ONE BY ONE EMBEDDING THE CROSSED HYPERCUBE INTO PANCAKE GRAPH

M.F. ZERARKA
Laboratory of Applied Mathematics, University of Biskra, BP 145 RP Biskra 07000 Algéria.
faouzi.zerarka@univ-biskra.dz.

Abstract

Let G and H be two simple undirected graphs. An embedding of the graph G into the graph H is an injective mapping f from vertices of G to the vertices of H. The dilation of embedding is the maximum distance between $f(u), f(v)$ taken over edges (u, v) of G. The Pancake graph is one as viable interconnection scheme for parallel computers, which has been examined by a number of researchers. The Pancake was proposed as alternatives to the hypercube for interconnecting processors in parallel computer. Some good attractive properties of this interconnection network include: vertex symmetry, small degree, a sublogarithmic diameter, extendability, and high connectivity (robustness), easy routing and regularity of topology, fault tolerance, extensibility and embeddability of others topologies. In this paper, we give a construction of one by one embedding of dilation 5 of crossed hypercube into Pancake graph.

Keywords: Embedding, n-dimensional Crossed Hypercube, n-dimensional Pancake, dilation.

1 INTRODUCTION

In the field of interconnection networks, the study of graph embedding is motivated by the problem: Efficient simulation of interconnection networks and parallel algorithms on a different network, layout of circuits in VLSI. Akers and Krishnamurthy 1990 [1] proposed the Pancake as an attractive alternative to the hypercube and their variations for interconnecting processors in large scale parallel computers. This graph belongs to the family of Cayley graphs. It has very many interesting properties: small diameter and fixed degree, ($n-1$) regular, high connectivity, vertex symmetry, Hamiltonian, fault tolerance, pancyclicity, extensibility and embeddability of others topologies. Akers and al. 1990[1], Kanevsky and Feng 1995 [16], Hwang and Chen 2000 [15], Hung and Al. 2003 [10], Heydari and Sudborough 1997 [8], Hsieh and Chang 2006 [12], Hsieh and Lee 2009 [13], 2010 [14]. The embedding capabilities are important in evaluating an interconnection network. Let G and H denote the simple undirected graphs. In general, an embedding of the graph G into the graph H is an injective mapping f from vertices of G to the vertices of H together with mapping Path $_{j}$ which assigns to each edge (u, v) of G to a path between $f(u)$ and $f(v)$ in H. Let $\operatorname{dil}(f)$ denote the dilation of given embedding f., is defined to be the maximum of length $\left\{\operatorname{Path}_{j}(u, v)\right.$: $(u, v) € E(G)\}$. Menn and Somani 1992 [20], Fan 2002 [5], Qiu 1992 [24], Fang and Hsu 2000 [6], Hsieh and al 1999 [11], Lin and al. 2008 [18], 2010 [19], Aschheim and al. 2012 [2], Femmam and al. 2012 [20]. To compare with crossed hypercube, the pancake offers a good and simple simulation of the others interconnection networks Sennoussi and Lavault 1997 [22].

In this paper, we consider the one by one embedding of n dimensional Crossed hypercube into the n-dimensional Pancake graph. Our goal is to construct the dilation 5 one by one embedding n-dimensional Crossed hypercube into n-dimensional Pancake graph. The paper is organized as follows: We introduce some definitions and properties of Crossed hypercube and Pancake graph in the preliminaries. In the section 3, we present the construction of one by one embedding of n-dimensional Crossed hypercube into n dimensional Pancake graph. In the section 4 we show that the dilation of one by one embedding Crossed hypercube into Pancake is equal 5. Finally, we give our conclusion in the section 5.

2 PRELIMINARIES

Definition 1. Let n be a positive integer. The star graph S_{n} and Pancake graph $P_{n}=\left(G_{n}, E_{n}\right)$ of dimension n are graphs whose vertex set G_{n} consists of all of permutations $G_{n=}\left(\left(g_{1}, g_{2}, \ldots, g_{n}\right) \mid g_{i} \in I=\{1,2, \ldots . n\} ., \mathrm{g}_{i} \neq \mathrm{g}_{i}\right.$ for $\left.i \neq j\right)$. The ith position of the vertex $x_{l} x_{2} \ldots x_{n}$ of star or Pancake will be referred to as the $i^{\text {th }}$ coordinate of the vertex. In the star graph S_{n} a vertex $x_{l} x_{2} \ldots x_{n}$ is adjacent to the vertices obtained $x_{i} x_{2} \ldots x_{i-1} x_{1} x_{i+1} \ldots x_{n}$ for $2 \leq i \leq n$. In the Pancake graph P_{n} a vertex $x_{1} x_{2} \ldots x_{n}$ is adjacent to the vertices $x_{i} x_{i-}$ ${ }_{1} \ldots \ldots x_{1} x_{i+1} \ldots x_{n}$ for $2 \leq i \leq n$. i.e. vertices obtained by reversing the order of the symbols in the first i coordinates of the vertex for $2 \leq i \leq n . \quad E_{n}=\left\{\left(\left(g_{i} g_{i}\right.\right.\right.$ $\left.{ }_{1} \ldots g_{1} g_{i+1} \ldots g_{n}\right),\left(\mathrm{g}_{i} g_{2} \ldots g_{i-1} g_{1} g_{i+1} \ldots g_{n}\right) . g_{i} \in G_{n}$ for $\left.\left.2 \leq i \leq n.\right)\right\}$, $\left|E_{n}\right|=.(\mathrm{n}-1) \mathrm{n}!/ 2$.. Thus, the star or Pancake graph of dimension n has n ! vertices and each of its vertices is adjacent to $n-1$ other vertices. The graph P_{n} is made of n copies of G_{n-1} namely $P_{n}[n, k]$ for $1 \leq k \leq n$. Considering each $P_{n}[n, k]$ as a super node. It follows that $P_{n}[n, s], P_{n}[n, t]$ are connected by a collection of edges of the form
$\left(\left(t, g_{2}, g_{3}, \ldots . ., g_{n-1}, s\right),\left(s, g_{n-1}, \ldots . ., g_{2}, t\right)\right)$ Thus, the are $(n-2)$! edges connecting $P_{n}[n, s]$ and $P_{n}[n, t]$ Kanevsky and Feng, 1995 [15] The n-pancake P_{n} is a complete graph on the super nodes connected by the super edges.

Definition 2. The n-dimensional hypercube Q_{n} and the crossed hypercube $C Q_{n}$ have a same set of vertices. We represent the address of each vertex in $Q_{n}\left(C Q_{n}\right)$ as a binary string of length n. In such away, we don't distinguish between vertices and their binary address. In Q_{n} two vertices are adjacent if and only if their binary labels differ only in one bit position. For $C Q_{n}$, adjacency requirement are little more involved.

Two binary strings $x=x_{1} x_{0}$ and $y=y_{1} y_{0}$ of length two are pair-related if and only if $(x, y) \quad €$ $\{(00,00),(10,10),(01,11),(11,01)\}$.

The n-dimensional Crossed hypercube $C Q_{n}$ is recursively defined as follows: $C Q_{n}$ is the complete graph base on two vertices labeled 0 and 1.K. Efe 1992 [4]. $C Q_{n}$ consists of two subcubes $0 C Q_{n-1}$ and $1 C Q_{n-1}$. The most significant bit of the labels of the vertices in $0 C Q_{n-1}$ and $1 C Q_{n-1}$ is $0(1) . U$ is the set of vertices $u=u_{n-1} u_{n-2} \ldots u_{1} u_{0} \in 0 C Q_{n-1}$ with $u_{n-1}=0$ and $v=\mathrm{v}_{n-1} v_{n-2} \ldots v_{l} v_{0} \in 1 C Q_{n-1}$ with $v_{n-1}=1$ are joined by an edge in $C Q_{n}$ if and only if:

$$
u_{n-2}=v_{n-2} \text { if } n \text { is even }
$$

$\left(u_{2 i+1} u_{2 i}, v_{2 i+1} u_{2 i}\right)$ are pair-related.
The n-dimensional Crossed hypercube $C Q_{n}$ as an alternative of the hypercube, has the same number of vertices and degree as the n-dimensional hypercube. The Crossed hypercube is a variation of hypercube which is derived with some twisted edges. Due to these twisted edges, the diameter of $C Q_{n}$ is only half of the hypercube one. Nice properties include relatively small degree, embedding capabilities, scalability, robustness and the fault tolerant of hamiltonicity of $C Q_{n}$. Huang et al., 2002 [23], Hsieh et al., 1999 [16]). The multiply twisted hypercube graph is not vertex-transitive for $n \geq 5$ (Kulasinghe and Bettayeb, 1995 [17]).

3 EMBEDDING ONE BY ONE N DIMENSIONAL CROSSED HYPERCUBE INTO N-DIMENSIONAL PANCAKE GRAPH.

In this section, we present a new function, the one by one embedding n-dimensional Crossed hypercube denoted $C Q_{n}$ into n-dimensional Pancake graph denoted by P_{n}. The main steps of one by one embedding are as follows:

- Find the first node of $C Q_{n}$ and the first node of P_{n}. Example 00000 of $C Q Q_{4}$ and 1234 of P_{4}.
- One by one embedding vertex of $C Q_{n}$ into P_{n}
- One by one embedding all edges of $C Q_{n}$ into paths P_{n}.

