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ABSTRACT	

	

	 Recent	airline	accidents	point	to	a	crew’s	failure	to	make	correct	and	timely	

decisions	following	a	sudden	and	unusual	event	that	startled	the	crew.		This	study	

sought	to	determine	if	targeted	training	could	augment	decision	making	during	a	startle	

event.	Following	a	startle	event	cognitive	function	is	impaired	for	a	short	duration	of	

time	(30-90	seconds).		In	aviation,	critical	decisions	are	often	required	to	be	made	

during	this	brief,	but	critical,	time	frame.		

A	total	of	40	volunteer	crews	(80	individual	pilots)	were	solicited	from	a	global	

U.S.	passenger	airline.		Crews	were	briefed	that	they	would	fly	a	profile	in	the	simulator	

but	were	not	made	aware	of	what	the	profile	would	entail.		The	study	participants	were	

asked	to	complete	a	survey	on	their	background	and	flying	preferences.		Every	other	

crew	received	training	on	how	to	handle	a	startle	event.		The	training	consisted	of	a	

briefing	and	simulator	practice.	Crew	members	(subjects)	were	either	presented	a	low	

altitude	or	high	altitude	scenario	to	fly	in	a	full-flight	simulator.	

The	maneuver	scenarios	were	analyzed	using	a	series	of	one-way	ANOVAs,	t-

tests	and	regression	for	the	main	effect	of	training	on	crew	performance.		The	data	
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indicated	that	the	trained	crews	flew	the	maneuver	profiles	significantly	better	than	the	

untrained	crews	and	significantly	better	than	the	Federal	Aviation	Administration	(FAA)	

Airline	Transport	Pilot	(ATP)	standards.	Each	scenario’s	sub	factors	were	analyzed	using	

regression	to	examine	for	specific	predictors	of	performance.		The	results	indicate	that	

in	the	case	of	the	high	altitude	profile,	problem	diagnosis	was	a	significant	factor,	in	the	

low	altitude	profile,	time	management	was	also	a	significant	factor.		These	predicators	

can	be	useful	in	further	targeting	training.			

The	study’s	findings	suggest	that	targeted	training	can	help	crews	manage	a	

startle	event,	leading	to	a	potential	reduction	of	inflight	loss	of	control	accidents.		The	

training	was	broad	and	intended	to	cover	an	overall	aircraft	handling	approach	rather	

than	being	aircraft	specific.		Inclusion	of	this	type	of	training	by	airlines	has	the	potential	

to	better	aid	crews	in	handling	sudden	and	unusual	events.			
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CHAPTER	I	

INTRODUCTION	

Emergencies	in	aircraft	often	involve	high-stress	decision-making,	which	must	be	

accomplished	correctly	in	real	time,	often	with	limited	information.		Crews	are	often	

startled	at	the	onset	of	such	events.		Even	correct	decision-making	at	the	outset	of	an	

emergency	may	not	guarantee	a	successful	outcome.		Unfortunately,	incorrect	initial	

decisions	at	the	start	of	an	emergency	often	result	in	delayed	aircraft	recovery	and	in	

some	cases	lead	to	an	undesired	aircraft	state	(UAS).		Decisions	in	stressful	

environments	are	often	made	with	information	from	past	experiences,	training,	and	

pattern	matching	(Rasmussen,	1983).		Although	each	emergency	is	surrounded	by	

unique	circumstances,	training	over	a	broad	array	of	scenarios	and	circumstances	may	

give	flight	crews	enough	background	information	to	manage	the	situation	for	a	

successful	outcome.			

A	study	completed	by	Woodhead	(1969)	found	decrements	on	a	decision-making	

following	a	startle	event.		Thackray	(1969)	also	found	that	major	performance	

decrement	following	a	startle	event	probably	occurs	within	the	first	few	seconds.		In	the	

official	report	on	Air	France	flight	447,	the	Bureau	d'Enquêtes	et	d'Analyses	(BAE,	

2012)	stated,	“The	startle	effect	played	a	major	role	in	the	destabilization	of	the	flight	

path	and	in	the	two	pilots	understanding	the	situation.”		Startle	training	may	be	a	key	
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element	in	effective	emergency	flight	training.		During	such	training,	crews	are	exposed	

to	different,	complex,	and	unusual	situations	they	would	not	normally	encounter	under	

normal	flight	conditions.		The	purpose	of	this	type	of	training	is	to	develop	the	pattern	

behavior	of	systematically	dealing	with	complex	emergencies.	

Problem	Statement	

Recent	airline	accidents	point	to	a	rapid	degradation	from	controlled	flight	

following	an	unusual	event	when	the	flight	crew	becomes	startled.		There	has	been	very	

little	training	among	airline	crews	on	how	to	successfully	manage	a	sudden	and	often	

stressful	event	that	requires	quick	and	accurate	decision-making	(BAE,	2012).		Accident	

data	has	indicated	that	when	an	incorrect	decision	is	made,	the	likelihood	of	a	

successful	outcome	decreases	(Hilscher,	Breiter,	&	Kochan,	2012).		This	study	seeks	to	

determine	if	specific	and	targeted	training	can	help	mitigate	the	effects	of	flight	crews	

being	startled	by	implementing	a	set	of	techniques	designed	to	help	stabilize	the	

cognitive	thought	process	and	bridge	the	time	of	cognitive	degradation.	

