
Courrier du Savoir – N°01, Novembre 2001, pp. 09-15

Université Mohamed Khider – Biskra, Algérie, 2001

FUZZY INFERENCE SYSTEMS OPTIMIZATION
BY REINFORCEMENT LEARNING

M. BOUMEHRAZ*, K. BENMAHAMMED**, M. L. HADJILI***, V. WERTZ***
(*)

Laboratoire MSE, Département Electronique, Université de Biskra,
medboumehraz@netcourrier.com

(**) Département Electronique, Université de Sétif.
(***) CESAME, Université Catholique de Louvain, Belgique.

ABSTRACT

Fuzzy rules for control can be effectively tuned via reinforcement learning. Reinforcement learning is a weak learning
method wich only requires information on the succes or failure of the control application. In this paper a reinforcement
learning method is used to tune on line the conclusion part of fuzzy inference system rules. The fuzzy rules are tuned in
order to maximize the return function . To illustrate its effectivness, the learning method is applied to the well known
Cart-Pole balancing system problem. The results obtained show significant improvements of the speed of learning.

KEYWORDS: reinforcement learning, fuzzy inference systems, Q-learning

1. INTRODUCTION

Reinforcement learning (RL) refers to a class of
learning tasks and algorithms in which the learning
system learns an associative mapping by maximizing a
scalar evaluation (reinforcement) of its performance
from the environment [1,2,3]. Compared to supervised
learning , RL is more difficult since it has to work with
much less information. On the other hand, fuzzy
systems are being used successfully in an increasing
number of application areas. These rule based systems
are more suitable for complex system problems when it
is very difficult, if not impossible, to describe the
system mathematically. The drawback, however, is that
there is no standardized framework regarding the
design, optimality and partitioning of fuzzy rule set.
Several approaches have been proposed to automatically
extract rules from data; gradient descent[4], fuzzy
clustering, genetic algorithms [5,6] and reinforcement
learning[7,8,9,10,11]. In this paper we use Q-learning to
determine the appropriate conclusions for a Mamdani
fuzzy inference system. We assume that the structure of
the fuzzy system and the membership functions are
specified a priori.

The rest of this paper is organized as follows: Section 2
and section 3 give the necessary background of
reinforcement learning and reinforcement learning
methods. Section 4 describes the application of Q-
learning for the optimization of fuzzy inference systems.
The result of the application of the method for the
stabilization of an inverted pendulum are presented in
section 5. Section 6 concludes this paper.

2. REINFORCEMENT LEARNING

2.1 Reinforcement learning model

In reinforcement learning an agent learns to optimize an
interaction with a dynamic environment through trial
and error. The agent receives a scalar value or reward
with every action it executes. The goal of the agent is to
learn a strategy for selecting actions such that the
expected sum of discounted rewards is maximized[1].

In the standard reinforcement learning model, an agent
is connected to its environment via percetion and action,
as depicted in figure 1. At any given time step t, the
agent perceives the state st, of the environment and
selects an action at. The environment responds by giving
the agent scalar reinforcement signal, r(st) and changing
into state st+1. The agent should choose actions that tend
to increase the long run sum of values of the
reinforcement signal. It can learn to do this overtime by
systematic trial and error, guided by a wide variety of
algorithms.

The agent goal is to find an optimal policy, π : S → A,
which maps states to actions, that maximize some long-
run mesure of reinforcement. In the general case of the
reinforcement learning problem, the agent’s actions
determine not only its immediate rewards, but also the
next state of the environment. As a result, when taking
actions, the agent has to take the future into account.
The reinforcement learning can be summarized In the
following steps.

M. Boumehraz and al.

 10

Initialize the learning system
repeat
 - With the system in state s, choose an action a
according to an exploration policy and apply it to the
system
 - The system returns a reward r, and also yields next
state s’.
 - Use the experience, (s,a,r,s’) to update the learning
system
 - s ← s’
until s is terminal

Environment

Agent

action

state

reinforcement

Figure.1 : Reinforcement

2.2 The return function

The agent's goal is to maximize the accumulated future
rewards. The return function, or the return, R(t), is a
long-term measure of rewards. We have to specify how
the agent should take future into account in the
decisions it makes about how to select an action now.
There are three models that have been the subject of the
majority of work in this area.

2.2.1 The finite-horizon model

In this case, the horizon corresponds to a finite number
of steps in the future. It exists a terminal state and the
sequence of actions between the initial state and the
terminal one is called a period. The return is given by:

11)(−++ +⋅⋅⋅++= Kttt rrrtR (1)

where K is the number of steps before the terminal state.

