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ABSTRACT

 

The ground and low-lying excited electronic states of molecules of the first ( 2Sc , 

2Cr , 2Mn , and  2Ni ) and second ( 2Y , 2Mo , and 2Tc ) row of transition elements have 

been investigated for the first time with the generalized Van Vleck second order 

multireference perturbation theory (GVVPT2) method, a variant of MRPT. All potential 

energy curves (PECs) obtained in these studies were smooth and continuous; that is, they 

are free from wiggles or inflexion points.  In order to account for relativistic effects, 

which become important in heavy elements, the GVVPT2 method was extended to 

include scalar relativistic effects through the spin-free exact two component (sf-X2C) 

method and used in the studies of all molecules of second row transition elements and 

some of those of the first row considered in this present work. GVVPT2 studies of 

triatomic lithium and beryllium were also done as a first step to studies of small clusters 

of transition metals. The spectroscopic constants (bond lengths, harmonic frequencies, 

bond energies, and adiabatic transition energies) obtained for all PECs at the GVVPT2 

level were in good agreement with experimental data, where available, and with results 

from previous studies using other high level ab initio methods. Optimized geometries of 

the triatomics were also in good agreement with previous findings. The studies included 

electronic states (e.g., the 


g

1

g

1 Σ3andΣ2  states of 2Y  as well as the 


g

5 Σ1  and 


g

9 Σ1  

states of 2Tc ) not previously discussed in the literature. 
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As a first step to applying GVVPT2 to the study of relatively larger systems, the 

present work includes the results of efforts on improving DFT-in-DFT embedding theory. 

New equations were determined which involved an additional constraint of orthogonality 

of the orbitals of one subsystem to those of the complementary subsystem as warranted 

by formal arguments based on the formulation of DFT-in-DFT embedding. A computer 

program was realized using the new embedding equations and test calculations 

performed. Analyses of electron density deformations in embedding theory, in 

comparison with conventional Kohn-Sham (KS)-DFT densities, were performed using 

the new embedding program and a computer code that was also written to compute 

electron densities of molecules in real space, given reduced one particle density matrices.  

The results revealed that whereas the current formulation of DFT-in-DFT 

embedding theory generally underestimates electron density, at the interface between 

subsystems in comparison with conventional KS-DFT calculations of the supermolecule, 

the new DFT-in-DFT embedding scheme with the external orthogonality constraint was 

found to remedy the situation. Worthy of special note in this new embedding protocol is 

the fact that the nonadditive kinetic potential ( Tv ), thought to be a major cause of 

weaknesses in DFT-in-DFT embedding and to which many previous research efforts 

have been devoted, can be set exactly to zero.  

The present work therefore realized, for the first time, a new DFT-in-DFT 

embedding theory that neither relies on kinetic functionals nor requires a supermolecular 

DFT calculation. Test calculations using the new embedding theory and supermolecular 

basis set expansion of KS orbitals reproduced conventional KS-DFT energies to at least 

the 7
th

 decimal place (and even exactly at many geometries). A new way of expanding 
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KS orbitals was also employed in the new embedding protocol, which is intermediate 

between the usual supermolecular and monomer basis expansions, referred to as the 

“extended monomer expansion”. The monomer basis expansion scheme was inadequate 

for the new DFT-in-DFT embedding protocol. Test calculations found this novel, 

computationally cheaper, extended monomer approach to give results quite close to those 

from supermolecular basis expansions.  
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CHAPTER I

INTRODUCTION 

 

 Electronic structure calculations are a key complement to scientific 

experimentation. Virtually all properties of molecules and materials are derivable from 

knowledge of their electronic structures. In particular, electronic structure calculations 

can provide insight: into reaction pathways and mechanisms; ascertain structures of 

experimentally inaccessible intermediates; and determine several other properties of 

materials that help explain experimental results and make useful predictions. 

Unfortunately, however, the electronic Schrödinger equation that models each system by 

a Hamiltonian operator and a corresponding wave function describing its electron cloud 

is exactly soluble only for a single electron system, such as the hydrogen atom. For 

systems of more than one electron, approximations must be made with regards to 

describing electron-electron interactions. These interactions are often divided into static 

correlation, used to describe situations in which a single configuration of the electrons is 

insufficient for describing a system, and dynamic correlation when corrections resulting 

from the instantaneous movement of electrons due to neighboring electrons are warranted 

in order to afford an accurate description of a system. The former correlation is otherwise 

known as long range correlation and is important when the total wave function is not 

dominated by a single Slater determinant [1]. Good examples of this scenario would be 

bond breaking situations and regions of near degeneracy. The latter correlation is also 
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called short range correlation and is due to the need to account for a coulomb hole when 

describing electronic interactions. The coulomb hole results from the fact that the 

position of each electron becomes the center of a constantly changing region (the 

coulomb hole) to be avoided by neighboring electrons due to coulomb repulsions [2]. The 

Hartree Fock (HF) self-consistent field (SCF) method, the lowest rung in ab initio 

electronic structure calculation methods, represents the electronic wave function as a 

single configuration of the electrons and fails to account for the coulomb hole. Thus, 

electrons are inherently uncorrelated at this level of theory. All post-HF methods seek to 

overcome these limitations through different approximations with varying degrees of 

accuracy in results.  

The work described in this dissertation is in two main parts: the first part involves 

GVVPT2 [3, 4] studies of dimers of first ( 2Sc , 2Cr , 2Mn , and  2Ni ) and second ( 2Y ,

2Mo , and 2Tc ) row transition elements and trimers of Li, and Be; the second part 

describes the new DFT-in-DFT embedding protocol [5, 6] developed and applied as part 

of the work for this dissertation. This new protocol involves an additional constraint of 

external orbital orthogonality. External orthogonality requires a subsystem’s orbitals to 

be orthogonal to those of the complementary subsystem. Neglect of this latter constraint 

led to poor estimates of electron densities, and hence embedding energies, when 

compared with reference conventional KS-DFT calculations of the corresponding 

supermolecules. Figure 1 illustrates how a system may be partitioned into subsystems as 

is often done in DFT-in-DFT embedding theory. 
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Figure 1. An illustration of the philosophy of embedding theory where a benzene dimer 

complex is partitioned into subsystems A and B. The new variant of DFT-in-

DFT embedding presented herein requires orbitals of subsystem A to be 

orthogonal to those of subsystem B. 

 

In the paragraphs that follow, the two main parts of this dissertation are briefly 

introduced. 

Theoretical Studies of Transition Metals 

Aspects of the transition metal (TM) molecules that have been studied using the 

GVVPT2 method were previously investigated theoretically using different methods. The 

present studies, however, considered chemically motivated valence bond style active 

spaces in the calculations that were not used in previous work. The present work likewise 

includes electronic states not previously characterized. Moreover, full potential energy 

curves (PECs) for some of the molecules were generated for the first time. 

Studies of transition metals and their derivatives have become increasingly 

important and attractive, both to experimentalists and theoreticians, due to their many 

applications; e.g., catalysis, magnetism, medical and engineering applications. Novel 

Subsystem A 

Subsystem B 

Complex 
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applications of the elements continue to emerge such as recent discoveries of transition 

metal catalysts for renewable energy; e.g., the synthesis of titanium (IV) oxide nanowires 

for solar energy capture [7], syntheses of TM catalysts for water splitting [8-11], and TM-

derived materials for the emerging field of spintronics [12-14]. These applications are 

due to the unique characteristics of TM elements including: the formation of compounds 

whose colors result from d-d transitions; the ability to exist in different stable oxidation 

states which permits the formation of different types of complexes; and the existence of 

low-lying vacant d-subshells.  

However, studies on TM dimers are quite challenging both experimentally and 

theoretically. Experimentalists are faced with difficulties associated with the very high 

melting and boiling points of TMs. This often leaves matrix isolation techniques as the 

best alternatives for experimental studies of TMs, albeit with poor rotational spectra 

coupled with the fact that matrices can affect ground and low-lying electronic states 

differently. For example, Infante et al. [15] found low-lying excited uranium (IV) oxide 

electronic states to lie energetically lower than the supposed ground state when the 

molecules were trapped in an argon matrix.   

On the other hand, theoretical studies of TMs are complicated by the occurrence 

of multiple electronic states within narrow energy ranges, coupled with the generally 

multireference nature of the wave functions needed to describe such states, requiring a 

careful balance between descriptions of short and long range electron correlations. The 

presence of partially filled d-subshells in these metals results in several possibilities of 

coupling the spin and orbital angular momenta of their valence electrons in the event of 

bond formation and, hence, many low-lying molecular states. For example, the 
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combination of a ground state scandium atom (
2
Dg; 4s

2
3d

1
) with either another ground 

state atom or one in one of the first three excited states (labeled as a
4
Fg: 4s

1
3d

2
; a

2
Fg: 

4s
1
3d

2
; z

4
Fu: 4s

1
4p

1
3d

1
), at only 1.427, 1.846, and 1.956 eV above the ground atomic 

term, already results in as many as 270 molecular states [16]. In the case of 2Ni , limited 

configuration interaction (CI) calculations
 
on the molecule [17] found 84 of its molecular 

states, corresponding to the 4

3 F  (3d
8
4s

2
) + 4

3 F  (3d
8
4s

2
) dissociation limit, to lie within an 

energy range of only 300 K (0.026 eV) while 45 other states, correlating with the 3

3 D

(3d
9
4s

1
) + 3

3 D (3d
9
4s

1
) dissociation asymptote, also lay within a narrow energy gap.  

The many different possibilities of electronic arrangements within the partially 

filled d-subshells of TMs imply that the Hilbert spaces for these systems are generally 

large. The implication of this is that computational costs for high level methods like 

MRCISD become quite high for reasonably large one-electron basis sets, leaving 

multireference perturbation theory (MRPT) techniques as plausible alternatives since 

they offer a good balance between cost and accuracy, in general, in ab initio quantum 

chemistry calculations. Unfortunately, the near degeneracy of many low-lying electronic 

states of TM molecules leads to intruder state problems when simplistic MRPT methods 

are used in such studies [18]. Intruder state problems have long been known to constitute 

an “Achilles’ heel” for MRPT methods and have generated different attempts to resolve 

the problem, such as the use of shift techniques or elimination of offending (intruding) 

states.  Moreover, attempts to circumvent the problem by changes in active spaces are 

commonly used [18].  Unfortunately, these approaches do not work well in all situations, 

as demonstrated recently by Camacho et al. [18] for the case of 2Mn  and Ruipérez et al. 
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[19] for the case of 2Cr .  The calculations due to Camacho et al. [18] were performed at 

the MCQDPT and CASPT2 levels of theory and found over 5,000 intruder states, which 

did not allow for the construction of a smooth PEC. These authors succeeded to construct 

smooth PECs of states of 2Mn  only after drastic shift parameters were used in MRPT 

methods. However, their results showed a strong dependence on the value of the 

parameter used. They therefore concluded MRPT methods to be incapable of describing 

complicated systems such as transition metals that generally have many quasidegenerate 

states. One way of overcoming the intruder state problem is to use a Dyall bi-electronic 

zero-order Hamiltonian, as is done in the NEVPT2 method [20, 21]. This approach 

appears to deal well with intruder states, albeit with a significant increase in complexity 

in comparison with one-electron Hamiltonians. 

For the work described in this dissertation, the generalized Van Vleck second 

order multireference perturbation theory (GVVPT2) method was used to study the low-

lying electronic states of the 2Sc , 2Cr , 2Mn , 2Ni , 2Y , 2Mo , and 2Tc  molecules as well 

as the geometries of 3Li and 3Be  and the symmetric dissociation of linear 3Be . The 

GVVPT2 method based on an MCSCF reference [3, 4] was realized in the Hoffmann 

research group at the University of North Dakota (UND). The technique, a variant of 

MRPT, is parameter free and is guaranteed to give smooth and continuous potential 

energy curves (PECs) based on formal arguments.  Moreover, the flexibility of the 

GVVPT2 method allows it to support both complete and incomplete model spaces. It is 

additionally an intermediate effective Hamiltonian approach and is subspace-specific. It 

is computationally realized using spin-adapted many-electron functions.  These 

advantages, coupled with the fact that GVVPT2 uses the macroconfiguration technique 
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[22], also developed in the Hoffmann Group at UND, have been exploited in the present 

studies.  

The Importance of Relativistic Effects 

Relativistic effects are known to affect the properties of atoms and molecules. 

Several anomalies observed during experimental studies on atoms and molecules are 

explicable only in terms of relativity. For example, ionization energies, as well as 

electron affinities, of elements are generally known to decrease down a period in the 

Periodic Table of elements. For the coinage metals, for example, this pattern is not 

observed. The experimental ionization energy of gold is known [23] to be the highest in 

this group of metals (Au = 9.225 eV versus 7.726 eV for Cu and 7.576 eV for Ag). 

Likewise the experimental value of its electron affinity is larger [24] than that of copper 

or silver (Au = 2.309 versus 1.226 for Cu and 1.303 for Ag). This large electron affinity 

allows gold to accept electrons and form ionic compounds such as AuRb and AuCs  

[25, 26]. Nonrelativistic calculations on the coinage metals do not reproduce this pattern 

of experimental ionization potentials and electron affinities. For example, a 

nonrelativistic MRCI calculation [27] on Cu found an electron affinity value of only 1.06. 

On the other hand, a QCISD(T) calculation [28] that used a relativistic pseudopotential 

basis set already came close to predicting the correct ionization potentials and electron 

affinities; giving the former as  7.695 eV, 7.431 eV, 8.898 eV and the latter as 1.199, 

1.199, 2.073 for Cu, Ag, and Au, respectively. A CCSD(T) study [29] that incorporated 

the relativistic spin-averaged Douglas-Kroll no-pair method [30, 31] came even closer to 

predicting  the correct values of these quantities; giving ionization potentials and electron 

affinities as 7.733, 7.461, 9.123, and 1.236, 1.254, 2.229 for Cu, Ag, and Au, 
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respectively. The authors of this latter study also performed calculations at the restricted 

open shell Hartree-Fock (ROHF) and coupled cluster with single and double electron 

excitations (CCSD) levels of theory and found less accurate results. In their study, the 

correlation of semi-core (n-1)s
2
(n-1)p

6
 electrons was found to improve accuracy. The 

data reported here for Au were obtained with only the (n-1)p
6
 electrons correlated and the 

(n-1)s
2
 frozen whereas for Cu and Ag, all 8 semi-core electrons were correlated. It can be 

seen that the accuracy drops in the case of Au, in comparison with reference experimental 

data. These studies clearly indicate that the unusually high ionization potential or electron 

affinity of Au is due to relativistic effects.  

Many other anomalous properties of atoms and molecules are attributable to 

relativistic effects. The yellow color of gold can only be explained using relativity [32]. 

The relativistic stabilizing contraction of the outer 6s subshell of gold together with a 

destabilizing expansion of the 5d subshell narrows the energy gap between these two 

subshells. An absorption at 2.40 eV measured for fine gold was assigned [33] to a 

transition from a filled 5d band to a largely 6s Fermi level. No such transition was 

observable in the cases of copper and silver. Furthermore, the liquid state of mercury at 

room temperature also owes its explanation to a relativistic contraction of the outer 6s 

subshell [25, 34]. Desclaux and Kim [35] verified this contraction at the relativistic 

Dirac-Hartree-Fock (DHF) level of theory. In his review on relativistic effects in 

structural chemistry, Pyykkö [36] noted that for very precise calculations, relativistic 

effects are needed even for the simplest systems such as 2H  and 


2H . The review noted 

several abnormal observations in the Periodic Table of the elements that are due to 

relativistic effects such as: the occurrence of lead (Pb) in a faced centered cubic (fcc) 
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crystal structure rather than the diamond structure in carbon (C); the chemical similarity 

between zirconium (Zr) and hafnium (Hf) due to the cancellation of relativistic and shell 

structure effects; lanthanide contraction; d-block contraction; and the occurrence of high 

valencies for the actinide series. 

Although relativistic effects are often neglected in many theoretical studies on 

light elements (typically those of the first, second, and maybe third rows of the Periodic 

Table of elements), these effects have been found to improve accuracies in theoretical 

descriptions when taken into account. On the other hand, their inclusion in calculations of 

heavier elements is more dramatic. For example, nonrelativistic MRCISD calculations 

[37] on atomic iron (Fe) underestimated the    265175 4s3dD4s3dF   excitation energy 

by as large as 0.185 eV whereas a scalar relativistic treatment, through the DKH 

Hamiltonian, at the same level of theory predicted a value close to the reference 

experimental value, only 0.055 eV larger. A full relativistic treatment [38] that included 

spin-orbit coupling effects at the RASSI-SO level of theory overestimated the 

   265175 4s3dD4s3dF   excitation energy by only 0.031 eV.  Such studies, among 

many others (including those to be reported in this dissertation), underscore the 

importance of considering relativistic effects in the theoretical description of virtually all 

quantum systems. In a recent review on the effects of relativity on atomic and molecular 

properties [39], the authors stated “real life of molecules is a relativistic quantum 

mechanical life. This holds for all atoms and molecules throughout the Periodic Table”. 

Even for very light elements, effects of relativity are visible in the fine structures of their 

atomic spectra.  
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Indeed, relativistic effects are to be expected for all atoms based on formal 

arguments. Einstein [40] suggested that the mass of a fast-moving particle increases with 

its speed according to the relation 

2

0

c

v
1

m
m











   ,                                                              (1.1) 

where m0 is the rest mass of the particle, c is the speed of light in vacuum, and v is the 

speed of the particle. From this expression, in the limit of v << c, m ≈ m0, and relativistic 

effects are minimal. Based on Bohr’s description of the atom [41], the angular 

momentum of an electron revolving around a nucleus is quantized and defined as 

nmvr   ,                                                                   (1.2) 

where m is the electron’s mass,  r is the radius of its orbit, v is its speed, n is the principal 

quantum number, while   is the reduced Planck’s Constant. Again from Bohr’s 

description of the atom [41], the radius, r, is 

2

2

0

2

mZe

4πn
r


  ,                                                              (1.3) 

where ε0 is the vacuum permittivity, Z is the nuclear charge, while e is the electronic 

charge. Substituting Eq. (1.3) in Eq. (1.2) and assuming atomic units (e = m0 = ħ = 4πε0 = 

1) leads to 

n

Z
v                                                                       (1.4) 
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This implies that the speed of an electron increases proportionately with nuclear charge 

and the mass accordingly, following Eq. (1.1). Even for the 1s electron of hydrogen for 

which v = 1 a.u. from Eq. (1.4) (compared with c ≈ 137.026 a.u.), an increase in the 

electronic mass of only 
5

2
1

2

10662
036137

1
1 


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

















 .

.
 already shows up in the fine 

structure of the spectrum of atomic hydrogen (of course, there is no spin-orbit coupling 

effect for a 1s electron). As will be shown in this dissertation, wherever they were 

considered, relativistic effects were shown to improve the accuracy of GVVPT2 results 

for all the systems studied. Such effects were included in all calculations of molecules of 

second row transition elements considered in this work.   

The Need for Embedding Theory 

Despite the growth in recent years in terms of computer power and the 

development of more computationally efficient post HF ab initio methods, key 

bottlenecks persist in the field of quantum computation. Paramount among these 

challenges is the steep scaling of several quantum chemistry methods with system size. 

Even the least computationally intensive methods, Hartree-Fock (HF) and density 

functional theory (DFT), scale, respectively, as N
4
 and N

3
 with system size. More precise 

methods like the CCSD(T) variant of coupled cluster scales as N
7
 while full configuration 

interaction (FCI), that delivers the most accurate results, scales as N! with system size 

[42]. Imagining a FCI calculation on a system of only 20 electrons is already beyond 

present computability. The steep scaling of many quantum chemistry methods curtails 

their applicability to the study of systems of only a few atoms. In the present work, the 

method of choice for studies on transition metal molecules, the GVVPT2 method, scales 
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as N
5
 compared to MRCISD which scales as N

6
 with system size (where N is a measure 

of the system size e.g., the number of basis functions). Attempting a GVVPT2 calculation 

on a gold crystal of only 10 gold atoms will already be a tedious calculation due to 

computational cost and memory requirement. Yet, a nanoparticle of gold with a radius of 

only 13 nm already contains about 542,940 gold atoms.  

There is a need to modify existing or to develop new quantum chemistry methods 

that can be used to study large realistic systems rather than just isolated atoms and 

molecules in the gas phase. Several recent research efforts in the field of quantum 

chemistry have sought to address this concern. Some of such efforts have been 

impressive. Examples include: the development of fast matrix diagonalization algorithms 

[43, 44]; parallelization [45-48]
 
of computational chemistry methods to run either on 

single computers with multiple processors or on an arbitrary number of computers 

connected by a network; the development of local methods such as finite element 

methods [49, 50]; and the development of stochastic versions of deterministic ab initio 

methods [51-55]. Such innovations have led to increased computational speed and 

enabled calculations on reasonably large systems to be realized.
 
However, the complexity 

of many quantum chemistry algorithms makes partitioning into independent tasks that 

can run in parallel quite challenging.  

Other attempts at applying high level ab initio methods to the study of large 

systems include linear and quadratic scaling; that is, the so-called O(N) and O(N
2
) 

methods [56-61].  These approaches are either based on a so-called density fitting 

scheme, in which the four-index two electron interaction terms are replaced with either 

two- or three-index integrals, which reduces scaling with basis set size [56], or on a local 
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approximation framework where the molecular orbitals are first localized by a unitary 

transformation and interactions of distant pairs of localized orbitals are subsequently 

neglected [62]. Whereas these methods have substantially reduced computational cost 

and allowed consideration of relatively larger systems, such recipes also introduce new 

sources of error; e.g., convergence problems accompany local approximation methods 

while scaling to multiple computer processors within the inherent limits of accuracy of 

the methods remains a challenge [60]. 

   Embedding schemes, which are based on the principle of “divide-and-conquer” 

[63-65], appear to be propitious approaches to electronic structure calculations on large 

systems. In such approaches, a system gets partitioned into a small region of interest, 

called the embedded subsystem (hereafter designated as subsystem A), and a larger 

region of peripheral interest referred to as the environment (hereafter, referred to as 

subsystem B). The environment may be further subdivided [66]. Embedding theories 

seek to achieve high accuracy within the localized, generally complex, embedded 

subsystem by describing it at a high level of theory while the effect of the environment is 

approximated. A key bottleneck in these approaches is in the description of the often 

artificial boundary between subsystems. In DFT-in-DFT embedding theory [66-75], each 

subsystem is treated at the DFT level and subsystem interactions are dependent on their 

electron densities plus non-additive terms resulting from the non-additive nature of the 

exchange-correlation (XC) and kinetic energy potentials. In the so-called wave function 

theory (WFT)-in-DFT embedding scheme [67, 68, 76, 77], the environment subsystem is 

treated at the DFT level, generating an embedding potential which is then included as an 

external potential in WFT calculations on the embedded subsystem.  
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In this dissertation, we present a new variant of DFT-in-DFT embedding theory. 

Previous formulations of DFT-in-DFT [71, 72], partitioned the total electron density of a 

supersystem into a sum of subsystems’ densities,  

     rρrρrρ BAtot


  ,                                              (1.5)                  

following the ideas of Cortona [73], Senatore and Subbaswamy [74, 75], where  rρ tot


 

is the total density while  rρA


 and  rρB


 are electron densities of the respective 

subsystems. The total energy functional is then minimized under the constraint of fixed 

electron number in each subsystem and without requiring that a subsystem’s orbitals be 

orthogonal to those of the complementary subsystem (that is, external orbital 

orthogonality is ignored). In Chapter VII of this dissertation where the new embedding 

scheme is described, it is shown that such neglect of external orthogonality leads to poor 

estimates of electron densities and hence, energies within embedding theory. Moreover, 

Eq. (1.5) is exactly true only if the external orthogonality condition holds. The new 

scheme incorporates this constraint and is shown in Chapter IX to lead to more accurate 

results compared to those from previous DFT-in-DFT embedding schemes.  

Organization and Structure 

The work described in this dissertation has been grouped into 10 Chapters. This 

first Chapter introduces the transition metals that were investigated at the GVVPT2 level 

of theory. It also includes the raison d’être for including relativistic effects in the 

GVVPT2 description of the molecules studied, and lastly, the motivation for pursuing an 

embedding theory scheme.  
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Chapter II contains a review of the methods used in the studies on transition 

metals and the triatoms of Li and Be. Chapters III to VI detail the studies done on low-

lying electronic states of dimers of: Sc and Y; Cr and Mo; Mn and Tc; and Ni, 

respectively. But for 2Ni , molecules of first row transition elements were intentionally 

placed with their isovalent counterparts of the second row in order to permit easy 

comparisons and analyses of the effects of relativity particularly on molecules of second 

row transition elements. 

Chapter VII contains a full description of a new approach to DFT-in-DFT 

embedding theory and its practical implementation. Chapter VIII provides test results that 

were obtained by applying the new embedding protocol to different types of chemical 

systems with varying degrees of interaction strength between the subsystems. The results 

in Chapter VIII span interaction energies between subsystems and PECs that were 

obtained for the separation of supermolecules into fragments as defined in embedding 

theory. Also included are electron density deformation contour and relief maps that were 

obtained using the new embedding method and a computer program that was also written 

to compute electron densities of molecules in real space given reduced density matrices. 

Worthy of special note is that the non-additive kinetic energy potential, vT, that could be 

termed the bête noire of DFT-in-DFT embedding and that has since been blamed for 

weaknesses in the theory, can be set to exactly zero in the new embedding protocol.   

Chapter IX reports GVVPT2 studies of triatoms of Li and Be. The purpose of 

those studies was to assess the capability of GVVPT2 for describing systems of more 

atoms in anticipation of embedding GVVPT2 calculations. Chapter X contains an 

overview of the work reported in this dissertation together with proposals for future work. 
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CHAPTER II

THEORETICAL METHODS 

Introduction 

 This Chapter describes the methods used in the studies on transition metal dimers 

and triatoms of Li and Be that will be discussed in Chapters III to VI and then Chapter 

IX. Before discussing the specific methods, it is useful to state the electronic structure 

problem and the mathematical principles often applied in its solution. As mentioned in 

the introduction, due to electron-electron interactions, the electronic structure problem 

can be solved only approximately for any system with more than one electron. 

The Electronic Structure Problem 

 Most methods of computational chemistry are developed to solve the time-

independent Schrödinger equation [78]           

 EĤ  ,                                                               (2.1) 

where   is the wave function sought for and E is its corresponding eigenvalue or 

energy. Ĥ  is the Hamiltonian operator describing particle motions and their interactions, 

and is most commonly taken in the non-relativistic limit. For a system of N electrons and 

M nuclei, Ĥ is defined [79] in atomic units as 
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where the first two terms (Te and Tn) are the kinetic energy operators of the electrons and 

nuclei, respectively; the third term (Ven) is the electron-nuclei attraction potential; while 

the last two terms (Vee and Vnn) describe electron-electron and nuclei-nuclei repulsion 

potentials, respectively. The symbols iAr , iir  and ABR define electron-nuclei, electron-

electron, and nuclei-nuclei interaction distances as defined in Eq. (2.3) and illustrated in 

Figure 2 for a two electron, two nuclei system   

AiiAiA Rrrr


 , 
jiijij rrrr


 , BAABAB RRRR


                    (2.3) 

   

 

Figure 2. Interactions in a two nuclei (A, B)-two electron (i, j) system shown in the 

cartesian coordinate system (Image taken from Szabo and Ostlund, [79]). 

 

 Eq. (2.1) is often solved within the Born-Oppenheimer approximation [80] where 

the kinetic energy of the nuclei (Tn) is assumed to be negligible compared to electronic 

motion (hence, Tn = 0) and the nuclei-nuclei coulomb repulsion potential (Vnn) is 

assumed to be a constant that adds to the Hamiltonian eigenvalues. These two 

approximations lead to an electronic Hamiltonian obtained from Eq. (2.2) as 
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where the quantities retain their previously defined meanings. The corresponding wave 

function for 
elecĤ , the electronic wave function (

elec ), describes electronic motion and 

interactions in a potential due to the nuclei at fixed positions in space. In this way, 
elec  

is an explicit function of electronic coordinates ( ir ) but an implicit function of nuclear 

coordinates ( AR );    Aielecelec R;rΨΨ  . The electronic Schrödinger equation, 

elecelecelecelec ΨEΨH ˆ ,                                             (2.5) 

is then solved to obtain the eigenvectors, 
elec , and corresponding eigenvalues, elecE = 

 Aelec RE , which are functions of nuclear positions.  This approximation decouples the 

total wave function in Eq. (2.1) into a product of purely an electronic and a nuclear wave 

function (
nuclelec ΨΨΨ  ). The total energy of the system is obtained as a sum of the 

electronic energy from Eq. (2.5) and the constant nuclei-nuclei coulombic potential 

nnelectot VEE                                                              (2.6) 

In order to describe the dynamics of molecules or the motion of their nuclei 

within the Born-Oppenheimer approximation, a nuclear Hamiltonian is defined from Eq. 

(2.2) by approximating the electronic coordinates by their average values over the 

electronic wave function [79], 
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         (2.7) 

Having averaged out the electronic degrees of freedom, the total energy ( totE ) then serves 

just as a potential term that adds to the nuclear kinetic energy operator to constitute the 

nuclear Hamiltonian operator that describes the motion of the nuclei on the potential 

energy surface obtained by solving Eq. (2.5) within the Born-Oppenheimer 

approximation. The solution of the nuclear eigenvalue problem 

   
nuclnuclnucl ΨEΨH ˆ                                                      (2.8) 

describes the vibrational, translational, and rotational degrees of freedom of the molecule. 

The eigenvalue in Eq. ( 2.8) is the total energy of the system, as in Eq. (2.1), and is 

different from  Aelec RE  in Eq. (2.5) which is only the electronic energy for some fixed 

geometry of the molecule.  

The Variational Principle and Method of Lagrange Multipliers 

The variational principle and Lagrange’s method of undetermined multipliers are 

ubiquitously applied in quantum physics and chemistry. The eigenvalue problems that are 

solved in quantum chemistry often result from applying these techniques to the 

Schrödinger equation, subject to given constraints. It is therefore important to review 

these mathematical approaches here. 

 In the variational method [79, 81], it is assumed that any function that satisfies the 

same boundary conditions as the eigenvectors of a given Hamiltonian, such as that in Eq. 
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(2.1), can be expressed as a linear combination of those eigenvectors with coefficients to 

be determined. The eigenvalue problem 

ααα ΦεΦĤ  , α = 0, 1, 2, … ,                                      (2.9) 

in general, has an infinite number of solutions that constitute a complete orthonormal set 

of vectors, 
αΦ . Since the solutions 

αΦ  are not known (i.e., otherwise there would be 

no problem to solve), the variational principle supposes that there are approximate 

solutions, Φ
~

, that can be expressed as linear combinations of the true solutions 


α

αα CΦΦ
~

                                                         (2.10) 

As many approximate solutions ( Φ
~

) as are true ones (
αΦ ) can be constructed in this 

manner and are themselves, approximate eigenvectors of the Hamiltonian. The lowest 

eigenvalue of such approximate states is an upper bound to the exact ground state energy, 

0ε , 

0εΦHΦ 
~ˆ~

                                                              (2.11) 

The general task in quantum chemistry methods is often that of determination of an 

optimal set of some expansion coefficients, such as the αC coefficients in Eq. (2.10). 

These coefficients are generally coefficients of Slater determinants or coefficients of 

configuration state functions constituting the many-particle Hilbert space of a quantum 

system. Moreover, the coefficients of basis functions spanning molecular orbitals, i.e., 

eigenfunctions of a one-electron Hamiltonian related to the true system, are thus 

determined. Obtaining an optimal set of expansion coefficients, αC , often also relies on 

Lagrange’s method of undetermined multipliers. 
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 In the Lagrangian method, a function (or functional) is minimized subject to given 

equality constraints [82]. The function or functional could otherwise be maximized. In 

wave function methods, these constraints are generally related to a requirement that the 

functions (molecular orbitals or total wave functions) be orthonormal. In DFT, a 

functional of the electron density is minimized subject to the number conservation 

constraint (i.e., the requirement that the density integrates to give the total number of 

electrons in the system,   Nrdrρ 


).  To illustrate this, suppose that the maxima of the 

function   yxyx,f 2  are to be obtained subject to the constraint equation 3yx 22  . In 

Lagrange’s method of undetermined multipliers, a lagrangian ( ) is constructed as a sum 

of the function to be maximized and the constraint equation multiplied by a lagrange 

multiplier (λ). If there are multiple constraints, then each constraint equation is added 

with some λ coefficient. In the present example, one writes 

   3yxλyxλy,x,Λ 222                                        (2.12) 

Variations of   with respect to the independent variables x, y, and λ give zero at the 

critical points of  . That is, 

     

03yx2yλx2xλ2xy

0
λ

λy,x,Λ

y

λy,x,Λ

x

λy,x,Λ

222 
















                                   (2.13) 

Eq. (2.13) leads to 2x   and y = ±1 or x = 0 and 3y  , yielding a maximum for 

f(x, y) of 2 when 2x   and y = 1.  This example is shown diagrammatically in Figure 

3, together with the minima of f(x, y) which occur at 2x   and y = -1.   
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Figure 3. Constrained optimization of f(x, y) = x
2
y (Image taken from Ref. [83]). 

 

 In the variational methods of quantum chemistry, the task is to minimize the left 

hand side of Eq. (2.11) in order to obtain a value as close to the true ground state energy 

as possible. The constraint is the requirement that the approximate Φ
~

 function be 

normalized to unity, that is 

α

β α

*

βαβ CCΦΦ1ΦΦ 
~~

 ,                                    (2.14) 

where the definition of Φ
~

 from Eq. (2.10) has been used and the asterisk in *

βC denotes 

the complex conjugate of βC . In general, βC  is real ( βC  = *

βC ). Thus, one constructs 

the following lagrangian 

   
  



