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ABSTRACT 

System-on-Chip (SoC) designs are increasingly becoming more complex. One of the major constraints is the time to market 
New design methods are necessary, and the tendency is with the integration of the software and hardware parts on the same 
chip.  Efficient on-chip communication architectures are critical for achieving desired performance in these systems  Thus, the 
development of codesign’s modern methods and the appearance of hardware description languages  (HDL) based on C/C++ 
such as SystemC or specC allowing to employ the same language to describe the software and the hardware, and returning of 
this fact easier and more effective Co-simulation. These methods would be able to generate an optimal solution starting from a 
functional specification by reducing the time and the cost of the design. Thus, one of the main objectives of this paper is the 
development of a SystemC platform for multiprocessors architectural exploration at the compromise level (TLM) by using 
SystemC/TLM. It must lead to partition system into hw/sw and also to validate it by simulation or to move easily modules 
from hardware to software (or vice versa) during the architectural exploration. Except for the software task priorities that could 
be modified, we only need to recompile and simulate.      

 

KEYWORD: ISS, RTOS, SystemC, TLM, initiator, target, socket, generic payload, interconnect component, Loosely-timed, 
approximately-timed communication manager  

 

1 INTRODUCTION  

The principle of systems on chip consists in gathering on 
the same integrated circuit all the data-processing 
components. As the hardware does not exist with the 
starting of the project, simulation tools are necessary to 
develop the software on a simulated hardware, to validate 
the hardware design, and to study system performances and 
behavior. It appears today that SystemC is a very powerful 
language that allows to describe systems at different levels 
of abstraction, i.e. from transaction-level down to the gate-
level [1]. SystemC allows the use of a common language 
for software and hardware specifications, and the 
simulation of the whole system. However, during the 
simulation, the scheduler, responsible for determining 
which thread will run next, manages identically both  
software and hardware threads. It means that systems with 
hard real-time constraints requiring an RTOS (Real-Time 
Operating System) based on a preemptive priority-based 
kernel cannot be modelled naturally. Such RTOS [2] 
provide a very useful abstraction interface between 
applications with hard real-time requirements and the target 
system architecture. As a consequence, availability of 
RTOS models is becoming strategic inside hw/sw 
(hardware/software) codesign environments [3]. 

Thus, one of the main objectives of this paper is the 
development of a SystemC platform for multiprocessors 

architectural exploration; as well as the realization of the 
communication by using TLM 2.0 between the various 
components of the system.. It must lead to partition system 
into hw/sw and also to validate it by simulation or to move 
easily modules from hardware to software (or vice versa) 
during the architectural exploration. Except for the software 
task priorities that could be modified, we only need to 
recompile and simulate.        

In the remaining sections of this paper, in section 2 of the 
article, we particularly discuss the various works in 
progress in the field of codesign partitioning, cosimulation 
and the interest of TLM.  In section 3, we present the 
principles of TLM in SystemC, an overview of TLM 2.0, 
partitioning with the importance of the estimators. and 
SystemC gaps. In section 4, we present our architecture of 
simulation by exposing the objectives of the platform,   then 
the hardware and software components of the platform. The 
Paper is completed with conclusion and future works. 

 

2 RELATED WORKS 

System level modeling has become an important issue, as a 
means to improve the hybrid design process. SLDLs 
(System Level Description Language) or capturing such 
models have been developed (e.g. SystemC [4], SpecC [5]).  
Different frameworks for system level design and software 
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synthesis have been developed. 

Indeed, for the simulation of software modules, the 
SystemC simulator does not offer all the necessary 
functionalities, such as preemption or scheduling by 
priority, generally present in any RTOS: a joint refinement 
of the software and hardware parts is thus a tedious task in 
SystemC 2.0. A possible area for consideration in extending 
the SystemC core language is to provide better software 
support. Unfortunately, the specification for this future 
release is not yet available. Consequently with SystemC 
2.0, there are tools able to synthesize hardware modules, 
but this is done at the expense of the software part.  