3.1 One by one embedding vertex of $C Q_{n}$ into $\boldsymbol{P}_{\boldsymbol{n}}$.

The One by one embedding vertex of $C Q_{n}$ into P_{n} is done in the following way:

The basic function of this one by one embedding vertex is produced as follows: $C Q_{4}$ is made recursively by two copies of $C Q_{3}$. One copy is prefixed bi $0\left(0 C Q_{3}\right)$ and the other one is prefixed by $1\left(1 C Q_{3}\right)$. The P_{4} is made by four copies of P_{3} named $P_{4}[4, k]$ for $k=1.4$. The one by one applies all following actions:
a) The vertex of $0 C Q_{3}$ are respectively embedded into $P_{4}[4,4]$ and $P_{4}[4,1]$ using:
$\mathrm{X}=\operatorname{PremG}($ node $), \operatorname{inv1}(\mathrm{X})$, flip(X), flip(inv1(X)).
$\mathrm{Y}=\operatorname{Inv} 4(\mathrm{X})$,), flip(X), inv1(X), inv1(flip(X).
b) The vertex of $1 C Q_{3}$ are respectively embedded into $P_{4}[4,2]$ and $P_{4}[4,3]$ using:
$\mathrm{Z}=\operatorname{Inv} 4(\operatorname{Inv1} 1(\operatorname{Inv} 1(\mathrm{z}))$), inv1(Y), flip(Y), flip(inv1(Y). $\mathrm{T}=\operatorname{Inv} 4(\mathrm{Y}), \operatorname{flip}(\mathrm{T}), \operatorname{inv} 1(\mathrm{~T}), \operatorname{inv} 1(f \operatorname{lip}(\mathrm{~T}))$.

Remarque that only the first action is changed.

Figure 1: The one by one embedding vertex of $C Q_{4}$ into P_{4}

The case for $\boldsymbol{n} \geq \mathbf{5}$. The n-dimensional crossed hypercube $C Q_{n}$ is produced the composition of two copies of $C Q_{n-1}$. The first one is prefixed by $0\left(0 C Q_{n-1}\right)$ and the second is prefixed by $1\left(1 C Q_{n-1}\right)$. The n-Pancake P_{n} is made by $n-1$ copies of P_{n-1} The are two stated situations. The first one is when n is odd, we use two components. Example shown in figure 2 .

Figure 2: One by one embedding $0 \subset Q_{4}$ into $P_{5}[5,1]$

The first for one by one embedding all nodes of $0 C Q_{n-1}$ uses the actions of the basic function of the one by one embedding with $\mathrm{X}=\mathrm{PremG}$ (node) (the first node) in the super node $P_{n-1}[n-1, n-1]$. and in the second one for one by one embedding vertex of $1 C Q_{n-1}$, we applied the actions of the basic function of the one by one embedding with $\mathrm{Y}=\operatorname{Inv}(\mathrm{X})$ (the first node) in $P_{n-1}[n-1,1]$.

The second situation is when n is even, we use four super nodes of P_{n}. Example shown in figure 3. We embed in the first super node of P_{n-1} all nodes of $00 C Q_{n-2}$ are embedded
into $P_{n-1}[n-1, n-1]$ using the actions of basic function one by one embedding $C Q_{n}$ into P_{n-1} with the first node $\mathrm{X}=\operatorname{PremG}$ (node). In the second super node $P_{n-1}[n-1,1]$ of P_{n}, all nodes of $01 C Q_{n-2}$ are one by one embedded with the same basic actions for $\mathrm{Y}=\operatorname{Inv}(\mathrm{X})$. all nodes $10 C Q_{n-2}$ are embedded into the third component $P_{n-1}[n-1,2]$ using the same actions with $Z=\operatorname{Inv1}(\operatorname{Inv}((\operatorname{Inv} 1(\operatorname{PremG}($ nœud $)))$, finally, we embed all vertex of $11 C Q_{n-2}$ in the fourth super node $P_{n-1}[n-1,3]$ with $\mathrm{T}=\operatorname{Inv}((f l i p(i n v 4(\operatorname{PremG}(\mathrm{n} œ u d)))$ and using the actions of the basic function, Figure 3.

Figure 3 : One by one embedding $00 C Q_{4}$ into $P_{5}[5,5], 01 C Q 4$ into $P_{5}[5,1], 10 C Q_{4}$ into $P_{5}[5,3]$ and $11 C Q_{4}$ into $P_{5}[5,4]$

3.2 One by one embedding edges of $C Q_{n}$ into P_{n}.

There are two stated situations. The first one is when the paths are in the same P_{4} of any super node of P_{n}. the second is when the path is between to P_{4} of any component of P_{n}.
In the first situation, the one by one embedding edges of $C Q_{n}$ into paths of P_{n} uses two ways realizing as follows:

The first one is to one by one embedding all edges of $C Q_{n}$ with extremities are Prefaaaa-prefbbbb that $a, b \in[0,1]$ in the other word the embedded path is the same P_{3} or between the different P_{3} of any super node of P_{n}. We use the actions depicted in Table 1.
The second one is the one by one embedding edges between two P_{4} of any component of P_{n}. In this situation, we use actions depicted in, Table 3, Table 4 and Table 5.

Table 1: One by one embedding edges of $C Q_{n}$ into paths between the P_{3} in the same P_{4} of any super node of P_{n}

Edges in $C Q Q_{n}$	Paths in P_{m}	Dilation
Pre00f00- Pref0001	$\times 1 \times 2 \times 3 \times 4$ Suf $_{1}-\mathrm{x} 2 \times 1 \times 3 \times 4 S u f_{1}$	1
Pref 0000-Pref0010	x1x2x3x4Suf 1 -x $2 \times 1 \times 3 \times 4$ Suf 1	1
Pref 0001-pref0011	$\times 3 \times 2 \times 1 \times 4$ Suf $1-\mathrm{x} 2 \times 3 \times 1 \times 4$ Suf 1	1
Pref 0010-pref0011	x2x1x3x4Suf1-x1x2x3x4Suf1-x3x2x1x4Suf1-x2x3x1x4Suf1	3
Pref 0100-pref0101	$\times 4 \times 3 \times 2 \times 1$ Suf 1 -x $3 \times 4 \times 2 \times 1$ Suf 1	1
Pref 0100-pref0110	$\times 4 \times 3 \times 2 \times 1$ Suf $1-\times 2 \times 3 \times 4 \times 1$ Suf 1	1
Pref 0101-pref0111	$\times 3 \times 4 \times 2 \times 1$ Sufl $-\times 2 \times 4 \times 3 \times 1$ Suf 1	1
Pref 0110-pref0111	$\times 2 \times 3 \times 4 \times 1$ Suf1-x3x2x4x1Suf1-x4x2x3x1Suf1-x2x4x3x1Suf1	3
Pref 1000-pref1001	x $3 \times 4 \times 1 \times 2$ Suf $1-\mathrm{x} 1 \times 4 \times 3 \times 2$ Suf 1	1
Pref 1000-pref1010	x $3 \times 4 \times 1 \times 2$ Suf1-4x3x1x2Suf1	1
Pref 1001-pref1011	x1x4x3x2 Suf1-x4x1x3x2 Suf1	1
Pref 1010-pref1011	x4x3x1x2 Suf1-x3x4x1x2 Suf1-x1x4x3x2 Suf1-x4x1x3x2Suf1	3
Pref 1100-pref 1101	x2x1x4x3Suf 1 -x1x2x4x3Suf1	1
Pref 1100-pref1110	x $2 \times 1 \times 4 \times 3$ Suf $1-\mathrm{4} 4 \times 1 \times 2 \times 3$ Suf 1	1
Pref 1101-pref1111	$\times 1 \times 2 \times 4 \times 3$ Suf1-x4x2x1x3Suf1-x3x1x2x4Suf1	1
Pref 1110-pref1111	x4x1x2x3Suf1-x1x4x2x3Suf1-x2x4x1x3Suf1-x4x2x1x3Suf1-x3x1x2x4Suf1	4

Table 2: One by one embedding edges between $C Q_{n}^{00}$ and $C Q_{n}^{10}$ of $C Q n$ into Paths between two components of P_{3} suffixed by Suf1 and Suf2

Edges between $\mathrm{CQ}_{n}^{\mathbf{0 0}}$ and CQ_{n}^{10}	Paths between two components of \boldsymbol{P}_{4}	Dilation
Pref0000-Pref1000	$\begin{aligned} & \text { x1×2x3x4 Suf1-x2x1x3x4 Suf1-inv(suf1) } \times 4 \times 3 \times 2 \times 1 \text { Suf2- } \\ & \text { flip(inv(suf1)) } \times 3 \times 4 \times 1 \times 2 \text { Suf2 } \end{aligned}$	3
Pref 0001-pref1011	x3x2x1x4Suf1-x2x3x1x4Suf1-inv(suf1)x4x1x3x2Suf 2	2
Pref 0010-pref1010	$\times 2 \times 1 \times 3 \times 4$ Suf1-inv(suf1) $\times 4 \times 3 \times 1 \times 2$ Suf 2	1
Pref 0011-pref1001	x2x3x1x4Suf1-inv(suf1) $4 \times 1 \times 3 \times 2$ Suf2-flip inv(suf1) $\times 1 \times 4 \times 3 \times 2$ Suf 2	3

Table 3: One by one embedding edges between $C Q_{n}^{00}$ and $C Q_{n}^{01}$ of $C Q_{n}$ into Paths between two components of P_{3} suffixed by Suf1 and Suf2.