Purpose	of	the	Study	

	 The	intent	of	this	mixed	methods	study	is	to	test	the	theory	that	enhanced	

specific	training	can	provide	an	effective	countermeasure	to	fill	the	temporary	cognitive	

degradation	that	occurs	during	a	startle	event.		The	study	will	use	both	survey	and	

observed	simulator	performance	data	to	test	the	theory.		If	the	hypothesis	is	correct,	

specific	training	could	be	added	to	airline	qualification	programs	to	better	equip	airline	

crews	in	dealing	with	sudden,	unusual	events.			
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Research	Design	

	 The	research	is	designed	as	a	mixed	methods	study	using	quantitative	analysis	

methods.		In	the	first	phase,	a	survey	will	be	conducted	of	the	participating	air	carrier	

pilots.		This	survey	will	be	used	to	gauge	the	pilot's	own	perceptions	of	their	flying	skills	

during	a	startle	event.		The	analysis	will	explore	for	common	threads	of	pilot	thinking	

and	reactions.		The	results	of	the	survey	will	be	compared	and	correlated	to	the	data	

from	the	aircraft	simulator	scenario	sets.	

	 The	second	phase	of	the	study	involves	evaluating	professional	airline	pilots	

flying	two	different	scenarios	in	an	FAA	approved	Level-D	full	flight	simulator	(FFS).		The	

scenarios	will	be	flown	by	a	crew	consisting	of	a	captain	and	first	officer,	similar	to	what	

would	happen	in	actual	line	operations.		Each	crew	will	be	presented	either	a	low	or	

high	altitude	scenario	depending	on	the	day	of	the	week.		Randomly	selected	crews	will	

receive	training	on	handling	the	aircraft	during	a	startle	event.		The	pilot	group	that	does	

not	receive	the	startle	training	will	be	considered	the	control	group.		This	group	will	be	

referred	to	as	the	untrained	group	for	the	purposes	of	this	study.		The	training	consists	

of	both	a	briefing	and	simulator	practice.		The	training	briefing	is	via	an	in	person	

discussion	on	the	proper	pitch,	power,	and	bank,	settings	that	should	be	flown	in	an	

unusual	event.		The	briefing	also	discusses	time	recognition	especially	at	low	altitudes	

and	fuel	states.		The	training	continues	with	simulator	practice	using	the	techniques	

discussed	in	the	briefing.		The	practice	sessions	are	not	the	same	as	the	evaluation	

profiles.		Each	crew	will	practice	both	a	low	altitude	and	high	altitude	scenario.			
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	 The	first	test	scenario	is	a	low	altitude	and	low	fuel	profile.		Time	pressure	and	an	

unexpected	missed	approach	combine	to	form	the	startle	event	and	event	evaluation	

begins	at	the	missed	approach.		The	second	test	scenario	is	a	high	altitude	profile.	The	

profile	induces	a	loss	of	air	data	followed	by	an	engine	fire	bell	that	causes	the	startle	

event.		Evaluation	begins	at	the	loss	of	air	data.		In	terms	of	procedures,	the	loss	of	air	

data	is	often	referred	to	by	aircraft	manufacturers	as	Mach/Airspeed	Unreliable.		Data	

analysis	will	consist	of	regression,	ANOVA,	and	post-hoc	Tukey	tests.		The	analysis	looks	

for	differences	between	trained	and	untrained	groups	with	regression	looking	for	

differences	within	groups	such	as	previous	experience.			

Research	Questions	

	 The	research	questions	surround	the	cognitive	gap	that	is	perceived	to	exist	

during	a	startle	event	and	to	what	extent	training	can	mitigate	the	gap.		

1. 	Can	targeted	training	be	successful	in	helping	pilots	maintain	aircraft	

control	during	an	unusual	and	sudden	startle	event?	

a. Does	the	spatial	proximity	of	the	event	have	any	effect	on	the	

outcome	(low	or	high	altitude)?	

b. Since	accident	data	indicates	that	accidents	occur	more	frequently	

with	the	captain	flying	and	on	the	first	day	and	first	leg	of	a	trip,	does	

the	pilot	flying,	either	the	captain	or	the	first	officer,	have	any	effect	

on	the	successful	outcome	of	the	event?	
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2. Is	there	an	indication	in	the	pilot’s	survey	answers	that	is	a	predictor	of	

being	able	to	successfully	handle	a	startle	event?	

Assumptions	

The	list	below	is	not	meant	to	be	all-encompassing	but	to	inform	the	reader	as	to	

the	major	aspects	involved	in	the	study.		This	study	develops	findings	based	on	the	

following	assumptions.			

1. Each	participant	is	a	qualified,	Airline	Transport	Pilot	(ATP)	certified	FAR	part	

121	jet	transport	pilot	employed	by	a	U.S.	air	carrier.	