A possible refinement is to simulate more accurately the 
software interaction with the hardware, using ISS. The 
Instruction Set Simulator (ISS) accepts an assembler code 
obtained by the cross-compilation of the software modules. 
Several researches were already undertaken to integrate an 
ISS with SystemC [6,7]. The resulting simulation is reliable 
and realistic because it depends on the actual architecture. 
This decreases largely the number of delta cycles necessary 
and accelerates significantly the simulation. On the other 
hand, these solutions focus more on the simulation aspects 
than on the partitioning methodology: the use of an ISS 
seems to take place after the partitioning phase. 
Furthermore, no proposal suggests the use of an RTOS 
making it possible to schedule several software modules on 
the ISS, so programs being executed remain of the 
foreground/background type, which is today a substantial 
limitation in SoC (System on Chip) designs for example. 

Nicolescu and al[8] propose a component-based SoC 
methodology using a wrapper generation flow to 
automatically link various heterogeneous cores of different 
abstraction levels in the same simulation. Fummi and al.[6] 
present two cosimulation methodologies, using SystemC on 
an instruction set simulator (ISS) as a processor model. The 
first methodology, GDB-Kernel (GNU debugger kernel), 
works at the SystemC kernel level and exploits the GNU 
suite’s potentialities. The second, Driver-Kernel, uses 
features offered by the operating system running on the ISS. 
Both the Nicolescu and al. and Fummi and al. 
methodologies require that modules simulating the software 
be modified specifically; it is thus not possible to easily 
transfer modules between hardware and software to test 
various configurations. The MPARM multiprocessor 
simulation platform has been recently proposed in [9] for 
cycle-accurate power performance estimation. The 
MPARM platform has been used in [10] for analyzing 
several on-chip communication or a communication 
channel. Cycles Accurate System Simulator (CASS) [11], 
proposed by Denis Hommais and Frederic Pétrot, targets 
the fast simulation of integrated systems on chip. Jerome 
Chevalier and al [7] proposed the method “SPACE” which 
makes it possible to have the optimal partitioning of a 
system. 

Traditionally, systems were captured at a cycle and pin-
accurate level in RTL and then simulated for performance 
estimation before synthesis. However SoC designs today 
are large and very complex, so not only does it take a lot of 

time to capture them in RTL, but the resulting simulation 
speed is too slow for meaningful performance exploration. 
To overcome these limitations, system designers have 
raised the abstraction level of system models. High level 
models (usually written in C/C++) give an early estimate of 
the system characteristics before committing to RTL 
development 

The rise in complexity, size and heterogeneity of modern 
embedded system designs has pushed modeling to new 
abstraction levels above RTL. Transaction level modeling 
using SystemC is emerging as a new paradigm for system 
modelling. The introduction of Transaction Level Modeling 
(TLM) allows a system designer to model a complete 
application, composed of hardware and software parts, at 
several levels of abstraction. The simulation speed of TLM 
is orders of magnitude faster than traditional RTL 
simulation. TLM has gained a lot of attention recently ever 
since it was introduced [1] as part of high level SystemC [2] 
modeling initiative. Several use models and design flows 
[12, 13] have been presented centering around TLM. The 
separation between the communication and the computation 
aspects of a design can be effectively achieved using 
transaction level models (TLMs). The concept of TLM first 
appeared in the domain of system modeling languages, like 
SystemC [1] and SpecC [5]. In [1], a TLM is defined as a 
model where communication between modules is modeled 
in a way that is accurate in terms of what is being 
communicated, but not in a way that is structurally accurate 
(i.e., the actual wires and pins are not modeled). They have 
also insisted that the communication between modules be 
modeled using function calls.  

An overview of TLM is presented by Cai [14] and an 
overview of TLM flows by Donlin [12]. Different 
approaches to SystemC modeling are presented by Colgan 
[15] and Kogel [16]. The differences between RTL and 
TLM have been studied by Calazans [17].  Commercial 
tools such as the Incisive Verification Platform [18], 
ConvergenSC System Designer [19] and Cocentric System 
Studio [20] have also started adding support for system 
modeling at the higher TLM abstraction, in addition to 
lower level RTL modeling.  

