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ABSTRACT 

Flight delays are caused by a multitude of external influences as well as revenue 

driven carrier decisions. Some factors are obvious while others remain inaccessible to the 

traveling public. Yet knowing of potential flight delays or cancellations in advance can 

significantly improve passengers’ travel experience and empower them to make informed 

decisions when flight irregularities occur.  

We combine a Naïve Bayes - based feature selection method with publicly 

available meteorological data and flight performance statistics to create a forecasting tool 

that provides passengers with an improved prediction of potential delays. After promising 

initial results we optimize our feature selection and weighting, yielding a 66% true 

positive rate paired with a 66.5% accuracy. This means that 66.5% of our forecasts are 

correct while the model manages to properly detect 66% of irregular flights. Compared to 

a probabilistic forecast based on historical data, this represents an improvement of 332% 

and 436% respectively. 
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CHAPTER I 

INTRODUCTION 

Statement of the Problem 

Air Transportation Networks have long been known to be rather complex 

structures (Currie, Dickey, Duclos, & Price, 1974). This complexity has grown with the 

increasing traffic demands on the national airspace system (Meyer, Saghi, & Tarnai, 

2008). In such a tightly knit network, both local and systematic delays can be caused by a 

large number of heterogeneous events throughout the entire system (Ball M. , et al., 

2010). Reasons may include such obvious obstructions as adverse weather (Robinson, 

1989) or malfunctioning aircraft, but may also include delayed crews (Rubin, 1977), 

traffic congestion (Nogami, 1995) and a large number of other factors. Any one of these 

factors may delay a single flight or a certain set of flights at any given station throughout 

the system. Such delays may then propagate throughout the system and may be amplified 

in the process (Li & Ding, 2008). 

These irregular operations impose significant cost on passengers and  the 

environment (Dray, Evans, Vera-Morales, Reynolds, & Schafer, 2008). Passengers are 

disproportionally affected in cases of cancellations irrespective of whether those 

disruptions were the direct result of operational requirements or whether the operator 

chose to cancel the flight based on economic considerations (Bruce, 2011).      
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Purpose of this Study 

This study will analyze whether a binary machine learning approach may be used 

to accurately forecast flight delays and cancellations in spite of significant uncertainties. 

While such attempts could be made using a wide variety of algorithms and methods, we 

specifically test a Naive Bayes approach to feature reduction paired with a binary 

classification system of meteorological features derived from weather observations 

reported by weather stations throughout the 48 contiguous United States. 

Throughout the study several aspects of the original approach may be adapted to 

optimize the final results that will be tested against a probabilistic forecast based on 

historic flight performance data. Ultimately we aim to answer the question whether the 

machine learning approach can consistently outperform the probabilistic base line.  

This study does not aim to generate a forecasting method that can be immediately 

implemented in industry. Instead it is intended to lay the groundwork for future research 

that may ultimately lead to such an implementation. In order to be a viable as such, the 

machine will have to achieve an accuracy and a true positive rate of at least 60% each.  

 

Literature Review 

Causes of delay have been studied extensively, both from an operational (Ball M. 

, Barnhart, Nemhauser, & Odoni, 2006) and from a theoretical view (Sun, Clinet, & 

Bayen, 2011). Studies examine the entire flight period beginning with the preparation of 

the aircraft at the gate (Hebert & Dietz, 1997) and the delay-prone subsequent queuing 

process for departure from congested airfields such as Boston (Idris, 2002), Dallas and 

Atlanta (Mayer & Sprong, 2008).     
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To combat enroute delays, many studies propose numerous linear integer and 

mixed integer models (Dell'Olmo & Lulli, 2003). Others present complex forecast 

models aimed at helping decision makers in their efforts to optimize traffic flow (Lacher 

& Ball, 2002). However, researchers also note that enroute delays are largely influenced 

by factors outside traditional models (Sood, Mulgund, Wanke, & Greenbaum, 2007) 

including unexpected adverse externalia such as regional (Matus, Hudnall, Murray, & 

Krueger, 2010) and distant volcanic activity (Dacre, Grant, & Johnson, 2013) and even 

the psychological patterns among air traffic controllers (Gronlund, Dougherty, Durso, 

Canning, & Mills, 2005).  

Separation requirements during approach - especially in congested airspace - can 

also exacerbate existing delays (Wang & Tsao, 2012) and even spread to previously 

unaffected aircraft en route (Slattery & Cheng, 1997). This especially holds true in 

reduced visibility situations (Pisano, 2008) 

While delays are usually the direct or indirect result of an external influence, 

cancellations are more often the result of a conscious decision made by the operator 

(Seelhorst & Hansen, 2014). Such decisions may themselves be the result of 

insurmountable delays or obstructions to regular operations. They can, however, also be 

strategic decisions attempting to optimize overall operations (Shavell, 2001) or to 

improve purely economic factors such as yield or load factors (Wang & Regan, 2006).  

Most externalities can – at least to a certain extent – be monitored, analyzed and 

used to predict flight delay generation and propagation as well as related cancellations. 

The strategic decisions made by operators are less transparent and not uncommonly 

considered proprietary tools of competitiveness (Seelhorst & Hansen, 2014). An air 
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carrier that makes the best strategic decisions can be expected to generate the highest 

overall yield which underlines the importance of good flight management including 

cancellations where opportune. However, it is quite difficult for the traveling public or 

even us as researchers to understand the opaque models on which carriers base their 

cancellation decisions. They must therefore be treated as unknown properties in the larger 

scheme of factors influencing the regularity of flight operations and cannot be used in any 

forecasting model or flight delay mediation approach. 

While mere observation of past flight data allows interested parties to create 

simple statistics of any flight’s on time performance that in turn may be used to generate 

a forecast of delays and cancellations, such a forecast will be inherently unreliable as it is 

purely based on past probabilities and does not take any current and future externalities 

into account (Lorentson, 2011). To create a more appropriate forecast, one needs to 

determine and define a sufficiently influential set of such external factors that may 

negatively affect flight operations.  

 

Meteorological Externalities 

Many of the most important externalities in aviation are meteorological 

phenomena. Aircraft operations are not only negatively affected by reduced visibilities 

arising from precipitation or fog (Black, 2010), but also by other factors including 

particularly high or low ambient temperatures (Federal Aviation Administration, 2014). 

Adverse weather conditions can affect departure and arrival operations (Mueller, 2002) 

and also prompt airlines to reroute aircraft in flight to avoid operational hazards (Zobell, 

Ball, & Sherry, 2001). We therefore propose that high resolution meteorological data 
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provides the best stand-alone basis for forecasting irregular flight operations irrespective 

of any other external variables.  

