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INTRODUCTION

Coal ashes are composed o f  a v a rie ty  o f  m inerals, in clu d in g  c la y s , 
sh a les , complex carbonates and s i l i c a t e s ,  and p y r ite s  ( l 6 ) .  Upon 
heating the ash , in d iv id u a l m inerals are at le a s t  p a r t ia l ly  decomposed 
to  form  m inerals not o r ig in a l ly  present in  the ash. The m inerals in  th is  
complex m ixture have m elting p o in ts  extending over a very wide tempera­
tu re  range. Hence, a fu rth e r  increase in  temperature w i l l  cause a d is s o ­
lu t io n  o f  m olten and s o l id  m inerals which produces a d d it io n a l in te ra c t io n  
o f  the m inerals (1 7 ) .  Further heating w i l l  cause a con tinuation  o f  th is  
p rocess  u n t i l  the ash has been e n t ir e ly  m elted.

Not much i s  known o f  the complex process  that takes p lace  during 
m elting and a l l  c o r re la t io n s  o f  p h y s ica l p ro p e rtie s  have been made in  
terms o f  com position  as pure ox ides rather than the m inerals a c tu a lly  
p resen t. This has been due t o  the method o f  an a lysis  which rep orts  the 
com position  as pure ox id es .

C o rre la tio n  attem pts have a ls o  been hindered by the fa c t  th at with 
natural ashes, i t  i s  not p o ss ib le  to  vary one con stitu en t independently 
o f  the o th e rs . This makes s t a t i s t i c a l  stu d ies  o f  the e f f e c t  o f  s in g le  
con stitu en ts  extrem ely d i f f i c u l t .

The prim ary purpose o f  th is  in v e s t ig a tio n  was to  devise  a method fox- 
preparing a sy n th e t ic  ash having the same fu s io n  temperature and com posi­
t io n  j (as  o x id e s )  as a natural occu rrin g  ash. The syn th etic  ashes prepared 
were then used t o  su bstan tiate  previous work as w e ll as provide a means 
by which la tex1 s t a t i s t i c a l  stu d ies  o f  the e f f e c t  o f  in d iv id u a l components 
could be made.

(The presen t use o f  c o r re la tio n s  o f  fu s io n  temperatures and composi­
t io n  ' i s  very  l im ite d . In p r a c t ic e  i t  is  much more simple and accurate 
t o  determ ine the fu s io n  temperature o f  the ash d ir e c t ly  s in ce  chem ical 
a n a lys is  o f  the ash is  te d io u s . The primary in te r e s t ,  th e r e fo r e , i s  the 
t h e o r e t ic a l  asp ects  o f  fu s io n  and the p o s s ib i l i t y  o f  fu ture use o f „fu s io n  
c h a r a c te r is t ic s  and chem ical com position in  p re d ic t in g  v is c o s i t ie s  o f  
m olten ash ( l ) .  The study o f  ash fu s io n  temperatures is  a p re re q u is ite  
f o r  t h is  g o a l. When fu s io n  ch a r a c te r is t ic s  have been s a t is fa c t o r i ly  ex­
p la in ed  work can commence on the more d i f f i c u l t  aspect o f  c o r re la t io n  o f  
v i s c o s i t i e s  w ith com position  and fu s io n  tem peratures.
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CHAPTER I

METHOD OF DETERMINING ASH FUSION TEMPERATURES

N atural ash preparations and fu s io n  temperature determ inations were 
made in  accoidance w ith U. S. Bureau o f  Mines B u lle tin  No. b^2 ( j )  as 
ou tlin ed  "below. This method is  in  agreement w ith the ASTM method.

The c o a l was f i r e d  in  an e l e c t r i c  furnace at 800-900° C under an a ir  
flow  u n t i l  the ash maintained a constant w eight. The com pletely o x id ized  
ash was p u lverized  to  minus 200 mesh ( 7^ m icrons) in  a b a l l  m ill  using 
agate ston es . The p u lverized  ash was formed in to  tr ia n g u la r  pyramids 
3 /b  inch high and l /h  inch on each s ide  o f  the tr ia n gu la r  base. A so lu ­
t io n  o f  10$ d ex tr in  and 0 .1$  s a l i c y l i c  a c id  was used as a b inder t o  form 
the pyramids. The pyramids were d r ie d , nested to  approxim ately 800° C 
f o r  30 minutes to  drive  o f f  the d e x tr in , and then mounted in  platinum bases.

The fu s io n  temperatures were determined in  a gas f i r e d  furnace using 
an o p t ic a l  pyrometer. The ra te  o f  temperature r is e  was maintained b e ­
tween 5 and 10° C per minute a f t e r  1800° F was a tta in ed . Three fu s io n  
temperatures were determ ined: ( l )  the i n i t i a l  deform ation temperature at 
which the apex o f  the pyramid rounds o r  deforms as shown by pyramid 1 o f  
Figure 1 , (2 )  the so fte n in g  temperature at which the pyramid has been 
reduced t o  a hem ispherical lump as shown by pyramid 3 o f  Figure 1 , and 
( 3) jthe f lu id  temperature at which the pyramid has spread over the base 
in  a f l a t  la y er  as shown by pyramid 5 o f  Figure 1.