Edges between $\mathrm{CQ}_{n}^{\mathbf{0 0}}$ and CQ_{n}^{01}	Paths between two components of \boldsymbol{P}_{4}	Dilation
Pref 0000-pref0100	$\times 1 \times 2 \times 3 \times 4$ Suf1-inv(suf1) $4 \times 3 \times 2 \times 1$ Suf 2	1
Pref 0001-pref0111	$\begin{aligned} & \text { x3x2x1×4 Suf1-x2x3x1x4 Suf1-x1x3x2x4Suf1-inv(suf1) } 4 \times 2 \times 3 \times 1 \text { Suf2 -flip } \\ & \text { inv(suf1) } 2 \times 4 \times 3 \times 1 \text { Suf2 } \end{aligned}$	4
Pref 0010-pref0110	$\begin{aligned} & \times 2 \times 1 \times 3 \times 4 \text { Suf1-x1 } \times 2 \times 3 \times 4 \text { Suf } 1-\operatorname{inv}\left(\text { Suf } 1_{1} \times 4 \times 3 \times 2 \times 1 \text { Suf } 2-\right. \\ & \text { flip(inv(suf1)) } \times 3 \times 4 \times 2 \times 1 \text { Suf } 2 \end{aligned}$	3
Pref 0011-pref0101	$\begin{aligned} & \times 2 \times 3 \times 1 \times 4 \text { Suf1-x3x2x1×4Suf1-x1 } 2 \times 3 \times 4 \text { Suf1-inv(suf1) } \times 4 \times 3 \times 2 \times 1 \text { Suf2-flip } \\ & \text { inv(suf1) } 3 \times 4 \times 2 \times 1 \text { Suf2 } \end{aligned}$	4

Table 4: One by one embedding edges between $C Q_{n}^{10}$ and $C Q_{n}^{11}$ of $C Q_{n}$ into Paths between two components of P_{3} suffixed by Suf1 and Suf2.

Edges between $C Q_{n}^{10}$ and $C Q_{n}^{11}$	Paths between two components of \boldsymbol{P}_{4}	Dilation
Pref 1000-pref 1100	x $3 \times 4 \times 1 \times 2$ Sufl -x2x1x4x 3 Suf 2	1
Pref 1001-pref 1111	x1x4x3x2 Suf 1-x4x1x3x2 Suf 1-x2x3x1x4 Suf 2-x1x3x2x4 Suf 2-x3x1x2x4 Suf 2	4
Pref 1010-pref 1110	$\begin{aligned} & \mathrm{x} 4 \times 3 \times 1 \times 2 \text { Suf } 1-\mathrm{x} 3 \times 4 \times 1 \times 2 \text { Suf } 1- \\ & \times 2 \times 1 \times 4 \times 3 \text { Suf } 2-\mathrm{x} 4 \times 1 \times 2 \times 3 \text { Suf } \end{aligned}$	3
Pref 1011-pref 1101	$\mathrm{x} 4 \mathrm{x} 1 \times 3 \times 2$ Suf $1-\mathrm{x} 1 \times 4 \times 3 \times 2$ Suf $1-\mathrm{x} 3 \times 4 \times 1 \times 2$ Sufl -x2x1x4x3 Suf 2-x1x2x4x3 Suf 2	3

Table 5: One by one embedding edges between $C Q_{n}^{01}$ and $C Q_{n}^{11}$ of $C Q_{n}$ into Paths between two components of P_{3} suffixed by Suf1 and Suf2.

Edges between CQ_{n}^{01} and CQ_{n}^{11}	Paths between two components of \boldsymbol{P}_{4}	Dilation
Pref 0100-pref 1100	$\begin{aligned} & \text { x4x3x2x1Suf1-x3x4x2x1 Suf1-inv(suf1) } \times 1 \times 2 \times 4 \times 3 \text { Suf2-flip } \\ & \text { inv(suf1) } 2 \times 1 \times 4 \times 3 \text { Suf2 } \end{aligned}$	3
Pref 0101-pref 1111	$\times 3 \times 4 \times 2 \times 1$ Sufl - inv(sufl $\times 1 \times 2 \times 4 \times 3$ Suf 2 - $4 \times 2 \times 1 \times 3$ Suf 2 - $3 \times 1 \times 2 \times 4$ Suf 2	3
Pref 0110-pref 1110	$\begin{aligned} & \times 2 \times 3 \times 4 \times 1 \text { Sufl-×3×2×4×1Suf1-inv(suf1) } \times 1 \times 4 \times 2 \times 3 \text { Suf2-flip } \\ & \text { inv(suf1) } 4 \times 1 \times 2 \times 3 \text { Suf } 2 \end{aligned}$	3
Pref 0111-pref 1101	x2x4x3x1Suf1-x3x4x2x1Suf1-inv(suf1) $\times 1 \times 2 \times 4 \times 3$ Suf 2	2

1. In the second situation, the one by one embedding edges of $C Q_{n}$ into paths of P_{n} uses two cases realizing as follows:
a) The first way is to one by one embedding all edges of $C Q_{n}$ with extremities are Prefaaaaa-Prefbbbbb that $a, b \in[0,1]$ in other word the embedded path is between two different component P_{4} of the same P_{5} of any super node of P_{n}, when n is odd for any $n \geq 5$. We use in this case the following actions depicted in Table 6, Table 7.
b) The second way is to one by one embedding all edges of CQn with extremities are PrefaaaaaaPrefbbbbbb that a,b $\in[0,1]$ in other word the embedded path is between four different component P4 of the same P5 of any super node of Pn , when n is even for any $\mathrm{n} \geq 5$. We use in this case the following actions depicted in Table 8, Table 9, Table 10, Table 11.

Table 6: One by one embedding edges between $C Q_{n}^{00}$ and $C Q_{n}^{10}$ of $C Q_{n}$ into Paths between two components of P_{4} suffixed by Suf1 and Suf2.

Edges between $\mathbf{C Q}_{5}^{\mathbf{0 0}}$ and $\mathbf{C Q}_{5}^{10}$	Paths between two components of \boldsymbol{P}_{4}	Dilation
OPref 0000-1 Pref 0000	$\times 1 \times 2 \times 3 \times 4 \times 5$ Suf $1-\mathrm{x} 5 \times 4 \times 3 \times 2 \times 1$ Suf 2	1
OPref0001-1Pref0011	x3x2x1x4x5 Sufl-x1x2x3x4x5 Suf 1-x5x4x3x2x1 Suf 2$\times 3 \times 4 \times 5 \times 2 \times 1$ Suf $2-\mathrm{x} 4 \times 3 \times 5 \times 2 \times 1$ Suf 2	4
OPref 0010-1 Pref0010	x2x1x3x4x5 Suf 1-x1x2x3x4x5 Suf 1-x5x4x3x2x1 Suf 2$\times 4 \times 5 \times 3 \times 2 \times 1$ Suf 2	3
OPref 0011-1 Pref0001	x2x3x1x4x5 Suf 1-x3x2x1x4x5 Suf 1-x1x2x3x4x5 Suf 1$\times 5 \times 4 \times 3 \times 2 \times 1$ Suf $2-\mathrm{x} 3 \times 4 \times 5 \times 2 \times 1$ Suf 2	4
OPref0100-1Pref0100	x4x3x2x1x5 Suf1-x1x2x3x4x5 Suf 1-x5x4x3x2x1 Suf 2$\times 2 \times 3 \times 4 \times 5 \times 1$ Suf 2	3
OPref0101-1Pref10111	$\begin{array}{llcrrr} \hline \times 3 \times 4 \times 2 \times 1 \times 5 & \text { Suf } & 1-\mathrm{x} 1 \times 2 \times 4 \times 3 \times 5 & \text { Suf } & 1-\mathrm{x} 5 \times 3 \times 4 \times 2 & \text { Suf1- } \\ \mathrm{x} 2 \times 4 \times 3 \times 5 \times 1 & \text { Suf } 2-\mathrm{x} 4 \times 2 \times 3 \times 5 \times 1 \text { Suf2 } \end{array}$	
OPref0110-1Pref0110	$\begin{aligned} & \mathrm{x} 2 \times 3 \times 4 \times 1 \times 5 \text { Suf } 1-\mathrm{x} 1 \times 4 \times 3 \times 2 \times 5 \text { Suf } 1-\mathrm{x} 5 \times 2 \times 3 \times 4 \times 1 \text { Suf } 2- \\ & \times 4 \times 3 \times 2 \times 5 \times 1 \text { Suf2 } \end{aligned}$	3
OPref0111-1Pref10101	$\begin{aligned} & \mathrm{x} 2 \times 4 \times 3 \times 1 \times 5 \text { Suf } 1-\mathrm{x} 4 \times 2 \times 3 \times 1 \times 5 \text { Suf } 1-\mathrm{x} 1 \times 3 \times 2 \times 4 \times 5 \text { Suf } 1- \\ & \times 5 \times 4 \times 2 \times 3 \times 1 \text { Suf } 2 \mathrm{x} 3 \times 2 \times 4 \times 5 \times 1 \text { Suf2 } \\ & \hline \end{aligned}$	4

Table 7: The one by one embedding edges between $C Q_{n-1}^{0}$ and $C Q_{n-1}^{1}$ of $C Q_{n}$ into Paths between two components of P_{4} suffixed by Suf1 and Suf2.