αβ

βαβαβαβ

αβ

α

N21

1CCΦΦEΦHΦCC

1ΦΦEΦHΦE,C,,C,CΛ

ˆ

~~~ˆ~


           (2.15) 



23 
 

Considering variations of  E,C,,C,CΛ N21   with respect to the coefficients ( αC  or  

βC ) to be zero leads to  

 
β β

βαββαβ CSECH ,                                          (2.16) 

where 
βααβ ΦHΦH ˆ  and 

βααβ ΦΦS   (N.B. the basis set of 
αΦ  many-electron 

functions is generally orthogonal, but in the corresponding one-electron problem, they are 

not). In matrix form, Eq. (2.16) is written as 

HC = ESC,                                                        (2.17)  

where H is the matrix of the Hamiltonian operator ( Ĥ ); E is the (diagonal) matrix of 

eigenvectors; S is the overlap matrix; while C is the matrix of the expansion coefficients 

(all in the basis of 
αΦ  functions). Thus, the variational principle and Lagrange’s 

method of undetermined multipliers reduce the problem of solving the many body 

Schrödinger equation to a generalized eigenvalue problem, which becomes an ordinary 

eigenvalue problem in the case of an orthonormal basis (where S = I).  

The Hartree-Fock Self-Consistent Field Approximation 

 The Hartree-Fock (HF) self-consistent field (SCF) approximation [79, 81, 82, 84-

86] is often the starting point for most ab initio electronic structure calculations, including 

those performed on the molecules discussed in this dissertation. At the HF level of theory 

[84-86], the many-electron Hamiltonian is approximated as a sum of one electron 

operators called Fock operators 
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
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i0 fĤ ,                                                              (2.18) 
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                                              (2.19) 

is the Fock operator for the ith electron. The first term in the definition of if is the kinetic 

energy operator for the ith electron; the second term is its attraction potential to all nuclei; 

while the last term is the repulsion potential it experiences due to the averaged presence 

of all other electrons in the system. Thus, the complex many-electron problem has 

essentially been reduced to a one-electron problem in which electron-electron interactions 

are only treated by their mean, hence HF is a mean field solution. As will be seen 

subsequently, such an approach falls short of being able to describe complicated systems 

such as the transition metal molecules described in this dissertation. Nonetheless, the HF 

approximation provides a starting molecular orbital guess for high level calculations, or 

for determination of better one-electron functions.  

 With the Fock operator thus defined as in Eq. (2.19), the task then is to compute 

the eigenvectors and eigenvalues of the different Fock operators that add up to give the 

total approximate Hamiltonian, 

   iii xχεxχf                                                          (2.20) 

These eigenvectors or spin orbitals,  ixχ , are used to construct the wave function for 

the system, where ix  denotes both spin and spatial coordinates of the ith electron. At the 
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HF level of theory, the wave function is approximated as a single Slater determinant [87] 

defined in terms of the first N spin orbitals,  ixχ , with the lowest eigenvalues, 

 

     
     

     NNN2N1

2N2221

1N1211

N21

xχxχxχ

xχxχxχ

xχxχxχ

N!

1
x,,x,xΨ









  ,            (2.21) 

where N is the number of electrons in the system and the pre-factor, 
N!

1
, is a 

normalization factor. 

 The terms “restricted” and “unrestricted” are often used as prefixes to HF (and 

other techniques) to specify that the spatial part is the same for an alpha and a beta spin 

orbital in the case of “restricted” or different in the case of “unrestricted”. Thus, in 

restricted HF (RHF) theory, a spin orbital could be expressed as  

 
   

   




ωβrψ

ωαrψ
xχ

i

i

i 



  ,                                                     (2.22) 

where r


 and ω denote the spatial and spin coordinates of the electrons, respectively; 

 rψi


 is the spatial part while    ωβandωα  are the spin parts of the spin orbital. Eq. 

(2.22) implies that each spatial orbital  rψi


 gives rise to two spin orbitals.  

 In solving the eigenvalue problem in Eq. (2.20), the spin part of the orbitals can 

be integrated out (i.e., 
ijji δττ  where    ωβorωατ  ) and the equations are solved 

for the spatial orbitals. As introduced by Roothaan [88], the approach is to approximate 
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the spatial functions as linear combinations of a finite set of known spatial basis 

functions, 
i , 

i

ν

K

1ν

νi Cψ 


                                                        (2.23) 

This approximation leads to spatial molecular orbitals (MOs) that are exact only in the 

space spanned by the set of K basis functions. Rewriting Eq. (2.20) in terms of spatial 

orbitals using the definition in Eq. (2.23) gives 

i

ν

K

1ν

ν

i

ν

K

1ν

νi CφεCf 


                                         (2.24) 

Multiplying Eq. (2.24) by 
μ  leads to the so-called nonlinear Roothaan matrix equation 

[88] solved iteratively in HF theory (i.e, Eq. (2.17)) 

 FC = SCε,                                                       (2.25) 

where F is the matrix of the Fock operator in terms of a finite set of spatial basis 

functions; C is the matrix of the expansion coefficients in Eq. (2.23); S is the overlap 

matrix between basis functions; while ε is a diagonal matrix of the corresponding 

eigenvalues of the eigenvectors of the Fock operator. In practical calculations, Eq. (2.25) 

is first transformed into a matrix eigenvalue problem by orthonormalizing the set of basis 

functions, ν , in order to render the overlap matrix, S ≡ I (where I is the identity 

matrix). The procedure frequently used is the symmetric (Löwdin) orthonormalization 

[89] in which the coefficient matrix C is recast as 
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CSC 


2

1

                                                        (2.26) 

Substituting this definition into Eq. (2.25) and left multiplying by the adjoint of 2

1


S  gives 

εCSSSCFSS 
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
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where ISSS 












 
2

1
†

2

1

. The matrix eigenvalue Eq. (2.27) is then solved for C by 

diagonalizing F and C is subsequently obtained through Eq. (2.26).  

 As already noted in Chapter I, the HF method is inadequate for the majority of 

quantum mechanical systems due to its failure to explicitly treat electron-electron 

interactions. Although the correlation energy associated with such interactions is only 

about 1% of the total energy of quantum systems [82], yet it is critical for accurate 

descriptions of chemical bonding. In the present work, the RHF method was used to 

generate starting orbital guesses for more accurate descriptions of the systems studied. 

Second Order Möller-Plesset Perturbation Theory 

 In the HF method, only occupied orbitals are physically meaningful for the 

original N-electron problem [90]. One way of approximately accounting for correlation 

effects beyond the HF method is through the (nondegenerate) second order Möller-

Plesset perturbation theory (MP2) method [91] that scales less steeply than CI.  

 In perturbation theory, it is assumed that the exact many-electron Hamiltonian 

with a complicated solution can be partitioned into a part that is exactly soluble and a 

small perturbation as follows 
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 λVHH 0  ˆˆ ,                                                            (2.28) 

where V << 
0Ĥ  and 1λ0  . Ĥ  in Eq. (2.28) is the actual Hamiltonian whose 

eigenfunctions and eigenvalues are needed; 
0Ĥ  is the Hamiltonian of a closely related 

system with known eigenfunctions,  0

nΨ , and eigenvalues,  0

nE ; V is a perturbation 

term; λ is a parameter that determines the strength of the perturbation. The success of this 

approach depends on the way Ĥ  is partitioned into 
0Ĥ  and V. Perturbation theory works 

well if the main features of Ĥ are contained in 
0Ĥ (that is, V << 

0Ĥ ). The MP2 method 

considers as 
0Ĥ  the HF Hamiltonian defined in Eq. (2.18). The difference between the 

HF Hamiltonian and the exact Hamiltonian for any system lies in the approximate 

treatment of electron-electron interactions within the HF theory as opposed to the exact 

treatment of such interactions. The perturbation potential in MP2 is just this difference, 

that is 

  
 


















N

1i

N

ij

HF

i

1

ij VrV


,                                                          (2.29) 

where 
HF

iV is the average potential in HF theory defined in Eq. (2.19) while 1

ijr 


is the 

electron-electron interaction distance defined in Eq. (2.3). MP2 is a particular realization 

of the Rayleigh-Schrödinger perturbation theory (RSPT) described in Ref. [79, 82]. The 

approach is to expand the eigenvectors, 
nΨ , and eigenvalues, nE , of the exact 

Hamiltonian ( Ĥ ) as power series in λ, 
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Substituting these expressions into the eigenvalue problem, Eq. (2.5), and writing Ĥ  as 

in Eq. (2.28) gives 
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The next step is to collect terms with equal powers of λ and set λ = 1. This gives 
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Left multiplying each equation in (2.31) by  0

nΨ  and assuming    
0m

m

n

0

n δΨΨ   

(intermediate normalization condition where 0mδ  is the Kronecker delta) leads to the 

relations 
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Eq. (2.32) indicates that a first order correction (  1

nΨ ) to the wave function determines a 

second order correction to the energy (third equation in (2.32)). The HF energy of the 

exact Hamiltonian, Ĥ , is determined as 

           1

n

0

n

0

n0

0

n

0

n

0

n

HF

0 EEΨVHΨΨHΨE  ˆˆ                  (2.33) 

using Eq. (2.32). Therefore the first correction to the HF energy comes at the second 

order in the perturbative expansion. To solve Eq. (2.31) and (2.32), the higher order 

corrections to the wave function are expanded in terms of eigenfunctions of the reference 

Hamiltonian, 
0Ĥ , but for the ground state eigenfunction,  0

0Ψ . In HF theory, such 

eigenfunctions are single Slater determinants that differ from the ground state 

determinant by the occupation of one or more orbitals considered as virtual in the 

description of the ground state wave function (  0

0Ψ ). Brillouin’s theorem [79] dictates 

that such excited determinants used to span  1

nΨ , for example, should be related to 

 0

0Ψ  by double electron excitations from occupied orbitals (a and b) to virtual orbitals  

(r and s). Thus 
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where    1

n

rs

ab

1

abrsn, ΨΨC   and rs

abΨ  denotes an excited determinant. The second 

equation in (2.31) can be rearranged to  
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where the definitions for   1

nΨ  in Eq. (2.34) and  1

nE  in Eq. (2.32) have been used. Left 

multiplying Eq. (2.35) by rs

abΨ  and assuming that the eigenfunctions of 
0Ĥ  are all 

orthonormal (hence,   0ΨΨ 0

n
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where 
 0

kE  is the eigenvalue of  rs

abΨ  (that is,   rs

ab

0

k
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ab0 ΨEΨH ˆ ). The second order 

energy correction becomes 
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where  0

kΨ  = rs

abΨ . The MP2 total energy is then 

       2
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 As stated previously, the term “restricted” implies that the spatial parts of alpha 

spin orbitals were constrained to be equal to those of beta spin orbitals. Such calculations 

capture only about half of the dynamic correlation energy but can be used to generate 
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initial guesses of molecular orbitals (MOs) (through orbital rotation) for the next level of 

calculations which is the MCSCF method and is briefly described in the next subsection. 

The Multiconfiguration Self-Consistent Field (MCSCF) Method 

 The purpose of MCSCF calculations in the present work was to account for static 

or long range electron correlation, which can be very important for transition metal 

systems. Such systems warrant a multiconfigurational treatment. That is, their wave 

functions are dominated by more than one configuration of the electrons, which must be 

accounted for in an accurate description of those wave functions. Single reference 

methods like the RHF and RMP2 methods described above fall short of being able to 

adequately describe such systems. As will be seen in the subsequent Chapters discussing 

studies on transition metal molecules, several of the computed electronic states were 

found to have more than one leading electron configuration (some occurring with nearly 

equal amplitudes, cf. Eq. (2.16)) contributing to the total wave function. MCSCF 

accounts for this multiconfigurational character of the wave function by considering not 

one determinant but a set of model space configuration state functions (CSFs) in 

determining the molecular orbitals. 

Choice of Active Space 

 The most challenging problem in MCSCF [92-94], as well as particular choices as 

CASSCF and RASSCF [95-98], is the choice of the configuration space or model space. 

A poor model space often leads to difficult and slow or even no convergence. It could 

even lead to convergence to a state other than the desired state. The strategy often used is 

to partition the molecular orbitals into three main groups: (1) the core or inactive orbitals 

which are the energetically lowest lying orbitals that are doubly occupied in all 
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configurations; (2) the active orbitals which are used to generate the many-electron 

functions spanning the valence or model space and have variable occupancies; and (3) the 

virtual orbitals which are energetically high lying orbitals and are unoccupied in any 

model space function. In the CASSCF method, all possible electron configurations are 

considered that can be generated from the active orbitals in the description of the wave 

function. That is, full configuration interaction (FCI) is performed within the active or 

model space. This can be quite expensive for large systems. For example, distributing m 

electrons in n active orbitals without any restriction leads to N configurations where 
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 In the RASSCF method, the active orbitals are further partitioned into three 

subspaces: (a) restricted active space 1 (RAS1); (b) restricted active space 2 (RAS2); and 

(c) restricted active space 3 (RAS3). In RASSCF calculations, the RAS1 set of orbitals is 

restricted to no more than two holes while RAS3 is restricted to no more than two 

electrons. These restrictions significantly reduce the configuration space and permit 

calculations on relatively larger systems for which CASSCF is too expensive.  

 The difficulty with these calculations is to determine which orbitals should be 

considered active. This is not immediately obvious by observing, say, natural orbitals 

obtained from RMP2 calculations. The biggest problem often faced is which of the 

virtual orbitals from HF or RMP2 calculations should be included in the active space at 

the CASSCF, RASSCF, or MCSCF levels. Getting around this depends on the questions 

being addressed in the specific problem. For example, if calculations are being performed 
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on a system involving bond breaking, then at least all the bonding and antibonding 

orbitals involved in the process should be included in the active space; if a calculation is 

performed on a π-system such as on two parallel π-stacked benzene rings (as illustrated in 

Figure 1), it would be desirable to include the π orbitals derived from the valence shells 

of the atoms. In the present calculations, besides using these strategies, natural 

occupation numbers of RMP2 orbitals were often analyzed to provide a clue to what 

orbitals should be considered active. Sometimes, initial calculations relied on trial and 

error, simply driven by physical and/or chemical intuition.  

Preliminary diagnostic calculations are often essential to assess the accuracy of 

choice of the active space. Such diagnosis involves, e.g., the ability of the chosen active 

space to correctly dissociate a covalent bond. This is crucial because some active spaces 

work well around equilibrium geometries but are inadequate for describing bond 

dissociation. There are many published studies in which the authors focused calculations 

only at short bond lengths around the equilibrium geometries. The usefulness of such 

calculations is questionable since it is not clear if the active spaces used were sufficient 

for the description of the entire potential energy curves (PECs) or even the bond breaking 

regions. The quality of CASSCF, RASSCF, and MCSCF results is dependent on the 

quality of the active space and wrong active spaces can lead to meaningless/unphysical 

results at some geometries or even to discontinuities. If the wrong active space is chosen 

at these levels, high level methods, like GVVPT2, will be unable to correct for the lapse 

and deliver accurate results. In the present work, narrowing down on the most 

advantageous active space for the transition metal molecules was challenging and 

involved a lot of experimentation. Each system seemed to pose unique challenges. For 
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example, the active space used to compute the electronic states of 2Mn  was insufficient 

for some of the electronic states of its isovalent counterpart, 2Tc .  

 Lastly, because GVVPT2 is mathematically and computationally robust [3, 4] 

(i.e., there will always be a solution to the equations, even when the accuracy is 

diminished), wave function amplitudes are often analyzed for the presence of any large 

individual contributions from the external space, which signal the need to include 

additional orbitals in the model space. Obviously, obtaining such a result after a 

significant portion of the potential energy surface has been studied is disappointing and a 

waste of computational resources. Consequently, assessments of model space adequacy 

are optimally made for a few selected points across the potential energy surface of 

interest prior to extensive calculations. However, in the situation that convergence of the 

underlying MCSCF calculations is nontrivial, and use is made of the availability of 

orbitals from adjacent geometries, one can encounter problems with the model space only 

after a significant number of calculations with an inadequate model space have been 

made. 

The Macroconfiguration Approach 

The technique of macroconfigurations introduced by Khait et al. [22] was used in 

the MCSCF and GVVPT2 calculations reported in this dissertation. This approach is 

similar, but not equivalent, to the orbital partitioning scheme of RASSCF. In fact, a 

RASSCF model space is a special case of the use of macroconfigurations. In the 

macroconfiguration method, active orbitals are partitioned into groups and the active 

electrons are distributed into those groups. Unlike RASSCF which considers three groups 

within the set of active orbitals, the macroconfiguration method allows more than three 
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groups and additionally, the active electrons could be placed in those groups in any 

manner. There are no particular constraints on the number of electrons per orbital 

subgroup provided aa 2mn  where an is the number of electrons and am is the number 

of orbitals in the subgroup. There are also no constraints as to the number of orbitals 

allowed in a given subgroup. Thus, the macroconfiguration approach entails essentially 

unlimited flexibility, only subject to computational resource constraints. [N.B. 

Henceforth, a macroconfiguration is represented by the symbol κ(n) where n specifies the 

number of active electrons distributed among active orbital subgroups]. 

 Suppose that the active orbitals of a system are partitioned into g orbital 

subgroups. A macroconfiguration, κ(n), is then a specific distribution of its n active 

electrons among those subgroups, 

κ(n) = g21
n

g

n

2

n

1 AAA  ,                                            (2.40) 

where g21 A,,A,A  denote the active orbital subgroups while the superscripts represent 

integer numbers of electrons in each subgroup.  The electron numbers ( g21 n,,n,n  ) can 

be varied subject to the constraints 

aa 2mn0  ,      g1,a  ,                                           (2.41) 

n g21 nnn  ,                                                   (2.42) 

where an is the number of electrons in active orbital subgroup aA ; am  is the number of 

orbitals in aA ; while Eq. (2.42) requires that the sum of electrons in the subgroups must 

give the number of active electrons, n. Each unique specification of the active electrons 

as in Eq. (2.40) defines a reference κ(n). The flexibility of the macroconfiguration 

method [22] allows it to support complete active space (CAS) type calculations (when the 



37 
 

active orbitals are all in one group) as well as incomplete active spaces. The user 

specifies the number of orbitals considered active and decides on how to partition those 

orbitals. Next, the user determines how to distribute the active electrons defining the 

reference macroconfigurations (κ(n)s). In preliminary calculations on some of the 

molecules in the present work, some of the reference κ(n)s specified in the input file were 

found not to lead to configurations of correct spin and point group symmetry for the 

investigated states. Such κ(n)s were therefore removed from the list of reference κ(n)s. In 

general, when distributing active electrons among the orbital subgroups, symmetry 

constraints should be considered. For a specified molecular term, there are obviously 

some electronic distributions that would not generate configurations with the desired 

symmetry. For example, a κ(n) such as the following 

κ(n) =      2gg

2

gg

3

uu δδσσππ                                       (2.43) 

cannot describe a gerade (g) molecular term such as gΓ  in the hD  symmetry point group 

(since all configurations derived from this macroconfiguration would rather have 

ungerade (u) parity: u × u × u × g ×g × g × g = u).  

 Once the κ(n)s have been specified, each κ(n) generates a unique set of 

configurations and consequently configuration state functions (CSFs). CSFs are spin-

adapted linear combinations of Slater determinants constructed to be eigenfunctions of 

the total spin squared (
2Ŝ ) operator and its z-projection ( zŜ ). CSFs constitute the basis 

for the expansion of the many-electron wave function. Since they are linear combinations 

of Slater determinants, they automatically obey the Pauli principle and lead to the correct 

spin symmetry of the molecule. Moreover, CSFs possess the symmetry properties of the 

U(2n) and NS  groups [99-102]. In the MCSCF and GVVPT2 programs used in the 
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present studies, CSFs were generated from κ(n)s and their configurations using the 

graphical unitary group approach (GUGA) [103]. Details as to how the configuration-

driven codes in UNDMOL work are available in Ref. [104].    

 The set of configurations, and hence CSFs, of each κ(n) are orthogonal to those of 

other κ(n)s. The fact that each κ(n) creates a set of configurations (and CSFs) that is 

disjoint with respect to configurations generated from all other κ(n)s  allows a large 

number of noninteracting electronic configuration pairs to be screened (i.e., without 

actual calculation) and, also, provides an efficient way of generating excited 

configurations. All orbital rotations within a given subgroup of active orbitals are 

redundant whereas orbital rotations among subgroups are non-redundant. This latter point 

is critical in performing orbital optimization calculations using κ(n)s. Its implication is 

that the user must analyze the molecular orbitals to ensure that the right orbitals are in the 

right positions before performing calculations. Any orbital flips would lead to a different 

MCSCF or GVVPT2 solution. In the UNDMOL electronic structure software package 

developed by the Hoffmann group at the University of North Dakota [N.B. The structure 

of UNDMOL is described in Ref. [104]], the molecular orbital file is named orbitals.dat. 

In this file, molecular orbitals are listed in order of symmetry type (that is, the irreducible 

representations beginning with the first in the given point group); and orbitals of a given 

symmetry are listed in order of increasing energy. Orbital flips involve a core orbital 

replacing an active orbital or a virtual orbital replacing an active orbital or an active 

orbital expected to be higher in energy replacing one that is expected to lie energetically 

lower. 
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 To illustrate this, consider a molecule in 2hD  symmetry (the highest Abelian 

group supported by UNDMOL). The 2hD  point group has the following irreducible 

representations  3u2u1uu3g2g1gg B,B,B,A,B,B,B,A . In the orbitals.dat file, molecular 

orbitals would be listed beginning with gA  type orbitals to those of 3uB  irreducible 

representation; and for each symmetry type, orbitals would be listed in order of 

increasing energy, with special consideration for multiple active orbital groups. 

Occasionally, however, molecular orbitals may not be in their rightful positions in the 

orbitals.dat file. For example, an orbital that is expected to be the sixth gA  type may 

appear as the eighth gA  type orbital. If the orbitals are not identified and manually 

switched back to their rightful positions, a different MCSCF or GVVPT2 solution would 

be obtained in calculations provided those orbitals belong to different valence subspaces. 

To further clarify this, consider the 2Cr  molecule. Suppose an active space for 2Cr  is 

assumed, consisting of twelve molecular orbitals derived from the 3d and 4s subshells of 

the Cr atoms. Suppose also that the orbital splitting in Figure 4 is assumed for these 

orbitals. In the 2hD  point group, these orbitals are associated with the irreducible 

representations ggz
Aσ3d 2  , 

1u

*

uz
Bσ3d 2  , 3uuxz Bπ3d  , 

2g

*

gxz Bπ3d  , 2uuyz Bπ3d  , 

3g

*

gyz Bπ3d  , ggyx
Aδ3d 22 


, 

1u

*

uyx
Bδ3d 22 


, 1ggxy Bδ3d  , 

u

*

uxy Aδ3d  , gg A4sσ  , 

and 1u

*

u B4sσ  . This gives a total of three gA  type orbitals, three 1uB  type orbitals, and 

one orbital for all other symmetry types. 
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Figure 4. Molecular orbital splitting for the 2Cr  molecule. 

 

 If a valence bond style description of the bonding in the partitioning of the active 

space is considered such that each bonding orbital is paired with its corresponding 

antibonding counterpart to constitute an active subspace and then two of the twelve active 

electrons are assigned to each subspace, this would lead to the following reference κ(n) 
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


 ,                     (2.44) 

where the superscripts indicate the number of electrons per subspace (this is, indeed, 

what was done in the calculations of this molecule).  The positions of the subspaces in the 

reference κ(n) are immaterial as long as the orbitals in each group correspond to different 

irreducible representations of the point group. For example, the π orbitals derived from 

xz3d  correspond to different irreducible representations than those from yz3d . Therefore, 

the π subspaces could be placed anywhere (and in any order) in reference κ(n) (2.44) 

such as at the first or last positions. If, however, active orbitals within different subspaces 

correspond to the same irreducible representations of the point group, careful 
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examination of the orbitals in the orbitals.dat file must be done to ensure that the orbitals 

are in their rightful positions.  If the orbital diagram in Figure 4 is indeed the correct 

ordering in the orbitals.dat file and the orbital groups are defined using an energy 

ordering, then the bonding ga  orbitals lie energetically in the order gz
σ3d 2 

 gyx
δ3d 22

g4sσ . However, their antibonding counterparts of 1ub symmetry are rather in the order 




*

uyx
δ3d 22 *

uz
σ3d 2

*

u4sσ . Thus, the positions of the *

uyx
δ3d 22

 and *

uz
σ3d 2  must be 

interchanged to reflect the same ordering in the bonding orbitals and, thus, guarantee that 

each of the bonding orbitals is actually paired with the corresponding antibonding one. 

Without manually performing this switch in orbitals.dat, the user would specify reference 

κ(n) in the input file whereas the first orbital subspace in that reference κ(n) is not  

 2*

uzgz
σ3dσ3d 22  as expected but rather  2*

uy-xgz
δ3dσ3d 222 . This will, in general, affect 

the calculations and lead to a different solution. One way of avoiding orbital flips is to 

place all active orbitals corresponding to the same irreducible representations of the point 

group in the same valence subspace. Since orbital rotations related to a given subspace 

are redundant, any orbital flips within a valence subspace would likewise be redundant.  

  All things being equal, the macroconfiguration approach provides a very efficient 

way of evaluating Hamiltonian matrix elements. Some matrix elements are determined to 

be zero a priori. Any Hamiltonian matrix element that couples CSFs resulting from 

configurations (and hence, macroconfigurations) that differ by more than two electrons 

are automatically zero.  Details on how Hamiltonian matrix elements are evaluated using 

the macroconfiguation and GUGA techniques are provided in Ref. [105].  
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The Multiconfigurational Self-Consistent Field Wave function 

 In order to account for static or long range electron correlation, the MCSCF 

method [92-94] constructs the total wave function as a linear combination of CSFs from a 

user-specified model space generated from active orbitals that are known (or suspected, 

on chemical grounds) to have partial occupancy. Once the correct model space has been 

specified and generated from κ(n)s as discussed above, orthonormal sets of CSFs are 

generated from those κ(n)s by appropriate antisymmetrization and spin combinations, 

and used to span the wave function in a manner similar to CI methods, 





MLm

mImMIM

MC

I CΦCΦΨ ,                                        (2.45) 

where MC

IΨ  is the MCSCF wave function sought for; 
mΦ  is a set of CSFs belonging 

to the model space of dimension ML . The MCSCF eigenstates, MC

IΨ , solve the 

eigenvalue problem within the model space, 

MC

I

MC

I

MC

I ΨEΨH ˆ ,                                                     (2.46) 

where 
MC

IE  is the I
th

-lowest eigenvalue of the model space MCSCF wave function, 

MC

I

MC

I

MC

I ΨĤΨE                                         (2.47) 

Using Eq. (2.45), the matrix form of Eq. (2.46) is 

 MI

MC

IMIMM CECH    ICC 

MIIM , (2.48) 

where 
MMMM ΦHΦH  is the matrix of the model space block of the total 

Hamiltonian ( TTH ), MIC  is the matrix of the CI coefficients in Eq. (2.45) (N.B. The 

orthogonality of the basis CSFs, 
mΦ , in Eq. (2.45) is guaranteed by construction), and 

MC

IE  is a diagonal matrix of MCSCF eigenvalues. The Hamiltonian operator in Eq. (2.47) 
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may be written more explicitly, in terms of the molecular orbitals that determine each 

CSF, as 

  
MOs

ijkl

ijklijkl2
1

MOs

ij

ijij egEhĤ , (2.49) 

where ijh  and ijklg  are the one- and two-electron molecular orbital integrals while ijE and 

ijkle  are the generators of the unitary group, defined as 
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 Whereas CI methods optimize only the CI coefficients, the MCSCF variationally 

determines the optimal sets of both the CI expansion coefficients in Eq. (2.45) and the 

molecular orbital expansion coefficients in terms of basis functions. Since the HF 

molecular orbitals were determined self-consistently in the average field of a single 

electron configuration, they must be reoptimized at the MCSCF level; similarly, MP2 

natural orbitals are not self-consistent for the model space. As noted before, only the 

occupied orbitals within the single determinant HF wave function make physical sense 

for an N-electron system. And, while MP2 MOs are superior to SCF orbitals (relative to 

MCSCF orbitals) they too need modification. In order to describe a multiconfigurational 

situation at the MCSCF level of theory, both the atomic basis function coefficients 

describing molecular orbitals as in Eq. (2.23) and the CI coefficients in Eq. (2.45) are 

simultaneously optimized variationally. This is a nontrivial and highly nonlinear problem. 

  MCSCF optimization is one of the most challenging of ab initio quantum 

chemistry tasks due to the coupling of the CI coefficients to the one-electron space.  This 

implies that difficulties faced in the HF iterative scheme are compounded at the MCSCF 
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level of theory [82]. Such problems are intensified when incomplete model spaces are 

used or when multiple states of the same symmetry are optimized in a state-averaged 

calculation. In the event that multiple low-lying electronic states are found to have the 

same spin and irreducible representation, the matrix Eq. (2.48) may be used to determine 

both the MCSCF eigenvectors and eigenvalues for all such states.  This is called a state-

averaged MCSCF (SA-MCSCF) calculation, leading to state-averaged eigenvalues, MC

SAE , 

where 

 



PP N

1I

MC

I

MC

II

N

1I

MC

II

MC

SA ΨHΨwEwE , (2.51) 

where NP is the number of MCSCF states of the same spin and irreducible representation 

included in the state-averaged calculation and  0w I   are geometry independent 

weights, whose sum is constrained to be unity 











1w
PN

1I

I , that specify the influence of 

each of the NP states on the MOs and CI coefficients being optimized.  
MC

IE  in Eq. (2.51) 

is the energy of the I
th

 state. 

 Obtaining MCSCF solutions is a nontrivial task and as noted previously, success 

of the procedure largely depends on the quality of the active space and the nature of the 

starting orbitals. However, the development of direct minimization methods [106-109], 

based on the Newton-Raphson algorithm, enabled rapid convergence within the MCSCF 

iterative scheme, provided that one is in the local region of the final MCSCF solution. 

Nonetheless, those approaches require explicit evaluation of the hessian matrix involving 

the transformation of two electron integrals that are not used in the construction of the 

Fockian matrices [109]. Moreover, MCSCF iterative schemes based on the Newton-
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Raphson method can sometimes converge to incorrect roots [110]. The technique that 

was used to circumvent such problems is outlined in Ref. [111]. The approach uses 

directions of negative curvature, based on a step-length algorithm, to minimize the 

MCSCF energies of both ground and excited states on a manifold that can be described 

topologically as a nonlinear equality-constrained problem (NEP). The technique was 

demonstrated: to be applicable to general MCSCF wave functions; to support both 

complete and incomplete model spaces; and to work with Newton and quasi-Newton 

methods for the determination of descent directions.  

 A problem often encountered in MCSCF iterations is identifying and dealing with 

redundancies [112]. At the MCSCF level of theory, it can be hard to distinguish between 

low-occupancy occupied and unoccupied (virtual) orbitals (and also between high-

occupancy active orbitals and core orbitals) since the one-electron energies of the various 

spaces can be misleading. In the present work, advantage was taken of orbital invariances 

guaranteed by macroconfigurations [22].  

The Generalized Van Vleck Second Order Perturbation Theory 

 Besides entailing a computationally intensive iterative procedure whose success 

highly depends on the quality of the model space, the MCSCF method fails to adequately 

capture dynamic electron correlation energy. Although this short range energy is usually 

only about 1% of the total energies of quantum systems, it is critical to the understanding 

of the physics of such systems. For example, in this work, in studies of the 

g

1ΣX  state of 

2Cr , MCSCF calculations using different basis sets, including all-electron and effective 

core potential (ECP) basis sets, could not give even qualitatively correct potential energy 

curves (PECs). The method for complete recovery of electron correlation energy is the 
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full configuration interaction (FCI) method in which all possible configurations of 

electrons are considered in the total Hilbert space. However, this approach is 

prohibitively expensive (scaling as N! with system size, where N is a measure of the size 

of a system in terms of the number of atoms or basis functions) even for systems of a few 

atoms. Truncated MRCI methods, like MRCISD, provide accurate descriptions of 

complex systems for which both short and long range electron correlations are important. 

However, configuration interaction (CI) methods diagonalize the entire Hamiltonian 

matrix in the space of the specified truncation, which can be quite huge. This curtails the 

applicability of such methods to the study of model systems or small molecules. The 

MRCISD(TQ) method [113] partitions the total configuration space (L) into a model  

( ML ) subspace of reference configurations, and two external subspaces ( Q1L  and Q2L ). 

Q1L  is related to the reference configurations by single and double excitations (i.e., as in 

MRCISD) and Q2L by triple and quadruple excitations. Eventually, an eigenvalue 

problem, involving an effective Hamiltonian, is solved within a subspace of Q1M LL  . 

Such procedures significantly reduce computational costs relative to MRCISDTQ but 

Q1L  could still be quite large compared to ML  and so the size restrictions of MRCISD 

apply.  

 Due to the high cost of computation for most high level quantum chemistry 

methods that account for static and dynamic electron correlation effects, multireference 

perturbation theory (MRPT) methods are often better alternatives since such methods 

consider the vast majority of electron excitations perturbatively. Second order MRPT 

methods scale an order of magnitude less than MRCISD (approximately 
5N for MRPT 
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versus 6N  for MRCISD, where N is a measure of system size). However, as was 

mentioned in Chapter I, many MRPT methods suffer from intruder state problems. 

Although various shift parameters are often used to overcome such problems, results tend 

to depend on the nature of such parameters [18]. On the other hand, a recent study [114] 

that compared three relatively new MRPT schemes: the GVVPT2 method used in the 

present studies; the second order state-specific multireference perturbation theory (SS-

MRPT2); and the second order multiconfiguration perturbation theory (MCPT2), using 

both Møller-Plesset [91] and Epstein-Nesbet  [115, 116] partition schemes for the 

Hamiltonian, found that GVVPT2 (and SS-MRPT2) gave smooth PECs for all systems 

tested whereas MCPT2  suffered from instabilities in the solutions at some points. Since 

interest in the present studies is in multiple states, and SS-MRPT2 by construction is 

state-specific (SS), GVVPT2 was clearly desirable for the studies in this dissertation. A 

key feature of the GVVPT2 method is its ability to produce smooth PECs of any system 

including those that could be a challenge to other MRPT techniques and especially to 

older MRPTs. The salient features of GVVPT2 are briefly reviewed in the next 

paragraphs.    

 GVVPT2 [3, 4] is a variant of quasidegenerate perturbation theory (QDPT) [117]. 

More precisely, its mathematical foundation is the self-consistent quasidegenerate 

perturbation theory (SC-QDPT)  method [118], which was constructed to: obviate any 

instabilities resulting from the presence of intruder states; guarantee size-consistency; 

ensure that the projection of the correlated wave functions on the model space coincided 

with the optimal primary subspace within which the lowest states of interest are sought; 

and moreover, guarantee that the energies of the primary states sought are upper bounds 
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to the full CI limit. In order to understand the formulation of GVVPT2, it behooves us 

therefore to begin with a brief review of the SC-QDPT method. 

 In SC-QDPT, the total Hilbert space, spanned by N orthonormal CSFs (
nΦ ) 

 N

1nnL


 span  ,                                                     (2.52) 

is partitioned into a model space, ML , in which the pN  lowest states are sought, and an 

external space QL , whose configurations are related to those of ML  through electron 

excitations,  

   mN

1mmML


 span  ;   qN

1qqQL


 span  ,                        (2.53)  

where 
mΦ  and 

qΦ  denote CSFs in ML  and QL , respectively. SC-QDPT is 

constructed to completely avoid quasideneracy problems by further partitioning the 

model space into a primary subspace, PL , which contains the pN  lowest states sought, 

and an orthogonal complement, called the secondary subspace  ( SL ),  

   pN

1p

0

pPL


 span  ;    sN

1s

0

sSL


 span  ; msp NNN  ; MPS LLL              (2.54)  

whose interactions with the perturbed primary subspace are described variationally rather 

than perturbatively.  0

pΨ  and  0

sΨ  are the unperturbed primary and secondary states, 

respectively. It is clear that, all things being equal, states in the secondary subspace are 

the ones whose energies are closest to those of primary states and hence, these secondary 

states are the ones most likely to cause intruder state problems. By considering perturbed 

primary-unperturbed secondary (P-S) interactions variationally, the intruder state 

problem is avoided and the secondary subspace then serves as an “energy buffer” that 
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separates the primary and external subspaces well enough to permit primary-external (P-

Q) interactions to be described in a strongly convergent perturbative manner.  

 GVVPT2 follows the above partitioning of the total Hilbert space such that the 

total effective Hamiltonian matrix ( eff
H ) has the following form,   


















eff

QQ

eff

QS

eff

QP

eff

SQ

eff

SS

eff

SP

eff

PQ

eff

PS

eff

PP

eff

HHH

HHH

HHH

H                                               (2.55) 

where subscripts P, S, and Q denote primary, secondary, and external subspaces, 

respectively, and the matrix elements are described in terms of states in these subspaces; 

e.g., eff

PPH  is a block of the effective Hamiltonian matrix involving primary state vectors. 

[N.B. Henceforth in this subsection, bold symbols are used to denote matrices of 

operators or a set of vectors, e.g., 
PΦ  denotes a set of many-electron functions within 

the primary subspace]. The projection operators unto the PL , SL , and QL  subspaces are 

defined as  

   

   



















q

s

p

N

1μ

μμQQQ

N

1j

0

j

0

jSSS

N

1i

0

i

0

iPPP

ΦΦP

P

P

ΦΦ

ΦΦ

ΦΦ

                                         (2.56) 

where  0

pΨ  =  0

iΨ  and  0

sΨ  =  0

jΨ  are the unperturbed primary and secondary 

states, respectively, 
Qand Φ  is a set of external space CSFs. The  0

pΨ  states constitute 

the pN  lowest orthonormal eigenstates of the effective Hamiltonian in the model space 

     0

p

0

p

0

p Ĥ EΨΨ  ,                                                 (2.57) 
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where         0

N

0

2

0

1

0

p p
E,,E,E diagE  denotes the diagonal matrix of eigenvalues of the 

pN states,   0

pΨ . To obtain the perturbed primary states of interest, a unitary wave-like 

operator [114] is defined as 

    )P(P)eP(PPeΩ(x) QP

X

QPS

X  ,                                       (2.58) 

where X denotes a skew-Hermitian operator ( XX†  ) that describes primary-external 

rotations. It is related to the primary ( PP ) and external ( QP ) space projectors as follows 

    



p

Q

N

p Lq

q

0

p

0

pqqpQ

†

PPQ ΦΨΨΦXPXPXPPX                     (2.59) 

The effective Hamiltonian whose matrix is shown in Eq. (2.55) is constructed to satisfy 

the Bloch equation 

ΩĤΩĤPĤΩPΩPĤ †eff

p

eff

pp                                     (2.60) 

The wave-like operator in Eq. (2.58) is constructed as a product of parts that act on 

different subspaces. In infinite precision, this leads to the following decoupling equations 

relating to primary-secondary (P-S) and primary-external (P-Q) subspace interactions 

0PĤP P

eff

Q                                                         (2.61) 

and 

0PĤP P

eff

S                                                         (2.62) 

The matrix elements of operator X are nominally defined as 

 

i

q

(0)

i

0

iq

qi
εε

ΨHΦ
X


 ,  QqP,i                    (2.63) 
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where   0

iε  and i

qε  are Møller–Plesset-type  energies, which are computed from the state-

specific one-particle reduced density matrix i
D , with elements 

   
nab

Lnm,

mnimi

0

iab

0

i

i

ab ΦEΦCCΨEΨD
M




 ,    orbitalsoccupiedba,;Li P  (2.64) 

and state-dependent averaged Fock operator for state i, i

cf , 

cb)]|(ca
2

1
ab)|[(ccDhf

ba

i

abcc

i

c 


 ,  PLi ,                            (2.65) 

where a and b index occupied orbitals while c represents any orbital. The Møller–Plesset-

type energies, 
 0

iε  and i

qε , are obtained as follows  


a

i

aa

i

a

(0)

i Dfε ,           (2.66) 


c

q

c

i

c

i

q Nfε ,            (2.67) 

where  0

iε  is the reference Møller-Plesset-type energy while i

qε  is the state-specific 

zeroth-order energy of external CSF q, and 
q

cN  is the occupation number of orbital c in 

CSF q. The energy i

qε  is the same for all external CSFs belonging to a given external 

configuration (e) ( i

qε  = 
i

eε , where 
i

eε  is the average energy for CSFs of external 

configuration e).  

 The disadvantage of using 
 0

iε  and i

qε  in Eq. (2.63) is the possibility of 

singularities occurring when 
 0

iε  ≈ i

qε  or even negative values in the event that 
 0

iε  < i

qε .  

To circumvent such problems, GVVPT2 uses a nonlinear energy shift ( iΔ ) together with 

a hyperbolic tangent function which provides a meaningful bound when iΔ  is negligible. 

The hyperbolic tangent plays the role of a switching function between degenerate and 
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nondegenerate regimes such that the elements of the rotation matrix, qiX , in Eq. (2.66) 

are defined as 

 
   





MLm

miqm

i

i
qi

i

i
qi CH

Δ

Δtanh
H

Δ

Δtanh
X ,                              (2.68) 

where the miC  denote eigenvectors of the unperturbed model Hamiltonian matrix and  iΔ  

is defined as 





eq

2

qi

2(0)

i

i

q

(0)

i

i

qi H4)ε(ε
2

1
)ε(ε

2

1
Δ                        (2.69) 

Eq. (2.69) incorporates the quasidegeneracy of the CSFs within each external 

configuration (e).  Unlike in SC-QDPT, there are not any iterations of the external state 

vectors as these were found to be unnecessary for accuracies at the GVVPT2 level.  

 The effective Hamiltonian is represented in the basis of model space CSFs as 

follows 

  P

†

PPMM

†

PMM

S

eff

SP

eff

SS

eff

PP

eff

PM

eff

M

PĤXXĤP
2

1
XPĤPPĤXPPĤP

PĤPPĤPPĤPPĤpPĤP





,           (2.70) 

where MP  is the projector onto the model space ( SPM PPP  ). In matrix form, Eq. 

(2.70) becomes 

      †

PMPPMP

†

PMMP

†

PMMPMM

eff

MM CCHXCHXCCHXHH  ,            (2.71) 

where MPC  is the matrix of mpC = miC  in Eq. (2.68), while 

  QPMQMP XHHX  ,                                                     (2.72) 

and 

      MP

†

PMMP

†

PMPP
2

1
CHXHXCCHX                                    (2.73) 
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 Ultimately, GVVPT2 diagonalizes an effective Hamiltonian matrix whose size is 

the same as the model space Hamiltonian (that is, the same dimension as the Hamiltonian 

diagonalized at the MCSCF level of theory). This effective Hamiltonian (represented here 

as Xeff,

MMH ) has four blocks (see Eq. (2.70)) defined as 

 QP

†

QPqpPQPP

Xeff,

PP
2

1
HXXHHH  ,                                   (2.74) 

QPSQ

Xeff,

SP XHH     ,         ( Xeff,

PS

Xeff,

SP HH  ) ,                                   (2.75) 

and 

SS

Xeff,

SS HH                                                               (2.76) 

An advantage of the rotation matrix, X, is that it provides wave function corrections that 

are analytically differentiable with respect to nuclear displacements. 

The Spin-Free Exact Two Component (sf-X2C) Method 

 The significance of relativistic effects was first mentioned in Chapter I of this 

dissertation. In the present subsection, salient features of the specific approach of 

including scalar relativistic effects within GVVPT2 are reviewed. The relativistic 

technique used here is due to Liu et al. [119-124], often referred to as the spin-free exact 

two component (sf-X2C) method. The sf-X2C Hamiltonian is written, in second 

quantization, as follows 

        rsqp

pqrs

qp

pq
pq

X2C

sf, aaaaqspr
2

1
aaH 

   h ,                               (2.77) 

where the first term is the one-electron spin-free (sf) part of the exact two-component 

(X2C) Hamiltonian [119] while the second term describes columbic two-electron 
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interactions. To arrive at the sf-X2C Hamiltonian for positive energy states, X2C

sf,h , the 

modified Dirac Hamiltonian, D
h , which satisfies  the one-electron Dirac equation 

MCECh D  ,                                                                (2.78) 

is separated into spin-free (sf) and spin-dependent (sd) parts as follows [122] 
























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





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2D

sd

D
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D
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α
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00
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α
WTWT

TV
hhh                                (2.79) 

V is the matrix of the external nuclear attraction potential operator, 
r

ZV̂  ; T is the 

matrix of the kinetic energy operator, 
2

p
T̂

2

 ; C is the matrix of the large (A) and small 

(B) component coefficients of the bispinor, 









B

A
C ; while W is the matrix of the 

operator 

      sdsf ŴŴpV̂p.σipV̂.pp.σV̂p.σŴ 


                           (2.80) 

The Dirac identity has been invoked in Eq. (2.80). The spin-free (sf) part of Ŵ , that is 

sfŴ , describes scalar relativistic effects whereas the spin-dependent (sd) part,  
sdŴ , 

incorporates spin-orbit coupling effects. The non-relativistic metric M is defined as [122]  
















T

S
M

2

α
0

0
2 ,                                                          (2.81) 

where α is the fine-structure constant and S is the overlap matrix in the kinetically 

balanced basis,   νμμνμ ggS;g  . Ignoring spin-orbit coupling effects, Eq. (2.78) 

becomes 

 CEMCh D

sf                                                                (2.82) 
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which is then diagonalized. The sf-X2C Hamiltonian, X2C

sf,h , is related to the normalized 

elimination of small component (NESC) Hamiltonian,      
     , through the picture-change 

transformation R as follows [119] 

     
       

      
       ,                                                        (2.83) 

where  

  2

12

1

2

1

2

1

2

1

2

1

1 ~~
SSSSSSSR
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






















  ,                                        (2.84) 

and the spin-free normalized elimination of small component (NESC) Hamiltonian 

       
      is defined [123] as 

     
                  [

  

 
     ]                                (2.85) 

The metric X defines the ratio of small to large component coefficients of positive energy 

states, 

  
1

 ABX                                                             (2.86) 

It should be noted that in Eq. (2.83), X2C

sf,h  is in the Schrödinger picture (that is, 

ESCCh  X2C

sf,
 with the non-relativistic metric S) whereas      

     is in the Dirac picture 

(that is, EASAL  
~NESC ) with the relativistic metric  ̃   (   (

  

 
)    ). 

Conclusions 

In this Chapter, the methods used in studies on transition metal molecules and 

triatoms of Li and Be have been described. The methods were presented in the order in 

which the calculations were done. All calculations started at the RHF level of theory to 

generate a starting molecular orbital guess. RMP2 calculations were subsequently 
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performed to obtain starting orbitals for MCSCF; finally, GVVPT2 calculations were 

performed using converged MCSCF wave functions. The advantages of 

macroconfigurations were exploited in the MCSCF and GVVPT2 calculations.  

 For complete specification of procedures, it is worth commenting briefly here on 

the diagonalization and integral evaluation schemes in UNDMOL. Whereas several 

matrix diagonalization schemes exist such as the Arnoldi method [125], Lanczos method 

[126], Davidson [127], and Jacobi [128] methods, the latter three are the more widely 

used ones because of the symmetry of the matrices. In the present studies, Davidson’s 

method [127] was used in MCSCF and GVVPT2 calculations, while the Jacobi method 

[128] was one of two alternatives used within the RHF method. The second alternative 

within RHF for matrix diagonalization involved a two-step procedure in which a matrix 

was first reduced to tridiagonal form using the Householder scheme by a routine referred 

to in Ref. [129] (and us) as tred2. Another routine (tqli) subsequently reduces the 

tridiagonal matrix to diagonal form as described also in Ref. [129]. Integral evaluation 

was performed using a local implementation of the Obara-Saika recursive scheme [130] 

and made use of Pople-Head-Gordon [131] and Hamilton-Schaefer [132] schemes to 

transfer angular momentum.     
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CHAPTER III 

GVVPT2 STUDIES OF LOW-LYING ELECTRONIC STATES OF SCANDIUM AND 

YTTRIUM DIMERS

 

Introduction 

 Scandium (Sc) and yttrium (Y) are the first elements of the first and second series 

of transition elements, respectively. These elements have been the subject of a number of 

previous theoretical studies. Interest in Sc and Y has been partly due to their applications. 

For example, oxides of Y are used in television tubes and in ceramics and glass
 
whereas 

some yttrium compounds have medical applications e.g., complexes of Y-90 isotope are 

used in radioimmunotherapy [133-135]. Another motivation for studies of Sc and Y is the 

fact that they appear to be among the simplest of transition elements to study.  With only 

six valence electrons, dimers of Sc and Y would appear simple to describe at first sight, 

but this observation is deceptive.  Available experimental data for these molecules are 

quite fragmentary and disputable, while data from many past theoretical studies are not 

less contradictory. 

  By electron spin resonance (ESR) experiments, Knight et al.
 
[136] established the 

ground state of 2Sc  as 

u

5ΣX , which was later confirmed by Singer and Grinter [137] 

through  magnetic measurements.  Using data obtained from Raman vibrational 

spectroscopy, Moskovits et al. [138] determined the harmonic frequency (ωe ) and 

anharmonic constant (ωexe) of the ground state of  2Sc  as ωe = 238.9 cm
-1

 and ωexe = 
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0.93 cm
-1

. The equilibrium bond length of ground state  2Sc  has not been experimentally 

determined. By assuming a harmonic frequency of 230 cm
-1

, Verhaegen

 et al. [139] evaluated the bond length (Re) of 2Sc  to be 2.70 Å for the supposed ground 

state. Based on mass spectrometric measurements, Verhaegen et al. [139] showed that the 

2Sc  molecule is strongly bound and determined its binding energy with respect to 

ground state atoms ( 0

0D ) as 25.9  5 kcal/mol (1.12 eV).  Later, however, Verhaegen et 

al. revised this value as 38.0  2.3 kcal/mol (1.65 eV) (see discussion in Ref. [16]).  

Although these values for 0

0D  are still disputable [16], the avoided crossing rule strictly 

ensures that the lowest 

u

5Σ  state of 2Sc  correlates with the first excited asymptote 

Sc(
2
Dg) + Sc(a

4
Fg), and hence the dissociation energy ( 0D ) of ground state 2Sc is equal 

to 0

0D  + 1.427 eV.   

 Although many theoretical studies of 2Sc  have been performed and 

u

5 Σ1  is 

generally accepted as the ground state (see the review in Ref. [16]), it has recently been 

disputed by Matxain et al. [140]. Using the quantum diffusion Monte Carlo (DMC) 

method with Stuttgart relativistic pseudopotentials and basis sets (ECP10MDF), Matxain 

et al. [140] found the triplet state, 

u

3 Σ1 , to lie 0.17 eV below the quintet 

u

5 Σ1  term.  

Although this ordering of states was corroborated by CASPT2 calculations (0.16 eV) 

performed by the same authors, they referred to these results as quite doubtful in their 

brief erratum [141].  More recent calculations of states of 2Sc , performed by Kalemos et 

al. [16] at the valence multireference internally contracted configuration interaction plus 

Davidson quadruple corrections (MRCI+Q) level with correlation consistent quadruple 

(cc-pVQZ) and quintuple zeta (cc-pV5Z) basis sets, agreed with the earlier result that 
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

u

5 Σ1  is the ground state and 

u

3 Σ1  is located (just 0.04 eV) above.  The most recent 

calculations for ground state 2Sc  at the same level of theory, and using 2vC  symmetry, 

but with extrapolation to the complete basis set (CBS) limit, have been performed by 

Kaplan and Miranda [142]. Thus, from both the experimental and theoretical standpoints, 

studies on 2Sc have been inconclusive, although many previous theoretical studies have 

tended to favor a 

u

5 Σ1  ground term for the molecule. 

 Results from previous studies of the yttrium dimer ( 2Y ) are also quite conflicting. 

The exact nature of the ground electronic state of 2Y  is not fully resolved.  Whereas the 

contention for the ground state for 2Sc  is between the states 
 
5u


 and 

 
3u


, for its 

isovalent 2Y  counterpart, it is between the states 
 
5u


 and 

 
1g


. Experimental efforts to 

characterize the 2Y  ground electronic state have yielded conflicting results. The binding 

energy of the supposed ground state of 2Y  was determined by Verhaegen et al. [139] as 

1.62 ± 0.22 eV, using the third law method [143], but this method is unreliable due to 

inherent limitations due to a requirement of a knowledge of the unknown electronic 

structure. Knight et al. [144] observed the electron spin resonance (ESR) spectra of 3Y  in 

a matrix isolation technique but failed to obtain the same for 2Y . Yang et al. [145] 

determined the 2Y  ground state as 
 
5u


 with a harmonic frequency, ωe = 185 ± 0.2 cm

-1
 

in a one-photon pulsed-field ionization-zero electron kinetic energy (PFI-ZEKE) 

photoelectron spectroscopic study. On the other hand, Fang et al. [146] obtained ωe = 

184.4 ± 0.4 cm
-1

 and De = 3.5 ± 0.4 eV in a mass-selected resonance Raman matrix 

isolation study of 2Y  and computed Re = 2.65 Å using Badger’s rule [147]. These authors 
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assigned the ground state of 2Y  as
 
1g


. Thus, the nature of the ground term for 2Y  is 

uncertain from the experimental stand point. 

 Theoretical results on 2Y  in the literature are not less contradictory. Walch and 

Bauschlicher [148], using the complete active space self-consistent field configuration 

interaction (CASSCF-CI) method, found the ground state of 2Y  to be 
 
5u

  (with a 

dominant configuration of 
1

uyz

1

uxz

1

gz

1*

u

2

g π4dπ4dσ4d5sσ5sσ 2 , similar to that for the 
 
5u



ground state of 2Sc , and dissociating to 5s
2
4d

1
 + 5s

1
4d

2
 atomic configurations; the first 

excited state atom lying at 1.36 eV above the ground state atom) with Re = 3.03 Å, ωe = 

171 cm
-1

, and De = 2.44 eV. These authors noted that the 
 
1g


 state of 2Y  was in 

competition with the supposed quintet ground state and suggested that higher order 

electron correlations could stabilize the former relative to the latter. For the 
 
1g


state, 

they obtained Re = 2.74 Å, De = 2.93 eV, ωe = 206.0 cm
-1

. This state was 0.87 eV less 

stable than the quintet at the vicinity of Re and had a dominant configuration of 

2

uyz

2

uxz

2

g π4dπ4d5sσ , resulting from two excited state atoms with configuration 5s
1
4d

2
. 

This warrants further consideration because a 
 
1g


 state can also result from the coupling 

of two doublet ground state Y atoms (5s
2
4d

1
: g

2 D ) and is expected to lie lower in energy. 

The PEC of Walch and Bauschlicher for the lowest 
 
1g


 state of 2Y  therefore violates 

the noncrossing rule. In fact, since 2Y  is isovalent with 2Sc , following the analysis of 

Kalemos et al. [16] on the molecular states of 2Sc , the combination of two doublet 

ground state atoms of Y should result in a total of 30 molecular terms, 3 of which are of 
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1g


 symmetry. The noncrossing rule therefore implies that the first three lowest 

 
1g



states should correlate with the 5s
2
4d

1
 + 5s

2
4d

1
 dissociation asymptote. This is indeed 

what was observed in the present work as will be seen below. Balasubramanian and Dai 

[149] employed second order CI with Davidson correction for unlinked quadruple 

clusters (SOCI + Q) method on a CASSCF wave function using 2hD  symmetry and with 

a relativistic effective core potential (RECP) basis set [150], in which the 4s
