
Courrier du Savoir – N°14, Novembre 2012, pp.09-17

Université Mohamed Khider – Biskra, Algérie, 2012

SIMULATION PLATFORM IN TLM OF SYSTEM ON CHIP USING
RETARGETABLE ISS

M.KHETATBA & R. BOUDOUR
Dept d’informatique, Université d’Annaba, Algérie

khetatbam@yahoo.fr,racboudour@yahoo.fr

ABSTRACT

System-on-Chip (SoC) designs are increasingly becoming more complex. One of the major constraints is the time to market
New design methods are necessary, and the tendency is with the integration of the software and hardware parts on the same
chip. Efficient on-chip communication architectures are critical for achieving desired performance in these systems Thus, the
development of codesign’s modern methods and the appearance of hardware description languages (HDL) based on C/C++
such as SystemC or specC allowing to employ the same language to describe the software and the hardware, and returning of
this fact easier and more effective Co-simulation. These methods would be able to generate an optimal solution starting from a
functional specification by reducing the time and the cost of the design. Thus, one of the main objectives of this paper is the
development of a SystemC platform for multiprocessors architectural exploration at the compromise level (TLM) by using
SystemC/TLM. It must lead to partition system into hw/sw and also to validate it by simulation or to move easily modules
from hardware to software (or vice versa) during the architectural exploration. Except for the software task priorities that could
be modified, we only need to recompile and simulate.

KEYWORD: ISS, RTOS, SystemC, TLM, initiator, target, socket, generic payload, interconnect component, Loosely-timed,
approximately-timed communication manager

1 INTRODUCTION

The principle of systems on chip consists in gathering on
the same integrated circuit all the data-processing
components. As the hardware does not exist with the
starting of the project, simulation tools are necessary to
develop the software on a simulated hardware, to validate
the hardware design, and to study system performances and
behavior. It appears today that SystemC is a very powerful
language that allows to describe systems at different levels
of abstraction, i.e. from transaction-level down to the gate-
level [1]. SystemC allows the use of a common language
for software and hardware specifications, and the
simulation of the whole system. However, during the
simulation, the scheduler, responsible for determining
which thread will run next, manages identically both
software and hardware threads. It means that systems with
hard real-time constraints requiring an RTOS (Real-Time
Operating System) based on a preemptive priority-based
kernel cannot be modelled naturally. Such RTOS [2]
provide a very useful abstraction interface between
applications with hard real-time requirements and the target
system architecture. As a consequence, availability of
RTOS models is becoming strategic inside hw/sw
(hardware/software) codesign environments [3].

Thus, one of the main objectives of this paper is the
development of a SystemC platform for multiprocessors

architectural exploration; as well as the realization of the
communication by using TLM 2.0 between the various
components of the system.. It must lead to partition system
into hw/sw and also to validate it by simulation or to move
easily modules from hardware to software (or vice versa)
during the architectural exploration. Except for the software
task priorities that could be modified, we only need to
recompile and simulate.

In the remaining sections of this paper, in section 2 of the
article, we particularly discuss the various works in
progress in the field of codesign partitioning, cosimulation
and the interest of TLM. In section 3, we present the
principles of TLM in SystemC, an overview of TLM 2.0,
partitioning with the importance of the estimators. and
SystemC gaps. In section 4, we present our architecture of
simulation by exposing the objectives of the platform, then
the hardware and software components of the platform. The
Paper is completed with conclusion and future works.

2 RELATED WORKS

System level modeling has become an important issue, as a
means to improve the hybrid design process. SLDLs
(System Level Description Language) or capturing such
models have been developed (e.g. SystemC [4], SpecC [5]).
Different frameworks for system level design and software

M.KHETATBA & al

 10

synthesis have been developed.