The use o f  platinum bases rather than the mixture o f  k ao lin  and 
alumina as s p e c if ie d  by ASTM and Bureau o f  Mines B u lle tin  No. ^92 was 
n ecess ita ted  by the re a c t io n  o f  some o f  the samples with the r e fr a c to r y  
type ba.se.

The L e itz  Heating M icroscope shown in  Figure 2 was used with a few 
se le c te d  samples to  give a p i c t o r ia l  record  o f  the m elting process as 
w e ll as provide a lim ited  comparison o f  the r e su lts  obtained with the two 
types o f  equipment. The ash was prepared in  the same manner as f o r  the 
conventional fu rnace. I t  was then pressed  in to  321m cube samples, without 
the b in d er , by means o f  a spring  loaded hand press to  a pressure o f  
300 p s i .

CHAPTER I I

BRIEF HISTORY OF CORRELATIONS

There have been many attempts to  c o r re la te  ash fu s io n  temperatures 
w ith com position  s in ce  Le C h atelier and Chantetre (1 2 ) f i r s t  in v estiga ted  
th is  r e la t io n sh ip  in  1902. None have been e n t ir e ly  su cce ss fu l although 
some o f  the reasoning does prove u se fu l.
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Fig. I A. Pyramids mounted on base.
B. Typical form of fused pyramids.
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1 Low voltage filament lamp
2 Specimen wagon
3 Rear cooling chamber
4 Screw for vertical adjustment
5 Furnace housing
6 Aperture for oblique illumination
7 Mirror for oblique illumination
8 Objective
9 Observation and photo-microscope
10 Mirror reflex system
11 LEICA housing
12 Rack and pinion drive for focusing
13 Forward cooling chamber
14 Screw for lateral adjustment
15 Prismatic rail

I * .

G

Fig. 2 Leitz heating microscope. (19)
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The m ajor problem in  c o r re la t io n s  is  determ ination  o f  the s i g n i f i ­
cance o f  each component reported  in  the a ra iy se s . Table I  l i s t s  the 
components norm ally rep orted  and the normal range o f  these components ( 15) .

TABLE I
TYPICAL LIMITS OF ASH ANALYSES OF U. S. CQAIS

Component Range f o r  
L ign ite  -  $

Range f o r  
Bituminous -  $

SiOo 5 -  35 20 - 60
AI2O3 3 -  25 10 -  35
Fe203 3 - 2 5 5 -  35
CaO 1 5 - 3 5 1  -  20
MgO 2 - 1 5 0.3 -  1
Na20 p lu s  K2C 1 - 6 l - l

The a lk a l ie s ,  NagO and KpO, and P^Or, i f  rep orted , comprise on ly  a 
sm all p o r t io n  o f  the ash and have u su a lly  been d isregarded  f o r  c o r re la ­
t io n  p u rp oses. The SO3 is  norm ally present in  the form o f  s u lfa te s  so 
th at a l l  o r  n ea rly  a l l  o f  i t  i s  d riven  o f f  b e fo re  fu s io n  takes p la ce  ( 1 ) . 
The AlpO^ is  norm ally present in  the form o f  c lays  which have a weight 
r a t io  of SiOp t o  AlgO^ o f  1 .18  (5)*  An exjunination o f  290 a v a ila b le  
analyses re v e a le d  on ly  ten  eases where th e ir  r a t io  was le s s  than 1,18 
( 5 ) .  I t  i s  assumed th at any SiOg in  excess o f  th is  r a t io  i s  in  the form 
o f  very com plex s i l i c a t e s  ( 5 ) ,  seme o f  which have been id e n t i f ie d  ( l 8) 
although no c o r r e la t io n s  have been attempted using th is  b a s is .

The ir o n  may occu r  in  any o f  i t s  o x id ized  s ta te s  depending upon the 
degree o f  o x id a t io n  during f i r i n g  and the atm ospheric con d ition s  during 
the fu s io n  tem perature determ inations. There is  considerab le  doubt as 
t o  the actual, s ta te  o f  the iro n  in  any given  case s in ce  i t  depends upon 
such fa c t o r s  as tem perature, reducing con d ition s o f  the atmosphere, 
p o r o s ity  o f  the sample, and h is to r y  o f  the sample. Some workers have 
t r ie d  t o  determ ine a r a t io  o f  the various s ta tes  f o r  each sample ( l l ) ,  
but in  most c o r r e la t io n s  100$ Fe20q is  assumed ( 5 ) .

A l l  c o r r e la t io n s  use the so ften in g  temperature as the b a s is  because 
i t  is  the most s ig n i f ic a n t  va ria b le  in  judging ash behavior (13 ) • I t  is  
a lso  the c r i t i c a l  temperature used in  p re d ic t in g  the flo w  p ro p e rtie s  o f  
the s la g  form ed from  the fused  ash ( 10).