2
4p

6
4d

1
5s

2
 

shells were included in the valence space, and obtained a 
 
5u


 ground state with Re = 

3.03 Å, ωe = 172 cm
-1

, De = 2.6 eV (relative to the Y(4d
1
5s

2
) + Y(4d

2
5s

1
) dissociation 

limit).  These authors also found the lowest 
 
1g


 state to be 0.87 eV less stable than the 

quintet ground state at the CASSCF/SOCI + Q level (and 0.55 eV less stable at the 

MRSDCI level) with Re = 2.76 Å, ωe = 180 cm
-1

, and De = 3.09 eV (with respect to the Y 

(4d
2
5s

1
) + Y (4d

2
5s

1
) dissociation asymptote) and De = 0.37 eV (relative to the Y (4d

1
5s

2
) 

+ Y (4d
1
5s

2
) dissociation limit). In the present work, the first three lowest 

 g
1

states of 

Y2 were found to correlate with the ground state atoms’ dissociation limit as expected. 

 Previous DFT results of both 2Sc  and 2Y  molecules have tended to favor a 

quintet ground state. For example, Gutsev and Bauschlicher [151] found the ground term 

of 2Sc  to be 
 
5u


, using different DFT functionals, while Yang et al. [145] also obtained 

a 
 
5u


 ground state for 2Y  at the DFT level. Yang et al. also found the lowest 

 
1g


 state 

of 2Y  to lie at 0.29 eV above the quintet ground state, with the same leading 

configuration as had been reported by Walch and Bauschlicher [148]. Yanagisawa et al. 

[152] likewise obtained a 
 
5u


 ground term for Y2 at the DFT level.  
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 In this work, the low-lying electronic states of 2Sc  and 2Y  were reinvestigated at 

the GVVPT2 level of theory. The purpose of these studies was to resolve controversies 

on the low-lying electronic states of these molecules and to ascertain whether the PECs of 

their ground and excited states are free from artificial inflection points; i.e., “wiggles”.  

The rest of this Chapter is organized as follows. The next subsection describes details as 

to how the calculations were done; the results are presented and discussed in the third 

subsection; while a final subsection concludes the Chapter. 

Computational Details 

 The technique of macroconfigurations [22] was used within MCSCF and 

GVVPT2 calculations of the 2Sc  and 2Y  molecules. The advantages of using 

macroconfigurations (κ(n)s)  were reviewed in Chapter II. The active space used to 

construct reference κ(n)s consisted of molecular orbitals (MOs) derived from the 3d and 

4s subshells in the case of  2Sc  and 4d and 5s subshells in the case of 2Y . Calculations 

on the three lowest 
 
1g


 states of 2Y  also investigated the effects of including z5p -

derived MOs into the active space. 

  For 2Sc , two sets of reference κ(n)s were used in separate calculations.  In the 

first set, each active MO and its corresponding antibonding counterpart constituted a 

group except that the four sigma MOs dominated by 2z
3d

 
and 4s were placed in one 

subspace.  Two reference κ(n)s (labeled CASE 1 in Figure 5 and Table 1 in the Results 

and Discussion section) were defined from this grouping (and used to compute the X

state), viz. 



5u

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κ(n)  =  
     

   0*

uxygxy

0*

uyxgyx

4*

ug

*

uzgz

1*

gyzuyz

1*

gxzuxz

δ3dδ3dδ3dδ3d

4sσ4sσσ3dσ3dπ3dπ3dπ3dπ3d

2222

22




                    (3.1) 

κ(n)  =  
     

   1*

uxygxy

1*

uyxgyx

2*

ug

*

uzgz

1*

gyzuyz

1*

gxzuxz

δ3dδ3dδ3dδ3d

4sσ4sσσ3dσ3dπ3dπ3dπ3dπ3d

2222

22




                     (3.2) 

The superscripts denote the number of electrons assigned to each group of MOs.  This set 

of reference κ(n)s led to 34 model space and 261,936,074 all space CSFs for the X u
5  

state of 2Sc , using the cc-pVTZ basis set. For the second set of reference κ(n)s (labeled 

CASE 2 in Figure 6 and Table 1 in the Results and Discussion section), the MOs were 

grouped according to orbital type (pi, sigma, and delta) and six active electrons were 

distributed among the three orbital groups resulting in five reference κ(n)s, viz. 

κ(n)  =  
   

 0*

uxygxy

*

uyxgyx

4*

ug

*

uzgz

2*

gyzuyz

*

gxzuxz

δ3dδ3dδ3dδ3d

4sσ4sσσ3dσ3dπ3dπ3dπ3dπ3d

2222

22




                   (3.3) 

κ(n)  =  
   

 1*

uxygxy

*

uyxgyx

4*

ug

*

uzgz

1*

gyzuyz

*

gxzuxz

δ3dδ3dδ3dδ3d

4sσ4sσσ3dσ3dπ3dπ3dπ3dπ3d

2222

22




                 (3.4) 

κ(n)  =  
   

 1*

uxygxy

*

uyxgyx

3*

ug

*

uzgz

2*

gyzuyz

*

gxzuxz

δ3dδ3dδ3dδ3d

4sσ4sσσ3dσ3dπ3dπ3dπ3dπ3d

2222

22




                  (3.5) 

κ(n)  =  
   

 2*

uxygxy

*

uyxgyx

3*

ug

*

uzgz

1*

gyzuyz

*

gxzuxz

δ3dδ3dδ3dδ3d

4sσ4sσσ3dσ3dπ3dπ3dπ3dπ3d

2222

22




                  (3.6) 

κ(n)  =  
   

 2*

uxygxy

*

uyxgyx

2*

ug

*

uzgz

2*

gyzuyz

*

gxzuxz

δ3dδ3dδ3dδ3d

4sσ4sσσ3dσ3dπ3dπ3dπ3dπ3d

2222

22




                  (3.7) 
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This set of five reference κ(n)s was used to construct the PECs for the 

u

5ΣX , 

u

3 Σ1 , and 



g

3 Σ1  electronic states of 2Sc . The set generated 610 model space and 1,048,717,820 

total space CSFs in the case of the  

u

5ΣX  state; and 1510 model space and 2,070,199,828 

all space CSFs in the case of the 

u

3 Σ1  and 


g

3 Σ1   states; all using the cc-pVTZ basis set. 

 For the investigated electronic states of 2Y , the model space consisted of 4d (σ 

and π) and 5s-derived MOs grouped into two orbital subspaces from which three 

reference κ(n)s were constructed as follows 

κ(n)  =     6*

ug

*

uzgz

0*

gyzuyz

*

gxzuxz 5sσ5sσσ4dσ4dπ4dπ4dπ4dπ4d 22                (3.8)         

κ(n)  =     4*

ug

*

uzgz

2*

gyzuyz

*

gxzuxz 5sσ5sσσ4dσ4dπ4dπ4dπ4dπ4d 22              (3.9)                                              

κ(n)  =     2*

ug

*

uzgz

4*

gyzuyz

*

gxzuxz 5sσ5sσσ4dσ4dπ4dπ4dπ4dπ4d 22           (3.10) 

 

This partitioning of the model space gave rise to 172 model space and 1,012,046,286 

total space CSFs used to span the wave functions for the
 
11g


, 

 
21g


 and 

 
31g


states of 

2Y , using the aug-cc-pVTZ-DK basis set. Meanwhile, the  
5u


ground state generated 58 

model space and 1,320,147,234 all space CSFs. Additional calculation of the
 
11g


, 

 
21g


 

and 
 
31g


states of 2Y  considered a larger active space that involved z5p -dominated 

MOs. These extra orbitals were added to the sigma subspace in the set of three reference 

κ(n)s (3.8) to (3.10). This led to 710 model space and 2,108,403,566 all space CSFs for 

the singlet states, using the cc-pVTZ-DK basis set. Preliminary calculations showed that 
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the 4d-derived delta MOs were not important in describing the investigated 2Y  states and 

were thus excluded from the active space.  

 All calculations were performed in 2hD  symmetry. For all calculated states of 

2Sc , the correlation consistent triple zeta (cc-pVTZ) basis set [153], consisting of 151 

Gaussian primitives contracted to [7s6p4d2f1g], was employed.  Calculations of states of 

2Y  used the aug-cc-pVTZ-DK basis set [154], constructed from the primitive set 

(20s16p8d2f1g) contracted to [7s6p4d2f1g] for elements Sc to Zn, and the set 

(25s20p13d3f2g) contracted to [9s8p6d3f2g] for elements Y to Cd. Calculations on the 

enlarged active space for 2Y  that included z5p -dominated MOs utilized the cc-pVTZ-

DK basis set [154] derived from the primitive set (25s20p13d2f1g) contracted to 

[8s7p5d2f1g]. Multiconfigurational self-consistent field (MCSCF) calculations were 

performed using the above reference κ(n)s to account for static electron correlation. The 

initial MOs to begin such calculations were obtained from approximate natural orbitals of 

second-order restricted Møller−Plesset perturbation (RMP2) calculations from a closed-

shell Hartree−Fock (HF) reference. Dynamic electron correlation energy was recovered 

through the GVVPT2 method. Calculations of states of 2Y  included scalar relativistic 

effects through the spin-free exact two-component (sf-X2C) method that was described in 

Chapter II.  

 Where reported, the effective bond order (EBO) was determined using the 

expression 

 

 

 ici

2

i



ci

2

i


 ,                                                          (3.11) 
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where η is the EBO,   i is the EBO for the i-th configuration (CSF) while 2

ic is its 

corresponding contributing weight to the total wavefunction. The EBO for each important 

configuration considered in the determination of EBO was calculated using the well-

known formula 

 
 i 

1

2
nb  nab  ,                                                         (3.12) 

where nb denotes the number of bonding while nab is the number of antibonding electrons. 

Results and Discussion 

The 

u

5ΣX , 

u

3 Σ1 , and 


g

3 Σ1  electronic states of 2Sc  

The PECs obtained for the lowest quintet state ( 

u

5ΣX ) of 2Sc  at the GVVPT2 

level of theory and two different active spaces (CASE 1 and CASE 2) are shown in 

Figure 6 together with the curves for the two triplets also investigated (1  and 1 ).  

Corresponding spectroscopic constants characterizing the curves in Figure 5 are 

displayed in Table 1.  In Figure 6, two curves are shown for the quintet state resulting 

from the different partitioning schemes of the active space (CASES 1 and 2, described 

above).  The two results are similar at short bond lengths, with the only difference being 

that at long bond lengths, CASE 1 partitioning predicts a somewhat higher binding 

energy (De = 2.36 eV versus 2.25 eV).  The GVVPT2 part took 28.65 s for CASE 1 and 

53.42 s for CASE 2 reference spaces (on a dual-core AMD opteron ™ processor 2212 

model 65). The leading configuration in both cases was found to be 

1

u

1

gz

2

g

1

uyz

1

uxz 4sσσ3d4sσπ3dπ3d 2 , contributing approximately 0.74 by weight to the total 

ground electronic state wave function in CASE 1 partitioning and about 0.81 by weight in 

u
3 g

3
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CASE 2 partitioning near the minimum (2.57 Å).  The EBO for the quintet ground state, 

determined from the CASE 2 reference space using 7 important CSFs (the least with an 

amplitude of 0.101 and the largest with an amplitude of 0.902), was 1.83. 

 

Figure 5. PECs of the 

u

5ΣX , 

u

3 Σ1 , and 


g

3 Σ1  electronic states of 2Sc obtained at the 

GVVPT2 level of theory using the cc-pVTZ basis set. The energies of the two 

triplet states are plotted relative to the lowest energy value of the quintet 

ground state obtained from CASE 2 partitioning of the active space. The 

numbers 1 and 2 in parentheses following the molecular term symbols indicate 

that either CASE 1 or CASE 2 sets of reference κ(n)s were used in the 

calculations, respectively. 

 

 CASE 2 partitioning scheme was used to investigate the triplet excited states.  The 

wave function used to generate the curve shown in Figure 5 for the 

u

3 Σ1  state was 

verified to obey the true D∞h symmetry of the molecule. This curve lies at some 0.23 eV 

above the quintet ground state and has the same dissociation channel and about the same 
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bond length as does the ground state (Re ≈ 1.56 Å).  The  

u

3 Σ1  state of 2Sc  competes 

with the 

u

5 Σ1  state for being the ground state, as previous theoretical studies have 

shown.  In preliminary calculations of the 

u

3 Σ1  state in the present work, this state was 

found to have two MCSCF solutions at bond lengths ≤ 3.7 Å: one with broken symmetry 

(i.e., 2hD  but not hD ) and another with proper hD  symmetry.  At the GVVPT2 level, 

the former solution was found to be 0.18 eV more stable whereas the latter solution was 

0.23 eV less stable than the 

u

5 Σ1  at the vicinity of the equilibrium geometry (see Figure 

6). This observation underscored the importance of carefully assessing calculations of 

electronic states of transition metal molecules for possible symmetry breaking. 

 

Figure 6. PECs of the 

u

5 Σ1  and 

u

3 Σ1  electronic states of 2Sc  obtained at the GVVPT2 

level of theory using the cc-pVTZ basis set. All energies are plotted relative to 

the lowest energy value of the broken symmetry solution of 

u

3 Σ1 . The 

u

3 Σ1  

state shows two solutions at shorter bond lengths: one with proper symmetry 

and another with broken symmetry. 
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Table 1.  Equilibrium distances (Re), binding energies (De), and harmonic frequencies 

(ωe) of three electronic states of  2Sc  calculated at the GVVPT2 level of 

theory compared with results by other methods. 

Method Basis Set Re(Å) De(eV) ωe(cm
-1

) 



u

5ΣX  

MRCI + Q
a
 cc-pV5Z 2.75 2.17 224.0 

PC-NEVPT2
b
 (21s15p10d6f4g2h) 2.58 1.74 257.5 

GVVPT2
c
 cc-pVTZ 2.57 2.36 255.9 

GVVPT2
d
 cc-pVTZ 2.57 2.25 258.1 

Experiment    238.9
g
 



u

3 Σ1  

MRCI + Q
a
 cc-pV5Z 2.74 2.13 234.0 

PC-NEVPT2
b
 (21s15p10d6f4g2h) 2.60 1.65 260.1 

GVVPT2
d1

 cc-pVTZ 2.57 2.03 264.0 

GVVPT2
d2

 cc-pVTZ 2.60 2.44 503.8 



g

3 Σ1  

MRCI + Q
a
 cc-pV5Z 3.45 0.23 93.4 

GVVPT2
d
 cc-pVTZ 3.19 0.13 114.8 

a
Ref. [16],  

b
Ref. [155],  

c
This work (CASE 1),  

d
This work (CASE 2), 

e
Ref. [139],  

f
Ref. 

[156],  
g
Ref. [138], 

d1
This work (CASE 2, proper symmetry solution), 

d2
This work 

(CASE 2, broken symmetry solution). 

 

 As shown in Figure 5, the  


g

3 Σ1  state, which dissociates to ground state atoms, is 

van der Waals-like (Re = 3.19 Å, De = 0.13 eV, and ωe = 114.8 cm
-1

).  The energy gap 

between the dissociation asymptotes for this state and the quintet ground state was found 

to be about 1.78 eV, which is 0.35 eV larger than the experimental value of 1.427 eV for 

the Sc from its 214s3d  ground to a 12 4s3d excited atomic state. The 

u

5ΣX  state of 2Sc
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has a dissociation limit with one Sc atom in its ground state and another in an excited 

state.  

The 

u

5ΣX , 
 
11g


,  



g

1Σ2   and 


g

1Σ3  states of 2Y  

 The PECs for the  
X 5u


 and 

 
11g


 states of 2Y  are shown in Figure 7 and the 

data characterizing the curves are shown in Table 2.  

 

Figure 7. PECs of the  
X 5u


 and 

 
11g


 states of 2Y  computed at the relativistic GVVPT2 

level of theory using the aug-cc-pVTZ-DK basis set. All energies are plotted 

relative to the lowest energy value of the quintet ground state. 

 

Similar to the situation in isovalent 2Sc , where two low-lying electronic states ( 
5u


 and 

 
3u


) are relevant to determination of the ground state,  for 2Y , the lowest  

5u


 and 
 
1g


 

states should be considered.  
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Table 2. Equilibrium distances (Re), binding energies (De), adiabatic transition energies 

(Te), and harmonic frequencies (ωe) of electronic states of 2Y  calculated at the 

relativistic GVVPT2 level of theory compared with results from other methods. 

 

Method Basis Set Re(Å) De(eV) ωe(cm
-1

) Te (eV) 

 
X 5u


 

CASSCF-CI
a
  3.03 2.44 171.0  

CASSCF/SOCI + 

Q
b
 

RECP 3.03 2.60 172.0  

DFT(VWN-BP)
c
 slater-type triple ζ 2.94  173.0  

DFT(B3P86)
c
 LANL2DZ 2.73  214.0  

DFT (BOP)
d
 (23s18p15d4f/9s5p6d2f) 2.96 2.14 173.3  

DFT(B3LYP)
e
 CEP-121G 2.76 0.22 204.4  

DFT(BLYP)
e
 CEP-121G 2.79 0.56 193.5  

DFT(B3PW91)
e
 CEP-121G 2.75 0.68 206.9  

DFT(BHLYP)
e
 CEP-121G 2.74 0.47 213.9  

DFT(BP86)
e
 CEP-121G 2.76 1.03 198.7  

DFT(B3P86)
e
 CEP-121G 2.73 0.72 208.9  

DFT(SVWN)
e
 CEP-121G 2.72 1.73 206.8  

DFT(mPW1PW91)
e
 CEP-121G 2.74 0.64 208.8  

DFT(PBE1PBE)
e
 CEP-121G 2.74 0.66 209.2  

GVVPT2 Aug-cc-pVTZ-DK 2.80 3.12 287.2  

Experiment   1.62 ± 

0.22
f
 

185 ± 

0.2
c
 

 

  2.65
g
 3.5 ± 

0.4
g
 

184.4 ± 

0.4
g
 

 

 
11g


 

CASSCF-CI
a
  2.74 2.93

h
 206.0 0.87 

CASSCF/SOCI + 

Q
b
 

RECP 2.76 3.09
h
 

(0.37)
i
 

180.0 0.87 

DFT(VWN-BP)
c
 slater-type triple ζ 2.59  207.0 0.29 

DFT(B3P86)
c
 LANL2DZ 2.76  225.0 0.96 

GVVPT2 Aug-cc-pVTZ-DK 3.21 0.91 140.0 0.67 


g

1Σ2  

GVVPT2 Aug-cc-pVTZ-DK 3.27 0.75 122.9 0.83 


g

1Σ3  

GVVPT2 Aug-cc-pVTZ-DK 3.36 

(4.27) 

0.09 

(0.10) 

118.3 

(113.9) 

1.49 

(1.48) 

a
Ref. [148],  

b
Ref. [149], 

c
Ref. [145], 

d
Ref.[152], 

e
Ref. [157], 

f
Ref. [139] (Third law 

method), 
g
Ref. [146] (Reported a g

1  ground state), 
h
Dissociation to excited state atoms 

(Y: 4d
2
5s

1
), 

i
Dissociation to ground state atoms (Y: 4d

1
5s

2
).  

 



72 

 

As was mentioned in the Introduction, experimental determination of the symmetry of the 

2Y  ground state has not been unambiguous, although a  
5u


 ground state seems the more 

likely. In this study, the ground state of the 2Y  molecule was found to be  
X 5u


 in 

agreement with most previous theoretical studies (see Table 2).  

 In agreement with the Walch and Bauschlicher study [148], the major 

configuration of the  
X 5u


 state was found to be 

 
1*

u

1

gz

2

g

1

uyz

1

uxz 5sσσ4d5sσπ4dπ4d 2                                  (3.13) 

For this configuration, a weight of 0.800 was found at 2.80 Å (i.e., at the minimum) 

which decreased to 0.548 at 4.4 Å. This configuration is quite similar to that often 

reported for the 2Sc   
X 5u


 state. Using formulas (3.11) and (3.12), an EBO of 1.87 was 

obtained for the ground state of 2Y  at 2.81 Å (using 8 important configurations), which 

dropped to 1.15 at 4.4 Å. Spectroscopic constants obtained by the GVVPT2 study were in 

reasonable agreement with the CASSCF/SOCI + Q study [149] and with experiment 

[146] (i.e., Re = 2.80 Å vs 3.03 Å vs 2.65 Å; De = 3.12 eV vs 2.6 eV vs 3.5 ± 0.4 eV), 

although the harmonic frequency was less so (ωe = 287 cm
-1

 vs 172 cm
-1

 vs 184 cm
-1

). 

The 
 
11g


 state of 2Y  was found to lie at 0.67 eV above the  

X 5u


 state around 

the equilibrium geometry. Walch and Bauschlicher [148] and Dai and Balasubramanian 

[149] had found the 
 
11g


 state of 2Y , which had  

2

g

2

uyz

2

uxz 5sσπ4dπ4d                                                    (3.14) 

as the major configuration, to lie at 0.87 eV above a quintet ground state. They also 

reported a dissociation asymptote for the singlet state that involved excited Y atoms. In 
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this study, a state averaged calculation was performed on the first three lowest 
 
1g


 states 

of 2Y  with equal weighting and found all three states to correlate with the ground state 

atoms’ dissociation channel. In fact, near degeneracy at certain geometries did not permit 

even a qualitatively correct curve for the 
 
11g


 state to be computed in a one state 

calculation.  

 

Figure 8. PECs of the 
 
11g


, 



g

1Σ2 , and 


g

1Σ3  states of 2Y  computed at the relativistic 

GVVPT2 level of theory using the aug-cc-pVTZ-DK basis set. All energies are 

plotted relative to the lowest energy value of the 
 
11g


 state. 

In contrast with the earlier studies, the present work obtained 

2*

u

2

g

2

uxz 5sσ5sσπ4d  and 
2*

u

2

g

2

uyz 5sσ5sσπ4d                                    (3.15) 

as the major configurations in the state-averaged calculation near the equilibrium bond 

length. As with the  
X 5u


 state, spectroscopic constants were in reasonable agreement 



74 

 

with the CASSCF/SOCI + Q study [149] (i.e., Re = 3.21 Å vs 2.76 Å; De = 0.91 eV vs 

0.37 eV; ωe = 140 cm
-1

 vs 180 cm
-1

; Te = 0.67 eV vs 0.87 eV); there are no available 

experimental data for the 
 
11g


 state. Figure 8 shows the PECs of the three lowest 

 
1g



states of 2Y  obtained in the state-averaged calculation. 

The shallow bump around a bond length of 4.6 Å on the 
 
11g


PEC shown in 

Figures 7 is not an artifact but is a consequence of what is suspected to be an avoided 

crossing. This curve is shown with two other low lying 
 
1g


states of 2Y in Figure 8 and 

the corresponding data describing them are included in Table 2. In particular, the results 

on the 
 
21g


 and 

 
31g


 states of the 2Y  species are the first to be reported, to the best of 

my knowledge. As can be seen, the PEC for the 
 
31g


 state has two shallow minima: an 

inner minimum at Re = 3.36 Å with De =0.09 eV, ωe = 118.3 cm
-1

, and Te = 0.82 eV (with 

respect to the 
 
11g


state) and an outer very slightly deeper minimum at  Re = 4.72 Å with  

De =0.10 eV, ωe = 113.9 cm
-1

 and Te = 0.81 eV.  

 To corroborate the PEC-based hypothesis that the bump in the 
 
11g


PEC around 

4.6 Å is an avoided crossing, the important configurations of the 
 
11g


 and 

 
21g


states 

were analyzed just before the bump (at 4.3 Å) and at the bump (4.6 Å). As shown in 

Table 3, the leading configurations of the 
 
11g


state at 4.3 Å (i.e., 1, 4, 7, and 9) become 

the leading configurations of the 
 
21g


state at 4.6 Å (i.e., 1, 2, 3, and 4, respectively) 

whereas the major configurations of the 
 
21g


state at 4.3 Å also become those of the 

 
11g


state at 4.6 Å.  
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Table 3. Important configurations of the 
 
11g


  and 



g

1Σ2  states of 2Y  indicative of a 

switch in the two states on going from 4.3 to 4.6 Å bond length
a
. 

CSF No. Amplitudes Configurations  

 

g

1 Σ1 (R = 4.3 Å)   

1 0.34157 3 0 0 0 3 0 3 0  

2 -0.03741 1 0 0 1 3 2 2 0 

3 0.04777 1 0 0 2 3 1 2 0 

4 -0.34157 0 3 0 0 3 0 3 0 

5 -0.03741 0 1 1 0 3 2 2 0 

6 0.04777 0 1 2 0 3 1 2 0 

7 0.54083 0 0 3 0 3 0 3 0 

8 -0.05873 0 0 3 0 0 3 3 0 

9 -0.54083 0 0 0 3 3 0 3 0 

10 0.05873 0 0 0 3 0 3 3 0 

 

g

1Σ2 (R = 4.3 Å)  

1 -0.28202 0 0 0 0 3 3 3 0 

2 0.07568 0 0 0 0 3 0 3 3 

3 -0.33449 3 0 0 0 3 0 3 0 

4 -0.33449 0 3 0 0 3 0 3 0 

5 0.50751 0 0 3 0 3 0 3 0 

6 0.50751 0 0 0 3 3 0 3 0 

7 -0.06378 0 0 3 3 0 0 3 0 

 

g

1 Σ1 (R = 4.6 Å)  
 

1 0.65995 0 0 0 0 3 3 3 0 

2 -0.05299 0 0 0 0 3 3 1 2 

3 -0.39146 0 0 0 0 3 0 3 3 

4 0.06181 0 0 0 0 1 2 3 3 

5 0.22319 3 0 0 0 3 0 3 0 

6 0.22319 0 3 0 0 3 0 3 0 

7 -0.27683 0 0 3 0 3 0 3 0 

8 -0.27683 0 0 0 3 3 0 3 0 

 

g

1Σ2 (R = 4.6 Å)  

1 0.39767 3 0 0 0 3 0 3 0 

2 -0.39767 0 3 0 0 3 0 3 0 

3 0.51141 0 0 3 0 3 0 3 0 

4 -0.51141 0 0 0 3 3 0 3 0 
a
Active core orbitals are fully occupied in all listed configurations and are therefore not 

included. Configurations of the states that get exchanged are shown in bold (e.g., 

configurations 1, 4, 7, and 9 of the 


g

1 Σ1  state at 4.3 Å become configurations 1, 2, 3, and 

4, respectively of state 


g

1Σ2  at 4.6 Å). 
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The configurations shown in Table 3 are represented using step vector notation: 

the number 0 corresponds to zero orbital occupancy; 1 to single occupancy, spin coupled 

to increase spin; 2 to single occupancy with a reduction in spin; and 3 to double orbital 

occupancy. The orbital symmetries (in 2hD  point group) are {0 0 0 0 1 2 2 3 3 4 5 5 5 5 6 

6 7 7 | 2 3 6 7 0 0 5 5} where 0 to 7 denote irreps Ag to B3u with the active core orbitals 

lexically preceding the valence orbitals.  

 Obtaining the correct initial orbitals for the characterization of the 
 
11g


,  



g

1Σ2 , 

and 


g

1Σ3 states of 2Y was difficult. In preliminary state averaged calculations in which 

the 5pz-derived σ MOs replaced the 
 
4d

z2 dominated MOs, the 
 
31g


state to was found 

correlate with the Y (4d
2
5s

1
) + Y (4d

2
5s

1
) dissociation asymptote in violation of the non-

crossing rule.  

 With the use of formulas (3.11) and (3.12), the EBO for the 
 
11g


state was 0.90 

(using 10 important configurations), for 
 
21g


 0.94 (using 12 important configurations), 

and for 
 
31g


 0.94 (using 10 important configurations) at 3.24 Å. At this geometry, two 

leading configurations for the 


g

1Σ1 state, each contributing 0.381 by weight to the wave 

function, were those shown in (3.15).The same configurations were dominant in the 

 
21g


state, contributing 0.353 by weight each to the overall wave function.  The leading 

configuration for the 
 
31g


state was rather 

 
5s g

24d
z2 g

25s u

*2
, contributing 0.756 by 

weight to the wave function at 3.24 Å. It is important to note that all these configurations 

suggest the coupling of two ground Y atoms (Y: 4d
1
5s

2
). 
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 When the z5p -derived MOs were included in the active space and the enlarged 

model space used to compute the three lowest  
 
1g


states of 2Y , the bump in the 

 
11g


 

curve was seen to be shifted inward to around 3.0 Å bond length whereas the inner 

minimum in the 
 
31g


 curve now lay around 2.9 Å (Figure 9). A few calculations were 

performed involving four  
 
1g


 states of 2Y  around the bump in the 

 
31g


 curve and the 

latter curve was found to be energetically quite close to the 


g

1Σ4  curve, indicating a 

likely avoided crossing that might explain the double minimum in the 
 
31g


 curve. 

 

Figure 9. PECs of the 
 
11g


, 



g

1Σ2 , and 
 
31g


states of 2Y  computed at the relativistic 

GVVPT2 level of theory using the aug-cc-pVTZ-DK basis set and an active 

space that included  z5p -derived MOs. The energies are plotted relative to the 

lowest energy value of the   
 
11g


 state. 
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Conclusions 

This Chapter described the ground electronic states of 2Sc  and 2Y ,  and some of 

their low lying excited states, as were obtained at the GVVPT2 level of theory with scalar 

relativistic effects included via the spin-free exact two-component (sf-X2C) method in 

the case of 2Y . In test calculations of 2Sc  that included scalar relativistic effects, 

relativity was not found to significantly impact the states of 2Sc . Hence, such 

calculations were discontinued. Although 2Sc  and 2Y  have the same ground state  

( 
X 5u


), the effects of scalar relativity are evident when the EBOs of these states are 

compared. In 2Sc , the EBO was 1.83 whereas in 2Y , it was 2.81 (both determined in the 

vicinity of the equilibrium bond length). A plausible explanation for the higher EBO in 

2Y  is that the relativistic contraction of the outer 5s subshell of atomic Y accompanied by 

a slight destabilizing expansion of its 4d-subshell orbitals leads to 4d and 5s orbitals of Y 

being averagely of the same spatial extent and hence, contributing fairly strongly to 

bonding at the same region in space. Such expansion and contraction are minimal in Sc.  

 Noteworthy in the present studies is the use of simple valence bond-type active 

spaces. Such model spaces have been successfully used in GVVPT2 studies on other 

transition metal molecules besides the ones reported here (see Ref. [158, 159]). In all 

those studies, the PECs obtained at the GVVPT2 level were all smooth and continuous. 

The present studies support the generally held view that the ground state of 2Sc  is  
X 5u



. Spectroscopic constants are in good agreement with MRCISD + Q/cc-pV5Z [16] and 

experimental results. Notably, De at the MRCISD + Q/cc-pV5Z is 2.17 eV, while 

GVVPT2/cc-pVTZ obtains 2.25 eV; experiment [134] obtained 239 cm
-1

 for ωe, with 
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MRCISD + Q/cc-pV5Z [16] being 15 cm
-1

 lower and GVVPT2/cc-pVTZ being 19 cm
-1

 

higher.  

The results on the 2Y  states are quite revealing of how complicated this 

seemingly simple species with only 6 active electrons is; hence the need for a careful 

choice of an active space. Whereas previous theoretical studies considered the 
 
11g


state 

of 2Y , only Dai and Balasubramanian[ 149] reported a dissociation assymptote involving 

two ground Y atoms for this state (in addition to a dissociation channel involving excited 

state atoms) but did not provide a full PEC for the said state. This study is the first to find 

that the lowest three 
 
1g


 states of 2Y  correlate with the ground state atoms’ dissociation 

limit, as expected theoretically. Moreover, this study is the first to obtain full PECs of the 



g

1Σ2  and 
 
31g


states of 2Y , which prove to be critical in understanding the dissociation 

channels.  Although the lowest two 
 
1g


 states were described reasonably well with an 

active orbital space of 4d ( πandσ ) and 5s-derived MOs, inclusion of z5p -derived 

orbitals provides better curves. In contrast, computational artifacts remain for 
 
31g


, 

which suggests that the states originating from the first excited dissociation limit should 

be included for quantitative studies of that state. Overall, even though the ground term for 

the 2Y  molecule has not been experimentally ascertained unambiguously, many 

theoretical studies have tended to favor a 

u

5Σ  ground state and the present work lends 

further support in this regard. Comparison of GVVPT2 results with those from 

CASSCF/SOCI + Q and experiment, where available, corroborate the general correctness 
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of the present results, but also suggest that more accurate calculations are needed 

especially for the purpose of spectroscopic studies. 
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CHAPTER IV

GVVPT2 STUDIES OF LOW-LYING ELECTRONIC STATES OF CHROMIUM AND 

MOLYBDENUM DIMERS 

Introduction 

 This Chapter discusses studies carried out on some of the electronic states of Cr 

and Mo diatoms. These studies were the first to have been done using the GVVPT2 

method that was extended to include scalar relativistic effects through the spin-free exact 

two component (sf-X2C) method as was described in Chapter II. Cr and Mo are isovalent 

and, contrary to the Aufbau Principle, preferably exist in the more stable S7  atomic state 

with configuration   15 sd1 nn  as opposed to the  D5  atomic state with configuration 

  24 sd1 nn (where n = 4 for Cr and 5 for Mo). The 3J

7S  term of Cr lies 0.961 eV lower 

that the 0J

5 D   state [160]. In Mo, this energy difference is even larger (1.360 eV) [161]. 

The   15 sd1 nn  ground configuration of Cr and Mo is quite amenable to bond formation. 

In fact, the group VI elements (Cr, Mo, W, and Sg) are expected to form metal-metal 

bonds with the highest multiplicity among transition elements. Strong multiple metal-

metal bonds in Tungsten (W) may lend credence to the fact that W has the highest 

melting point of all metals. Moreover, Roos et al. [162] reported sextuple bonds in 2Mo

and 2W , based on relativistic CASPT2 calculations.  

 This Chapter is organized as follows. The present subsection provides a brief 

discourse of previous theoretical and experimental efforts on 2Cr and 2Mo ; the next 
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subsection will discuss computational details; the results are presented and discussed in 

the third subsection; while a final subsection concludes the chapter. 

Previous Studies of 2Cr  

 2Cr is perhaps one of the most challenging small molecules in the world of 

quantum chemistry and has since served as the species with which the capability of newly 

developed ab initio methods in quantum chemistry is assessed. Despite having been first 

identified over four decades ago [163, 164], the bonding in this molecule remains a 

formidable challenge to theoretical chemists. Over fifty different computational 

treatments have been made on 2Cr  in an effort to elucidate its bonding.  Early attempts 

did not lead to useful characterizations and resulted in published statements such as that 

by Salahub in 1987 [165] that labeled 2Cr  as “a bête noire”.  Bauschlicher and Partridge 

in 1994 [166] declared that “obtaining a quantitative description of 2Cr  has so far proven 

to be impossible”, while in as late as 1999 Thomas et al. [167] stated about 2Cr  that “it 

has been found repeatedly that improving the computational level did not necessarily 

improve the results”. 

 2Cr  has been the subject of many experimental studies. By resonant two-photon 

ionization (R2PI) spectroscopy, Michalopoulos et al. [168] determined the bond length of 

2Cr  to be Re = 1.68 ± 0.01 Å and its ground state as X . By laser-induced fluorescence 

spectroscopy, Bondybey et al. [169] determined the equilibrium bond length to be Re = 

1.679 Å with a harmonic frequency of ωe = 470 cm
-1

.  From photoionization spectroscopy 

Simard et al. [170] obtained the dissociation energy De = 1.56 ± 0.06 eV, while the mass 

spectrometric experiment by Hilpert and Ruthardt [171] led to De = 1.473 ± 0.056 eV and 

 g

1
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Su et al. [172] reported De = 1.45 ± 0.10 eV. By negative ion photoelectron spectroscopy, 

Casey and Leopold [173] determined the ground state harmonic frequency of 2Cr  to be 

approximately ωe = 481 cm
-1

.  In this experiment, they obtained transition energies from 

29 vibrational levels and, using the Rydberg-Klein-Rees (RKR) method [174-176], 

obtained a RKR potential energy curve for the ground state of 2Cr  that clearly showed a 

shelf region from around 2.5 Å to 3.0 Å.   

Theoretical efforts on ground state 2Cr  are assessed relative to the RKR PEC 

obtained in the Casey and Leopold [173] study. Early attempts in this regard led to 

disappointing results. Coupled cluster with single and double excitations (CCSD) 

calculations [177] with the (14s11p6d2f1g)/[10s8p3d2f1g] basis set gave a too short bond 

length (Re = 1.46 Å) and a too large harmonic frequency (ωe = 1161 cm
-1

). At the 

unrestricted CCSD level with perturbative inclusion of triples [UCCSD(T)], Bauschlicher 

and Partridge [166], using the (20s15p10d6f4g)/[9s8p7d5f2g] basis set, obtained Re = 

2.54 Å and De = 0.89 eV.  With a CASSCF reference function and then an Epstein-

Nesbet second-order perturbation correction using the [10s8p3d2f] basis set [178], a 

reasonably good (Re = 1.6258 Å) bond length was obtained but the potential function 

could not dissociate properly (De = 2.786 eV). With the multireference ACPF 

(MRACPF) formalism using the (20s15p10d6f)/[9s8p7d5f] basis set [166], Dachsel et al. 

[179] obtained Re = 1.72 Å, De = 1.09 eV, and ωe = 338.7 cm
-1

. In contrast to earlier 

disappointing CASPT2 studies [180, 181], Roos [182] performed very large CASPT2 

calculations that considered an expanded active space of 12 electrons and 16 molecular 

orbitals (derived from the 3d and 4s subshells plus all bonding MOs from 4p and the 

corresponding anti-bonding sigma type), used the modified (g1) zero-order Hamiltonian 
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of Andersson [183], a large ANO basis set, relativistic corrections, and level shifts, and 

obtained good values for the bond length, Re = 1.66 Å, and harmonic frequency, ωe = 450 

cm
-1

, but somewhat overestimated the dissociation energy, De = 1.68 eV.  Calculations 

done later at the CIPT2 [184] level (N.B. a hybrid of multireference configuration 

interaction and second order multireference perturbation theory), using the 

[9s8p7d7f5g3h] basis set, gave values of Re = 1.756 Å, De = 1.18 eV, and ωe = 322 cm
-1

.  

The same authors performed calculations at the CASPT2 and MRCI+Q levels with the 

same basis set and reported Re = 1.678 Å, De = 1.84 eV, and ωe = 565 cm
-1

 for CASPT2 

and Re = 1.664 Å, De = 1.01 eV, and ωe = 511 cm
-1

 for MRCI+Q.  Notably, none of these 

three studies gave the correct dissociation energy.  Essentially more accurate (though 

very costly) results were obtained by Müller [185] at the fully uncontracted 

multireference averaged quadratic coupled cluster (MR-AQCC) level.  With the use of a 

large flexible basis set (including h and i functions), with 28 correlated electrons (3s, 3p, 

3d, and 4s electrons) generating up to 2.8 billion configuration state functions (CSFs) and 

by accounting for scalar relativistic effects through the use of the Douglas-Kroll-Hess 

(DKH) Hamiltonian [31, 186], he obtained Re = 1.685 Å, De = 1.48 eV, and 

1

e cm459ω   after extrapolation to the complete basis set (CBS) limit.  Surprisingly, his 

results are poor with the use of a triple-zeta basis set (TZP), giving two shallow minima 

at 1.758 Å and 2.5 Å with almost the same energy (-0.078 eV). 

 The most recent calculations of 2Cr  were performed by Hongo and Maezono 

[187], Ruipérez et al. [19], and Kurashige and Yanai [188].  Calculations at the 

variational Monte Carlo (VMC) and DMC levels [187] overestimated Re by over 25% 

and underestimated De by some 40%.  Ruipérez et al. [19] performed calculations at the 



85 

 

restricted active space second order perturbation theory (RASPT2) and CASPT2 levels 

using the (21s15p10d6f4g)/[10s10p8d6f4g] basis set of Roos [182] and exploiting two 

different zero-order Hamiltonians.  The RASPT2 PEC proved to be seriously deficient at 

long distances, and the CASPT2 calculations with the g1 zero-order Hamiltonian 

overestimated De by 0.6 eV.  In the case of using a zero-order Hamiltonian with the 

ionization potential-electron affinity (IPEA) shift, these authors observed a strong 

dependence of the CASPT2 PEC on the IPEA shift parameter and no value was found 

that consistently gave the best results in terms of shape of the PEC and spectroscopic 

constants.  Whereas the best estimate for IPEA giving a PEC with a shape that agreed 

well with experiment was 0.45, the best IPEA value for predicting the right Re was 0.50; 

for De, it was 0.45; and for 2/1G , it was 0.40.  Kurashige and Yanai [188] performed 

analogous CASPT2 calculations but with a density matrix renormalization group SCF 

(DMRG-SCF) reference function, constructed within the active space (12e, 28o) derived 

from the 3d, 4s, 4p, and 4d subshells, and using the cc-pwCV5Z basis set.  After a linear 

extrapolation to infinite size of the renormalized basis sets, Kurashige and Yanai [188], 

using a zero-order Hamiltonian with an IPEA shift of 0.25 a.u., obtained the very good 

results: Re = 1.682 Å, De = 1.551 eV, and ωe = 471 cm
-1

.  However, the same calculations 

without any shift led to unreasonable results: Re = 1.719 Å, De = 1.337 eV, and ωe = 361 

cm
-1

, which corroborates the previously noted sensitivity to shift parameters. 

Previous Studies of 2Mo  

 Information in the literature suggests that the 2Cr  molecule has probably been 

more studied than its isovalent 2Mo  counterpart. Whereas 2Cr  and 2Mo  have both been 

found to have 


g

1ΣX  ground atomic terms, a key difference exists in their PECs: the 
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ground PEC of 2Cr  contains an inner minimum thought to be dominated by 3d-3d 

bonding interaction and an outer shelf in the range 2.5 – 3.0 Å believed to be dominated 

by 4s-4s bonding interaction [162], whereas no such outer shelf is visible in the ground 

PEC of isovalent  2Mo . As was found in the present studies, at the GVVPT2 level, the 



u

3Σ1  excited state of 2Cr  also has an outer shelf in its PEC (similar to the ground PEC) 

whereas the corresponding state of 2Mo  does not possess such a shelf. These 

observations suggest that the 4d and 5s atomic orbitals of Mo are of similar spatial 

extents and contribute to bonding at the same interatomic separation whereas the 3d and 

4s orbitals of Cr have different spatial extents.  

 Experimental studies of the ground state of 2Mo  have reported a binding energy 

that is much larger than that of 2Cr  ( roughly 4.47 eV vs 1.56 eV), a longer bond length 

than that of 2Cr  (about 1.94 Å vs 1.68 Å), but a frequency that averagely the same as that 

of 2Cr  (about 484.9 cm
-1

 vs 481 cm
-1

). One of the earliest experimental studies of 2Mo is 

due to Efremov et al. [189] who obtained the emission spectra of 2Mo based on flash 

photolysis of the  2COMo molecule. Vibrational analyses of the data obtained led to a 

bond length of Re = 1.929 Å, a harmonic frequency of 1

e cm477.1ω  , and a bond 

energy of 0D  = 4.12 eV for the 


g

1ΣX  state of 2Mo . In the same year (1978), Gupta et al. 

[190] used a Knudsen effusion mass spectrometric method to study the dissociation of 

2Mo  into atoms at a high temperature range of 2,772-2,963 K. They subsequently used 

the second law method to determine a bond energy ( o

0D ) of 4.34 ± 0.35 eV, whereas the 

third law method gave o

0D  = 4.43 ± 0.02 eV (assuming Re = 1.94 Å and 1

e cm477.1ω  ) 
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for ground state 2Mo . Meanwhile Pellin et al. [191] later studied 2Mo  in argon and 

krypton matrices. From matrix isolation fluorescence spectra, they obtained the same eω  

and Re values as did Efremov et al. Hopkins et al. [192] carried out resonant two-photon 

ionization studies of supersonic jet-cooled 2Mo  from which a bond length of  Re = 1.937 

Å was deduced for the ground state.  Simard et al. [170] found 0D = 4.476 ± 0.010 eV for 

ground state 2Mo  using photoionization spectra of laser vaporized 2Mo . Kraus et al. 

[193] used Fourier transform spectrometry to study 2Mo  trapped in solid Ne at cryogenic 

conditions (about 7 K), from whence a harmonic frequency of 1

e cm484.9ω  was 

established for the ground state of 2Mo . The most recent experimental investigation of  

2Mo is due to Feng et al. [194] who obtained resonance Raman spectra of mass-selected 

2Mo in Ar matrices, from whence a harmonic frequency of  1

e cm473.3ω  was 

determined for the 2Mo  ground state. 

 2Mo  has been the subject of a number of theoretical studies. One of the earliest of 

these combined local spin density methods with a model potential representation of the 

inner core electrons of Mo [195] and found De = 4.80 eV, Re = 1.98 Å, and 

1

e cm479.0ω  for the ground state of 2Mo . On the other hand, calculations at the 

configuration interaction (CI) level of theory [196] gave Re = 2.01 Å, 1

e cm388.0ω  and 

a bond energy ( 0D ) of only 0.86 eV whereas MRCI [197] gave Re = 1.97 Å and 

1

e cm475.0ω   for ground state 2Mo . A study by Goodgame and Goddard [198] that 

employed the generalized valence bond-van der Waals (GVB-vdw) method led to 0D  = 
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1.41 eV, Re = 1.93 Å, and 1

e cm455.0ω  for the ground state of 2Mo . A later study by 

the same authors [199] gave 0D  = 3.94 eV and Re = 1.92 Å.  

 More recent studies of 2Mo  have focused not only on its ground electronic state 

but also on some low-lying states as has been done also in the work reported in this 

dissertation. Balasubramanian and Zhu [200] used MRCISD, FOCI, MRCISD + Q, and 

FO + MRCISD methods and RECP basis sets [150] to study up to 37 low-lying electronic 

states of  2Mo . For the ground state, they found  Re = 1.993 Å and 1

e cm447.5ω  at the 

MRCISD + Q level, Re = 2.044 Å and 1

e cm497.0ω  at the FOCI level, and Re = 2.050 

Å and 1

e cm486.0ω  at the FO + MRCISD level of theory. The authors did not report 

the dissociation energy of the ground state or for any of the excited states included in 

their study. One of the most recent studies of 2Mo is due to Borin et al. [201] who used 

CASSCF/MS-CASPT2 together with a quadruple-ζ atomic ANO-RCC basis set [202] 

and found the spectroscopic constants for ground state 2Mo  to be 0D  = 4.41 eV, Re = 

1.950 Å, and 1

e cm459.0ω  .  

In general, many ab initio methods have tended to predict spectroscopic constants 

for 2Mo that are more in agreement with reference values than for 2Cr . DFT studies, 

however, lead to spectroscopic data for these molecules that depend largely on the DFT 

functional used (see, for example, Ref. [157]). Here, the low-lying states of 2Cr and 2Mo  

have been reinvestigated using GVVPT2, partly to assess the capability of GVVPT2 for 

describing such complicated systems and also to assess the importance of relativistic 

effects in the Cr system in comparison with Mo. In the next subsection, details of how the 

calculations were done are provided. 
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Computational Details 

 The advantages of macroconfigurations (κ(n)s) [22] were again used within the 

MCSCF and GVVPT2 codes to investigate electronic states of 2Cr and 2Mo . For both 

molecules, a single valence bond-style reference κ(n) was defined by distributing twelve 

active electrons among six active orbital groups, with each group consisting of a bonding 

MO and its corresponding antibonding counterpart. The active orbitals were derived from 

the valence  d1n  and sn subshells of the atoms. Each valence subspace of two active 

orbitals was assigned two active electrons in the reference κ(n). Thus, for the case of 2Cr , 

the reference κ(n) was the following 

κ(n)  =  
     

     2*

ug

2*

uxygxy

2*

uyxgyx

2*

uzgz

2*

gyzuyz

2*

gxzuxz

σ4sσ4sδ3dδ3dδ3dδ3d

σ3dσ3dπ3dπ3dπ3dπ3d

2222

22




                 (4.1) 

This reference κ(n) was used to construct the PECs of the X


g

1Σ , 1 u
3 , 1

g
5

 , and 



u

7 Σ1  electronic states of 2Cr . The reference κ(n) for 2Mo was the same as (4.1) using its 

4d- and 5s-derived MOs. The same states were investigated for 2Mo  as for 2Cr .  

With the one reference κ(n) described above, MCSCF calculations were first 

performed to account for static electron correlation.  The initial molecular orbital (MO) 

guesses for one geometry were obtained from approximate natural orbitals of second 

order restricted Møller-Plesset perturbation (RMP2) calculations from a closed-shell 

Hartree Fock (HF) reference; subsequent MCSCF calculations used orbitals from 

adjacent geometries.  Dynamic electron correlation energy was accounted for through 

GVVPT2 calculations.  In addition to all active space electrons, high-lying core orbitals 

(i.e., 3s and 3p electrons in the case of 2Cr , and 4s and 4p in the case of 2Mo ) were all 
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correlated at the GVVPT2 level of theory.  All calculations were done using the D2h point 

group (i.e., the largest point group available in the UNDMOL 1.2 suite of programs: an 

electronic structure software suite developed and maintained at the University of North 

Dakota. For details on the structure and operation of UNDMOL 1.2, see Ref. [104]).  All 

calculations of states of 2Mo  included relativistic effects at the GVVPT2 level of theory 

whereas only studies of the ground state of 2Cr  considered such effects. All studies of 

excited states of 2Mo  employed the aug-cc-PVTZ-DK basis set [154], derived from the 

primitive set (25s20p13d3f2g) contracted to [9s8p6d3f2g], while studies of its ground 

state used this basis set and also the polarized valence triple-ζ quality ANO-RCC basis 

set [202].  

All calculations of excited states of  2Cr  used the cc-pVTZ basis set [153], 

consisting of 151 Gaussian primitives contracted to [7s6p4d2f1g].  Calculations of the 

ground state of 2Cr  were done with the cc-pVTZ basis set, but a number of other basis 

sets were explored as well.  These included the correlation consistent quadruple zeta (cc-

pVQZ) basis [153]
 
built from 202 primitive Gaussians and contracted to [8s7p5d3f2g] 

(N.B.  The h-functions were neglected in all calculations employing this basis set), the 

aug-cc-pVTZ basis [153] consisting of 186 primitive Gaussians contracted to 

[8s7p5d3f2g], Roos Augmented Triple Zeta ANO [37], the ANO-L VTZP basis set [37], 

and several effective core potential (ECP) basis sets: Stuttgart Relativistic Small Core 

(RSC) 1997 ECP [203-205], Los Alamos National Laboratory double and triple zeta 

ECPs, that is, LANL2DZ [206] and LANL08 [207, 208], respectively.  The Bauschlicher 

ANO basis set [209] contracted from the primitive set (19s14p10d6f4g) to [7s6p4d3f2g] 

was also tested after the Roos aug-TZ ANO gave encouraging results. The performance 
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of these basis sets on the 2Cr  ground state PEC is shown in Figures 10 to 13 in the 

Results and Discussion section.  Relativistic effects were only considered in calculations 

of the ground state of  2Cr . This was  either done indirectly through use of ECP basis sets 

or explicitly included in all electron basis sets through the sf-X2C method. Such 

calculations used the cc-pVTZ or aug-cc-pVTZ-DK basis sets [153] , or the the ANO-

RCC VTZP basis set [202]. A new basis set was constructed and tested on the 2Cr  

ground state. The construction was done by replacing all contraction coefficients of 

primitives in the cc-pVTZ-DK basis set [153] with molecular orbital-atomic orbital 

(MOAO) expansion coefficients (as defined in Eq. (2.23)) obtained from the lowest 

occupied orbitals of the Cr atom resulting from a restricted open shell Hartree Fock 

(ROHF) calculation.  

Basis set extrapolation was done using the cc-pVTZ and cc-pVQZ results of the 

ground states of 2Cr .  In this process, the total GVVPT2 energy (Etot, GVVPT2) was 

separated into an MCSCF part (EMCSCF) and a dynamic correlation part (Edy).  That is 

MCSCFGVVPT2 tot,dy EEE             (4.2) 

The MCSCF part was extrapolated following the exponential extrapolation scheme 

originally suggested by Feller [210, 211], for SCF thus 

 BxAexpEE MCSCF x,MCSCF ,  ,   (4.3) 

where E∞, MCSCF refers to the expected asymptotic limit of the MCSCF energy at the 

complete basis set (CBS) limit, Ex, MCSCF is the calculated MCSCF energy, x is the 

cardinal number of the basis set (x = 3 for cc-pVTZ, x = 4 for cc-pVQZ) while A and B 

are fitting parameters.  A value of 1.63 for the B parameter has been shown to give good 

results for SCF extrapolation for many molecules (e.g., see Ref. [212, 213]).  In this 
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work, the values B = 1.63 and B = 1 (which gave good results in previous 

MCSCF/GVVPT2 studies on NO
-
, [214]) were used. With the value of B defined, a two-

point extrapolation expression can easily be obtained from Equation 2.  The dynamic 

correlation part of the total energy was extrapolated following the two-point linear fit of 

Helgaker et al. [215] and of Halkier et al. [216] built upon the ideas of Schwartz [217]; 

i.e., 

3

dy x,dy , CxEE 

  ,     (4.4) 

where E∞, dy is the dynamic correlation energy at the CBS limit, Ex, dy is the computed 

value, with x again being the cardinal number of the basis set, while C is an undetermined 

parameter.  Substituting x = 3 for the triple zeta basis and x = 4 for the quadruple zeta 

basis set into Equation 4 to obtain two equations and then eliminating C results in a two-

point extrapolation expression for the dynamic correlation energy.  The total energy at the 

CBS limit is calculated as the sum of the extrapolated static (MCSCF) and dynamic 

correlation energies 

dy ,MCSCF , total, EEE        (4.5) 

Where indicated, effective bond orders were determined using Eqs. (3.11) and 

(3.12) given in Chapter III. 

Results and Discussion 

Electronic States of 2Cr  

The PECs for the singlet 


g

1ΣX  ground state of 2Cr  obtained at the MCSCF and 

GVVPT2 levels of theory, using some of the basis sets listed above, are shown in Figures 

11 and 12, respectively.  The MCSCF curves shown in Figure 11 all look similar 
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(irrespective of basis set) and have no resemblance with the experimental curve (e.g., no 

outer shelf is seen and all curves predict the ground state to be almost unbound, De ≈ 

0.12 eV only).   

 

Figure 10. PECs of the singlet ground electronic state,  


g

1ΣX , of 2Cr  obtained at the 

MCSCF level of theory using the basis sets indicated in the inset. 

 

The effect of dynamic electron correlation is profound, as can be seen on 

comparison of Figures 11 and 12. GVVPT2 adds dynamic correlation energy of about 1.0 

Hartree to an MCSCF energy of roughly 2,086.7 Hartrees (considering the cc-pVTZ basis 

set), yet qualitatively changes the curves. The RKR experimental curve for the ground 



g

1ΣX  state of 2Cr  has been included in Figure 12 for comparison with GVVPT2 curves. 

Observing Figure 12, it appears that the ECP basis sets investigated (Stuttgart RSC 1997, 

LANL2DZ and LANL08) do not satisfactorily describe the bonding in the ground state of 

2Cr . This corroborates the recent work that showed ECP basis sets to perform poorly 
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[218] on transition metal systems in comparison with all-electron basis sets, predicting 

binding energies with deviations from correct values of up to 5.8 kcal/mol or 0.25 eV (in 

the case of 2Sc ) at the DFT level of theory.  On the other hand, Dunning type basis sets 

(cc-pVTZ, aug-cc-pVTZ, cc-pVQZ) reproduce essential characteristics of the RKR 

experimental curve as can be seen in Figure 12. The spectroscopic constants 

characterizing these curves are given in Table 4 while additional curves are provided in 

Figure 13.  

 

Figure 11. PECs of the 


g

1ΣX  state of 2Cr  obtained at the GVVPT2 level of theory using 

the basis sets indicated in the inset. 

The best results were obtained in relativistic calculations using cc-pVTZ (shown 

as cc-pVTZ(R) in Table 4 and Figure 11) where a bond length of Re = 1.73 Å and 

harmonic frequency of 1

e cm442.9ω  were obtained in comparison with experimental 

values of 1.68 Å and 
1cm481.0 
, respectively. However, the obtained curve is over 

bound by about 0.21 eV compared with experiment. 
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Table 4. Basis set effect on the equilibrium bond length, Re (Å), dissociation energy, De 

(eV), and the harmonic frequency, ωe (cm
-1

) for 2Cr  in its ground state, X
 g

1
 

Basis Set GVVPT2  MCSCF 

Re De ωe Re De 

cc-pVTZ 1.83 1.30 346.4 3.30 0.12 

aug-cc-pVTZ 1.81 1.60 412.6 3.30 0.12 

cc-pVQZ 1.80 1.47 364.4 - - 

LANL2DZ 3.00 0.56 - 3.40 0.11 

LANL08 2.70 0.43 - 3.20 0.14 

Stuttgart RSC 1997 

ECP 

2.22 0.41 - - - 

Roos Aug-TZ ANO 1.80 1.60 378.9   

Bauschlicher ANO 1.80 1.65 377.1   

New Basis (R)
*
 1.81 1.45 716.7   

cc-pVTZ (R) 1.73 1.77 442.9   

Expt. 1.68
a
  1.472 ± 0.056

b
 

1.56 ± 0.06
c
 

1.45 ± 0.1
d
 

481
e
   

a
Ref. [169]. 

b
Ref. [171]. 

c
Ref. [170]. 

d
Ref. [172]. 

e
Ref. [173]. 

 
Figure 12. PECs of the 



g

1ΣX  state of 2Cr  obtained at the GVVPT2 level of theory using 

the basis sets indicated in the inset. “R” in parentheses designates that 

relativistic effects were included. The PEC obtained with the newly 

constructed basis set (New Basis*) is also included. 
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The Roos aug-TZ ANO, Bauschlicher ANO, and cc-pVQZ basis sets also led to 

fairly good results; predicting a bond length that was 0.12 Å too long and harmonic 

frequencies that were at least 1cm102   less than the expected value, whereas aug-cc-

pVTZ led to a slightly better frequency. The binding energy of 1.47 eV obtained with cc-

pVQZ is in good agreement with the experimental value of 1.472 ± 0.056 eV obtained by 

Hilpert and Ruthardt [171]. The newly constructed basis set that was used to perform 

GVVPT2 calculations that included relativistic effects (denoted as “New Basis*” in 

Figure 12 and “New Basis (R)*” in Table 4) also gave fairly good results; predicting a 

bond length that was 0.13 Å too long compared with experiment whereas a binding 

energy of 1.45 eV obtained with this basis set was in good agreement with the 

experimental value of  1.45 ± 0.1 eV obtained by Su et al. [172]. Calculations with the 

new basis set led to a sharp minimum in the PEC that resulted in a too high harmonic 

frequency. 

Near the minimum (1.84 Å), the leading configuration in the GVVPT2 wave 

function for the 2Cr  ground state was 

2
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2
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2
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2
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This configuration had an amplitude of 0.401.  Three other important configurations were 
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with amplitudes of  0.237, 0.235 and 0.235, respectively.  Using 22 CSFs with amplitudes 

in the range [0.0811, 0.4011], an EBO of 4.37 (compared with 4.51 at the CASPT2 level 

[162, 219]) was obtained.  The amplitudes of these configurations decrease towards the 

shelf region so that, at 2.80 Å, the amplitude of the first configuration is only 0.082 (with 

cc-pVTZ basis).  Using 119 CSFs at 2.8 Å with amplitudes in the range [0.0581, 0.0902] 

gave an EBO of only 1.37. 

As was shown above, the GVVPT2 results on ground state  2Cr  reproduced the 

essential features of the reference experimental curve and gave spectroscopic constants 

close to expected experimental results. Possible ways of improving on the accuracy of 

these results were sought. One of such efforts was to account for scalar relativistic effects 

which, in the case of using the cc-pVTZ basis set, led to better results (but for the binding 

energy) compared with larger basis set calculations such as those with cc-pVQZ. 

Preliminary relativistic calculations on ground state  2Cr  in which Douglas-Kroll basis 

sets, such as aug-cc-pVTZ-DK, that are optimized for use with the DKH Hamiltonian 

[30, 31], did not lead to improvements in results similar to those reported here with the 

cc-pVTZ basis. Since the cc-pVTZ and cc-pVTZ-DK basis sets, for example, differ only 

in contraction coefficients of Gaussian primitives, it is likely that such coefficients are not 

the optimal set for use with a sf-X2C Hamiltonian as is done in relativistic GVVPT2. It 

remains to be verified what effects those coefficients have on relativistic GVVPT2 

calculations. Such investigation would possibly require calculations in which Gaussian 

primitives are not contracted for comparison with the cases where they are contracted in 

e.g., cc-pVTZ versus cc-pVTZ-DK.  
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Another way of seeking to improve on the results of ground state 2Cr was to 

investigate errors connected with basis set truncation by performing basis set 

extrapolation. In such extrapolations, the energies obtained with the cc-pVTZ and cc-

pVQZ basis sets were used in formulas (4.3) to (4.5) to approximate the corresponding 

total energies at the complete basis set (CBS) limit. Shown in Figure 13 are two PECs 

plotted with extrapolated energies where the parameter (B) in Eq. (4.3) was set to 1 in 

one case and to 1.63 in the other case.  

 

Figure 13. PECs of the 


g

1ΣX  state of 2Cr  obtained at the GVVPT2 level and extrapolated 

to the complete basis set (CBS) limit, using parameters B =1 and B = 1.63 in 

Eq. (4.3). Energies obtained using the cc-pVTZ and cc-pVQZ basis sets were 

used in the extrapolation. The cc-pVQZ PEC is included for comparison. 

 

As can be seen in Figure 13, the extrapolation of the MCSCF part of the total 

energy using B = 1 in Equation (4.3) resulted in a PEC virtually the same as the cc-pVQZ 

curve at all geometries (only 0.01 Å shorter in bond length), while using B = 1.63 led to a 

0.02 Å decrease in bond length at the CBS limit.  These results suggest that the basis set 
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effect on the somewhat long bond length obtained in nonrelativistic GVVPT2 

calculations of ground state 2Cr  may be minimal. Moreover, it is seen that the parameter 

B affects the quality of results. For example, with B = 1.63, the binding energy was 

overestimated by some 0.30 eV whereas setting B = 1 did not result in such 

overestimation of the bond energy at the CBS limit. 

Finally, the lowest triplet, u
31 , quintet, 

g
51 , and septet, u

71 , excited states 

of 2Cr  were investigated at the GVVPT2 level of theory, using the cc-pVTZ basis set.  

The PECs for these states are shown in Figure 14 together with the ground state and RKR 

experimental curves.  The spectroscopic constants characterizing the curves for the 

excited electronic states of 2Cr  are shown in Table 5 and compared with the CASPT2 

results obtained by Andersson [220]. There are not available experimental data to 

compare the present results with. As can be seen in Table 5, the present results compare 

well with the previous CASPT2 data for the investigated states. For example, GVVPT2 

predicts a bond length (Re) of 2. 65 Å and an adiabatic transition energy (Te), relative to 

the ground state, of 0.70 eV for the  u
71  state while CASPT2 gave Re = 2.67 Å and Te 

= 0.88 eV. The interested reader is referred to Figure 1 of Ref. [220] for a comparison of 

the topologies of GVVPT2 PECs of the u
31 , 

g
51 , and u

71  excited states of 2Cr  

with those obtained at the CASPT2 level of theory. 
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Figure 14. PECs of the u
31 , 

g
51 , and u

71  excited states of 2Cr  obtained at the 

GVVPT2 level of theory using the cc-pVTZ basis set. Also included are the 

PECs of the ground 


g

1ΣX  state of 2Cr  obtained with cc-pVTZ at the 

GVVPT2 level (green curve) and the RKR experimental PEC (black curve). 

 

Table 5. Spectroscopic constants for excited electronic states of 2Cr , obtained at the 

GVVPT2 level with the cc-pVTZ basis set, compared with those of Ref. [220] 

calculated at the CASPT2 level of theory.  

Electronic 

State 

GVVPT2 CASPT2
a
 

 Re(Å) De(eV) ωe(cm
-1

) Te(eV) Re(Å) ωe(cm
-1

) Te(eV)         

1 u
3  1.93 0.97 307.0 0.33 1.86 410 0.56 

1 
 g

5
  2.53 0.72 140.9 0.58 2.58           148 0.78 

1 u
7   2.65 0.60 155.9 0.70 2.67 - 0.88 

a
Ref. [220]. 
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Electronic States of 2Mo  

PECs of the ground 


g

1ΣX  state of 2Mo  as well as those of its u
31 , 

g
51 , and 

u
71  excited states are shown in Figure 15, computed with the basis sets shown in the 

inset.  

 

Figure 15. PECs of the 


g

1ΣX , u
31 , 

g
51 , and u

71  states of 2Mo  obtained at the 

relativistic GVVPT2 level of theory using the basis sets shown in the inset. 

All excited state energies were plotted relative to the lowest energy value of 

the aug-cc-pVTZ-DK PEC of the  


g

1ΣX  ground state. 

Relativistic effects can be seen by comparing the 2Mo  PECs in Figure 15 to those 

of  2Cr  provided in Figure 14 (note that PECs of the same electronic states were 

constructed for the two molecules). As can be seen, the outer shelf shown in the ground 



g

1ΣX  and excited u
31  state PECs of 2Cr  (Figure 14) are absent in the corresponding 

curves for 2Mo  (Figure 15). This observation is possibly due to relativistic effects. 

Relativistic effects tend to contract s and p atomic orbitals while simultaneously slightly 
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destabilizing the d and f orbitals. Since such effects are weak in Cr, the spatial extents of 

the 3d and 4s atomic orbitals of Cr are different. In the 154s3d  ground state of Cr, the 

average expectation value of the 3d orbitals is 1.37 0a  whereas that of the 4s is more than 

twice this value (3.52 0a ) [221]. This would give a ratio of 2.57
r

r

3d

4s 



 which is 

even 0.12 more than the ratio reported by Morse [222]. As a result, the 3d and 4s orbitals 

of Cr contribute to bonding at different internuclear separations in the 2Cr  molecule. This 