2.2.2 The discounted return (infinite-horizon model)

In this case the longrun reward is taken into account, but
rewards that are received in the future are geometrically
discounted according to discount factor γ, 0 < γ < 1 and
the criteria becomes.

kt
k

k rtR
+

∞

=
∑=

1
)(γ (2)

2.2.3 The average-reward model

A third criteria, in which the agent is supposed to take
actions that optimize its long-run average reward is also
used :

kt
n

kn
rntR +

=
∞→ ∑=

1

1lim)((3)

2.3 The state value function or value function

The value function is a mapping from states to states
values. The value function Vπ (s) of state s, associated
with a given policy π(s) is defined as [1] :

() ⎥⎦
⎤

⎢⎣
⎡≡ ++

∞

=
∑ 1

1
kt

k

kt rEsV γπ (4)

Where st is the state at time t, rt+k+1 is the reward
received for performing action :

()ktkt sa ++ =π (5)

at time t+k, and γ is the discount factor (0<γ<1).

2.4 Action-value function or Q-function

The action-value function measures the expected return
of executing action at at state st, and then following the
policy π for selecting actions in subsequent states. The
Q-function corresponding to policy π(s) is defined
as [1]:

() ()()1111 ,, ++++ +≡ ttttttt ssQrasQ πγ ππ (6)

The advantage of using Q-function is that the agent is
able to perform one-step lookahead search without
knowing the one-step reward and dynamics functions.

The disavantage is that the domain of the Q-function
increases from the domain of states S to the domain of
state-action pairs (s,a).

3. REINFORCEMENT LEARNING METHODS

Reinforcement learning methods can be grouped into
two categories: model-based methods and model-free
methods. Model based methods have direct links with
dynamic programming (DP). Model-free methods can
be viewed as appropriate modifications of the model
based methods so as to avoid the model requirement.

3.1 Model Based Methods

Dynamic programming (DP) methods [12] are well
known classical tools for solving optimization
problems. Value iteration and policy iteration are two

Fuzzy inference systems optimization by reinforcement learning

 11

widely used DP methods which allow the computation
of the optimal value function and optimal policy under
the assumption model knowledge.

3.1.1 Value iteration

The basic idea in value iteration is to find the optimal
value function. It can be determined by a simple
iterative algorithm called value iteration.
Initialize an initial value function V(s) for all s ε S
Repeat
- Repeat for all s ε S
)()(),(/

/
/ sVaprasQ

Ss
ss∑

∈

+← γ

),(max)(asQsV
Aa∈

←

untili a stopping condition.

3.1.2 Policy iteration

The policy iteration algorithm manipulates the policy
directly, rather then finding it indirectly via the optimal
value function. It operates as follows:
 Choose an arbitrary policy π/

 Repeat
 /ππ ←
 calculate value function Vπ
 () ()() ()() ()/

/
/, sVspssrsV

Ss
ss

ππ πγπ ∑
∈

+←

improve the policy for each state Ss∈

 arg)(/ ←sπ

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+ ∑
∈

∈
Ss

ssAa
sVapasr

/
/)()(),(max /π until /ππ =

3.2 Model free methods

Model-free Reinforcement learning methods are derived
by making suitable approximations to the computations
in value iteration and policy iteration, so as to eliminate
the need for a model. Two important methods result
from such approximations: actor-critic methods and Q-
learning.

3.2.1 Actor-Critic Method

The Actor-Critic method proposed by Barto, Sutton and
Anderson [13], is an adaptive version of policy iteration
in which the value function is computed by an algorithm
called Temporal difference TD(0). The method can be
viewed as a practical approximate way of doing policy
iteration : perform one step of an on-line procedure for
estimating the value function for a given policy, and at
the same time perform one step of an on-line procedure

for improving that policy. A bloc diagram of this
approach is given in figure 2. It consists of two
components: A critic and a reinforcement learning
component.

action

Environment

Critic

state

 reinforcement

Actor

Figure.2 : Architecture for the actor-critic

Let (s,a,r,s/) an experience tuple summarizing a single
transition in the environment. Here s is the state before
the transition , a is the applied action, r the
instantaneous reward and s/ is the resulting state. The
value of a policy is learned using TD(0) algorithm
which uses the update rule :

() () () ()()sVsVrsVsV −++= /γα (7)

Whenever a state s is visited, its estimate value is
updated to be closer to r + γV(s/), since r is the
instantaneous reward received and V(s/) is the estimated
value of the actually occurring next state. The TD(0)
rule is an instance of a more general class off algorithms
called TD(λ), with λ=0. The general TD(λ) rule is given
by:

() () () ()() ()sesVsVrsVsV −++= /γα (8)

