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ABSTRACT 

Fuzzy rules for control can be effectively tuned via reinforcement learning. Reinforcement learning is a weak learning 
method wich only requires information on the succes or failure of the control application. In this paper a reinforcement 
learning method is used to tune on line the conclusion part of fuzzy inference system rules. The fuzzy rules are tuned in 
order to maximize the return function . To illustrate its effectivness, the learning method is applied to the well known 
Cart-Pole balancing system problem. The results obtained show significant improvements of the speed of learning. 
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1. INTRODUCTION  

Reinforcement learning (RL) refers to a class of 
learning tasks and algorithms in which the learning 
system learns an associative mapping by maximizing a 
scalar evaluation (reinforcement) of its performance 
from the environment [1,2,3]. Compared to supervised 
learning , RL is more difficult since it has to work with 
much less information. On the other hand, fuzzy 
systems are being used successfully in an increasing 
number of application areas. These rule based systems 
are more suitable for complex system problems when it 
is very difficult, if not impossible, to describe the 
system mathematically. The drawback, however, is that 
there is no standardized framework regarding the 
design, optimality and partitioning of fuzzy rule set. 
Several approaches have been proposed to automatically 
extract rules from data; gradient descent[4], fuzzy 
clustering, genetic algorithms [5,6] and reinforcement 
learning[7,8,9,10,11]. In this paper we use Q-learning to 
determine the appropriate conclusions for a Mamdani 
fuzzy inference system. We assume that the structure of 
the fuzzy system and the membership functions are 
specified a priori. 

The rest of this paper is organized as follows: Section 2 
and section 3 give the necessary background of 
reinforcement learning and reinforcement learning 
methods. Section 4 describes the application of Q-
learning for the optimization of fuzzy inference systems. 
The result of the application of the method for the 
stabilization of an inverted pendulum are presented in 
section 5. Section 6 concludes this paper. 

 

2. REINFORCEMENT LEARNING 

2.1 Reinforcement learning model 

In reinforcement learning an agent learns to optimize an 
interaction with a dynamic environment through trial 
and error. The agent receives a scalar value or reward 
with every action it executes. The goal of the agent is to 
learn a strategy for selecting actions such that the 
expected sum of discounted rewards is maximized[1]. 

In the standard reinforcement learning model, an agent 
is connected to its environment via percetion and action, 
as depicted in figure 1. At any given time step t, the 
agent perceives the state st, of the environment and 
selects an action at. The environment responds by giving 
the agent scalar reinforcement signal, r(st) and changing 
into state st+1. The agent should choose actions that tend 
to increase the long run sum of values of the 
reinforcement signal. It can learn to do this overtime by 
systematic trial and error, guided by a wide variety of 
algorithms. 

The agent goal is to find an optimal policy, π : S → A, 
which maps states to actions, that maximize some long-
run mesure of reinforcement. In the general case of the 
reinforcement learning problem, the agent’s actions 
determine not only its immediate rewards, but also the 
next state of the environment. As a result, when taking 
actions, the agent has to take the future into account. 
The reinforcement learning can be summarized  In the 
following steps. 
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Initialize the learning system 
repeat 
  - With the system in state s, choose an action a 
according to an exploration policy and apply it to the 
system 
  - The system returns a reward r, and also yields next 
state s’. 
  - Use the experience, (s,a,r,s’) to update the learning 
system 
   -  s ← s’ 
until s is terminal 

 

Environment 

Agent 

action

state 

reinforcement 

 
Figure.1 : Reinforcement 

 

2.2 The return function 

The agent's goal is to maximize the accumulated future 
rewards. The return function, or the return, R(t), is a 
long-term measure of rewards. We have to specify how 
the agent should take future into account in the 
decisions it makes about how to select an action now. 
There are three models that have been the subject of the 
majority of work in this area.  

 

2.2.1 The finite-horizon model 

In this case, the horizon corresponds to a finite number 
of steps in the future. It exists a terminal state and the 
sequence of actions between the initial state and the 
terminal one is called a period. The return is given by: 

11)( −++ +⋅⋅⋅++= Kttt rrrtR  (1) 

where K is the number of steps before the terminal state.  