2. Each	participant	has	spent	at	least	one	year	in	the	specific	seat	(Captain	or	

First	Officer)	and	type	of	aircraft.		It	is	assumed	that	after	one	year	of	

experience	on	a	particular	aircraft,	that	the	pilot	will	be	normalized	to	flying	

that	particular	aircraft	(the	aircraft	will	not	be	“new”	to	them).	

3. Each	pilot	is	current	and	qualified	in	the	respective	aircraft.		Current	and	

qualified	indicates	that	the	pilot	can	be	scheduled	to	fly	a	regular	passenger	

trip	at	any	time.	

4. Each	pilot	is	considered	a	line	pilot.		For	the	purpose	of	this	assumption,	line	

pilot	means	that	each	pilot	flies	their	respective	airplane	at	regular	intervals.		

Line	pilots	include;	Captains,	First	Officers,	Line	Check	Airman,	and	

Instructors/Evaluators	



	 	 6	

5. Except	for	the	group	that	receives	training,	the	pilots	have	no	prior	

knowledge	or	practice	of	the	maneuver	that	is	to	be	flown	and	is	given	no	

opportunity	to	practice	it	beforehand.			

6. Each	pilot	is	assumed	to	fly	to	the	best	of	their	ability	during	the	maneuver.	

Limitations	

The	study	sought	to	mitigate	possible	limitations	that	could	skew	the	results.		

Although	each	study	has	a	set	of	unique	limitations,	the	results	of	this	study	should	be	

considered	in	the	context	of	the	limitations	listed	below.	

1. 	The	maneuver	sets	are	flown	in	a	simulator	that	is	realistic	in	nature	but	

involves	simulation	limits	specifically	the	general	lack	of	g-forces.	

2. The	study	only	looks	at	two	maneuver	sets.		

3. Aircraft	emergencies	are	often	dynamic	and	are	unique	to	each	situation.	

4. The	study	only	observed	professional	pilots	flying	transport	category	

aircraft.	

5. Crews	volunteered	for	this	study	which	may	indicate	a	higher	awareness	of	

safety.	

6. Crews	were	sampled	directly	after	their	recurrent	training	which	may	

increase	their	proficiency	above	what	might	be	expected	in	normal	line	

operations.	

Expected	Findings	

The	study	has	four	major	groups	of	subjects	that	are	being	compared	to	a	set	

standard	as	defined	the	FAA	and	airline	policy	for	successful	outcomes.		The	study	
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expects	to	find	crews	that	receive	training	will	become	more	aware	and	proficient	on	

how	to	handle	an	inflight	emergency	with	regards	to	the	first	few	critical	decisions	

and/or	actions.		The	expectations	are	that	the	trained	group	for	both	low	and	high	

altitude	scenarios	will	show	a	statistically	significant	increase	in	performance	when	

compared	to	the	non-trained	groups.		In	addition,	when	collapsed	for	maneuvers	sets,	

the	trained	groups	should	show	a	significant	increase	in	performance	than	the	non-

trained	group.		Items	such	as	past	experience	and	current	outside	flying	might	be	

reasonably	expected	to	also	influence	success.	
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CHAPTER	II	

LITERATURE	REVIEW	

	

Introduction	

A	literature	review	was	conducted	of	pertinent	articles	related	to	this	study.		

Although	there	were	no	direct	studies	on	this	particular	problem,	there	were	many	

articles	related	to	decision	making,	startle	effect,	and	time	critical	actions	required	by	

flight	crews.	The	review	begins	by	relating	a	discussion	on	training	of	unusual	events	and	

why	practice	is	important	for	improved	performance.		The	literature	review	then	

discusses	what	startle	effect	is	and	how	it	effects	cognition,	decision	making	and	pilot	

responses.		The	review	then	takes	the	theoretical	discussion	and	relates	it	to	actual	

aircraft	accidents	using	the	official	reports	as	a	background.		This	literature	review	is	not	

meant	to	be	all	encompassing,	but	to	give	the	reader	a	broad	overview	of	the	issues	

surrounding	this	study.			

Training	and	Unusual	Events	

Accident	reports	describe	many	situations	where	pilots	responded	to	abnormal	

events	in	ways	that	were	unexpected	from	the	way	that	they	were	trained	(Casner,	

Geven,	&	Willliams,	2012).		Unfortunately,	training	and	testing	of	professional	airline	

pilots	have	become	somewhat	routine	and	predictable.		In	short,	the	flight	crews	know	

what	to	expect	as	they	see	the	same	maneuvers	at	each	training	event.			
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In	a	study	by	Dr.	Stephen	Casner,	(when)	pilots	were	evaluated	performing	

routine	training	events	and	unexpected	(but	similar)	ones.		Pilot	responses	to	the	

routine	events	showed	little	variability.		In	contrast,	pilot	responses	in	the	unexpected	

maneuvers	showed	great	variability	from	pilot	to	pilot	(Casner,	Geven,	&	Willliams,	

2012).		The	results	of	the	study	showed	that	most	pilots	generally	experience	the	same	

sequence	of	abnormal	events,	presented	under	similar	circumstances.		This	is	due	to	

both	the	airline	training	environment	and	the	regulatory	environment	as	set	forth	by	the	

FAA.		This	training	calls	into	question	the	extent	to	which	pilots	have	the	ability	to	

respond	to	abnormal	events	in	actual	operations	(Casner,	Geven,	&	Willliams,	2012).		