 

3 BASIC CONCEPTS 

3.1 Principles of TLM in SystemC 

SystemC is a system modeling language that can model and 
operate hardware at system-level. SystemC can easily 
express a complex SoC core at a high level while having all 
the merits of hardware description languages. It was 
developed using C++ classes. Hence, SystemC can be 
effectively used for simulation environment in checking not 
only hardware operation but also software one. Also, it 
supports TLM (Transaction-Level Modeling). SystemC 
class libraries provide essential classes for modeling system 
structure. They supports hardware timing,concurrency, and 
reaction, which are not included in standard C++. SystemC 
allows developers to describe hardware and software, and 
their interface under C++ environment. 
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The goal of transaction-level modeling is to speed up 
simulation time and the time it takes to develop the 
models.The transaction-level model is built as set of 
interfaces that define how models communicate. In its most 
primitive form the TLM basic interfaces provide with the 
fundamental communication and synchronization constructs 
that can be used to create TLM models. The basic idea of 
Transaction Level Modeling (TLM) is to establish 
communication through function calls that represent 
transactions rather than signals as at the Register Transfer 
Level (RTL). Transaction Level Modeling (TLM) has been 
introduced in the recent past as a modeling style to describe 
communication channels at a higher abstraction level with 
respect to Register Transfer Level. Although Transaction 
Level (TL) models offer high simulation speed, in some 
cases, they do not capture enough details about on-chip 
behavior. At TLM level, the system bus behavior can be 
viewed as an abstract channel independent of the target bus 
architecture or protocol implementation. 

  

3.2 TLM 2.0 

The focus of OSCI TLM-2.0 in particular is the modeling 
of on-chip memory-mapped busses. TLM-2.0 has a layered 
structure, with the lower layers being more flexible and 
general, and the upper layers being specific to bus 
modelling. In TLM-2.0, an initiator is a module that 
initiates new transactions, and a target is a module that 
responds to transactions initiated by other modules. A 
transaction is a data structure (a C++ object) passed 
between initiators and targets using function calls. The 
same module can act both as an initiator and as a target, and 
this would typically be the case for a model of an arbiter, a 
router, or a bus. In order to pass transactions between 
initiators and targets, TLM-2.0 uses sockets. An initiator 
sends transactions out through an initiator socket, and a 
target receives incoming transactions through a target 
socket. A module that merely forwards transactions without 
modifying their content is known as an interconnect 
component. An interconnect component would have both a 
target socket and an initiator socket. The default transaction 
type for the socket classes, implied in the absence of any 
template arguments, is tlm_generic_payload. The generic 
payload is an important part of the TLM-2.0 standard 
because it is another of the keys to achieving 
interoperability between transaction level models. The 
generic payload serves two closely-related purposes. It can 
be used as a general-purpose transaction type for abstract 
memory-mapped bus modeling when you are not concerned 
with the exact details of any particular bus protocol, 
offering immediate interoperability between models off-
the-shelf. Alternatively, the generic payload can be used as 
the basis for modeling a wide range of specific protocols at 
a more detailed level, the beauty of this approach being that 
it is relatively easy to bridge between different protocols 
when both are built on top of the same generic payload 
type. The generic payload supports two commands, read 
and write. The goal of the OSCI TLM2.0 standard is to ease 
and enable interoperability between high-level SystemC 

components. TLM 2.0 defines modeling styles, several 
interfaces, a generic payload, and more than 150 rules to 
define the expected interface behavior during simulation. 
While some of those rules clarify the semantic of a 
transaction, a large part specify restrictions and expected  
behavior.TLM2.0 defines two modeling styles. The Loosely 
Timed (LT) modeling style is targeted for system and 
platform models, where timing and data are only loosely 
connected. For the correct functionality, it is not important 
to get specific data at exactly the specified time. Resource 
conflicts and contentions are not modeled in the LT 
modeling style. For the LT modeling style, TLM2.0 defines 
two timing points, the beginning time and the end time of a 
transaction.  The second modeling style is called 
Approximated Time (AT). With this modeling style, it is 
easy to model resource contention and arbitration. It is used 
for systems where the dependency of timing and data is 
very strong, like in systems with very stringent and specific 
hard real-time requirements. The AT modeling style defines 
four timing points for a transaction: the begin request, end 
request, begin response and end response. Therefore, 
systems with delay due to concurrent resource access 
conflicts and arbitration can be modeled very accurately. 