Indeed, for the simulation of software modules, the
SystemC simulator does not offer all the necessary
functionalities, such as preemption or scheduling by
priority, generally present in any RTOS: a joint refinement
of the software and hardware parts is thus a tedious task in
SystemC 2.0. A possible area for consideration in extending
the SystemC core language is to provide better software
support. Unfortunately, the specification for this future
release is not yet available. Consequently with SystemC
2.0, there are tools able to synthesize hardware modules,
but this is done at the expense of the software part.

A possible refinement is to simulate more accurately the
software interaction with the hardware, using ISS. The
Instruction Set Simulator (ISS) accepts an assembler code
obtained by the cross-compilation of the software modules.
Several researches were already undertaken to integrate an
ISS with SystemC [6,7]. The resulting simulation is reliable
and realistic because it depends on the actual architecture.
This decreases largely the number of delta cycles necessary
and accelerates significantly the simulation. On the other
hand, these solutions focus more on the simulation aspects
than on the partitioning methodology: the use of an ISS
seems to take place after the partitioning phase.
Furthermore, no proposal suggests the use of an RTOS
making it possible to schedule several software modules on
the ISS, so programs being executed remain of the
foreground/background type, which is today a substantial
limitation in SoC (System on Chip) designs for example.

Nicolescu and al[8] propose a component-based SoC
methodology using a wrapper generation flow to
automatically link various heterogeneous cores of different
abstraction levels in the same simulation. Fummi and al.[6]
present two cosimulation methodologies, using SystemC on
an instruction set simulator (ISS) as a processor model. The
first methodology, GDB-Kernel (GNU debugger kernel),
works at the SystemC kernel level and exploits the GNU
suite’s potentialities. The second, Driver-Kernel, uses
features offered by the operating system running on the ISS.
Both the Nicolescu and al. and Fummi and al.
methodologies require that modules simulating the software
be modified specifically; it is thus not possible to easily
transfer modules between hardware and software to test
various configurations. The MPARM multiprocessor
simulation platform has been recently proposed in [9] for
cycle-accurate power performance estimation. The
MPARM platform has been used in [10] for analyzing
several on-chip communication or a communication
channel. Cycles Accurate System Simulator (CASS) [11],
proposed by Denis Hommais and Frederic Pétrot, targets
the fast simulation of integrated systems on chip. Jerome
Chevalier and al [7] proposed the method “SPACE” which
makes it possible to have the optimal partitioning of a
system.

Traditionally, systems were captured at a cycle and pin-
accurate level in RTL and then simulated for performance
estimation before synthesis. However SoC designs today
are large and very complex, so not only does it take a lot of

time to capture them in RTL, but the resulting simulation
speed is too slow for meaningful performance exploration.
To overcome these limitations, system designers have
raised the abstraction level of system models. High level
models (usually written in C/C++) give an early estimate of
the system characteristics before committing to RTL
development

The rise in complexity, size and heterogeneity of modern
embedded system designs has pushed modeling to new
abstraction levels above RTL. Transaction level modeling
using SystemC is emerging as a new paradigm for system
modelling. The introduction of Transaction Level Modeling
(TLM) allows a system designer to model a complete
application, composed of hardware and software parts, at
several levels of abstraction. The simulation speed of TLM
is orders of magnitude faster than traditional RTL
simulation. TLM has gained a lot of attention recently ever
since it was introduced [1] as part of high level SystemC [2]
modeling initiative. Several use models and design flows
[12, 13] have been presented centering around TLM. The
separation between the communication and the computation
aspects of a design can be effectively achieved using
transaction level models (TLMs). The concept of TLM first
appeared in the domain of system modeling languages, like
SystemC [1] and SpecC [5]. In [1], a TLM is defined as a
model where communication between modules is modeled
in a way that is accurate in terms of what is being
communicated, but not in a way that is structurally accurate
(i.e., the actual wires and pins are not modeled). They have
also insisted that the communication between modules be
modeled using function calls.

An overview of TLM is presented by Cai [14] and an
overview of TLM flows by Donlin [12]. Different
approaches to SystemC modeling are presented by Colgan
[15] and Kogel [16]. The differences between RTL and
TLM have been studied by Calazans [17]. Commercial
tools such as the Incisive Verification Platform [18],
ConvergenSC System Designer [19] and Cocentric System
Studio [20] have also started adding support for system
modeling at the higher TLM abstraction, in addition to
lower level RTL modeling.

