisms [83, 85], Based on these studies, it is possible that pathways related 

to substrate or PKC induced effects can merge in vivo and do not produce 

additivity.

The mechanistic role of DA in the activation of PKC-dependent DAT 

regulatory pathways is not known. Transport may change local ion 

concentrations that may modulate kinases or phosphatases that act on transport- 

dependent DAT conformations or affect DA transport-associated DAT-protein 

interactions. A SNARE-dependent protein, Syntaxin 1 has been reported to 

interact with N-terminal tails of GAT1 [78, 80] and regulate substrate-induced 

down regulation, through interaction with N-terminal tails. Similar types of DAT 

regulatory mechanisms have been proposed to be involved in DA induced 

transport down regulation [73].

Our findings that application of DA did not result in interference of PKC- 

induced DAT phosphorylation or down-regulation contrast significantly with the 

finding that substrates inhibit these properties of SERT [92]. Similarly GAT 1 

GABA transporters show upregulation of function in the presence of substrate 

[107], whereas DATs are down-regulated under comparable conditions. Thus for 

SERT and GAT 1, substrates induce homeostatic mechanisms that maintain or 

increase transmitter clearance, while the opposite occurs for DAT. Down- 

regulation of DAT by DA requires concentrations that are significantly above the 

transport Km, suggesting that the response occurs primarily under conditions of
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extreme transport demand. Transport-induced down-regulation of DAT may 

represent a neuroprotective mechanism that functions when substrate levels are 

high to limit translocation and cytoplasmic accumulation of DA and its neurotoxic 

metabolites such as 6-hydroxydopamine that can activate apoptotic responses 

(Luo et al., 1999). Individual variabilities in these molecular mechanisms may 

thus to contribute to selective vulnerabilities to Parkinson's disease or other 

dopaminergic pathologies.

Regulation of DAT and related neurotransmitter transporters is proving to 

be a complex process involving multiple functions of these proteins, their 

subcellular distribution, and trafficking. The results presented here further 

contribute to the elucidation of these processes and indicate the potential for 

therapeutic arid abused DAT drugs to exert some of their effects by modulation 

of DAT phosphorylation and/or regulation of surface expression in addition to 

their pharmacological actions.
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MAPKs Phosphorylate the N-terminal Tail of DAT In Vitro  

in this study, we have shown that multiple protein kinases phosphorylate 

NDAT and MAPKs specifically phosphorylate at T53 in vitro which may 

potentially be involved in vivo  phosphorylation of DAT. To our knowledge, this is 

the first study to show the in vitro phosphorylation of a recombinantly expressed 

N-terminus of DAT.

Evidence of in vitro phosphorylation of NDAT is consistent with the 

presence of phosphorylation on the N-terminal tail of the DAT in vivo  [65]. The 

results of these studies are comparable with in vivo assays, which may reflect the 

physiological conditions. Established studies have shown that PKC activators 

such as PMA or OAG increase DAT phosphorylation in both LLC-PKi cells and 

striatal slices indicating that PKC vs involved in DAT phosphorylation [63, 65].

The in vitro phosphorylation of NDAT by purified PKC is consistent with the idea 

that PKC may directly phosphorylate DAT in vivo.

Additionally, CaMK II, PKA, PKG, CdK5, Akt1, MAPKs including ERK1/2, 

p38, and JNK2 phosphorylated NDAT indicating the potential for one or more 

these kinases to phosphorylate DAT in vivo. However, there is no evidence to 

support the role of multiple protein kinases in DAT phosphorylation in vivo. 

Treatment of synaptosomes with forskolin had no affect on DAT phosphorylation 

suggesting that PKA may not be involved in DAT phosphorylation [63]. The roles 

cf other protein kinases in DAT phosphorylation are not known. More in vivo  

experiments are needed to examine if multiple protein kinases are involved in 

this process.
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phosphatases in vivo [72]. in contrast, none of the tested protein phosphatases 

were able to dephosphorylate ERK-phosphorylated NDATs. Based on a shift in 

electrophoretic mobility and resistance to phosphatase treatment it may be 

presumed that ERK1 phosphorylated NDAT may have attained a different 

structure that may be inaccessible for the tested protein phosphatases.