leads to a shelf region that is dominated by 4s-4s bonding interactions whereas the inner 

minimum corresponds largely to 3d-3d bonding interaction. For Mo, however, the 

stronger relativistic contraction of the outer 5s orbital and expansion of the 4d subshell 

leads to the 5s and 4d orbitals having similar spatial extents. For example, Morse [222] 

reported a 




4d

5s

r
r

 ratio of 2.05 for Mo in its ground state (which is was 0.64 less than 

the value reported for Cr in the same paper). Due to the smaller difference in the radial 

extents of the 5s and 4d orbitals, they tend to contribute to bonding averagely at the same 

interatomic distance in the  2Mo  molecule. This is a plausible explanation on the absence 

of a shelf in the  


g

1ΣX  and excited u
31  state PECs of 2Mo .  

The data describing the PECs in Figure 15 are in Table 6, compared with data 

obtained from previous theoretical studies and experimental data for the 


g

1ΣX  ground 

state of 2Mo . 
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Table 6. Equilibrium distances (Re), binding energies (De), adiabatic transition energies 

(Te), and harmonic frequencies (ωe) of electronic states of 2Mo  calculated at the 

relativistic GVVPT2 level of theory compared with results from other methods. 

Method Basis Set Re(Å) De(eV) ωe(cm
-1

) Te 

(cm
-1

) 


g

1ΣX  

MCSCF-CI
a
  2.01 0.86 388.0  

MRCI
b
 [10s6p5d] 1.97  475.0  

GVB-vdw
c
 [5s5p4d + f set] 1.93 1.41 455.0  

MGVB [5s5p4d + f set] 1.92 3.94   

CASSCF/MS-

CASPT2
e
 

ANO-RCC [8s7p5d3f2g1h] 1.95 4.41 459.0  

MRCISD + Q
f
 RECP 1.993  447.5  

(FO + MR)CI
f
 RECP 2.050  486  

FOCI
f
 RECP 2.044  497.0  

PNOF5
g
 ECP 2.10 3.26 368.0  

CASSCF
g
 ECP 2.10 0.55 306.0  

CASPT2
g
 ECP 2.09 2.14 358.0  

CASSCF
h
 ANO-RCC [10s9p9d6f4g2h] 1.96 1.49 430.0  

SC-NEVPT2
h
 ANO-RCC [10s9p9d6f4g2h] 1.92 4.88 507.6  

PC-NEVPT2
h
 ANO-RCC [10s9p9d6f4g2h] 1.92 4.95 506.3  

GVVPT2 Aug-cc-pVTZ-DK 1.96 4.52 444.47  

Experiment  1.929
i
 4.12

i
 477.1

i
  

  1.940
j
 4.21

k
 484.9

l
  

   4.474
m

   
u

31  

      

CASSCF/MS-

CASPT2
e
 

ANO-RCC [8s7p5d3f2g1h] 2.063  393.0 8912 

(FO + MR)CI
f
 RECP 2.118  458.0 5499 

FOCI
f
 RECP 2.118  452.0 6751 

GVVPT2 Aug-cc-pVTZ-DK 2.05 3.69 402.4 6719 
g

51  

(FO + MR)CI
f
 RECP 2.164  456.0 12234 

FOCI
f
 RECP 2.178  423.0 14221 

GVVPT2 Aug-cc-pVTZ-DK 2.15 2.78 326.7 14071 
u

71  

FOCI
f
 RECP 2.484  268.0 25004 

GVVPT2 Aug-cc-pVTZ-DK 2.37 1.78 442.5 22128 

a
Ref. [196],  

b
Ref. [197], 

c
Ref. [198], 

d
Ref. [199], 

e
Ref. [201], 

f
Ref. [200], 

g
Ref. [223], 

h
Ref. [224], 

i
Ref. [189], 

j
Ref. [192], 

k
Ref. [190], 

l
Ref. [193], 

m
Ref. [170]. 
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From Table 6, it can be seen that GVVPT2 results on the investigated states of  

2Mo  are in good agreement with those from previous studies that used other high level 

methods. The ground state bond length of 1.96 Å and bond energy of 4.52 eV obtained at 

the GVVPT2 level when using the aug-cc-pVTZ-DK basis set are in good agreement 

with the experimental values of 1.94 Å and 4.47 eV obtained by Hopkins et al. [192] and 

Simard et al. [170], respectively.  Moreover, comparing with experiment, the GVVPT2 

ground state bond length is in better agreement than the values obtained at the (FO + 

MR)CI and MRCISD +Q levels of theory by Balasubramanian and Zhu [200] and at the 

CASPT2 level of theory [223]. The (FO + MR)CI  harmonic frequency is, however, in 

better agreement than the GVVPT2 value. It should be noted that the experimental 

binding energies cited in Table 6 represent o

0D  values whereas theoretical methods 

(including GVVPT2) generally compute eD  (which is greater than o

0D  by the zero point 

energy). The GVVPT2 harmonic frequency of 444.47 cm
-1

 for ground state 2Mo is also 

in good agreement with the experimental value of 477.1 cm
-1

 due to Efremov et al. [189]. 

GVVPT2 data for the excited states are also in agreement with data listed from other 

sources for comparison. The GVVPT2 adiabatic transition energies for all three excited 

states investigated are in agreement with values obtained by Balasubramanian and Zhu 

[200] at the FOCI level of theory. Differences between GVVPT2 and the Ref. [200] 

results are seen mostly in the harmonic frequencies. There are not available experimental 

data of these excited states for comparison. 

The data listed for the ground state, obtained using different methods, reveals the 

importance of electron correlation effects in the description of these molecules. For 

example, the CASSCF method used by Ruipérez et al. [223] found the ground state of the  
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2Mo  molecule to be nearly unbound (De = 0.55 eV only). The CASSCF method (like the 

MCSCF) accounts for static correlation but fails to capture essential dynamic correlation 

effects. The CASSCF bond energy of Angeli et al. [224] was also too low (1.49 eV 

compared to 4.47 eV from experiment).  

Conclusions 

 This Chapter discussed low-lying electronic states of 2Cr  and 2Mo  as were 

investigated at the GVVPT2 level of theory. The literature cited on previous experimental 

and theoretical work on these molecules revealed the challenges involved in their 

description. The GVVPT2 method was shown to be capable of describing their ground 

and low-lying excited electronic states, using chemically intuitive valence orbitals.  Even 

when using a simple zero-order Hamiltonian, it was shown that the GVVPT2 method 

gives PECs and spectroscopic constants that are close to experimental results using model 

spaces derived from valence bond models.  Particularly noteworthy is the fact that the 

curves, in addition to being smooth and continuous, are free of artifactual inflections for 

both ground and excited states. 

 This study revealed that a proper description of several of the low-lying electronic 

states of 2Cr  and 2Mo can be made using a simple model space consisting of only (n-1)d 

and ns-derived MOs (n = 4 for Cr and 5 for Mo). In the case of 2Cr  when using the cc-

pVTZ basis set, a valence bond style partitioning of these active orbitals as was done in 

this study resulted in model space dimensions of 1,516, 2,712, and 580 CSFs, and total 

space dimensions of 998,024,048, 2,141,100,436, and 920,000,422 CSFs for the 
g

1X ,
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u
31  , and u

71 electronic states, respectively.  This study found that both valence 

double zeta and valence triple zeta ECP basis sets perform poorly for 2Cr . 
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CHAPTER V 

GVVPT2 STUDIES OF LOW-LYING ELECTRONIC STATES OF MANGANESE 

AND TECHNETIUM DIMERS

 

Introduction 

 Although manganese (Mn) and technetium (Tc) are both in group 7 of the 

Periodic Table with valence electron configuration   25 sd1 nn , corresponding to a S6
 

ground atomic term, there are many contrasts between these two elements. For example, 

whereas Mn constitutes the third most abundant transition element in the earth’s crust 

(about 1060 ppm) (and is commonly obtained from pyrolusite for use in diverse 

applications such as steel manufacture and glassmaking), Tc is a trace element, 

constituting as little as 0.0007 ppm of the earth’s crustal rocks [225]. Additionally, Mn is 

known to have only one stable naturally occurring isotope whereas Tc  has thirty four 

known isotopes, all of which are radioactive, with masses ranging from 85 to 118; the 

most abundant being Tc-99 which is largely present in spent nuclear fuel and has a half-

life of 2.1 × 10
5
 years [226]. Moreover, Tc is the lightest radioactive and first artificial 

element to be discovered in 1925, by Noddack-Tacke et al. [227], from the analysis of 

platinum ores and columbite minerals, who named it masurium; and later by Perrier and 

Segrè (see Ref. [228, 229]) from the analysis of molybdenum bombarded by deuterium 

nuclei.  
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In studies of low-lying electronic states of 2Mn and 2Tc , isotope Tc-98 was used, 

which has the longest half-life (4.2 million years) of any isotope. Unlike 2Cr  an 2Mo  that 

are known to have the same ground state symmetry (


g

1ΣX ), the ground electronic states 

of 2Mn and 2Tc  are quite different: the established ground state of 2Tc is 


g

3ΣX  with a 

bond energy of at least 2.13 eV whereas 2Mn  is a van der Waals molecule that has the 

same ground state symmetry as does 2Cr  and 2Mo , with a binding energy of about 0.10 

eV  [159]. These differences between 2Mn and 2Tc  may be explained in terms of the 

factors that govern metal-metal bonding in transition metals: the relative sizes of the (n - 

1)d and ns orbitals and the ns → (n – 1)d excitation energy. For the group 7 metals, the 

relative sizes of the (n – 1)d and ns orbitals become similar in spatial extent on going 

from Mn to Re (probably due to relativistic effects tending to contract the outer ns and 

slightly expand the inner (n – 1)d orbitals) such that for ground state atoms, the ratio 

 
r

n1 s rnd  is 2.99 for Mn, 2.27 for Tc, and 2.11 for Re [148].  The ns → (n – 1)d 

excited energy decreases somewhat in this order: for Mn = 2.14 eV, Tc = 0.41 eV, Re = 

1.76 eV [222].  This decrease favors s-d hybridization, hence d-d bonds. 2Mn  is a van 

der Waals species due to the high s-d promotion energy and differences in the spatial 

extents of the 3d and 4s orbitals whereas its isovalent counterparts, 2Tc  and 2Re , exhibit 

multiple bonds [230]. 

This Chapter is organized as follows. The present subsection briefly reviews 

previous theoretical and experimental characterization of low-lying electronic states of 

2Mn and 2Tc ; the next subsection will provide details on how the calculations were 
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performed; the results are presented and discussed in the third subsection; while a final 

subsection concludes the Chapter. 

Previous Studies of 2Mn  

 As with other transition metal elements, Mn has many low-lying electronic states. 

The interaction of two ground state Mn atoms gives rise to 36 molecular states with 

multiplicities ranging from 1 to 11 [231]. Of these 36 states, the ground state was 

established as 


g

1ΣX  from electron spin resonance (ESR) measurements [232, 233]. A 

singlet ground state was also confirmed by resonance Raman spectra in rare gas matrices 

[234].  From Raman studies, Kirkwood et al.[235] reported a 


g

1ΣX  ground state with 

constants 
1

e cm68.10ω   and 
1

ee cm1.05xω  . Various spectroscopic analyses gave 

dissociation energies in the range 0.02 to 0.15 eV [236], and a bond length of 3.4 Å for 

the 


g

1ΣX  ground state [237].
 
 

Theoretical studies on electronic states of 2Mn , using MRPT methods, have 

encountered numerous problems varying from the discontinuity problem (also known as 

intruder state problem) in constructing PECs [18, 238, 239] to poor convergence of 

perturbative expansions [232].  When applying the MCQDPT method to the study of 

2Mn , Camacho et al. [18] observed over 5000 intruders between 1.9 and 4.0 Å and a 

strong dependence of both the ground state PEC and spectroscopic constants on the shift 

parameters, required to overcome the problem.  This led to the authors questioning the 

adequacy of MRPT in tackling difficult systems like the 2Mn  dimer. Second order 

MCQDPT [239] that used the  [7s6p4d4f2g] basis set constructed from the primitive set 

(18s12p8d) due to Koga et al. [240] augmented with the p-type primitives of Takewaki et 
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al. [241] plus 4f2g polarization functions of Sekiya et al. [242], led to Re = 3.29 Å, De = 

0.14 eV, and ωe = 53.46 cm
-1

 for the  ground state of 2Mn . Using second and third 

order n-electron valence state perturbation theory (NEVPT2 and NEVPT3) and the 

atomic natural orbitals (ANO) relativistic correlation consistent basis set developed by 

Roos et al. [202] and with the inclusion of scalar relativistic corrections through the 

Douglas–Kroll–Hess Hamiltonian, Angeli and co-workers [243] obtained Re = 3.71 Å, De 

= 0.08 eV, and ωe = 41.0 cm
-1

 in the case of NEVPT2, and Re = 3.82 Å, De = 0.07 eV, 

and ωe = 43.0 cm
-1

 with NEVPT3.  At the MRCI level with the use of the aug-cc-pVQZ 

basis set, Buchachenko et al. [231] obtained Re = 3.82 Å, De = 0.05 eV, and ωe = 33.7 

cm
-1

 , while Tzeli et al. [250], obtained Re = 3.80 Å, De = 0.05 eV, ωe = 36 cm
-1

, and Re = 

3.64 Å, De = 0.06 eV, ωe = 42 cm
-1

 at the MRCI+Q and average coupled pair functional 

(ACPF) levels with the same basis, respectively. DFT studies of 2Mn  gave contradictory 

results [244-249], most of which favor, in contrast to ab initio wave function methods, a 

high spin (S = 5) ground state. 

Previous Studies of 2Tc  

 Information on 2Tc  is quite sparse in the literature. Much more is known about 

Tc derivatives which are useful primarily in radiopharmaceuticals and corrosion 

protection. Many complexes with a 2Tc  nucleus have been reported in the literature e.g., 

   243322 ClCHCCOTc  with a Tc-Tc bond length of 2.19 Å [251], 
3

82ClTc  with a Tc-Tc 

bond length of 2.12 Å [252], and α- and 3TcClβ  which are polymorphs of triangular 

93ClTc  units with Tc-Tc bond lengths of 2.44 Å and 2.86 Å, respectively [253]. These 

complexes all showed evidence of multiple d-d bonding in the 2Tc  moiety.  This is 



g

1ΣX
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contrary to isovalent Mn which is not known to form compounds with ligated 2Mn  

species [254].  

Since all 34 known isotopes of Tc are radioactive, little experimental work has 

been carried out on this element and limited to spectroscopic studies on the atom (e.g., 

see Ref. [255, 256] and references therein). There are not available experimental data on 

2Tc  in the literature apart from values of the binding energy of the supposed ground term 

of 2Tc  computed from thermodynamic relations by Miedema and Gingerich [257]
 
and by 

Brewer and Winn [258]. Based on three different expressions relating the dissociation 

enthalpy to the enthalpy of vaporization and the metal surface enthalpy, Miedema and 

Gingerich [257] computed 0D values of 3.49 eV, 3.45 eV and 3.33 eV for 2Tc . Brewer 

and Winn [258] computed 0D = 2.93 eV for ground state 2Tc  (0.40 eV less than the 

lowest value obtained be Miedema and Gingerich). 

 The 2Tc  molecule is better known theoretically than experimentally. Klyagina et 

al. [259] obtained Re = 1.92 Å for 2Tc  using the discrete variational Xα (DV-Xα) method 

and reported the dominant electronic configuration for the molecule as  

1*

uxy

1*

uyx

2

gxy

2

gyx

2

uyz

2

uxz

2

gz

2

g δ4dδ4dδ4dδ4dπ4dπ4dσ4d5sσ 22222 
                    (5.1) 

in the vicinity of the equilibrium bond length, suggesting a pentuple bond. Yanagisawa et 

al. [152] studied second row transition metal dimers at the DFT level, employing 

different functionals, and also at the MP2 level. They found the ground state of 2Tc  to be 

 
3g


 with Re = 1.97 Å, De = 4.75 eV, and ωe = 512.0 cm

-1
 with the BOP exchange-
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correlation functional; Re = 1.93 Å, De = 3.15 eV, and ωe = 557.6 cm
-1

 with the B3LYP 

hybrid functional; and Re = 1.99 Å, De = 1.46 eV, and ωe = 483.5 cm
-1

 with the B88 

exchange functional, all predicting the same major configuration around the minimum as 

was observed by Klyagina et al. [259]. Most DFT functionals used by them and others 

[260] gave comparable equilibrium bond lengths, but binding energies that varied by over 

3 eV. In contrast, the MP2 calculations by Yanagisawa et al. [152] found the 
 
3g


 state to 

be unbound and instead predicted a ground 
 
7u state  with Re = 2.18 Å, De = 3.97 eV, 

and ωe = 349.3 cm
-1

and with dominant configuration 

1*

uxy

1*

uyx

1

gxy

1

gyx

1*

g

2

uyz

2

uxz

1*

uz

2

gz

2

g δ4dδ4dδ4dδ4d4dππ4dπ4dσ4dσ4d5sσ 222222 
        (5.2)         

around the minimum, suggesting a triple bond. Even more exotic, Yan and Zhu [261] 

optimized the structure of 2Tc  with the B3P86 functional and found the ground state to 

be 
 
11g


 with Re = 2.84 Å, De = 2.27 eV, and ωe = 178.52 cm

-1
.  It appears the most 

recent calculations on 2Tc  are due to Borin et al. [230].  By applying CASPT2 on a 

CASSCF reference wave function and accounting for scalar relativity via the Douglas-

Kroll-Hess (DKH) Hamiltonian [30, 31, 186], and using a quadruple-ζ atomic ANO-RCC 

basis set [202], these authors obtained a 
 g

3
 ground state for the 2Tc  molecule with Re 

= 1.94 Å, and ωe = 492.0 cm
-1 

and with an effective bond order (EBO) of 4.4 

(interpretable as a pentuple bond). The same authors found the lowest excited 2Tc  state 

to be 
 
11g (lying at 1285 cm

-1
 or 0.16 eV above the ground state) with Re = 1.96 Å, and 

ωe = 458.0 cm
-1 

and with a configuration similar to that for the ground state and an EBO 

of 4.3. The lowest 
 
1g


state, which is the reported ground state symmetry for isovalent 
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counterparts 2Mn  and 2Re , was found to lie at some 1797 cm
-1

 or 0.22 eV above the 

2Tc  ground state and had Re = 1.97 Å, and ωe = 450.0 cm
-1 

and an EBO of 4.3. After the 

inclusion of spin-orbit coupling, these authors observed a strong interaction between the

 
3g


 and 

 
1g


states that led to a 



g0  ground state with composition = 

 
0.75 3g

  0.25 1g



 
and with Re = 1.94 Å, De = 3.30 eV, and ωe = 490.0 cm

-1
. 

Computational Details 

 The active spaces used in calculations of 2Mn  and 2Tc consisted of MOs derived 

from valence atomic orbitals of the   5d1n and 2sn subshells. This set of 12 active 

orbitals was partitioned into orbitals groups from which reference macroconfigurations 

(κ(n)s) were derived through different distributions of the active electrons among the 

valence orbital subspaces as follows. 

 For 2Mn , four reference model spaces, each consisting of a single reference κ(n), 

were used in separate calculations. Results obtained by using the four different 

partitioning schemes are labeled CASE A to D in Figures 16 to 18 and Table 8 in the 

Results and Discussion subsection.  These κ(n)s are  

CASE A:  κ(n)  =  
     

   6*

ug

*

uzgz

2*

uxygxy

2*

uyxgyx

2*

gyzuyz

2*

gxzuxz

σ4sσ4s3d3dδ3dδ3d

δ3dδ3dπ3dπ3dπ3dπ3d

22

2222






                   (5.3) 

CASE B:  κ(n)  =  
   

   6*

ug

*

uzgz

2*

uxygxy

2*

uyxgyx

4*

gyzuyz

*

gxzuxz

σ4sσ4sσ3dσ3dδ3dδ3d

δ3dδ3dπ3dπ3dπ3dπ3d

22

2222 


                       (5.4) 

CASE C:  κ(n)  =   
   

   10*

ug

*

uzgz

*

uzgz

2*

uxygxy

2*

uyxgyx

4*

gyzuyz

*

gxzuxz

σ4sσ4sσ3dσ3dσ3pσ3pδ3dδ3d

δ3dδ3dπ3dπ3dπ3dπ3d

22

2222 


                     (5.5) 
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CASE D:  κ(n)  =  
     

   2*

uzgz

2*

uxygxy

2*

uyxgyx

2*

gyzuyz

2*

gxzuxz

22

2222

3d3dδ3dδ3d

δ3dδ3dπ3dπ3dπ3dπ3d






                 (5.6) 

 It should be noted that the CASE C active space also included z3p derived 

sigma orbitals while CASE D excluded the 4s-derived MOs (which were included with 

the 3s- and 3p-derived MOs in the active core). The first reference model space (CASE 

A) was tested only with the X  state while CASE B to D were used for all three 

computed states of 2Mn  (


g

1ΣX , 


g

5 Σ1  and 


g

9 Σ1 ). The total number of CSFs generated 

within the model and full spaces for these states when using the cc-pVTZ basis set and 

CASE A to D reference κ(n)s are shown in Table 7.  

Table 7. Model and full space configuration state functions (CSFs) generated when the 

indicated states of  2Mn  were computed using reference κ(n)s CASE A to D 

and the cc-pVTZ basis set. 

 Space 

g

1ΣX  


g

5 Σ1  


g

9 Σ1  

CASE A Model 1372   

Full 911297138   

CASE B Model 1520 1394 54 

Full 1689129410 2838795978 354240126 

CASE C Model  3444 3306 132 

Full 3005460208 5079354870 638444152 

CASE D Model  332 280 10 

Full 263365024 433537990 54181732 

 

Whereas calculations of the excited states of 2Mn  used only the cc-pVTZ basis 

set and did not include relativistic corrections, those of the 


g

1ΣX  ground state 

additionally used the cc-pVQZ [153], ANO-L VTZP [37], and ANO-RCC VTZP [202] 

basis sets. In the case of ANO-RCC VTZP, relativistic calculations were also performed. 

These additional basis sets were used only within the CASE D reference κ(n) while the 



g

1Σ
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cc-pVTZ basis set was used in all four cases. The cc-pVTZ and cc-pVQZ data on the 

ground state were used for extrapolation to the CBS limit using formulas (4.3) to (4.5) 

provided in Chapter IV. 

For the 


g

1Σ1 , 


g

5 Σ1 , and 


g

9 Σ1  states of 2Tc , a single reference κ(n) was 

constructed, consisting of 5 orbital subspaces; each with a bonding and a corresponding 

antibonding MO,  

κ(n)   =  
     

   2*

ug

2*

uxygxy

2*

uyxgyx

2*

gyzuyz

2*

gxzuxz

5sσ5sσδ4dδ4d

δ4dδ4dπ4dπ4dπ4dπ4d 2222 


     (5.7)      

This active space excluded the 2z
4d derived MOs (which were added to the 4s- and 4p-

dominated MOs in the active core) and led to 332 model space and 1886186600 total 

space CSFs for the 


g

1Σ1  state, 280 model space and 3192157814 total CSFs for the 


g

5 Σ1

state, and 10 model space and 423682756 all space CSFs for the 


g

9 Σ1  state, when using 

the aug-cc-pVTZ-DK basis set.   

 For the 
 
X 3g

 and 
 
111g

 states of 2Tc , the active space included all 4d and 5s-

derived MOs grouped as follows 

κ(n)   =  
 

   2*

uxygxy

6*

gyzuyz

*

gxzuxz

6*

ug

*

uyxgyx

*

uzgz

δ4dδ4dπ4dπ4dπ4dπ4d

5sσ5sσδ4dδ4dσ4dσ4d 222222 


                 (5.8) 

This partitioning of the model space resulted in 5,952 model space and 65,230,481,060 

all space CSFs for the 
 
X 3g

  state, and 2 model space and 975,015,732 total CSFs for the 
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111g

 state when using the aug-cc-pVTZ-DK basis set. Reference κ(n) (5.8)  could be 

used to construct the 
 
g

 states of 2Tc  but is obviously more expensive without leading 

to qualitatively different PECs. For the lowest
 
1g

 state, the single point energy 

difference from results obtained from the use of reference κ(n) (5.7)  and κ(n) (5.8)  was 

only about 0.006 eV at 2.18 Å (Re = 2.17 Å for this state). On the other hand, reference 

κ(n) (5.7) was insufficient for describing the 

gΣ states of 2Tc . All GVVPT2 calculations 

of 2Tc states included scalar relativistic effects (accounted for through the sf-X2C 

method) and correlated the active electrons of the 4s, 4p, and 2z
4d derived MOs in the 

case of reference κ(n) (5.7) or the 4s and 4p-derived MOs in the case of reference  κ(n) 

(5.8) . All calculations of states of 2Mn  and 2Tc  used 2hD  symmetry. 

Results and Discussion 

Electronic States of 2Mn  

The PECs obtained at the GVVPT2 level for the electronic states of 2Mn  are 

shown in Figures 16 to 18 for CASE A to D reference κ(n)s. It can be seen that the results 

depend fairly strongly on the nature of partitioning of the active space.  CASE A 

partitioning (where the four sigma MOs derived from 2z
3d  

and 4s were grouped together 

in one valence subspace in order to allow for some bonding involving the 4s-dominated 

MOs), when used to investigate the singlet ground state gave a bond length that was 

incorrect (Re = 4.58 Å compared with the experimental value of 3.40 Å), although a 

binding energy of De = 0.069 eV was quite good.  This reference model space (CASE A) 

was not used to investigate excited states due to this rather poor Re value.  CASE B 
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partitioning was derived from CASE A by further increasing the active space within the 

3d/4s manifold (by grouping the four 3d-derived pi orbitals in one valence subspace), and 

yielded a PEC with good characteristics for the singlet ground state. The spectroscopic 

constants of Re = 3.37 Å, De = 0.11 eV, and ωe = 83.35 cm
-1

 obtained with CASE B 

model space are close to the experimental values of 3.40 Å, 0.10 eV, and 68.1 cm
-1

, 

respectively (see Figure 16 and Table 8). Unfortunately with this partitioning, the quintet, 

, and nonet, , electronic states that should have the same dissociation channel as 

the singlet ground state do not (cf. Figure 16). Moreover, these excited states appear to be 

slightly more stable (i.e., 0.02 eV) than the ground state in the vicinity of the equilibrium 

bond length. Yet, analysis of the orbitals did not reveal significant changes in their nature 

for any of the three electronic states. It is seen that this active space (CASE B) is again 

insufficient for describing the 2Mn  system.   

 

Figure 16. PECs of the 


g

1Σ1 , 


g

5 Σ1 , and 


g

9 Σ1  states of 2Mn  obtained at the GVVPT2 

level of theory using the cc-pVTZ basis set. All energies from CASE B 

calculations are plotted relative to the lowest energy value of the lowest lying 

curve (the nonet state). 

g
5 g

9
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Detailed orbital analysis indicated that the sixth 1ub  MO in 2hD  symmetry 

(expected to be 4s-dominated) was exchanged with the fifth 1ub  MO (3pz-dominated).  

This observation supports the argument of Camacho et al. [238] that the z3p derived 

antibonding MO is important for an adequate description of the bonding in ground state 

2Mn .  Therefore, the z3p dominated antibonding MO (and also its bonding counterpart 

in order to permit good dissociation into equivalent fragments), were included into the 

sigma subspace of CASE B to obtain the reference model space labeled CASE C.  

 

Figure 17. PECs of the 


g

1Σ1 , 


g

5 Σ1 , and 


g

9 Σ1  states of 2Mn   obtained at the GVVPT2 

level of theory using the cc-pVTZ basis set within CASE C partitioning of the 

active space. All energies are plotted relative to the lowest energy value of the  


g

1Σ1  state. 

The PECs for the three electronic states obtained with the CASE C active space of 

14 MOs and 18 electrons (14, 18) at the GVVPT2 level using the cc-pVTZ basis set are 

shown in Figure 17.  All three states have Re ≈ 4.10 Å but rather than have the same 

dissociation asymptote, as should be the case, the quintet and nonet states (which appear 
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to be quasidegenerate) are separated from the singlet ground state by about 0.015 eV at a 

bond length of 16.0 Å.  Difficulties in describing the bonding in 2Mn  when involving the 

4s-derived MOs in the active space were first observed by Yamamoto et al. [239].  

Without state averaging, these authors obtained three kinds of CASSCF solutions at 

intermediate bond lengths, which did not permit the construction of a smooth PEC at the 

second order multiconfigurational quasidegenerate perturbation theory (MCQDPT2) 

level of theory.  This problem of discontinuities in the PECs of 2Mn  due to multiple 

CASSCF (or MCSCF) solutions, rather than intruder state problems, was also observed 

by Camacho et al. [238] in their multireference Møller-Plesset perturbation theory 

(MRMP) study.  In calculations with CASE C model space, when beginning from long 

bond lengths and gradually decreasing the Mn-Mn bond distance, a sharp discontinuity in 

the MCSCF energy was observed between 4.4 to 4.3 Å for all three electronic states 

investigated.  However, when calculations were resumed with the lower energy orbitals 

as the initial orbitals at the points where the discontinuities were observed (i.e., 

performing single point energy calculations inwards to shorter bond lengths and outwards 

to longer bond lengths), no discontinuities were observed and the smooth curves reported 

in Figure 17 were constructed from such calculations.  State averaging was not necessary 

at the MCSCF level for convergence.  

Analysis of the important configuration state functions (CSFs) contributing to the 

wave functions for the studied electronic states (using the CASE C active space) revealed 

that the z3p  and 4s-derived MOs were doubly occupied in all dominant CSFs, implying 

inactivity.  In retrospect, it is not surprising that the 4s orbitals do not seem to play an 

important role in the bonding in 2Mn .   
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Table 8. Equilibrium distances (Re), binding energies (De), and harmonic frequencies (ωe) 

of electronic states of 2Mn  calculated at the GVVPT2 level of theory compared 

with results from other methods. 

Electronic State Method Basis Set Re(Å) De(eV) ωe(cm
-1

) 

X
 g

1
 MRCI

a
 aug-cc-pVQZ 4.13 0.03 24.3 

 MRCI + Q
a
 aug-cc-pVQZ 3.80 0.05 36 

 ACPF
a
 aug-cc-pVQZ 3.64 0.06 42 

 CASPT2
b
 ANO-RCC 

6s5p4d3f2g1h 

3.19 0.28 - 

 NEVPT2/SC + 

s
c
 

ANO-RCC 

6s5p4d3f2g1h 

3.70 0.08 - 

 GVVPT2
d
 cc-pVTZ 3.37 0.11 83.4 

 GVVPT2
e
 cc-pVQZ 3.83 0.05 30.7 

 Experiment  3.40
f
 0.02-

0.15
g
 

68.1
h
 

 g
5

      

 MRCI
a
 aug-cc-pVQZ 4.13 0.03 24.6 

 MRCI + Q
a
 aug-cc-pVQZ 3.81 0.05 34 

 ACPF
a
 aug-cc-pVQZ 3.67 0.06 41 

 CASPT2
b
 ANO-RCC 

6s5p4d3f2g1h 

3.23 0.27 - 

 GVVPT2
d
 cc-pVTZ 4.09 0.04 26.4 

 g
9

      

 MRCI
a
 aug-cc-pVQZ 4.14 0.03 24.5 

 MRCI + Q
a
 aug-cc-pVQZ 3.84 0.05 35 

 ACPF
a
 aug-cc-pVQZ 3.72 0.05 38 

 CASPT2
b
 ANO-RCC 

6s5p4d3f2g1h 

3.30 0.25 - 

 AQCC/LC
C
 aug-cc-pV5Z 3.85 0.04 - 

 GVVPT2
d
 cc-pVTZ 4.08 0.04 27.0 

a
Ref. [250], 

b
Reference [263], 

c
Ref. [231] (SC + s designation implies that all 3s3p3d4s 

electrons were correlated, SC stands for “small core”), 
d
This work (CASE B), 

e
This work 

(CASE D), 
f
Ref.  [237], 

g
Ref. [236], 

h
Ref. [235]. 

 

 The large difference between the average radii of the 3d and 4s subshells of the 

Mn atom (1.13 vs. 3.38 0a ) [262] indicates that their spatial extents are quite different 

and, as in chromium, these orbitals cannot simultaneously contribute to bonding at the 

same internuclear distance.  However, no outer shelf is observed in contrast to the 

situation in 2Cr .  Whereas there is strong bonding in 2Cr , there is only weak van der 
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Waals-like interaction (i.e., weak binding, De = 0.1 eV only, and long inter-nuclear 

distance of 3.4 Å) in 2Cr  that has been ascribed to the shielding effect of the doubly 

occupied 4s orbitals on the 3d subshells [250].  

 The results of the fourth tested reference model space (CASE D) are shown in 

Figure 18 and Table 8.   

 

Figure 18. PECs of the  


g

1Σ1 , 


g

5 Σ1 , and 


g

9 Σ1  states of 2Mn  obtained at the GVVPT2 

level of theory using the basis sets indicated in the inset within CASE D 

partitioning of the active space. PECs of the  


g

1Σ1  state obtained at the 

complete basis set (CBS) limit using Eqs. (4.3) to (4.5) in Chapter IV and 

setting parameter B to 1 and to 1.63 are also included. 

With the z3p  and 4s-derived MOs moved from the active space into the active core, the 



g

1Σ1 , 


g

5 Σ1 , and 


g

9 Σ1  states are all degenerate with Re ≈ 4.09 Å, De = 0.04 eV, and ωe ≈ 

27 cm
-1

 using the cc-pVTZ basis set.  Analysis of the configuration structure of these 

states’ wave functions did not show any dominant electron configurations.  For the 

ground electronic state, 132 CSFs were used at 4.08 Å with amplitudes in the range 

[0.0698, 0.0944] and obtained an EBO of only 0.01.  The ground state PEC with cc-
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pVQZ has a somewhat shorter bond length (Re = 3.83 Å), higher binding energy (De = 

0.05 eV) and harmonic frequency (ωe = 30.7 cm
-1

).    

Extrapolation of the ground state PEC to the complete basis set (CBS) limit, using 

B = 1.63 in Eq. (4.3), gives Re = 3.40 Å and De = 0.09 eV, which are in very good 

agreement with experiment.  However, when B = 1 is used, which proved efficacious for 

2Cr  as it did in previous GVVPT2/MCSCF studies [214], the results were only slightly 

improved (e.g., Re = 3.7 Å and De = 0.06 eV) from the cc-pVQZ values.  Although a 

detailed analysis of extrapolation of GVVPT2/MCSCF energies was not done, additional 

insight can be gained by a closer examination of the variation in correlation energy with 

geometry between 2Cr  and 2Mn .  Although neither the full CI curves nor restricted 

Hartree Fock curves are available for 2Cr  and 2Mn , because of computational expense 

and complete failure of a single determinant function, respectively, and consequently a 

partitioning of total correlation energy into nondynamic and dynamic contributions 

cannot be made, it is possible to plot the dynamic correlation energy as a function of 

internuclear distance (cf. Figure 19).  It can be seen that the dynamic correlation energy 

recovered by GVVPT2 is almost independent of bond length for 2Mn  but varies 

significantly with changing bond length for 2Cr .  Recognizing that correlation is not 

cleanly divided into dynamic and nondynamic contributions, and that MCSCF includes 

some correlation that is more appropriately considered dynamic than nondyanmic, Figure 

19 supports the supposition that 2Cr  has significantly greater variation in nondynamic 

correlation than does 2Mn .  Considering that Eq. (4.3), describing CBS extrapolation for 

nondynamic correlation, was initially developed for extrapolation of Hartree Fock (HF) 
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energies [210, 211], and that one should expect HF-type extrapolation to work best if the 

fraction of correlation energy within the MCSCF function is roughly independent of 

internuclear distance, one should expect that Eq. (4.3) will be more efficacious for 2Mn

and that the constant developed for HF (B = 1.63) is reasonable.  

 
 

Figure 19. Variation of dynamic correlation energy as a function of relative bond length 

(R/Re) for diatomic Cr and Mn. Re in this case is the bond length at which the 

dynamic correlation energy is a minimum. 

CASE D reference κ(n) gave the best results on the investigated states of 2Mn .  

This model space was verified to allow for coupling of lowest electronic states in a 

multistate treatment (results of such multistate calculations are not shown here). It seems 

that inclusion of the z3p  and/or 4s-derived MOs into the active space for 2Mn  creates 

more problems than it solves.  In CASE D calculations, no discontinuities whatsoever, 

due to multiple MCSCF solutions, were observed at any geometry.  The somewhat long 

bond lengths (both for 2Cr  and 2Mn ) may be due to a choice of a simple zero order 

Hamiltonian, and possibly that the highest angular momentum functions that could be 

used were g functions (i.e., ℓ = 4; N.B. for calculations with cc-pVQZ, the h-functions 
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were neglected). Figure 19 contains PECs of the 
 
X1g

 state of 2Mn  computed using 

CASE D reference κ(n)  with  ANO-type basis sets (the cc-pVQZ PEC is included for 

comparison). The data describing the curves are given in Table 9 together with reference 

experimental values. 

 
Figure 20. PECs of the 

 
X1g

 state of 2Mn  computed with the basis sets shown in the 

inset using CASE D partitioning of the active space. ANO-RCC VTZP (R) 

refers to a relativistic calculation using ANO-RCC VTZP. 

 

Table 9. Equilibrium distances (Re), binding energies (De), and harmonic frequencies (ωe) 

of the 
 
X1g

  state of 2Mn  calculated at the GVVPT2 level of theory, using the 

indicated basis sets, compared with experimental results.  

Method Basis set Re (Å) De (eV) ωe(cm
-1

) 

GVVPT2 cc-pVQZ 3.83 0.05 30.7 

GVVPT2 ANO-L VTZP 3.45 0.21 31.4 

GVVPT2 ANO-RCC VTZP 3.57 0.15 27.2 

GVVPT2 ANO-RCC VTZP (R) 3.59 0.13 25.7 

Experiment  3.40
a
 0.02-0.15

b
 68.10

c
 

             a
Ref.  [237], 

b
Ref. [236], 

c
Ref. [235]. 
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As shown in Figure 20 and Table 9, the ANO-type basis sets lead to better bond 

lengths and bond energies than the cc-pVQZ basis (which gave the best results when 

Dunning-type basis sets were used). It is seen that when relativistic effects were included 

in the calculations that used the ANO-RCC VTZP basis set, a slight elongation in the 

bond length was observed (0.02 Å). This slight increase in bond length may be explained 

by noting that the antiferromagnetic coupling in ground state 2Mn  involves mainly 3d 

electrons while the 4s electrons are essentially nonbonding. Since relativistic effects 

expand d and f orbitals, it seems plausible that including such effects in the calculations 

of the  
 
X1g

  state of 2Mn  should extend the bond length (which is described mainly in 

terms of d-orbital couplings). However, the present results suggest that relativistic effects 

are minimal in the 2Mn  molecule. 

Electronic States of 2Tc  

The PECs obtained for the 
 
X 3g

 , 
 
111g

 , 

g

1Σ1 , 

g

5 Σ1 and 

g

9 Σ1  states of 2Tc  are 

shown in Figures 21 and 22 and the data describing the curves feature in Table 10. 

Relativistic GVVPT2 results are therein compared with results from other methods where 

available. Unlike 2Mn  with a 
 
X1g

 ground state, the ground state of 2Tc  was found to 

be 
 
3g

 as was observed also by e.g., Yanagisawa et al. [152] and Borin et al. [230]. This 

state was found to be strongly bound, with a binding energy (De = 3.50 eV) comparable 

to experimental results (i.e., 2.93-3.49 eV).  
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Figure 21. PECs of the 
 
X 3g

 , 
 
111g

 , and 

g

1Σ1 states of 2Tc  computed at the sf-X2C 

relativistic GVVPT2 level of theory using the aug-cc-pVTZ-DK basis set. 

z5p dominated MOs were included in the active space only in the case of the 

partial   
 
X 3g

  curve (magenta curve). But for this magenta curve, all other 

energies were plotted relative to the lowest energy value of the  
 
X 3g

  ground 

state. 

At the equilibrium geometry (2.13 Å), the leading configuration for the 
 
X 3g

  

term was found to be 

2

gxy

2

gyx

2

g

2

gz

1*

gyz

2

uyz

1*

gxz

2

uxz δ4dδ4d5sσσ4dπ4dπ4dπ4dπ4d 222 
                       (5.9) 

Which is similar to that obtained by Klyagina et al. [259] (see (5.1)) and to the average 

orbital occupations by Borin et al. [230] 

         

      230*

g

0.09*

u

2.19*

u

0.12*

u

3.78

u

1.91

g

3.79

g

1.89

g

dπ5π5s9σdδ2δ

dσ8σdπ5π5s9σdδ2δdσ8σ

.


                (5.10) 

all suggesting a quintuple bond. At Re = 2.13 Å, 61 CSFs were used with weights in the 

range [0.001, 0.306] to compute an EBO of 3.65 for the 
 
X 3g

  state of 2Tc . Relativistic 
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effects, which are expected to slightly contract the s and p while expanding the d and f 

atomic orbitals, imply that the 4d and 5s orbitals of Tc could have about the same spatial 

extent and could both be involved in bonding (N.B. the 5s → 5d excitation energy is only 

0.41 eV [222]). At the (scalar relativistic) CASSCF/CASPT2 level [230], the 
 
X 3g

 state 

had Re = 1.94 Å and 1

e cm492.0ω  . At the GVVPT2 level, the values Re = 2.13 Å and 

1

e cm336.6ω   were obtained. 

Consideration of a larger active space including z5p dominated MOs did not 

appear to change the PEC of the 
 
X 3g

  state qualitatively in the chemically important 

region of the curve (Figure 21). Such expensive calculations involved a total space 

dimension of as large as 232,091,673,238 CSFs.  

 The 
 
11g

 state of 2Tc was found in the GVVPT2 study to be 0.47 eV less stable 

than the 
 
X 3g

 state around the equilibrium geometry and had Re = 2.21 Å, ωe = 244.07 

cm
-1

 and De = 2.82 eV with the cc-pVTZ-DK basis set and Re 2.19 Å, ωe = 253.92 cm
-1

 

and De = 3.18 eV with the aug-cc-pVTZ-DK basis. The configurational structure of the 

 
11g

  state was found to be extremely mixed to the extent that the leading configuration 

(at 2.18 Å),  

2

gxy

2

gyx

2

g

2*

uz

2

gz

2

uyz

2

uxz δ4dδ4d5sσσ4dσ4dπ4dπ4d 2222 
 ,             (5.11) 

contributed only 0.209 by weight to the overall wave function. 
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Table 10. Equilibrium distances (Re), binding energies (De), adiabatic transition energies 

(Te), and harmonic frequencies (ωe) of electronic states of 2Tc  calculated using 

sf-X2C relativistic GVVPT2 compared with results from other methods and 

from experiment. 

Method Basis Set Re(Å) De(eV) ωe(cm
-1

) Te 

(eV) 


g

3ΣX  

DV-Xα
a
  1.92    

DFT (BOP)
b
 (23s18p15d4f/9s5p6d2f) 1.97 4.75 512.0  

DFT (B3LYP)
b
 (23s18p15d4f/9s5p6d2f) 1.93 3.15 557.6  

DFT(B88)
b
 (23s18p15d4f/9s5p6d2f) 1.99 1.46 483.5  

MP2
b
 (23s18p15d4f/9s5p6d2f) Unbound

c
 unbound unbound  

DFT
d
 slater-type triple ζ 2.01    

CASSCF/CASPT2
e
 ANO-RCC VTZP 1.94 3.30

f
 492.0  

GVVPT2 Aug-cc-pVTZ-DK 2.13 3.50 336.6  

Experiment
i
   3.49

g
, 

3.45
g
, 

3.33
g
, 

2.93
h
 

  



g

11Σ1  

DFT (B3LYP)
j
  2.84 2.27 178.52  

GVVPT2 Aug-cc-pVTZ-DK 2.47 1.13 225.1 2.38 


g

1 Σ1  

      

CASSCF/CASPT2
e
 ANO-RCC VTZP 1.97  450.0 0.22 

GVVPT2 cc-pVTZ-DK 2.21 2.82 244.1  

GVVPT2 Aug-cc-pVTZ-DK 2.19 3.18 253.9 0.47 


g

5 Σ1  

GVVPT2 Aug-cc-pVTZ-DK 2.31 2.49 246.9 0.70 


g

9 Σ1  

GVVPT2 Aug-cc-pVTZ-DK 2.69 1.35 235.0 1.84 

a
Ref. [259], 

b
Ref. [152], 

c
This method rather predicted a ground u

7Π state with Re = 2.18 

Å, De = 3.97 eV, and ωe = 349.3 cm
-1

, 
d
Ref. [260], 

e
Ref. [230], 

f
After considering spin-

orbit coupling effects, 
g
Ref. [258], 

h
Ref. [259], 

i
Values computed from thermodynamic 

relations using dissociation, vaporization and metal surface enthalpies, 
j
Ref. [261]. 

 

The weight of this configuration decreased to 0.009 at 4.1 Å, where the leading 

configuration became 
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1*

uxy

1

gxy

1*

uyx

1

gyx

2

g

2*

uz

2

gz

1*

gyz

1

uyz

1*

gxz

1

uxz

δ4dδ4dδ4dδ4d5sσ

σ4dσ4dπ4dπ4dπ4dπ4d

2222

22




                    (5.12) 

with a weight of 0.014 only. At 2.18 Å, 67 important CSFs were used to compute the 

EBO of the 
 
11g

 state of 2Tc  and obtained 3.17. This state was also computed using a 

larger active space that included z5p dominated MOs. As can be seen in Figure 22, the 

two PECs, with and without the inclusion of z5p dominated MOs into the active space, 

are quite similar whereas the larger active space increased the total space dimension from 

881,588,512 to 3,704,894,420 CSFs (when using cc-pVTZ-DK).  

 

Figure 22. PECs of the 

g

1Σ1 state of 2Tc  computed at the sf-X2C relativistic GVVPT2 

level of theory using the cc-pVTZ-DK basis set with and without the inclusion 

of z5p dominated MOs into the active. 

Relativistic effects can be seen when not just the binding strengths of 2Mn  and 

2Tc  but also their bond lengths are compared.  Taking into account that the atomic radii 

of Mn and Tc are close (i.e., 1.40 Å and 1.35 Å, respectively), it is remarkable that the 
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bond length of the 
 
11g

 state of  2Tc  is dramatically different (i.e., at least 1.0 Å less) 

than that of the 
 
X1g

 state of 2Mn  (Tables 9 and 10).  

One DFT study [261] found the spin polarized 
 
111g

 state of 2Tc to be the ground 

term with Re 2.84 Å, ωe = 178.5 cm
-1

 and De = 2.27 eV. In the present calculations, this 

state was found to lie as far as 2.38 eV above the ground state (at the equilibrium 

geometry) and had Re 2.47 Å, ωe = 225.1 cm
-1

 and De = 1.13 eV. At a bond length of 2.48 

Å, this state was described by two leading configurations:  

1*

uxy

1

gxy

1*

uyx

1

gyx

1*

u

1

g

1*

uz

1

gz

1*

gyz

2

uyz

1*

gxz

2

uxz

δ4dδ4dδ4dδ4d5sσ5sσ

σ4dσ4dπ4dπ4dπ4dπ4d

2222

22




                        (5.13) 

and  

 
1*

uxy

1

gxy

1*

uyx

1

gyx

1*

u

1

g

1*

uz

1

gz

2*

gyz

1

uyz

2*

gxz

1

uxz

δ4dδ4dδ4dδ4d5sσ5sσ

σ4dσ4dπ4dπ4dπ4dπ4d

2222

22




                         (5.14) 

with weights of 0.669 and 0.121, respectively. At this geometry, the EBO was 0.694. 

These configurations continued to be the leading ones with their weights becoming equal 

at elongated bond lengths. 

Figure 23 contains the PECs of the
 
11g

 , 
 
15g

 , and 
 
19g

  states of 2Tc  obtained 

at the sf-X2C relativistic GVVPT2 level of theory. Though the same states are virtually 

degenerate in the case of 2Mn  (see Figure 18), a relativistic treatment of 2Tc  shows 

them to be significantly nondegenerate, the 
 
15g

  and 
 
19g

  states being found to be 0.70 

eV and 1.84 eV less stable than the 

g

1Σ1  state, respectively.  
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The calculations performed on
 
15g

 and 
 
19g

  states of 2Tc  seem to be the first 

reported.  The leading configuration of the 
 
15g

  state is 

1*

uxy

1

gxy

1*

uyx

1

gyx

2

g

2*

uz

2

gz

2

uyz

2

uxz δ4dδ4dδ4dδ4d5sσσ4dσ4dπ4dπ4d 222222 
,       (5.15) 

with a weight of 0.257 at 2.31 Å. This weight decreased to 0.009 at 5.0 Å where the 

leading configuration was the same as that reported at 4.10 Å for the 

g

1Σ1  state (i.e., 

(5.12)) and had a weight of only 0.012. Using 99 CSFs with amplitudes in the range 

[0.100, 0.507], an EBO of 0.87 was computed at 2.68 Å for the 
 
15g

 state of 2Tc .  

 
Figure 23. PECs of the 

g

1Σ1 , 

g

5 Σ1 , and 

g

9 Σ1  states of 2Tc  computed at the sf-X2C 

relativistic GVVPT2 level of theory using the aug-cc-pVTZ-DK basis set. The 

energies are plotted relative to the lowest energy value of the   

g

1Σ1  state. 

The leading configuration for the 
 
19g

 state of 2Tc  was again configuration 

(5.12) reported above for the 

g

1Σ1  state at 4.10 Å. This configuration had a weight of 

0.694 for the 
 
19g

  state at 2.68 Å. This weight decreased to only 0.114 at 4.7 Å where 10 

important configurations were found to be of nearly equal weights. At 2.68 Å and using 
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10 CSFs with amplitudes in the range [0.081, 0.833], the EBO was computed to be 0.87 

for the 
 
19g

 state of 2Tc .   

Conclusions 

 This Chapter discussed studies done on the low-lying electronic states of the 2Mn  

and 2Tc  molecules using the GVVPT2 method. Only calculations of the ground state 

(
 
X1g

 ) of 2Mn , using the ANO-RCC VTZP, considered scalar relativistic corrections 

through the sf-X2C method which was described in Chapter II. Since such corrections did 

not prove to be important for this state of 2Mn , they were ignored in subsequent 

calculations of its excited states. On the other hand, all calculations of states of 2Tc  

included relativistic corrections. The study revealed that although 2Mn  and 2Tc  are 

isovalent, there are significant differences in their chemistry. For example, the ground 

states of these molecules are different not only in terms of symmetry (
 
X1g

  versus 

 
X 3g

 ) but also in terms of bond strength (De ≈ 0.10 eV versus 3.45 eV) and bond length 

(Re ≈ 3.5 Å versus 2.1 Å). Moreover, whereas the 

g

1Σ1 , 

g

5 Σ1 , and 

g

9 Σ1  states of 2Mn  

were found to be quasidegenerate (Figure 18), the same states were significantly 

nondegerate in the case of 2Tc  (Figure 23). These differences may be explicable in terms 

of relativistic effects which are stronger in Tc than in Mn. Such effects contract the 5s 

orbitals of Tc and simultaneously expand the 4d orbitals such that these orbital sets 

become of similar spatial extents and possibly contribute together to form strong bonds. 

Contrarily, weak relativistic effects in Mn do not lead to such changes. Moreover, the 

4s3d electron excitation energy in Mn is too high (2.14 eV whereas in Tc, it is only 
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0.14 eV [222]) such that the 4s orbitals remain virtually doubly occupied in the 2Mn  

molecule. Since these outer doubly occupied orbitals are repulsive, the bonds in 2Mn  are 

consequently very weak. Despite having different spatial extents of its 3d and 4s orbitals 

just as in 2Cr , the 2Mn  PECs do not have an outer shelf as was the case with the 

g

1Σ1  

and 

u

3 Σ1  states of 2Cr , possibly due to the lack of full participation of the 4s orbitals of 

2Mn  in bond formation. 

 The calculations of states of 2Mn  emphasized the importance of selecting the 

right set of MOs to define the active space and properly partitioning these MOs to give 

correct reference κ(n)s.  Including either z3p  or 4s-derived MOs into the active space 

of 2Mn  unnecessarily increased the dimension of the active space and, more importantly, 

introduced multiple MCSCF solutions at certain geometries.  Moreover, obtaining correct 

dissociation degeneracies required the use of proper reference spaces.  The study revealed 

that a good description of the interaction of Mn atoms in 2Mn  can be achieved with an 

active space of ten 3d-derived MOs with ten active electrons while correlating the 3s, 3p 

and 4s electrons at the GVVPT2 level of theory. 

In contrast to a 2001 MP2 study [152]  that predicted the ground state of 2Tc  to 

be u

7Π , a 2004 DFT study [261] that found a 
 
111g

  ground state, and in corroboration of 

a 2009 CASPT2 study [230] that predicted a 
 
3g

  ground state, sf-X2C GVVPT2 

calculations predict a 
 
3g

  ground state (Re = 2.13 Å, De = 3.50 eV, and ωe = 336.6 cm
-1

) 

with a low-lying (0.47 eV) 
 
1g

  state (Re = 2.19 Å, De = 3.18 eV, and ωe = 253.9 cm
-1

). 

Although the 2009 CASPT2 study showed strong spin-orbit induced mixing between the  
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3g

  and 
 
1g

  states, the spectroscopic constants they obtained from the spin-free PECs 

did not change much with inclusion of spin-orbit coupling corrections. On comparison of 

spin-free PECs, the present calculations suggest a somewhat longer (ca. 0.15 Å) and 

broader (ca. 100 cm
-1

) minimum. Whether this is due to treatment of correlation 

(including choice of 0H ) or some other effect remains to be determined. The energy 

ordering that was found for the 
 
3g

  and 
 
1g

 states of 2Tc  is the same as that reported in 

the 2009 CASPT2 study [230].   

The calculations of the 
 
15g

 and 
 
19g

  states of 2Tc  are apparently the first 

studies of these states. The states were found to be strongly bound (De = 2.49 eV and 1.35 

eV), with the quintet state being more strongly bound than 2Cr in its ground state (De ≈ 

1.56 eV). In all, it is expected that GVVPT2 characterization of the low-lying electronic 

states of 2Tc  will facilitate the up-to-now unknown experimental results and assist with 

identifying potentially interesting targets for more computationally intensive methods 

such as MRCISD and CCSD(T). 
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CHAPTER VI 

GVVPT2 STUDIES OF LOW-LYING ELECTRONIC STATES OF NICKEL DIMER

 

Introduction 

 This Chapter reports studies of low-lying electronic states of 2Ni , obtained with 

the generalized Van Vleck second order multireference perturbation theory (GVVPT2) 

method. These studies were the first to be performed using GVVPT2. Nickel has a 

ground atomic term of 4

3 F (3d
8
4s

2
) and an excitation energy of only 0.025 eV to the first 

excited 3

3 D (3d
9
4s

1
) term, which is the least in the first row of transition elements [221]. 

Moreover, the 4

3 F (3d
8
4s

2
)   3

3 D (3d
9
4s

1
) excitation energy has been determined by at 

least one experimental study [264] to be negative (-0.029 eV). This negative value has 

been corroborated by ab initio wave function and density functional theory (DFT) 

calculations [265, 266]. A recent study [267] that employed several functionals at all five 

rungs of Jacob’s ladder of DFT functionals predicted the ground state configuration of 

the Ni atom as  3d
9
4s

1
 ( 3

3 D ) with most of the functionals when using a triple-ζ quality 

basis set. On the other hand, other theoretical studies [268, 269]
 
have predicted a  3d

8
4s

2
(

4

3 F ) ground state configuration for the Ni atom while Upton and Goddard III [270] stated 

that averaging over J components (where J is the sum of spin and orbital angular 

momenta of the atom) of each state does place the 3

3 D (3d
9
4s

1
) state slightly lower 

energetically than the 4

3 F (3d
8
4s

2
) state. 
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These analyses suggest complications involved in studies of low-lying electronic 

states of Ni compounds. The low excitation energy between the 4

3 F (3d
8
4s

2
) and 3

3 D

(3d
9
4s

1
) atomic terms indicates the likelihood of the importance of several electronic 

states of the 2Ni dimer that result from the 4

3 F  + 4

3 F ,  4

3 F  + 3

3 D , and 3

3 D + 3

3 D atomic 

combinations. However, since the fully filled 4s-subshell of the 4

3 F (3d
8
4s

2
) ground state 

of Ni possibly discourages significant bonding interaction (just as was the case with Mn), 

it seems plausible that bonding in low-lying states of 2Ni should result largely from the 

coupling of excited state ( 3

3 D ) Ni atoms. In particular, the lowest states of the 2Ni

molecule might be expected to correlate with the 3

3 D (3d
9
4s

1
)  + 3

3 D (3d
9
4s

1
) 

dissociation channel.  The present studies of 2Ni considered the different couplings of the 

Ni atoms ( 4

3 F  + 4

3 F ,  4

3 F  + 3

3 D , and 3

3 D + 3

3 D ). Before getting to GVVPT2 studies, a 

brief review of previous experimental and theoretical work on this molecule would be 

provided in the reminder of the present subsection. The subsequent subsection discusses 

details on how calculations were done; a third subsection presents and discusses results; 

while a final subsection summarizes the current findings. 

Previous Studies of 2Ni  

 As already noted above, theoretical studies of the electronic states of 2Ni are 

complicated by the presence of many low-lying quasidegenerate electronic states. For 

example, limited configuration interaction (CI) calculations [17] found 84 states of 2Ni , 

corresponding to the 4

3 F  + 4

3 F  dissociation limit, to lie within an energy range of only 

300 K (0.026 eV) and 45 states within a narrow energy gap to correlate with the 3

3 D + 
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3

3 D dissociate asymptote. At the generalized valence bond (GVB) and polarization CI 

(POL-CI) level of theory [270], 30 of these 45 states of the 3

3 D + 3

3 D dissociation 

channel were found to be singlets and triplets ordered energetically as  

           states2σσstates4πσstates6ππstates4δσstates8πδstates6δδ    (6.1) 

with the six lowest states (


u

3

u

3

u

1

g

3

g

1

g

1 Σ,Γ,Σ,Σ,Σ,Γ ) being virtually degenerate and 

having an average equilibrium bond length, Re, of 2.04 Å, and binding energy, De, of 

2.29 eV (N. B. The designations δδ , πδ , etc., in (6.1) define the positions of the holes 

in the 3d-orbitals at each atomic center with 3d
9
4s

1
 configuration). Melius et al. [271] 

also noted that the manifold of electronic states within 0.50 eV of the ground state of 2Ni

was dense and complex. 

 Being an electron rich system, one would expect theoretical studies on 2Ni to be 

less complicated than for other first row transition metal dimers like 2Cr  where there are 

many more possibilities of distributing 12 electrons in 12 orbitals. Information in the 

literature on 2Ni , however, proves the contrary. For example, the exact symmetry of the 

ground electronic state of 2Ni is uncertain. Different studies have reported different space 

and spin symmetries for the molecule’s ground term. One of the earliest theoretical 

studies [272] on 2Ni  employed the extended Hückel molecular orbital method and found 

a 
-

g

3Σ  ground state with configuration 

2

g

2*

uz

2

gz

1*

gyz

2

uyz

1*

gxz

2

uxz

2*

uxy

2

gxy

2*

uyx

2

gyx
4sσσ3dσ3dπ3dπ3dπ3dπ3dδ3dδ3dδ3dδ3d 222222 

      (6.2) 



138 

 

and with Re = 2.21 Å, ωe = 370 cm
-1

, and De = 2.45 eV. Meanwhile a self-consistent field 

(SCF) scattered-wave (Xα -sw) study [273] found a 


g

1Σ  ground term with configuration 

2

g

2

gz

2*

gyz

2

uyz

2*

gxz

2

uxz

2*

uxy

2

gxy

2*

uyx

2

gyx
4sσσ3dπ3dπ3dπ3dπ3dδ3dδ3dδ3dδ3d 22222 

      (6.3) 

whereas the generalized valence bond (GVB) method [271] also predicted a 


g

1Σ  ground 

state for 2Ni but with configuration 

2

g

2*

uz

2

gz

2*

gyz

2

uyz

2*

gxz

2

uxz

1*

uxy

2

gxy

1*

uyx

2

gyx
4sσσ3dσ3dπ3dπ3dπ3dπ3dδ3dδ3dδ3dδ3d 222222 

      (6.4) 

A limited CI study [17], which explored a variety of states of 2Ni resulting from the 4

3 F  

+ 4

3 F  and 3

3 D + 3

3 D  atomic combinations, found the ground term to be 


g

1Σ  with the 

same configuration as was reported in Ref. [271].  The states 


u

1

g

1 ΣandΓ were reported 

to be in close proximity to the 


g

1Σ  state in the CI study. Different theoretical studies 

found the six lowest holeδδ states (


u

3

u

3

u

1

g

3

g

1

g

1 Σ,Γ,Σ,Σ,Σ,Γ ) of 2Ni , resulting 

from the 3

3 D + 3

3 D  atomic coupling, to be quasidegenerate [274-276]. Using an effective 

core potential basis set specifically optimized for the Ni atom in the 3

3 D  state, Noell et 

al. [275] found the splitting of the six holeδ  states of 2Ni to be quite small (≤ 0.1 eV) 

using the generalized valence bond CI (GVBCI) method; the lowest states being



g

1

g

1 ΣandΓ . However, inclusion of polarization configurations involving single and 

double excitations to the virtual space (POLSDCI) placed the triplet states (


g

3Σ , u

3Γ , 



u

3Σ ) at approximately 0.07 eV below the singlets. At the singles and doubles CI (SDCI) 

level of theory, these authors found the energy splitting of the six lowest holeδδ states 
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of 2Ni to be less than 0.009 eV with an average bond length of 2.26 Å and binding 

energy of 1.88 eV.  With a basis set similar to that used by Noell et al. [275],  a 

u

3Σ  

ground state was predicted for 2Ni at the RHF and CISD levels of theory, with the CISD 

result giving spectroscopic data: Re = 2.33 Å, ωe = 211 cm
-1

, and De = 1.43 eV [276]. 

Calculations by these authors at the same levels of theory using an all electron basis set 

maintained the ground state symmetry as 

u

3Σ . On the other hand, a local spin density 

method [277] predicted a 
-

g

3Σ ground state with Re = 2.18 Å, ωe = 320 cm
-1

, and De = 

2.70 eV. A CASSCF/CASPT2 study [278], that used an atomic natural orbital (ANO) 

type contraction of the primitive (21s15p10d6f4g) basis to give [6s5p4d3f2g] for 

calculations without the correlation of the semi core 3s3p electrons and  [10s9p8d3f2g] 

for calculations involving the correlation of 3s3p electrons, also concluded the six lowest 

holeδδ states of 2Ni to lie within a narrow energy gap (0.04 eV) with the triplet states 

higher in energy than the singlets. After inclusion of scalar relativistic effects in the 

CASPT2 study, the ground term was found to be g

1Γ , with the 


g

1Σ term lying only 0.01 

eV higher at the equilibrium geometry. Correlating the 3s3p electrons in these 

calculations slightly improved the bond lengths and binding energies of the six lowest 

holeδδ  states, whereas the competing 


g

1

g

1 ΣandΓ  lowest states became degenerate 

with spectroscopic constants:  Re = 2.23 Å, De = 2.06 eV, and ωe = 293 cm
-1

 compared 

with experimental values of Re = 2.1545 ± 0.0004 Å [279],  o

0D  = 2.042 ± 0.002 eV 

[279],  and ωe = 280 ± 20 cm
-1

 [280].
 
Some of the most recent wave function based 

calculations of 2Ni include those due to Dong et al. [281], using the symmetry-adapted-

cluster configuration interaction (SAC-CI) method, and Cheskidov et al. [282], using the 
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average coupled pair functional (ACPF), average quadratic coupled cluster (AQCC), 

internally contracted single and double multireference configuration interaction (MRCI 

or MRCI + Q with Davidson corrections), and N-electron valence state second-order 

perturbation theory (NEVPT2)  methods. The study by Dong et al. [281]
 
predicted a 1uB  

ground state (with Re = 2.56 Å) for 2Ni in 2hD symmetry which corresponds to 

u

3

u

3

u

3 Γor,Δ,Σ in hD . The study by Cheskidov et al. [282] used the Dunning-type 

quadruple-ζ quality basis set, cc-pVQZ-DK (22s18p11d3f2g1h/[8s7p6d3f2g1h]) [283], 

and found  the 


g

1

g

1 ΣandΓ  holeδδ states of 2Ni to be quasidegenerate for all five 

methods, with the 


g

1Σ  state lying lower when using AQCC, MRCI + Q, and MRCI 

methods and the two states fully degenerate at the ACPF and NEVPT2 levels. At the 

ACPF level, the predicted ground state was rather  

u

1Σ  while inclusion of spin-orbit 

relativistic corrections led to an 


g0 ground term ( statesδδΣΣ g

3

g

1  
) whereas the  

u0  

term  statesδδΣΣ u

3

u

1    lay at only 0.009 ± 0.004 eV above the ground term. 

 DFT studies of 2Ni have been inconclusive. Yanagisawa et al. [284] used 

different DFT functionals to study the triplet (


u

3

g

3 ΣandΣ ) states of 2Ni and found most 

of the functionals to predict a 
-

g

3Σ  ground term whereas B3LYP rather predicted 


u

3Σ . 

However, the 
-

g

3Σ state that they found had a configuration that corresponded to the 

holesππ  manifold within the 3

3 D + 3

3 D  atomic combination rather than hole-δδ  states 

as most of the reported results from studies by wave function methods.  Gutsev et al. 

[151] also found a 
-

g

3Σ ground state with the same configuration as did Yanagisawa et al. 
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[284]
  

when using different hybrid functionals. Contrarily, Diaconu et al. [285] found a 

singlet holeδδ ground state (a mixture of 


g

1

g

1 ΣandΓ ) for 2Ni when using B3LYP 

with the basis set (14s11p6d3f)/[8s6p4d1f] whereas the Stuttgart RSC ECP basis set 

[286] with the same functional gave a triplet stateπδ   (mixture of u

3

g

3 ΓandΣ
) that 

lay 0.001 eV lower than the singlet holeδδ term at the equilibrium geometry. The 

Perdew-Burke-Ernzerhof (PBE) exchange correlation (XC) functional also predicted 

[287] a 
-

g

3Σ ground state for 2Ni  with spectroscopic constants that showed significant 

deviations from experimental values (Re = 2.93 Å, De = 3.09 eV, and ωe = 334.08 cm
-1 

compared to experimental values of Re = 2.1545 ± 0.0004 Å [279],  o

0D  = 2.042 ± 0.002 

eV [279],  and ωe = 280 ± 20 cm
-1 
[280]). Using functionals at all levels of Jacob’s ladder 

of DFT functionals, Schultz et al. [268] found different functionals to predict different 

ground state symmetries for 2Ni ; all local spin density approximation (LSDA) 

functionals predicted a 
-

g

3Σ ground state, all generalized gradient approximation (GGA) 

and meta GGA functionals predicted a u

3Π  ground term, whereas the hybrid GGA and 

hybrid meta GGA functionals tested found either the 