TD(λ) rule is similar to the TD(0) rule but it is applied
to every state according to its eligibility e(s), rather than
just to the immediately previous state s. One version of
the eligibility trace is defined to be:

kss

t

k

ktse ,
1

)()(δλγ∑
=

−= (9)

where

⎪
⎩

⎪
⎨

⎧
=

0

1

, kssδ

otherwize

if
kss=

 (10)

The eligibility of a state is the degree to which it has
been visited in the recent past; when a reinforcement is
received, it is used to update all the states that have been
recently visited, according to their eligibility. When λ
=0 this is equivalent to TD(0). When λ ≠ 0, it is roughly
equivalent to updating all the states according to the

M. Boumehraz and al.

 12

() () () () (13) ,,max,, //
1 /

⎟
⎠
⎞

⎜
⎝
⎛ −++=

∈
+ asQasQrasQasQ nn

Aa
nn γα

number of times they were visited. Note that we can
update the eligibility on-line as follows :

⎪
⎩

⎪
⎨

⎧ +
=

)(

1)(
)(

se

se
se

λγ

λγ
 (11)

3.2.2 Q-Learning

Q-learning is perhaps the more popular of reinforcement
learning algorithms. Q-learning is a true learning
algorithm. in that it learns the optimal policy function
incrementally as it interacts with the environment. The
idea of Q-learning is to learn a Q-function that maps the
current state s and action a to a utility value Q(s,a) that
predicts the total future discounted reward that will be
received from current action a. To understand the
contest on which Q-learning operates, suppose for the
moment that we know the Q-function and that currently
the environment is characterized by the state s. The
agent chooses an action a so as to maximize Q(s,a).
Choosing action a results in an environmental state
transition from state s to state s/. The agent then chooses
the next action a/ so as to maximize Q(s/,a/). Given that
the optimal policy is followed after action a is taken,
Q(s,a) is the immediate reward of taking action a from
state s, plus the maximum utility possible from the next
state s/ discounted by the discount factor γ. Therefore Q
satisfies the relation:

() ()
AaSs

ss aprasQ
∈

∈
∑+=

/
/

/ max, γ ()//,asQ (12)

Temporal difference (TD) methods can be employed to
incrementally construct Q as a series of estimates, Qn.
During the learning process equation (12) may not hold
and the TD update process is designed to change
estimate Qn(s,a) of Q(s,a) in a direction that reduces the
amount of inequality. A specific update formula using
temporal difference is given by:

Note that equation (13) can be writen as :

where α is a learning rate that is either a small constant
or a value that goes to zero as the time step n increases.
If each action is executed in each state an infinite
number of times on an infinite run and α is decayed
appropriately, the Q-values will converge with
probability 1 [14]. Q-learning is exploration insensitive:
that is, that the Q values will converge to the optimal
values independent of how the agent behaves while the
data is being collected (as long as all state-action pairs

are tried often enough) [14]. This means that although
the exploration-exploitation issue must be addressed in
Q-learning, the details of the exploration strategy will
not affect the convergence of the learning algorithm.

Q-Learning can be summarized in the following
algorithm :
Initialize Q(s,a) arbitrarily
Repeat (for each episode)
 Initialize state s
 Repeat (for each step of episode)
 Choose an action a from s using policy derived
 from Q
 Apply action a and observe reinforcement r
 and next state s/.
 Update Q :

 () () () ()⎟
⎠
⎞

⎜
⎝
⎛ ++−←

∈
//,max,1,

/
asQrasQasQ

Aa
γαα

 s ← s/

 until s is terminal
until policy approximation terminated.

4. OPTIMIZATION OF FUZZY INFERENCE
SYSTEMES BY Q-LEARNING

Reinforcement learning has been used for optimization
of fuzzy inference systems by two types of methods :
Methods based on policy iteration, driving to Actor-
Critic architectures [7,8]. The others based on value
iteration and generalize Q-Learning [9,10,11], in [11]
Glorennec uses Q-Learning for the optimization of a
zero order Takagi-Sugeno fuzzy inference system, with
a constant conclusions. If the action space is continuous
the conclusions are equally distributed between lower
and upper bounds of the action.

In this paper, we consider a Madani fuzzy inference
system and continuous state and action spaces. The FIS
structure is fixed a priori by the user and the fuzzy sets
for the inputs and output are supposed fixed. Our
approach, consist in determining the optimal
conclusions of the fuzzy inference system.

4.1 Mamdani fuzzy inference
system

A Mamdani inference system is
described by a set of fuzzy rules of
the form:

Rule i : if s is Si then a is Ai

Where s is the fuzzy system input, Si is a fuzzy label for
input in ith rule, a is the output of the fuzzy system and
Ai is fuzzy label for the output in ith rule.