 

2.2.2 The discounted return (infinite-horizon model) 

In this case the longrun reward is taken into account, but 
rewards that are received in the future are geometrically 
discounted according to discount factor γ, 0 < γ < 1 and 
the criteria becomes. 
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2.2.3 The average-reward model 

A third criteria, in which the agent is supposed to take 
actions that optimize its long-run average reward is also 
used : 
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2.3 The state value function or value function 

The value function is a mapping from states to states 
values. The value function Vπ (s) of state s, associated 
with a given policy π(s) is defined as [1] :  
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Where st is the state at time t, rt+k+1 is the reward 
received for performing action : 

( )ktkt sa ++ =π  (5) 

at time t+k, and γ is the discount factor (0<γ<1). 

2.4 Action-value function or Q-function  

The action-value function measures the expected return 
of executing action at at state st, and then following the 
policy π for selecting actions in subsequent states. The 
Q-function  corresponding to policy π(s) is defined 
as [1]: 

( ) ( )( )1111 ,, ++++ +≡ ttttttt ssQrasQ πγ ππ  (6) 

The advantage of using Q-function is that the agent is 
able to perform one-step lookahead search without 
knowing the one-step reward and dynamics functions.  

The disavantage is that the domain of the Q-function 
increases from the domain of states S to the domain of 
state-action pairs (s,a). 

 

3. REINFORCEMENT LEARNING METHODS 

Reinforcement learning methods can be grouped into 
two categories: model-based methods and model-free 
methods. Model based methods have direct links with 
dynamic programming (DP). Model-free methods can 
be viewed as appropriate modifications of the model 
based methods so as to avoid the model requirement. 

3.1 Model Based Methods 

Dynamic programming (DP) methods [12] are well 
known classical tools for solving optimization 
problems. Value iteration and policy iteration are two 
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widely used DP methods which allow the computation 
of the optimal value function and optimal policy under 
the assumption model knowledge. 

 

3.1.1 Value iteration 

The basic idea in value iteration is to find the optimal 
value function. It can be determined by a simple 
iterative algorithm called value iteration. 
Initialize an initial value function V(s)  for all s ε S 
Repeat 
-  Repeat for all  s ε S 
       )()(),( /

/
/ sVaprasQ

Ss
ss∑

∈

+← γ  

    ),(max)( asQsV
Aa∈

←    

untili a stopping condition. 

 

3.1.2 Policy iteration 

The policy iteration algorithm manipulates the policy 
directly, rather then finding it indirectly via the optimal 
value function. It operates as follows: 
 Choose an arbitrary policy π/ 

 Repeat 
     /ππ ←  
      calculate value function  Vπ  
      ( ) ( )( ) ( )( ) ( )/
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3.2 Model free methods  

Model-free Reinforcement learning methods are derived 
by making suitable approximations to the computations 
in value iteration and policy iteration, so as to eliminate 
the need for a model. Two important methods result 
from such approximations: actor-critic methods and Q-
learning. 

 

3.2.1 Actor-Critic Method 

The Actor-Critic method proposed by Barto, Sutton and 
Anderson [13], is an adaptive version of policy iteration 
in which the value function is computed by an algorithm 
called Temporal difference TD(0). The method can be 
viewed as a practical approximate way of doing policy 
iteration : perform one step of an on-line procedure for 
estimating the value function for a given policy, and at 
the same time perform one step of an on-line procedure 

for improving that policy. A bloc diagram of this 
approach is given in figure 2. It consists of two 
components: A critic and a reinforcement learning 
component. 

action

Environment 

Critic 

state 

 reinforcement 

Actor 
 

Figure.2 : Architecture for the actor-critic 

 

Let (s,a,r,s/) an experience tuple summarizing a single 
transition in the environment. Here s is the state before 
the transition , a is the applied action, r the 
instantaneous reward and s/ is the resulting state. The 
value of a policy is learned using TD(0) algorithm 
which uses the update rule : 

( ) ( ) ( ) ( )( )sVsVrsVsV −++= /γα  (7) 

Whenever a state s is visited, its estimate value is 
updated to be closer to r + γV(s/), since r is the 
instantaneous reward received and V(s/) is the estimated 
value of the actually occurring next state. The TD(0) 
rule is an instance of a more general class off algorithms 
called TD(λ), with λ=0. The general TD(λ) rule is given 
by: 