The National Oceanic and Aerospace Administration (NOAA) maintains a 

database of such high resolution data with a wide breadth of weather measurements and 

observations from a large number of stations throughout the United States and its 

territories. Figure 1 provides a visual representation of the geographic distribution of 

included weather stations. In areas with greater station density, different intensities were 

used to improve the visual appearance. These varying intensities are not indicative of any 

variance in station quality, importance, availability or any other feature relevant to its 

validity for our further analysis.     

 

Figure 1: Weather Stations in the Contiguous United States 

The main purpose of this study will be to determine whether delays and 

cancellations can be forecast using a binary machine learning approach based purely on 

current, recent and historic weather observations reported by stations throughout the 

continental United States. As meteorological systems vary greatly between the 
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continental United States and geographically separate areas including Alaska (Partain Jr, 

2008) and Hawai’i (Sanderson, 1993), we will limit our scope to these contiguous 48 

states. 

It is apparent that weather at the departure airport, the destination airport or along 

the route will directly influence the flight’s performance. However, as stated before, air 

transport networks tend to be rather complex and delays often propagate in a less obvious 

fashion that can only be forecast to a certain extent (Ding & Li, 2011). These 

propagations will vary between different geographic regions and across airline networks 

as different operators employ vastly different network structures (Seelhorst & Hansen, 

2014). To create a universal forecast model, we need to analyze which weather 

conditions at which stations throughout the contiguous United States may increase the 

probabilities of a delay or cancellation for the flight under consideration.  

We will accomplish this by training the machine for each new flight using historic 

data. Based upon this data, our model will decide which stations to consider for a given 

flight and what weights to assign to the individual measurements and observations. Once 

training has been completed for a given flight route, future forecasts for similar flights on 

other days can be based on this training and on updated current weather data. 
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CHAPTER II 

METHODOLOGY 

Data 

The Bureau of Transportation Statistics (BTS) provides detailed departure 

statistics for most commercial domestic passenger flights. Data are publicly available and 

include specific information regarding various different types of delay incurred as well as 

the precise delay in minutes. While aggregate information is available, we choose to 

obtain and use raw data that allows us to build a consistent aggregate dataset that best 

suits our model.  

One major drawback of this dataset is the BTS’s reporting method. Data are 

provided specific to route, operating carrier, month and year. As a result, we need to 

obtain and consolidate at least twelve different reports for each year multiplied with the 

number of included operating carriers. This will provide us with the annual data for one 

specific route. Unfortunately each individual subset must so far be obtained manually in a 

rather time consuming process that is exacerbated by the BTS’s transmission speeds. The 

typical time required to obtain just one subset averages about seven minutes. 

Interestingly, the HTML version of the data gets reported significantly faster which 

suggests that the issue lies not within the BTS database itself but in the delivery of 

structured CSV files. However, HTML interfaces change frequently and any automated 

retrieval system will need to rely on predictable, structured data.  
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Our request for faster access was unfortunately not granted by the BTS. Therefore 

the scope of this study will be limited to a small number of examples. We are, however, 

confident that these examples are representative of the entire population and that faster 

access could be negotiated with the BTS if a more comprehensive implementation of the 

suggested method should be desired. 

While access to the BTS’s flight data is somewhat limited, NOAA provides an 

excellent and accessible repository of detailed meteorological data in various stages of 

aggregation. Yet again we chose to create our own aggregates based on raw source data 

files which exceed a size of 6.5GB for each period of twelve months.  

The model must be trained using relatively large long-term datasets for both 

weather and delays or cancellations. Processing this raw data will take considerable 

amounts of computing time, but weather data only needs to be preprocessed once as the 

results can be used to train any future flight routes. The smaller set of weather data used 

for the actual forecast generation will compute rather quickly and it is unlikely that any 

significant performance increase could be achieved by using aggregate data. This study 

does not use any proprietary datasets but relies solely on publicly available data sources. 

In order to facilitate the forecasting routine and to avoid unnecessary noise, we 

will create binary variables for both the independent and the dependent realms. While the 

dependent variables describing flight behavior are easily defined, a significantly more 

complex definition procedure is necessary for the independent features describing the 

reported meteorological environment. We will describe this process in detail in the 

upcoming paragraphs. 
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Temporal Scope 

We begin by training the machine on annualized data and subsequently proceed to 

refine the training procedure using monthly data. The latter option is much more 

expensive in terms of computing resources but could potentially improve the forecast 

quality as weather phenomena are inherently seasonal in nature and traffic patterns also 

change throughout the year to accommodate changing demand. These changes in network 

structure change delay propagation characteristics while the reduced slack during peak 

and shoulder seasons reduces the network's robustness and its ability to recover from 

irregularities. 

Feature Selection 

Flights 

Our model aims to forecast both cancellations and delays. While cancellation is – 

by nature – a binary feature, our source data will provide the exact duration of the delay 

incurred in minutes as an integer value. We are, however, less interested in the actual 

delay duration and instead aim to forecast the probability of a severe delay. While various 

different delay measures exist throughout the industry, we will consider any delay in 

excess of ninety minutes to be severe, irrespective of flight route or scheduled duration.  

Our dependent feature can hence be defined as follows: 

Fi = 0  Flight departed earlier than ninety minutes after the scheduled departure 

time 

Fi = 1  otherwise 
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Departure Time Clusters 

Every iteration of our forecasting algorithm will aim to make a forecast for a 

particular flight route operated by a specific carrier on a given day. However, delays may 

propagate very differently during different times of the day. 

Most morning flights, for example, are less prone to delays caused by inbound 

aircraft operating flights on the same day. They could, however, be affected by delays 

that built up on the previous day and ultimately resulted in an evening cancellation 

causing an aircraft shortage in the morning. Similarly, crews arriving late on the night 

before may not be available in the morning due to duty time limitations (Missoni, 

Nikolic, & Missoni, 2009). 

At some airports, local weather also tends to vary greatly throughout the day. 

Issues such as morning fog can drastically impact operations at these stations. Local 

traffic patterns and rush-hour peaks are further influences on delay creation and 

propagation characteristics that may be very different between mornings and evenings.  

One possible approach to this problem would be a finer resolution of the forecast. 

In this scenario we would only analyze one particular flight and equally also only create a 

forecast for that specific flight. This approach would work well for consistent schedules 

of carriers that operate the same flight at the same time every day. However, some 

carriers - regional airlines in particular - very often change flight times and flight 

numbers on any given route. This lack of consistency does not allow for unique 

identification of any particular flight for a sufficiently long time frame.  