The problem is how to choose the appropriate rules in
order to optimize system performance (maximize the
accumulated future rewards in RL). In this paper we use
Q-learning to optimize rule conclusions.

() () () () (14) ,max,1, //
1 /

⎟
⎠
⎞

⎜
⎝
⎛ ++−=

∈
+ asQrasQasQ n

Aa
nn γαα

if s = curent state

otherwize

Fuzzy inference systems optimization by reinforcement learning

 13

Several competing conclusions are associated to each
rule, and a quality value is assigned to each conclusion.
The conclusion with the high quality is used by the
system to generate actions . The fuzzy rule becomes:

 Rule i : if s is Si then a is),(maxarg // asQAa ∈

4.2 Learning process

At each rule, several conclusions are associated, and
each conclusion has a Q-value:

The fuzzy rule is of the form:

Rule i : if s is Si then a is A1 with Qi(s, A1)

 or a is A2 with Qi(s, A2)

 or a is A3 with Qi(s, A3)

 or a is Am with Qi(s, Am)

where A1, A2,….., Am are the fuzzy sets of the outputs
and Qj(s, Ai) is the Q-value of the conclusion a is Ai of
the rule j.

During learning the Q-value of each conclusion is
updated using Q-learning :

 Where µi(st) is the truth value of the ith rule and Aj is
the jth conclusion of the ith rule.

With the value of the new state given by:

()
()

()),(max)(1
1

1

1 1

1
1 asQs

s
ssV t

i
tAa

N

i
tiN

j tj

ti
tt +∈

=
+

= +

+
+ ∑

∑
= µ

µ
µ (16)

if st+1 is a final state then :

() 01 =+tt sV (17)

5. RESULTS

The proposed method is applied to a classic problem;
the pole balancing problem or inverted pendulum
problem. In this problem a pole is hinged to a motor-
driven cart which moves on rail tracks to its right or its
left. The primary control task is to keep the pole
vertically balanced.

The dynamics of the cart-pole system are modeled by
the following non linear differential equation [15] :

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
−

−
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+

−−
+

=

••

••

mm
m

l

mm

mlf
g

c

p

c

θ

µθ
θθ θθ

θ 2

2

cos
3
4

sin
cossin

 (18)

θ

 f

Figure.3 : The Cart-Pole System

where θ is the angle of the pole,
•
θ is its angular

velocity, g is the gravity, mc=1.0 Kg is the mass of the
cart, m=0.1 Kg is the mass of the pole, l=0.5 m is the
half-pole length and µp=0.005Ns/m is the coefficient of
friction of pole on cart. The sample period is 20 ms.

We assume that a failure happen when |θ|>45°.and the
equation of motion is not known to the controller and
that only a vector describing the cart-pole system’s state

at each time step is known.

The inputs of the fuzzy controller
are error e and change in error
∆e given by:

)()(kke θ= (19)

)1()()(−−=∆ kekeke (20)

The output is the force f and the Q-values of the
conclusion of each rule.

The fuzzy partitions of the error, change in error and
force are described in figure 4.

The rule base is choosen arbitrary and the Q-values of
the conclusions are set initially to zero. We use center of
area defuzzification and the min operator to implement
the premise and implication.

A trial in our experiments refers to starting with the
cart-pole system set to an initial state and ending with
the appearance of a failure signal or successful control
of the system for an extended period (1000 time steps or
20 seconds). The Q-learning was applied to tune fuzzy
rule conclusions. The free constants were γ = 0.95 and α
set initially to 0.1 and decreases. Figure 5 shows the
average return per trial performance of the controller
during the learning process; the average return per trial,
figure.6 shows the rule table obtained after learning and
figures 7 and 8 show the response of the system for
initial angle equal to –50° and 28° respectively.

It is clear that the average return increases during
learning until it reaches a sub-optumal value. The
obtained fuzzy controller is able to stabilize the pole for
angles inferior to 55°.