g

3

u

3 ΣorΣ  term to be the ground 

term. Meanwhile Du et al. [288] also used different functionals to study low-lying states 

of 2Ni . Their best results were obtained when using BLYP that predicted a triplet 

 1*

uyx

1*

uz
δ3dσ3dholeσδ 222 

  ground term. The space symmetry of this state was not 

reported. With the B3P86 functional,
 
a quintet ground state was predicted for 2Ni without 

specifying the space symmetry [289]. 
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Experimental data on 2Ni is sparse and the true ground term of the molecule is 

not unequivocally known experimentally. From the analysis of electronic absorption 

bands of 2Ni  in the visible spectral region in argon matrices, De Vore et al. [290] 

determined ωe = 192 cm
-1

 whereas a frequency of 380.9 cm
-1

 was found in solid argon 

matrix [291]. The latter result was later criticized by Rasanen et al. [292]. In 

photoelectron spectroscopic studies of 

2Ni , ωe = 280 ± 20 cm
-1

 was determined for the 

lowest electronic state of 2Ni  [280]. Second and third law analyses of information 

derived from a combination of Knudsen effusion and mass‐spectrometric techniques led 

to a binding energy of o

0D  = 2.03 ± 0.30 eV (second law result) and o

0D  = 2.36 ± 0.22 eV 

(third law result) for ground state 2Ni  [293].  By using time-delayed resonant two-

photon ionization, Morse et al. [294] determined  o

0D  = 2.068 ± 0.010 eV and Re = 2.200 

± 0.007 Å for the lowest state of 2Ni , assigned as either g

1

u

3 ΓorΓ . Also from two-

photon ionization studies on supersonic jet-cooled 2Ni  in argon carrier gas, Pinegar et al. 

[279] determined o

0D  = 2.042 ± 0.002 eV and Re = 2.1545 ± 0.0004 Å for the lowest state 

of 2Ni  but were unable to ascertain the symmetry of this state. 

The above analysis of previous work on 2Ni  reveals challenges involved in 

studies of electronic states of the molecule. The reviewed literature clearly shows 

conflicting results on the low-lying electronic states of 2Ni . Although many wave 

function methods have tended to favor holeδδ states (


u

3

u

3

u

1

g

3

g

1

g

1 Σ,Γ,Σ,Σ,Σ,Γ ) 

as lying lowest energetically, those methods predicted different ground state symmetries 

with some finding all six states to be degenerate. As shown, spectroscopic data have been 
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obtained experimentally for 2Ni  but most of the experimental studies could not ascertain 

the ground state symmetry of the molecule.  Due to these uncertainties and given that the 

GVVPT2 method demonstrated remarkable success at describing electronic states of 

other complicated transition metal molecules, such as 2Cr  and 2Y , the low-lying states of 

2Ni have been studied using GVVPT2. It should be noted that of all previous theoretical 

work cited above on electronic states of 2Ni , less than seven of the articles reported full 

PECs of the states they investigated. This Chapter reports full PECs of 21 states of 2Ni  

constructed at the GVVPT2 level of theory. The curves are smooth and void of wiggles. 

The next subsection presents details on how the calculations were done. 

Computational Details 

Macroconfigurations (κ(n)s) [22] were used in the construction of MCSCF and 

then GVVPT2 wave functions.  The active space used to specify reference κ(n)s 

consisted of 3d and 4s-derived molecular orbitals (MOs) of Ni. Depending on the specific 

state being investigated, some of the 3d-derived MOs and/or 4s-derived MOs that were 

restricted to be doubly occupied were included with the 3s- and 3p-derived MOs in the 

active core and their electrons only correlated at the GVVPT2 level of theory. For 

example, in all calculations of holeδδ  states, the 3dπand3dσ MOs were placed in the 

active core and only correlated at the GVVPT2 level. Similarly, the 3dδand3dσ  

electrons were frozen in MCSCF calculations of holeππ  states while only the 3dσ  

electrons were frozen in MCSCF calculations of holeδπ  states, whereas the 4sσ  or 

3dπ4sσ or 3dσ4sσ  electrons were frozen in MCSCF calculations on states within 

the  28

4

3 4s3dF  +  28

4

3 4s3dF  dissociation channel. The remaining orbitals in the active 
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space were partitioned into reference κ(n)s leading to configurations that describe ,δδ

statesσσor,πσ,ππ,δσ,δπ  from the 3

3 D (3d
9
4s

1
)+ 3

3 D (3d
9
4s

1
) atomic combination 

or configurations that describe 3

3 D (3d
9
4s

1
) + 4

3 F (3d
8
4s

2
) and 4

3 F (3d
8
4s

2
) + 4

3 F (3d
8
4s

2
) 

atomic couplings (N.B. ,δδ  σσor,πσ,ππ,δσ,δπ  specifies  the positions of the 

holes within the manifold of 3d-derived MOs for the studied states). 

All statesδδ were computed using one reference κ(n)  

   2*

ug

6*

uxygxy

*

uy-xgy-x
4sσ4sσδ3dδ3dδ3dδ3d 2222                                      (6.5) 

where the superscripts denote the number of electrons in each orbital group. The semi 

core 3s3p electrons were correlated together with those of yzxzz
3dand,3d,3d 2  at the 

GVVPT2 level. For four of the statesδδ , calculations were also performed in which 

the 3s3p were frozen though out (i.e., at both the MCSCF and GVVPT2 levels). 

Reference κ(n) (6.5) generated: 8 model and 27,891,120 total CSFs for the 

u

3 Σ1  and 

u

3 Γ1 states; 8 model and 15,290,666 total space CSFs for the u

1

g

1

u

1 Γ1and,Σ1,Σ1 
 

states; 10 model and 27,982,592 all space CSFs for the 


u

3

g

3 Σ1andΣ1 states; and 12 

model versus 15,270,687 all space CSFs for the 


g

1

g

1 Σ1andΓ1  states. Without 

correlating the 3s3p electrons at the GVVPT2 level, the dimensions were: 12 model 

versus 3,593,707 total CSFs for the 


g

1

g

1 Σ1andΓ1  states; and 8 model versus 6,434,550 

all space CSFs for the 

u

3 Σ1  and u

3 Γ1  states. Scalar relativistic calculations on the 



g

1

g

1 Σ1andΓ1  states utilized the same reference κ(n) (6.5). A δδ  u

3Γ state was 

computed with only 4 active electrons in 4 orbitals using the reference κ(n)  
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   2*

ug

2*

uxgx
4sσ4sσδ3dδ3d 2222 yy 

                                            (6.6) 

that gave rise to 4 model space and 7518688 all space CSFs. 

 The statesππ  were computed using a reference κ(n) similar to (6.5) but with 

delta replaced with pi orbitals  

    2*

ug

6*

gyzuyz

*

gxzuxz 4sσ4sσπ3dπ3dπ3dπ3d                                    (6.7) 

This κ(n) gave rise to 12 model space and 15,267,629 all space CSFs for the 

   ππΣ1andππΔ1 g

1

g

1 
 states.  

 The statesδπ were computed from the reference κ(n)   

     2*

ug

7*

gyzuyz

*

gxzuxz

7*

uxygxy

*

uy-xgy-x
4sσ4sσπ3dπ3dπ3dπ3dδ3dδ3dδ3dδ3d 2222           (6.8) 

Reference κ(n) (6.8) led  to 16 model space and 27,178,852 total space CSFs for the 

   δπΠ1andδπΦ1 g

1

g

1
 states versus 20 model and 50,736,846 all space CSFs for the 

   δπΠ1andδπΦ1 g

3

g

3
 states.  

 The    22

g

322

g

1 πδ:GΣ1,πδ:G1  ,    ,πδ:GΔ1,πδ:GΣ2 22

u

322

g

3  and  22

u

3 πδ:GΣ1   

states (where G is used to denote that the states are derived from the coupling of ground 

state Ni atoms ( 4

3 F  + 4

3 F ) while superscript 2 implies that two holes of each type exist in 

the configurations describing the wave functions) were computed using the reference 

κ(n)   

   6*

gyzuyz

*

gxzuxz

6*

uxygxy

*

uy-xgy-x
π3dπ3dπ3dπ3dδ3dδ3dδ3dδ3d 2222                (6.9) 
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with the 3s, 3p, 2z
3d , and 4s electrons kept frozen at the MCSCF level but correlated at 

the GVVPT2 level of theory. This κ(n)  resulted in 40 model versus 55,053,638 total 

CSFs for the  22

g

1 πδ:G1   state; 36 model and 103,306,512 all space CSFs for the 

 22

g

3 πδ:GΣ1   and  22

g

3 πδ:GΣ2   states; and 40 model versus 103,312,902 all space CSFs 

for the    22

u

322

u

3 πδ:GΣ1andπδ:GΔ1   states.  

 Two states    22

g

122

g

1 σδ:GΣ1andσδ:GΓ1 
 were computed using reference 

κ(n)   

   2*

uzgz

6*

uxygxy

*

uy-xgy-x
σ3dσ3dδ3dδ3dδ3dδ3d 222222                                      (6.10) 

This κ(n) generated 12 model space and 15,270,687 all space CSFs for the computed 

states.  

 The states    3d

2

u

5

3d

2

u

5 πσδ:GΠ1andπσδ:GΦ1  (where G: 3d

2πσδ implies that 

the configurations describing the states result from coupled ground state Ni atoms (G) in 

which there are two holesδ  , a holeπ  , and a holeσ  in a 2z
3d -derived MO) were 

computed using the reference κ(n)   

     3*

uzgz

7*

gyzuyz

*

gxzuxz

6*

uxygxy

*

uy-xgy-x
σ3dσ3dπ3dπ3dπ3dπ3dδ3dδ3dδ3dδ3d 222222        (6.11) 

This κ(n)  led to 12 model versus 69,738,914 total CSFs for the computed quintet states. 

 Lastly, two quintet states within the 3

3 D (3d
9
4s

1
) + 4

3 F (3d
8
4s

2
) manifold were 

investigated at short bond lengths using the reference κ(n)   
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     3*

ug

6*

gyzuyz

*

gxzuxz

7*

uxygxy

*

uy-xgy-x
4sσ4sσπ3dπ3dπ3dπ3dδ3dδ3dδ3dδ3d 2222         (6.12) 

Reference κ(n)  (6.12) generated 12 model versus 69,740,135 total space CSFs that 

described the    4s

2

g

5

4s

2

g

5 σδπ:GE2andσδπ:GE1   states, where GE: 4s

2σδπ implies 

that the configurations describing the states result from the coupling of a ground (G) and 

an excited (E ) state Ni atom in which there is a holeδ  , two holesπ  , and a holeσ 

in a 4s-derived MO.  

 All calculations used the Dunning-type cc-pVTZ basis set [153] in 2hD symmetry. 

In MCSCF calculations, the reference κ(n)s described above were used as the active 

space while all other electrons were frozen. Initial MOs for MCSCF calculations were 

obtained from approximate natural orbitals of second-order restricted Møller−Plesset 

perturbation (RMP2) calculations from a closed-shell Hartree−Fock (HF) reference. At 

the GVVPT2 level, 3s, 3p, and all 3d and/or 4s electrons not correlated at the MCSCF 

level were correlated. A few of the GVVPT2 calculations were performed with the 3s and 

3p electrons frozen. Calculations that accounted for scalar relativistic effects employed 

the sf-X2C technique described in Chapter II. Where indicated, the effective bond order 

(EBO) was computed using Eqs. (3.11) and (3.12) in Chapter III. 

Results and Discussion 

  To distinguish states of the same symmetry which were computed with different 

reference κ(n)s, the following notations are used: 3d-derived MOs (and sometimes 4s-

derived MOs) that have vacancies are shown in parentheses after the molecular term 

symbol of the state; uppercase letters G and E are also included in parentheses after the 
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molecular terms to indicate that ground (
3

3 D ) or excited ( 4

3 F ) atoms are coupled in the 

2Ni  molecule, respectively. Thus, the state  4s

2

g

5 σδπ:GE1   involves 4

3 F  + 3

3 D  

coupled Ni atoms and the configuration of the state involves one hole in the 3d-delta 

subspace, two holes in the 3d-pi subspace, and one hole in the 4s-sigma subspace of 

active MOs. The superscripts on the MOs within parentheses accompanying the 

molecular term symbols would be used to indicate the number of holes of each kind in 

the configuration. A single G within parentheses, e.g., in  3d

2

u

5 πσδ:GΦ1 , implies 4

3 F  

+ 4

3 F  atomic coupling. The 4s-derived MO subspace has holes for all computed states 

and these are not indicated except for the     4s

2

g

5

4s

2

g

5 σδπ:GE2andσδπ:GE1   

states. Where parentheses are absent after the molecular term, the state in question 

belongs to the statesholeδδ  of the 3

3 D (3d
9
4s

1
) + 3

3 D (3d
9
4s

1
) manifold. Letter “R” in 

parentheses following the molecular term implies that scalar relativistic effects were 

included in the calculations while the expression “no 3s3p” within parentheses after a 

molecular term symbol implies that 3s and 3p electrons were frozen in GVVPT2 

calculations. 

The δδ Hole States 

 PECs of the holeδδ states are shown in Figure 24 and the data describing them 

are in Table 11. In agreement with results from other high level ab initio methods, the 

lowest states of 2Ni  were found to be holeδδ states of the    19

3

319

3

3 4s3dD4s3dD   

manifold. In particular, the ground state was found to be g

1ΓX  with the 


g

1Σ1  state lying 

only 16.40 cm
-1

 (0.002 eV) higher at the equilibrium geometry. After including scalar 

relativistic effects, the energy gap between these states slightly increased to 23.39 cm
-1 

at 
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equilibrium with the g

1ΓX  term having spectroscopic constants: Re = 2.20 Å, De = 1.95 

eV, and ωe = 296 cm
-1

. These results are in good agreement with experimental data (Re = 

2.1545 ± 0.0004 Å [279],  o

0D  = 2.042 ± 0.002 eV [279],  and ωe = 280 ± 20 cm
-1 

 [280]) 

and with the relativistic CASSCF/CASPT2 results of 
 
Pou‐Amérigo et al. [278] who also 

found the  g

1Γ and 


g

1Σ  terms to be quasidegenerate with Re = 2.23 Å, De = 2.06 eV, and 

ωe = 293 cm
-1

 for the g

1Γ  term.  

 

Figure 24. PECs of low-lying electronic states of  computed at the GVVPT2 level of 

theory using the cc-pVTZ basis set. All energies are plotted relative to the 

lowest energy value of the ground   term. For all states, the holes are in 

the 3d delta orbitals  except for the  which 

are  states. 

 

2Ni

g

1ΓX

 holesδδ    2

g

12

g

1 πΣ1andπΔ1 

holeππ 
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Table 11. Equilibrium bond lengths, Re (Å), binding energies, De (eV), harmonic 

frequencies, ωe (cm
-1

), and adiabatic transition energies, Te (cm
-1

), of 

electronic states of 2Ni calculated at the GVVPT2 level of theory using the 

cc-pVTZ basis set and reference κ(n) (6.5) and (6.6).   

Molecular Term Re (Å) De (eV) ωe (cm
-1

) Te (cm
-1

) 

statesholeδδ    

computed using κ(n) (6.5) 

g

1ΓX  2.26 1.75 276.0  

 3s3pnoΓX g

1
 2.27 1.66 268.5  

 RΓX g

1
 2.20 1.95 296.0  

Experiment 2.1545 ± 0.0004
a
  2.042 ± 0.002

a
   280 ± 20

b
  



g

1Σ1  2.26 1.75 276.8 16.40 

 RΣ1 g

1 
 2.20 1.95 297.0 23.39 

 3s3p noΣ1 g

1 
 2.28 1.65 263.3 16.56 



u

1Σ1  2.27 1.74 274.2 91.09 



u

3 Σ1  2.27 1.71 274.9 349.60 

 3s3pnoΣ1 u

3   2.28 1.62 267.4 309.58 

u

3 Γ1  2.27 1.71 274.9 351.11 

 3s3pnoΓ1 u

3  2.28 1.62 267.4 310.31 



g

3 Σ1  2.26 1.72 275.0 221.98 



u

3 Σ1  2.27 1.70 273.9 882.59 



g

1Σ1  2.27 1.74 270.2 1058.87 

-

u

12   2.75 0.11 73.5 18575.76 

computed using κ(n) (6.6) 










2

3d

3

2y2x

δ1 u
 

2.27 1.71 275.0 2442.21 

a
Ref. [279] (the reported binding energy is for o

0D ), 
b
Ref. [280]. 

  

 The time-delayed resonant two-photon ionization study of Morse et al. [294] 

predicted either a  state as the ground state of . Scalar relativistic 

calculations due to Cheskidov et al. [282] found the and  terms to be degenerate 

at the ACPF and NEVPT2 levels of theory and the  term to lie very slightly lower 

g

1

u

3 ΓorΓ 2Ni

g

1Γ 

g

1Σ



g

1Σ
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than the  at the AQCC, MRCI, and MRCI + Q levels of theory. At 2.25 Å, the EBO 

was found to be only 0.963 and 0.960 for the  and  states, respectively.  

In sf-X2C relativistic GVVPT2 calculations, the EBOs increased slightly to 0.975 

for  and 0.972 for .  For these two states, the GVVPT2 wave function could be 

approximated in terms of valence orbital occupancies as 

          (6.13)  

Thus, the major configurations describing these singlet states involved the two 

in the same  type.   

 The semi core 3s3p electrons were found to be important in the description of 

low-lying states of 2Ni . The inclusion of 3s3p electron correlation at the GVVPT2 level 

increased the binding energies favorably (in comparison with experimental data) by 0.09 

eV for g

1ΓX , 0.10 eV for 


g

1Σ1 , 0.09 eV for 

u

3 Σ1  and u

3 Γ1 states in non-relativistic 

calculations. As can be seen in Figure 25 and Table 11, the effects of the 3s3p electrons 

on the equilibrium bond lengths and harmonic frequencies for these states are minimal 

whereas inclusion of such core-valence correlation raises, for example, the binding 

energy of  from 1.66 eV to 1.75 eV compared to a reference  value of 2.042 ± 

0.002 eV [279].   

g

1Γ

g

1Γ 

g

1Σ

g

1Γ 

g

1Σ

 
 2*

u

2*

uyx

2

gyx

2*

uxy

2*

u

2*

uyx

2*

uxy

2

gxy

2

g

2*

uyx

2

gyx

2

gxy

2

g

2

gyx

2*

uxy

2

gxy

4sσδ3dδ3dδ3d4sσδ3dδ3dδ3d0.077

4sσδ3dδ3dδ3d4sσδ3dδ3dδ3d0.445Ψ

222222

222222









holesδ 

orbitalδ 

g

1ΓX o

0D
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Figure 25. PECs of low-lying   electronic states of  computed at the 

GVVPT2 level of theory, with and without the correlation of 3s3p semi-core 

electrons, using the cc-pVTZ basis set. All energies are plotted relative to the 

lowest energy value of the ground  
 
term. 

 Scalar relativistic effects shortened the bond length of  by 0.06 Å  

and further increased the bond energy by 0.20 eV to 1.95 eV in favor of the reference 

experimental values (see Figure 26 and Table 1). The 3s3p electrons did not have any 

effect on the EBOs of  and ; the EBOs were determined as 0.962 and 0.959 at 

2.27 Å for  and , respectively, when the 3s3p electrons were uncorrelated 

compared to 0.963 versus 0.960 when they were correlated. Note the quasidenegeracy in 

the  and states. For example, in Figure 26, the blue and green curves for the 

 and states, respectively, lie on top of each other (only the green is visible). 

holeδδ 2Ni

g

1ΓX

g

1ΓX

g

1ΓX 

g

1Σ1

g

1ΓX 

g

1Σ1

g

1ΓX 

g

1Σ1

g

1ΓX 

g

1Σ1
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Also, the black and red curves for the  and 
 
states lie on each other 

(only the red curve is visible).  

 

Figure 26. PECs of the lowest-lying   and states of  computed at 

the GVVPT2 level of theory, with and without scalar relativity included, using 

the cc-pVTZ basis set. Non-relativistic energies are plotted relative to the 

lowest energy value of the ground  term, while relativistic energies are 

plotted relative to the lowest energy of the  term. 

The 

u

1Σ1  state that was predicted as the ground state of 2Ni  at the ACPF level of 

theory [282] and found to lie quite close to a 


g

1Σ  ground state in a limited CI study [17] 

was found at the GVVPT2 level to lie 91.09 cm
-1

 above the g

1ΓX term at equilibrium. 

The -

u

12   state, however, lay much higher energetically (18575.76 cm
-1

 above the ground 

state at equilibrium). 

 As can be seen in Table 11, GVVPT2 predicted the triplet holeδδ states (


g

3 Σ1 , 



u

3 Σ1 , and u

3 Γ1 ) to lie energetically in the order 


g

3 Σ1 < 

u

3 Σ1 < u

3 Γ1 . Cheskidov et al. 

 RΓX g

1  RΣ1 g

1 

holeδδ
g

1ΓX 

g

1Σ1 2Ni

g

1ΓX

 RΓX g

1
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[282] found this same ordering at the ACPF, AQCC, MRCI and MRCI + Q levels of 

theory whereas their NEVPT2 calculations predicted  

u

3 Σ1 < u

3 Γ1 < 


g

3 Σ1 , with the 



g

3 Σ1 state lying at least 139 cm
-1

 higher than the other two states. It should be noted that 

the vertical excitation energies in Ref. [282] were not determined at the equilibrium 

geometries of the computed states. The  

u

3 Σ1  state which was predicted as the ground 

state of 2Ni in previous wave function [276, 281]
 
and DFT [268, 284]

 
studies

 
was found 

in the present study to lie at 349.60 cm
-1

 above the g

1ΓX  state at the equilibrium 

geometry. Likewise the 


g

3 Σ1 state reported in some studies [277] as the ground term of 

2Ni  lay at 221.98 cm
-1

 higher at equilibrium. The 

u

3 Σ1  state was found to have a bond 

length and bond energy comparable to those of  


g

3 Σ1 , 

u

3 Σ1 , and u

3 Γ1  but lying at least 

531.48 cm
-1

 higher in energy. The EBOs for these triplet states were 0.971 for 


g

3 Σ1 , 

0.933 for  

u

3 Σ1  and u

3 Γ1 , and 0.923 for 

u

3 Σ1  at the vicinity of their equilibrium 

geometries. The major configurations for the holeδδ triplet states involved a doubly 

occupied g4sσ  bonding orbital.  

The 








2

3d

3

2y2x

δ1 u
 state, in which all two holesδ  were in the *

ugyx
δδ3d 22

 

orbitals, was computed using reference κ(n) (6.6). As can be seen in Table 11, this state 

was found to have spectroscopic constants comparable to other holeδδ triplet states but 

lay much higher energetically (2442.21 cm
-1

 above the ground state at equilibrium). The 

present results suggest that the 3dδ  orbitals are indeed split in the bonding interaction. 

Since they are nondegenerate, the Aufbau principle suggests that low-lying orbitals (the 
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bonding 3dδorbitals) be occupied before higher ones. Moreover, Hund’s rule suggests 

that orbitals with similar energies (in this case, *

u3dδ orbitals) be singly occupied before 

electron pairing occurs. This may explain why the 


g

3 Σ1 , 

u

3 Σ1 , and u

3 Γ1  states in which 

the *

uyx
δ3d 22

 and 
*

uxyδ3d  are singly occupied lie lower than the 








2

3d

3

2y2x

δ1 u
 state.  

The δπ Hole and ππ Hole States 

 The PECs of the computed holeππ  states (  2

g

1 πΔ1  and  2

g

1 πΣ1 
) are shown 

in Figure 24 while those of the holeδπ states (  δπΦ1 g

1
,  δπΠ1 g

1
,  δπΠ1 g

3
, and 

 δπΦ1 g

3
) are shown in Figure 27 and compared with the ground state PEC. The data 

describing these curves are in Table 12. GVVPT2 predicted the holeππ  states to lie 

higher in energy than the holeδπ states in agreement with previous studies [17, 271, 

275]. For the four holeδπ states, the major CSFs involved a doubly occupied g4sσ  

bonding orbital. Thus, the main configurations of the  δπΦ1 g

1
 and  δπΠ1 g

1
 states 

involved an unpaired alpha spin electron in the 3dδ  subspace and an unpaired beta spin 

electron in the 3dπ  subspace (or vice versa), e.g., 

    2

g

1*

g

2

u

2*

g

2

u

1*

u

2

g

2*

u

2

g 4sσ3dπ3dπ3dπ3dπ3dδ3dδ3dδ3dδ 
                     (6.14)  

whereas the major configurations of the  δπΠ1 g

3
 and  δπΦ1 g

3
 states were similar to 

those of the singlet states but with two unpaired alpha spins; one in each of the 3dδ  and 

3dπ  subspaces, e.g.,  

    2

g

1*

g

2

u

2*

g

2

u

1*

u

2

g

2*

u

2

g 4sσ3dπ3dπ3dπ3dπ3dδ3dδ3dδ3dδ 
                    (6.15)  
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Figure 27. PECs of low-lying  electronic states of  computed at the 

GVVPT2 level of theory using the cc-pVTZ basis set, compared with the 

ground  term’s PEC. All energies are plotted relative to the lowest 

energy value of the ground  term. 

 At the equilibrium geometries, the EBOs were 0.930 for the singlet  δπΦ1 g

1
 and 

 δπΠ1 g

1
 states and 0.933 for the  δπΠ1 g

3
 and  δπΦ1 g

3
 states. GVVPT2 predicted 

the four holeδπ  states to lie energetically in the order  δπΦ1 g

1
 <  δπΠ1 g

1
 < 

 δπΠ1 g

3
 <  δπΦ1 g

3
  in agreement with the Ref. [282] study at the scalar relativistic 

ACPF, AQCC, MRCI, and MRCI + Q levels of theory. However, the present calculations 

found all three states considered in Ref. [282] (  δπΠ1 g

1
,  δπΠ1 g

3
, and  δπΦ1 g

3
) to 

lie some 500 cm
-1 

lower energetically with respect to the ground state e.g., at the scalar 

relativistic MRCI + Q level, the  δπΦ1 g

3
  state was reported [282] as lying 1238 cm

-1
 

holeδπ 2Ni

g

1ΓX

g

1ΓX
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above the ground state at 2.5 Å while non-relativistic GVVPT2 calculations predicted 

this state to lye 546.76 cm
-1

 above the ground state at equilibrium (2.26 Å). Based on the 

observations in the present study that including scalar relativistic effects increased the 

energy gap between the 


g

1Σ  and g

1ΓX  states, it is likely that including such effects in 

GVVPT2 calculations on the holeδπ states may lead to increases in corresponding 

adiabatic transition energies. It is not anticipated, however, that such effects would lead 

to any change in the energy ordering of the states.  

 Although lying higher in energy than the holeδπ states, the holeππ  states 

were found to have slightly shorter bond lengths and higher bond strengths than the 

holeδπ states. The  2

g

1 πΔ1  state was 0.06 Å shorter while the  2

g

1 πΣ1 
 state was 

0.01 Å shorter in bond length than the holeδπ states.  At 2.24 Å, the EBOs of  2

g

1 πΔ1  

and  2

g

1 πΣ1 
 were 1.108 and 1.084 respectively; which were slightly higher than the 

EBOs of all other computed holeδδ and holeδπ 2Ni states. Near the equilibrium, the 

major configurations of these holeππ  states involved a doubly occupied  g4sσ  bonding 

orbital and a configuration of  the 3dπ  subspace that had the two holesπ  in the same 

orbitalπ   e.g.,  

2

g

0*

g

2

u

2*

g

2

u 4sσ3dπ3dπ3dπ3dπ                                       (6.16)  

States of the  and  manifolds 

 Figure 28 contains PECs of states belonging to the  manifold. The data 

describing these curves are in Table 12. Irrespective of how the model space was 

4

3

4

3 FF  3

3

4

3 DF 

4FF 3

4

3 
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partitioned into κ(n)s, all such states were found to be van der Waals-like with interaction 

energies . 

 

Table 12. Equilibrium bond lengths, Re (Å), binding energies, De (eV),  harmonic 

frequencies, ωe (cm
-1

), and adiabatic transition energies, Te (cm
-1

), of 

electronic states of 2Ni calculated at the GVVPT2 level of theory using the 

cc-pVTZ basis set and Reference κ(n) (6.7) to (6.12).   

Molecular Term Re (Å) De (eV) ωe (cm
-1

) Te (cm
-1

) 

statesholeδπ  computed with κ(n) (6.8) 

 δπΦ1 g

1
 2.29 1.73 263.7 427.86 

 δπΠ1 g

1
 2.29 1.73 269.7 485.09 

 δπΠ1 g

3
 2.29 1.72 261.9 518.14 

 δπΦ1 g

3
 2.29 1.72 261.3 546.76 

ππ -hole states computed with κ(n) (6.7) 

 2

g

1 πΔ1  2.23 1.63 242.5 1241.68 

 2

g

1 πΣ1 
 2.28 1.55 240.5 1925.85 

States computed with κ(n) (6.9) 

 223 πδ:G1 u  3.96 0.02 26.2 33555.78 

 223 πδ:G1 u  3.96 0.02 26.2 33555.91 

 221 πδ:G1 g  3.93 0.03 26.6 34531.63 

 223 πδ:G1  g
 3.95 0.03 26.2 39160.31 

 223 πδ:G2  g
 3.96 0.03 26.0 39162.41 

States computed with κ(n) (6.10) 

 2

3d

2

g

1 σδ:GΓ1  3.73 0.04 26.9 35412.38 

 2

3d

2

g

1 σδ:GΣ1 
 3.73 0.04 26.9 35412.41 

States computed with κ(n) (6.11) 

 3d

2

u

5 πσδ:G1   3.83 0.03 26.7 33144.35 

 3d

2

u

5 πσδ:G1   3.84 0.03 26.9 33147.67 

States computed with κ(n) (6.12) 

 4s

2

g

5 σδπ:GEΔ1  2.22  249.1 5123.66 

 4s

2

g

5 σδπ:GEΔ2  2.54  150.1 9018.57 

 

 

eV0.04
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Figure 28. PECs of electronic states of , within the  

manifold, computed at the GVVPT2 level of theory using the cc-pVTZ basis 

set in reference κ(n)s (6.9) to (6.11). All energies are plotted relative to the 

lowest energy value of the  term. 

 

For example, near the equilibrium geometry (i.e, at 3.77 Å), the 

   22

g

122

g

1 σδ:GΣ1andσδ:GΓ1 
 states had an EBO of only 0.005 while the 

   3d

2

u

5

3d

2

u

5 πσδ:GΠ1andπσδ:GΦ1  states had EBOs of 0.003 and 0.00, respectively, 

at 3.84 Å. These latter quintet states were computed using  reference κ(n) (11) and found 

to lie lowest energetically among the computed states of the 4FF 3

4

3   manifold; the 

 3d

2

u

5 πσδ:GΠ1  state being 3.312 cm
-1

 less stable than the  3d

2

u

5 πσδ:GΦ1  state at 

equilibrium. All energies in Figure 28 are plotted relative to the lowest energy value of 

the  3d

2

u

5 πσδ:GΦ1  term. Since the total energies are a function of the nature of 

partitioning of the active space, the PECs above the  3d

2

u

5 πσδ:GΦ1  curve in Figure 28 

should not be interpreted as excited state curves since the electronic states were computed 

using different reference κ(n)s.     

2Ni    28

4

328

4

3 4s3dF4s3dF 

 3d

2

u

5 πσδ:G1 
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Lastly, the  4s

2

g

5 σδπ:GEΔ1  and  4s

2

g

5 σδπ:GEΔ2  states of the  
3DF 3

4

3   

manifold were investigated at short bond lengths using reference κ(n) (12). The data for 

these states are included in Table 12. Whereas the  28

4

3 4s3dF  +  28

4

3 4s3dF  states are 

van der Waals-like, the short bond length (2.22 Å) and high frequency (249.1 cm
-1

) of the 

 4s

2

g

5 σδπ:GEΔ1  state is suggestive of significant bonding interaction. At 2.22 Å, the 

major configuration for this state was 

 1*

u

2

g

1*

g

2

u

1*

g

2

u

1*

uxy

2

gxy

2*

uy-x

2

gy-x
4sσ4sσ3dπ3dπ3dπ3dπδ3dδ3dδ3dδ3d 2222             (6.17) 

contributing 50% by weight to the total wave function. At this geometry, the EBO was 

found to be 1.186 (slightly higher than all other computed 2Ni  states).  

Concluding Remarks 

  The GVVPT2 method was used to study low-lying electronic states of 2Ni  as 

reported in this Chapter. The results indicate, in general, that bonding in these states 

involves predominantly the doubly occupied g4sσ  bonding orbital with the 3d-3d 

electrons antiferromagnetically coupled. This statement is authenticated by the fact that 

EBOs were found to be approximately 1.0 for most of the states and moreover, states 

belonging to the  28

4

3 4s3dF  +  28

4

3 4s3dF  manifold were found to be held together 

only by weak polarization forces with bond orders close to zero. For computed states of 

the  19

3

3 4s3dD  +  19

3

3 4s3dD  dissociation limit, all major configurations involved a 

doubly occupied g4sσ  bonding orbital and a vacant *

u4sσ  antibonding orbital. The 

energy ordering of the computed states of the  19

3

3 4s3dD  +  19

3

3 4s3dD  manifold was 
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in agreement with previous studies [271] that found the holeδδ states to lie lowest in 

energy followed by the holeδπ and then the holeππ  states. For the investigated 

holeδδ states, the singlets were more stable than the triplet states at the GVVPT2 level 

of theory. 

In agreement with previous theoretical studies, the present studies found the 

lowest lying states of 2Ni to correlate with the 3

3 D  + 3

3 D  dissociation limit. In 

particular, the ground term was determined as g

1ΓX and the 


g

1 Σ1 excited state of the 3

3 D  

+ 3

3 D  dissociation channel lay at only 16.4 cm
-1

 (0.002 eV) above the ground state at the 

equilibrium geometry. These states originated from electronic configurations in which the 

holes in the d-subshells were in the subspace of delta orbitals ( statesδδ ) and had 

spectroscopic constants: bond length (Re) = 2.26 Å, harmonic frequency (ωe) = 276.0 cm
-

1
, and binding energy (De) = 1.75 eV for the g

1ΓX  state and Re = 2.26 Å, ωe = 276.8 cm
-1 

, and De = 1.75 for the 


g

1 Σ1  excited state. Inclusion of scalar relativistic effects through 

the spin-free exact two component (sf-X2C) method reduced the bond lengths of these 

two states to 2.20 Å, and increased their binding energies to 1.95 eV and harmonic 

frequencies to 296.0 cm
-1

 for g

1ΓX  and 297.0 cm
-1

 for 


g

1 Σ1 . These values are in good 

agreement with experimental values of Re = 2.1545 ± 0.0004 Å [279], ωe = 280 ± 20 cm
-1

 

[280], and Do = 2.042 ± 0.002 eV [279] for the ground state. As noted before, previous 

theoretical studies on 2Ni have seldom reported full PECs on electronic states of the 

molecule. The present study is one of few in the literature to have constructed full PECs 

of low-lying states of the 2Ni  molecule. 
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  Core-valence correlation was found to be important in the description of low-

lying states of 2Ni  where the inclusion of 3s3p electron correlation at the GVVPT2 level 

was shown to improve harmonic frequencies and bond energies. Scalar relativistic effects 

were also shown to be important where spectroscopic constants from relativistic 

calculations were predicted to be more agreeable with reference data. As was shown in 

studies of 2Mn (see Chapter V), relativistic effects were not found to be as important as 

has been observed for 2Ni . The inclusion of spin-orbit coupling effects was previously 

found [271, 278, 282]
 

to mix the low-lying states of 2Ni , leading to a 

    δδΣδδΣ0 g

3

g

1

g

   ground state. It is envisaged that including such effects within the 

current scalar relativistic GVVPT2 would probably lead to similar mixings of the states.  

  The states investigated within the  28

4

3 4s3dF  +  19

3

3 4s3dD  manifold 

suggested significant bonding interaction, giving large harmonic frequencies and short 

bond lengths in comparison with states correlating with the  28

4

3 4s3dF  +  28

4

3 4s3dF  

dissociation limit. Further work on 2Ni should possibly consider a larger active space that 

includes orbitals from the 4p subspace in addition to a full treatment of relativistic 

effects. It should be noted, however, that in the present study, no significant electron 

excitations were observed from the valence space to 4p-dominated virtual orbitals.  

As noted before, the present study showed that Ni does not form strong bonds 

with atomic configurations in which the 4s subshell is fully filled. This observation seems 

to be a general rule of tomb for transition elements of the first row. The fully filled 4s-

subshell is repulsive and appears to discourage bonding. Bonding in these systems is 

favored by atomic configurations that involve at  least one of the participating atoms in 
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an excited state ( 11n 4s3d  ) as was illustrated in GVVPT2 studies [158] of electronic 

states of 222 Mnand,Cr,Sc , where the lowest states of 2Sc were shown to correlate with 

the 
2
D( 21 4s3d ) + 

4
F( 12 4s3d ) dissociation asymptote while those of 2Cr correlated with 

the 
7
S( 15 4s3d ) + 

7
S( 15 4s3d ) dissociation limit. In the Ref. [158] study, however, the 

lowest energy results on 2Mn  were obtained with weakly coupled 
5
D( 25 4s3d ) + 

5
D(

25 4s3d ) ground state Mn atoms, similar to the  28

4

3 4s3dF  +  28

4

3 4s3dF  coupling of 

ground state Ni atoms. The 11n2n 4s3d4s3d  electronic excitation energy is known 

[221] to decrease monotonically from Sc to Cr due to increased stabilization of the 3d 

subshell coupled with the gain in exchange energy. At Mn, however, the situation 

reverses due to a large loss in exchange energy in the 1625 4s3d4s3d   excitation [221]. 

This large loss explains why Mn preferentially bonds through 
5
D( 25 4s3d ) ground state 

atoms. From Fe to Cu, the 11n2n 4s3d4s3d   promotion energy again drops 

monotonically such that at Ni, the 
3
F and 

3
D states are quasidegenerate. 
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CHAPTER VII 

DFT-in-DFT EMBEDDING THEORY WITH EXTERNAL ORBITAL 

ORTHOGONALITY 

Introduction 

 This Chapter describes the newly developed DFT-in-DFT embedding program [5, 

6] that includes external orbital orthogonality. As was noted in Chapter I, many ab initio 

methods for electronic structure calculations have applicability limited by computational 

costs that increase polynomially with system size. Due to this limitation, ever-expanding 

research efforts have considered localization (cf. Refs. [295-298], for example) and 

embedding [66-70]
 

techniques as a means of extending ab initio methods to the 

description of larger systems. The problem with most localization techniques, however, is 

that they involve transformations of orbitals initially obtained in a calculation of a total 

system. This could be computationally costly for systems of nanosize with several 

hundreds of atoms. Since embedding schemes use a “divide and conquer” approach, they 

are particularly attractive. Not only do such schemes avoid calculations of a total system 

(which can be large and prohibitively expensive even for methods like DFT), but they 

also allow for the possibility of describing subsystems at different levels of theory. 

Unfortunately, DFT-in-DFT embedding theory, as currently formulated, is unable to 

exactly reproduce reference KS-DFT results. Errors in the theory are connected with 

approximations in the kinetic and exchange-correlation energy functionals. In this 

Chapter, a new variant of DFT-in-DFT embedding theory is presented that includes an 



165 

 

additional requirement that orbitals of subsystems be orthogonal to each other. This latter 

constraint of intersystem or external orbital orthogonality was not imposed in previous 

formulations of DFT-in-DFT embedding theory and led to poor estimates of electron 

densities particularly at the interface between subsystems and, consequently to heavy 

reliance on the functionals to correct for the wrong density. In turn this led to poor 

descriptions of a partitioned system in terms of characterization of interaction strengths 

between subsystems and other properties. The new embedding scheme described here 

clearly shows that by enforcing the external orthogonality condition within DFT-in-DFT 

embedding theory, new embedding equations are realized, which take into account off-

diagonal blocks of the KS Fock matrices that couple the subsystems in a natural, density-

based way. In this way, electron densities are more accurately represented at all points in 

space and the overall description of a partitioned system is thus improved. In particular, 

the new equations do not rely on the use of kinetic functionals since the so-called 

nonadditive kinetic potential ( Tv ) is exactly zero in this case. By requiring subsystems 

orbitals to be orthogonal to each other, the electronic kinetic energy becomes additive and 

is thus evaluated at the Kohn-Sham (KS) level without further need of a correcting term 

involving kinetic functionals.  

The rationale for the present study was to prepare an accurate embedding theory 

that will ultimately permit GVVPT2 calculations to be embedded in large systems that 

are partitioned into small fragments (described at the GVVPT2 level of theory) and larger 

fragments whose effects on the small fragments of interest are approximated at a lower 

level of theory such as DFT. Before describing the new embedding protocol, it is 
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important to review the foundation of the theory, which is conventional KS-DFT [299-

301] and the previous formulation of DFT-in-DFT theory [66-74]. 

Kohn-Sham (KS)-DFT 

The present subsection will discuss only the basic KS-DFT equations without 

providing computational details. KS-DFT is a particular realization of the Hohenberg and 

Kohn theorem [299].  The Hohenberg and Kohn theorem, based on the constrained-

search formulation [300], asserts that for a quantum system of N electrons, there is a 

functional (  ρE v ) of the density ( ) due to these electrons whose minimization, 

subject to the constraint that the density integrates over all space to give the number of 

electrons (N), leads to the ground state energy  ( 0E ) for the system, 

 ρEMinE v
Nρ

0


                                                                    (7.1) 

where the energy functional is defined as 

        rdrρrvρFρEv


                                                       (7.2) 

 rv


 is the potential due to the nuclei and the functional F[ρ] (involving the kinetic 

energy, T, and two electron interaction terms, Vee) is 

  ΨVTΨMinρF ee
ρΨ




                                                    (7.3) 

In Eq. (7.3), the Ψ  functions are normalized N-electron wave functions constrained to 

have electron density .  The latter is itself required to meet the following constraints:  

  Nrdrρ 


,   0rρ 


,  rdρ
2

2
1 

   (7.4) 

The Euler form of Eq. (7.2) is 
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 
 

   ss
s μr;ρv
rδρ

ρδT



 ,     (7.5) 

where the potential   r;ρvs


is defined as 

    
   

 rδρ

ρδE
rd

rr

rρ
rvr;ρv xc

s 











   ,                 (7.6) 

and µs is the Lagrange multiplier associated with the electron number conservation 

constraint on the density in Eq. (7.4);  rv


 is the potential due to the nuclei as stated 

before; while the last two terms on the right hand side of Eq. (7.6) are the coulomb and 

exchange-correlation potentials, respectively. 

According to Kohn and Sham [301], Eq. (7.5) can be written alternatively as  

KS

m

KS

m

KS

m

KS εh   ,     N1,m   (7.7) 

where 

   
    r;ρvrh KS

s

2

2
1KS 

   and    



N

1m

2
KS

m rrρ


 ,  (7.8) 

where KS

m  are Kohn-Sham orbitals with corresponding eigenvalues 
KS

mε ; and 

  r;ρvKS

s


 is defined similarly as in Eq. (7.6) and is the Kohn-Sham potential for an 

auxiliary system of non-interacting electrons. The first term in the definition of  rhKS 
 is 

the usual kinetic energy operator in atomic units. Thus the KS approach approximates a 

system of interacting electrons in terms of an auxiliary system with the same electron 

density but with non-interacting electrons.  

DFT-in-DFT Embedding Theory 

 DFT-in-DFT embedding theory [66-74] is based on conventional KS-DFT. As 

was noted in Chapter I, the approach in DFT-in-DFT embedding is to divide a system 
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into subsystem A (the embedded subsystem) and subsystem B (the environment 

subsystem) and to describe these subsystems using KS-DFT.
  

In principle, the 

environment subsystem may be further subdivided [66]. The ultimate goal of embedding 

theories is to achieve high accuracy within a local, generally complex, embedded 

subsystem (A) by describing it at a high level of theory while the effect of the 

environment is approximated at a lower level of theory such as HF or DFT. This is not 

the case in DFT-in-DFT embedding (although, in principle, one could use DFT 

functionals with different degrees of accuracy to describe the subsystems or possibly use 

time-dependent DFT for subsystem A but KS-DFT for subsystem B). This 

notwithstanding, DFT-in-DFT is a first step to the goal of being able to partition a system 

and describe the subsystems at different levels of theory. Besides, an accurate embedding 

theory could potentially reduce computational costs of large systems since calculations of 

such systems are reduced to coupled-tasks with smaller numbers of electrons.  

As was noted in Chapter I, DFT-in-DFT embedding theory partitions a system’s 

electron density into a sum of fragment densities according to Eq. (1.5) and then 

minimizes the total energy functional under the constraint of fixed electron number in 

each subsystem. Such minimization leads to a system of coupled KS-like equations for 

the subsystems’ orbitals, which are referred to as the KS equations with constrained 

electron density (KSCED) [72].  

The basic equations of DFT-in-DFT embedding theory can thus be stated as 

follows. By partitioning a system into A and B, the energy functional (

   BAvv ρρEρE  ) also gets partitioned into a sum of subsystem functionals plus a 

functional term that describes interactions between the subsystems, 
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       BAintBvAvBAv ρ,ρEρEρEρρE
BA

 ,   (7.9) 

where  Av ρE
A

 and  Bv ρE
B

 are the functionals for subsystems A and B, respectively 

(defined as in Eq. (7.2)) while  BAint ρ,ρE  is a functional describing intersubsystem 

interactions, defined as 

           drρvρvρFρFρρFρ,ρE ABBABABABAint
,    (7.10) 

where  BA ρρF  ,  AρF , and  BρF  are defined in the same manner as in Eq. (7.3) 

whereas  rvA


 and  rvB


 are the potentials due to nuclei assigned to the embedded and 

environment subsystems, respectively.  The subsystems’ densities (  rρA


 and  rρB


) are 

required to obey the conditions in Eq. (7.4), viz. 

  II Nrdrρ 


,    0rρ I 


,   rdρ
2

I
2

1 
      (I = A, B)                            (7.11)                                                 

The partitioned energy functional (    BAvv ρρEρE  ) is minimized in a two-step 

procedure subject to the number conservation restrictions of subsystems’ densities given 

in Eq. (7.11), 

         BAintAv
Nρ

Bv
Nρ

BAv
NρNρ

0 ρ,ρEρEMinρEMinρρEMinMinE
A

AA
B

BBAABB




,     (7.12) 

where 
AN and 

BN are fixed integer numbers of electrons within subsystems A and B, 

respectively. Such minimization as in Eq. (7.12) results in a pair of coupled Euler-

Lagrange equations for the subsystems, 

 
 

   ABA

eff

A

A

Av
μr;ρ,ρv

rδρ

ρδE
A 


 ,              (7.13) 

and 

 
 

   BBA

eff

B

B

Bv
μr;ρ,ρv

rδρ

ρδE
B 


     (7.14) 
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which are often referred to as Kohn-Sham equations with constrained electron density 

(KSCED). In Eqs. (7.13) and (7.14), 
Aμ  and 

Bμ  are Lagrangian multipliers associated 

with the constraints    II Nrdrρ 


 (I = A or B), whereas the effective potentials describe 

the effects of the subsystems on each other and are defined as 

  
 
 

 
 
 

 
 rδρ

ρδF

rδρ

ρδF
rv

rδρ

ρ,ρδE
r;ρ,ρv

A

A

ρρρ

B

A

BAint
BA

eff

A

BA










,            (7.15) 

and 

  
 
 

 
 
 

 
 rδρ

ρδF

rδρ

ρδF
rv

rδρ

ρ,ρδE
r;ρ,ρv

B

B

ρρρ

A

B

BAint
BA

eff

B

BA










  (7.16) 

The effective potentials defined in Eqs. (7.15) and (7.16) can alternatively be 

expressed as 

        r;ρρ,vr;ρvr;ρρ,v I

I

T

KS

sI

I

eff


 ,              (I = A, B)          (7.17) 

differing from the KS potential,   r;ρvKS

s


, by an additional term, called the nonadditive 

kinetic potential ( Tv ), defined here for the respective subsystems as 

  
 
 

 
 rδρ

ρδT

rδρ

ρδT
r;ρρ,v

I

Iss

I

I

T 


 , (I = A, B)   (7.18) 

Eqs. (7.13) and (7.14) are solved iteratively on the assumption of equilibrium between 

subsystems. In thermodynamic terms, this implies that their chemical potentials or 

Lagrange multipliers must be equal; that is,  

μμμ BA       (7.17) 

KS eigenvalue problems similar to Eq. (7.7) are solved for the subsystems but 

with the KS potential,   r;ρvKS

s


, replaced with the effective potentials defined in Eq. 

(7.17) that take into account effects of subsystems on each other. The optimized sets of 
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KS orbitals for the subsystems are used to obtain their respective densities according to 

Eq. (7.8). In this process, subsystems’ KS orbitals are either expanded over basis 

functions centered on all nuclei of the system (termed “supermolecular basis” or 

KSCED(s) [72]) or over basis functions centered on the nuclei of the subsystem in 

question (termed “monomer basis” or KSCED(m) [302]). The energy functional of the 

total system is minimized (as in Eq. (7.12)) by optimizing either the density of subsystem 

A with fixed density of subsystem B or optimizing the densities of both subsystems 

iteratively to self-consistency. The former approach is termed frozen density embedding 

(FDE) [302, 303], and has been successfully applied to the study of weak interactions like 

solvent effects [304, 305]. The latter approach involves fixing (freezing) the density of 

one subsystem, optimizing the other and vice versa (until self-consistency is achieved) in 

what is often termed freeze-and-thaw cycles [72]. In these optimizations, however, the 

final total density is not guaranteed to be the correct one. In particular, the density tends 

to be underestimated at the interface between subsystems. To overcome this limitation 

within FDE, Gritsenko and Visscher [306] have recently proposed the density-orbital 

embedding (DOE) scheme which affords the correct total density,  rρ tot


, even in 

regions where  rρB


 may exceed  rρ tot


, by allowing the so-called density orbital 

defined for the embedded subsystem to be negative in such situations.  This approach is 

said to broaden the range of admissible  rρB


in FDE. It remains to be shown how well 

this proposed scheme reproduces the total density particularly at the interface between 

subsystems.  

Discrepancies in both the FDE and freeze-and-thaw recipes have long been 

attributed to inaccuracies in the nonadditive kinetic energy potential ( Tv ) that contributes 
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to the embedding potential. Different kinetic energy functionals [307, 308]
 
have been 

used for Tv  and have yielded satisfactory results in weakly bound systems [308-311]. 

These approximations, however, fail for more strongly interacting subsystems [311-314]
 

and can produce counterintuitive results, e.g., for all the complexes considered in Ref. 

[315], KSCED calculations using generalized gradient approximation (GGA) functionals 

led to worse molecular geometries than did the KSCED local density approximation 

(LDA), whereas conventional KS-DFT GGA calculations improved such geometries. 

Efforts to improve DFT-in-DFT embedding theory are ongoing. Most of these 

efforts revolve around obtaining improved approximations to Tv  [314], seeking an exact
 

form of Tv  [316], or avoiding it completely by resorting to a formalism in which a 

unique embedding potential is used which is common to interacting subsystems. In this 

regard, the emb-OEP (optimized effective potential) scheme [69, 70]
 
was realized as well 

as partition DFT (PDFT) [317]. Both emb-OEP and PDFT seek a unique embedding (or 

partition) potential that makes subsystems’ densities satisfy Eq. (1.5). The emb-OEP 

scheme uses an extended Wu-Yang functional [318, 319], defined as  

      3

BA,i BA,i

refiembiiemb drρρrVρEVW   
 

















                      (7.18) 

where refρ is the density of the total system, initially determined in a KS-DFT calculation; 

iρ are densities of subsystems; while Vemb is the embedding potential sought for and is the 

Lagrange multiplier for the density constraint in Eq. (1.5). In PDFT, a partition potential 

similar to Vemb is determined iteratively [317]. Although initial tests of these techniques 

on small systems were appealing, they appear computationally costly (e.g., both exact 

embedding [316]
 
and emb-OEP [69, 70]

 
require an initial determination of KS-orbitals 
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and density for the total system, while PDFT was shown in Ref. [317] to be more 

expensive than conventional KS-DFT (although the authors stated that their aim was only 

to reproduce the exact molecular density). 

Enforcing External Orthogonality of Orbitals within DFT-in-DFT 

 The KS orbital sets 

A

N

A

2

A

1

A

A
,,,   , and B

N

B

2

B

1

B

B
,,,                  (7.19) 

which define the subsystem densities 

   



AN

1a

2
A

aA rrρ


 ,    



BN

1b

2
B

bB rrρ


 ,   (7.20) 

must be orthogonal to each other (i.e., 0BA  ) if the total density of the partitioned 

system is to be expressed as a sum of fragment densities,      rρrρrρ BA


  (Eq. (1.5)).  

Although the electron density of a given system may be represented in several alternative 

ways using any chosen orbital set (see e.g., Ref. [320]), in the particular case where 

densities of subsystems within DFT-in-DFT embedding theory are described in diagonal 

quadratic form (Eq. (7.20)) using orthonormalized orbital sets, those orbital sets must be 

externally orthogonal for the total density to be expressed as a sum of fragment densities 

[5]. To justify this claim, suppose that the composite orbital set BA ,   is 

considered within the total space ( L ), where A  and B  are orthonormalized sets 

of orbitals of subsystems A and B, respectively (given in Eq. (7.19)). Then, using 

symmetric orthogonalization [79], an orthonormal orbital set can be constructed within 

L  as 

 2

1

orth


 S ,                                                            (7.21) 
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where S is the overlap matrix in terms of the composite set BA ,  , 

 









BBBA

ABAA

IS

SI
S                                                     (7.22) 

In terms of the orthonormal set, orth , the total density can then be expressed as 

              






 
N

1k,

orth

k

orth

k

N

1k

2
orth

k

N

1k,

orth

k

orth

kBA Sρρ
l

ll

l

ll rISrrrrrr       (7.23) 

Thus, for any given sets of orbitals, A  and B , the sum     rr BA ρρ   can be 

represented in diagonal quadratic form only if S = I; that is, when the orbitals are 

externally orthogonal (i.e., 0BA  ) such that (in Eq. (7.22)), 0SS  BAAB
. Failure 

to ensure this external or intersystem orbital orthogonality condition leads to poor 

estimates of the total density particularly in situations where subsystems’ densities 

interact strongly, which then puts a strong burden on the exchange-correlation and/or 

kinetic energy functionals to compensate. The new embedding protocol described herein 

enforces the external orbital orthogonality condition to guarantee that the density is 

indeed representable as a sum of fragment densities. The next paragraphs describe how 

this is done.  

A Lagrangian is constructed [5] that involves two sets of constraints on 

subsystems’ orbitals: their internal orthonormality and their external orthogonality, viz.  

   

A

a

B

b

N

1a

N

1b

ab

B

b

A

a

N

1a

N

1b

ba

I

c

I

c

BA,I

N

1cc,

I

cc

BASBA

φφβφφα

φφΘφ,φEφ,φΩ

A BA B

I



 

  



 







                              (7.24) 

The first term on the right hand side of Eq. (7.24) is the energy functional for the total 

system expressed as a functional of subsystems’ orbital sets; the second term is related to 
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the constraint of internal orbital orthonormality (
ij

I

j

I

i δ where I = A or B while ijδ  
is 

Kronecker’s delta); the last two terms express the constraint of intersystem or external 

orbital orthogonality; cc ba abΘ , α , and β  are Lagrange multipliers associated with the 

constraints. Physically, B

b

A

a   (or A

a

B

b  ) represent the subspace of projected 

orbitals of subsystem B onto subsystem A (or of A onto B). Such projections equal zero 

in the case of external orthogonality. Although orbitals of a given system are not required 

to be orthonormal in order to represent the system’s density, internal orthonormality of 

orbitals is a constraint that is used in deriving both the conventional KS-DFT and DFT-

in-DFT embedding equations (i.e., KSCED), and this constraint is used also in 

constructing the Lagrangian in Eq. (7.24).  

Considering small variations in the Lagrangian in Eq. (7.24) with respect to 

subsystems’ orbitals to be zero, leads to the new embedding equations. For example, 

considering variations with respect to 
A

a  results in  

    A

N

1b

ba

B

b

N

a

A

aa

A

a

A

a

A

T

KS N,1aαΘvh
BA

 


                         (7.25) 

Since the total energy is invariant with respect to unitary orbital transformations within 

subsystems, a canonical set of orbitals, A , may be assumed (for which A

aaa

A

aa εδΘ   . 

N. B. a canonical set of orbitals, A , diagonalizes the Hamiltonian on the left hand side 

of Eq. (7.25) such that multiplying Eq. (7.25) from the left by 
A

a   gives  A

aaa εδ  on the 

left hand side and  A

aaΘ   on the right hand side). By assuming canonical orbitals, Eq. 

(7.25) can be recast as 
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    A

N

1b

ba

B

b

A

a

A

a

A

a

A

T

KS N,1aαεvh
B

 


                    (7.26) 

Multiplying Eq. (7.26) from the left by 
B

b  leads to 

  babb

N

1b

ba

B

b

B

b

A

a

A

a

B

b

A

a

A

T

KSB

b αδ0αεvh
B





    ,                  (7.27) 

where 0 results from the external orthogonality condition (i.e., 0A

a

B

b  ) while bbδ   

results from the internal orthonormality condition (
bb

B

b

B

b δ   ). Hence, 

A

a

A

T

KSB

bbaab vhαα                                                 (7.28) 

Substituting Eq. (7.28) in Eq. (7.26) and rearranging leads to 

   A

a

A

a

A

a

A

T

KSB εvhPI          (7.29) 

Similar arguments lead to 

B

b

B

T

KSA

abaab vhββ    ,                                                  (7.30) 

and then 

   B

b

B

b

B

b

B

T

KSA εvhPI                              (7.31) 

for the complementary subsystem B, where 
A

Tv  and 
B

Tv  are defined in Eq. (7.18) and 

B

b

N

1b

B

b

BBB
B

P  


  is the projector on the KS orbitals of subsystem B (P
A
 is 

defined similarly). Since, in general, 
A

Tv  and 
B

Tv  are not equal, Eqs. (7.28) and (7.30) 

cannot likewise be equal, in general. The modified one-electron Hamiltonians in Eqs. 

(7.29) and (7.31),   A

T

KSB vhPI   and   B

T

KSA vhPI  , are asymmetric. However, 

transforming them to symmetric form is straightforward and accomplished by first noting 
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that under the external orthogonality constraint,   AABPI    and 

  B

b

B

b

API   . Thus Eqs. (7.29) and (7.31) can be recast (in hermitian form) as 

    A

a

A

a

A

a

BA

T

KSB εPIvhPI   ,            (7.32) 

and 

    B

b

B

b

B

b

AB

T

KSA εPIvhPI      (7.33) 

In Eqs. (7.29) and (7.31) to (7.33), I represents the identity operator within the total one-

electron space, and is defined as 

T

1

TTTT χSχII  ,   T

2

T II  ,                               (7.34) 

where Tχ  is a set of atomic basis functions, that span the total space, with overlap 

matrix  TTTT χχS  . 

 As shown in Eqs. (7.32) and (7.33), the new embedding equations require the KS 

orbital sets for subsystems A and B to be eigenvectors of the reduced Hamiltonians 

   BA

T

KSB PIvhPI   and    AB

T

KSA PIvhPI   unlike in conventional DFT-in-

DFT embedding equations where subsystems’ orbitals are eigenvectors of the modified 

Hamiltonians  I

T

KS vh   (I = A or B). Eqs. (7.28) and (7.30) indicate that the new 

equations involve explicit interactions between orbitals of subsystems (this is not 

required in standard KSCED).  

 In the case of supermolecular basis expansion, KS orbitals of each subsystem are 

expanded in terms of the set Tχ  as 

A

T

A χ C , B

T

B χ C ,   (7.35) 
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where A

μa

A

TN

A C
A
CC  and B

μb

B

TN

B C
B
CC  (where indices  AN1,a  and 

 BN1,b  enumerate occupied orbitals of the subsystems A and B, respectively, while μ  

enumerates atomic orbitals from the set 
Tχ ).  Multiplying Eqs. (7.32) and (7.33) from the 

left by T , and using Eqs. (7.34) and (7.35), leads to the matrix equations  

  AA

TT

AB

TT

A

TT

B

TT εCSCRhR 


,         (7.36) 

  BB

TT

BA

TT

B

TT

A

TT εCSCRhR 


,    (7.37) 

where 

TT

L

TTTTT

L

T

1

TT

L

TT χPIχ SDISR  
  BA,L   (7.38) 

and 

   L

μνTT

LLL

TT D


CCD , 



LN

1i

L

νi

L

μi

L

μν CCD   BA,L   (7.39) 

is the density matrix of the L-th subsystem in the supermolecular atomic basis. 

The case of Monomer and Extended Monomer Basis Expansions 

In practice, it is computationally more costly to perform embedding calculations 

with supermolecular basis set expansions (KSCED(s)) compared with conventional KS-

DFT on the total system. A good embedding scheme should provide a fair cost to 

accuracy ratio.  Unfortunately, use of monomer basis expansions (KSCED(m)), except 

for cases of very weakly interacting systems, often lead to less accurate results than those 

from KSCED(s) [6]. In the development of a new variant of DFT-in-DFT embedding 

theory, a new way of expanding subsystems’ KS orbitals was proposed, referred to as the 

“extended monomer basis expansions,” (KSCED(e)). In this novel one particle space 

approach, KS orbitals of each subsystem are expanded not only over atomic basis 
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functions centered on atoms of the subsystem (as is done in KSCED(m)) but also over 

atomic functions centered on atoms in the complementary subsystem close to the 

boundary or interfacial region. To clarify this, consider the pictorial representation in 

Figure 29. 

 

Figure 29. Schematic diagram illustrating extended monomer Bases. 

 

Suppose that nuclei of subsystem A are described as CR AAA   and those of 

subsystem B as RC BBB   where CC BAC   represents nuclei within the overlap 

region between A and B whose atomic basis functions are used in the expansion of 

orbitals of both subsystems. Atomic functions in the supermolecular basis set can be 

ordered as  

RRRCCR BCABBAAT χ,χ,χχ,χ,χ,χχ  ,             (7.35) 

while those in the subsystem-specific “extended monomer” basis sets are described as 

RR BCBCAA χ,χχ,χ,χχ  ,                                 (7.36) 
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where 
CC BAC χ,χχ  is the set of atomic orbitals centered on all nuclei of the overlap 

region. KS orbitals of the subsystems are expanded over these bases. It should be noted 

that partitioning of a system (as well as defining an overlap region between subsystems) 

is arbitrary. Whereas Eqs. (7.32) and (7.33) are suitable for KSCED(s) calculations, in the 

case of KSCED(m) and KSCED(e) calculations, additional modifications must be made 

since for such cases, the KS orbitals, A  and B , belong to different (overlapping) 

subspaces. For such situations, the sets A  and B  are now expanded over the newly 

defined atomic basis sets, 

A

A

A χ C , B

B

B χ C ,                     (7.37) 

These expansions involve the new matrices: A

aμ

A

AN

A

AA
CCC , where  AN1,a  and 

Aμ  is the index over atomic orbitals from the set 
Aχ ; and B

bμ

B

BN

B

BB
CCC , where 

 BN1,b  and 
Bμ  is the index over atomic orbitals from 

Bχ . 

 Within the subspaces  AA χL Span  and  BB χL Span , the following operators 

may be constructed 

 

A

1

AAAA χχI S   AAA χχI  ,   (7.38) 

and 

 

B

1

BBBB χχI S  BBB χχI  ,   (7.39) 

where AI  and BI  are projectors onto the subspaces  AA χL Span , spanned by the set 

Aχ , and  BB χL Span , spanned by 
Bχ ; AAAA χχS  and BBBB χχS  are overlap 
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matrices associated with  Aχ and Bχ .  The present projectors and that in Eq. (7.34) satisfy 

the conditions 

  AII
2

A  ,   B

2

B II  , 
ATAAT IIIII  , 

BTBBT IIIII   (7.40) 

and additionally, 

                                    AA

AI   ,       BB

BI                                               (7.41)  

Eqs. (7.32) and (7.33) are rewritten using the new projectors as 

  AAA

A

A

T

B

A εIhIPII   ,    (7.42) 

  BBB

B

B

T

A

B εIhIPII   ,    (7.43) 

considering that, in the general case, L

L

TL

L IhIIh    BA,L  .   

Since the sets A  and B , belong to different (overlapping) subspaces in the 

case of KSCED(m) and KSCED(e), this implies that not all orbitals from the set B , if 

any, have a non-zero projection on  AA χL Span  (and vice versa). Consequently the 

matrix 

  B

BNAB

1

AABA

B

BN

B

A

BB

NN BBBB
I CSSSCΔ


                (7.44) 

can be singular.  To avoid singularity problems and guarantee intersystem orthogonality, 

only linear combinations of the projected orbitals B

AI   onto the space  AA χL Span , 

which have non-zero projections, B~ , need be considered 

B

N

B

1

B

1

B

A

B

B

,,,I ~
~~~~~        (7.45) 