Casner,	Geven,	and	Williams,		suggested	that	such	training	can	lead	to	shallow	and	

memorized	understandings	of	problem	situations	which	in	turn	do	not	lead	to	an	ability	

to	transfer	this	training	to	different	encounters	in	actual	operations	(Casner,	Geven,	&	

Willliams,	2012).		The	end	result	of	the	study	was	that	pilots	struggle	to	recognize	

unexpected	situations	with	the	result	of	considerably	delayed	responses	(Casner,	Geven,	

&	Willliams,	2012).			

It	is	unlikely	that	training	alone	can	eliminate	the	element	of	surprise	from	

unexpected	events	although	skill	and	experience	are	known	to	reduce	the	occurrence	

and/or	severity	(Merk,	2009).		Furthermore,	for	unusual	events,	pilots	would	benefit	

from	exposure	without	the	use	of	automation	to	enable	them	to	better	recognize	the	

situation	itself	rather	than	respond	to	an	alert	(Wiener,	1985).		Finally,	the	most	

important	step	in	training	is	to	train	abnormal	events	over	a	wide	array	of	circumstances	

and	operation	parameters	(Casner,	Geven,	&	Willliams,	2012).	
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Safety	management	tends	to	focus	on	prevention	of	errors	and	failures.		In	most	

failure	cases,	there	are	opportunities	to	recover	from	the	failure	through	the	timely	and	

effective	application	of	countermeasures.		The	aim	of	the	countermeasures	to	prevent	

the	negative	consequences	of	the	failure	(Kranse	&	van	der	Schaaf,	2001).		In	the	case	of	

unforeseen	failures,	human	operators	play	a	key	role	in	the	application	of	effective	

countermeasures.		Researchers	generally	agree	that	the	failure	compensation	process	

has	three	phases:	

• Phase	One:		Detection	of	the	fact	that	something	has	gone	wrong	

• Phase	Two:		Explanation	or	localization	of	the	causes	

• Phase	Three:		Correction	of	the	problem	through	planning	and	execution	

of	countermeasures	

A	study	by	Kranse,	and	van	der	Schaaf,	(2001)	asked	the	question:	how	does	the	

failure	compensation	process	work,	and	what	factors	influence	the	process?		A	failure	

can	be	a	combination	of	technical,	organizational,	or	human	factors.		Detection	of	the	

situation	is	always	the	first	failure	compensation	phase	to	occur	(Kranse	&	van	der	

Schaaf,	2001).		After	the	detection	phase,	time	often	dictates	the	next	step.		The	

corrective	action	can	be	performed	immediately	(usually	the	case	in	aviation)	or	on	a	

longer	term	for	systemic	issues.		The	study	examined	50	reported	failures	at	a	chemical	

plant.		The	failures	were	all	reported	via	a	voluntary	safety	reporting	system	similar	to	

Aviation	Safety	Action	Program	(ASAP)	reporting	systems.		The	study	noted	that	in	most	

detection	and	localization	phases	unplanned	actions	(not	trained)	occurred.		In	the	

detection	phase,	46	out	of	50	cases	(92%)	involved	unplanned	actions	(Kranse	&	van	der	
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Schaaf,	2001).		For	failures	requiring	immediate	localization,	100%	involved	some	

unplanned	actions.		Such	was	the	same	for	events	requiring	immediate	correction,	

where	80%	involved	unplanned	actions	(Kranse	&	van	der	Schaaf,	2001).		Even	in	events	

that	were	not	as	time	critical,	where	longer	term	corrections	were	sought,	77%	

experienced	unplanned	actions	(Kranse	&	van	der	Schaaf,	2001).		Generally,	the	type	

and	severity	of	potential	consequences	were	the	most	practical	factor	in	deciding	which	

recovery	paths	to	take.		The	Kranse	and	van	der	Schaaf	study	has	important	implications	

for	any	type	of	aviation	training	in	as	much	as	untrained	actions	will	invariably	take	

place	in	a	recovery	from	an	unusual	event.			

Practice	and	Performance	

A	study	that	was	published	in	(McKinney	&	Davis,	2003)researched	the	effects	of	

deliberate	practice	on	crisis	situations.		Within	professional	domains,	deliberate	practice	

has	been	positively	correlated	with	improved	performance	(McKinney	&	Davis,	2003).		