Joseph H arrington ( 8) made a co r re la t io n  using a b a s is  o f  the r a t io  
o f  the sum o f  S i02 p lu s AI2O3 t o  the sum o f  the S i02 , AI2O3, Fe203, and 
CaO p lo t te d  aga in st the so ften in g  temperatures f o r  numerous ash analyses. 
This c o r r e la t io n  p re d ic te d  so ften in g  temperatures which varied  as much 
as 300° F from  the experim ental values and so cannot be considered  s a t is ­
fa c to r y . I t  d oes , however, show a d e fin ite  trend and produces some
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in te r e s t in g  r e s u lt s .  The p a ra b o lic  shape o f  the cu rve , v ith  the minimum 
tem perature where the b a s is  r a t io  is  approxim ately 1 / 2, shows that two 
ashes o f  e n t ir e ly  d i f fe r e n t  analyses may have the same so ften in g  tempera- 
ture|. The p o r t io n  o f  the curare f o r  low r a t io s  corresponds t o  l ig n it e s  
w hile th e  p o r t io n  f o r  high r a t io s  was obtained from high-rank c o a l ashes. 
Thus, in cre a s in g  the sum o f  the S i02 and AlgCb would decrease the s o fte n ­
ing tem perature f o r  l ig n it e  ashes but would in crease i t  f o r  bituminous 
co a l ash es. This fa c t  has been known fo r  some time and has been u t i l iz e d  
in  the ir o n  in d u stry  by adding f lu x e s  to  the b la s t  furnace charge to  
produce a more f l u i d  s la g .

1 N ich o lls  and S e lv ig  ( 8) proposed a gen era l c o r r e la t io n  using an 
index o f :

R$ = SiOg t  A lg °3______________

^e2®3 + + + ^ 2 ®  + ^2®

This c o r r e la t io n  gave r e su lts  very s im ila r  t o  that o f  H arrington ’ s , as 
might "be expected  from the s im ila r ity  o f  the r a t io s  used as an index.

S ch aefer  ( 2 )  proposed an index which supposedly represents the f lu x ­
ing a b i l i t y  o f  the in d iv id u a l components. This index is  the r a t io :

—  —

Rg = A12C>3 _____________ SiOg + A12C>3_______
S i°2 FeO + 0 .6  ( CaO+MgO+Na^O+KgO)

When Rs was p lo t t e d  against the so ften in g  temperature f o r  98 ashes from 
American co a ls  an average d e v ia tio n  o f  48° F from the curve o f  b est  f i t  
was ob ta in ed . However, when Brown (3 ) used th is  index with A u stra lian  
co a l ashes an extrem ely poor c o r re la t io n  re su lte d .

R ecen tly  Mazumdar, B anerjee, and L ahiri (3 )  proposed an index based 
on m olar percen tages rather than weight percen tages. This index was c a l ­
cu la te d  t o  be the r a t io :

3.33 SiOg + 1.96 A1203

2 .5  Fe203 + 3 .57  CaO + 5 .00 MgO + 3.22(Kg0+I'7a20)

This r a t io  produced a b e t te r  c o r re la t io n  than e ith e r  the Schaefer (Rs ) ,  
o r  the H ich o lls  and S e lv ig  (R$) index when used w ith Indian Coals.

The b est c o r r e la t io n  found in  the lit e r a tu r e  was the prism p lo t  
developed  by Estep and S e itz  ( 4 ) .  This c o r r e la t io n  was made by p lo t t in g  
the w eight percentages o f  CaO, SiOg, AlgOo, and Fe203 a long the height 
and th re e  s id es  o f  a tr ia n g u la r  prism . The CaO content was computed on 
the b a s is  o f  100$ f o r  the fo u r  components mentioned and p lo tte d  along

6



the height o f  the prism . The percentages o f  the remaining three were 
recomputed d isreg ard in g  a l l  oth er components and p lo t te d  on the tr ia n g le  
formed by the base o f  the prism . The re su ltin g  s o l id  fig u re  contains 
isotherm  planes which must be p lo t te d  in  three dim ensions. To s im p lify  
the c o r r e la t io n  Estep and S e itz  cut the prism in to  h o r izo n ta l s e c t io n s , 
each o f  which is  a tr ia n g u la r  p lo t  o f  SiC>2, and FegO-^, with the
CaO I constant w ith in  one p ercen t. In  th is  way the isotherm  planes can be 
represented as isotherm  lin e s  in  each s e c t io n . This c o r re la t io n  proved 
very good f o r  bituminous ashes w ith which i t  was developed. However, i t  
cannot be used f o r  l ig n it e  ashes s in ce  the area o f  the ternary which was 
developed does not include the s e c t io n  corresponding to  t y p ic a l  l ig n it e  
ash | com positions.