If there are such vectors, their number BN
~

  BB NN0where 
~

 , would be equal to the 

number of eigenvectors of the matrix B

A

B I  . Such vectors would span a subspace 
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   BB

AL  ~~ Span  within  AA χL Span . In this subspace, the following projector may 

be defined  

A

B
1

B

A

BB

AAA IIIIPIP
BB

 ~~~~~~ 

               (7.46) 

An analogous projector, 
A

P~ , can be defined also for the subspace    AA

BL  ~~ Span

within  BB χL Span  of non-zero projections A

BI  of the set A  onto 

 BB χL Span . These new projectors, 
A

P~  and 
B

P~ , replace BA PandP  in Eqs. (7.42) 

and (7.43). 

 The orbital set B~  in Eq. (7.45) is obtained by diagonalizing the matrix  
B

NN BB
Δ  

and selecting its BN
~

 eigenvectors with non-zero eigenvalues.  Thus, one writes  

  B

N

B

NN

B

A

BB

NN BBBBB
I dVV 


 ,    (7.47) 

where 
B

N B
d  is the diagonal matrix with eigenvalues and 

B

NN BB
V  is an orthogonal matrix of 

eigenvectors of 
B

NN BB
Δ .  If upon diagonalizing 

B

NN BB
Δ , BN

~
 non-zero eigenvalues are 

found,   BN

1i

B

i 0d
~


 , then the eigenvectors in 

B

NN BB
V  and the corresponding eigenvalues in 

B

N B
d  can be reordered such that eigenvectors with non-zero eigenvalues are listed first, 

 ,0,0,d,,d B

N

B

1

B

N
BB
 ~d diag  . With this reordering, the eigenvectors with zero 

eigenvalues (which are listed last) can be ignored and Eq. (7.47) rewritten only in terms 

of eigenvectors of 
B

NN BB
Δ  with non-zero eigenvalues, viz. 

  B

N

B

NN

B

A

BB

NN BBBBB

I ~~~ dVV 


             (7.48) 
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B

NN BB

~V now contains only eigenvectors of 
B

NN BB
Δ  with non-zero eigenvalues while 

 B

N

B

1

B

N BB

d,,d ~~d diag  are the corresponding positive eigenvalues.  Eq. (7.48) leads to 

the desired orthonormal set, 

  B

NAA

B

N

B

NN

B

A

B

B

2
1

BBB

χI ~~~ UdV~ 


 , 
BBNN

BB
~~I~~   (7.49) 

where matrix 
B

NA B

~U determines the expansion of vectors  B~  within  AA χL Span  and 

has the form 

  2
1

BBBBB

B

N

B

NN

B

BNAB

1

AA

B

A

1

AA

B

NA
χ

  ~~~ dVCSS~SU           (7.50) 

Eq. (7.46) can be rewritten in terms of the definition of B~  given in Eq. (7.49) as 

A

BB

AAA IIIPIP
BB

 ~~~~

     (7.51) 

 An analogous definition to that in Eq. (7.49) for projected orbitals A

BI   is  

  A

NBB

A

N

A

NN

A

B

A

A

2
1

AAA

χI ~~~ UdV~ 


 , 
AA NN

AA
~~I~~   (7.52) 

where 
A

NN AA

~V  is the matrix of the eigenvectors of  matrix 
A

NN AA
Δ  that have non-zero 

eigenvalues while  A

N

A

1

A

N AA

d,,d ~~d diag   AA NN0 
~

 are the corresponding positive  

eigenvalues. Matrix 
A

NB A

~U determines the expansion of vectors  A~  within

 BB χL Span , where 
A

NN AA
Δ  and 

A

NB A

~U are defined as 

  A

ANBA

1

BBAB

A

AN

A

B

AA

NN AAAA
I CSSSCΔ


  ,          (7.53) 

and 

  2
1

AAAAA

A

N

A

NN

A

ANBA

1

BB

A

B

1

BB

A

NB
χ

  ~~~ dVCSS~SU     (7.54) 
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An analogous projector to that in Eq. (7.51) can thus be defined with respect to the set 