To refine our forecast to different parts of the day without relying on any 

particular flight identifiers, we will group the data into six clusters based on departure 

time: 
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- Flights departing between midnight and 7:59am 

- Flights departing between 8am and 10:59am 

- Flights departing between 11am and 1:59am 

- Flights departing between 2pm and 4:59am 

- Flights departing between 5pm and 7:59pm 

- Flights departing between 8pm and 11:59pm 

 

Different carriers 

An additional problem arises when different carriers operate the same route in the 

same time slot. These carriers are likely to have quite different network structures that are 

vulnerable to different externalia and have significantly different delay propagation 

characteristics. Data from different carriers cannot safely be mixed without introducing 

unwanted and potentially detrimental noise. Hence our model must be refined based on 

the operating carrier. The BTS does report flight performance data specific to each 

carrier, so we need not include this in our preprocessing stage but simply take it into 

account at the data selection level.  

 

Meteorological Data 

Binary Enumeration 

The operational performance has already been classified in a binary fashion. Now 

we need to establish a number of equally binary meteorological features to use as 

possible predictors of irregular operations. While it is easy to create binary descriptors for 

regular vs. irregular operations, the reported weather data is quite heteromorphic.  
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Table 1 provides an overview of the variables and data types included in the 

source data supplied by NOAA (National Oceanic and Atmospheric Administration, 

2014). Some of the reported variables are suitable feature candidates that can easily be 

converted into a binary feature by thresholding. Others may require significant 

preprocessing in order to create applicable binary feature expressions.  

 

Table 1: Data Reported in NOAA Files 

Feature Data Type 

Sky Condition Concatenated Strings 

Visibility Float 

Weather / Precipitation Type Concatenated Strings 

Precipitation Float 

Temperature Float 

Dew Point Float 

Humidity Integer 

Wind Speed Integer 

Wind Direction Integer 

Pressure Float 

Altimeter Float 

 

 

High Temperatures 

It is well known and documented that aircraft performance is adversely affected 

by the higher density altitudes induced by high temperatures (Federal Aviation 

Administration, 2008). Aircraft operators may choose to adjust payload, change 

equipment or even cancel flights in response to the changed operational requirements 



13 

 

presented by increased ambient temperatures. For our study we initially establish a 

relatively low threshold of 31 Celsius (approx. 88 Fahrenheit). Any temperature above 

that threshold will be considered to be a potential contributor to delays or cancellations. 

 

Low Temperatures 

Low temperatures by themselves are not known to negatively affect aircraft 

performance. They can, however, negatively affect flight operations in an indirect 

fashion. For example, temperature is a major factor in the decision whether to subject an 

aircraft to deicing procedures (Lindholm, Hage, Wade, & Rasmussen, 1997) which can 

cause significant delays. We will therefore consider temperatures below 5 Celsius 

(approximately 41 Fahrenheit) to be a contributing factor to irregular operations. 

 

Sky Conditions 

Sky Conditions are supplied as observational values describing each cloud layer 

present, if any. For each layer, the observation will specify the altitude and the coverage 

classified as few (FEW), scattered (SCT), broken (BKN) or overcast (OVC). Clear skies 

are reported as CLR while an empty value represents a missing observation.  

The standards used for cloud reporting in our dataset (National Oceanic and 

Atmospheric Administration, 2014) are identical to the ones defined by the International 

Civil Aviation Organization (ICAO) for cloud reporting in the Aviation industry (Federal 

Aviation Administration, 2014). We will analogously apply these standards to enumerate 

the individual designations following the brackets shown in Table 2 while calculating the 

overall impact factor. 
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Table 2: Cloud Cover Enumeration 

Condition Impact Factor 

FEW 1/8 

SCT 3/8 

BKN 6/8 

OVC 8/8 

 

Coverage is reported for each individual cloud layer. In aviation, lower layers 

have a much greater impact on airport operations than higher layers. The latter may be 

indicative of certain atmospheric disturbances that could prompt a carrier or air traffic 

control to preemptively reroute traffic. Individual flight crews may also request a 

different routing to avoid potentially negative impacts on passenger comfort or flight 

safety. However, the resulting delays will be less severe than those incurred during the 

departure and arrival phases. During these phases, increased separation requirements may 

produce significant delays.  

While the different layers have very different impacts on flight operations, we 

need not specifically account for these differences. Instead, these different layers may be 

treated as cumulative and allow our algorithm to automatically learn which locations are 

generally more prone to delays caused by sky coverage.  

Clear conditions may obviously be ignored and missing values must be equally 

discarded. As a result, one may calculate the total impact value of the n cloud layers as 

follows 

   ∑                  
   k+0.6BKNk+OVCk 
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Cloud coverage in excess of 70% will be considered significant. This is represented by a 

threshold of   >= 0.7*n.  

 

Visibility 

Reduced visibility affects both departing and arriving traffic. The latter is 

disproportionately affected as landing in reduced visibility situations is considerably 

more challenging in spite of the variety of available support systems such as instrument 

landing systems (ILS) and increasingly the global positioning system (GPS). While 

departing aircraft are less affected by reduced visibility itself, they are subject to indirect 

delays. As separation requirements for arriving aircraft increase, runway capacity 

decreases and especially busier airports will incur delays as they must prioritize landing 

traffic to avoid technical diversions as a result of declining fuel levels on aircraft in 

holding patterns. As a result of this prioritization, departing flights are likely to incur 

significant visibility related delays as well. Our initial threshold for the visibility feature 

will be set at 3 miles of reported ground visibility.       

 

Weather 

Just like cloud conditions, weather is reported as a concatenated string that need to be 

interpreted in the preprocessing stage using the definitions provided by the NOAA 

(National Oceanic and Atmospheric Administration, 2014) 

.Weather types fall into two major categories: 

- Precipitation 

- Obscuration 
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Precipitation includes rain (RA), drizzle (DZ), showers (SH), snow (SN), hail 

(GR), ice crystals (IC) and unknown precipitation (UP) while obscurations represent 

reduced visibilities due to fog (FG), haze (HZ), mist (BR), dust (DU) and sand (SA). We 

will aggregate snow, hail and ice crystals into one category representing frozen 

precipitation while rain, drizzle and showers will be maintained as a separate category of 

liquid precipitation.  

“Unknown Precipitation” is a category used by automated stations and could 

describe a range of precipitation types – mostly rain and snow. As it is impossible to 

ascertain whether this precipitation is frozen or not, it must be categorized based on the 

likely effect on our forecast. Considering all “unknown” precipitation as rain, we might 

reduce the overall true positive rate (TPR) as a result of undervaluing the occurrence of 

frozen precipitation. Conversely, the true negative rate (TNR) would be negatively 

impacted by overvaluing non-frozen precipitation when adding UP to the frozen 

category. In order to maximize TPR, the second alternative is clearly preferable. 

Therefore, “unknown” precipitation shall be considered alongside frozen types.    