3 BASIC CONCEPTS

3.1 Principles of TLM in SystemC

SystemC is a system modeling language that can model and
operate hardware at system-level. SystemC can easily
express a complex SoC core at a high level while having all
the merits of hardware description languages. It was
developed using C++ classes. Hence, SystemC can be
effectively used for simulation environment in checking not
only hardware operation but also software one. Also, it
supports TLM (Transaction-Level Modeling). SystemC
class libraries provide essential classes for modeling system
structure. They supports hardware timing,concurrency, and
reaction, which are not included in standard C++. SystemC
allows developers to describe hardware and software, and
their interface under C++ environment.

Construction de filtres pour le traitement d’images numériques

 11

The goal of transaction-level modeling is to speed up
simulation time and the time it takes to develop the
models.The transaction-level model is built as set of
interfaces that define how models communicate. In its most
primitive form the TLM basic interfaces provide with the
fundamental communication and synchronization constructs
that can be used to create TLM models. The basic idea of
Transaction Level Modeling (TLM) is to establish
communication through function calls that represent
transactions rather than signals as at the Register Transfer
Level (RTL). Transaction Level Modeling (TLM) has been
introduced in the recent past as a modeling style to describe
communication channels at a higher abstraction level with
respect to Register Transfer Level. Although Transaction
Level (TL) models offer high simulation speed, in some
cases, they do not capture enough details about on-chip
behavior. At TLM level, the system bus behavior can be
viewed as an abstract channel independent of the target bus
architecture or protocol implementation.

3.2 TLM 2.0

The focus of OSCI TLM-2.0 in particular is the modeling
of on-chip memory-mapped busses. TLM-2.0 has a layered
structure, with the lower layers being more flexible and
general, and the upper layers being specific to bus
modelling. In TLM-2.0, an initiator is a module that
initiates new transactions, and a target is a module that
responds to transactions initiated by other modules. A
transaction is a data structure (a C++ object) passed
between initiators and targets using function calls. The
same module can act both as an initiator and as a target, and
this would typically be the case for a model of an arbiter, a
router, or a bus. In order to pass transactions between
initiators and targets, TLM-2.0 uses sockets. An initiator
sends transactions out through an initiator socket, and a
target receives incoming transactions through a target
socket. A module that merely forwards transactions without
modifying their content is known as an interconnect
component. An interconnect component would have both a
target socket and an initiator socket. The default transaction
type for the socket classes, implied in the absence of any
template arguments, is tlm_generic_payload. The generic
payload is an important part of the TLM-2.0 standard
because it is another of the keys to achieving
interoperability between transaction level models. The
generic payload serves two closely-related purposes. It can
be used as a general-purpose transaction type for abstract
memory-mapped bus modeling when you are not concerned
with the exact details of any particular bus protocol,
offering immediate interoperability between models off-
the-shelf. Alternatively, the generic payload can be used as
the basis for modeling a wide range of specific protocols at
a more detailed level, the beauty of this approach being that
it is relatively easy to bridge between different protocols
when both are built on top of the same generic payload
type. The generic payload supports two commands, read
and write. The goal of the OSCI TLM2.0 standard is to ease
and enable interoperability between high-level SystemC

components. TLM 2.0 defines modeling styles, several
interfaces, a generic payload, and more than 150 rules to
define the expected interface behavior during simulation.
While some of those rules clarify the semantic of a
transaction, a large part specify restrictions and expected
behavior.TLM2.0 defines two modeling styles. The Loosely
Timed (LT) modeling style is targeted for system and
platform models, where timing and data are only loosely
connected. For the correct functionality, it is not important
to get specific data at exactly the specified time. Resource
conflicts and contentions are not modeled in the LT
modeling style. For the LT modeling style, TLM2.0 defines
two timing points, the beginning time and the end time of a
transaction. The second modeling style is called
Approximated Time (AT). With this modeling style, it is
easy to model resource contention and arbitration. It is used
for systems where the dependency of timing and data is
very strong, like in systems with very stringent and specific
hard real-time requirements. The AT modeling style defines
four timing points for a transaction: the begin request, end
request, begin response and end response. Therefore,
systems with delay due to concurrent resource access
conflicts and arbitration can be modeled very accurately.