The author ( 9 ) ,  in  h is  B a ch e lor 's  th e s is  and subsequent work not 
included in  the t h e s is ,  developed a co r re la t io n  using on ly  one ash and 
m ixtures o f  th is  ash with AlgOo and /or SiOg. The index f o r  th is  c o r re la ­
t io n  was the sum o f  the SiOg and e f fe c t iv e  A lpOo equ iva len ts . The 
e f fe c t iv e  Al^Oo was d e fin ed  as the p o r tio n  o f  the A^O^ equ ivalen ts present 
whiqh was requ ired  t o  n eu tra lize  the ash when the SiC^ is  considered 
a c id ic ,  the Fe2C>3 and CaO are considered  b a s ic ,  and the AlgO^ is  con sid ­
ered^ am photeric. This c o r r e la t io n  is  reproduced in  Figure 3* I t  is  very 
lim ited  however, because the r a t io s  between a l l  components except S i02 
and AI2O3 were constant f o r  a l l  samples. T h erefore , i t  can be expected 
that i t  would produce on ly  a trend curve when app lied  to  a s e le c t io n  o f  
natural ashes.

CHAPTER I I I

EXPERIMENTAL METHODS AID RESULTS

In preparing the syn th etic  ash from pure ox ides i t  was necessary to  
use the carbonates cf calcium  and the a lk a lie s  s in ce  t h e ir  oxides are 
very hygroscop ic causing extreme d i f f i c u l t i e s  in  weighing the samples 
a ccu ra te ly . Great care had t o  be used even when using the carbonates to  
prevent water absorp tion  by the remaining ox ides b e fo re  they were mixed. 
This was done by heating them at 600-700° C t o  constant weight and a llow ­
ing (them to  c o o l  in  a s u lfu r ic  a c id  d e s ic c a to r .

A fte r  the ox id es  were weighed in  the r ig h t  proportion s and mixed 
they were heated at 1000° C to  constant w eight, tak ing  two to  fo u r  hours, 
to  d rive  o f f  the CO2 from the carbonates. This was done under a flow  o f  
a ir  to  purge the CO2 and t o  provide s u f f ic ie n t  0p to  prevent red u ction  o f  
the Fe202»

A syn th etic  ash was prepared in  the above manner to  conform to  the 
reported  an a lysis  o f  Custer l ig n i t e  ash. The an a lysis  o f  th is  ash is  
givep. in  Table I I .
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Figure 3s Effect of SiOg plus AlgO^ on ash softening temperature*



TABIE II

CUSTER LIGNITE ASH ANALYSIS

Component Weight Percent

12.9 
9-8  
9 ^

31-7
7 .3
0.8
8 .3  
0 .5

19.2

The SOt was not included in  the syn th etic  ash because i t  i s  impos­
s ib le  to  determ ine i t s  form from the reported  an a lysis  and a lso  because 
s u lfa te s  w i l l  decompose below  fu s io n  tem peratures, as p rev iou s ly  men­
t io n e d .

Fusion tem perature determ inations were made on th is  syn th etic  ash 
as w e ll as m ixtures con ta in ing  a d d it io n a l BiOp and/or AlgO-, id e n t ic a l  to  
those used in  the a u th or 's  B a ch e lor 's  t h e s is .  The fu s io n  temperatures 
from 1 th ese  m ixtures d id  not f o l lo w  any apparent pattern . In fa c t  the 
so fte n in g  tem peratures f o r  a l l  samples were between 2120° F and 2250° F 
except f o r  th ose  m ixtures t o  which on ly  Al^Oo had been added. These 
showed an almost l in e a r  in crease o f  so fte n in g  temperature with in creasin g  
AlgO^ co n ce n tra tio n . A ls o , the s o fte  ing temperature f o r  the syn th etic  
Custer ash was 360° F below that which was reported  f o r  the natural Custer 
ash. This is  a good in d ica t io n  th at they do not r e f l e c t  the natural ash 
fu s io n  c h a r a c t e r is t ic s .

From t h is  r e s u lt  i t  was concluded that the syn th etic  ash requ ired  
a d d it io n a l p ro ce ss in g  b e fo re  i t  cou ld  be used in  ash fu s io n  s tu d ie s . A 
heat t r e a t in g  p rocess  was s e le c te d  because i t  was b e lie v e d  that high 
tem peratures would a llow  the ox ides to  in te ra c t  to  form complex compounds 
c lo s e r  r e la te d  t o  those found in  natural ash. To fo l lo w  the p rogressin g  
in te r a c t io n , a t e s t  was devised  based on the fa c t  th at HF w i l l  v o la t i l i z e  
pure SiOg which can be driven  o f f  with heat a p p lica t io n . HF was t o  be 
added to  the heat tre a te d  ash and then the w ater, a c id , and any p o rtio n  
o f  tike ash v o la t i l i z e d  by the a c id  driven  o f f .  I t  was hoped th at any 
s i l i c a t e  S i0_ would not be a f fe c te d  by the HF so th at the weight lo s s  due 
to  the a c id  treatm ent cou ld  be used as an in d ica t io n  o f  the extent o f  the 
re a c t io n  o f  the SiC^. In th is  way i t  cou ld  be determined when a heat 
trea ted  sy n th e t ic  ash was equ ivalen t to  a natural ash. However, a c id  
treatment o f  th ree  s e le c te d  natural ashes t o  be used as con tro ls  showed

5102 . .
“ A

Ss??:
MgO.. .  
BaO.. .  
Na^O.. 
K gO ...503. .  .
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th at no r e la t io n  e x is te d  between the SiO^ content and the weight lo s s  due 
to  HF treatm ent. In fa c t  no r e la t io n  could  be found between the weight 
lo s s  and any component ox id e . The weight lo s s  in  a l l  th ree ashes was 
greater  than expected  and covered a much greater range than had been 
a n tic ip a te d . The range o f  the weight lo s se s  was from s ix  to  t h ir t y  one 
p ercen t.