Edges between $C Q_{5}^{01}$ and $C 1$	Paths between two components of \boldsymbol{P}_{4}	Dilation
0Pref 1000-1Pref1000	3 x 4 x 1 x 2 x 5 Suf $1-\mathrm{x} 1 \mathrm{x} 4 \mathrm{x} 3 \mathrm{x} 2 \mathrm{x} 5$ Suf1-x5x2x3x4x1 Suf $2-\mathrm{x} 3 \mathrm{x} 2 \mathrm{x} 5 \mathrm{x} 4 \times 1$ Suf 2	3
0Pref 1001-1Pref1011	x1x4x3x2x5 Suf1-x5x2x3x4x1 Suf 2-x2x5x3x4x1Suf 2	2
OPref 1011- IPref 1001	x4x1x3x2x5 Suf 1-x1x4x3x2x5 Suf 1-x5x2x3x4x1 Suf 2	2
OPref1010- lPref 1010	x4x3x1x2x5 Suf 1-x3x4x1x2x5 Suf 1-x1x4x3x2x5 Suf 1-x5x2x3x4x1 Suf2x 3 x 2 x 5 x 4 x 1 Suf $2-\mathrm{x} 2 \mathrm{x} 3 \times 5 \mathrm{x} 4 \mathrm{x} 1$ Suf 2	5
0Pref 1100- 1Pref1100	$\begin{aligned} & \mathrm{x} 2 \times 1 \times 4 \times 3 \times 5 \text { Suf } 1-\mathrm{x} 3 \times 4 \times 1 \times 2 \times 5 \text { Suf } 1-\mathrm{x} 1 \times 4 \times 3 \times 2 \times 5 \text { Suf } 1-\mathrm{x} 5 \times 2 \times 3 \times 4 \times 1 \text { Suf } 2- \\ & \mathrm{x} 3 \times 2 \times 5 \times 4 \times 1 \text { Suf } 2-\mathrm{x} 4 \times 5 \times 2 \times 3 \times 1 \text { Suf2 } \end{aligned}$	5
0Prefl101-1Prefl111	x1x2x4x3x5 Suf 1-x5x3x4x2x1 Suf 2-x3x5x4x2x1 Suf 2	2
OPref1110-1 Pref1110	$\begin{aligned} & \text { x4x1x2x3x5 Suf 1-x3x2x1x4x5 Suf 1-x1x2x3x4x5 Sufl-x5x4x3x2x1 Suf 2- } \\ & \text { x3x4x5x2x1 Suf2-x2x5x4x3x1 Suf2 } \end{aligned}$	5
0Pref1111-1Pref11101	x3x1x2x4x5 Suf 1-x1x3x2x4x5 Suf 1-x5x4x2x3x1 Suf 2	2

Table 8: One by one embedding edges between $C Q_{n-2}^{00}$ and $C Q_{n-2}^{10}$ of $C Q_{n}$ into Paths between two components of P_{4} suffixed by Suf1 and Suf3.

Edges between $\mathbf{C Q}_{n-2}^{\mathbf{0 0}}$ and $\mathbf{C Q}_{n-2}^{10}$	Paths between two components of $\boldsymbol{P}_{\mathbf{4}}$	Dilation
OOPref 0000-10Pref0000	x1x2x $3 \times 4 \times 5$ Suf 1 -x $3 \times 2 \times 1 \times 4 \times 5$ Suf 1 -x $5 \times 4 \times 1 \times 2 \times 3$ Suf3-x1x $4 \times 5 \times 2 \times 3$ Suf 3	3
O0Pref 000001-10Pref0011	x $3 \times 2 \times 1 \times 4 \times 5$ Suf $1-x 5 \times 4 \times 1 \times 2 \times 3$ Suf3-x4x5x1x2x3 Suf3	2
OOPref 000010-10Pref0010	$\begin{aligned} & \mathrm{x} 2 \mathrm{x} 1 \times 3 \mathrm{x} 4 \times 5 \text { Sufl-x1x2x3x4x5 Suf } 1-\mathrm{x} 3 \mathrm{x} 2 \mathrm{x} 1 \mathrm{x} 4 \times 5 \text { Suf1-x5x4x1x2x3 Suf 3- } \\ & \mathrm{x} 1 \mathrm{x} 4 \times 5 \mathrm{x} 2 \mathrm{x} 3 \text { Suf3-x4x1x5x2x3 Suf3} \end{aligned}$	5
OOPref 000011-10Pref 0001	x2x3x1x4x5 Sufl-x3x2x1x4x5 Suf 1-x5x4x1x2x3 Suf3	2
00Pref 000100-10Pref0100	$\begin{aligned} & \mathrm{x} 4 \times 3 \times 2 \mathrm{x} 1 \times 5 \text { Suf } 1-\mathrm{x} 1 \times 2 \times 3 \times 4 \times 5 \text { Suf } 1-\mathrm{x} 3 \times 2 \mathrm{x} 1 \times 4 \times 5 \text { Suf } 1-\mathrm{x} 5 \mathrm{x} 4 \mathrm{x} 1 \times 2 \times 3 \text { Suf3- } \\ & \mathrm{x} 1 \mathrm{x} 4 \mathrm{x} 5 \mathrm{x} 2 \mathrm{x} 3 \text { Suf3-x2x5x4x1x3 Suf3} \end{aligned}$	5
00Pref 000101-10Pref 0111	x $3 \times 4 \times 2 \times 1 \times 5$ Suf $1-\mathrm{x} 5 \mathrm{x} 1 \mathrm{x} 2 \mathrm{x} 4 \mathrm{x} 3$ Suf3-x1x5x2x4x3Suf3-x4x2x5x1x3Suf3	3
O0Pref 000110-10Pref0110	$\begin{aligned} & \mathrm{x} 2 \times 3 \times 4 \mathrm{x} 1 \times 5 \text { Suf1-x1x4x3x2x5 Suf1-x3x4x1x2x5 Suf1-x5x2x1x4x3Suf3-} \\ & \times 1 \times 2 \times 5 \times 4 \times 3 \text { Suf3-x4x5x2x1x3 Suf3} \end{aligned}$	5

O0Pref 000111-10Pref 0101	x2x4x 3 x 1 x 5 Suf $1-\mathrm{x} 1 \mathrm{x} 3 \mathrm{x} 4 \mathrm{x} 2 \mathrm{x} 5$ Suf $1-\mathrm{x} 3 \mathrm{x} 1 \mathrm{x} 4 \mathrm{x} 2 \mathrm{x} 5$ Suf $1-\mathrm{x} 5 \mathrm{x} 2 \mathrm{x} 4 \mathrm{x} 1 \mathrm{x} 3$ Suf 3	3
00Pref 001000-10Pref1000	x 3 x 4 x 1 x 2 x 5 Suf $1-\mathrm{5} 5 \times 2 \mathrm{1x} 4 \mathrm{x} 3$ Suf 3	1
00Pref 001001-10Pref 1011	$\begin{aligned} & \text { x1x4x3x2x5 Suf1-x3x4x1x2x5 Suf1-x5x2x1x4x3 Suf3-x1x2x5x4x3 Suf3- } \\ & \text { x2x1x5x4x3 Suf3 } \end{aligned}$	4
00Pref 001010-10Pref1010	x 4 x 3 x 1 x 2 x 5 Suf 1-x3x4x1x2x5 Suf1-x5x2x1x4x3 Suf3-x2x5x1x4x3Suf3	3
OOPref 001011-10Pref1001	$\begin{aligned} & \mathrm{x} 4 \times 1 \times 3 \times 2 \times 5 \text { Suf } 1-\mathrm{x} 1 \times 4 \times 3 \times 2 \times 5 \text { Suf } 1-\mathrm{x} 3 \times 4 \times 1 \times 2 \times 5 \text { Suf1- } \times 5 \times 2 \times 1 \times 4 \times 3 \text { Suf } 3- \\ & \times 1 \times 2 \times 5 \times 4 \times 3 \text { Suf } 3 \end{aligned}$	4
OOPref 001100-10Pref 1100		3
00Pref 001101-10Pref1111	$\begin{aligned} & \mathrm{x} 1 \times 2 \times 4 \times 3 \times 5 S u f 1-2 \mathrm{x} 1 \mathrm{x} 4 \times 3 \times 5 \text { Suf } 1-\mathrm{x} 4 \mathrm{x} 1 \mathrm{x} 2 \times 3 \times 5 S u f 1-\mathrm{x} 1 \mathrm{x} 4 \times 2 \times 3 \times 5 S u f 1- \\ & \mathrm{x} 3 \mathrm{x} 2 \mathrm{x} 4 \mathrm{x} 1 \times 5 \text { Suf1-x5x1x4x2x3Suf3} \end{aligned}$	5
00Pref 001110-10Pre01110	x4x1x2x3x5Suf $1-\mathrm{x} 3 \mathrm{x} 2 \mathrm{x} 1 \mathrm{4} 4 \times 5$ Suf $1-\mathrm{x} 5 \mathrm{x} 4 \mathrm{x} 1 \mathrm{x} 2 \mathrm{x} 3$ Suf $3-\mathrm{x} 2 \mathrm{x} 1 \mathrm{x} 4 \times 5 \times 3$ Suf 3	3
O0Pref 1111-10Pre01101	$\begin{aligned} & \text { x3x1x2x4x5Suf1-x4x2x1x3x5Suf } 1-\mathrm{x} 2 \times 4 \times 1 \times 3 \times 5 \text { Suf } 1-\mathrm{x} 3 \times 1 \times 4 \times 2 \times 5 \text { Suf1- } \\ & \times 5 \times 2 \times 4 \times 1 \times 3 \text { Suf } 3-\mathrm{x} 1 \times 4 \times 2 \times 5 \times 3 \text { Suf3 } \end{aligned}$	5

Table 9: One by one embedding edges between $C Q_{n-2}^{10}$ and $C Q_{n}^{11}$ of CQ_{n-2} into Paths between two components of P_{4} suffixed by Suf3 and Suf4.