Beside the two modeling styles, TLM2.0 also defines two
interfaces. One is a blocking transporter called b_transport
(TRANS&, sc_time&). The specification defines that the
caller module does not continue any processing while
issuing a transport call. It waits until the transport calls
return before continuing execution. In addition, TLM2.0
defines a non-blocking interface. Two non-blocking
transport calls exist, a forward path nb_transport_fw
(TRANS&, PHASE&, sc_time&) and the backward path
nb_transport_fw (TRANS&, PHASE&, sc_time&). Both
transports return immediately so the caller module can
continue its processing while it waits for the recipient to
respond. TLM 2.0 defines a direct memory interface (DMI),
as well as a debug transport interface.

3.3 Partitioning

The hw/sw partitioning allows the transformation of the
parts specifications system into hw and sw components.
Partitioning is a well-known NP-complete problem
depending on a big number of parameters. To solve this
problem, most automatic methods reduce the number of of
parameters and use a heuristic based on a cost function
pondered by the retained criterias and checked constraints.
However, the feasibility of these methods depends
exclusively on the accuracy of parameters for the values to
be optimized, in the main part execution time, hardware
size, power consumption, etc. for every part of a design
[21].

Global optimization is the task of finding the absolutely
best set of parameters to optimize a goal function. In
general, there are solutions that are locally optimal but not
globally optimal. Consequently, global optimization
problems are typically quite difficult to solve exactly. The
criteria chosen for this estimation vary from a tool to

M.KHETATBA & al

 12

another. With each criterion is associated a metric value just
as a factor which is used to balance them and which
depends on technology used and the applicability.It is thus
difficult to define an estimate function which is realistic
even for a specific applicability.

Metrics allow evaluation of design quality and design space
exploration. Partitioning into hw and sw of a system is
performed by evaluating a cost function assembled from
competing metrics (see figure 1). These metrics are
obtained by static and dynamic code analysis on the highest
level of abstraction - the algorithmic description of the
system. The common metrics can be applied on all objects
of the specification. For example a size, execution time,
cost, and so on. Closeness metric measures the probability
that two closest objects of the specification should be
implemented on the same system component. For example,
if two system objects use the same data, execute
sequentially, and have the same hardware requirements,
then implementing them on the same system component
would likely lead to a good design [21,22].

A CDFG (Control Data Flow Graph) is an abstraction of
the real system. In general an algorithm in form of
sequential code can be decomposed into its control flow
graph (CFG), built up of interconnected objects. Each
object (for example basic block) contains a sequence of
data operations ended by a control flow statement as last
instruction. This sequence of data operations forms itself a
data flow graph (DFG) [22].

Figure 1: Typical partitioning system configuration

Estimators are necessary in partitioning step. Indeed, the
values given by the estimators inform the designers about
the quality of the found solutions, in order to predict the
results of the design without going until the total
realization. It is a fast estimate of the performances or
characteristics of architecture. The problem is then to find
the metric ones to evaluate the solutions, and these metrics
is generally limited to the technological criteria.

This is a summary of software estimation used in the
software simulator:

 Execution time (RunTime)

 Create basic blocks (SystemC) and compile them to a

specific instructions set.

 Estimation of blocs execution time.

 Calculate specification’s execution time

 Data memory size:

 Program memory size

 Task maximum hold time (context switch, preemption)

 Maximum number of preemptions for each task

A good system performance measure is a difficult task, thus
it depends of the modelling of target processor and the
instructions flow execution. For simple processors, it is
possible to calculate execution time of each instruction on
target processor. The global processor runtime is calculated
by multiplying execution frequency of each instruction by
the execution time of that instruction.