Beside the two modeling styles, TLM2.0 also defines two 
interfaces. One is a blocking transporter called b_transport 
(TRANS&, sc_time&). The specification defines that the 
caller module does not continue any processing while 
issuing a transport call. It waits until the transport calls 
return before continuing execution.  In addition, TLM2.0 
defines a non-blocking interface. Two non-blocking 
transport calls exist, a forward path nb_transport_fw 
(TRANS&, PHASE&, sc_time&) and the backward path 
nb_transport_fw (TRANS&, PHASE&, sc_time&). Both 
transports return immediately so the caller module can 
continue its processing while it waits for the recipient to 
respond. TLM 2.0 defines a direct memory interface (DMI), 
as well as a debug transport interface.   

 

3.3 Partitioning 

The hw/sw partitioning allows the transformation of the 
parts specifications system into hw and sw components. 
Partitioning is a well-known NP-complete problem 
depending on a big number of parameters. To solve this 
problem, most automatic methods reduce the number of of 
parameters and use a heuristic based on a cost function 
pondered by the retained criterias and checked constraints. 
However, the feasibility of these methods depends 
exclusively on the accuracy of parameters for the values to 
be optimized, in the main part execution time, hardware 
size, power consumption, etc. for every part of a design  
[21]. 

Global optimization is the task of finding the absolutely 
best set of parameters to optimize a goal function. In 
general, there are solutions that are locally optimal but not 
globally optimal. Consequently, global optimization 
problems are typically quite difficult to solve exactly. The 
criteria chosen for this estimation vary from a tool to 
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another. With each criterion is associated a metric value just 
as a factor which is used to balance them and which 
depends on technology used and the applicability.It is thus 
difficult to define an estimate function which is realistic 
even for a specific applicability. 

Metrics allow evaluation of design quality and design space 
exploration. Partitioning into hw and sw of a system is 
performed by evaluating a cost function assembled from 
competing metrics (see figure 1). These metrics are 
obtained by static and dynamic code analysis on the highest 
level of abstraction - the algorithmic description of the 
system. The common metrics can be applied on all objects 
of the specification. For example a size, execution time, 
cost, and so on. Closeness metric measures the probability 
that two closest objects of the specification should be 
implemented on the same system component. For example, 
if two system objects use the same data, execute 
sequentially, and have the same hardware requirements, 
then implementing them on the same system component 
would likely lead to a good design [21,22]. 

A CDFG (Control Data Flow Graph) is an abstraction of 
the real system. In general an algorithm in form of 
sequential code can be decomposed into its control flow 
graph (CFG), built up of interconnected objects. Each 
object (for example basic block) contains a sequence of 
data operations ended by a control flow statement as last 
instruction. This sequence of data operations forms itself a 
data flow graph (DFG) [22].  

 

 
Figure 1: Typical partitioning system configuration 

 

Estimators are necessary in partitioning step. Indeed, the 
values given by the estimators inform the designers about 
the quality of the found solutions, in order to predict the 
results of the design without going until the total 
realization. It is a fast estimate of the performances or 
characteristics of architecture. The problem is then to find 
the metric ones to evaluate the solutions, and these metrics 
is generally limited to the technological criteria. 

This is a summary of software estimation used in the 
software simulator: 

 Execution time (RunTime) 

 Create basic blocks (SystemC) and compile them to a 

specific instructions set. 

 Estimation of blocs execution time. 

 Calculate specification’s execution time 

 Data memory size: 

 Program memory size 

 Task maximum hold time (context switch, preemption) 

 Maximum number of preemptions for each task 

A good system performance measure is a difficult task, thus 
it depends of the modelling of target processor and the 
instructions flow execution.  For simple processors, it is 
possible to calculate execution time of each instruction on 
target processor. The global processor runtime is calculated 
by multiplying execution frequency of each instruction by 
the execution time of that instruction. 