The	study	examined	the	question,	“do	the	benefits	of	deliberate	practice	create	superior	

performance	if	part	of	the	task	is	unpracticed?”	(McKinney	&	Davis,	2003).		Researchers	

reviewed	decision-making	under	crisis	conditions	using	a	total	decision	effectiveness	

model.		The	model	evaluated	both	the	initial	assessment	and	the	actions	taken	for	both	

practiced	and	unpracticed	maneuvers.		Additional	studies	have	indicated	that	deliberate	

practice	results	in	automated	pattern	matching	of	problems	with	solutions	(Richman,	

Gobet,	Stazewski,	&	Simon,	1996).		Practiced	skills	allow	for	a	more	accurate	diagnoses	

of	the	situation,	and	improves	both	speed	of	action	and	the	accuracy	of	recall	(Klein	G.	,	

1993).		Practice	may	aid	in	the	cognitive	processes	through	enhancement	of	higher	
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levels	of	searching	and	evaluating.		This,	in	turn,	might	enhance	the	ability	to	

extrapolate	beyond	the	presented	data	and	make	use	of	long-term	memory	items	which	

is	richer	and	more	organized	than	short-term	memory	(Ericcsson,	1996).				

For	this	study,	wholly	practiced	maneuvers	are	ones	that	pilots	have	deliberately	

practiced	either	in	flight,	or	more	likely,	in	the	simulator.			Each	of	these	maneuvers	had	

a	best	practice	solution,	which	was	reinforced	on	a	regular	basis.			In	contrast	a	partially	

practiced	maneuver	was	defined	as	a	specific	aircraft	malfunction,	occurring	within	a	

wider	flying	scenario	that	was	novel	or	unique,	and	a	maneuver	that	the	pilot	could	not	

have	practiced	(McKinney	&	Davis,	2003).			These	maneuvers	could	include	items	such	

as	multiple	system	failures,	flight	control	malfunctions,	and	unusual	failure	modes.		The	

data	for	the	study	was	compiled	from	173	U.S.	Air	Force	fighter	aircraft	mechanical	

malfunction	incidents.		In	each	case,	the	mishap	was	classified	as	either	wholly	practiced	

or	partially	practiced.		Three	independent	panels	of	experienced	Air	Force	pilots	

reviewed	and	rated	the	mishaps.		The	action	taken	by	the	pilots	was	rated	as	effective	or	

ineffective	(McKinney	&	Davis,	2003).		Furthermore,	a	third	group	of	evaluators	were	

asked	further	define	where	the	failure	occurred	in	cases	of	ineffective	responses.		The	

group	sought	to	define	if	the	ineffective	responses	were	in	the	decision-making	process,	

or	in	the	selection	of	action	process.		To	evaluate	the	research	questions,	logistic	

regression	analysis	was	used	as	a	tool	for	predicting	group	membership	in	cases	where	

dependent	variables	are	dichotomous	(McKinney	&	Davis,	2003).		In	total	83	of	the	

events	were	characterized	as	wholly	practiced,	of	which	68	ended	with	effective	

decisions	and	15	with	ineffective	decisions	(McKinney	&	Davis,	2003).		The	study	
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concluded	that	deliberate	practice	has	a	positive	effect	on	crisis	decision-making	

performance	(McKinney	&	Davis,	2003).		Increased	performance	was	noted	for	each	

decision	phase	for	wholly	practiced	maneuvers.		However,	the	study	also	found	that	no	

relationship	existed	where	the	crisis-flying	scenario	was	unpracticed	(McKinney,	2003).		

The	study	also	noted	that	deliberate	practice	within	the	flying	domain	was	not	related	

to	overall	decision-making	performance	(McKinney	&	Davis,	2003).			

Startle	Effect	

Startle	effect	is	quite	different	than	startle	training.		The	startle	response	has	

been	well	researched	and	documented	over	the	past	60	years.		A	startle	response	

happens	when	the	human	brain	is	presented	with	a	situation	that	completely	

overwhelms	the	available	cognitive	resources	needed	to	effectively	mitigate	the	

situation.		It	has	been	widely	established	through	psychological	research	that	our	ability	

to	regulate	our	own	thoughts	and	behaviors	becomes	diminished	during	an	emotional	

event	(Hilscher,	Breiter,	&	Kochan,	2012).		This	diminished	ability	is	compounded	by	the	

reliability	of	today’s	modern	aircraft,	which	has	created	a	conditioned	expectation	of	

normalcy	amongst	pilots	(Martin,	Murray,	&	Bates,	2012).		Research	has	shown	that	

there	are	considerable	cognitive	effects	on	information	processing	following	a	startle	

event.		The	results	indicate	that	strong	cognitive	and	dexterous	impairment	could	last	

for	up	to	30	seconds	following	a	strong	startle	(Vlasek,	1969;	Woodhead	M.	M.,	1959;	

Woodhead	M.	,	1969;	Thackray	&	Touchstone,	1970).		A	pilot	describing	an	encounter	

with	severe	turbulence	described	the	situation	as	“the	constant	audible	warnings	came	

from	far-off,	detached	from	the	struggle	in	the	cockpit”	(Hilscher,	Breiter,	&	Kochan,	
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2012).		The	Bureau	d'Enquêtes	et	d'Analyses	(BAE)	in	the	official	report	on	Air	France	

Flight	447	(AF447)	accident,	the	made	the	following	statements:			

“The	startle	effect	played	a	major	role	in	the	destabilization	of	the	flight	

path	and	in	the	two	pilots	understanding	the	situation.	Initial	and	

recurrent	training	as	delivered	today	does	not	promote	and	test	the	

capacity	to	react	to	the	unexpected.	Indeed,	the	exercises	are	repetitive,	

well	known	to	crews	and	do	not	enable	skills	in	resource	management	to	

be	tested	outside	of	this	context.	