Edges between $C Q_{n-2}^{10}$ and $C Q_{n-2}^{11}$	Paths between two components of $\boldsymbol{P}_{\mathbf{4}}$	Dilation
10Pref100000- 11Pref0000	x1x4x5x2x3 Suf3-x3x2x5x4x1 Suf4-x4x5x2x3x1 Suf4-x1x $3 \times 2 \times 5 \times 4$ Suf4	3
10Pref100001- 11Pref0011	x5x4x1x2x3 Suf3-x4x5x1x2x3 Suf3-x $3 \times 2 \times 1 \times 5 \times 4$ Suf4	2
10Pref100010-11Pref0010	$\begin{aligned} & \mathrm{x} 4 \mathrm{x} 1 \times 5 \times 2 \times 3 \text { Suf3-x1x4x5x2x3 Suf3-x2x5x4x1x3 Suf3-x4x5x2x1x3 Suf3-} \\ & \text { x } 3 \times 1 \times 2 \times 5 \mathrm{x} 4 \text { Suf4 } \end{aligned}$	4
10Prefl00011- 11Pref0001	x $4 \times 5 \times 1 \times 2 \times 3$ Suf3-x3x2x1x5x4 Suf4-x2x3x1x5x4 Suf4	2
10Pref100100- 11Pref0100	$\begin{aligned} & \mathrm{x} 2 \mathrm{x} 54 \mathrm{x} 1 \mathrm{x} 3 \text { Suf3-x5x2x4x1x3 Suf3-x3x1x4x2x5 Suf4-x4x1x3x2x5 Suf4-} \\ & \times 5 \times 2 \mathrm{x} 3 \mathrm{x} 1 \mathrm{x} 4 \text { Suf4 } \end{aligned}$	4
10Pref100101-11Pre10111	x5x2x4x1x3 Suf3-x1x4x2x5x3 Suf3 -x4x1x2x5x3 Suf3 -x $3 \times 5 \times 2 \times 1 \times 4$ Suf4	3
10Pref100110-11Pref0110	$\begin{aligned} & \mathrm{x} 4 \times 5 \times 2 \mathrm{x} 1 \mathrm{x} 3 \text { Suf3 -x2x5x4x1x3 Suf3-x1x4x5x2x3 Suf3-x4x1x5x2x3 Suf3- } \\ & \mathrm{x} 32 \times 5 \mathrm{x} 1 \mathrm{x} 4 \text { Suf4 } \end{aligned}$	4
10Pref100111- 11Pref0101	x4x2x5x1x3 Suf3-x3x1x5x2x4 Suf $4-\mathrm{x} 1 \mathrm{x} 3 \times 5 \mathrm{x} 2 \times 4$ Suf4-x 2 x 5 x 3 x 1 x 4 Suf4	3
10Pref101000-11Pref 1000	$\begin{aligned} & \mathrm{x} 5 \mathrm{x} 2 \mathrm{x} 1 \mathrm{x} 43 \text { Suf3 -x2x5x1x4x3 Suf3-x3x4x1x5x2 Suf4 -x4x3x1x5x2 Suf4- } \\ & \times 2 \times 5 \mathrm{x} 1 \mathrm{x} 3 \mathrm{x} 4 \text { Suf4 } \end{aligned}$	4
10Pref101001- 11Pref1011	$\begin{aligned} & \text { x1x2x5x4x3 Suf 3-x2x1x5x4x3 Suf3 -x4x5x1x2x3 Suf3-x3x2x1x5 x4 Suf4 - } \\ & \text { x5x1x2x3x4 Suf4 } \end{aligned}$	4
10Pref101011- 11Pref1001	$\begin{aligned} & \text { x2x1x5x4x3 Suf3-x4x5x1x2x3 } \\ & \text { x1x5x } 2 \times 3 x 4 \text { Suf4 } \end{aligned}$	4
10Pref101010- 11Pref1010		4
10Pref101100- 11Pref1100	$\begin{array}{lrlr} \hline \mathrm{x} 4 \mathrm{x} 1 \times 2 \times 5 \times 3 \quad \text { Suf3-x1x4x2x5x3 } & \text { Suf3-x5x2x4x1x3 } & \text { Suf3-x4x2x5x1x3 } & \text { Suf3- } \\ \times 3 \times 1 \times 5 \times 2 \times 4 \text { Suf3 } \end{array}$	4
10Pref101101-11Pref1111		5
10Pref101110-11Pref1110	$\begin{array}{llllll} \hline \times 2 \times 1 \times 4 \times 5 \times 3 & \text { Suf } 3 & -\times 1 \times 2 \times 4 \times 5 \times 3 & \text { Suf3-x4x2x1x5x3 } & \text { Suf3-x3x5x1x2x4 Suf4- } \\ \times 1 \times 5 \times 3 \times 2 \times 4 & \text { Suf4-x5x1x3x2x4 Suf4 } & & & \\ \hline \end{array}$	5
10Prefl01111-11Prefl101	$\begin{aligned} & \mathrm{x} 5 \mathrm{x} 1 \times 4 \times 2 \times 3 \quad \text { Suf3-x1x5x4x2x3 } \quad \text { Suf3-x2x4x5x1x3 } \\ & \mathrm{x} 3 \mathrm{x} 1 \times 5 \mathrm{x} 2 \mathrm{x} 4 \text { Suf4-x1x3x5x2x4 Suf4 } \end{aligned}$	5

Table 10: One by one embedding edges between $C Q_{n-2}^{01}$ and $C Q_{n-2}^{11}$ of $C Q_{n}$ into Paths between two components of P_{4} suffixed by Suf2 and Suf4.

Edges between $C Q_{n-2}^{01}$ and $C Q_{n-2}^{11}$	Paths between two components of $\boldsymbol{P}_{\mathbf{4}}$	Dilation
O1Pref 010000-11Pref0000	$\begin{aligned} & \mathrm{x} 5 \mathrm{x} 4 \times 3 \times 2 \mathrm{x} 1 \begin{array}{l} \text { Suf2-x3x4x5x2x1 Suf2-x2x5x4x3x1 } \\ \mathrm{x} 1 \mathrm{x} 3 \mathrm{x} 2 \mathrm{x} 5 \mathrm{x} 4 \text { Suf4 } \end{array} \\ & \hline \end{aligned}$	4
O1Pref 010001-11Pref0011	$\begin{aligned} & \text { x3x4x5x2x1 Suf2-x5x4x3x2x1 Suf2-x4x5x3x2x1 Suf2-x1x2x3x5x4 Suf4- } \\ & \mathrm{x} 3 \times 2 \times 1 \times 5 \times 4 \text { Suf4 } \end{aligned}$	4
O1Pref 010010-11Pref0010	x4x5x3x2x1 Suf2-x1x2x3x5x4 Suf4-x2x1x3x5x4 Suf4-x3x1x2x5x4 Suf4	3
O1Pref 010011-11Pref0001	$\begin{aligned} & \mathrm{x} 4 \times 3 \times 5 \times 2 \times 1 \quad \text { Suf } 2-\mathrm{x} 3 \times 4 \times 5 \times 2 \times 1 \text { Suf2-x2x5x4x3x1 Suf2-x4x5x2x3x1 } \\ & \times 1 \times 3 \times 2 \times 5 \times 4 \text { Suf4-x2x3x1x5x4 Suf4 } \end{aligned}$	5
O1Pref 010100-11Pref0100	$\begin{aligned} & \mathrm{x} 2 \mathrm{x} 3 \times 4 \times 5 \mathrm{x} 1 \text { Suf } 2-\mathrm{x} 4 \times 3 \times 2 \times 5 \times 1 \text { Suf2-x1x5x2x3x4 Suf4-x3x2x5x1x4 Suf4- } \\ & \times 5 \times 2 \times 3 \mathrm{x} 4 \text { Suf4 } \end{aligned}$	4
01Pref 010101-11Pref0111	$\begin{aligned} & \mathrm{x} 3 \times 2 \times 4 \times 5 \times 1 \quad \text { Suf2-x4×2x3x5x1 Suf2-x1x5x3x2x4 Suf4-x2x3x5x1x4 Suf4- } \\ & \times 5 \times 3 \times 2 \times 1 \times 4 \text { Suf4-x3x5x2x1x4 Suf4 } \end{aligned}$	5
O1Pref 010110-11Pref0110	x4x3x2x5x1 Suf2-x1x5x2x3x4 Suf4-x3x2x5x1x4Suf4	2