( ) ( ) ( ) ( )( ) ( )sesVsVrsVsV −++= /γα  (8) 

TD(λ) rule is similar to the TD(0) rule but it is applied 
to every state according to its eligibility e(s), rather than 
just to the immediately previous state s. One version of 
the eligibility trace is defined to be: 
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The eligibility of a state is the degree to which it has 
been visited in the recent past; when a reinforcement is 
received, it is used to update all the states that have been 
recently visited, according to their eligibility. When λ 
=0 this is equivalent to TD(0). When λ ≠ 0, it is roughly 
equivalent to updating all the states according to the 
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number of times they were visited. Note that we can 
update the eligibility on-line as follows : 
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3.2.2 Q-Learning 

Q-learning is perhaps the more popular of reinforcement 
learning algorithms. Q-learning is a true learning 
algorithm. in that it learns the optimal policy function 
incrementally as it interacts with the environment. The 
idea of Q-learning is to learn a Q-function that maps the 
current state s and action a to a utility value Q(s,a) that 
predicts the total future discounted reward that will be 
received from current  action a. To understand the 
contest on which Q-learning operates, suppose for the 
moment that we know the Q-function and that currently 
the environment is characterized by the state s. The 
agent chooses an action a so as to maximize Q(s,a). 
Choosing action a results in an environmental state 
transition from state s to state s/. The agent then chooses 
the next action a/ so as to maximize Q(s/,a/). Given that 
the optimal policy is followed after action a is taken, 
Q(s,a) is the immediate reward of taking action a from 
state s, plus the maximum utility possible from the next 
state s/ discounted by the discount factor γ. Therefore Q 
satisfies the relation:  
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Temporal difference (TD) methods can be employed to 
incrementally construct Q as a series of estimates, Qn. 
During the learning process equation (12) may not hold 
and the TD update process is designed to change 
estimate Qn(s,a) of  Q(s,a) in a direction that reduces the 
amount of inequality. A specific update formula using 
temporal difference is given by: 

Note that equation (13) can be writen as : 

where α is a learning rate that is either a small constant 
or a value that goes to zero as the time step n increases. 
If each action is executed in each state an infinite 
number of times on an infinite run and α is decayed 
appropriately, the Q-values will converge with 
probability 1 [14]. Q-learning is exploration insensitive: 
that is, that the Q values will converge to the optimal 
values independent of how the agent behaves while the 
data is being collected (as long as all state-action pairs 

are tried often enough) [14]. This means that although 
the exploration-exploitation issue must be addressed in 
Q-learning, the details of the exploration strategy will 
not affect the convergence of the learning algorithm. 

Q-Learning can be summarized in the following 
algorithm : 
Initialize Q(s,a) arbitrarily 
Repeat (for each episode) 
    Initialize state s 
   Repeat (for each step of episode) 
        Choose an action a from s using policy derived 
           from Q 
       Apply action a and observe reinforcement r 
             and next state s/. 
       Update Q : 
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        s ← s/ 

    until s is terminal  
until policy approximation terminated. 

 

4. OPTIMIZATION OF FUZZY INFERENCE 
SYSTEMES BY Q-LEARNING  

Reinforcement learning has been used for optimization 
of fuzzy inference systems by two types of methods : 
Methods based on policy iteration, driving to Actor-
Critic architectures [7,8]. The others based on value 
iteration and generalize Q-Learning [9,10,11], in [11] 
Glorennec uses Q-Learning for the optimization of a 
zero order Takagi-Sugeno fuzzy inference system, with 
a constant conclusions. If the action space is continuous 
the conclusions are equally distributed between lower 
and upper bounds of the action.  

In this paper, we consider a Madani fuzzy inference 
system and continuous state and action spaces. The FIS 
structure is fixed a priori by the user  and the fuzzy sets 
for the inputs and output are supposed fixed. Our 
approach, consist in determining the optimal 
conclusions of the fuzzy inference system. 

4.1 Mamdani fuzzy inference 
system 

A Mamdani inference system is 
described by a set of fuzzy rules of 
the form: 

Rule i : if s is Si then a is Ai  

Where s is the fuzzy system input, Si is a fuzzy label for 
input in ith rule, a is the output of the fuzzy system and 
Ai is fuzzy label for the output in ith rule. 