Software simulator, provides a cost estimate of the partition
result while using like metric evaluation: Execution time,
memory size, Memory access time and Context switching

3.4 SystemC Gaps

Let us start from a system description in a set of SystemC
modules. After partitioning, the hardware modules will be
simulated by the SystemC hardware simulator, while the
software modules will be carried out by the SystemC
software simulator (see figure 2). But, in spite of the fact
that we can qualify the language SystemC on the level
system, several gaps concerning the modeling of the
software part of an application remain. All the devices are
in place to allow refinement of the hardware, but not for the
software. The problem comes owing to the fact that the
scheduler is the same one for the software and the hardware
during simulations. Concurrency is not modelled, neither
préemptive scheduling nor the support of the priorities. It is
thus impossible to manage the systems with hard real time
constraints. However, the real time systems are used much
in the systems on chip. To be able to model them as parts of
a complete system is an obvious strategic asset for the
codesign.

Figure 2: SystemC simulator

We propose an integrated ISS with a RTOS core in order to

Construction de filtres pour le traitement d’images numériques

 13

replace the weak software simulator of SystemC. ISS in a
basic architecture of simulation in SystemC which could be
used as assistance tool in the systems on chips design
starting from raised levels of abstraction.

4 SIMULATION PLATFORM

The approach we present here helps architecture
exploration for SoC development. Our platform allows
simulation and performance assessments to facilitate
architectural exploration, particularly for hardware-software
partitioning. The building of SystemC modules in platform
follows a coding guideline that facilitates transparent
module transfers between hardware and software. This
approach wants to be innovating in the direction where two
simulations are carried out on level TLM, the first quick to
check only the system functionality by using a particular
case of the modeling style LT (Loosely-timed) and second
is precise by using the style of modeling AT
(approximately-timed). The platform facilitates the work of
the designer when this last wishes to test various
software/hardware configurations, because on this level it is
possible to move the modules of the software part towards
the material part and conversely, with a minor effort and a
minimum time on behalf of the designer. To guide the
originator in his partitioning, it is possible for him to carry
out simulations of its application.

In summary, no method currently exists that makes it
possible to easily simulate at high level various
hardware/software configurations, in order to obtain results
leading to the optimum partition of a system. Three main
conditions are required to reach this goal:

The possibility of moving modules between the software
part and the hardware part without changing modules’ code.
A simulation of the whole system giving realistic results to
validate or invalidate a partition choice.

A multiprocessor approach giving a realistic embedded
system simulation.

Our architecture is made up of the following hardware
components(see figure 3) : processor,hardware modules ,
memory,interrupt manager , timer,stop peripheral

Figure 3: Hardware components

The software components (figure 4) are: software modules,
RTOS, communication manager

Figure 4: Software components

4.1 A Retargetable ISS

An instruction set simulator runs a program by simulating
the effects of each instruction on a target machine, one
instruction at a time. Instruction set simulators are attractive
for their flexibility: they can in principle, model any
computer, gather any statistic, and run any program that
target architecture would run. Additionally, it can provide
debug access to internal state information of the processor
that are usually hidden in a real hardware. Using an ISS
eases software development and debugging by providing a
deterministic execution; especially useful for analyzing race
conditions.

Retargetability is now an important concern, particularly in
the area of the embedded systems and SoC design. A
retargetable ISA (Instruction Set Architecture) simulator
requires a generic model, supported by a language, to
describe the architecture and its instruction set. The
simulator uses the architecture description to decode
instructions of the input program and execute them. The
challenge is to have a model that is efficient in terms of
both quality of the description and performance of the
simulator. To have a high quality description, the model
must easily capture the architectural information in a
natural, compact and manageable form for a wide range of
architectures. On the other hand, to generate a high
performance simulator and to reduce the operations that the
simulator must do dynamically at run time, the model
should provide as much static information as possible about
the architecture and its instruction set.