Within the frozen precipitation group, the different types of precipitation will be 

weighted according to Table 3. These weights are based on the assumed effect on 

aviation operations. Snow is most likely to negatively impact airport operations as 

clearing an airfield from snow cover takes considerable time. Snow is also the only type 

that can be considered both as precipitation and as obscuration. Snow – especially 

blowing snow – can drastically reduce visibility and hence adversely affect operations. 

However, as our model considers visibility as an independent feature, we need not 

separately account for snow-induced visibility reductions.  
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However, blowing and drifting snow cause a variety of challenges on airports that 

may cause delays similar to those caused by falling snow. Both types of snow require 

increased airfield maintenance and aircraft deicing procedures. We will hence consider 

any mention of blowing or drifting snow on par with snowfall.  

Table 3: Frozen Precipitation Weights 

Precipitation Type(s) Weight 

Snow 4/8 

Ice Crystals, Hail 3/8 

Unknown Precipitation 1/8 

 

Ice crystals and hail occur during different times of the year. Hail is most 

common during the summer months as thunderstorm activity is much greater during that 

season. However, ice crystals and hail may be classified as a separate subgroup within the 

frozen precipitation category. Our model will consider temperature and thunderstorm 

activity separately which eliminates the need for a particular distinction within this group. 

Finally, unknown precipitation may or may not be frozen and will hence be assigned a 

relatively low weight.   

We are less interested in the particular cause of reduced visibility and will 

aggregate all types of obstructions into one major category.  

 

Thunderstorms 

Thunderstorms are reported alongside the aforementioned types of precipitation. 

However, especially in aviation, thunderstorms must be considered a particular threat to 

safety and hence regular operations. For example, the average delays caused by just one 
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thunderstorm at Frankfurt International amounted to 740 aircraft minutes (Hauf & Sasse, 

2002).   

As thunderstorms may have such a substantial impact on airport operations, we will 

consider any report of thunderstorms whatsoever to be critical enough to consider the 

“thunderstorm” feature to be true.  

 

Wind 

Steady winds do not necessarily negatively affect operations as long as wind 

direction does not significantly differ from runway orientation. However, many airports 

only have one or a small number of parallel runways resulting in potential crosswinds 

depending on wind direction. Strong crosswinds can mandate larger separations (van Es, 

van der Geest, & Nieuwpoort, 1999) and hence cause flight delays – particularly when 

wind speeds fluctuate. The amplitude of wind gusts heavily depends on the airfield’s 

surrounding geography (Agustsson & Olafsson, 2009) but will generally be larger when 

average wind speeds increase. For our study we will therefore consider sustained wind 

speeds in excess of 20 kts to be potential causes for delays. Such a low threshold will aid 

in avoiding false negatives for this feature. 

 

Wind Direction 

Wind directions are reported in degrees indicating the direction from which the 

wind is approaching. This results in decimal readings between 1 and 360 degrees which 

do not easily convert into a binary structure. We use two separate binary feature values to 

describe wind direction – one that indicates whether air masses are moving southward 
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(coming from a northerly direction) and another indicating whether they move eastward 

(coming from a westerly direction).  

Table 4: Wind Quadrants 

Wind Direction Northerly? Westerly? Binary Representation Quadrant 

360 Yes No 10 2  

45 Yes No 10 2 

90 No No 00 0 

135 No No 00 0 

180 No Yes 01 1 

225 No Yes 01 1 

270 Yes Yes 11 3 

315 Yes Yes 11 3 

 

As can be seen in table 4, these two features allow us to specify wind direction in 

four different quadrants: 0-89 degrees, 90 to 179 degrees, 180 to 269 degrees and finally 

270 through 359 degrees. Both 0 degrees and 360 degrees will be considered valid 

definitions of true north. Using the binary representation, wind direction may be 

categorized into one of the four quadrants enumerated from zero to three. 

Most airports tend to have strong predominant wind directions and hence 

relatively little variability in these two values should be expected. However, since even 

small changes in wind directions can significantly affect local climate (DeGaetano & 

French, 1991) and of course determine their further trajectory, wind direction is expected 

to have at least a certain influence on our model.  
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Pressure 

Low pressure systems are generally less stable (Billet & Titlow, 2010) and cause 

more adverse weather events. Therefore, lower pressure is expected to be positively 

correlated with irregular operations. 1013mbar indicate normal average atmospheric 

pressure at sea level while in larger hurricanes pressures as low as 892 mbar have been 

observed on landfall (McCallum & Heming, 2006).  As with temperatures, we also 

choose a highly sensitive value for barometric pressure. Any value below 99.5% of the 

regular atmospheric pressure shall be classified as representing a low pressure system. 

This results in a threshold of 1008mbar. 

In total, we consider the following eleven binary features: 

- Cloud Cover 

- Reduced Visibility 

- Larger Amounts of Rain 

- Larger Amounts of Frozen Precipitation 

- Strong Winds 

- Thunderstorms Present 

- High Temperatures 

- Low Temperatures 

- Northerly Wind Direction 

- Westerly Wind Direction  

- Low Pressure 
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Aggregation 

 While data resolution varies between stations, most stations provide a large 

number of reports on any given day. Processing our further analysis using this high 

resolution would be rather unfeasible on any affordable computing architecture. 

However, we can assume that aggregating the data to daily reports from each station will 

still provide us with a valid basis for the following calculations. Removing the varying 

resolutions may also reduce the risk of distortions caused by noise in the high resolution 

data (Nettleton, Orriols-Puig, & Fornells, 2010). 

 

Table 5: Occurrence Thresholds 

Feature Occurrence Threshold 

Reduced Visibility 15% 

Liquid Precipitation 70% 

Frozen Precipitation 20% 

Strong Winds 30% 

Thunderstorms 0% (any thunderstorm throughout the day) 

High Temperature 20% 

Low Temperature 20% 

Northerly Wind 50% 

Westerly Wind 50% 

Low Pressure 50% 
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 This aggregation can be accomplished by counting the individual occurrences of 

each feature throughout the entire day at a given station. For each feature, we define the 

occurrence thresholds shown in Table 5 and consider the feature to be true for the entire 

day if the cumulative individual feature observations exceed that threshold. The various 

different threshold levels reflect the individual feature’s potential impact as well as the 

likely occurrence throughout the day. This is of importance as certain features are less 

likely to occur at certain times. High temperatures, for example, occur more often during 

the daytime than during nighttime. 

 

Missing Values 

Not all stations report data in constant, predictable intervals. A given station 

might report several times an hour and subsequently fall silent for several hours. This 

could be due to a system malfunction or transmission errors, but may also be the result of 

intentional system design. A station might be configured to only report data that the 

individual operator would consider interesting. This is particularly true for remote 

stations that report their observations automatically using expensive data links. Such 

custom reporting intervals may also cause the same station to be present in the data 

during certain seasons while it may be absent during the rest of the year.  