The problem is how to choose the appropriate rules in 
order to optimize system performance (maximize the 
accumulated future rewards in RL). In this paper we use 
Q-learning to optimize rule conclusions. 
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if s = curent state 

otherwize 
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Several competing conclusions are associated to each 
rule, and a quality value is assigned to each conclusion. 
The conclusion with the high quality is used by the 
system to generate actions . The fuzzy rule becomes: 

 Rule i : if s is Si then a is ),(maxarg // asQAa ∈  

4.2 Learning process 

At each rule, several conclusions are associated, and 
each conclusion has a Q-value: 

The fuzzy rule is of the form: 

Rule i : if s is Si then a is A1 with  Qi(s, A1) 

                               or a is A2 with  Qi(s, A2)     

                               or a is A3 with  Qi(s, A3)     

                               or  a is Am with  Qi(s, Am)     

where A1, A2,….., Am are the fuzzy sets of the outputs 
and Qj(s, Ai) is the Q-value of the conclusion a is Ai of 
the rule j. 

During learning the Q-value of each conclusion is 
updated using Q-learning : 

 Where µi(st) is the truth value of the ith rule and Aj  is 
the jth conclusion of the ith rule. 

With the value of the new state given by: 
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if st+1 is a final state then : 

( ) 01 =+tt sV  (17) 

 

5. RESULTS 

The proposed method is applied to a classic problem; 
the pole balancing problem or inverted pendulum 
problem. In this problem a pole is hinged to a motor-
driven cart which moves on rail tracks to its right or its 
left. The primary control task is to keep the pole 
vertically balanced. 

The dynamics of the cart-pole system are modeled by 
the following non linear differential equation [15] : 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
−

−
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+

−−
+

=

••

••

mm
m

l

mm

mlf
g

c

p

c

θ

µθ
θθ θθ

θ 2

2

cos
3
4

sin
cossin

 (18) 

θ 
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Figure.3 : The Cart-Pole System 

 

where θ is the angle of the pole, 
•
θ  is its angular 

velocity, g is the gravity, mc=1.0 Kg is the mass of the 
cart, m=0.1 Kg  is the mass of the pole, l=0.5 m is the 
half-pole length and µp=0.005Ns/m is the coefficient of 
friction of pole on cart. The sample period is 20 ms. 

We assume that a failure happen when |θ|>45°.and the 
equation of motion is not known to the controller and 
that only a vector describing the cart-pole system’s state 

at each time step is known. 

The inputs of the fuzzy controller 
are error e and change in error  
∆e given by: 

)()( kke θ=  (19) 

)1()()( −−=∆ kekeke  (20) 

The output is the force f and the Q-values of the 
conclusion of each rule.  

The fuzzy partitions of the error, change in error and 
force are described in figure 4. 

The rule base is choosen arbitrary and the Q-values of 
the conclusions are set initially to zero. We use center of 
area defuzzification and the min operator to implement 
the premise and implication. 

A trial in our experiments refers to starting with the 
cart-pole system set to an initial state and ending with 
the appearance of a failure signal or successful control 
of the system for an extended period (1000 time steps or 
20 seconds). The Q-learning was applied to tune fuzzy 
rule conclusions. The free constants were γ = 0.95 and α 
set initially to 0.1 and decreases. Figure 5 shows the 
average return per trial performance of the controller 
during the learning process; the average return per trial, 
figure.6 shows the rule table obtained after learning and 
figures 7 and 8 show the response of the system for 
initial angle equal to –50° and 28° respectively.  

It is clear that the average return increases during 
learning until it reaches a sub-optumal value. The 
obtained fuzzy controller is able to stabilize the pole for 
angles inferior to 55°. 
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Figure.4 : Membership functions 
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figure.5 : The Average Return 
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Figure.6 : Rule table obtained after learning 
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Figure.7 : Angle, velocity and force for initial angle equal 50° 
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Figure 8 : Angle, velocity and force for initial angle equal to 28° 

 

6. CONCLUSIONS 

In this paper we have proposed a new method of 
optimizing fuzzy inference systems based on Q-
learning.  This method was applied to cart-pole system. 
After learning , the  controller  is able to stabilize the 
pendulum. We assume that the structure of the fuzzy 
system is fixed a priori. The optimization of 
membership function parameters and number of rules 
will improve the performance of the proposed method. 
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