Software simulator, provides a cost estimate of the partition 
result while using like metric evaluation: Execution time, 
memory size, Memory access time and Context switching 

 

3.4 SystemC Gaps 

Let us start from a system description in a set of SystemC 
modules. After partitioning, the hardware modules will be 
simulated by the SystemC hardware simulator, while the 
software modules will be carried out by the SystemC 
software simulator (see figure 2). But, in spite of the fact 
that we can qualify the language SystemC on the level 
system, several gaps concerning the modeling of the 
software part of an application remain. All the devices are 
in place to allow refinement of the hardware, but not for the 
software. The problem comes owing to the fact that the 
scheduler is the same one for the software and the hardware 
during simulations. Concurrency is not modelled, neither 
préemptive scheduling nor the support of the priorities. It is 
thus impossible to manage the systems with hard real time 
constraints. However, the real time systems  are used much 
in the systems on chip. To be able to model them as parts of 
a complete system is an obvious strategic asset for the 
codesign. 

 

 
Figure 2: SystemC simulator 

We propose an integrated ISS with a RTOS core in order to 
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replace the weak software simulator of SystemC. ISS in a 
basic architecture of simulation in SystemC which could be 
used as assistance tool in the systems on chips design  
starting from raised levels of abstraction. 

 

4 SIMULATION PLATFORM 

The approach we present here helps architecture 
exploration for SoC development. Our platform allows 
simulation and performance assessments to facilitate 
architectural exploration, particularly for hardware-software 
partitioning. The building of SystemC modules in platform 
follows a coding guideline that facilitates transparent 
module transfers between hardware and software. This 
approach wants to be innovating in the direction where two 
simulations are carried out on level TLM, the first quick to 
check only the system functionality by using a particular 
case of the modeling style LT (Loosely-timed) and second 
is precise by using the style of modeling AT 
(approximately-timed). The platform facilitates the work of 
the designer when this last wishes to test various 
software/hardware configurations, because on this level it is 
possible to move the modules of the software part towards 
the material part and conversely, with a minor effort and a 
minimum time on behalf of the designer. To guide the 
originator in his partitioning, it is possible for him to carry 
out simulations of its application.   

In summary, no method currently exists that makes it 
possible to easily simulate at high level various 
hardware/software configurations, in order to obtain results 
leading to the optimum partition of a system. Three main 
conditions are required to reach this goal: 

The possibility of moving modules between the software 
part and the hardware part without changing modules’ code. 
A simulation of the whole system giving realistic results to 
validate or invalidate a partition choice. 

A multiprocessor approach giving a realistic embedded 
system simulation.  

Our architecture is made up of the following hardware 
components(see figure 3 ) : processor,hardware modules , 
memory,interrupt manager , timer,stop peripheral 

 

 
Figure 3: Hardware components 

 

The software components (figure 4) are: software modules, 
RTOS, communication manager  

 
Figure 4: Software components 

 

4.1 A Retargetable ISS 

An instruction set simulator runs a program by simulating 
the effects of each instruction on a target machine, one 
instruction at a time. Instruction set simulators are attractive 
for their flexibility: they can in principle, model any 
computer, gather any statistic, and run any program that 
target architecture would run. Additionally, it can provide 
debug access to internal state information of the processor 
that are usually hidden in a real hardware. Using an ISS 
eases software development  and debugging by providing a 
deterministic execution; especially useful for analyzing race 
conditions. 

Retargetability is now an important concern, particularly in 
the area of the embedded systems and SoC design. A 
retargetable ISA (Instruction Set Architecture) simulator 
requires a generic model, supported by a language, to 
describe the architecture and its instruction set. The 
simulator uses the architecture description to decode 
instructions of the input program and execute them. The 
challenge is to have a model that is efficient in terms of 
both quality of the description and performance of the 
simulator. To have a high quality description, the model 
must easily capture the architectural information in a 
natural, compact and manageable form for a wide range of 
architectures. On the other hand, to generate a high 
performance simulator and to reduce the operations that the 
simulator must do dynamically at run time, the model 
should provide as much static information as possible about 
the architecture and its instruction set.  