Designing an efficient model that captures a wide range of
architectures is a hard problem because such architectures
have different instruction-set format complexities. There is
a tradeoff between speed and retargetability in ISA
simulators. Some of the retargetable simulators use a very
general processor model and support a wide range of
architectures but are slow, while others use some
architectural or domain specific performance improvements
but support only a limited range of processors. Also in
some description languages, deriving a fast simulator
requires lengthy descriptions of all possible formats of
instructions.

Our Software simulator as described in Figure 5 has the
main features:

M.KHETATBA & al

 14

 multiple processors support
 running code, written in assembler
 extensive configuration
 simulating x86 and 68000 processors
 step by step execution
 visual representation of the registers state
 detailed simulation results
 OS window showing all events with precise timing

(hour, min, sec, msec)

Figure 5: Principles of software simulator

Figure 5 illustrates the main principles. The target code
consists of instructions for the target architecture. Execution
is modelled by simply incrementing the intermediate code
pointer. Branch instructions must calculate a new
intermediate pointer first.

SystemC makes it possible to suitably simulate hardware,
but not software. We thus chose to use of ISSs in our
architecture to jointly simulate the software part with the
hardware part. For our architecture, our ISS is encapsulated
in a SystemC module (sc_module) and thus SystemC deals
with making carry out the hardware processes and the ISS.
As the ISS is also itself a simulator, this SystemC code
(software) is not carried out by the same simulator as the
SystemC code of the hardware part. Thus we have two
simulators of SystemC: SystemC hardware simulator of
SystemC and the software simulator which we designed

4.2 Memory

It contains the binary code, which gathers the code of the
operating system and the software modules and tasks. The
code memory is loaded in starting from a file at the time of
simulation initialization. This memory is also used to store
software dynamic information.

4.3 Interrupt Manager

It informs the processor by activating the interruption. The
processor must then communicate with the manager by the
interconnect component in order to know the identity of the

module which caused the event.

4.4 Timer

Any operating system which allows parallel tasks needs a
timer to indicate the moment to him when it must pass from
one process to the other. It provides as a basis interruptions
being used of time to the RTOS which is carried out on the
ISS. The tics of scheduling are essential to have a
préemptive core such that of MicroC/OS-II.

4.5 Stop Peripheral

This special peripheral makes it possible to finish
simulation. A simple access memory directed to the
address of this peripheral generates the execution of the
function sc_stop () of SystemC.

4.6 RTOS

A Real-Time Operating System (RTOS) allows realtime
applications to be designed and expanded easily. However,
the RTOS introduces overhead, which may prevent some
real-time systems, such as high-speed packet switches, from
working efficiently. As a result,deadlines may be missed.
The overhead can be reduced by migrating kernel services
such as scheduling, time tick (a periodic interrupt to keep
track of time during which the scheduler makes a decision)
processing, and interrupt handling to hardware. This will
significantly improve the response time and the interrupt
latency, provide accurate timing, and increase the CPU
utilization.

If more than one behavior is mapped to a processor, the
mapped behaviours have to be scheduled. A processor
allows only sequential execution at a time.

One scheduling approach is dynamic scheduling as
executed by an RTOS on the target system. However, it is
not desirable to execute a complete RTOS at an early
design stage due to the simulation overhead. Therefore, an
abstract RTOS model is used for exploration of different
scheduling policies.

µC/OS-II is a core real time that permits to do an execution
of several tasks on a microprocessor. We needed a RTOS in
order to permit a multiprocessor execution. Our choice was
about µC/OS-II because its source code is available, what
facilitated the understanding of the working principle of the
RTOS in general. In spite of its advantage, µC/OS-II have
been deprived of some aspects as the multiprocessors,
therefore we rewrote our OS entirely (see figure 6) in order
to manage the wanted appearance (See Table 1), without
including functionalities of µC/OS-II as the management of
the TCP/IP and some aspects of communications of which
we didn't have need in our partitioning architecture.