Further, the resistance of ERK-phosphorylated NDAT for 

dephosphorylation may be explained by comparing with following caveat. The 

proline-directed serine/threonine phosphorylation of Tau protein regulates 

microtubule association by keeping the protein in a favorable cis-confirmation 

that is not accessible to protein phosphatases such as PP2A [108, 109]. This 

allows the protein to significantly retain phosphorylation for a greater duration by 

checking spontaneous dephosphorylation. Biologically, this conformatiorrcan be 

converted into a trans-conformation by peptidyl-proly! cis/trans isomerase 

enzyme (Pin1), which is then susceptible to protein dephosphorylation and 

accessible for protein phosphatases [108]. We speculate a similar type 

conformational change may have occurred in ERK phosphorylated NDAT leading 

to inaccessibility by protein phosphatases that result in resistance to 

dephosphorylation. This distinct conformation and inaccessibility to protein 

phosphatases may be implicated in a role for DAT-protein interactions. The 

identification of interaction between PP2A and DAT [75] supports a potential 

mechanistic relationship between PP2A and proline-directed threonine 

phosphorylation.
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Our mutational analysis of MDAT followed by in vitro phosphorylation 

showed that T53 is a MAPK phosphorylation site for NDAT in vitro. Even though 

T53 is located in favored consensus recognition motif for ERK phosphorylation 

(P-X-S/T-P), minimal consensus sequence is enough to phosphorylate STT 

preceded by prollne (S/T-P) [110, 111]. Such sequences are present in C- 

terminal tail of rat DAT (T593) in addition to T53. The lack of phosphorylation of 

T593 in CDAT and phosphorylation of T53 of NDAT by ERK suggests phcspho- 

T observed with full length DAT phosphoamino acid analysis may be from T53.

Further, to localize the T phosphorylation we proteoiyzed the fulWength 

striatal DAT with endoproteinase Asp-N that specifically cleaves the peptide bond 

on the N-terminal side of D residues. The predicted cleavage site for Asp-N is 

D174 located on EL2 of BAT results in a 19 kDa phosphopepiide that showed 

phospho-T with phosphoamino acid analysis suggesting that threonine 

phosphorylation occurs on the N-terminal cytosolic tail. Further, the identification 

of an in vitio phosphorylation site at T53 and localization of phospho-T in Asp-N 

fragment suggests that T53 may be an in vivo phosphorylation site.

These results cannot rule out the possibility that phosphorylation may 

occur in other portions of DAT. DAT contains potential phosphorylation sites or, 

IL2, which are highly conserved throughout the cocaine sensitive 

neurotransmitter transporters and has been shown to undergo phosphorylation in 

both NET and SERT [112, 113]. SERT and NET undergo phosphorylation on 

T276 and T258 respectively which are present on IL2 of these transporters. The 

corresponding residue for DAT is T260 in IL2 of DAT, which is also located in a
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PKC/PKA/PKG consensus recognition motif. Based on these studies, it 

ispossibls that T260 may also be involved in DAT phosphorylation.

Our independent study to assess the effect of ERKs on DA transport 

activity was consistent with previous results. Moron et al (2003) have shown that 

treatment of cells or synaptosomes with MEK inhibitor PD98Q59, decreased DA 

transport activity and DAT surface expression [70]. The application of PD98059 

showed decrease in transport activity while suppressing the activation of ERKs 

suggesting that activation of ERKs regulates DA transport activity. The general 

scheme of ERK activation involves three sequentially activated kinases. The 

ERK family of MAPKs is activated by different kinds of stimuli including growth 

factors, cytokines, and ligands of heterotrimeric G protein coupled receptors. 