Even if a station does report its observations several times each day throughout 

the year, not all values are necessarily present. Once again this could be a result of system 

design as a station might be configured to only report certain measurements at certain 

times. However, it is more likely to be the result of a malfunction as there is little 

incentive to a station operator to suppress individual observations from a report as the 
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added data volume is typically minimal. Missing values may be caused by transmission 

errors, system malfunctions or – most likely – by malfunctioning sensors. Sensors can be 

damaged by adverse weather conditions, wildlife and even vandalism.  

These inconsistencies pose a serious challenge for further data analysis. We will 

address this challenge depending on the particular circumstances: 

- During the training phase: 

o If a station does not report any data for a given day, it will be excluded 

from our analysis for that time frame.  

o If a station does report throughout a given day but does not report a 

certain value, that value will be ignored while the remaining report 

will be processed normally. 

- During the testing and forecasting phase we are only concerned with those 

stations that were deemed sufficiently influential during training and that have 

been included in the forecasting model. In this phase missing values need to 

be handled differently: 

o If a station does not report any data for a given day but does report for 

both the day before and after, we will interpolate between these two 

days. This is accomplished by calculating the arithmetic mean of each 

value reported on the adjacent days and substituting the result for the 

missing value.  

o The same method will be applied to individual missing values. 

o If a station does not report data for any of the adjacent days, it must be 

ignored as any more complex interpolation could negatively affect the 
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model’s validity (Li, Heap, Potter, & Daniell, 2011). In this case, 

proportionally higher weights will be assigned to the remaining 

stations in the forecast model. 

 

Probability Calculation 

As a result of the previously described preprocessing, our main analysis will use 

eleven binary features based on the data reported by a varying number of approximately 

eight hundred weather stations. The model will be trained on at least twelve months of 

consecutive data which results in a total number of 3.2 million features. Including each 

feature for the day of each flight as well as the preceding three days, the number of 

features increases to roughly ten million features. This would be rather inefficient and we 

hence need to determine which features are the best predictors of irregular operations and 

reduce the number of considered features to a manageable level.  

 

Naïve Bayes 

As indicated in the previous paragraphs, we are processing ten million 

independent features and only several hundred or a few thousand expressions of the 

dependent variable. The number of dependent expressions varies with the number of 

flights operated by the selected carrier within the analyzed time slot on a given date. 

Calculating the probability of the dependent features for each independent feature 

initially appears to require significant computing resources. Considering the large number 

of independent features in contrast to relatively few dependent features also raises 

concerns regarding the result’s validity. However, the same reasons also make it 
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relatively easy to calculate the probability of each independent feature given that any 

dependent feature is true.  

 The Naïve Bayes classification method allows us to process that calculation and 

then use the result to easily compute the probability with which each independent feature 

may cause a dependent one to be true. In very simplistic terms, the probability of a delay 

given that feature X is present is equal to the probability of feature X given a delayed 

flight multiplied with the overall probability of a flight delay and divided by the overall 

probability of feature X (Jiang, 2012). Using the standard notation P(dependent variable | 

independent variable), we can write: 

  

                     
                             

            
 

 

Once the large set of weather stations is sorted by their impact factor based on the 

previously described Naïve Bayes calculation, we can create a visual representation 

displaying the flight route and the most influential stations. Figure 2 presents an example 

of such a visual representation for a flight from Chicago’s O Hare to Knoxville, TN. 

Depending on the further analysis, a varying number of these stations will be used in 

further calculations. 
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Figure 2: Stations Relevant to the Chicago-Knoxville Route 

 

Scoring Function 

After determining the particular weather stations to be included in our 

calculations, we initially create a forecast for a random day from the training set using the 

individual's relative importance determined during the Naïve Bayes calculation as their 

weights. This forecast will then be compared to the actual known outcome which will 

place the forecast into one of the following four categories: 

- True Positive (TP): The machine expected an irregularity on a day that 

actually experienced delays or cancellations. 

- True Negative (TN): The machine expected no irregularities on a day that did 

not incur any. 

- False Positive (FP): The machine expected an irregularity on a day that did 

not incur any. 

- False Negative (FN): The machine failed to forecast an irregularity on a day 

that actually experienced a delay or cancellation. 
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It is evident that true positives and true negatives are desired outcomes while the 

occurrence of false positives and false negatives should be minimized. Particularly the 

latter are of concern as we aim to specifically forecast irregularities.  

In order to train the machine, each forecast must be evaluated in order to enforce 

tendencies that appear to improve results while avoiding such that seem to have an 

adverse effect on forecast quality. We have a strong preference for accurately predicting 

irregular operations over simply predicting normal operations and therefore score each 

forecast as follows: 

True Positive: +4 

True Negative: +2 

False Positive: -3 

False Negative: -9 

Each training session will include multiple forecasts - one for each day within the 

training period. As a result, the overall score for the entire period is calculated using the 

following formula based on the counts of true positives, true negatives, false positives 

and false negatives that occurred throughout the training period: 

 S   4*TP + 2*TN -9*FN -3*FP 

This approach allows us to create a score for the initial feature weights and to 

subsequently adjust said weights in future iterations. Each such iteration will be scored 

and compared to the preceding one. If modifying the feature has improved the overall 

forecast score for the training period, we continue to incrementally amplify the 

modification that appears to improve the result. If at any time our modification of a 
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feature reduces the overall forecast score, we will reverse direction and reduce the step 

size by 50%, seeking the local maximum in that direction. Should no improvements be 

reached in either direction, the machine will use the weight computed using the Naïve 

Bayes calculation.  

 The same general logic allows us to decide the number of stations to use for the 

forecast. In some cases relatively few very influential stations may provide the best 

results while in other situations a larger set of relatively less influential stations will result 

in a better forecast score. The optimal number of stations may be different for each flight 

route, time period and operator as well as scheduled departure time. As figure 3 

illustrates, the number of stations will also vary between different seasons. In this case 

the optimal number of five stations in February shrinks to just two stations in May.  

 

 

Figure 3: Stations Selected for Chicago-Detroit in February and May 
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Minimum Number of Stations 

As illustrated in figure 3, our machine may on occasion select a very small 

number of stations as optimal. However, such a small number of independent features 

will make the forecast model substantially more vulnerable to distortions in the reported 

data. If data from one of these stations should be unavailable for any of the reasons 

described in an earlier paragraph, a forecast based on just two stations would become 

very unstable. We will therefore override the machine’s decision and require a minimum 

number of four stations. At the same time, the number of stations allowed in the forecast 

model is capped at fifty. While the minimum requirement applied to several of our tests, 

the machine has never chosen a model with more than 27 stations. 
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CHAPTER III 

RESULTS 

Station Selection 

Figure 4 shows the seventy most influential stations for a Fargo bound flight 

departing Chicago O'Hare after 8pm. Seventy stations would exceed the maximum cap 

on the forecast model and in fact the machine proposed to only use 13 of these 70 

stations. We are showing 70 here to visualize the validity of our Naïve Bayes based 

selection method.     