All	of	the	effort	invested	in	anticipation	and	predetermination	of	

procedural	responses	does	not	exclude	the	possibility	of	situations	with	a	

‘fundamental	surprise’	for	which	the	current	system	does	not	generate	

the	indispensable	capacity	to	react.”	(BAE,	2012)	

The	response	of	the	brain,	and	the	consequent	behavior	is	an	amalgamation	

resulting	from	past	experience	and	general	expertise	(Isaac,	2012).		Once	an	unusual	

situation	has	been	determined	to	exist,	pilots	attempt	to	compare	the	situation	with	

past	experiences	through	a	sequence	of	pattern	matching	and	decision-making.	The	

outcome	often	relies	on	the	severity	of	unusual	circumstance	and	emergency	training.		

In	addition,	other	factors	include	prior	experience	and	the	ability	to	accept	the	actual	

facts	of	the	situation.		Discrepancies	between	perception	and	the	actual	aircraft	state	

leads	to	a	breakdown	of	a	pilot’s	mental	picture,	which	in	turn	can	lead	to	a	loss	of	

situational	awareness	(Hilscher,	Breiter,	&	Kochan,	2012).			Surprising	events	can	place	



	 	 15	

the	pilot	into	a	very	high	state	of	arousal	that	can	render	them	ineffective	in	complex	

decision-making	tasks	(Hilscher,	Breiter,	&	Kochan,	2012).		The	final	response	is	often	a	

strongly	developed	behavior	with	the	purpose,	in	extreme	cases,	of	survival.		There	are	

examples	in	which	highly	trained	crews	discarded	indications	from	instruments	and	

flight	training	after	a	startle	event	(Isaac,	2012).		This	leads	to	disbelieving	what	is	

actually	presented	to	the	crew	from	the	aircraft’s	systems.	Once	an	unusual	or	

emergency	situation	is	presented,	a	pilot	will	generally	be	limited	in	their	response.		The	

response	tends	to	fall	into	patterns	a	pilot	has	seen	before,	and	will	also	be	subjected	to	

several	decision-making,	behavioral	biases.		An	objective	that	is	not	addressed	in	

traditional	flight	training	is	behavioral	management	that	promotes	progressive	

functionality	under	conditions	of	uncertainty	and	fear	(Hilscher,	Breiter,	&	Kochan,	

2012).			

Automation	Bias	and	Complacency	

	 Automated	decision	aids	support	decision-making	in	complex	environments.		As	

such,	automation	is	assuming	increasing	control	of	cognitive	flight	tasks,	such	as	

calculating	fuel-efficient	routes,	navigating,	or	detecting	and	diagnosing	system	

malfunctions	and	abnormalities	(Mosier,	1998).		These	systems	are	designed	to	support	

the	human	cognitive	processing	of	information	to	correctly	assess	a	given	situation	and	

to	respond	appropriately	(Parasuraman	&	Manzey,	2010).		Automation-induced	

complacency	and	bias	represent	closely	linked	theoretical	concepts	that	show	

considerable	overlap	with	respect	to	underlying	processes	(Parasuraman	&	Manzey,	

2010).		Automation	complacency	can	occur	when	the	automation	competes	for	the	
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pilot’s	attention	in	a	multiple	task	load	environment	(Parasuraman	&	Manzey,	2010).		

Although	somewhat	different	but	interconnected,	automation	bias	results	in	making	

both	omission	and	commission	errors	when	the	automated	decision	aids	are	not	

accurate	(Parasuraman	&	Manzey,	2010).			These	two	issues	affect	both	novice	and	

expert	pilots	and	cannot	generally	be	mitigated	through	training.			

	 Research	studies	have	indicated	that	automation	does	not	always	enhance	

human	activity.			In	some	cases,	automation	can	change	behavior	patterns	in	ways	that	

are	unintended,	and	cannot	be	unanticipated	by	automation	designers	(Parasuraman	&	

Manzey,	2010).		Automated	systems	in	today’s	modern	aircraft	are	highly	accurate	and	

reliable.		The	end	result	is	that	pilots	can	develop	a	premature	cognitive	commitment	

regarding	the	information	displayed	by	the	automation	and	disregard	other	conflicting	

information	(Parasuraman	&	Manzey,	2010).		Automation	bias	can	lead	to	incorrect	

decisions	that	are	not	based	on	a	complete	analysis	of	the	available	information	and	can	

compromise	performance	especially	in	the	case	of	automation	failure.			