01Pref 010111-11Pref0101	$\begin{array}{llll} \hline \times 4 \times 2 \times 3 \times 5 \times 1 \text { Suf } 2-\mathrm{x} 5 \times 3 \times 2 \times 4 \times 1 & \text { Suf } 2 \mathrm{x} 3 \times 5 \times 2 \times 4 \times 1 & \text { Suf2-x4×2x5x3x1 } & \text { Suf2- } \\ \mathrm{x} 1 \times 3 \times 5 \times 2 \times 4 \text { Suf4- } \times 2 \times 5 \times 3 \times 1 \times 4 \text { Suf4 } \end{array}$	5
01Pref 011000-11Pref1000	$\begin{aligned} & \mathrm{x} 3 \times 2 \times 5 \times 4 \times 1 \text { Suf2-x5x2x3x4x1 Suf2-x4x3x2x5x1 Suf2- x1x5x2x3x4 Suf4- } \\ & \text { x2x5x1x3x4 Suf4 } \end{aligned}$	4
01Pref 011001-11Pref1011	$\times 5 \times 2 \times 3 \times 4 \times 1$ Suf 2 -x4x $3 \times 2 \times 5 \times 1$ Suf2-x1x5x2x3x4 Suf4-x5x $x 1 \times 2 \times 3 \times 4$ Suf 4	3
01Pref 011011-11Pref1001	x2x5x3x4x1 Suf2-x5x2x3x4x1 Suf2-x4x3x2x5 x1 Suf4-x1x5x2x3x4 Suf4	3
01Pref011010-11Pref1010		5
01Pref 011100-11Pref1 100	$\begin{array}{lllll} \hline \times 4 \times 5 \times 2 \times 3 \times 1 & \text { Suf } 2-\mathrm{x} 1 \times 3 \times 2 \times 5 \times 4 & \text { Suf4-x2x3x1x5x4 } & \text { Suf4-x5x1x3x2x4 } & \text { Suf4- } \\ \times 3 \times 1 \times 5 \times 2 \times 4 & \text { Suf4 } \end{array}$	4
01Pref011101- 11Pref1111	$\begin{array}{lllll} \hline \times 5 \times 4 \times 2 \times 3 \times 1 & \text { Suf2-x4x5x2x3x1 } & \text { Suf2-x1x3x2x5x4 } \\ \times 2 \times 1 \times 3 \times 5 \times 4 \text { Suf4 } 4 \end{array}$	4
01Pref 011110-11Pref1110	$\begin{aligned} & \begin{array}{l} \times 2 \times 5 \times 4 \times 3 \times 1 \text { Suf } 2-\mathrm{x} 4 \times 5 \times 2 \times 3 \times 1 \\ \times 5 \times 1 \times 3 \times 2 \times 4 \text { Suf4 } \end{array} \\ & \text { Suf2-x1 } \times 3 \times 2 \times 5 \times 4 \\ & \text { Suf4- } \times 2 \times 3 \times 1 \times 5 \times 4 \end{aligned} \text { Suf4- }$	4
01Pref1111-11Pref1101	x3x5x4x2x1 Suf2-x2x4x5x3x1 Suf2-x4x2x5x3x1Suf2-x1x3x5x2x4 Suf4	3

Table 11: One by one embedding edges between $C Q_{n-2}^{00}$ and $C Q_{n-2}^{01}$ of $C Q_{n}$ into Paths between two components of P_{4} suffixed by Suf1 and Suf2.

Edges between $\mathbf{C Q}_{\boldsymbol{n}-2}^{00}$ and $\mathrm{CQ}_{\boldsymbol{n}-2}^{10}$	Paths between two components of $\boldsymbol{P}_{\mathbf{4}}$	Dilation
00Pref 0000- 01Pref 0000	x1x2x3x4x5 Suf 1-inv(Suf1)x5x4x3x2x Suf 2	1
00Pref 0001-01 Pref 0011	$\begin{aligned} & \mathrm{x} 3 \times 2 \times 1 \times 4 \times 5 \text { Suf } 1-\mathrm{x} 1 \times 2 \times 3 \times 4 \times 5 \text { Suf } 1-\operatorname{inv}(\text { Suf } 1) \times 5 \times 4 \times 3 \times 2 \times 1 \text { Suf } 2- \\ & \times 3 \times 4 \times 5 \times 2 \times 1 \text { Suf } 2-\mathrm{x} 4 \times 3 \times 5 \times 2 \times 1 \text { Suf } 2 \end{aligned}$	4
00Pref 0010-01Pref 0010	x2x1x 3 x 4 x 5 Suf 2-x1x2x 3 x 4 x 5 Suf $2-\mathrm{x} 5 \mathrm{x} 4 \mathrm{x} 3 \mathrm{x} 2 \mathrm{x} 1$ Suf2-x4x5x3x2x1Suf 2	3
00Pref 0011-01Pref 0001	x2x3x1x4x5 Suf $1-\mathrm{x} 3 \mathrm{x} 2 \mathrm{x} 1 \mathrm{x} 4 \mathrm{x} 5$ Suf $1-\mathrm{x} 1 \mathrm{x} 2 \mathrm{x} 3 \mathrm{x} 4 \times 5$ Suf $1-\mathrm{inv}($ Suf1) $\mathrm{x} 5 \mathrm{x} 4 \times 3 \times 2 \mathrm{x} 1$ Suf $2-\operatorname{inv} 1(\operatorname{inv}(S u f 1)) \times 3 \times 4 \times 5 \times 2 \times x 1$ Suf 2	4
00Pref 0100- 01Pref 0100	$\begin{aligned} & \mathrm{x} 4 \times 3 \times 2 \times 1 \times 5 \text { Suf } 1-\mathrm{x} 1 \times 2 \times 3 \times 4 \times 5 \text { Suf1-inv (Suf1) } \times 5 \times 4 \times 3 \times 2 \times 1 \text { Suf } 2 \text { - inv4(inv } \\ & (\text { Suf1)) } 2 \times 3 \times 4 \times 5 \times 1 \text { Suf2 } \end{aligned}$	3
00Pref 0101-01 Pref 0111	$\begin{aligned} & \text { x3x4x2x1x5 Suf } 1-\mathrm{x} 1 \times 2 \times 4 \times 3 \times 5 \text { Suf } 1-\times 5 \times 3 \times 4 \times 2 \times 1 \text { Suf } 2-\times 2 \times 4 \times 3 \times 5 \times 1 \text { Suf2- } \\ & \times 4 \times 2 \times 3 \times 5 \times 1 \text { Suf2 } \end{aligned}$	4
00Pref 0110-01Pref 0110	$\mathrm{x} 2 \mathrm{x} 3 \mathrm{x} 4 \mathrm{x} 1 \times 5$ Suf $1-\mathrm{x} 1 \mathrm{x} 4 \mathrm{x} 3 \times 2 \mathrm{x} 5$ Suf $1-\mathrm{x} 5 \mathrm{x} 2 \mathrm{x} 3 \mathrm{x} 4 \mathrm{x} 1$ Suf $2-\mathrm{x} 4 \mathrm{x} 3 \mathrm{x} 2 \mathrm{x} 5 \mathrm{x} 1$ Suf 2	3
00Pref 0111-01Pref 0101	x 2 x 3 x 4 x 1 x 5 Suf $1-\mathrm{x} 1 \mathrm{x} 4 \mathrm{x} 3 \mathrm{x} 2 \mathrm{x} 5$ Suf $1-\mathrm{x} 5 \mathrm{x} 2 \mathrm{x} 3 \mathrm{x} 4 \mathrm{x} 1$ Suf $2-\mathrm{x} 4 \mathrm{x} 3 \mathrm{x} 2 \mathrm{x} 5 \mathrm{x} 1$ Suf 2	3
00Pref 1000-01Pref 1000	x 3 x 4 x 1 x 2 x 5 Suf $1-\mathrm{x} 1 \mathrm{x} 4 \mathrm{x} 3 \mathrm{x} 2 \mathrm{x} 5$ Suf $1-\mathrm{x} 5 \mathrm{x} 2 \mathrm{x} 3 \mathrm{x} 4 \mathrm{x} 1$ Suf $2-\mathrm{x} 3 \mathrm{x} 2 \mathrm{x} 5 \mathrm{x} 4 \mathrm{x} 1$ Suf2	3
00Pref 1001- 01Pref 1011	x1x4x3x2x5 Suf 1-x5x2x3x4x1 Suf 2-x2x5x3x4x1 Suf 2	2
00Pref 1010-01 Pref 1010	$\begin{aligned} & \mathrm{x} 4 \times 3 \times 1 \times 2 \times 5 \text { Suf } 1-\mathrm{x} 3 \mathrm{x} 4 \mathrm{x} 1 \times 2 \times 5 \text { Suf } 1-\mathrm{x} 1 \mathrm{x} 4 \times 3 \times 2 \times 5 \text { Suf1-x5x2x3x4x1 Suf } 2- \\ & \mathrm{x} 3 \times 2 \times 5 \mathrm{x} 4 \mathrm{x} 1 \text { Suf } 2-\mathrm{x} 2 \mathrm{x} 3 \mathrm{x} 4 \mathrm{x} 1 \text { Suf2 } \end{aligned}$	5
00Pref 1011- 01Pref 1001	$\mathrm{x} 4 \mathrm{x} 1 \times 3 \mathrm{x} 2 \mathrm{x} 5$ Suf $1-x 1 \mathrm{x} 4 \mathrm{x} 3 \mathrm{x} 2 \mathrm{x} 5$ Suf $1-\mathrm{x} 5 \mathrm{x} 2 \mathrm{x} 3 \mathrm{x} 4 \mathrm{x} 1$ Suf 2	2
00Pref 1100-01Pref 1100	x 2 x 1 x 4 x 3 x 5 Suf $1-\mathrm{x} 3 \mathrm{x} 4 \mathrm{x} 1 \times 2 \mathrm{x} 5$ Suf $1-\mathrm{x} 1 \mathrm{x} 4 \times 3 \mathrm{x} 2 \mathrm{x} 5$ Suf $1-\mathrm{x} 5 \mathrm{x} 2 \mathrm{x} 3 \mathrm{x} 4 \mathrm{x} 1$ Suf 2x3x2x5x4x 1 Suf $2-\mathrm{x} 4 \mathrm{x} 5 \mathrm{x} 2 \mathrm{x} 3 \mathrm{x} 1$ Suf 2	5
00Pref 1101- 01Pref 1111	x1x2x4x 3 5 Suf 1-x5x3x4x2x1 Suf 2-x $3 \times 5 \times 4 \times 2 \times 1$ Suf 2	2
Pref 001110- 01Pref 1110	$\begin{aligned} & \mathrm{x} 4 \mathrm{x} 1 \times 2 \times 3 \times 5 \text { Suf } 1-\mathrm{x} 3 \times 21 \times 4 \times 5 \text { Suf } 1-\mathrm{x} 1 \times 2 \times 3 \times 4 \times 5 \text { Suf } 1-\mathrm{x} 5 \times 4 \times 3 \times 2 \times 1 \text { Suf } 2- \\ & \mathrm{x} 3 \times 4 \times 5 \times 2 \mathrm{x} 1 \text { Suf } 2 \mathrm{x} 2 \times 5 \times 4 \times 3 \mathrm{x} 1 \text { Suf } \end{aligned}$	5
Pref 001111-Pref 011101	x3x1x2x4x5 Suf 1-x1x3x2x4x5 Suf 1-x5x4x2x3x1 Suf 2	2