The relative importance of stations along the flight route is not particularly 

surprising, but our model does assign relatively high importance to a collection of 

Figure 4: Stations Selected for Chicago-Fargo Route 
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weather stations in Colorado's Rocky Mountain area. This may at first seem unexpected 

and raise questions about the model's validity. However, the importance of those stations 

may be explained by taking the route network into account. The tested flight between 

Chicago and Fargo is operated by ExpressJet Airlines operating under the United Express 

brand. ExpressJet's United Express fleet serves several major United hubs including 

Chicago and Denver. In fact, ExpressJet serves Fargo from both of these hubs with the 

same equipment. It is quite apparent that delays occurring in one part of an airline's 

complex route network can easily propagate throughout it (Li & Ding, 2008). 

While we create an impact factor value for each station, our model will only 

consider a certain number of them. For each flight route and time slot, the model attempts 

to achieve the optimal result by including enough stations to create a valid forecast while 

limiting noise that could be introduced by large numbers of stations. To limit required 

computing time, the optimization process is capped at a maximum of fifty stations. 

Beginning with a minimum of four stations, testing will proceed with increasing sizes of 

station sets as long as the overall accuracy score increases. Sets smaller than twenty 

stations are tested in every iteration, while larger sets up to fifty stations will be 

considered as long as the score continues to increase. For example, Figure 5 shows the 

analysis of a flight from Chicago O’Hare to Charleston, WV. In this case the model 

decided to use the top twenty stations for its further calculations. Again there are clearly 

visible clusters of stations in the vicinity of the flight route.  

However, in addition to those clusters, the model includes a relatively large 

number of relevant stations along the Appalachian Mountain range in Pennsylvania, in 

the Chesapeake Bay region and in Michigan as well as one station in upstate New York. 
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As the Appalachian Mountains present a significant moisture barrier (Konrad, 1994), it is 

not surprising to see a number of relevant stations along this range extending from 

Virginia into Pennsylvania. 

We assume that the importance of the stations in western Michigan arises from 

the impacts the Great Lakes have on the regional climate (Scott & Huff, 1996). This 

effect may well be influencing the Chicago area and the Detroit area in a similar fashion 

and thereby causing the correlation observed in this example. It is possible that the station 

in New York was selected due to a similar correlation.   

Finally, the reasons for the Chesapeake Bay’s importance cannot be properly 

explained at this time. However, even leaving the potential actual causal connections 

unexplained, the results allow us to be confident about the validity of the model’s station 

selection. We will discuss these results in the following section. 

Figure 5: Stations Selected for Chicago-Charleston Route 



33 

 

 

Training and Testing Periods 

This study requires two separate datasets - one to train the model and one to test it 

against. Testing a model against its own training data would drastically skew the results 

in its favor. There are two rather different approaches to obtaining these two separate 

datasets: 

- Using sets from different time periods 

- Using the same dataset but only training the model on some of the included 

days while testing against the remaining days. Leave-one-out is a common 

example of this approach 

Using data from different time periods will introduce a significant amount of 

uncertainty as weather patterns change from year to year, so we would likely skew the 

results in a negative fashion, effectively undervaluing the model's validity. However, 

training and testing against different subsets of the same dataset is a much less realistic 

indicator of the model's validity as it does not properly represent the ultimate purpose of 

the forecasting system. As weather phenomena can often be rather stable and consistent 

within a given season, they can vary greatly between different years. As a consequence of 

this long term variability, validation would be positively biased (Pers, Albrechtsen, Holst, 

Sørensen, & Gerds, 2009). 

It is the study's declared goal to forecast flight delays in a different time period 

from the one the model was trained on. Therefore we chose to train against 2013 data and 

test against data from 2012. While this - as previously stated - has the potential of 

undervaluing our model, it also eliminates the risk of overvaluing it. We will attempt to 



34 

 

predict a prior year using data from a more recent time period to eliminate any learning 

effect that may have taken place in the carrier's network optimization algorithms. 

 

Probabilistic Predictions Based On Historic Data 

The model's merit needs to be evaluated against an established base line. We will 

derive such by creating a forecast based on historic data alone, calculating the true 

positive rate, true negative rate and combined accuracy for said probabilistic forecast and 

compare our model's performance against it.  

For each forecast period, we will calculate the historic probability of irregularity 

occurring for any given flight and then create a forecast based on that probability. For 

example, for the month of July 2012, 17 out of 94 flights encountered irregularities. 

Hence the probability of such an irregularity for any flight was 18.1%. Based on this 

figure, the probabilistic forecast would have selected a random 17 flights as irregular. 

The results would have been a forecast predicting three true positives (TP), 14 false 

negatives (FN), 14 false positives (FP) and 63 true negatives (TN): 

Actual Irregularities: 17 

Thereof forecast  as irregular (TP): 17*0.181=3 

   as normal (FN): 17+(1-0.181)=14 

Actual Normal Operations: 77 

Thereof forecast  as irregular (FP): 77*0.181=14 

   as normal (TN): 77+(1-0.181)=63 
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Knowing TP, TN, FP and FN, one can calculate true positive rate, true negative 

rate and overall accuracy using the definitions widely accepted in the machine learning 

community (Zhenhua, 2009):  

True Positive Rate:    
  

     
 

True Negative Rate: TNR 
  

     
 

Accuracy:     
     

           
 

 

Using these definitions, we arrive at a rather low true positive rate of only 0.181, a 

true negative rate of 0.954 and an overall accuracy of only 0.181: 

True Positive Rate:    
  

     
 

 

    
       

True Negative Rate: TNR 
  

     
 

  

  
       

Accuracy:     
     

           
 

  

  
       

 

True positive rate and accuracy are expected to be identical due to the fact that 

this forecast was created using historic probabilities. 

 

Initial Results 

Training on Annual Data 

Table 6 shows the results from our initial iteration of training the model on a flight from 

Chicago’s O’Hare airport to Fargo, ND. We used weather and flight data for the entire 

year of 2013 and then tested the resulting model against data from 2012. This achieved 

impressive overall improvements over a probabilistic forecast based on historic data. 
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However, especially during the summer months, TPR was negatively affected. January's 

results are also disappointing, yet the very small number of positive samples in that 

month is prone to causing low true positive rate. 