A t r i a l  and e rro r  method was then used to  ob ta in  a heat tre a t in g  
process  th at would produce the d esired  r e s u lts .  A fte r  numerous t r i a l s  i t  
was found that heat tre a t in g  the ash at 2100 -  50° F in  the gas f i r e d  
fu s io n  furnace f o r  2 .5  hours made the syn th etic  Custer ash e x h ib it  the 
same fu s io n  temperatures as the natural Custer ash. In order to  d e te r ­
mine the r e p r o d u c ib il ity  o f  th is  method, nine a d d it io n a l syn th etic  ashes 
were prepared in  the same manner using com positions given  in  U. S. Bureau 
o f  Mines B u lle tin  No. 5^7• The fu s io n  tem peratures obtained from these 
samples are compared with those l i s t e d  in  B u lle tin  No.\ 5^7 in  Table I I I  
on page 16.

Gas samples were taken from the combustion chamber o f  the gas f i r e d  
fu rn ace , as c lo se  to  the sample as p o ss ib le  during the heat tr e a t in g  to  
determine how w e ll the atmosphere was co n tr o lle d . Table IV on page l6  
l i s t s  the amounts o f  C0^, CO,and obtained at various tem peratures.

TABLE I I I

COMPARISON OF FUSIBILITY CHARACTERISTICS 
OF NATURAL AND SYNTHETIC ASH

1 / I n i t i a l  S often in g  F lu id
Mine—' Deform ation, 0 F_______ Temperature, ° F______Temper at u re , ° F

1 - /  2— 1 2 1 2
Beuljah 2,080 2,100 2, 3l 0 2,350 2,370 2,380
Bauko1 -Noonan 2,080 2,130 2,150 2,200 2,180 2,220
Kincaid 2,080 2,080 2,150 2,190 2,210 2,100
Dakota Star 2,120 2,390 2,150 2,120 2,190 2 , H o
Dakota Star 2,260 2,300 2,310 2,350 2,120 2,100
Dakota Star 2 ,100 2,100 2,260 2,280 2,360 2,120
Zap 2,030 2,250 2,290 2,300 2,310 2,330
Lehigh 2,210 2 ,2 l0 2 , lOO 2,390 2,500 2,190
Custer 2,300 2,250 2,170 2,170 2,530 2,570
Dakota Star 2 ,380 2,1-10 2 ,110 2 ,160 2,170 2,190
1 / Source f o r lo c a t io n , an a lyses, and f u s i b i l i t y o f  natural ash was

Bureau o f  Mines B u lle tin  5^7* 
2 /  1 -  in d ica tes  natural ash.
3 /  2 -  in d ica tes  syn th etic  ash.
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TABLE IV

ANALYSES OF GAS SAMPLES FROM FUSION FURNACE

Temperature,
1 F

C0o
*

CO
*

*2
*

1500 5 .8 6 .7 10.9
2000 7-9 Q.h 6. h
2000 5.3 6.0 10.9
2000 6 .6 10.9 9-2
2000 7-7 9.U 7-6
2100 8 .6 7 -7 5-5
2100 6.5 . 30.9 10.3
2100 6.U 31.2 10.3
2100 6-3 11 .8 10.7
2100 6 .6 11 .1 10.7
2100 6 .3 11.7 11.2
Average 6 .7 9.6 9 .b

Some methane and ethane were present in  concentrations always le s s  than 
one p e rce n t. The remainder o f  the gas was n itrogen .

The ta b le  o f  gas analyses shows a considerab le  v a r ia tio n  in  gas 
com position . This undoubtedly is  due to  the fa c t  that the atmosphere 
is  c o n tr o lle d  by the height and c o lo r  o f  the flame em itted from the fu r ­
nace as o u t lin e d  by ASTM and Bureau o. Mines B u lle t in  No. h$2.

In  an attempt t o  fu r th e r  su bstan tiate  the use o f  the heat treatm ent, 
in fra re d  ab sorp tion  spectra  o f  the natural Custer ash and fou r  syn th etic  
Custer ashes which had been heat trea ted  at various temperatures f o r  
varying length s o f  time were made. These spectra  are shown in  Figure k. 
Spectrum 1 is  that o f  natural Custer ash. Spectrum 2 is  that o f  syn­
t h e t ic  Custer ash heated t o  1500° F f o r  one hour. Spectrum 3 is  that 
o f  sy n th e t ic  Custer ash heated t o  2000° F f o r  one hour. Spectrum ^ is  
th at o f  sy n th e tic  Custer ash heated t o  2000° F f o r  two and one h a lf  
hours. Spectrum 5 is  that o f  syn th etic  Custer ash heated t o  2100° F 
f o r  two and one h a lf  hours.