These diverse external stimuli activate the prott^-oncogenic small G protein, Ras 

which in turn activates the protein kinase cascade that includes Raf —» MEK 

(ERK kinase) — ERK [114j. Activity of ERKs is regulated by phosphorylation and 

dephosphorylation. Dephosphorylated ERKs are inactive, but once activated by 

MEK-mediated phosphorylation, ERKs then regulate the target proteins such as 

phospholipases, transcription factors, and cytoskeletal proteins through direct 

phosphorylation. Increasing evidence suggests that ERKs are also involved in 

phosphorylation and regulation of membrane proteins including receptors, 

channels, and connexins [115-117]. Hence, the regulation of these protein forms 

the basis for controlling various processes including cell growth, morphogenesis, 

synaptic plasticity, and learning.
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Therefore to evaluate the role of ERKs on DA transport activity, we 

transiently transfected the LLC-PK, cells with MEK-CA or MEK-KO. The 

transfection of a MEK-CA mutant should result in the activation of ERKs 

constitutively even in the absence of growth factor [98], which results in 

increased levels of phospho-ERK. The MEK-KO mutant is a kinase-dead mutant 

and transfection with this mutant should produce a dominant negative effect in 

the activation of ERKs that in turn results in decreased levels of phospho-ERK. 

Transient expression of MEK-CA showed an increase in DA transport and 

phospho-ERK levels in rDAT expressing HEK cells. (Moron et al 2003). However, 

our results showed that there was no change in the levels of phospho-ERK 

following the transient expression, which made it impossible to relate it with DA 

transport in this study. The presence of inappropriate expression patterns in 

phospho-ERK levels in this experiment can be speculated as cell type specific 

effects and this result is not consistent with previous results [70, 98]. Further, 

evidence for ERKs role in the regulation of DA transport has come from growth 

factor stimulation studies. Recently, Hoover et al (2006) have shown that 

application of BDNF leads to activation of ERKs and an increase in DA transport 

in synaptosomes [99].

Based on NDAT phosphorylation studies, it can be speculated that ERKs 

may promote DAT phosphorylation in vivo. To examine this possibility we 

performed the 32P metabolic labeling of striatal slices in the presence of BDNF 

and PD98059. Treatment with BDNF significantly increased basal DAT 

phosphorylation and phospho-ERK levels. Additionally, the application of MEK
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inhibitor PD98059, showed a marginal decrease in basal DAT phosphorylation 

and pb spho-ERK levels. The role of ERKs on DAT properties have been less 

studied. Lin et al (2003) have reported that ERK inhibitors such as U0126 

decreased basal DAT phosphorylation indicating that ERKs may regulate the 

constitutive phosphorylation of DAT [68]. Taken together, these results suggest 

that the activation of ERKs play a role in DAT phosphorylation. The marginal 

effects of these compounds on DAT phosphorylation may be due to 

inaccessibility of these compounds to the striatal tissues. Metabolic labeling of 

synaptosomes may circumvent the observed partial effects of these compounds.

Collectively these results suggest that ERKs may play a role in DAT 

phosphorylation and DAT regulation. Also these studies may increase the current 

understanding of the role of DAT phosphorylation in DAT function. In vivo 

verification of putative T53 phosphorylation site is highly warranted before 

pursuing functional aspects of DAT. The best way to accomplish this can be 

mass spectrometric analysis of native DATs.
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APPENDIX A

Rat DAT cDNA sequence in pcuNA 3.0 is shown below, i he coding 
sequence is underlined between the untranslated sequences.