Table 6: Results using Annual Training Data (A). Probabilistic Forecast (R) listed for comparison. 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total 

TP 0 3 5 0 0 0 0 0 0 7 3 7 25 

TN 37 37 57 45 77 100 77 90 72 35 64 43 734 

FP 9 17 10 1 1 0 0 0 0 11 7 27 83 

FN 2 4 7 1 10 9 17 11 6 6 5 7 85 

TPRR .042 .115 .152 .021 .114 .083 .181 .109 .077 .220 .101 .167 .119 

TPRA 0 .429 .417 0 0 0 0 0 0 .538 .375 .5 .227 

TNRR .998 .983 .969 .998 .984 .992 .953 .986 .993 .926 .987 .962 .982 

TNRA .804 .685 .851 .978 .987 1 1 1 1 .761 .902 .614 .898 

ACCR .042 .115 .152 .021 .114 .083 .181 .109 .077 .220 .101 .167 .119 

ACCA .771 .656 .785 .957 .875 .917 .819 .891 .923 .712 .848 .595 .819 

ACCGain .729 .541 .633 .936 .761 .834 .638 .782 .846 .492 .747 .428 .7 

 

Training on Monthly Data 

When training the model on data for a specific month, we would expect the 

accuracy of the forecast to improve. Seasonality is inherent in weather patterns and 

therefore correlations learned for the summer months may be utterly unhelpful in 

forecasting delays in November or December. Compared to the previous approach using 

the entire year’s data for training, Table 7 shows inconsistent changes using training data 

from just one month of the training year to forecast the same month in the testing year. In 

total, Table 8 reports a virtually unchanged average accuracy of 0.808, or a marginal 

0.004 lower than in the previous approach. It is notable that the monthly training intervals 

appear to have improved the overall accuracy during the winter months. This is driven by 

an increased true negative rate while TPR is considerably lower. This is most likely a 
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result of the considerably smaller training sets during the winter months that make it 

more difficult for our machine to define an accurate threshold. 

Table 7: Results using Monthly Training Data (M). Probabilistic Forecast (R) listed for comparison. 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total 

TP 0 2 3 0 2 0 3 3 1 3 7 5 29 

TN 40 47 59 38 70 100 70 79 69 37 1 54 664 

FP 6 7 8 8 8 0 7 11 3 9 64 16 147 

FN 2 5 9 1 8 9 14 8 5 10 7 9 87 

TPRR .042 .115 .152 .021 .114 .083 .181 .109 .077 .220 .101 .167 .125 

TPRM 0 .286 .25 0 .2 0 .176 .273 .167 .23 .125 .357 .25 

TNRR .998 .984 .969 .998 .984 .992 .953 .986 .993 .926 .987 .962 .980 

TNRM .869 .870 .881 .826 .897 1 .909 .878 .958 .804 .944 .771 .819 

ACCR .042 .115 .152 .021 .114 .083 .181 .109 .077 .220 .101 .167 .125 

ACCM .834 .804 .785 .809 .818 .917 .777 .812 .897 .678 .861 .702 .748 

ACCGain .792 .689 .633 .788 .704 .834 .596 .703 .82 .458 .76 .535 .623 

 

Table 8: Accuracy Improvements Using Monthly Data 

ACCYear .771 .656 .785 .957 .875 .917 .819 .891 .923 .712 .848 .595 .812 

ACCMonth .834 .804 .785 .809 .818 .917 .777 .812 .897 .678 .861 .702 .808 

Diff: .063 .148 0 -.148 -.057 0 -.042 -.079 -.026 -.034 .013 .107 -.004 

 

By using single months for training we have drastically reduced the size of the training 

set. This may well counteract any improvements achieved by the more analog weather 

patterns in matching seasons of different years. It is possible that using identical months 

from a larger number of years for training might generate substantial improvement. Such 

an approach, however, lies outside the computational limitations of this study. Within our 

scope we have to assume that using monthly data does not provide sufficient 

improvements in forecast validity to justify the substantially higher computational 
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requirements. Using annual data, only one expensive training cycle and twelve cheaper 

testing cycles are needed. Monthly data would require twelve cycles each.  

 

Optimized Results 

As previously stated, certain thresholds were employed in the preprocessing of the 

NOAA data. For example, any temperature in excess of 31C was classified as potential 

cause for operational irregularities. These relatively liberal thresholds result in a large 

share of positive features which adds substantial noise. We had intentionally accepted 

this noise in order to maximize the true positive rate. However, considering the rather 

disappointing results demonstrated above, those thresholds need to be reconsidered. 

Allowing the machine to optimize its own thresholds exponentially increase the 

computing resources required for preprocessing. It does, however, have the potential to 

yield a significantly better forecast. 

After several computing intensive iterations, the machine arrived at the following 

improved thresholds: 

- High Temperature Threshold: 20% of observations over 35C (95F) 

- Low Temperature Threshold: 30% of observations under 0C (32F)  

- Wind Speed Threshold: 30 kts 

- Cloud Cover Threshold: average cover of greater than 80% 

- Rain Threshold: 70% of observations 

- Reduced Visibility Threshold: 10% of observations 

- Low Pressure Threshold: 1002mbar 

- Thunderstorm Threshold: Any reported thunderstorm any time  
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Table 9 shows that this adjustment somewhat improved the forecast’s TPR based 

on annualized training data. True negative rate and accuracy are both lower 

throughout the year – especially during the winter months. However, our primary 

goal was to increase the true positive rate. In this context, these results present a 

notable improvement. 

Table 9: Improvements Achieved by Optimizing Features 

 Jan Feb Mar Apr Ma

y 

Jun Jul Aug Sep Oct Nov Dec Total 

TP 2 5 5 0 5 1 4 3 2 10 6 13 56 

TN 11 11 29 36 50 97 73 83 68 21 25 7 511 

FP 35 43 38 10 28 3 4 7 4 25 46 63 306 

FN 0 2 7 5 5 8 13 8 4 3 2 1 58 

TPRM 0 .429 .417 0 0 0 0 0 0 .538 .375 .5 .227 

TPROptA 1 .714 .583 0 .5 .111 .235 .273 .333 .769 .750 .929 .491 

TNRM .804 .685 .851 .978 .987 1 1 1 1 .761 .902 .614 .898 

TNROptA .239 .204 .567 .783 .641 .970 .948 .923 .944 .457 .350 .100 .626 

ACCM .771 .656 .785 .957 .875 .917 .819 .891 .923 .712 .848 .595 .819 

ACCOptA .271 .263 .570 .701 .625 .899 .819 .851 .897 .525 .392 .239 .610 

              

 

Building on our previous approach, we also ran the entire procedure using monthly 

training data. Table 12 reveals considerable improvements over both the previous results 