	 Automated	decision	aids	are	misused	for	two	main	reasons.		The	first	reason	is	

that	automation	generated	cues	are	usually	salient,	and	by	design,	draw	the	user’s	

attention	(Parasuraman	&	Manzey,	2010).			The	second	major	factor	is	that	users	have	a	

cognitive	bias	to	assign	greater	relevance	to	automated	cues	over	other	sources	of	data	

(Parasuraman	&	Manzey,	2010).				

	 In	a	study	by	Layton,	Smith,	and	McCoy	(1994),	a	comparison	of	electronic	flight	

planning	tools	was	examined.		Pilots	who	were	given	highly	automated	flight	plans	spent	
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less	time	and	effort	evaluating	alternate	plans	than	groups	working	with	manually	

developed	plans.		This	result	was	consistent	with	the	cognitive-miser	hypothesis	of	

automation	bias	(Layton,	Smith,	&	McCoy,	1994).		The	pilots	tended	to	accept	the	plan	

generated	by	the	automation	even	when	it	produced	less	than	optimal	solutions.			

Another	study	on	automation	bias	sought	to	quantify	the	effects	of	automation	

over-reliance	in	modern	cockpits.		This	study	pointed	out	the	need	for	pilots	to	be	able	

to	fly	the	airplane	when	the	automation	does	not	function	correctly.		Automation	bias	

refers	to	omission	and	commission	errors	resulting	from	the	use	of	automated	cues	as	a	

heuristic	replacement	for	vigilant	information	seeking	and	processing	(Mosier,	Skitka,	

Heers,	&	Burdick,	1997).		Highly	automated	cockpits	tend	to	change	the	way	pilots	

perform	tasks	and	make	decisions.		Researchers	have	documented	problems	in	the	use	

of	advanced	automated	systems,	including	mode	misunderstanding,	failures	to	

understand	automated	behavior,	confusion	or	lack	of	awareness	concerning	what	

automated	systems	are	doing,	and	difficulty	tracing	the	functioning	or	reasoning	process	

of	the	automated	agent	(Billings,	1996).		Figure	1	below	diagrams	both	positive	and	

negative	feedback	loops	associated	with	automation.		Each	loop	or	pathway	can	lead	to	

bias	on	the	part	of	the	pilot.	
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Figure	1.		Automation	Bias	(Parasuraman	&	Manzey,	2010)	

Pilots	are	trained	and	develop	their	skills	assessment	through	the	use	of	both	

system	and	environmental	cues	(cross	checking	of	information).		In	most	situations,	

processing	is	facilitated	by	inter-correlations	among	cues	(Wickens	&	Flach,	1998).		In	

the	cross-checking	environment,	related	to	older	technology	aircraft,	pilots	often	looked	

for	many	cues	in	determining	if	a	problem	existed.		Using	these	skills,	pilots	know	and	

look	for	patterns	or	combination	of	cues	that	are	most	ecologically	valid,	reliable,	or	

relevant	for	diagnosing	particular	situations.		They	are	able	to	incorporate	contextual	

information	to	formulate	a	workable	action	plan	based	on	their	assessment	of	these	

cues	(Kaempf	&	Klein,	1994).	

When	automated	aids	are	introduced,	the	pattern	of	cue	utilization	is	disrupted.		

Automated	aids	present	powerful	and	generally	highly	accurate	cues.		This	leads	to	the	

overall	attitude	that	the	automated	cues	are	not	just	another	cue,	but	the	most	
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powerful	and	important	cue.		These	automated	decision	aids	support	the	general	

human	tendency	“to	travel	the	road”	of	least	cognitive	effort.		People	will	generally	

utilize	heuristics	(cognitive	shortcuts)	to	reduce	effort	and	information	load.			

For	rigid	tasks	that	do	not	require	flexible	decision-making	automation	can	often	

provide	the	best	solution	(Cummings,	2016).		In	time-critical	environments	that	have	

external	and	changing	constraints,	higher	levels	of	automation	may	not	be	advisable	due	

to	the	risks	and	the	complexity	of	the	decision	aids	not	being	perfectly	stable.	

(Cummings,	2016).		Situation	awareness,	complacency,	and	skill	degradation	are	the	

measurable	costs	of	automation	bias.	

Breakdown	in	Coordination	

	 Errors	can	never	be	completely	eliminated	necessitating	the	need	for	detection,	

diagnosis,	and	recovery	(United	Airlines,	2016).		Event	driving	tasks	and	domains	have	

seen	a	lack	of	research	in	error	diagnosis	and	recovery	(Nikolic	&	Sarter,	2007).		A	study	

jointly	conducted	by	the	Boeing	Company	and	the	University	of	Michigan	in	2007sought	

to	some	insight	into	error	and	disturbance	management	strategies.		The	study	noted	

that	pilots	seldom	follow	the	canonical	path	to	handle	disturbance	events	(Nikolic	&	

Sarter,	2007).		A	canonical	path	can	be	considered	the	most	optimum	solution	that	is	

technically	correct	in	developing	diagnosis	and	recovery	options.	Detection	of	such	

events	were	often	observed	to	be	delayed	due	to	pilots’	knowledge	gaps	and	time	

criticality,	and	in	many	cases,	generic	and	inefficient	recovery	strategies	were	observed	