{ } (15)),()()(),(),(111 jt
i
tttttijt

i
tjt

i
t AsQsVrsAsQAsQ −++= +++ γαµ

M. Boumehraz and al.

 14

 NEB NEM NES ZER POS POM POB

µe

 -42 -18 -12 -6 6 12 18 42
e

NEB NEM NES ZER POS POM POB

µ∆e

 -70 -30 -10 10 30 70
∆e

 -50 -20 -10 10 20 50

µf
NEB NEM NES ZER POS POM POB

f

Figure.4 : Membership functions

0 10 20 30 40 50 60 70 80 90 100
-25

-20

-15

-10

-5

0

5

10
Average Return in the inverted pendulum problem

Trial

A
ve

ra
ge

 R
et

ur
n

figure.5 : The Average Return

∆e
 NEB NEM NES ZER POS POM POB

NEB NEB NEM NEM NEB NEP NEP ZER

NEM NEB NEB NEB NEM ZER POS POS

NES NEM NEM NEB NES POS POS ZER

ZER NEB NEM NES ZER POS POM POB

POS NEM NES NES POS POM POB POM

POM NES NES ZER POM POB POM POB

POB ZER POS POS POB POB POM POB

0 2 4 6 8 10 12 14 16
-60

-50

-40

-30

-20

-10

0

10

time[s]
an

gl
e[

°]

Figure.6 : Rule table obtained after learning

0 2 4 6 8 10 12 14 16
-40

-20

0

20

40

60

80

100

Time [s]

 v
el

oc
ity

 [
°/

s]

0 2 4 6 8 10 12 14 16
-60

-50

-40

-30

-20

-10

0

10

20

time [s]

fo
rc

e
[N

]

Figure.7 : Angle, velocity and force for initial angle equal 50°

Fuzzy inference systems optimization by reinforcement learning

 15

0 2 4 6 8 10 12 14 16
0

5

10

15

20

25

30

time[s]

an
gl

e[
°]

0 2 4 6 8 10 12 14 16
-25

-20

-15

-10

-5

0

5

10

time[s]

ve
lo

ci
ty

[°
/s

]

0 2 4 6 8 10 12 14 16
-10

-5

0

5

10

15

time[s]

fo
rc

e[
N

]

Figure 8 : Angle, velocity and force for initial angle equal to 28°

6. CONCLUSIONS

In this paper we have proposed a new method of
optimizing fuzzy inference systems based on Q-
learning. This method was applied to cart-pole system.
After learning , the controller is able to stabilize the
pendulum. We assume that the structure of the fuzzy
system is fixed a priori. The optimization of
membership function parameters and number of rules
will improve the performance of the proposed method.

REFERENCES
R. S. Sutton, A. G. Barto, Introduction to reinforcement
learning, MIT Press/Bradford Books, Cambridge, MA,
1998.

V. Gullapalli, Reinforcement learning and its appication
to control, Ph. D. Thesis, University of Massachusetts,
Amherst, MA, USA, 1992.

L. P. Kaelbling, M. L. Littman, A. W. Moore,
Reinforcement learning: a survey, Journal of Journal
Artificial Intelligence Research 4, 1996.

J. R. Jang, Self-Learning Fuzzy Controllers Based on
Temporal Back Propagation, IEEE Transactions on
Neural Networks, Vol. 3 No. 5, September 1992.

M. G. Cooper, J. J. Vidal, Genetic Design of Fuzzy
Controller, Proceedings of Second Inernational
Conference on Fuzzy Theory and Technology; Durham,
NC, October, 1993.

A. Bonarini, Evolutionary learning of fuzzy
rules:competition and cooperation, in Fuzzy modeling :
paradigms and practice, Kluwer Academic Publishers,
Norwell, MA, 1995.

H. R. Berenji P. Khedkar, Learning and Tuning Fuzzy
Logic Controllers Through Reinforcement, IEEE
Transactions on Neural Networks, Vol. 3 No. 5,
September 1992.

M. V. Buijtenen, G. Schram, R. Babuska, B.
Verbruggen, Adaptive Fuzzy Control of Satellite
Attitude by Reinforcement Learning, IEEE Transactions
on Fuzzy Systems, Vol. 6, No. 2, May 1998.

H. R. Berenji, Fuzzy Q-Learning: a new approach for
fuzzy dynamic programming, Proceedings of IEEE
international conference on Fuzzy Systems, Nj, 1994.

P. Y. Glorennec, L. Jouffe, Fuzzy Q-Learning,
Procedings of FUZZ-IEEE’97, Barcelona, Spain, July
1997.

P. Y. Glorennec, Reinforcement Learning: an Overview,
ESIT 2000, Aachen, Germany, 14-15 September 2000.

D. P. Bertsekas, Distributed Dynamic Programming,
IEEE transactions on Automatic Control, 27, 1982.

A. G. Barto, R. S. Sutton and C. W. Anderson,
Neuronlike adaptive elements that can solve difficult
learning control problems, IEEE Transactions on
Systems, Man and Cybernetics, SMC-13(05), 1983.

C. Watkins Learning from Delayed Rewards, PhD.
Thesis, University of Cambridge, England, 1989.

K. Passino, S. Yurkovich, Fuzzy Control, Addison
Wesley, California, 1998.