Designing an efficient model that captures a wide range of 
architectures is a hard problem because such architectures 
have different instruction-set format complexities. There is 
a tradeoff between speed and retargetability in ISA 
simulators. Some of the retargetable simulators use a very 
general processor model and support a wide range of 
architectures but are slow, while others use some 
architectural or domain specific performance improvements 
but support only a limited range of processors. Also in 
some description languages, deriving a fast simulator 
requires lengthy descriptions of all possible formats of 
instructions.  

Our Software simulator as described in Figure 5 has the 
main features: 
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 multiple processors support 
 running code, written in assembler 
 extensive configuration 
 simulating x86 and 68000 processors 
 step by step execution 
 visual representation of the registers state 
 detailed simulation results 
 OS window showing all events with precise timing 

(hour, min, sec, msec) 
 

 
Figure 5: Principles of software simulator 

 

Figure 5 illustrates the main principles. The target code 
consists of instructions for the target architecture. Execution 
is modelled by simply incrementing the intermediate code 
pointer. Branch instructions must calculate a new 
intermediate pointer first.  

SystemC makes it possible to suitably simulate hardware, 
but not software. We thus chose to use of ISSs in our 
architecture to jointly simulate the software part with the 
hardware part. For our architecture, our ISS is encapsulated 
in a SystemC module (sc_module) and thus SystemC deals 
with making carry out the hardware processes and the ISS. 
As the ISS is also itself a simulator, this SystemC code 
(software) is not carried out by the same simulator as the 
SystemC code of the hardware part. Thus we have two 
simulators of SystemC: SystemC hardware simulator of 
SystemC and the software simulator which we designed 

 

4.2 Memory  

It contains the binary code, which gathers the code of the 
operating system and the software modules and tasks. The 
code memory is loaded in starting from a file at the time of 
simulation initialization. This memory is also used to store 
software dynamic information. 

 

4.3 Interrupt Manager   

It informs the processor by activating the interruption. The 
processor must then communicate with the manager by the 
interconnect component in order to know the identity of the 

module which caused the event. 

 

4.4 Timer 

Any operating system which allows parallel tasks needs a 
timer to indicate the moment to him when it must pass from 
one process to the other. It provides as a basis interruptions 
being used of time to the RTOS which is carried out on the 
ISS. The tics of scheduling are essential to have a 
préemptive core such that of MicroC/OS-II.  

 

4.5 Stop Peripheral  

This special peripheral makes it possible to finish 
simulation. A simple access  memory directed to the 
address of this peripheral generates the execution of the 
function sc_stop () of SystemC. 

 

4.6 RTOS 

A Real-Time Operating System (RTOS) allows realtime 
applications to be designed and expanded easily. However, 
the RTOS introduces overhead, which may prevent some 
real-time systems, such as high-speed packet switches, from 
working efficiently. As a result,deadlines may be missed. 
The overhead can be reduced by migrating kernel services 
such as scheduling, time tick (a periodic interrupt to keep 
track of time during which the scheduler makes a decision) 
processing, and interrupt handling to hardware. This will 
significantly improve the response time and the interrupt 
latency, provide accurate timing, and increase the CPU 
utilization. 

If more than one behavior is mapped to a processor, the 
mapped behaviours have to be scheduled. A processor 
allows only sequential execution at a time. 

One scheduling approach is dynamic scheduling as 
executed by an RTOS on the target system. However, it is 
not desirable to execute a complete RTOS at an early 
design stage due to the simulation overhead. Therefore, an 
abstract RTOS  model is used for exploration of different 
scheduling policies. 

µC/OS-II is a core real time that permits to do an execution 
of several tasks on a microprocessor. We needed a RTOS in 
order to permit a multiprocessor execution. Our choice was 
about µC/OS-II because its source code is available, what 
facilitated the understanding of the working principle of the 
RTOS in general. In spite of its advantage, µC/OS-II have 
been deprived of some aspects as the multiprocessors, 
therefore we rewrote our OS entirely (see figure 6) in order 
to manage the wanted appearance (See Table 1), without 
including functionalities of µC/OS-II as the management of 
the TCP/IP and some aspects of communications of which 
we didn't have need in our partitioning architecture. 