The RTOS is as much as possible independent of the
hardware. The main function of our adapted RTOS is the

Construction de filtres pour le traitement d’images numériques

 15

scheduling of software tasks. It offers many scheduling
policies,

Table 1: RTOS comparative

Properties Adapted
RTOS µC/OS-II

Multiprocessors Yes No

Priority sharing (tasks) Yes No

Heterogeneous Yes No

Figure 6: represents the core of the operating system.

A module can be in one of the three states: finished,
elected, ready.

4.7 Modules

Modules represent the object code of the SystemC modules
belonging to a CDFG (Control Dated flow Graph), intended
to be implemented in software and/or hardware. Each
module has a single identification number given by the user
of our simulation platform. In our case, the grains must
contain a code fragment, written in assembler language .
The modules implemented in software are tasks carried out
by ISSs. For the modules which will be implemented in
hardware, they are established to communicate through the
interconnect component. Our platform guarantees the
communication of the entities, as well as the change of the
nature of the modules. The following figure 4.13 watch an
example of the modules of code obtained starting from a
CDFG, the left part contains those to implement in
software, and the right part those to implement in hardware.

Figure 7: Example of modules faisant partie d’un CDFG.

The unit managing the modules allows the choice and the
management of the modules, by assisting the user to choose
the code modules written and stored on the disc. This unit
ensures also the management of the hardware and software
modules, by simplifying the passage of a module from the
hardware part to the software part and conversely by a
simple click (figure 8).

Figure 8: Modules reset

M.KHETATBA & al

 16

Figure 9 shows an example of module and some
information attached to this module

Figure 9: Example of module informations

4.8 Interconnect Component

It makes it possible to connect all the hardware modules
and the peripherals of the platform and ensures the
communications. The simulation of these modules is much
faster, because there is not all the arsenal to make carry out
software (OS, ISS, etc). All the hardware modules can
communicate and send their transactions (hw/hw
communication).

The interconnect component has a role to carry out the
routing of the transactions; therefore it is necessary that it is
equipped with a transactions queue to store the
communication calls.

Figure 10: interconnect component

4.9 Communication Manager

It establishes connections between software modules and
platform hardware. It answers task requests to communicate
with other software or hardware modules. The software
communication manager handles communications between

any connected modules (hardware or software) and
provides the same communication model as the hardware
channel. A module connected to this manager will be
registered as a software module.

5 CONCLUSION

Thus, according to the TLM 2.0 concepts, modules can be
initiators, targets, or targets and initiators at the same time.
Thus, in our architecture, All the hardware modules and
processor (ISS) are regarded as initiators, on the other hand,
the memory, timer, stop peripheral and interrupt manager
are regarded as targets.

We also used the two blocking interfaces of transport and
not blocking. Thus, we carried out a first validation of the
system with a particular case of the style of modeling
“loosely_timed”, it is the untimed model i.e. the second
parameter sc_time of b_transport is null and that to quickly
check the functionality of the system and a second
validation of the architecture of simulation with the
modelling style approximately_timed to have precise
results.

We have define, through this article, the importance of the
concepts of standard TLM 2.0 to carry out a simulation
architecture on TLM level .with the respect of TLM 2.0
rules, we have obtained interopable components. We also
see how to integrate a retargetable ISS on the platform
which allows simulation an high level of an application
M/L, with an aim of validating a partitioning M/L and to
have an optimal solution. We also made communicate our
software simulator with the hardware simulator of
SystemC. To optimize the process of partitioning, works
remain to be made. The addition of other estimators for
example remains a big step to be achieved.

BIBLIOGRAPHIE
[1] T. Groetker, S. Liao, G. Martin, S. Swan, System

Design with SystemC. Kluwer Academic Publishers,
2002

[2] M. Besana, M. Borgatti, Application Mapping to a
Hardware Platform through Automated Code
Generation Targeting a RTOS: A Design Case Study.
pages 41–44.Proc. of DATE Conference and
Exhibition Design Forum, March 2003

[3] J. Staunstrup, W. Wolf, Hardware/Software Co-
Design, Principles and Practice. Kluwer Academic
Publishers, 1997

[4] OSCI. SystemC. www.SystemC.org.