A~  as 

B

AA

BBB IIIPIP
AA

 ~~~~

     (7.55) 

These new projectors, 
A

P~  and 
B

P~ , satisfy the conditions 

  A

A

A B

PI  ~  and   B

B

B A

PI  ~                      (7.56) 

Since     AATA IPIIPI
BB  ~~

  and     BBTB IPIIPI
AA  ~~

 , Eqs. (7.42) and (7.43) 

recast in terms of 
A

P~  and 
B

P~ instead of 
BA PandP  will have the forms 

  AAA

A

A

AA εIhIPI
B

 
~

,             (7.57) 

and 

  BBB

B

B

BB εIhIPI
A

 
~

             (7.58) 

Eqs. (7.57) and (7.58) can be written in hermitian form using Eq. (7.56) as 

    AAA

AA

A

AA εPIIhIPI
BB

 
~~

,   (7.59) 

and 

    BBB

BB

B

BB εPIIhIPI
AA

 
~~

   (7.60) 

which involve only the subsystem-specific matrices A

A

A

A

AA χhχh  and 

B

B

B

B

BB χhχh , and take into account the interactions between the subsystems’ orbitals 

through the blocks the matrix blocks AA

A

B hI   and BB

B

A hI  . It should be 

noted that in the limiting case of the supermolecular basis expansion where 
TA χχ   and 
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TB χχ  , the conditions AA  ~  and BB  ~  hold. Hence, the projectors 
A

P~  

and 
B

P~ become BA PandP  in Eqs. (7.32) and (7.33) (i.e., 
APP

A

~
 and 

BPP
B

~
).  

 Projecting Eqs. (7.59) and (7.60) on Aχ  and Bχ , respectively, leads to the 

matrix Eqs. (7.61) and (7.62) in terms of the expansion matrices, 
A

AN

A

A
CC   and 

B

BN

B

B
CC  , of Eq. (7.37), 

  AA

AA

AB

AA

A

AA

B

AA εCSCRhR 


,    (7.61) 

  BB

BB

BA

BB

B

BB

A

BB εCSCRhR 


,               (7.62) 

where 

  AA

B

NA

B

NAAAAAA

1

AA

B

AA
BB

B

χPIχ SUUISR ~~

~    ,          (7.63) 

  BB

A

NB

A

NBBBBBB

1

BB

A

BB
AA

A

χPIχ SUUISR ~~

~                         (7.64) 

Again, in the limiting case of the supermolecular basis expansion where 
TA χχ   and 

TB χχ  , the conditions 
LLLL NN

L

NN IΔ  , L

TT

L

LL DD
~

   BA,L  , 
B

TT

B

AA RR  , and 

A

TT

A

BB RR   hold. Hence, Eqs. (7.63) and (7.64) become equivalent to Eqs. (7.36) and 

(7.37). 

Decomposition of Subsystem Orbital Spaces:  AA χSpanL   and  BB χSpanL   

 Since only BN
~

  BB NN0 
~

 orbitals of the set of 
BN  occupied environment 

orbitals B  have non-zero projections on the embedded subsystem’s atomic orbital 

space  AA χL Span , the latter space may be divided into a direct sum of the subspace 

spanned by the BN
~

 projected vectors,  B

AL ~ , and its orthogonal complement,  A

AL   
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   B

A

A

AA LLL  ~  ,    (7.65) 

Therefore for any given B , the task is to find a set of 
AN occupied embedded orbitals 

within  A

AL   that would be automatically orthogonal to B . This is accomplished as 

follows. Let the set of environment orbitals that have non-zero projections on the 

embedded subsystem, B~ , be fixed and let a reference set of orthonormal orbitals, 

A

ref , (e.g., eigenvectors of the matrix A

A

coreA χhχ  where A

coreh is the one-electron core 

Hamiltonian for subsystem A) within  AA χL Span  be defined as 

refA,

AAA

A

ref χ C , 
AA

A

ref

A

ref I ,             (7.66) 

where the matrix 
refA,

AAC  determines the set of reference orthonormal functions in 

 AA χL Span . Then, the desired set A

  of AM -vectors orthogonal to B~  can be 

written as 

  B

AM

refA,

AA

B

AAA

B

AM

A

refA

A
AA

B

χPI


 WCRW
~

  ,  (7.67) 

where matrix B

AMA


W  is determined by the orthonormality condition 

  AAAA MM

B

AM

B

AA

B

AM

AA






 IWTW ,            (7.68) 

and 

      refA,

AA

B

AAAA

refA,

AA

B

AA

A

refA

A

refA

B

AA

BB

PIPI CRSCRT
~~ 

  
 (7.69) 

If eigenvectors of matrix 
B

AAT  with zero eigenvalues are neglected, the following 

equation may be written 

  B

M

B

AM

B

AA

B

AM AAA





tOTO  ,           (7.70) 
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where B

AMA


O  is the matrix of AM  eigenvectors of B

AAT  that have positive eigenvalues, 

contained in the diagonal matrix  B

M

B

1

B

M AA t,,t


 diagt .  Hence, the matrix B

AMA


W

appearing in Eq. (7.67) and (7.68),  can be written in terms of B

AMA


O  and B

M A


t as 

  2
1

AAA

B

M

B

AM

B

AM





 tOW ,              (7.71) 

and the desired orthonormal set A

  of the AM -orbitals orthogonal to B~  within 

 AA χL Span  is determined by 






 A,

AMA

A
Aχ C ,     (7.72) 

where 

  2
1

AAA

B

M

B

AM

refA,

AA

B

AA

A,

AM





 tOCRC      (7.73) 

 Similarly, since only AN
~

  AA NN0 
~

 orbitals of the set of 
AN  occupied 

embedded orbitals A  have non-zero projections on the embedded subsystem’s atomic 

orbital space  BB χL Span , the latter space may be divided into a direct sum of the 

subspace spanned by the AN
~

 projected vectors,  A

BL ~ , and its orthogonal complement, 

 B

BL   

   A

B

B

BB LLL  ~      (7.74) 

By proceeding in the same manner as was done above in seeking a set of embedded 

orbitals within  A

AL   orthogonal to projected environment orbitals, a complementary 

set B

 within the environment subsystem is determined by the equations 






 B,

BMB

B
Bχ C ,     (7.75) 
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  2
1

BBB

A

M

A

BM

refB,

BB

A

BB

B,

BM





 tOCRC  ,                   (7.76) 

where matrix refB,

BBC  determines the set of reference orthonormal functions in 

 BB χL Span , 

refB,

BBB

B

ref χ C , 
BB

B

ref

B

ref I ,             (7.77) 

In Eq. (7.76),  A

M

A

1

A

M BB t,,t


 diagt  is the diagonal matrix of the BM  positive 

eigenvalues and A

BMB


O  is the matrix of the corresponding eigenvectors of the symmetric 

and semi-positive definite matrix 

      refB,

BB

A

BBBB

refB,

BB

A

BB

B

refB

B

refB

A

BB

AA

PIPI CRSCRT
~~ 

  
,          (7.78) 

such that 

  A

M

A

BM

A

BB

A

BM BBB





tOTO     (7.79) 

Conclusions 

The above analyses led to modified KSCED equations that explicitly take into 

consideration the intersystem or external orthogonality of orbitals. This condition is 

warranted by the very notion of DFT-in-DFT embedding which is to partition a system’s 

electron density into a sum of fragment densities. By enforcing external orbital 

orthogonality within DFT-in-DFT, the nonadditive kinetic potential in Eq. (7.18), which 

is largely the cause of errors in DFT-in-DFT embedding theory, is exactly zero. The new 

embedding protocol presented above therefore completely avoids the use of kinetic 

functionals. Analyses in Ref. [5] showed that the present protocol is applicable also in the 

case of wave function theory (WFT)-in-DFT embedding. The next Chapter presents 

results from test calculations based on this newly developed embedding theory. 
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It is worth mentioning that the present method is somewhat similar, but not 

equivalent, to the recently proposed “simple exact DFT embedding scheme” of Manby et 

al. [321] in that both approaches enforce intersystem or external orbital orthogonality and 

thereby avoid the use of kinetic energy functionals. However, the present method differs 

epistemologically from that of Manby et al. in that their method first requires a KS-DFT 

calculation on the total system, whereas the present scheme derives from traditional DFT-

in-DFT embedding in which DFT calculations are only required of individual 

subsystems. Procedurally, Manby et al. use a level shift projection operator that shifts the 

energies of KS orbitals of the complementary subsystem to higher values in order to 

ensure their orthogonality, to desired precision, to those of the other subsystem. Here, 

intersystem orbital orthogonality is included as an added constraint in the construction of 

the Langrangian that leads to coupled Euler-Lagrange equations for subsystems. 
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CHAPTER VIII

PERFORMANCE OF DFT-in-DFT EMBEDDING WITH EXTERNAL ORBITAL 

ORTHOGONALITY 

Introduction 

This Chapter discusses results obtained with the newly developed DFT-in-DFT 

embedding theory method that was presented in Chapter VII. As was noted in Chapter 

VII, previous formulations of DFT-in-DFT embedding theory (both frozen density 

embedding (FDE) [302, 303] and those based on freeze-and-thaw cycles [72]) did not 

require explicit consideration of the external orthogonality of subsystems’ orbitals, 

instead relying on exchange-correlation or kinetic energy functionals to correct 

inaccuracies in the electron densities. Although such recipes have been able to adequately 

describe systems involving weakly interacting fragments [308-311], yet in the case of 

strongly interacting subsystems, these methods have been reported to break down [311-

314] and even lead to illogical results in some cases, e.g., giving worse results with GGA 

(than with LDA) functionals whereas KS-DFT improves results for the same studied 

systems using the same functionals [315]. Whereas previous efforts at improving DFT-in-

DFT embedding theory have concentrated on obtaining more accurate approximations to 

the nonadditive kinetic potential ( Tv ) [314] or even an exact form [316], such methods 

tend to require initial calculations of the total system to obtain an initial orbital guess 

and/or electron density. Performing a calculation of the total system at any point of an 

embedding program seems to defeat the spirit of doing embedding.  
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In the present Chapter, electron densities are compared for a number of systems 

with different interaction strengths, obtained based on the new embedding protocol 

described in Chapter VII and conventional DFT-in-DFT, with densities based on 

supermolecular KS-DFT calculations. The results clearly demonstrate that whereas 

conventional DFT-in-DFT embedding theory underestimates the electron density 

especially at the artificial boundary between subsystems, the situation is remedied when 

intersystem or external orbital orthogonality is enforced. Density deformations became 

negligible when using the new embedding equations. With the new equations, reference 

KS-DFT total energies were reproduced at least to the 7
th

 decimal place (and exactly at 

most geometries) for all systems tested. Also included in this Chapter are potential energy 

curves (PECs) of the separation of some of the tested systems into fragments. PECs, 

obtained with the new equations, using the usual Kohn-Sham equations with constrained 

electron density and supermolecular basis expansion (i.e., KSCED(s, Ext. Orth., 0vT  ) 

where s represents “supermolecular basis”, Ext. Orth. represents “external orthogonality” 

as enforced in the new method, and 0vT   emphasizes that the nonadditive kinetic 

potential was set to zero), were found to be the same as those from conventional KS-

DFT. Equilibrium distances and interaction energies were reproduced exactly for both 

local density approximation (LDA) and generalized gradient approximation (GGA) 

functionals. The results presented here were obtained with monomer basis expansions, 

KSCED(m), supermolecular basis expansions, KSCED(s), and the newly proposed 

extended monomer basis expansions, KSCED(e) that was also described in Chapter VII.  

Since Laricchia et al. [322, 323] had suspected that failures in the current 

formulation of DFT-in-DFT embedding theory are due to the self-interaction error (i.e., 
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the self-energy of the electron) resulting from shortcomings in current LDA and GGA 

functionals and that this problem could be solved by the use of hybrid functionals, this 

assertion was investigated within conventional DFT-in-DFT. If Laricchia et al. are 

correct; the accuracy of embedding results should improve if the fraction of single 

determinant exchange were increased in hybrid functionals. The present study, however, 

showed the contrary.  

This Chapter is organized as follows. The next subsection provides a description 

of the way calculations were done; the third subsection presents and discusses the results; 

while a final subsection summarizes current findings. 

Computational Details 

 Besides the new embedding program that was used in the present studies, a 

computer program was also developed for computing electron densities in real space 

given reduced density matrices. Reduced density matrices were obtained from 

conventional DFT-in-DFT embedding, the new embedding scheme, and from KS-DFT 

calculations of the studied systems. The obtained density matrices were then used in the 

new program for computing electron densities in real space. The program was designed 

to compute densities on a cubic grid with step size 0.01 0a (N.B. The isocontour and relief 

maps of electron density differences included in this Chapter only show densities on 

chosen planes of the molecules). For each given spatial grid point, the density was the 

sum of contributions from the fragments in embedding calculations. The electron density 

difference is defined here as   = electron density from KS-DFT calculation on total 

system – KSCED(x) [or KSCED(x, Ext. Orth.) or KSCED(x, Ext. Orth. Tv  = 0)] density 

(N.B. Henceforth in this Chapter, “x” would represent “m” for monomer, “s” for 
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supermolecular, or “e” for extended monomer”; “Ext. Orth.” will be used to denote that 

“external orthogonality” was enforced in the new program; while “ Tv  = 0” would imply 

that the “nonadditive kinetic potential” was set to zero, e.g., KSCED(s, Ext. Orth.) 

designates a calculation that enforced external orthogonality but in which Tv  was not set 

to zero). For density differences of the  FOH2   and OHLi 2  complexes (which 

were previously considered in Ref. [324]), the designations m  were additionally used , 

where m represents KS or KSCED(m), to denote definitions of  similar to those used 

in Ref. [324] (i.e., density difference = density of KS-DFT or KSCED(m) – sum of 

densities of isolated fragments computed using KS method). 

Relief and contour maps of electron density differences (  ), relative to 

conventional KS-DFT calculations, were obtained for: the weakly bonded 44 CHCH   

complex; hydrogen bonded complexes ( OHOH 22  ,
FOH2  , and 33 NHNH  ); 

complexes involving charge polarization ( OHLi 2 , 23 FNH  , and 242 FHC  ); and 

the parallel-displaced (PD) π-stacked 6666 HCHC   complex. All (except 
FOH2   and 

OHLi 2 ) were computed at the same optimized geometries of Zhao and Truhlar [325], 

which were previously used by Dulak and Wesolowski [326] to determine interaction 

energies of these complexes using the VWN5 [327] and PW91 [328, 329]
 
functionals 

with the aug-cc-pVTZ [330] and MG3S [331] basis sets. The VWN5 and PW91
 

functionals were also used for all complexes in this study and the aug-cc-pVTZ basis set, 

except for the 
FOH2   complex where the VWN [327] functional was used with the 

aug-cc-pVQZ [332] basis set and the OHLi 2  complex where the cc-pVDZ [332] 
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basis set was used with VWN and PW91 functionals. The density difference maps were 

obtained using OriginPro 8.6 64Bit [333] while graphical representations of molecular 

structures were generated from Diamond (version 3) [334] (molecular structures are 

included with density difference maps).  

Potential energy curves (PECs) of the separation of HFHF  into HF molecular 

fragments were computed using aug-cc-pVTZ with VWN5 and PW91; those of the 

separation of OHLi 2  into Li  and OH2  were computed using cc-pVDZ with VWN 

and PW91; and those of the separation of NeHe  into atoms were computed with VWN
 

and aug-cc-pVTZ. The intent of such calculations was to further clarify the performance 

of the newly developed KSCED(s, Ext. Orth., Tv  = 0) and KSCED(e, Ext. Orth., Tv  = 0) 

methods in comparison with KSCED(m), KSCED(e), KSCED(s), and KS-DFT. 

Lastly, calculations were done of the water dimer (at the same geometry 

determined by Zhao and Truhlar [325]) using the B1B95 [335], MPW3LYP [336], and 

BHandHLYP [337] hybrid functionals (and also on the BeLi   complex at 2.6 Å using 

B3LYP [338-340]) while varying the fraction of single determinant exchange in each 

case in order to investigate the effect of exact exchange on the discrepancy in the 

embedding energy when compared with that from conventional KS-DFT. Such studies 

were meant to investigate the suspicion of Laricchia et al. [322, 323] that the use of 

hybrid orbitals may solve the problems with conventional DFT-in-DFT embedding 

theory. 

Program specifications in all calculations were set as follows: integration 

threshold = 5.749 × 10
-11

, self-consistent field energy convergence criterion = 10
-6

, 

maximum number of freeze-and-thaw cycles or macroiterations = 20, gradient 
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convergence criterion = 10
-8

, overlapping degeneracy criterion = 2.22 × 10
-15

; a Mura-

Knowles log3 grid type [341] with 96 radial and 302 angular grid points was used. Where 

evaluated in the present study, the nonadditive kinetic potential was determined using the 

Thomas-Fermi (TF) approximation [342] to the kinetic energy functional (when using 

LDA functionals) or the Lembarki-Chermette [307] kinetic energy functional (LC94) 

when using the GGA functional (PW91) and the MPW3LYP hybrid functional. The 

B3LYP, BHandHLYP, and B1B95 hybrid functionals included the LLP kinetic energy 

functional [343].  

Details on how DFT numerical integration was performed in the present work are 

available in Appendix A, whereas an algorithm of the newly developed DFT-in-DFT 

embedding theory with external orbital orthogonality is provided in Appendix B.  

Results and Discussion 

Electron Density Differences 

 Electron density difference relief and contour maps are shown in Figures 30 to 38 

for all systems included in this study. In all relief maps, isocontour lines are shown only 

for major levels. For each system, the density difference is shown on the plane that has 

the highest number of atoms, and hence highest electron density, in the system. All 

density difference values are reported in electrons per cubic bohr (e/
3a  ). 

The 33 NHNH   Complex 

 The   relief maps for 33 NHNH   are shown in Figure 30, obtained using the 

PW91 functional. The maps are labelled A to D and represent the density differences: A 

= KS-DFT – KSCED(s); B = KS-DFT – KSCED(s, Ext. Orth., Tv  = 0); C = KS-DFT – 
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KSCED(e); and D = KS-DFT – KSCED(e, Ext. Orth., Tv  = 0). Each 3NH  molecule was 

treated as a subsystem in KSCED(x) or  KSCED(x, Ext. Orth., Tv  = 0) calculations. The 

density difference,  , is shown on the xz-plane.  

 
 

  

 

 

Figure 30. Density difference relief maps of the   complex, shown on the xz-

plane, obtained using the PW91 functional. The maps display the density 

differences: A = KS-DFT – KSCED(s); B = KS-DFT – KSCED(s, Ext. Orth., 

 = 0); C = KS-DFT – KSCED(e); and D = KS-DFT – KSCED(e, Ext. 

Orth.,  = 0). Coordinates are given in units of Bohr ( ) while densities are 

in electrons per cubic Bohr (e/ ).  

 

 As can be seen in images A and C, there is an accumulation of electron density at 

the interfacial region between subsystems and a distortion of subsystems’ densities. The 

33 NHNH 

Tv

Tv
a

3a 
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topologies of A and C are quite similar and show density deviations of the order of  

e/ . This indicates that the extended monomer is a good approximation to the 

supermolecular basis expansion.   

Upon enforcing the external orthogonality constraint, density deviations become 

negligible; decreasing to the order of 710  e/ 3a   in the case of KSCED(s, Ext. Orth., Tv  = 

0) calculations (image B) and 410  e/ 3a   in the case of KSCED(e, Ext. Orth., Tv  = 0) 

calculations (image D). Thus, accounting for external orthogonality improves embedding 

densities. Similar plots (shown in Appendix C) were obtained with the VWN5 functional 

and found to be topologically similar to those presented here from the PW91 functional. 

The interaction energy of 33 NHNH   was computed in Ref. [326] to be 3.74 kcal/mol 

from KSCED(s) using VWN5 and 4.26 kcal/mol using PW91. The present study 

predicted 3.71 kcal/mol (with VWN5) and 4.24 kcal/mol (with PW91) using KSCED(s), 

while the newly developed embedding method, KSCED(s, Ext. Orth., Tv  = 0), and KS-

DFT results agreed exactly (3.34 kcal/mol with VWN5 versus 5.15 kcal/mol with PW91). 

KSCED(e) calculations, in which the basis functions of the N atom and one H atom of 

the complementary subsystem were additionally used in expanding KS orbitals of each 

system, gave 3.70 kcal/mol (with VWN5) and 4.22 kcal/mol (with PW91) whereas 

KSCED(e, Ext. Orth., Tv  = 0) calculations predicted an interaction energy that was lower 

than KS-DFT (and KSCED(s, Ext. Orth., Tv  = 0)) by only 0.066 kcal/mol when using 

VWN5 and 0.068 kcal/mol when using PW91. These data indicate, once again, that 

KSCED(e) is a good approximation of KSCED(s). By accounting for external orbital 

orthogonality and zeroing out the nonaddititve kinetic potential (Eq. (7.18)), the reference 

210

3a 
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KS-DFT interaction energies were reproduced exactly in KSCED(s, Ext. Orth., 0vT  ) 

and nearly exactly in KSCED(e, Ext. Orth., 0vT  ) calculations of 33 NHNH  .  

The OHOH 22   Complex 

 The   isocontour and relief maps for OHOH 22   are shown in Figure 31, 

obtained using the VWN5 functional. The maps are labelled A to F and represent the 

density differences: A = KS-DFT – KSCED(s); B = KS-DFT – KSCED(s, Ext. Orth.,  

= 0); C = KS-DFT – KSCED(e);  D = KS-DFT – KSCED(e, Ext. Orth.,  = 0); E = KS-

DFT – KSCED(s, Ext. Orth.); and F = superposition of KS-DFT – KSCED(s) surfaces 

from VWN5 and PW91 calculations, where the surface with the rainbow color palette is 

that from VWN5. Each  molecule was treated as a subsystem in KSCED(x), 

KSCED(x, Ext. Orth.), or  KSCED(x, Ext. Orth.,  = 0) calculations. The  is again 

shown on the xz-plane. Isocontours in A are shown in the range [-0.00465, 0.01245] in 

steps of 4.275 × 10
-4

 e/ ; in C in the range [-0.0046, 0.0111] in steps of 3.925 × 10
-4

    

e/ ; while in E, they are shown in the range [-0.0314, 0.0372] in steps of 1.715 × 10
-3

  

e/ . As can be seen in images A and C, there is a buildup of electron density at the 

intermolecular region. Inclusion of the Ext. Orth. constraint without zeroing the 

nonadditive kinetic potential ( ) in supermolecular basis calculations [KSCED(s, Ext. 

Orth.)] fails to improve on the density (see image E). However, by zeroing , density 

deviations become negligible; decreasing to the order of  e/  in the case of 

KSCED(s, Ext. Orth.,  = 0) calculations (image B) and  e/  in the case of 

KSCED(e, Ext. Orth.,  = 0) calculations (image D). 

Tv

Tv

OH2

Tv 

3a 

3a 

3a 

Tv

Tv

610 3a 

Tv 410 3a 

Tv
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Figure 31. Density difference relief and contour maps of the    complex, 

shown on the xz-plane, obtained using the VWN5 functional. The maps 

display the density differences: A = KS-DFT – KSCED(s); B = KS-DFT – 

KSCED(s, Ext. Orth.,  = 0); C = KS-DFT – KSCED(e);  D = KS-DFT – 

KSCED(e, Ext. Orth.,  = 0); E = KS-DFT – KSCED(s, Ext. Orth.); and F 

= superposition of (KS-DFT – KSCED(s)) surfaces from VWN5 and PW91 

calculations, where the surface with rainbow color palette is that from 

VWN5. Coordinates are given in units of Bohr ( ) while densities are in 

electrons per cubic Bohr (e/ ).  

OHOH 22 

Tv

Tv

a

3a 
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In image F, relief maps of   = KS-DF – KSCED(s) obtained using VWN5 and 

PW91 are superimposed (the VWN5 surface is that with a rainbow color palette). As can 

be seen, the two surfaces are quite similar topologically with the PW91 surface lying 

slightly above the VWN5 surface at most points but for the intermolecular region. The 

interaction energy computed in Ref. [326] for this system was 4.92 kcal/mol using 

VWN5 in KSCED(s). The present study gave 4.90 kcal/mol when using VWN5 in 

KSCED(s) calculations. Meanwhile KSCED(s, Ext. Orth., Tv  = 0) calculations using 

VWN5 reproduced the KS-DFT interaction energy of 7.29 kcal/mol exactly (to the fifth 

decimal place) whereas KSCED(e, Ext. Orth., Tv  = 0) calculations predicted an 

interaction energy that was only 0.045 kcal/mol less than the KS-DFT value.  

The 422 HCF   Complex 

 The   relief maps of 422 HCF   are shown in Figure 32, obtained with the 

VWN5 and PW91 functionals. The maps are labelled A to D and represent the density 

differences: A = KS-DFT – KSCED(s); B = KS-DFT – KSCED(s, Ext. Orth.); C = KS-

DFT – KSCED(s, Ext. Orth., Tv  = 0);  D = KS-DFT – KSCED(s); and E = KS-DFT – 

KSCED(s, Ext. Orth., Tv  = 0). Images A to C are from VWN5 while D and E are from 

PW91 calculations. 2F  was the embedded subsystem in KSCED(x), KSCED(x, Ext. 

Orth.), or  KSCED(x, Ext. Orth., Tv  = 0) calculations. The   are shown on the yz-

plane. As shown in images A, B, and D, 0  at the 2F fragment and 0  at the 

42HC fragment. This suggests that there is charge polarization within the supermolecule 
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from the 42HC  to the 2F  moiety. KSCED(x) calculations fail to fully account for such 

polarization.  

  

 
 

  

Figure 32. Density difference relief maps of the    complex, shown on the yz-

plane, obtained with the VWN5 and PW91 functionals. The maps display the 

density differences: A = KS-DFT – KSCED(s); B = KS-DFT – KSCED(s, 

Ext. Orth.); C = KS-DFT – KSCED(s, Ext. Orth.,  = 0);  D = KS-DFT – 

KSCED(s); and E = KS-DFT – KSCED(s, Ext. Orth.,  = 0). Images A to C 

are from VWN5 while D and E are from PW91 calculations. Coordinates are 

given in units of Bohr ( ) while densities are in electrons per cubic Bohr (e/

). 

 

422 HCF 

Tv
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Hence, the density of the  fragment is underestimated while that of  is 

overestimated in such calculations. However, enforcing external orbital orthogonality and 

zeroing the nonadditive kinetic potential renders density deviations to become negligibly 

small (of the order of  e/ with both VWN5 (image C) and PW91 (image E) 

functionals). Images A, B, and C show that buildup of electron density is minimal in the 

interfacial region between the fragments. This is not surprising given that a reference 

binding energy of only 1.06 kcal/mol was reported in Ref. [326] for this system, implying 

that the electron clouds of the fragments do not interact strongly. 

The Ref. [326] study predicted that 422 HCF   was unbound when using VWN5 

and had a binding energy of 0.76 kcal/mol when using PW91 in KSCED(m) calculations. 

The present study predicted a binding energy of 0.10 kcal/mol (with VWN5) and 0.76 

kcal/mol (with PW91) using KSCED(m). On the other hand, KSCED(s, Ext. Orth., Tv  = 

0) calculations using VWN5 reproduced the KS-DFT interaction energy of 4.62 kcal/mol 

exactly, whereas KSCED(s) gave an interaction energy of 0.33 kcal/mol only, using the 

same functional.  

The 32 NHF   Complex 

 The  relief maps of 32 NHF   are shown in Figure 33, obtained with the 

VWN5 and PW91 functionals. The maps are labelled A to D and represent the density 

differences: A = KS-DFT – KSCED(s); B = KS-DFT – KSCED(s, Ext. Orth., Tv  = 0); C 

= KS-DFT – KSCED(s);  and D = KS-DFT – KSCED(s, Ext. Orth., Tv  = 0). Images A 

and B are from VWN5 while C and D are from PW91 calculations. F2 was the embedded 

subsystem in KSCED(x) or KSCED(x, Ext. Orth., Tv  = 0) calculations.  

2F 42HC

510 3a 
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Figure 33. Density difference relief maps of the   complex, shown on the yz-

plane, obtained with the VWN5 and PW91 functionals. The maps display the 

density differences: A = KS-DFT – KSCED(s); B = KS-DFT – KSCED(s, 

Ext. Orth.,   = 0); C = KS-DFT – KSCED(s); and D = KS-DFT – 

KSCED(s, Ext. Orth.,  = 0). Images A and B are from VWN5 while C and 

D are from PW91 calculations. Coordinates are given in units of Bohr ( ) 

while densities are in electrons per cubic Bohr (e/ ). 

 

 The  are shown on the yz-plane. Just as for , the main distortions in 

electron density are within the  and  fragments (see images A and C), with the 

32 NHF 

Tv

Tv

a

3a 

 422 HCF 
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density of  underestimated and that of  overestimated in KSCED(s)  calculations. 

There is minimal buildup of electron density at the interfacial region. This suggests 

charge polarization from  to  which conventional DFT-in-DFT embedding theory 

seems unable to capture. Again, it is seen that accounting for external orthogonality 

within the new embedding scheme and zeroing the nonadditive kinetic potential enables 

embedding theory densities to be well represented; diminishing density deviations from 

an order of  e/ to  e/ for both VWN5 (image B) and PW91 (image D) 

functionals. The interaction energy for this system was found in Ref. [326] to be much 

lower with VWN5 than with PW91 (0.15 kcal/mol versus 1.26 kcal/mol from 

KSCED(m)). The present study predicted 0.47 kcal/mol (with VWN5) and 1.31 kcal/mol 

(with PW91) using KSCED(m). However, calculations with the new embedding program 

[KSCED(s, Ext. Orth., 0vT  )] using PW91 reproduced the KS-DFT interaction energy 

(5.368 kcal/mol) exactly.  

As seen in these charge polarization systems ( 422 HCF   and 32 NHF  ), density 

differences are largely positive for the F2 fragment and largely negative for the 42HC  and 

3NH  fragments. This suggests that in KS-DFT calculations of the total systems, electron 

density gets polarized towards the 2F  moiety. Conventional DFT-in-DFT embedding 

theory appears to be unable to account for such polarization when external orbital 

orthogonality is neglected. Such failures in turn lead to poor estimates of interaction 

energies. The new embedding theory corrects these lapses and reproduces the reference 

interaction energy exactly. 

2F
3NH

3NH 2F

210 3a 
610 3a 



205 

 

The 44 CHCH   Complex 

 The  isocontour maps of 44 CHCH   are shown in Figure 34, obtained with 

the VWN5 functional. The maps are labelled A and B and represent the density 

differences: A = KS-DFT – KSCED(s); and B = KS-DFT – KSCED(s, Ext. Orth., Tv  = 

0). The 4CH  molecules were treated as subsystems in embedding calculations.  

 

 

 

 

Figure 34. Density difference contour maps of the    complex, shown on the 

yz-plane, obtained with the VWN5 functional. The maps display the density 

differences: A = KS-DFT – KSCED(s); and B = KS-DFT – KSCED(s, Ext. 

Orth.,  = 0). Coordinates are given in units of Bohr ( ) while densities are 

in electrons per cubic Bohr (e/ ).  

 

The  are shown on the yz-plane. Density deviations can be seen to be largely within 

molecular regions of each of the subsystems. Charge buildup is minimal at the interface 

44 CHCH 

Tv
a

3a 


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between the molecular fragments. The  complex involves only weak van der 

Waals interactions. There is no surprise, therefore, that for this system, no density 

buildup is observed at the interfacial region.  

 Comparing images A and B, it is seen that including external orthogonality and 

setting Tv  = 0 diminishes density deviations from an order of 210  e/ 3a   in A to 510  e/

3a   in B. Isocontours in A are shown in the range [-1.75, 0.065] in steps of 4.5375 × 10
-2

 

e/
3a   while those in B are in the range [-2.81× 10

-4
, 1.00× 10

-5
] in steps of 7.275× 10

-6
 e/

3a  . The Ref. [326] study predicted an interaction energy of only 0.43 kcal/mol for this 

complex when using VWN5 in KSCED(m) and the present study obtained 0.42 kcal/mol 

from the same calculations (i.e., with conventional DFT-in-DFT).  

Parallel-Displaced (PD)  π-stacked 6666 HCHC   complex 

 The   isocontour and relief maps for the parallel-displaced (PD) π-stacked 

6666 HCHC   complex are shown in Figure 35. The maps are labelled A to C and 

represent the density differences: A = KS-DFT – KSCED(m); B = KS-DFT – KSCED(s); 

and C = KS-DFT – KSCED(s, Ext. Orth., Tv  = 0). Image A shows   on the yz-plane 

(which cuts through the benzene rings) while images B and C show   on the xz-plane 

(which is the plane through the interface between the two benzene rings. The two 

benzene rings are parallel to each other; one lies on the y = 1.8 Å plane while the other is 

on the y = -1.8 Å plane. Hence the y = 0 or xz-plane is the interfacial plane). This system, 

in the considered geometry, involves fairly strong π-π coupling. As can be seen, 

values are non-negligible at the intermolecular interface (the y = 0 or xz-plane) and are 

significant within the subsystems (Image A in Figure 35). No charge polarization as was 

44 CHCH 
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predicted in the cases of 422 HCF   and 32 NHF   is evident for this system. Pi bonding 

interaction is, however, evidenced by the fairly significant accumulation of electron 

density at the interface between the molecular subsystems, averagely of an order of 10
-3

 

e/ 3a   (Image B in Figure 35).  

  

  

  

Figure 35. Density difference relief and contour maps of the parallel displaced (PD) π-

stacked   complex, shown on the yz-plane (image A) and xz-

plane (images B and C), obtained with the VWN5 functional. The maps 

represent the density differences: A = KS-DFT – KSCED(m); B = KS-DFT – 

KSCED(s); and C = KS-DFT – KSCED(s, Ext. Orth.,  = 0). Coordinates 

are given in units of Bohr ( ) while densities are in electrons per cubic Bohr 

(e/ ). 
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Image C of Figure 35 shows that when external orthogonality was enforced within the 

new embedding program and the nonadditive kinetic potential was set to zero, density 

deviations became negligible; decreasing from an order of 10
-3

 e/  in B to an order of 

10
-8

 e/  in C. 

The interaction energy of the (PD) π-stacked 6666 HCHC   complex was 

determined in Ref. [326] to be as large as 1.97 kcal/mol less than a reference value of 

2.78 kcal/mol, when using the VWN5 functional in KSCED(s) calculations with the aug-

cc-pVTZ basis set. In the present study, using the cc-pVDZ basis set and VWN5 in the 

new embedding program, KSCED(s, Ext. Orth., Tv  = 0), reproduced the KS-DFT 

interaction energy of 2.66 kcal/mol exactly to the fifth decimal place. 

Density Differences of the OHLi 2  and OHF 2  Complexes 

Deformation densities for OHLi 2  and OHF 2  complexes, similar to those 

previously reported in Ref. [324] (for OHLi 2 ) and Ref. [344] (for OHF 2 ), were 

computed in the present study. As noted before, the intent of such calculations was partly 

to verify that the newly developed program for computing electron densities was working 

accurately. Of course, a first test of the code was to verify that it could integrate density 

over all space to give a value approximately equal to the number of electrons in a system. 

The  and 
m  (m = KS or KSCED(m)) isocontour and relief maps for OHLi 2  are 

shown in Figure 36 while relief maps of   for OHF 2  are in Figure 37. All densities 

were computed with the VWN functional. The maps in Figure 36 are labelled A to D and 

represent the density differences: A = KS-DFT – KSCED(s); B = KS-DFT – KSCED(s, 

Ext. Orth., Tv  = 0); C = 
KS = Full system KS-DFT density – Sum of densities of 

3a 

3a 
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isolated Li and OH2 fragments obtained from KS-DFT;  and D = )(mKSCED  = 

KSCED(m) density – Sum of densities of isolated Li and OH2 fragments obtained from 

KS-DFT. Images A and B in Figure 37 are defined in the same way as A and B in Figure 

36.  

Images C and D of Figure 36 were a repeat of the first two images in Figure 4 of 

Ref. [324]. Isocontours in images C and D of Figure 35 are reported in the same range [-

0.05, 0.05] and step size (2.5× 10
-3

 e/
3a  ) as in Figure 4 of Ref. [324]. The two sets of 

images (C and D here and Figure 4 of Ref. [324]) are in good agreement. In all 

calculations on OHLi 2 , 
Li was the embedded subsystem in KSCED(s) or KSCED(s, 

Ext. Orth., Tv  = 0) calculations and the calculations were done at the same geometry as 

was used in Ref. [324]. Both images A of Figure 36 and A of Figure 37 show a buildup 

of electron density in the artificial boundary region between  and , and between 

 and , respectively. 

Accounting for external orbital orthogonality within the new embedding theory 

and setting  = 0 decreases density deviations significantly to nearly zero for the 

 complex (see Image B of Figure 36) and to the order of  e/ for the 

 complex (see Image B of Figure 37). These results again indicate that the new 

embedding theory corrects embedding densities relative to reference KS-DFT densities. 

 

Li OH2

F OH2

Tv

OHLi 2 610 3a 

OHF 2
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Figure 36. Density difference relief and contour maps of the    complex, 

shown on the yz-plane, computed with the VWN functional. The maps 

display the density differences: A = KS-DFT – KSCED(s); B = KS-DFT – 

KSCED(s, Ext. Orth.,  Tv  = 0); C = 
KS  = Full system KS-DFT density – 

Sum of densities of isolated 
Li  and OH2  fragments obtained from KS-

DFT;  and D = 
)(mKSCED  = KSCED(m) density – Sum of densities of 

isolated 
Li and OH2  fragments obtained from KS-DFT. Coordinates are 

given in units of Bohr ( 0a ) while densities are in electrons per cubic Bohr (e/
3

0a ). The geometry of Ref. [324] was used in the present calculations. 

 

OHLi 2
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Figure 37. Density difference relief maps of the   complex, shown on the yz-

plane, computed with the VWN functional. The maps display the density 

differences: A = KS-DFT – KSCED(s) and B = KS-DFT – KSCED(s, Ext. 

Orth., Tv  = 0). Coordinates are given in units of Bohr ( ) while densities are 

in electrons per cubic Bohr (e/ ). The same geometry as was used in Ref. 

[324] was used here. 

Potential Energy Curves of the OHLi 2  Complex 

Reported in Figures 38 and 39 are the PECs for the separation of OHLi 2  into 

Li  and OH2  fragments, computed using the VWN and PW91 functionals, respectively. 

In both figures, reference KS-DFT curves are marked with symbols to distinguish them 

from the other curves. The data describing the curves are in Table 13.   

FOH2 

a

3a 
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Figure 38. PECs of the    complex computed using the VWN functional and 

cc-pVDZ basis set in the methods shown in the inset. The geometry of Ref. 

[324] was used and the   intersystem separation (R) was varied. Note 

that the KS-DFT (black), KSCED(s, Ext. Orth., Tv  = 0) (blue), and 

KSCED(e, Ext. Orth., Tv  = 0) (magenta) curves are indistinguishable at the 

given resolution. 

While both Figures suggest a fairly strong interaction between the 
Li  and OH2  

fragments (i.e., all methods predict interaction energies of at least 40.00 kcal/mol), there 

are marked differences in KSCED(m) and KSCED(s) results compared with the reference 

KS-DFT results. KSCED(m) and KSCED(s), using VWN, predict equilibrium 

separations that are 0.16 Å and 0.13 Å shorter than KS-DFT, respectively (red and green 

curves in Figure 38). The KSCED(s) interaction energy is 3.78 kcal/mol more while that 

from KSCED(m) is 5.34 kcal/mol less than the reference KS-DFT value using VWN. 

These trends are repeated in the case of PW91 where equilibrium separations are 0.24 Å 

and 0.22 Å less whereas interaction energies are 0.82 kcal/mol less and 8.54 kcal/mol 

more than KS-DFT values for KSCED(m) and KSCED(s), respectively ( see Table 13 

and Figure 39).  

OHLi 2

OLi 
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Figure 39. PECs of the   complex computed using the PW91 functional and 

cc-pVDZ basis set in the methods shown in the inset. The geometry of Ref. 

[324] was used and the  OLi   intersystem separation (R) was varied. Note 

that the KS-DFT (black), KSCED(s, Ext. Orth., Tv  = 0) (olive), and 

KSCED(e, Ext. Orth., Tv  = 0) (magenta) curves are again indistinguishable. 

Thus, the magenta curve obscures the olive and black curves. 

As can be seen in Figure 38, the KSCED(e) curve is very similar to that from 

KSCED(s) calculations (the purple KSCED(e) and red KSCED(s) curves in Figure 38 are 

virtually indistinguishable). Irrespective of functional type, enforcing external orbital 

orthogonality and zeroing the nonadditive kinetic potential ( Tv  = 0) leads, in the present 

case, to KSCED(s, Ext. Orth.,  Tv  = 0) results that are exactly the same as the KS-DFT 

(compare the blue and black curves in Figure 38 and the olive and black curves in Figure 

39 and see Table 13 where equilibrium separations and interaction energies are the same 

for KSCED(s, Ext. Orth.,  Tv  = 0) and KS-DFT).  

 

OHLi 2
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Table 13. Equilibrium separations (Re) and interaction energies (De) of the OHLi 2 , 

HFHF , and NeHe  complexes computed using the VWN, VWN5, and 

PW91 functionals in the methods shown in the second column. 

Complex Method Functional Type, Equilibrium Separation, 

and Interaction Energy 

VWN PW91 

Re 

(Å) 

De (kcal/mol) 

 

Re (Å) De 

(kcal/mol) 

OHLi 2  KSCED(s) 1.69 49.12 1.63 51.66 

KSCED(m) 1.66 40.00 1.61 42.30 

KSCED(e) 1.70 49.11 - - 

KSCED(e, Ext. Orth., Tv = 0) 1.82 45.62 1.86 42.95 

KSCED(s, Ext. Orth., Tv = 0) 1.82 45.34 1.85 43.12 

KS-DFT 1.82 45.34 1.85 43.12 

 

 

HFHF  

 VWN5 

 

PW91 

KSCED(s) 1.79 4.00 1.78 4.84 

KSCED(m) 1.80 3.71 1.79 4.60 

KSCED(s, Ext. Orth.) 3.00 1.08 2.90 1.25 

KSCED(s, Ext. Orth., Tv = 0) 1.58 7.91 1.76 4.93 

KS-DFT 1.58 7.91 1.76 4.93 

 

NeHe    PW91 

KSCED(s) - - 2.53 0.48 

KSCED(s, Ext. Orth.) - - 3.22 0.12 

KSCED(s, Ext. Orth., Tv = 0) - - 2.83 0.29 

KS-DFT - - 2.83 0.29 

 

 

The KSCED(e, Ext. Orth.,  Tv  = 0) curve in Figure 38 (magenta colored curve) is 

also very similar to the reference KS-DFT curve, having exactly the same equilibrium 

separation (1.82 Å)  and an interaction energy that is only 0.28 kcal/mol more than that 

from KS-DFT (see Table 13). Similar results are obtained with the PW91 functional as 

shown in Figure 39. These results indicate that the extended monomer basis approach is a 

good approximation to the more computationally demanding supermolecular basis 
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expansion. Moreover, it is seen that the new embedding theory method that enforces 

external orbital orthogonality reproduces reference KS-DFT results of the total system 

exactly. 

Potential energy curves (PECs) of HFHF and NeHe  

 Figures 40 and 41 show PECs for the separation of the HFHF  complex into 

molecular fragments, computed using the VWN5 and PW91 functionals, respectively. In 

both figures, reference KS-DFT curves are marked with symbols to distinguish them 

from the other curves. The data describing the curves are in Table 13. Unlike the 

OHLi 2  case for which equilibrium separations of KSCED(s) and KSCED(m) were 

less than the reference KS-DFT value, the situation is reversed in the case of HFHF  

where conventional DFT-in-DFT methods (without external orthogonality) are seen to 

predict longer equilibrium separations than KS-DFT for both VWN5 and PW91 

functionals.  These observations reveal an acute problem with conventional DFT-in-DFT 

embedding which is “lack of tendency”. For example, the interaction energy obtained 

from KSCED(s) calculations on OHLi 2 using PW91 is worse than the KSCED(m) 

value, using the same functional, in comparison with KS-DFT. The same calculations on 

HFHF  lead to KSCED(s) predicting a better interaction energy than KSCED(m) in 

comparison with KS-DFT (see Table 13). Moreover, the KSCED(s) interaction energy 

for OHLi 2  (with VWN) is rather better than the KSCED(m) value when compared 

with KS-DFT. Also noteworthy is the fact that deviations in equilibrium separation and 

interaction energy increase from the LDA (VWN) to the GGA (PW91) functional in the 

case of OHLi 2 , using KSCED(s), whereas the opposite effect is seen in the case of 

HFHF  (see Table 13).  
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Figure 40. PECs of the   complex computed using the VWN5 functional and 

aug-cc-pVTZ basis set in the methods shown in the inset. The optimized 

geometry of Ref. [49] was used and the   intermolecular separation (R) 

was varied. Note that the KS-DFT (black) and KSCED(s, Ext. Orth., Tv  = 0) 

(olive) curves are degenerate. Thus, the olive curve completely obscures the 

black curve. 

As can be seen in Figures 40 and 41 and in Table 13, enforcing external orbital 

orthogonality and setting Tv  = 0 within the new embedding theory leads to  KSCED(s, 

Ext. Orth.,  Tv  = 0) results that are exactly the same as those from the reference KS-DFT 

for both VWN5 and PW91 functionals. Note that the olive and black curves in Figures 40 

and 41 obtained from the KSCED(s, Ext. Orth.,  Tv  = 0)  and KS-DFT methods, 

respectively, are exactly degenerate such that the olive curve completely obscures the 

black reference curve. On the other hand, failure to zero out the nonadditive kinetic 

potential while enforcing external orthogonality within the new embedding theory leads 

essentially to worse PECs than those from conventional DFT-in-DFT (compare the blue 

curves in Figures 40 and 41 to the red and green ones).   

HFHF

HF
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Figure 41. PECs of the  complex computed using the PW91 functional and aug-

cc-pVTZ basis set in the methods shown in the inset. The optimized geometry 

of Ref. [301] was used and the  intermolecular separation (R) was 

varied. Note that the KS-DFT (black) and KSCED(s, Ext. Orth., Tv  = 0) 

(olive), curves are degenerate. Thus, the olive curve completely obscures the 

black curve. 

Figure 42 contains PECs of the separation of the NeHe  into atoms, obtained 

with the PW91 functional. The reference KS-DFT curve is again marked with a symbol. 

The data describing the curves are in Table 13. As can be seen in Figure 42 and Table 13, 

KSCED(s) calculations of this complex lead to an equilibrium separation that is 0.30 Å 

too short and an interaction energy that is 0.19 kcal/mol too high in comparison with KS-

DFT. On the other hand, accounting for external orthogonality in KSCED(s) without 

setting Tv  = 0 leads to a minimum that is 0.39 Å too long and an interaction energy that 

is 0.17 kcal/mol too low compared to KS-DFT values obtained with the same functional 

(compare the blue KSCED(s, Ext. Orth.) curve in Figure 42 to the black KS-DFT curve 

which is covered by the olive KSCED(s, Ext. Orth.,  Tv  = 0) curve). Again, the 

HFHF

HF
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KSCED(s, Ext. Orth.,  Tv  = 0) and KS-DFT results are indistinguishable, indicating that 

enforcing external orthogonality and setting Tv  = 0 within the new embedding theory 

reproduces reference KS-DFT results exactly. 

 

Figure 42. PECs of the   complex computed using the PW91 functional and aug-

cc-pVTZ basis set in the methods shown in the inset. Note that the KS-DFT 

(black) and KSCED(s, Ext. Orth., Tv  = 0) (olive) curves are degenerate. Thus, 

the olive curve completely obscures the black curve. 

 

Fraction of Single Determinant Exchange in Hybrid Functionals 

Table 14 shows the effect of varying the fraction of single determinant exchange 

in hybrid functionals on the disparity between KS-DFT and conventional DFT-in-DFT 

embedding total energies. The electron’s self-energy has been thought to contribute to 

weaknesses in conventional DFT-in-DFT embedding theory and the use of hybrid 

functionals was suggested [322, 323] as a means of remedying the situation. 

 

NeHe
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Table 14. Effect of the fraction of single determinant exchange in hybrid functionals on 

the discrepancy between KSCED(s) compared with KS-DFT energies. All 

calculations were done with the aug-cc-pVTZ basis; the BeLi   

calculations were done at 2.6 Å while those of OHOH 22   used the 

optimized geometry of Ref. [325]. 

Fraction of 

Single 

Determinant 

Exchange 

(hx) 

Total Energies (a.u.) ∆E = E(KS-DFT) 

– E(KSCED(s)) 

 E(KS-DFT) E(KSCED(s))  

BeLi   (B3LYP) 

0.04 -21.891671360364 -21.910489868010 0.018818507646 

0.10 -21.926275975279 -21.946265485470 0.019989510191 

0.20 -21.984084155181 -22.006189891727 0.022105736546 

0.22 -21.995665672324 -22.018222696085 0.022557023761 

0.24 -22.007253768098 -22.030272420481 0.023018652383 

0.26 -22.018848422210 -22.042339520133 0.023491097923 

0.28 -22.030449614588 -22.054424478564 0.023974863976 

0.30 -22.042057325379 -22.066527809243 0.024470483864 

0.32 -22.053671534949 -22.078650058669 0.024978523720 

0.34 -22.065292223874 -22.090791808693 0.025499584819 

0.36 -22.076919372944 -22.102953679274 0.026034306330 

0.40 -22.100192975707 -22.127340472416 0.027147496709 

OHOH 22   (BHandHLYP) 

0.3 -152.871040267362 -152.874371731043 0.003331463681 

0.4 -152.860938326125 -152.865550519780 0.004612193655 

0.5 -152.851386653639 -152.857334066069 0.005947412430 

0.6 -152.842368786515 -152.849728379705 0.007359593190 

0.7 -152.833869276532 -152.842747349011 0.008878072479 

0.8 -152.825873584780 -152.836416692710 0.010543107930 

OHOH 22   (B1B95) 

0.28 -152.871301065601 -152.874216293352 0.002915227751 

0.38 -152.861562826376 -152.865710111952 0.004147285576 

0.48 -152.852373589586 -152.857799215093 0.005425625507 

0.58 -152.843716707634 -152.850487127785 0.006770420151 

0.68 -152.835576580736 -152.843784118447 0.008207537711 

OHOH 22   (MPW3LYP) 

0.2 -152.938318737311 -152.941478197217 0.003159459906 

0.3 -153.100373174713 -153.104731151947 0.004357977234 

0.4 -153.263167359929 -153.268735198459 0.005567838530 

0.5 -153.426685309317 -153.433490131835 0.006804822518 

0.6 -153.590912114820 -153.599000281007 0.008088166187 
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If this were indeed the case; then, the accuracy of embedding theory energies 

should improve if the fraction of single determinant exchange were increased in hybrid 

functionals. In the present study, calculations of the BeLi   and OHOH 22   

complexes were performed using the hybrid functionals indicated in Table 14 in 

conventional DFT-in-DFT and KS-DFT methods while varying the fraction of single 

determinant exchange in the functionals (at the same geometry of the complex). 

Observing the last column of Table 14, it can be seen that increasing the fraction of single 

determinant exchange rather increased the discrepancy between the energies of KS-DFT 

and KSCED(s) for all hybrid functionals tested with the OHOH 22   and BeLi   

systems. This is contrary to the prediction of Laricchia et al. [322, 323] on the use of 

hybrid functionals as a remedy for DFT-in-DFT.  

On the other hand, the newly developed DFT-in-DFT embedding protocol 

described and implemented in this dissertation was found to be more-or-less insensitive 

to variations in the fraction of single determinant exchange (hx), virtually reproducing the 

reference KS-DFT energies for the different values of hx in all tested hybrid functionals. 

Concluding Remarks 

In this Chapter, the performance of the newly developed variant of DFT-in-DFT 

embedding that includes external orbital orthogonality as an additional constraint in 

deriving the coupled Euler-Lagrange equations, which are solved to self-consistency for 

the subsystems, was assessed. Irrespective of the DFT functional type, the new variant of 

embedding theory, using supermolecular basis expansions, KSCED(s, Ext. Orth.,  Tv  = 

0), was found to reproduce reference KS-DFT results exactly, leading to only negligible 
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density deviations for all the systems tested. It stands to reason, therefore, that the present 

embedding approach corrects for the inherent limitation of “lack of tendency” in 

conventional DFT-in-DFT embedding. “Tendency” is used here with respect to the 

performance of DFT functionals in conventional KS-DFT. There is a general tendency 

for GGA functionals to improve LDA results in KS-DFT. There is no such general 

tendency in previous formulations of DFT-in-DFT  embedding theory. In some instances, 

DFT-in-DFT embedding results with GGA functionals are better than those from LDA 

(in comparison with reference KS-DFT results) and at other instances, they are worse. 

The present study is not the first to find such problems with conventional DFT-in-DFT. 

For example, as noted before, the GGA KSCED geometries of all the complexes 

considered in Ref. [315] were essentially worse than those from LDA KSCED when 

compared with KS-DFT.  In addition, the electronic couplings computed for π-stacked 

nucleobase dimers in Ref. [345] by KSCED were worsened when semilocal GGA 

functionals were used in comparison with LDA and reference results. The results 

presented in this Chapter, however, verify that the new embedding theory is capable of 

exactly reproducing reference KS-DFT data (at least for the tested systems), irrespective 

of the DFT functional type. Therefore, instabilities in embedding results due to functional 

type are completely nullified in the new embedding protocol. Moreover, the new 

technique completely avoids the use of kinetic functionals that introduce new sources of 

error within DFT-in-DFT. 

Analyses of deformation densities for different systems with varying degrees of 

interaction strengths between subsystems were presented. The results showed, in general, 

that, in the absence of external orthogonality, Δρ  > 0 at the artificial boundary between 
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subsystems introduced in embedding theory. In other words, there is some electron 

density in the interfacial region between subsystems that conventional embedding theory 

fails to account for; and this density correlates with the strength of interaction between 

the subsystems. For example, the buildup of electron density was found in KSCED(x) 

calculations to be negligible at the interface between 4CH  molecules in the 44 CHCH   

complex but substantial in complexes such as the parallel displaced (PD) π-stacked 

6666 HCHC   and hydrogen-bonded complexes considered in this study. A key feature of 

partitioning a system’s density is that of introducing a nodal surface in the system. 

Although embedding schemes seek to account for interactions between subsystems by 

including nonadditive terms, such terms depend on subsystems’ densities and a total 

density that is obtained as a sum of subsystems’ densities with the inherent limitation of a 

nodal surface having already been introduced into the system. It is thus not surprising that 

such added terms fail to exactly compensate for the electron density at the interface in 

embedding theory.  We have, however, shown in this Chapter that partitioning a system’s 

density (as is done in DFT-in-DFT embedding) can be made exact by constraining 

subsystems’ orbitals to be orthogonal to each other and enforcing the vanishing of non-

additive kinetic energy. By so doing, total densities and energies are well reproduced, 

irrespective of DFT functional type or the strength of interaction between the subsystems. 

In optimized effective potential embedding (emb-OEP) [69, 70] and partition 

DFT (PDFT) [317] methods, a unique embedding (partition) potential is introduced as a 

Lagrange multiplier to the density constraint in Eq. (1.5). It would be of much interest to 

obtain density difference maps similar to those presented here in such approaches. In 

particular, it is unclear whether such added potentials correct the problem introduced by 
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the artificial interface, given that the boundary introduced in embedding theory is 

essentially a nodal surface that is nonexistent in a normal KS-DFT calculation on the total 

system. For example, a conventional DFT-in-DFT embedding calculation on the 

OHF 2  complex fixes electron number on F  and OH2  fragments and consequently 

estimates a density for F  that is too high, assumes zero density at the interface between 

the fragments, and estimates a density around the H of OH2  closest to F  that is too low 

compared to KS-DFT densities. This notwithstanding, the new embedding recipe verifies 

that partitioning a system’s density is possible provided strict orthogonality conditions 

are enforced between the subsystems. 

 By extending the usual monomer basis expansion, KSCED(m), to include basis 

functions in the complementary subsystem centered on atoms close to the interface, a less 

computationally intensive approach was realized, KSCED(e), that gives results close to 

those obtained with the supermolecular basis, KSCED(s), for the systems tested. 

KSCED(e, Ext. Orth.,  Tv  = 0) calculations were also found to give results that were 

closely related to those from KSCED(s, Ext. Orth.,  Tv  = 0) and reference KS-DFT.  

 The newly developed computer program for computing electron densities was 

also verified to be accurate (e.g., comparing Images C and D of Figure 36 to Figure 4 of 

Ref. [324], besides preliminary tests that found the new program to integrate densities of 

molecules over all space to give the total number of electrons in the molecules). 
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CHAPTER IX

GVVPT2 STUDIES OF LITHIUM AND BERYLLIUM TRIMERS 

Introduction 

 This Chapter discusses GVVPT2 studies of 3Li  and 3Be . The study of metal 

dimers is but a first step to understanding bonding in clusters and bulk metals. It is only a 

first step because the properties of even nanoscale clusters but bulk materials particulatly 

can, in general, be quite different from those of their constituents.  For example, the force 

constants of 2Sc , 2Cr , and 2Mn  are 0.76, 3.54, and 0.09 mdyn/Å, respectively.  For the 

metal trimers, the values drop to 0.54 and 1.91 mdyn/Å for 3Sc  and 3Cr , respectively, but 

increases to 0.37 mdyn/Å for 3Mn  [346].  In addition, 2Mn  is generally known to be 

antiferromagnetic [263, 347] whereas both 4Mn  and 5Mn  clusters are ferromagnetic 

[237].  Moreover, the 2Mn  bond length has been experimentally determined as 3.4 Å 

[347] whereas in the bulk metal, the Mn-Mn distance is only 2.25-2.95 Å [250].  

These examples demonstrate how the properties of metals may change on going 

from two atoms to small clusters and then to the bulk metals. It is for this reason that after 

elucidating the bonding in diatomic metallic molecules, the next step should be to 

consider small clusters of metal atoms and such clusters consisting of three atoms are a 

natural starting point. Moreover, since the ultimate goal is to be able to embed GVVPT2 

calculations in to large systems (that is, being able to carry out GVVPT2 calculations of 

small molecules or clusters of interest that are embedded in a larger environment, e.g., a 
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molecule encapsulated in a C-60 cage or a solvated molecule) where the larger 

environments are described at lower levels of theory such as at the DFT level, it is 

necessary to first study small isolated clusters before delving into an embedding 

procedure involving GVVPT2 and DFT. It was also for this reason that the newly 

developed accurate DFT-in-DFT embedding theory method was presented prior to the 

present Chapter. Embedding theory schemes involving wave function theory (WFT) 

methods embedded in DFT (i.e., WFT-in-DFT embedding) have previously been 

developed [67, 68, 76]. In such methods, the environment subsystem is often treated at 

the DFT level, generating an embedding potential which is then included as an external 

potential in WFT calculations on the embedded subsystem. Such procedures are quite 

elegant and Khait and Hoffmann [68] showed that such recipes permit high level 

descriptions of not only the ground states of embedded subsystems but also their low-

lying excited states, provided such excited states are indeed localized within the 

embedded subsystems. The main problem with previous embedding formulations in this 

regard is the inaccurate description of electron density at the interface of subsystems as 

was observed in Chapters VII and VIII in the case of conventional DFT-in-DFT 

embedding theory. However, the newly developed DFT-in-DFT embedding theory 

method that was presented in Chapter VII was shown [5] to be applicable also in the case 

of WFT-in-DFT embedding theory. The effort to investigate metal triatomics at the 

GVVPT2 level of theory was undertaken as a first step towards the ultimate goal of 

embedding GVVPT2 calculations of small clusters in large environment subsystems. 

The rest of this Chapter is organized as follows. In the present subsection, a brief 

review of previous studies of 3Li and 3Be  is given; the next subsection describes 