Eco Rl
5 '.... giSBfiCCGCAGGAGTCAGTCGAAGAAGAAAGAAGCAGAGTTCCTTG
GGCT CCGGT CT ACCCAT GAGT AAGAGCAAAT GCT CCGT GGGACCAAT GT CT 
T C AGT GGTGGCCCCGGCT AAAGAGT CCAAT GCT GT GGGCCCCAG AG AGGT 
GGAGCT CAT CCT GGT CAAGGAGCAGAACGGAGT GCAGCT GACCAACT CCA 
CCCT CAT CAACCCGCCACAGACACCAGT GGAGGCT CAAGAGCGGGAGACC 
TGGAGCAAGAAAATT GATTT CCT GCTAT CAGT CATCGGCTTT GCT GT GGACC 
T GGCCAAT GT CT GG AGGTTT CCCT ACCT GT GCT ACAAAAAT GGT GGAGGT G 
CCTT CCT GGTGCCCT ACCT GCT CTT CAT GGTT ATT GCT GGGAT GCCCCT CTT 
CT ACAT GGAGCT GGCT CT CGGACAGTT CAACAGAGAAGGAGCT GCT GGT GT 
CT G G AAG AT CT GT CCT GT CCT G AAAGGT GT GGGCTT CACT GTT AT CCT CAT C 
TCT1T CT ACGT GGGCTT CTT CT ACAAT GT CAT CAT CGCAT GGGCACT GCACT 
ACTT CTT CT CCTCCTT CACCAT GG ACCT CCCAT GG AT CCACT GCAACAACAC 
CTGG AAT AGCCCCAACT GCT CCG AT GCCCAT GCCAGCAACT CT AGCGACGG 
CCT GGGCCT CAAT GACACCTTT GGGACCACACCCGCT GCT GAGT ACTTT GA 
GCGT GGCGT GCT GCACCTT CACCAGAGCCGTGGCATT GAT GACCT GGGCC 
CT CCACGGT GGCAGCT CACAGCCT GCCTGGT GCT GGT CATT GTT CT GCT CT 
ACTT CAGCCT ATGGAAGGGAGT AAAGACCT CAGGGAAGGT GGT GT GGAT CA 
C AGCT ACCAT GCCCT AT GT GGT CCT C ACAGCCCT GCT CCT GCGT GGAGTT A 
CCCTT CCT GGAGCCAT GGAT GGCAT CAGAGCAT ACCT CAGT GT GGACTT CT 
ACCG ACT CT GT G AGGC AT CT GT GT GGAT CGAT GCT GCCACCCAGGT GT GCT 
TCTCCCTCGGCGTTGGGTTTGGAGTGCTGATTGCCTTCTCCAGTTACAATAA 
ATT CACCAAT AACT GCT AT AG AG ACGCAAT CAT CACCACCT CCATT AACT CC 
CT G ACAAGCTT CT CCT CTGGCTT CGT CGT CTT CT CCTT CCT GGGGTAT AT GG 
C AC AG AAG C AC AAT GT GCCCAT CAGAGAT GT GGCCACAGAT GGACCT GGG 
CT CAT CTT CAT CAT CT AT CCT G AGGCG AT CGCCACACT CCCGCT GT CTT CT G 
CCTGGGCTGCT GT CTT CTT CCT CATGCT GCT CACT CT GGGT AT CGACAGT G 
CAAT GGGGGGCAT GGAGT CAGT GAT CACT GGGCT CGT CGAT GAGTT CCAG 
CT GCT ACAT CGGCAT CG AGAGCT CTT CACT CTT GGCATT GT CCT GGCTACTT 
T CCTGCT GT CT CT CTT CT GCGT CACCAACGGTGGCAT CTACGT CTT CACACT 
GCT GGACCACTTTGCAGCTGGCACAT CTAT CCT CTTT GGCGTGCT CATT GAA 
GCCATT GGGGTGGCCT GGTT CT ACGGCGT CCAGCAATT CAGT GAT GACAT C 
AAGCAAAT GACAGGGCAGCGACCCAACCT GT ACT GGCGGCT AT GCT GGAA 
GCTGGT CAGCCCCT GCTT CCT CCT GT AT GT GGT CGT GGT CAGCATT GT GAC 
CTT CAG ACCCCCACACT AT GGGGCCT ACAT CTT CCCAGACT GGGCCAAT GC 
CCTGGGCT GGAT CATCGCCACAT CCT CCAT GGCCAT GGT GCCCATTT AT GC
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GACCT ACAAGTT CT GCAGCCT GCCGGGGT CCTT CCGGGAGAAACT GGCCT 
AT GCCAT CACACCT GAGAAAGACCAT CAGCTAGT GGACAGAGGGGAGGT G 
CGCCAATT CACGCTGCGT CACT GGCT GTT GCT GTAAAGT GGAAGGAGACAG 
CTGCCAGCT GGGCCACCT CACAACAGCGGGGACAGGGAGAT CGCAAAGGA 
AACCC ACG AGT CAAG AAAGGAAGG AGGGCCACTT CCAT GCTT CT CCTTT GT 
CGT ACGGAAAAAT AAT CGAAGCAT GGGCTT CAACCTTT GACT GTT CACACCC 
AAAT CATT GCCACAAAG AAGCCT CT GT CT GT GTAT GGCT GT AAAAACAT ACA 
CCT CT ACACAGT G AGGT C AACAAT GT CCCT GT CCCT ACT GGGT GGGAAAAC 
CCT AGCT GGT AT CCT GT CCCT GCAAGGCT GACT CCCCCAT CT GT GGT CACT