The band at 2 .9  microns on a l l  the sp ectra  is  caused by water, 
apparently  water o f  c r y s ta l l iz a t io n .  As would be expected , the height 
o f  th is  band and hence the con cen tration  o f  the w ater, decreases as tem­
perature and curing time in crea se . The band at 6 -  7 microns in  a l l  
spectpa i s  due to  the C0_ r a d ic a l. Again th is  decreases w ith  temperature 
and tim e. The presence o f  the CÔ  r a d ic a l is  ev id e n tly  caused by absorp­
t io n  o f  CO,, from the a ir  b e fo re  heat tre a t in g  o r  by rea ction s  w ith the 
CC>2 o f  th e  gas in  the fu s io n  furnace. The band at 8 microns in  the nat­
u ra l ash spectrum is  due to  the S0^ ra d ic a l and is  absent in  the syn th etic
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Figure 4 s Spectrum of natural and synthetic Custer ashes.



ash spectrum s in ce  no s u lfa te  SCL was included  in  these m ixtures. The 
band at 9 m icrons in  spectrum 1 and 2 is  due to  the SiCL r a d ic a l. The 
band at 9-2 m icrons in  spectrum 2 is  due t o  SiOo . T h is'5band has d isa p ­
peared in  spectrum 3.> and 5.? in d ica tin g  complete re a c t io n  o f  SiO to  
form s i l i c a t e s .  The broad band from 1 0 - 1 2  microns is  caused by tne 
SiO~ r a d ica l. Thus, as temperature and time increase in  the heat tre a t  ­
ment the CO r a d ic a l  content d ecreases , the SiO disappears com pletely , 
and the SiO^ r a d ic a l  makes i t s  appearance. Although the spectra  o f  the 
natural ash and the syn th etic  ash which had been heat trea ted  at 2100±
50° F f o r  two and one h a lf  hours do not c o in c id e , i t  can be seen th at a l l  
the| S i02 o f  the syn th etic  mixture has formed s i l i c a t e s  producing compounds 
th at are more l ik e ly  to  r e f l e c t  natural ash behavior than the untreated 
m ixture. The assumption that the natural ash and sy n th etic  ash are 
equ ivalen t a l t e r  heat treatment i s  th e re fo re  based on complete re a c t io n  
o f  the S i02 es w e ll as the e x h ib it io n  o f  l ik e  fu s io n  c h a r a c te r is t ic s .

Three s e r ie s  o f  fu s io n  temperature determ inations were made using 
sy n th etic  Custer ash with admixtures o f  SiO^ and AI2O3. The heat t r e a t ­
ment was accom plished a fte r  the admixtures were made. S eries  I  contained 
a d d ition s  o f  S i02 and ALpO  ̂ in  the r a t io  in  which they occurred  in  the 
o r ig in a l  ash. S eries  I I  contained ad d ition s o f  SiO,-, on ly . S eries  I I I

1 On on ly . All. s e r ie s  were made so th at the sum 
i§ h t  increased  by 6 percent increm ents. S eries

a r is e  in  so ften in g  temperature was n oticed  
between su ccessiv e  samples. S eries  I I I  was continued u n t i l  the so ften in g  
temperature was above the range o f  the equipment. Table V l i s t s  the 
fu s io n  tem peratures obtained from these samples. The f lu id  temperatures 
are|not l i s t e d  f o r  some o f  the samples because o f  the hindrance o f  the 
platinum  base preventing p re c is e  observation  o f  th at p o in t.

Attempts t o  c o r re la te  the so ften in g  temperatures with the com posi­
t io n s  o f  these th ree  s e r ie s  showed that no co r re la t io n  e x is ted  using 
H arrington 's  f a c t o r ,  the R$ index, o r  the R,- index. When the R  ̂ index 
was used i t  was found that S eries  I and I I  fo llow ed  nearly  id e n t ic a l  
curves but the curve f o r  S eries  I I I  was e n t ir e ly  d i f fe r e n t .  This c o r ­
r e la t io n  is  shown in  Figure 5•

contained ad d ition s  o f  Al^O 
o f  the SiO and A lo0^ we 
I  and I I  were continued u n til

A1 O3 i s  ra re ly  le s s  than 1.18 in  natural ashes, 
? a l l  the sy n th etic  samples o f  S eries  I I I .  I t

The r a t io  o f  SiOo to
but was le s s  than 1 .18  f o r  a l l" th e  sy n th etic  samples 
was th e re fo re  f e l t  that there was ju s t i f i c a t i o n  f o r  d isregard in g  th is  
s e r ie s ,  o r  i f  p o s s ib le ,  f o r  p rov id in g  a fa c t o r  in  the index to  compensate 
f o r  the excess Al^O-,. I f  S eries  I I I  were d isregarded  the c o r re la t io n  
would be the curve f o r  S eries  I  and I I  in  Figure 5• A fa c to r  which appar-
entljy compensates f o r  the excess A.L2O3 i s :

Rc -
SiOc

1 .18  AI 03 -  S i02
( f o r  S i02/A l203 <1 .18 )
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TABLE V