4 DILATIONS OF ONE BY ONE EMBEDDING N-DIMENSIONAL CROSSED HYPERCUBE INTO N PANCAKE.

Lemma

The n-dimensional crossed hypercube $C Q_{n}^{\prime}=\left(A, U^{\prime}\right)$ has one by one dilation 4 embedding into the n-pancake P_{n}^{\prime} $=\left(G^{\prime}, E^{\prime}\right)$ for any $n>4$.

Proof

We prove this lemma by induction.

Base

For $n=4$, the Table1, presents all paths between the embedded nodes into P_{4}^{\prime} with dilation 4.

For $n=5$, The Table2, Table3, Table4, Table5, presents the one by one embedding edges between two P_{3}^{\prime} of any component of P_{n}^{\prime} with dilation 4.

Induction hypothesis

Suppose that for $k \leq n-1$, the one to one dilation 4 embedding of $C Q_{k}^{\prime}$ into P_{n}^{\prime} is true. Let us now prove that is true for $k=n$.

We have the following cases:
k is odd.
$C Q_{k}^{\prime}=\left(A, U^{\prime}\right)$ is constructed by two copies of $C Q_{k-1}^{\prime}$, the first is prefixed by $0\left(C Q_{k-1}^{\prime}\right)$, the second one by $1\left(C Q_{k-1}^{\prime}\right)$, such that $X \in A$ is denoted by 0 Prefa $_{k-3} a_{k-2} a_{k-1}, 0$ Prefa $_{k-3} a_{k-}$ ${ }_{2} a_{k-1}, 1$ PrefO $a_{k-3} a_{k-2} a_{k-1}, 1$ Prefl $a_{k-3} a_{k-2} a_{k-1}$ or Pref 1 Iak-3 $a_{k-2} a_{k-1}$ or $\operatorname{Pref}_{1} O a k_{-3} a_{k-2} a_{k-1}$ or or $\operatorname{Prff}_{2} 0 a_{k-3} a_{k-2} a_{k-1}$ or Pref $_{2} a_{k-3} a_{k-}$ ${ }_{2} a_{k-1}$. The first node of the super node $0\left(C Q_{k-1}^{\prime}\right)$ is $\mathrm{XX}=x_{1} x_{2} x_{3} x_{4} \operatorname{Suf}\left(P_{n}[n, n]\right)$, we adding only 0 to the prefix of $C Q_{k-1}^{\prime}$, that is to say, all edges in $0\left(C Q_{k-1}^{\prime}\right)$ are embedded into $P_{k-1}[\mathrm{k}-1, k-1]$ (hypothesis of induction). However, we use the different actions depicted by Table1, Table2, Table3, Table4, Table5 In other words the dilation is 4 . For the edges between two nodes labeled by $\operatorname{Pref}_{2} 0 a_{k-3} a_{k-2} a_{k-1}$ or $\operatorname{Pref}_{2} l a_{k-3} a_{k-2} a_{k-1}$, we added only 1 to the prefix of $C Q_{k-1}^{\prime}$. The first node of the super node $1\left(C Q_{k-1}^{\prime}\right)$ is embedded into $\mathrm{YY}=\operatorname{INV}\left(x_{1} x_{2} x_{3} x_{4} \operatorname{Suf}\left(P_{k-1}[k-1,1]\right)\right.$, we apply the same actions of embedding all edges of $C Q_{k-1}^{\prime}$ into the path in component of P_{k-1} (hypothesis of induction) and we use the different actions cited in Table1, Table2, Table3, Table4, Table5. The dilation in this case is equal 4.
k is even.
$C Q_{k}^{\prime}=\left(A, U^{\prime}\right)$ is constructed by two copies of $C Q_{k-1}^{\prime}$, the first is prefixed by $0\left(C Q_{k-1}^{\prime}\right)$, the second one by $1\left(\left(C Q_{k-1}^{\prime}\right)\right.$, such that $X \in A$ is denoted by 00Prefa ${ }_{k-4} a_{k-3} a_{k-2} a_{k-1} 01$ Prefa $_{k-}$ ${ }_{4} a_{k-3} a_{k-2} a_{k-1}, 10$ Prefa $_{k-4} a_{k-3} a_{k-2} a_{k-1}$, 11Pref $a_{k-4} a_{k-3} a_{k-2} a_{k-1}$. For the edges between nodes labeled 00Prefa $a_{k-4} a_{k-3} a_{k-2} a_{k-1}$ (first super node of $C Q_{k}^{\prime}$) are embedded into the paths of the first component of $P_{k-1}[k-1, k-1]$ named $\mathrm{XX}=\operatorname{Prem}\left(P_{k-1}[k-1, k-1]\right.$. (Hypothesis of induction).However the dilation is 4.The second one concern edges between nodes of $C Q_{k}^{\prime}$ labeled $0^{1 P r e f a_{k-4}} a_{k-3} a_{k-2} a_{k-1}$. This situation is similar that the one by one embedding edges between nodes labeled by $\operatorname{Pref}_{2} 0 a_{k-3} a_{k-2} a_{k-1}$ or $\operatorname{Pref}_{2} 1 a_{k-3} a_{k-2} a_{k-1}$, we add only 1 to the prefix of $C Q_{k-1}^{\prime}$ and the first node of the super node $1\left(C Q_{k-1}^{\prime}\right)$ is embedded into $\mathrm{YY}=\mathrm{INV}(\mathrm{XX})$ (first node of P_{k-} ${ }_{I}[k-1,1]$).(Hypothesis of induction). However, the dilation is 4. The third situation is the embedding the edges between the nodes labelled 11Prefa $a_{k-4} a_{k-3} a_{k-2} a_{k-1}$ into the third component of $P_{k-1}[k-1,2]$. We use the same actions except that the first node of this component of $C Q_{k-1}^{\prime}$ is embedded into $\mathrm{ZZ}=$ INV1 (Flip (YY)). (The first of $P_{k-1}[k-1,2]$). (Hypothesis of induction). The dilation is 4.the latest case is idem except that the first node of the forth component of P_{k} ${ }_{I}[k-1,3]$ TT= INV1 (ZZ).(Hypothesis of induction). However, the dilation is 4 .

Theorem

The n-dimensional crossed hypercube $C Q_{n}=(A, U)$ has one by one dilation 5 embedding into $P_{n}=(G, E)$ for any $\mathrm{n} \geq 5$.

Base

Case, n is odd: $n=5$. Table 6, Table 7 presents the different actions of one by one embedding all edges of $C Q_{n}$ into paths of P_{n}.
Case when n is even: $n=6$. Table 8, Table 9, Table 10, Table 11 presents the cases of different actions of one by one embedding edges of $C Q_{n}$ into paths of P_{n}.

Hypothesis of induction

Assume that this theorem holds for $k<n-1$.That is $C Q_{k-1}$ one by one embedding dilation 5 into P_{k-1}.

Now we prove that this is true for $k=n$.
Case $1, k$ is odd. There are two sub-cases:
One by one embedding edges of $0\left(C Q_{k-1}^{\prime}\right)$ and $1\left(C Q_{k-1}^{\prime}\right)$ in respectively the first component of $P_{k}[k-1, k]$ and the second $P_{k}[k-1,1]$.In this situation we use the hypothesis of induction except the prefix and suffixes respectively augmented by $0, k$. In the second, we use the same actions like the first situation except $\operatorname{Prem}\left(. P_{k}[k-1,1]\right)=$ $\operatorname{INV}\left(\operatorname{Prem}\left(P_{k}[k-1, k]\right)\right)$ and the prefix and suffixes respectively augmented by $1, k$.(hypothesis of induction). However, the dilation is 5 .