Eco Rl
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APPENDIX B

The cloned pTYB2-NDAT sequence showing the rat DAT N-terminal 
cytosolic tail cDNA sequence is shown below. Underlined sequence represents 
the restriction sites, yellow highlighted sequence shows primer binding sites in 
the pTYB2 plasmid and sequence in red letters represents cDNA sequence 
representing the cleaved NDAT protein.

T7 universal primer
pTYB2 5 '..............CGGGGATCTCGATCCCGCGAAATTAATACGACTCACTAT
AGGGG AATT GT G AGCGGAT AACAATT CCCCT CT AG AAAT AATTTT GTTT AAC

Nde I
TTT AAG AAGGAG AT AT ACAT AT G AGT AAGAGC AAATGCT CCGT GGGACCAAT 
GT CTT CAGT GGT GGCCCCGGCT AAAGAGT CCAAT GCT GT GGGCCCCAGAG 
AGGT GGAGCT CAT CCT GGT C AAGG AGCAGAACGGAGT GCAGCT GACCAAC 
T CCACCCT CAT CAACCCGCCAC AG ACACC AGT GGAGGCT CAAGAGCGGG A

Sma I
GACCT GGAGCAAGCCCGGGT GCTTTGCCAAGGGTACCAAT GTTTTAAT GGC 
GG AT GGGTCT ATT GAAT GT ATT G AAAACATT GAGGTT GGT AATAAGGT CAT G 
GGT...... 3' Intein reverse sequencing primer
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APPENDIX C

The cloned pTYB12-CDAT sequence showing the rat DAT C-terminal 
cytosolic tail cDNA sequence is shown below. Underlined sequence represents 
the restriction sites, yellow highlighted sequence shows primer binding sites in 
the pTYB12 plasmid and sequence in red letters represents cDNA sequence 
representing the cleaved CDAT protein.

pTYB12 Intein Forward Primer -»(117 bp)......
Bsm I

5'... GG AT CCCAGGTT GTT GT ACAGAAT GCTTT CT GCAGCCT GCCGGGGT CCT 
T CCGGG AGAAACT GGCCT AT GCCAT CACACCT GAGAAAGACCAT CAGCT AG 
TGGACAGAGGGGAGGT GCGCCAATT CACGCT GCGT CACT GGCT GTT GCT G 
TAACTCGAGCCCGGGTG ACTGCAG. ..3'

Xho I
(58 bp) <—T7 Terminator Reverse Primer

123



A P PE N D IX  D

Primary protein sequence of NDAT and CDAT 

NDAT:
MSKSKCSVGPMSSWAPAKESNAVGPREVELILVKEQNGVQLTNSTLINPPQTP
VEAQERETWSK

CDAT:
FCSLPGSFREKLAYAITPEKDHQLVDRGEVRQFTLRHWLLL
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APPENDIX E

Site directed mutagenesis primers

The sequences of oligonucleotide primers used for Quick Change6 site directed 
mutagenesis. The substituted codons are highlighted in red.

Name Sequence

T43A
Forward
Reverse

AACGGAGT GCAGCTGGCCAACT CCACCCT CAT C 
GAT GAGGGT GGAGTT GGCCAGCT GCACT CCGTT

T46A
Forward
Reverse

CAGCT G ACCAACT CCGCCCT CAT C.AACCCGCCA 
T GGCGGGTT GAT GAGGGCGGAGTT GGT CAGCT G

T53A
Forward
Reverse

CT CAT CAACCCGCCACAGGCACCAGT GGAGGCT CAAGAG 
CT CTT GAGCCT CCACT GGT GCCT GT GGCGGGTT GAT GAG

T62A
Forward
Reverse

GCTCAAGAGCGGGAGGCCTGGAGCAAGCCCGGG 
CCCGGGCTT GCT CCAGGCCT CCCGCT CTT GAGC
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