The RTOS is as much as possible independent of the 
hardware. The main function of our adapted RTOS is the 
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scheduling of software tasks. It offers many scheduling 
policies, 

 
Table 1:  RTOS comparative 

Properties Adapted 
RTOS µC/OS-II 

Multiprocessors Yes No 

Priority sharing (tasks) Yes No 

Heterogeneous Yes  No 

 

 

Figure 6: represents the core of the operating system. 

A module can be in one of the three states: finished, 
elected, ready. 

 

4.7 Modules 

Modules represent the object code of the SystemC modules 
belonging to a CDFG (Control Dated flow Graph), intended 
to be implemented in software and/or hardware. Each 
module has a single identification number given by the user 
of our simulation platform. In our case, the grains must 
contain a code fragment, written in assembler language . 
The modules implemented in software are tasks carried out 
by ISSs. For the modules which will be implemented in 
hardware, they are established to communicate through the 
interconnect component. Our platform guarantees the 
communication of the entities, as well as the change of the 
nature of the modules. The following figure 4.13 watch an 
example of the modules of code obtained starting from a 
CDFG, the left part contains those to implement in 
software, and the right part those to implement in hardware. 

 

Figure 7: Example of modules faisant partie d’un CDFG. 

 

The unit managing the modules allows the choice and the 
management of the modules, by assisting the user to choose 
the code modules written and stored on the disc. This unit 
ensures also the management of the hardware and software 
modules, by simplifying the passage of a module from the 
hardware part to the software part and conversely by a 
simple click (figure 8).  

 

 

Figure 8: Modules reset 
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Figure 9 shows an example of module and some 
information attached to this module 

 

 
Figure 9: Example of module informations 

 

4.8 Interconnect Component   

It makes it possible to connect all the hardware modules 
and the peripherals of the platform and ensures the 
communications.  The simulation of these modules is much 
faster, because there is not all the arsenal to make carry out 
software (OS, ISS, etc). All the hardware modules can 
communicate and send their transactions (hw/hw 
communication).  

The interconnect component has a role to carry out the 
routing of the transactions; therefore it is necessary that it is 
equipped with a transactions queue to store the 
communication calls.  

 

 
Figure 10: interconnect component 

 

4.9 Communication Manager 

It establishes connections between software modules and 
platform hardware. It answers task requests to communicate 
with other software or hardware modules.  The software 
communication manager handles communications between 

any connected modules (hardware or software) and 
provides the same communication model as the hardware 
channel. A module connected to this manager will be 
registered as a software module. 

 

5 CONCLUSION 

Thus, according to the TLM 2.0 concepts, modules can be 
initiators, targets, or targets and initiators at the same time. 
Thus, in our architecture, All the hardware modules and 
processor (ISS) are regarded as initiators, on the other hand, 
the memory, timer, stop peripheral and interrupt manager 
are regarded as targets.  

We also used the two blocking interfaces of transport and 
not blocking. Thus, we carried out a first validation of the 
system with a particular case of the style of modeling 
“loosely_timed”, it is the untimed model i.e. the second 
parameter sc_time of b_transport is null and that to quickly 
check the functionality of the system and a second 
validation of the architecture of simulation with the 
modelling style approximately_timed to have precise 
results. 

We have define, through this article, the importance of the 
concepts of standard TLM 2.0 to carry out a simulation 
architecture on  TLM level .with the respect of TLM 2.0 
rules, we have obtained interopable components. We also 
see how to integrate a retargetable ISS on the platform 
which allows simulation an high level of an application 
M/L, with an aim of validating a partitioning M/L and to 
have an optimal solution. We also made communicate our 
software simulator with the hardware simulator of 
SystemC. To optimize the process of partitioning, works 
remain to be made. The addition of other estimators for 
example remains a big step to be achieved. 
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