FUSION TEMPERATURES OF SYNTHETIC CUSTER 
ASH AND ADMIXTURES OF SiOg and A lg03

Sample

In it  i a l  
Deformation 
Temperature 

° F

S often ing 
Temperature 

0 F

F lu id
Temperature 

0 F
O rig in a l 2250 2480 2570
IA 2350 2400 2̂ 30
IB 2290 2340 2390
IC 2180 2270 2360
ID 2180 2210 2290
IE 2110 2180 -

IF 2090 2150 -

IG 2030 2220 2480
IIA 2340 2̂ 30 2450
IIC 2200 2240 2300
IID 2060 2170 2260
IIE 2010 2110 2230
IIF 2010 2160 2290
IIG 2030 2210 2310
l i f t l 2210 2320 2430
III ]B 2210 2370 -

l i f t 1 2290 2420 -

i i n 5 2U3O 2620 -

IIU 3 2600 2820 -

IIIF 2650 29LO -

m e >29*10 >29̂ 0 >2940

Thiss fa c to r  is  the A1 On requ ired  t o  make the r a t io  1 .18 d iv ided  by the
Alg02 present in  excess o f  th is  amount. When the Rn index f o r  S eries  I I I  
on ly  vas m u ltip lied  by th is  f a c t o r ,  a good c o r re la t io n  was obtained using 
a l l  th ree s e r ie s .  This c o r re la t io n  is  shown in  Figure 6. No co r re la t io n  
e x is ts  when the fa c to r  is  a lso  used on S eries  I and I I .

Figure 7 shows the p o in ts  obtained from the samples te s te d  in  th is  
p r o je c t  p lo t te d  on the c o r re la t io n  developed by th^e^ ith o r  in  h is  
B a ch e lor 's  th e s is  and subsequent work. They f a l l / c l o s e  to  the curve, 
as would be expected , s in ce  Custer ash was used, and the admixtures were 
made in  the same manner, in  both ca ses , except that syn th etic  ashes were 
used instead  o f  the natural ash in  th is  case.

| The L e itz  Heating M icroscope was used to  determine the f u s i b i l i t y  
c h a r a c te r is t ic s  o f  a few se le c te d  samples o f  sy n th etic  ashes. The
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p i c t o r i a l  re cord  o f  three ash fu s io n  processes  is  shown in  Figures 8 ,
9 , and 10. Table VI g ives the comparison o f  r e su lts  obtained on the two 
types o f  equipment. In gen era l, the same re su lts  are not obtained from 
the ltwo  p ie ce s  o f  equipment. These d iffe r e n c e s  are probably caused by 
the d is s im ila r  geometry o f  the samples and d if fe r e n t  atm ospheric con d ition s  
in  the fu rn a ces . A mixture o f  50$ CO,-, and 50$ CO was used as an atmos­
phere in  the m icroscope.

TABLE VI

COMPARISON OF FUSIBILITY CHARACTERISTICS OBTAINED ON 
THE LEITZ HEATED MICROSCOPE j\ND GAS FURNACE

Sample

I n i t ia l
Deform ation
Temperature
/ ° F
----------------

S often ing  
Temperature 

° F

F lu id
Temperature

Natural
Cus|ter 2300 2320 2470 2500 2530 2590

S yn th etic
Cusfter 2250 2320 2 7̂0 2*1-80 2530 2600

IIG 2030 2170 2210 2210 2310 2370
H IE 2600 2550 2820 2750 - 2930

’jo'btaine'd w ith  gas furnace"
2 /  Obtained w ith  L e itz  M icroscope

The m icroscope i s ,  in  gen era l, a b e tte r  p ie ce  o f  equipment f o r  
experim ental work. More p re c is e  co n tr o l o f  the heating rate  and atmos­
phere is  p o s s ib le ,  p rov id in g  more p re c ise  d u p lica t io n  o f  r e su lts  in  addi­
t io n  t o  the premanent record  o f  the process  th at i t  p rov id es . However, 
the m icroscope i s  not in  general, use and is  not accepted  equipment f o r  
determ ination  o f  fu s io n  temperatures so th at a l l  data f o r  general use 
must be obta in ed  w ith the conven tion a l gas f i r e d  furnace.

One very in te r e s t in g  phenomenon o f  the fu s io n  process  was noted using 
the m icroscope which was not apparent with the conven tion al fu rn ace . This 
was the e v o lu t io n  o f  gas by the sample when i t  reached a p a r t ia l ly  melted 
s ta te . This e v o lu tio n  o f  gas was accompanied by form ation  o f  large bubbles 
w ith in  the sam ple, making i t  expand t o  as much as double i t s  previous s i z e .  
The bubble would even tu a lly  break causing the sample to  c o lla p s e . The 
reason  f o r  t h is  gas ev o lu tio n  is  not ye t understood.
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CHAPTER IV

DISCUSSION OF RESULTS

The use o f  the c o r re la tio n s  developed in  th is  in v e s tig a tio n  is  
lim ited  s in ce  th ey  were developed using samples in  which the r a t io s  be ­
tween a l l  components except S i0o and AI2O3 were constant. However, they 
provide a good in d ica t io n  o f  the e f f e c t  o f  these two components on the 
f u s i b i l i t y  c h a r a c te r is t ic s  o f  l ig n it e  ashes. This should not be construed 
t o  mean that they would a f fe c t  a l l  l ig n it e  ashes t o  produce data fo llo w in g  
id e n t ic a l  curves but they should fo l lo w  the same trend and produce the 
same shape curve somewhat d isp la ced  from those developed.