(TPRM, TNRM, ACCM) - using the original feature definitions and monthly data – and the 

values achieved by using the improved feature definitions and annual training data 

(TPROptA, TNROptA, ACCOptA). 
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Table 10: Detailed Improvements 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total 

TP 19 5 12 0 9 2 8 11 2 13 7 8  

TN 9 51 41 41 52 85 28 38 48 18 33 68  

FP 16 3 26 5 26 15 49 52 24 28 38 2  

FN 4 2 0 1 1 7 9 0 4 0 1 6  

True Positive Rate 

TPRM 0 .429 .417 0 0 0 0 0 0 .538 .375 .5 .227 

TPROptA 1 .714 .583 0 .5 .111 .235 .273 .333 .769 .750 .929 .491 

TPROptM .826 .714 1.00 0.00 .900 .223 .471 1.00 .334 1.00 .875 .571 .660 

True Negative Rate 

TNRM .869 .870 .881 .826 .897 1 .909 .878 .958 .804 .944 .771 .819 

TNROptA .239 .204 .567 .783 .641 .970 .948 .923 .944 .457 .350 .100 .626 

TNROptM .360 .944 .612 .891 .667 .850 .364 .423 .667 .391 .465 .971 .634 

Accuracy 

ACCM .834 .804 .785 .809 .818 .917 .777 .812 .897 .678 .861 .702 .748 

ACCOptA .271 .263 .570 .701 .625 .899 .819 .851 .897 .525 .392 .239 .610 

ACCOptM .583 .918 .671 .872 .693 .798 .383 .485 .641 .525 .506 .905 .665 

              

 

Finally, we introduced two additional wind direction features to improve classification. 

Previously we only considered westerly and northerly winds. These two features are 

sufficient to describe all four wind quadrants as previously described, but of course the 

Naïve Bayes approach only considers true features which could have undervalued the 

importance of easterly and southerly winds. Interestingly, the overall accuracy of the 

forecast dropped slightly to .61, almost exclusively as a result of a lowered True Negative 

Rate. This reduced performance prompted us to reattempt the calculation without any 

wind direction features (using only nine instead of the original eleven features). The 

results listed in table 11 seem to indicate that wind direction does not improve forecast 
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quality at all, but might instead be introducing unnecessary noise. This can be explained 

by the fact that most stations have predominant wind directions and that the observational 

period is quite long. 

  

        Table 11: Adding and Removing Wind Features 

 TPR TNR ACC 

11 Features .66 .634 .665 

13 Features .66 .604 .61 

9 Features .63 .705 .69 
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CHAPTER IV 

DISCUSSION 

Findings 

When forecasting flight delays, one can rely on historic probabilities and derive a 

forecast based on the assumption that these probabilities will describe the behavior of 

future flights. We have created such a forecast for an example route and tested it against a 

more sophisticated approach using national meteorological data to predict irregular flight 

operations. Compared to the probabilistic forecast, the model achieved significantly 

better results underscoring the validity of our approach. 

As described in the previous section, we achieved accuracy improvements of 0.54 or by 

considering weather data instead of basing a forecast on historic probabilities alone. 

However, the study's main goal is to create a forecast of irregular operations (true 

positives). The true positive rate improved by 0.537. Table 12 summarizes these 

improvements. 

Table 12: Improved TPR 

TPRR .042 .115 .152 .021 .114 .083 .181 .109 .077 .220 .101 .167 .123 

TPROptM .826 .714 1.00 0.00 .900 .223 .471 1.00 .334 1.00 .875 .571 .660 

Diff: +.537 

 

Paired with an accuracy of 66.5%, an overall true positive rate of 66.0% may not seem 

impressive to the casual reader, yet the results are clearly much better than the 

probabilistic forecast alternative.  
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 We have shown that a Naïve Bayes approach can be used to successfully select a 

small subset of varying size from the comprehensive set of weather stations in the 

contiguous United States in order to create a valid forecast. This study further 

demonstrated that said forecast can be drastically optimized by adjusting the thresholds 

used for feature analysis in the preprocessing stage. 

 

Future Research and Application 

While our work demonstrates a promising new approach to forecasting flight 

delays using just one known dataset and ignoring the multitude of unknown variables, it 

also creates vast potential for improvements on method, thresholds, weights and features. 

A significantly larger set of operational performance data will likely not only validate our 

approach but could vastly improve the result's validity. 

In addition to the mentioned improvements on data selection and processing, one 

must also consider the fact that the scope of this study is restricted to a very narrow 

methodological approach to the problem. Specifically, we are using binary feature 

expressions throughout our entire work while other approaches including decision trees 

would be able to handle non-binary feature expressions and could potentially improve 

findings significantly. Future research may hence be based on a replication of this study 

using advanced feature selection and analysis algorithms such as the aforementioned 

decision trees. Within the binary system, the proposed forecast method is - with the 

exception of data preprocessing of course - universally applicable to any n-dimensional 

feature system and forecast model.   
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Finally, we have demonstrated that the forecast validity can be drastically 

improved by dynamically adjusting not only the feature weights within the forecasting 

sequence, but also the thresholds used in preprocessing and feature generation. This was 

accomplished by manipulating individual features and using a hill climbing approach. 

This optimization is relatively computing expensive and also does not guarantee a global 

optimum. We therefore propose more sophisticated approaches based genetic algorithms 

(Fonseca & Fleming, 1993) or differential evolution (Storm & Price, 1995) for future 

research on the subject matter. These algorithms will be able to more efficiently optimize 

weights, particularly as the n-dimensional feature space is not likely to be convex but will 

instead include numerous local maxima (Bianchi & Jakubowicz, 2013). Further 

improvements may be achieved by redesigning the experiment based on support vector 

machines (Suykens & Vanderwalle, 1999) or random forest approaches (Liaw & Wiener, 

2002).    

Taking these limitations into account, our work merely lays the foundation for the 

described further research and should not be understood as a comprehensive model to be 

used in a real world implementation. Through additional research we will be able to 

significantly improve on the validity of the created forecast and hopefully reduce 

computing cost drastically. This will enable us to proactively complete the learning 

procedure for a large number of routes and operators and create a database of forecasting 

models. These models can then be quickly deployed to process current meteorological 

data to create on-demand real time forecasts for these routes. This short response time 

will allow us to not only serve the academic community or interested members of 

industry, but also the general travelling public at large.  
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The relatively low computing resources required to create real time forecasts 

using forecast models from the preprocessed database mean that a relatively lightweight 

server or server bank can be used to provide the results using a web service interface that 

can be accessed by a wide array of clients. The traveling public, for example, might use a 

readily available mobile application to retrieve a delay or cancellation forecast for their 

next flight. They will then be able to make an informed decision and potentially consider 

alternative flight options.  
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