[5] D. D. Gajski, J. Zhu, R. D¨omer, A. Gerstlauer, S.
Zhao, SpecC: Specification Language and Design
Methodology. Kluwer Academic Publishers, 2000

[6] F. Fummi, S. Martini, G. Perbellini, M. Poncino,
“Native ISS SystemC integration for the Co-simulation
of multi-processor SoC," DATE 2004, Vol. 1, pp. 564-
569.

Construction de filtres pour le traitement d’images numériques

 17

[7] J. Chevalier, O. Benny, M. Rondonneau, G. Bois, M.
Aboulhamid, F.-R. Boyer, “SPACE: A
Hardware/Software SystemC modeling platform
including an RTOS," Forum on specification and
Design Languages, 2003.

[8] G. Nicolescu et al., “Validation in a Component-Based
Design Flow for Multicore SoCs”. Proc. 15th Int’l
Symp.System Synthesis (ISSS 02), ACM Press, pp.
162-167, 2002

[9] M. Loghi, M. Poncino, and L. Benini. Cycle-accurate
power analysis for multiprocessor systems-on-a-chip.
In Proceedins of the 14th ACM Great Lakes
symposium on VLSI, pages 410–406. ACM Press,
2004

[10] M. Loghi, F. Angiolini, D. Bertozzi, L. Benini, and R.
Zafalon. Analyzing on-chip communication in a
mpsoc environment. In Proceedings of the conference
on Design, automation and test in Europe, page 20752.
IEEE Computer Society, 2004.

[11] F. Petrot, D. Hommais, and A. Greiner. "Cycle precise
core based hardware/software system simulation with
predictable event propagation". In Proc. of the 23rd
Euromicro Conf., pages 182 -187, Hungary, Sep.
1997.

[12] A. Donlin. Transaction level modeling: Flows and use
models. In A. Press, editor, CODES+ISSS ’04:
Proceedings of the 2nd IEEE/ACM/IFIP International
Conference on Hard-ware/software Codesign and
System Synthesis, pages 75–80, New York, NY, 2004.

[13] F. Ghenassia. Transaction-Level Modeling with
SystemC:TLM Concepts and Applications for
Embedded Systems.Springer, November 2005

[14] L. Cai and D. Gajski, Transaction level modeling: an
overview, Proc. Intl. Conf. Hardware/Software
Codesign and System Synthesis, October 2003, pp.
19–24.

[15] J. Colgan and P. Hardee, Advancing Transaction Level
Modeling – Linking the OSCI and OCP-IP Worlds at
Transaction Level,Open-Systems Publishing
(November 6, 2006); www.opensystems-

[16] T. Kogel, A.Haverinen, andJ. Aldis, OCPTLMfor
Architectural Modeling. Methodology: White Paper,
OCP-IP (November 6, 2006); www.ocpip.org.

[17] N. Calazans, E. Moreno, F. Hessel, V. Rosa, F.
Moraes, and E. Carara, From VHDLregister transfer
level to SystemC transaction level modeling: a
comprehensive case study, Proc. Symp. Integrated
Circuits and Systems, September 2003, pp. 355–360.

[18] Cadence NCSystemC. http://www.cadence.com.

[19] CoCentric System Studio. http://www.synopsys.com.

[20] CoWare. http://www.coware.com.

[21] F. Vahid, D.D. Gajski, Closeness metrics for system-
level functional partitioning. O-8186-7156-4/95 IEEE,
1995.

[22] B. Knerr, M. Holzer, M. Rupp, HW/SW Partitioning
Using High Level Metrics. Copyright International
Institute of Informatics and Systems, published in the
proceedings of the International Conference on
Computing, Communications and Control
Technologies (CCCT), pp. 33-38, Austin, 2004