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computational details; a third subsection presents and discusses results obtained in the 

present study and makes comparisons with previous theoretical and experimental data on 

the studied systems; while a final subsection contains concluding remarks. 

Previous Studies of 3Li  

Small clusters of Li are a natural starting point for studies of metallic clusters 

since Li is the lightest and simplest of such elements. 3Li  has been the subject of many 

previous electronic structure and dynamics studies [348]. Geometry optimizations and 

construction of potential energy surfaces (PESs) of such small trimers are a prerequisite 

for molecular dynamics studies. PESs of alkali metal trimers provide important 

information such as pseudorotation barriers, three-fold symmetric wells, as well as 3hD

Jahn-Teller crossings [349]. Such surfaces have therefore been widely studied [350-356]. 

Ehara and Yamashita [349] determined the ground state geometry of 3Li  as an isosceles 

triangle, corresponding to the 2

2 B irreducible representation of the 2vC
 
point group, 

through state-averaged CASSCF/MRCI with a triple-ζ quality basis set. The same authors 

found the 1

2 A1  to be only 0.01 eV less stable than the 2

2BX state at equilibrium whereas 

the first excited 2

2 B state lay much higher (i.e., at 1.28 eV). In this study, the obtuse 

isosceles triangular geometry of 2

2BX  with sides 12R  = 13R  = 2.79 Å, 23R  = 3.28 Å, a 

symmetric stretching frequency ( eω ) of  325 cm
-1

, a binding energy ( eD ) of 13.73 

kcal/mol, and an apex angle of 71.8º was found to be 74 cm
-1

 (0.885 kcal/mol) more 

stable than  the acute isosceles triangular 2vC  structure with 12R  = 13R  = 3.06 Å, 23R  = 

2.68 Å, symmetric stretching frequency ( eω )  337 cm
-1

, and apex angle 52.0º. Meanwhile 
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an equilateral triangular structure for  3Li  with sides 12R  = 13R  = 23R  = 2.90 Å lay much 

higher (i.e., at 2423 cm
-1 

or 6.93 kcal/mol) energetically. On the other hand, a FCI 

calculation that used the three valence electrons of 3Li  while freezing the 1s electrons 

through use of an augmented effective core potential (ECP) basis set [357] predicted the 

lowest spin-aligned quartet state, 2

4 A1   ( 2

4 B  in 2vC  symmetry), to be an equilateral 

triangle ( 3hD  symmetry) with bond length 3.10 Å and binding energy 11.76 kcal/mol 

[350]. Such an interaction energy is rather large for a spin-aligned 3Li  state given that the 

spin-aligned 2Li  is a van der Waals species just like 2Mn . Stronger bonds have been 

reported in smaller clusters of more than two Mn atoms [250, 346] compared to the dimer 

[347]. The Ref. [350] study suggests a similar scenario for 3Li  in comparison with 2Li . 

Such stronger interactions in clusters of three and more atoms as seen in the cases of 3Li  

[350] and 3Mn [346] can be explained in terms of contributions from three-body 

interaction terms [352]. A CCSD(T) study [358] obtained a 2

2BX  for 3Li  corresponding 

to an obtuse isosceles triangular geometry with 12R  = 13R  = 2.761 Å, 23R  = 3.237 Å, and 

an apex angle of 71.8º when using the cc-pwCVQZ basis set. A CASSCF/MRCISD study 

[359] of the low-lying doublet states of 3Li  that used the technique of 

macroconfigurations (κ(n)s) as was used in the present studies, also found a 2

2BX  

ground state for 3Li  with 12R  = 13R  = 2.763 Å, 23R  = 3.240 Å, and an apex angle of 

71.8º when using the cc-pwVTZ. A 2

2BX  ground state was also obtained by Ghassemi et 

al. [360] in MCSCF/MRCI calculations using the aug-cc-pVTZ basis set. For this state, 

they obtained 12R  = 13R  = 2.77 Å, 23R  = 3.295 Å, and an apex angle of 73º. These 
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authors additionally found the 1

2 A1  state of 3Li  to have an  acute isosceles triangular 

2vC  structure with 12R  = 13R  = 3.08 Å, 23R  = 2.61 Å, and an apex angle of 51º and 

closely associated with the 2

2BX  ground state; the minima of the two states being 

separated by a conical intersection at the totally symmetric E12   configuration of the 3hD  

point group. There are seemingly no experimental data on 3Li  apart from the resonant 

two-photon ionization (RTPI) spectra of its E22   excited state obtained by Wolf et al. 

[361]. 

Previous Studies of 3Be  

Just like 3Li , there appears to be no experimental data on the ground state of 3Be . 

However, the molecule has been the subject of several theoretical studies [362-377]. 

Differences exist in terms of bonding in the dimer and trimer of Be. Whereas  2Be  is 

very weakly bound with the atoms held together mostly by van der Waals forces (e.g., 

MP4 predicts a binding energy of only 6.0 kcal/mol [363]), 3Be  exhibits significant 

bonding (e.g., MP4 predicts a binding energy of 56.0 kcal/mol for 3Be  [363]). This 

relatively strong bonding interaction in comparison with the dimer was attributed to 

three-body interactions, contributing up to 76% to the bond energy [362]. The binding 

strength in Be clusters generally increases with cluster size; e.g., whereas Hartree-Fock 

predicts the dimer and trimer of Be to be virtually unbound [377], the tetramer is bound 

by 35.0 kcal/mol at this level of theory [375]. Electron correlation effects are particularly 

important to describing the bonding in 3Be . Without sufficiently accounting for dynamic 

and non-dynamic electron correlation effects, inadequate results are obtained [366]. 
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Watts et al. [365] found the CCSD results of 3Be  to be substantially different from 

MRCI and FCI results. The same observation was made by Lee et al. [365] who obtained 

a bond energy of 24.0 kcal/mol for 3Be  at the MRCI level and concluded that even the 

best singly-reference approach such as CCSD was incapable of quantitative accuracy in 

the determination of the binding energy for 3Be .  

Many theoretical methods agree on the ground state of 3Be  as a singlet 

equilateral triangular structure ( 3hD  symmetry) corresponding to the 1

1A  term. For this 

term, MRCI/[4s2p1d] predicts a bond energy ( eD ) of  13.9 kcal/mol and bond length  

( eR ) of 2.32 Å [364]; MRCI/[7s4p2d] predicts eD  = 19.02 kcal/mol and eR = 2.23 Å 

[375]; MRCI/[5s3p2d1f, ANO basis] gives eD  = 22.50 kcal/mol and eR = 2.22 Å [376]; 

CCSD(T)/ [5s3p2d1f, ANO basis] obtains eD  = 20.40 kcal/mol and eR = 2.23 Å [376]; 

while FCI/[3s2p1d, ANO basis] gives eD  = 17.29 kcal/mol and eR = 2.27 Å [370] [N.B.: 

Bond energy here refers to the energy required to dissociate one mole of the trimer into 

atoms]. These data are summarized in Table 42 together with data from other methods 

compared with data from the present study. The data from previous MRCI studies with 

different basis sets [364, 375, 376] indicates a fairly strong basis set effect involved in the 

description of 3Be ; with large basis sets tending to predict larger eD  but smaller  eR  

values. The same trend was observed at the GVVPT2 level as will be seen in the Results 

and Discussion subsection of this Chapter. Lee [372] analyzed basis set superposition 

errors (BSSE) for 3Be at the MP2 and CCSD(T) levels of theory. Whereas such effects 

were minimal in calculations for which the core 1s electrons were frozen, they were 

significant in all-electron-correlated calculations for all tested basis sets. In the former set 
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of calculations, CBS limit eD  values were 32.63 kcal/mol and 24.28 kcal/mol for MP2 

and CCSD(T), respectively (obtained by extrapolating cc-pVDZ and cc-pVTZ energies). 

In the latter set of calculations, CBS limit eD  values were 31.38 kcal/mol and 24.79 

kcal/mol for MP2 and CCSD(T), respectively (obtained by extrapolating cc-pCVDZ and 

cc-pCVTZ energies).  

Computational Details 

All calculations were done using the 2vC  point group. The active spaces used in 

calculations of 3Li  and 3Be  consisted of 2s- and 2p-derived MOs. These orbitals were 

partitioned into reference macroconfigurations (κ(n)s) that were used in MCSCF and 

GVVPT2 calculations. The partitioning schemes were as follows. 

In the case of 3Li , all 2s-derived MOs were placed together in the first valence 

subspace while 2p-dominated MOs constituted a second subspace. Three reference κ(n)s 

were defined as follows, 

κ(n)  =     0222112111

3

211 5b4b3b2b1b1a7a6a5a2b4a3a                (9.1) 

κ(n)  =     1222112111

2

211 5b4b3b2b1b1a7a6a5a2b4a3a                (9.2) 

κ(n)  =     2222112111

1

211 5b4b3b2b1b1a7a6a5a2b4a3a                (9.3) 

This set of reference κ(n)s was used to optimize the structure of 3Li  both at the MCSCF 

and GVVPT2 levels using cc-pVDZ and cc-pVTZ basis sets. The 1s-derived MOs were 

frozen in both MCSCF and GVVPT2 calculations. It should be recalled here that studies 

of low-lying doublet states of 3Li  were previously performed at the MRCISD level of 

theory that used the technique of κ(n)s [359]. However, such studies involved a larger 
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active space in which MRCISD calculations included single and double electron 

excitations from the subspace of 1s-derived MOs into high-lying orbitals. The large 

active space consisted of three active subspaces and ten reference κ(n)s that were used to 

construct an entire CAS space. The purpose of investigating  3Li  here is two-fold: firstly, 

to assess the capability of GVVPT2 for describing this system (using smaller active 

spaces) in comparison with the more computationally demanding MRCISD method; 

secondly, to assess the importance of the 2p-derived MOs of Li in the active space. In 

order to investigate the second point, additional calculations of the 2

2BX ground state of 

3Li  were performed with an active space of only 2s-derived MOs (i.e., with the 2p-

derived MOs considered as virtual orbitals). A single reference κ(n) was used in such 

calculations viz. 

κ(n)  =   3211 2b4a3a                                           (9.4) 

Meanwhile, the spin-aligned 2

4 B1  state of  3Li  was also computed using reference κ(n)s 

(9.1) to (9.3).  

 Calculations of the 1

1AX   ground state of 3Be  partitioned the active orbitals in a 

way similar to that used to construct reference κ(n)s (9.1) to (9.3) for 3Li . In the case of  

3Be , however, five reference κ(n)s were specified as follows. 

κ(n)  =     0222112111

6

211 5b4b3b2b1b1a7a6a5a2b4a3a                (9.5) 

κ(n)  =     1222112111

5

211 5b4b3b2b1b1a7a6a5a2b4a3a                (9.6) 

κ(n)  =     2222112111

4

211 5b4b3b2b1b1a7a6a5a2b4a3a                (9.7) 

κ(n)  =     3222112111

3

211 5b4b3b2b1b1a7a6a5a2b4a3a                (9.8) 
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κ(n)  =     4222112111

2

211 5b4b3b2b1b1a7a6a5a2b4a3a                (9.9) 

All calculations used the cc-pVDZ and cc-pVTZ basis sets, except for calculations of the  

2

4 B1  state of  3Li  for which only cc-pVDZ was used. Additional calculations involved 

the construction of the PEC of the symmetric dissociation of linear 3Be  into atoms. Such 

calculations were done in  2hD  symmetry using the cc-pVDZ and cc-pVTZ basis sets.  

Results and Discussion 

Beryllium Trimer ( 3Be ) 

 The equilibrium structure of the 1

1AX   ground state of 3Be  is an equilateral 

triangle as shown in the schematic diagram in Figure 43. The Be-Be bond distance and 

binding energy for this structure, obtained at different levels of theory are shown in Table 

15. 

 

Figure 43. Schematic diagram of the optimized equilateral triangular structure of . 

 

The data in Table 15 indicate that calculations of 3Be  have a strong basis set dependence. 

For example, the data in the first three rows of Table 15 were obtained at the same level 

of theory (MRCI based on a CASSCF reference), yet the binding energies ( eD ) are quite 

3Be
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different from each other whereas the bond lengths ( eR ) vary only slightly. It is shown 

that the three sets of data were obtained with different basis sets of increasing size from 

the first to the third row of the table. The binding energy also increases in this order, with 

the [4s2p1d] ANO Basis predicting the least eD  (13.84 kcal/mol) and the 

(12s7p4d3f)/[5s3p2d1f] predicting the largest (22.50 kcal/mol). On the other hand, the 

bond length decreases only slightly from eR  = 2.32 Å for the [4s2p1d] ANO Basis and 

eR  = 2.22 Å for the (12s7p4d3f)/[5s3p2d1f] basis set. These trends are repeated for the 

other methods, with large basis sets tending to predict high binding energies while only 

slightly decreasing the equilibrium bond distance. For example, GVVPT2 binding energy 

with cc-pVTZ is nearly double the cc-pVDZ value whereas the bond lengths obtained 

with the two bases differ by only 0.04 Å. 

Table 15. Binding energies ( eD ) and equilibrium Be-Be bond distances ( eR ) of the 

equilateral triangular ( 3hD  symmetry) 3Be  molecule obtained from different 

methods and basis sets. 

Method Basis Set 
eD (kcal/mol) eR (Å) 

CASSCF/MRCI
a
 [4s2p1d] ANO Basis 13.84 2.32 

CASSCF/MRCI
b
 [7s4p2d] 19.02 2.23 

CASSCF/MRCI
c
 (12s7p4d3f)/[5s3p2d1f] 22.50 2.22 

CCSD(T)
c
 (12s7p4d3f)/[5s3p2d1f] 20.40 2.23 

CASSCF/AQCC
d
 aug-cc-pV5Z 28.88 (29.51)

e
 2.17 

Active space CCSDt
f
 cc-pVTZ 21.20 2.22 

MP4(SDTQ)
g
 6-311 + G(3df) 25.90 2.24 

FCI
h
 [3s2p1d] ANO basis 17.20 2.27 

GVVPT2
i
 cc-pVDZ 12.91 2.26 

GVVPT2
i
 cc-pVTZ 21.68 2.22 

a
Ref. [364], 

b
Ref. [375], 

c
Ref. [376], 

d
Ref. [374], 

e
Binding Energy obtained with an active 

space of 12 electrons in 14 MOs (where one MO of the set of z2p derived MOs is 

removed from the active space of 1s-, 2s-, and 2p-derived MOs), 
f
Ref. [377], 

g
Ref. [366], 

h
Ref. [370], 

i
This work. 
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 Other studies have also found calculations of 3Be  to show a strong basis set 

dependence. For example, when using a small basis set, [4s2p], Watts et al. [364] 

obtained dissociative energy profiles for 3Be  at different levels of theory (FCI, MRCI, 

CISD, CISDTQ, MBPT4, CCSD, and CCSDT), whereas a relatively large basis set, 

[4s2p1d, ANO basis], led to all methods predicting the molecule to be bound (for MRCI, 

the authors obtained eD  = 13.84 kcal/mol and eR  = 2.32 Å). The GVVPT2 values of eD  

= 12.91 kcal/mol and eR  = 2.26 Å obtained with cc-pVDZ are quite close to the MRCI 

values of Watts et al. [374] and the FCI bond length of eR  = 2.27 Å [370]. Whereas the 

MRCI results were obtained from a CASSCF reference (that obviously contained more 

CSFs), the GVVPT2 calculations used the partitioned active space that led to reference 

κ(n)s (9.5) to (9.9) for use in the construction of a reference MCSCF wave function.  

 Since different methods have verified the dependence of these calculations on the 

basis set used (and particularly, the sensitivity of the binding energy to basis set size and 

quality) it is thus not surprising that GVVPT2 predicted binding energies differ from 

those obtained with other methods since those methods used different bases (note that the 

CCSDt binding energy of 21.20 kcal/mol is quite close to the GVVPT2 value of 21.68 

kcal/mol obtained with the same basis set, cc-pVTZ). The AQCC [374] binding energy of 

28.88 kcal/mol (obtained with an active space of all 12 electrons of 3Be in 13 MOs 

derived from 1s, 2s, and 2p minus two z2p derived MOs and using the aug-cc-pV5Z 

basis set) is about 7 kcal/mol larger than the GVVPT2 value with cc-pVTZ although the 

GVVPT2 bond length is only 0.05 Å longer.  By adding one more z2p derived MO into 

the active space leading to a space of 12 electrons and 14 orbitals (12e, 14o), a slightly 
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higher binding energy (29.51 kcal/mol) was obtained in the AQCC study [374]. These 

authors oriented the 3Be  molecule to lie on the xy-plane in their study such that the 

z2p derived MOs were the least important. In the present study (and as shown in Figure 

43), the 3Be  molecule was placed on the yz-plane and 1s electrons were frozen in all 

calculations. The AQCC study correlated the 1s electrons. In GVVPT2 calculations of 

3Be , the leading configuration was 2

2

2

1

2

1 2b4a3a  contributing 74% to the overall wave 

function with both double and triple-ζ basis sets (N.B. The occupied orbitals in the 

indicated configuration are 2s-derived MOs). This weight percent was the same at the 

equilibrium geometry and at the dissociation limit.   

 
Figure 44. PECs of the symmetric dissociation of linear  (  symmetry) computed 

at the GVVPT2 level of theory using the cc-pVDZ and cc-pVTZ basis sets, 

compared with the FCI curve (Ref. [370]) that used the [3s2p1d] ANO basis 

set. 

 Figure 44 contains PECs of the symmetric dissociation of linear , obtained at 

the GVVPT2 level using the cc-pVDZ and cc-pVTZ basis sets, and compared with a 

3Be 2hD

3Be
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previous FCI curve. In these calculations (done in  symmetry), the central atom was 

held fixed while the edge atoms were gradually pulled apart. 

As can be seen in Figure 44, the GVVPT2 PEC obtained with cc-pVDZ is quite 

similar to the FCI curve at short bond lengths. The FCI curve predicted an inner deep 

minimum and an outer shallow van der Waals minimum. GVVPT2 calculations 

reproduce these essential features of the curve including the hump between the deep inner 

minimum and outer van der Waals minimum. Again, given that the FCI calculations were 

done with a different basis set than was used in the present studies, it is not surprising that 

the binding energies are not in agreement. As was observed in the case of the triangular 

molecule, binding energies of the linear species are also found to depend fairly strongly 

on the basis set used. This fact was observed also by Vetere et al. [378] who found the 

potential well depths for  2Be  and linear 3Be  to correlate with basis set size, with small 

basis sets leading to completely dissociative energy profiles. Their calculations of linear 

chains of 4Be  and 5Be  also predicted double minima as observed here for linear 3Be .  

Table 16. Binding energies ( eD ) and equilibrium Be-Be bond distances ( eR ) of the 

symmetric dissociation of linear ( 2hD  symmetry) 3Be  molecule obtained at 

the GVVPT2 level of theory, compared with previous FCI results. 

Method Basis Set Re 

(minimum) 

(Å) 

R  

(maximum) 

(Å) 

R (Van der 

Waals min.) 

(Å) 

Binding 

Energy (De) 

(kcal/mol) 

GVVPT2 cc-pVDZ 2.25 3.14 4.84 7.61 

GVVPT2 cc-pVTZ 2.21 3.23 4.53 11.99 

FCI
a
 ANO 

[3s2p1d] 

2.26 3.55 4.02 8.76 

FCI
b
 ANO 

[5s3p2d] 

2.23 - - 11.40  

aRef. [370], 
b
Ref. [378]. 

2hD
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 Table 16 contains data describing the curves in Figure 44. It can be seen that 

GVVPT2 results with cc-pVDZ compare well with FCI results with the [3s2p1d] ANO 

basis set [370] whereas GVVPT2 results with cc-pVTZ are also close to the FCI studies 

of Vetere et al. [378] with a slightly larger basis set, [5s3p2d] ANO basis set. However, 

GVVPT2 predicts the maximum to occur at a slightly shorter bond length and the outer 

van der Waals minimum to occur at a slightly longer bond length than does FCI [370]. 

Lithium Trimer ( 3Li ) 

Parameters describing the optimized geometry of 3Li  are shown in Table 17. Its 

2

2BX ground state is found to be an obtuse isosceles triangle. Also included is data on the 

computed 2

4 B1  state of the molecule. 

Table 17. Equilibrium Li-Li bond distances ( eR  and eR ) and apex angle ( ) of the 

optimized geometries of  2

2BX  and 2

4 B1  states of the 3Li
 
molecule obtained 

at the GVVPT2 level of theory, compared with previous results. 

Method Basis Set 
eR  (Å)  eR  (Å)   (degrees) 

2

2BX  

CASSCF/MRCI
a
 cc-pVTZ 2.79 3.21 71.8 

MCSCF/MRCI
b
 aug-cc-pVTZ 2.77 3.30 73.0 

CCSD(T)
c
 cc-pwVQZ 2.76 3.24 71.8 

CASSCF/MRCISD
d
 cc-pwVTZ 2.76 3.24 71.8 

GVVPT2
e
 cc-pVDZ 2.83 3.34 72.5 

GVVPT2
e
 cc-pVTZ 2.79 3.27 72.0 

GVVPT2
f
 cc-pVDZ 2.83 3.28 70.9 

GVVPT2
f
 cc-pVTZ 2.79 3.25 71.1 

2

4 B1  

GVVPT2
e
 cc-pVDZ 3.18 3.17 59.89 

a
Ref. [349], 

b
Ref. [360], 

c
Ref. [358], 

d
Ref. [359], 

e
This work, 

f
This work (small active 

space of only three 2s-derived active MOs as indicated in reference κ(n)  (9.4)). 

 



238 

 

The data in Table 17 show general agreement between GVVPT2 results in 

comparison with those from other high level ab initio methods. GVVPT2 results with a 

partitioned active space of 2s- and 2p-derived MOs and cc-pVTZ gave the same eR  (2.79 

Å) and nearly the same eR  (3.27 vs 3.21 Å) and apex angle (72.0º vs 71.8º) compared 

with MRCI calculations that used a CASSCF reference [349]. Interestingly, GVVPT2 

results that used a small active space of only 2s-derived MOs and cc-pVTZ gave results 

in very good agreement with MRCISD calculations [359] that used all 1s-, 2s-, and 2p-

derived MOs and correlated all 12 electrons of Li. GVVPT2 bond lengths of eR  = 2.79 Å 

and eR  = 3.25 Å and apex angle of   = 71.1º agree with the MRCISD values of eR  = 

2.76 Å and eR  = 3.24 Å and apex angle of   = 71.8º. These results suggest that the 1s 

electrons (as well as the 2p-derived MOs) of Li may not play a major role in the bonding 

in the 2

2BX  state of 3Li . This fact is supported by comparing GVVPT2 results obtained 

with cc-pVTZ using an active space of 2s- and 2p-derived MOs with those obtained with 

an active space of only 2s-derived MOs. The data compare as follows:  eR  = 2.79 vs 2.79 

Å, eR  = 3.27 vs 3.25 Å and   = 72.0º vs 71.1º for large and small active spaces, 

respectively. Including the 2p-derived MOs into the active space slightly increases eR
 
by 

0.02 Å and   by 0.9 Å. It is quite interesting also that GVVPT2 results obtained with 

cc-pVDZ compare fairly well with MCSCF/MRCI results [360] obtained with a large 

basis set (aug-cc-pVTZ). The data compare as follows:  eR  = 2.83 vs 2.77 Å, eR  = 3.34 

vs 3.30 Å and   = 72.5º vs 73.0º for GVVPT2 and MCSCF/MRCI, respectively. These 

results suggest that basis set effects may be small in the description of 3Li . This fact was 
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noted in the Ref. [359] study where different basis sets used to study low-lying doublet 

states of 3Li  led to similar results.  

 The GVVPT2 data obtained for the 2

4 B1  state of 3Li  suggests an equilateral 

geometry as was obtained also by Colavecchia et al. [350] at the FCI level of theory. 

Concluding Remarks 

This Chapter presented studies of low-lying states of 3Be  and 3Li
 
as were done 

at the GVVPT2 level of theory. Overall, GVVPT2 was found to predict geometries that 

were in good agreement with results from previous studies that used other high level 

methods, including FCI. In particular, the present study demonstrated that small active 

spaces partitioned into reference κ(n)s are sufficient for accurately describing, at least, 

the ground states of the studied molecules. In the case of 3Li , this study suggests that 

correlating 1s electrons of Li does not change results significantly. Although the present 

work did not include calculations that correlated 1s electrons of Li, yet comparison of 

results from the present work with a previous MRCISD study [359] that had considered 

such core-valence correlation supports the conclusion that 1s electrons may not be 

important in the description of the bonding.  

Calculations of 3Be  revealed a strong dependence of the quality of results on the 

type and size of the basis set used. This dependence was shown mostly in binding 

energies as evidenced in e.g., the PECs in Figure 44 for the symmetric dissociation of 

linear 3Be  ( 2hD symmetry) into atoms. GVVPT2 predicted the 

g

1Σ1  state of linear 3Be  

to lie 0.42 eV higher than the 1

1AX   ground state of triangular 3Be  at the equilibrium 

geometry when using the cc-pVDZ basis set. This is in fairly good agreement with a 
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previous FCI study [370] that had found these two states to be separated by about 0.36 

eV using the [3s2p1d] ANO basis set.  

Calculations on the supposedly simple Li and Be triatomics are expected to 

provide insight into studies on trimmers of transition metals. From the present study, it is 

clear that much is still to be learned about  and .  3Li 3Be
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CHAPTER X 

OVERVIEW AND FUTURE DIRECTIONS

 

Overview 

This dissertation presented results of GVVPT2 studies of ground and low-lying 

excited electronic states of selected dimers of the first and second row of transition 

elements. Also included were GVVPT2 studies of triatoms of lithium and beryllium. The 

transition metal molecules considered in this work were investigated at the GVVPT2 

level of theory for the first time. Transition metal systems are not easy targets for 

theoreticians since these systems often involve many low-lying electronic states 

occurring within narrow energy ranges (as was particularly illustrated in the case of 2Ni ). 

Such situations pose numerous challenges to theoretical calculations varying from 

discontinuities in PECs [238, 239] to convergence crises [232].  For example, a previous 

study due to Camacho et al. [18] that used the MCQDPT method to investigate 2Mn , 

observed over 5000 intruders (or discontinuities in the PEC) within an internuclear 

distance of only 2.1 Å.  Contrary to the conclusion drawn by Camacho et al. [18]  that 

multireference perturbation theory (MRPT) methods were incapable of describing 

challenging systems like those of transition metal molecules, the present study found the 

GVVPT2 method to produce smooth and continuous PECs of both ground and low-lying 

excited electronic states of all the molecules investigated.  
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The work in this dissertation is also the first to have applied a version of GVVPT2 

that includes scalar relativistic effects through the spin-free exact two component (sf-

X2C) method [119-124]. Such effects were found in the present study to significantly 

change the chemistry of second row transition metal molecules relative to their first row 

counterparts. Examples of such changes include: the large effective bond order (EBO) of 

the ground state of 2Y  compared to its isovalent 2Sc  counterpart (with the same ground 

state symmetry); the absence of an outer shelf in the ground state PEC of 
2Mo  whereas 

one was found in its isovalent 2Cr  counterpart (with the same ground state symmetry); 

and the existence of significant bonding interaction in the ground state of 2Tc  whereas its 

isovalent 2Mn  was found to be a weak van der Waals species. The present work 

therefore underscored the importance of including relativistic effects particularly in the 

theoretical investigation of electronic states of molecules of second row transition 

elements (and of course, molecules of other heavier elements).  

The present work verified the capability of GVVPT2 for describing challenging 

transition metal systems not just in terms of smoothness of PECs but also in terms of 

accuracy. The spectroscopic data obtained at the GVVPT2 level for all studied molecules 

were in good agreement with data obtained from previous studies that had employed 

other high level ab initio techniques and also to experimental data where available. 

Moreover, the predicted ground state symmetries of the investigated molecules were in 

agreement with generally held views on those molecules. 

Although the technique of macroconfigurations κ(n)s [22] has been used within 

GVVPT2 for many years, there is a uniqueness worth mentioning in the present work. 

This uniqueness relates to the way active spaces were chosen and partitioned into 
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reference κ(n)s for MCSCF and GVVPT2 calculations. The partitioning scheme mostly 

started from a valence-bond-style approach in which bonding orbitals were grouped 

together in the same valence subspaces with their corresponding antibonding 

counterparts. Prior active spaces for GVVPT2 tended to be truncations (e.g., singles and 

doubles) of CASSCF spaces. It took quite some experimentation with molecules like 2Cr  

and 2Mn  to arrive at such a partitioning scheme. It was shown in the work reported 

herein that such partitioning of the active space led, in many cases, to only one reference  

κ(n) that proved to be sufficient for describing the investigated states. For example, all 

investigated states of 2Cr  used the same single reference κ(n) as well as those of its 

isovalent 2Mo  counterpart.  

The present work included electronic states that have not previously been 

characterized in the literature, notably the 


g

1Σ2  and 
 
31g


states of 2Y  as well as the 

 
15g

 and 
 
19g

  states of 2Tc . In particular, GVVPT2 studies of the three lowest 
 
1g


 

states of 2Y  were the first to find that those states correlate with the ground state atoms’ 

dissociation limit, as expected theoretically. Moreover, the present study is the first to 

have obtained full PECs of these states of 2Y , which prove to be critical in understanding 

the dissociation channels.  Calculations of the 
 
15g

 and 
 
19g

  states of 2Tc  found them 

to be significantly nondegenerate at short bond lengths contrary to 2Mn  where states of 

the same symmetry were found to be quasidegenerate with the 


g

1Σ1  state at all bond 

lengths. This scenario begs an explanation from relativistic effects. Since such effects are 

minimal in 2Mn  with the result that the 3d and 4s subshells are substantially different in 
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spatial extent, the 4s electrons remain nonbonding such that the 2Mn  molecule is held 

together only by weak antiferromagnetic coupling of the 3d electrons. Therefore, the 3d-

derived MOs are not strongly perturbed energy-wise. Thus, different distributions, and 

spin orientations, of electrons within such nearly degenerate orbitals (leading e.g., to a 



g

1Σ1  or 
 
15g

 or 
 
19g

  state) produce electronic states that are quasidegenerate. In 2Tc , 

however, the situation is different. Fairly strong relativistic effects contract the outer 5s 

subshells such that both the 4d and 5s orbitals participate in bonding. Since the 4d- and 

5s-derived MOs get strongly perturbed energy-wise in the process of bond formation, 

different distributions of electrons within these orbitals lead to nondegenerate electronic 

states. 

Studies of electronic states of Ni revealed what seems to be a general rule of 

thumb for transition elements of the first row; that these elements seldom form strong 

bonds involving participating atoms in a ground state configuration with a fully filled 4s 

subshell. It seems that the fully filled 4s-subshell is repulsive and hence, discourages 

bonding. Bonding in these systems appears to be favored by atomic configurations that 

involve at least one of the participating atoms in an excited state ( 11n 4s3d  ). Calculations 

of states of 2Ni  that involved states within the   28

4

3 4s3dF  +  28

4

3 4s3dF  dissociation 

channel of ground state Ni atoms, as well as those of 2Mn  within the 
5
S( 25 4s3d ) + 

5
S(

25 4s3d ) asymptote, were found to be van der Waals-like electronic states. On the other 

hand, all calculations of the studied molecules of first row transition elements that 

involved the coupling of atoms with a partially filled 4s subshell predicted strong 

bonding interactions; e.g., the investigated states within the  19

3

3 4s3dD  +  19

3

3 4s3dD  
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manifold of the 2Ni  molecule. On the other hand, 2Tc  was found to form strong bonds in 

electronic states within the 
5
S( 255s4d ) + 

5
S( 255s4d ) dissociation channel. This again, is 

due to relativistic effects as explained previously. 

This dissertation also presented a novel DFT-in-DFT embedding theory protocol 

that was found to accurately reproduce reference KS-DFT results for all systems tested 

and DFT functionals used. Worthy of special note in this new variant of DFT-in-DFT is 

the fact that by enforcing intersystem orbital orthogonality, the nonadditive kinetic 

potential ( Tv ), believed to be a major cause of errors in DFT-in-DFT embedding and to 

which many previous research efforts have been devoted, can be set exactly to zero. 

Thus, for the first time, an accurate DFT-in-DFT embedding theory has been developed 

that neither relies on kinetic functionals nor requires a supermolecular KS-DFT 

calculation. This new embedding technique was found to reproduce reference 

supermolecular KS-DFT total energies to at least the 7
th

 decimal place for all studied 

systems, irrespective of their intersystem interaction strengths or the type of DFT 

functionals used. To my knowledge, no previous version of freeze-and-thaw DFT-in-

DFT, that does not require a supermolecular KS-DFT calculation, matches the accuracies 

of the data reported in the present work from the new DFT-in-DFT embedding theory 

protocol. Since the accuracies of results obtained with the new embedding protocol did 

not depend on the DFT functionals used, it stands to reason that this novel embedding 

approach successfully addresses the inherent problem in previous formulations of DFT-

in-DFT embedding theory which is “lack of tendency” or counterintuitive predictions in 

certain circumstances but not others; e.g., GGA functionals performing better than LDA 

functionals in some cases but vice versa in others.  
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It was shown within the new embedding scheme that extending the usual 

monomer basis expansion to include a few basis functions of the complementary 

subsystem near the interface between subsystems (a new technique referred to as the 

“extended monomer expansion”) led to accuracies in results that were comparable to 

those obtained from the more computationally demanding supermolecular basis 

expansions. This suggested that the newly proposed extended monomer expansion 

approach is a good approximation to the supermolecular basis expansion.  

The difference electron density maps included in this dissertation were obtained 

using a code that was written to compute electron densities in real space given reduced 

one particle density matrices. The code was verified to work accurately through repeat 

calculations of densities of compexes like OHF 2  that are available in the literature. 

Moreover, preliminary tests of the code involved verifying that it could integrate the 

density of a given molecule over all space to give approximately the total number of 

electrons in the molecule. The present work has therefore realized a new computer 

program that can be used to perform analyses of electron densities of systems. It should 

be noted that the program was written to support both embedding and other computer 

codes. All that is needed as input is the one particle density matrix and geometry of the 

studied molecule. Analyses of densities obtained with this new program revealed that 

whereas conventional DFT-in-DFT embedding theory underestimates the electron density 

particularly at the interface between subsystems, the newly developed embedding scheme 

remedies the situation and leads to only negligible density distortions in all regions in 

space. Such negligible density distortions did not significantly impact the energies of the 

studied systems as already discussed above.   
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Future Directions 

The present work sets the stage for calculations of small clusters of transition 

metals. The investigation of 3Be  and 3Li , as detailed in Chapter IX, is a step in this 

direction. Moreover, the development of an accurate DFT-in-DFT embedding theory 

protocol was also a first step to the ultimate goal of embedding GVVPT2 calculations of 

small clusters in large environments whose effects are approximated at the DFT level of 

theory. Since the newly developed DFT-in-DFT embedding scheme has been 

demonstrated to work accurately, the stage is set for the development of an embedding 

protocol (using the same ideas of the new DFT-in-DFT scheme) that will enable 

embedding of GVVPT2 calculations. Protocols of this sort are termed wave function 

theory (WFT)-in-DFT embedding recipes as was mentioned in Chapter VIII.  

Although GVVPT2 calculations of transition metal dimers gave results that 

generally agreed with those from other high level methods, the predicted bond lengths 

were found to be slightly longer in some instances; e.g., the ground state of 2Cr . It is 

suspected that this is possibly due to the simplified reference Hamiltonian ( 0H ) that 

GVVPT2 currently relies on. Future research should probably investigate the effects of 

using a modified reference Hamiltonian as is done in e.g., the CASPT2 method. Studies 

of the 


g

1Σ1 , 


g

1Σ2 , and 
 
31g



 
states of 2Y  suggested that z5p -derived MOs participated 

in the bonding. Future research on electronic states of second row transition metal 

molecules should possibly investigate the effects of larger active spaces that include high 

lying 5p-derived MOs. Also, a consideration of complete manifolds of low-lying states 

within such studies could be very valuable and lead to more definitive answers. 
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As mentioned earlier, this dissertation involves the first application of a version of 

the GVVPT2 program that includes scalar relativistic effects through the spin-free exact 

two component (sf-X2C) method. Although the results presented herein were good in 

comparison with those from other high level methods, spin-orbit coupling effects were 

ignored. Future work on systems for which relativity is believed to be important should 

possibly incorporate spin-orbit coupling effects after the new scalar relativistic variant of 

GVVPT2. 
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Appendix A 

 

Numerical Integration in DFT 

 In numerical integrations, molecular integrals ( I ) are expressed as a sum over 

atomic centers (
AI )  [379, 380], 


A

AII                                                     (A-1) 

Each atomic center is associated with a partition (or nuclear weight) function, Aw , such 

that 

           
A A

AAAAAAA

A

A rdRrFRrwrdrFrwrdrF


II ,       (A-2) 

where  rF


 is the function to be integrated. Vectors r


, Ar


, and AR


 are shown in Figure 

45, where 0 is the origin, A is the position of the nucleus of atom A, while e is the 

position of a given electron. 

 

Figure 45. Schematic diagram showing the position vectors of an electron and an 

associated nucleus. 

 

The partition functions,  rw A


, satisfy the conditions [380] 

  0rwA 


,   1rw
A

A 


 at any 
3r R


                         (A-3) 
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Additionally,  rw A


 must be close to unity near nucleus A, close to zero near all other 

nuclei, and must be as smooth as possible to in order to guarantee the smoothness of the 

functions    rFrwA


to be integrated. 

 Each integral at atomic centers is approximated as a sum of shell integrals over a 

series of concentric spheres centered at the nucleus of the atom. To illustrate this, 

consider a sphere of radius Ar


around atom A with nucleus at AR


 relative to the origin 

(0) as shown in Figure 46. 

 

 

Figure 46. Schematic diagram showing a sphere of radius Ar


 about atomic center A. 

 

The molecular integral in Eq. (A-2) may then be written as 

  



A 0

A

2

AAA rdrrF4π


I ,                                           (A-4) 

where 

    

AΩ

AAAA sdsrf
4π

1
rF


                                        (A-5) 
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is the integration over the shell of radius Ar


, centered at nucleus A with sd  being the 

surface element given in spherical coordinates as 

  AAA ddθθsinsd                                                      (A-6) 

The function   srf AA


, given in Eq. (A-5) is expressed as 

        srRFsrRwsrf AAAAAAA


                              (A-7) 

where   srRw AAA


 and   srRF AA


  denote the partition function and the function to 

be integrated, respectively. 

 The nuclear weight or partition function     srRwrw AAAA


  at a point r


 is 

given as 

 
 
 

 
 rz

rp

rp

rp
rw A

B

B

A
A 











,                                        (A-8) 

where  rpA


 is an unnormalized cell function of atom A, composed of independent pair 

contributions,   rμs AB


, 

    



AB

ABA rμsrp


,                                               (A-9) 

and the  rμAB


 are hyperbolic coordinates defined as 

 
AB

BA

AB

BA

AB
R

rr

R

RrRr
rμ





 




,                                      (A-10) 

with the condition that 

  1Rμ AAB 


,   1Rμ BAB 


, and   3

AB r1rμ R


                (A-11) 

where AR


 and AR


 are position vectors of atoms A and B, respectively, whereas ABR


 is 

the separation between A and B as shown in Figure 47. 
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Figure 47. Schematic diagram showing atomic centers A and B and an electron (e) at Ar


 

with respect to nucleus A and Br


 with respect to nucleus B. 

 

The cell function  rpA


 in Eq. (A-9) must be close to unity near nucleus A and close to 

zero near any other nucleus. Thus, the contribution   rμs AB


 between atoms A and B 

must be a monotonically decreasing function of the form given in Figure 48. 

 

Figure 48. Schematic diagram showing the variation of   rμs AB


 between atomic centers 

A and B. 

 

The following restrictions are imposed on the cell function contribution,   rμs AB


, 

  1μ1μs0  ,                                           (A-12) 

  11s  ,   01s  ,                                                     (A-13) 

0
dμ

ds
 , 0

dμ

ds

1μ




                                                 (A-14) 
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Becke [380] proposed the following form for the cell function contribution,   rμs AB


, 

    μp1
2

1
μs k  ,                                                    (A-15) 

where the polynormials  μpk  and  μp 1k  are related as follows 

    μppμp k1k   with   3

1 μ
2

1
μ

2

3
μp                           (A-16) 

Becke [380] found k = 3 to be the optimum value for a sufficiently well behaved  μs . 

Since    μpμ-p 33  , it follows that 

      μs1μp1
2

1
μs 3                                              (A-17) 

Properties of the hyperbolic coordinates  rμAB


 

Figure 47 is to be referenced in the analysis of the properties of  rμAB


. The 

figure is redrawn below (Figure 49) to include the angle A between vectors  Ar


and ABR


, 

and the properties of  rμAB


 between atomic centers A and B. 

 

Figure 49. Schematic diagram showing the variation of  rμAB


 between atomic centers A 

and B. 

 

From Eqs. (A-10) and (A-11), the following inequality holds 
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  1
R

rr
rμ1

AB

BA
AB 





 ,                                          (A-18) 

where 
Ar , Br  and ABR are the absolute values of the respective vectors. From the cosine 

rule (based on Figure 49), 

  

     ABAAABBABA

AAABAB

2

A

2

ABA

2

B

Rcos2rRrrrr

cos2rRRrRrr













                                (A-19) 

The function  rμAB


 obeys the relation 

 
 

BA

ABA

BA

ABAA

AB

BA
AB

rr

R2r

rr

Rcos2r

R

rr
rμ















                         (A-20) 

Thus,   0rμAB 


 only inside a sphere of radius ABA R
2

1
r  . That is 

  0rμAB 


 if ABA R
2

1
Rr 


                                          (A-21) 

At a fixed radius Ar  of a given sphere around atom A,  Br  and  rμAB


 are even functions 

of the angle A  

   ABABB rrr    and    
 

AB

ABA
AABAABAB

R

rr
μμμ





               (A-22) 

From Eqs. (A-19) and (A-20), 

 A

B

ABA

A

B sin
r

Rr

d

dr



 ,  A

B

ABA

2

A

B

2

cos
r

Rr

d

rd



                                (A-23) 

and  

 A

BA

A

A

AB sin
rr

2r

d

dμ


 
 ,  A

BA

A

2

A

AB

2

cos
rr

2r

d

μd


 
                       (A-24) 
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Thus,  ABr   has its maximum at πA   and minimum at 0A  ,  whereas  AABμ   has 

its maximum on the sphere 







 ABAA R

2

1
rs  when 0A   and minimum when πA  . 

Eqs. (A-23) and (A-24) also imply that the curvatures of  ABr   and  AABμ   change at 

2

π
A  . Since  μs  is a monotonically decreasing function of  AABμ  , it can be stated 

that, at the point  π,r AA  ,  μs  achieves its minimum value among all the points of 

the ball    AA

3

AA rRr,RrrB 


. 

Alternative form of cell function contribution  μs  

 Although the present work employed the Becke definition of  μs , the following 

alternative form due to Stratmann et al. [381] could otherwise be used. Stratmann et al. 

define  μs  as 

    μg1
2

1
μs a  ,                                                (A-25) 

where  μga  is a piece-wise odd function defined as 

     
















aμ1

aa,μμz

aμ1

μg aa   ,          1a0                      (A-26) 

where  μza  is defined as 

 
















































753

a
a

μ
5

a

μ
21

a

μ
35

a

μ
35

16

1
μz                     (A-27) 

Within the limits  aa,μ  , the function  μza  is subject to the constraints 

   μzμz aa  , 0
dμ

dza  ,                                         (A-28a) 
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  1aza  ,   1aza  , 0
dμ

dz

aμ

a 


                                   (A-28b) 

The function  μza  has zeroth second and third order derivatives at aμ   and leads to 

 
2

1
0s  , 

32a

35

dμ

ds

0μ




                                                 (A-29) 

Contrary to the Becke function in Eq. (A-15), the Stratmann et al. [381] function satisfies 

the conditions 

 









aμif0

aμif1
μs                                                      (A-30) 

A requirement that the first derivatives of the Becke and Stratmann et al. cell functions 

coincide at 0μ   leads to the following value for the parameter a in Eqs. (A-26) to (A-30) 

80.64814814
272

35
a 


 ,                                                 (A-31) 

which is nearly the same as the value of a = 0.64 determined empirically as the best one 

by Stratmann et al. 

 Assuming that N is the nearest atomic neighbor to atom A and considering a 

sphere around center A, which is determined by the condition 

  a1
R

2r
rμ

AN

A
A

max

AN 



  ,                                                 (A-32) 

for any point r


 inside this sphere,  

  ANAAA Ra1
2

1
rRrr  


,                                     (A-33) 
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the nuclear weight is unity,   1rwA 


. This implies that if a given radial grid, 
Air , is such 

that   AAi rr , then all angular grid points on the sphere of radius 
Air  will lie inside the 

ball (Eq. (A-33)) and, hence,   1rwA 


 for those points. 

Selection of significant functions 

The partitioning in Eq. (A-2) decomposes the three-dimensional molecular 

integral in Eq. (A-1) into a sum over atomic-like integrals which are easier to evaluate. 

Each of these atomic centers is further separated into radial and angular integrations, 

giving rise to individual grid points which are naturally associated with the respective 

atoms. In carrying out the integrations, advantage is taken of the fast decaying nature of 

Gaussian atomic orbitals such that for each grid point, only such functions that are 

numerically significant (according to a user-specified criterion) are considered. It is 

considered that each basis function is enclosed by a sphere, with a threshold radius ε, 

beyond which its influence is deemed negligible. Thus, for the basis function  iχA

μ  

centered at AR


, the requirement is that   εiχA

μ  for every point outside the sphere 

enclosing  iχA

μ . Hence, for any grid point ( gr


), a set ( gs ) of significant basis functions    

(
A

μχ ) is selected which fulfill the condition 

g

A

μ sχ  , if  ελRr A

μAg 


,                                  (A-34) 

where   ελA

μ  is the radius of the sphere. Thus, for every grid point, a list of basis 

functions whose spheres include the point is considered. Of course, this list of significant 

basis functions is different for each grid point. Nevertheless, the number of basis 

functions in each set gs  becomes independent of the size of the system for sufficiently 
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large molecules. By employing test (A-34), the creation of the gs  is computationally 

insignificant even for molecules approaching 1000 atoms. If all basis functions centered 

at a given atom A are not significant for a given grid point, then the atom is considered 

insignificant at that point. In particular, an atom is not significant if its most diffuse 

orbital is not included in the set gs  for a given grid point. To maximize computational 

efficiency, blocks or batches of grid points are used rather than individual grids. Each 

block of points is represented by a set of significant basis functions, 
Gg

gG sS


  with 

 
ggrG


 , which includes all basis functions that are significant at least for some grid 

point in the set G: 

G

A

μ Sχ  , if  ελRr A

μAg 


 for some Grg 


                          (A-35) 

The work described herein used a block scheme in which blocks are chosen to be spheres 

of grid points. In this case, condition (A-35) is verified only once for each sphere (block).  

 Consider a sphere,  AA rs , of radius Ar , centered at nucleus A as shown in Figure 

50.  All spherical grid points  
ggr


 lying on the sphere define a block AG ; that is, 

AgAAg GrrRr 


                                              (A-36) 
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Figure 50. Given sphere  AA rs , atoms C and D are not significant and their basis 

functions are not included in the list  AA rGL . Atom B is significant and its  

 rχB

μ


 is included into the set  AA rGL . For atom A, enclosed by  AA rs  , basis 

function  rχA

γ


 is significant but  rχA

υ


 is not (i.e.,    AA rG

A

γ Lrχ 


, 

   AA rG

A

υ Lrχ 


). 

 

Given a threshold, ε , each atom B is assumed to be enclosed by a sphere of radius  ελB  

and each of its functions  B

B

μ rχ


 by a sphere of radius  ελB

μ . The list  AA rGL  of 

significant functions, associated with the block AG , includes only those basis functions 

whose spheres (centered at corresponding atoms) are intersected by  AA rs . An atom B is 

“not significant” and none of its functions is included into the list  AA rGL , if the 

following inequality holds, 

 ελRr BABA                                                         (A-37) 

In particular, if  ελr AA  , then the parent atom (A) itself is insignificant. If atom B is 

significant, as indicated in Figure 50 (that is, if its maximum sphere is crossed by  AA rs ), 

then at least some of its basis functions will be included into the list  AA rGL : 
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 AA rG

B

μ Lχ  , if  ελRr B

μABA                                    (A-38) 

Where used, all basis functions included into a block  AA rGL  would be labelled with a 

tilde:     
μμrG χL

AA
~~ .  

In order to obtain radii of basis functions to be used in determining the grid points 

at which the functions are significant, it is convenient to use their spherical average 

forms. For Gaussian basis sets, the spherical average of a basis set  rχA

μ


, with orbital 

quantum number l, is 

 
2min rα

erCrχ ll

ll


 ,                                                           (A-39) 

where r is the distance from the host atomic center A of the function, minαl  is the exponent 

of the most diffuse primitive function (the one with minimum exponent), and 

 
 232π

2α
C

23min






l

l

l
l                                                       (A-40) 

The radius  ελA

μ  of the function  rχ l  is determined by the equation 

   εελχ ll ,                                                     (A-41) 

where ε is defined here as 

βeε  ,   0εlnβ  ,                                                      (A-42) 

e.g., if 
1010ε   (this is the value that was used in the present work), then 

  231010lnβ  . In the case of s-functions (l = 0),  ελA

μ  becomes 
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s

s
s

α

γ
λ   ,                                                                  (A-43) 

where the following notations have been introduced 

minαα ll  ,    εClnClnβγ lll                                      (A-44) 

For functions with l > 0, the solution of Eq. (A-41) is more complicated. In this case, the 

derivative of  
2rαerCrχ  l

ll  with respect to r is 

   
2rα1erx-Crχ  -l

ll l , 
2r2αx                                     (A-45) 

In the region of interest (i.e., where r > 0),  rχ l  has one stationary point (maximum) 

   llll x0rχ:r maxmax

α2
r

x

max l

l
l 


                         (A-46) 

If ε  is sufficiently small, then the root lλ  must satisfy the conditions 

lll λrrmax   ,                                                         (A-47) 

where 

lr  is the point where  rχ l  changes its curvature; that is, 

  0rχ:r  

lll                                                     (A-48) 

If l = 1, then 

  
2αr

11 e2xr2αCχ  l  1
2α

3

2α

2
r

2
1 






 l
l

l
                       (A-49) 

If l > 1, then 
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   
2αr2- er2x1xxCχ  l

ll ll ,                                       (A-50) 

and 

lr  is determined by the equation 

       01x12x02xx1x 2  lllll ,                   (A-51) 

with desired root 

 1
α

1812

2

1
r 


 l

ll
l                                               (A-52) 

As expected, maxrr ll  .  

The simplest Newton scheme [382] leads to an iterative process to localize lλ  

from Eq. (A-41), 

 
 rχ

εrχ
Δr

l

l




                                                          (A-53) 

Starting from the initial point,  lrr  guarantees that each iteration 0Δr   since in this 

region,     0rχandεrχ  ll , and the convergence occurs monotonically, 

    0e1
r2αα

1
Δr

λr

γrlnαr2









l

l

l
                                  (A-54) 

Radii   ελA

μ  are determined for all basis functions  A

μχ  with 1l  and determine the 

effective radius  ελA
 of the atom A as 

   
Aχ

A

μ

A

A
μ

ελmaxελ


                                     (A-55) 
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Integration Scheme 

 Two integration schemes have been used in this work: the Legendre quadrature 

[383] and the Lebedev quatrature [384-386] methods. Murray et al. [383] express the 

integral in Eq. (A-4) as 

 
 
 

       




 1

0

1

0

2

10,q
qrr0

2 dqqGdq
dq

dr
qrqrFdrrrF  ,                  (A-56) 

where  

      
dq

dr
qrqrFqG 2 ,                                                (A-57) 

and employs the following Euler-Maclaurin scheme with equally spaced points (i = 1, 2, 

…, n – 1) 

      
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




  ,     (A-58) 

where 2kB  are Bernoulli numbers. The goal is to find functions  qrr   that render  qG  

and its derivatives to be zero at the ends q = 0, 1. The assumptions are that  rF  and its 

derivatives are zero at  1qr  , while   2rrF  and its first derivative are zero at 0r 

 0q  . The function r has the following form 

 1m
q1

q
const.r

m











                                         (A-59) 

Hence, 
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  1m

1m

q1

q
const.m.

dq

dr





 ,                                             (A-60) 

and 

   
 

  qrF
q1

q
constm.qG

13m

13m
3






 ,                                   (A-61) 

with     01G0G   since   0F   exponentially. 
 kG  is expressed as 
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G               (A-62) 

At q = 0, 
   13mk00G k  , and at q = 1, 

   k01G k   since all derivatives of 

F are zero at r .  

 The const in Eqs. (A-59) to (A-62) is assumed to be R = the Bragg-Slater radius 

for atoms (for atomic radii, see Ref. [387]). With this, the integral of   2rrF is written as 

   





n

1i

ii

0

2 rFWdrrrF  ,                                           (A-63) 

where  
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and 
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In the case of rN  radial points, the integral is 

   





A

N

1i

AiA

r

Ai

A 0

A

2

AAA

r

rFW4πdrrrF4πI ,                               (A-66) 

where 

 
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A

r
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i
1N2RW


 ,  

 2r

2

AAi

i1N

i
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
  ,                       (A-67) 

and 

     
 
 

ArS

AAAAAAA sdRrFRrW
4π

1
rF


                                (A-68) 

is the integral on the surface of a sphere of radius Ar , centered at A ( AR


is the position 

vector of A).  

 In the case of using Cartesian basis functions, the Lebedev quadrature [384-386] 

is preferably used because it is suited to the treatment of such functions in molecular 

systems with Abelian symmetry. Lebedev’s quadrature for the surface integral on a unit 

sphere,     sdsf
4π

1
fS , is 

   




ΩN

1j

j

Ω

j sfWsdsf
4π

1 ~  ,                                               (A-69) 

where each grid point  
jjjj c,b,as ~  lies on the unit sphere:  Ω2

j

2

j

2

j N1,j1cba  . 

Based on Eqs. (A-66), (A-68) and (A-69), the integral has the final form 
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where 
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     
 

    




Ω

AiA

N

1j

jAiAjAiAA

Ω

j

rS

AAiAAiAAAiA srRFsrRwWsdrRFrRw
4π

1
rF ~~


,    (A-72) 
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jAiAjAiAjAiAjAiAij crZ,brY,arXsrRr  ~
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Appendix B 

 

Algorithm for DFT-in-DFT Embedding with External Orbital Orthogonality 

 

1) Specify subsystem parameters: Numbers 
of atoms, electrons, spin multiplicities, one-
particle spaces for Kohn-Sham (KS) orbital 

expansions 

2a) If KSCED(m) and no previous 
KS orbitals, construct and 

orthonormalize hcore-orbitals of 
subsystems in monomer bases 

3a) If Ext. Orth. is required in 
KSCED(m), construct ZAB = SAA

-1*SAB 
and ZBA = SBB

-1*SBA matrices (A-emb., 
B-env.), else proceed 

4a) Construct R-matrices (Eq. (7.38)) 
and optimize env. subsystem orbitals at 

given emb. subsystem orbitals 

5a) If Ext. Orth., verify orthogonality 
of occupied env. to emb. orbitals, else 

proceed 

6a) Construct subsystem and total 
densities 

7a) Compute SCF part of total 
energies, Escf[tot] 

8a) If Ext. Orth., compute exchange 
correlation energy (Exc[tot]); else, 
Compute Exc[tot] and nonadditive 

kinetic potential (vT). Total energy = 
Escf[tot] + Exc[tot] + vT 

9a) Iteratively optimize subsystem 
densities via freeze-and-thaw cycles or 

macroiterations. At each step, repeat 4a) to 
8a) till self-consistency is achieved 

10a) Analyze spin and space symmetries of 
subsystems 

2b) If KSCED(e) or KSCED(s) and no 
previous KS orbitals, construct and 

orthonormalize hcore-orbitals in extended 
one-particle spaces 

3b) If Ext. Orth. is required, construct 
ZAB = SAA

-1*SAB and ZBA = SBB
-1*SBA 

matrices (A-emb., B-env.), else proceed 

4b) Do step 4a) 

5b) Do step 5a) 

6b) Do step 6a) 

7b) Do step 7a) 

8b) Do step 8a) 

9b) Do step 9a) 

10b) Do step 10a) 
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Appendix C 

 

Additional Density Difference Relief and Contour Maps of the Systems Studied Herein 

 

N.B. The letters A to J labelling the different maps represent the density differences: A = 

KS-DFT – KSCED(s) relief map; B = KS-DFT – KSCED(s) contour map; C = KS-DFT 

– KSCED(s, Ext. Orth.) relief map; D =  KS-DFT – KSCED(s, Ext. Orth.) contour map; 

E =  KS-DFT – KSCED(m) relief map; F =  KS-DFT – KSCED(m) contour map; G = 

KS-DFT – KSCED(m, Ext. Orth.) relief map; H = KS-DFT – KSCED(m, Ext. Orth.) 

contour map; I = KSCED(s) – KSCED(s, Ext. Orth.); J =  KSCED(m) – KSCED(m, Ext. 

Orth.). 

 

The 33 NHNH   Complex 

Maps obtained with the VWN5 functional 
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Maps obtained with the PW91 functional 
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The OHOH 22   Complex 

Maps obtained with the VWN5 functional 

  

 
 

Maps obtained with the PW91 functional 
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The 422 HCF   Complex 

Maps obtained with the VWN5 functional 
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Maps obtained with the PW91 functional 

  

 

The 32 NHF   Complex 

Maps obtained with the VWN5 functional 
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Maps obtained with the PW91 functional 

  

  

 

The 44 CHCH   Complex 

Maps obtained with the VWN5 functional 
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The OHF 2

-  Complex 

Maps obtained with the VWN functional 
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