One by one embedding edges between $0\left(C Q_{k-1}^{\prime}\right)$ and $1\left(C Q_{k-1}^{\prime}\right)$, or paths between $P_{k}[k-1, k]$ and $P_{k}[k-1,1]$. We use the different actions outlined in Table 6, Table7. In all cases, the dilation is 5 .

Case 2, k is even. There are two sub-cases:
There are four situations in this sub-case of one by one embedding edges between the same components of $C Q_{k}$. The first is between nodes labeled by 00Prefa $a_{k-4} a_{k-3} a_{k-2} a_{k-1}$, the second one is between nodes labeled 01Prefa $a_{k-4} a_{k-3} a_{k-2} a_{k-}$ 1, the third is between nodes labeled 10Prefa $a_{k-4} a_{k-3} a_{k-2} a_{k-1}$ and the latest is between nodes labeled 11 Prefa $a_{k-4} a_{k-3} a_{k-2} a_{k-}$ ${ }_{1}$.in the all situation, we use $00 \operatorname{Prefa}_{k-4} a_{k-3} a_{k-2} a_{k-1}$ In this situation we use the hypothesis of induction except the prefix and suffixes respectively augmented by $0, k$. In the second, we use the same actions like the first situation except $\operatorname{Prem}\left(. P_{k}[k-1,1]\right)=\operatorname{INV}\left(\operatorname{Prem}\left(P_{k}[k-1, k]\right)\right)$ and the prefix and suffixes respectively augmented by $1, k$.(Hypothesis of induction). However, the dilation is 5. Idem for the remaining situation, except the first node of the third used component is $\operatorname{Prem}\left(. P_{k}[k-1,2) \quad=\right.$ $\operatorname{INV}\left(\operatorname{INV} 1\left(\operatorname{Prem}\left(P_{k}[k-1,1]\right)\right)\right.$ and the first node of the forth used component is $\operatorname{Prem}\left(P_{k}[k-1,3]\right)=\operatorname{INV}\left(\operatorname{Prem}\left(P_{k}[k-\right.\right.$ $1,2 \jmath)$).

The second sub-case is one by one embedding edges between $00\left(C Q_{k-2}^{\prime}\right)$ and $01\left(C Q_{k-2}^{\prime}\right) \quad 00\left(C Q_{k-2}^{\prime}\right)$ and $10\left(C Q_{k-2}^{\prime}\right), 10\left(C Q_{k-2}^{\prime}\right)$ and $11\left(C Q_{k-2}^{\prime}\right), 01\left(C Q_{k-2}^{\prime}\right)$ and $11\left(C Q_{k-2}^{\prime}\right)$ onto respectively paths between $P_{k}[k-1, k]$ and $P_{k}[k-1,1], P_{k}[k-1,2]$ and $P_{k}[k-1,3], P_{k}[k-1,2]$ and $P_{k}[k-$ $1,4]$.and finally between $P_{k}[k-1,1]$ and $P_{k}[k-1,4]$. We use respectively the different actions outlined in Table 11, Table 8, Table 9 Table10, .In all cases the dilation is 5.

Proof

We prove this theorem by induction.

5 CONCLUSION

It is both practically significant and theoretically interesting to investigate the embeddability of different architecture into pancake (ref).in this paper, the main purpose is the one by one dilation 5 embedding crossed hypercube into Pancake. The study of dilation of this function is explained in two steps. The first step is the one by one dilation 4 embedding of all edges in the same P_{4} of any super node of P_{n} as proved by lemma. The second step is the general one by one dilation 5 embedding of all edges of crossed hypercube into paths between two super nodes of Pancake is proved by theorem.

In the future of this work, it is more interesting to study the fault-tolerant embedding of crossed hypercube into Pancake.

REFERENCES

[1]. Akers, S. B., Krishnamurthy, B. (1990).A grouptheoretic model for symmetric interconnection networks. IEEE transactions on Computers. Vol. 4, pp. 555-566.
[2]. Aschheim, R., Femmam, S.,Zerarka, M.F. (2012). New "Graphiton" Model: a Computational Discrete Space, Self-Encoded as a Trivalent Graph. Computer and Information Science Journal, Vol. 5, $\mathrm{N}^{\circ} 1$, pp. 2-12.
[3]. Bouabdallah, A., Heydemann, M.C., Opatrny, J., Sotteau, D. (1998).Embedding complete binary trees into star and pancake graphs. Theory Computer System Journal, pp. 279-305.
[4]. Efe, K. (1992).The crossed cube architecture for parallel computing. IEEE Trans. Parallel Distributed Systems, vol. 3, n ${ }^{\circ}$ 5, pp. 513-524.
[5]. Fan, J. (2002).Hamilton-connectivity and cycleembedding of the mobius cubes. Information Processing Letters, Vol. 82, pp. 113-117.
[6]. Fang, W.C., Hsu, C.C. (2000).On the fault-tolerant embedding of complete binary trees in the pancake graph interconnection network. Information Sciences, Elsevier, pp. 191-204.
[7]. Femmam, S., Zerarka, M.F., Benakila, M.I., (2012).New Approach Construction for Wireless Zig Bee Sensor Based on Embedding Pancake Graphs. Networks and Communication Technologies Journal, vol 1, ${ }^{\circ} 1$, pp 7-25.
[8]. Heydari, M.H., Sudborough, I.H. (1997). On the diameter of Pancake network. Algorithms Journal pp. 67-94.
[9]. Huang, W.T., Lin, M.Y., Tan, J.M., Hsu, L.H. (2000). Fault-tolerant ring embedding in faulty crossed cubes.World Multiconf.Sys. Cybertetics and Infor. SCI'2000, Vol. IV, pp. 97-102. British

Journal of Mathematics \& Computer Science, 2(1): 1-20, 2012.
[10]. Hung,C.N., Hsu, H., Liang, K., Hsu, L. (2003). Ring embedding in faulty pancake graphs. Information Processing Letters, Elsevier, Vol. 86, pp. 271-275.
[11]. Hsieh, S.Y., Chen, G.H., Ho, C.W. (1999).Fault-free Hamilton-cycles in faulty arrangement graphs. IEEE Transactions on Parallel Distribution System, Vol. 10, pp. 223-237.
[12]. Hsieh, S.Y., Chang, N.W. (2006). Hamiltonian path embedding and pancyclicity on the Mobius cube with faulty nodes and faulty edges. IEEE Transactions on Computers, vol. 55, no. 7, pp. 854863.
[13]. Hsieh, S.Y., Lee, C.W. (2009).Conditional edgefault hamiltonicity of matching composition networks. IEEE Transactions on Parallel and Distributed Systems, vol. 20, no. 4, pp. 581-592.
[14]. Hsieh, S.Y., Lee, C.W. (2010). Pancyclicity of restricted hypercube-like networks under the conditional fault model. SIAM Journal on Discrete Mathematics, vol. 23, no. 4, pp. 2010-2019.
[15]. Hwang, S.C., Chen, G.H. (2000).Cycles in butterfly graphs. Networks Journal, vol. 35, pp. 161-171.
[16]. Kanevsky, A., Feng, C.(1995).On the embedding of cycles in pancake graphs. Parallel Computer Journal, pp. 923-926.
[17]. Kulasinghe, P., Bettayeb, S. (1995). MultiplyTwisted Hypercube with Five or More Dimensions is not Vertex-Transitive. Information Processing Letters, vol. 5, pp. 33-36.
[18]. Lin, C.K., Tan, J.M., Huang, H.M., Hsu, D.F., Hsu, L.H. (2008).Mutually Independent Hamiltonianicity of Pancake Graphs and Star Graphs. International Symposium on Parallel Architectures, Algorithms, and Networks (i-span), pp. 151-158.
[19]. Lin, J.C., Yang, J.S., Hsu, C.C., Chang, J.M. (2010). Independent spanning trees vs edge disjoint spanning trees in locally twisted cubes. Information Processing Letters Journal, Elsevier North-Holland, Inc. Amsterdam, The Netherlands, Vol. 110 Issue 10, pp. 414-419. British Journal of Mathematics \& Computer Science, 2(1): 1-20, 2012
[20]. Menn, A., Somani, A.K. (1992). An efficient sorting algorithm for the star graph interconnection network. 19th International Conference In Parallel Computation, Proceeding, Ed. Cambridge University Press.
[21]. Sengupta,A. (2003).On ring embedding in Hypercubes with faulty nodes and links. Information Processing Letters, Elsevier, Vol. 68, pp. 207-214.
[22]. Senoussi, H., Lavault, C. (1997). Embeddings into the pancake interconnection network. High

Performance Computing and Grid in Asia Pacific Region, International Conference on High Performance Computing on the Information Superhighway, HPC-Asia '97.
[23]. Qiu, K., Akl, S.G., Stojmenovic, D.I (1991). Data communication and computational geometry on the star interconnection networks.3rd IEEE Symp. On
parallel and Distributed Processing, Proceeding, pp. 125-129.
[24]. Qiu, K. (1992). The star and Pancake interconnection networks: proprieties and algorithms. PhD thesis, Queens University, Kingston, Ontario, Canada.