The value o f  the method f o r  preparation  o f  syn th etic  ash cannot be 
over-em phasized because i t  p rovides the means to  make a complete s t a t i s ­
t i c a l  study o f  the e f f e c t  o f  each component on fu s io n  c h a r a c te r is t ic s .
This study would be a very exten sive  program and is  beyond the scope o f  
t h is  p r o je c t .

The spectrum o f  the syn th etic  ash a f t e r  the s p e c i f ie d  heat treatment 
shows that a l l  the SiOg has combined with eth er oxides t o  form m ineral 
type compounds. Thus, i t  would be expected to  e x h ib it  fu s io n  ch aracter­
i s t i c s  s im ila r  t o  a natural ash. However, the d iscrep a n cies  in  the com­
p arison  o f  the natural and syn th etic  ash spectra  in d ica te  th at the 
syn th etic  ash is  not id e n t ic a l  m in era log ies ,lly  to  natural ash and th ere ­
fo r e  may not e x h ib it  the same flow  ch a r a c te r is t ic s  as determined by 
v is q o s ity  measurements.

CHAPTER V
»

SUMMARY

F u s ib i l i t y  c h a r a c te r is t ic s  o f  c o a l ash are h ig h ly  s ig n if ic a n t  
fa c to r s  in  combustion and g a s i f ic a t io n  o f  s o l id  fu e ls .  The complex 
nature and random d is t r ib u t io n  o f  the analyses o f  co a l ashes cause p re ­
d ic t io n  o f  fu s io n  c h a r a c te r is t ic s  to  be e n t ir e ly  em p irica l at the present 
tim e.

Present co r re la tio n s  o f  fu s io n  temperatures w ith com position  are 
gen era lly  u n sa tis fa c to ry . Only one c o r re la t io n  p re v io u s ly  developed p ro ­
duces p re d ic t io n s  which agree with the m ajority  o f  experim ental data.
This is  a h ig h ly  complex p lo t  in  three dimensions with the disadvantage 
th at i t  ap p lies  t o  ashes from coa ls  o f  h igher rank than l ig n i t e .

No s t a t i s t i c a l  study has ever been made o f  the e f f e c t  o f  each oxide 
component on the fu s io n  c h a r a c te r is t ic s . This is  undoubtedly due to  the 
random d is t r ib u t io n  o f  the com position  which w i l l  not r e a d ily  lend i t s e l f  
t o  s t a t i s t i c a l  a n a ly s is . The on ly  so lu t io n  to  th is  problem appears to  be 
the use o f  pure syn th etic  ash mixtures enabling system atic v a ria tion s  in  
com position .



I

T r ia l  and e r r o r  methods re su lte d  in  a p rocess  in  which the sy n th etic  
ash yas made from  pure ox ides and carbonates, the mixture o f  "which was 
heat tr e a te d  a t 2100 - 50° F f o r  two and one h a lf  hours in  a m ild ly  re ­
ducing atm osphere. The fu s io n  temperatures o f  ten  syn th etic  ashes p re ­
pared in  the above manner show good agreement with those o f  the natural 
ash.

I The c o r r e la t io n  o f  so ften in g  temperatures with com position  presented 
by the author in  h is  B ach elor5s th e s is  and subsequent work showed f a i r l y  
good agreement w ith  the r e su lts  o f  th is  p r o je c t .  A lso , a new c o r re la t io n  
index o f  the m olar r a t io  o f  SiC^ p lus Al^O^ t o  the remaining components, 
n e g le c t in g  SO3, was used g iv in g  e x ce lle n t  r e s u lts .

The use o f  th ese  co r re la t io n s  is  lim ite d . However, they would 
probably  produce a c h a r a c te r is t ic  trend when app lied  t o  ashes in  gen era l. 
There remains much work t o  be done in  th is  f i e l d  to  develop  methods f o r  
accurate p r e d ic t io n  o f  fu s io n  tem peratures.

A I e i t z  H eating M icroscope was obtained and used to  determine the 
fu s io n  tem peratures o f  some s e le c te d  samples. The temperature obtained 
with t h is  equipment does not agree with that obtained using the conven­
t io n a l  fu rn a ce . However, the m icroscope is  much more so p h is t ica te d  and 
g ives r e s u lt s  more p r e c is e ly  d u p lica ted  as w e ll as a p i c t o r ia l  record  o f  
the fu s io n  p ro ce s s . This equipment cannot be used in  p lace  o f  the con­
ven tion a l fu rn a ce , however, because i t  has not been accepted  by ASTM as 
standard f o r  ash fu s io n  determ inations.
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