(Nikolic	&	Sarter,	2007).		In	addition,	pilots	often	relied	on	high	levels	of	automation	to	
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manage	the	consequences	of	the	induced	errors.		The	study	noted	that	pilots	often	

attempt	to	diagnose	automation-related	problems	before	they	responded	to	the	actual	

disturbance	handling	(Nikolic	&	Sarter,	2007),	meaning	that	pilots	tended	to	become	

focused	on	the	automation	instead	of	flying	the	aircraft.			All	18	pilot	crews	in	the	Boeing	

study	struggled	at	some	point	with	handling	events	(actual	flying)	during	a	simulated	

flight	in	the	B747.		It	was	noted	that	the	pilots	in	the	study	rarely	attempted	to	diagnose	

the	source	of	the	disturbance	(Nikolic	&	Sarter,	2007).		The	study	findings	of	indicate	

that	poor	disturbance	management	is	somewhat	related	to	the	design	of	the	

automation	interfaces	(Nikolic	&	Sarter,	2007).			

Cognitive	Resources	

As	skill	levels	decline,	a	pilot	must	devote	more	cognitive	resources	when	

situations	such	as	emergencies,	system	failures,	or	other	issues	that	force	a	pilot	into	

manual	flying.		In	addition,	a	pilot	begins	to	lose	the	ability	to	mentally	project	where	

the	airplane	is	in	space	with	regards	to	altitude,	airspeed,	and	configuration.		Simply	

stated,	a	pilot’s	cognitive	resources	(in	fact	every	human)	is	finite.		

Two	basic	parameters	affect	performance:	the	amount	of	cognitive	resources	

available	to	the	pilot	and	the	complexity	of	the	task	or	situation.		Task	performance	

depends	on	the	relation	between	the	two	parameters,	cognitive	resources	available	and	

the	complexity	of	the	situation.	As	long	as	the	amount	of	resources	consumed	by	the	

task	is	lower	than,	or	equal	to,	the	available	amount	of	memory,	task	performance	will	

be	adequate	(Ippel,	1987).		However,	task	performance	will	gradually	decline	relative	to	
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the	degree	that	tasks	impose	cognitive	loads	that	exceed	the	available	amount	of	

resources	(Ippel,	1987).		If	too	little	processing	resource	is	applied	(because	of	

limitations	to	the	availability	of	processing	resources),	performance	failure	is	to	be	

expected.	As	more	and	more	resources	are	applied	to	the	task	the	likelihood	of	

successful	performance	increases	(Norman	&	Bobrow,	1975).		

Startle	Effect	and	Cognitive	Consequences	

The	startle	effect	is	common	to	all	mammals	(Simons,	1996).		It	consists	of	an	

involuntary	reaction	to	an	unusual	stimulus.		This	reflex	usually	happens	quickly	

following	the	stimulus,	generally	in	as	little	as	14	milliseconds	(Yeomans	&	Frankland,	

1996).		Research	has	suggested	a	link	between	common	patterns	of	the	startle	reflex	

and	the	neural	pathways	involved	(Davis,	1986;	Eaton,	1984;	Landis	&	Hunt,	1939;	Lang,	

Bradley,	&	Cuthbert,	1990;	LeDoux	J.	E.,	2000;	LeDoux	J.	,	1996;	Whalen	&	Phelps,	2009).		

These	actions	involve	various	senses	and	muscles	and	the	amygdala	in	the	limbic	region	

of	the	brain.		The	initial	analysis	happens	very	quickly	(500	milliseconds)	and	results	in	

an	aversive	reflex	away	from	the	stimulus.		The	startle	reaction	may	last	between	.3	to	

1.5	seconds,	depending	on	the	severity	(Martin,	Murray,	&	Bates,	2012).		An	issue	arises	

when	the	threat	persists	and	the	startle	reaction	becomes	a	full-blown	startle	or	

surprise	reaction,	otherwise	known	as	“flight	or	fight.”		This	process	can	lead	to	

confusion	or	delays	in	processing.			When	people	are	startled	and	the	threat	persists,	

such	as	in	a	life-threatening	aircraft	emergency,	then	the	startle	reflex	is	likely	to	

transition	into	a	full	startle	reaction,	with	its	ensuing	activation	of	the	sympathetic	

nervous	system	(Martin,	Murray,	&	Bates,	2012).		A	sudden	startling	event	can	have	
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negative	effects	on	performance	(Martin,	Murray,	&	Bates,	2012).		This	is	especially	

detrimental	in	the	case	of	an	emergency	were	correct	decision-making	is	important	to	

resolve	an	issue.		A	study	conducted	for	the	FAA	(1969),	demonstrated	that	a	startle	

event	negatively	affected	performance	and,	also	noted	that	recovery	of	performance	

following	a	startle	event	appears	to	be	quite	rapid	(Thackray	&	Touchstone,	1970).			

Upon	initial	presentation	of	the	startle	stimulus,	maximum	disruption	occurred	during	

the	first	five	seconds	after	the	stimulation,	with	significant	but	considerably	less	

disruption	after	the	second	5-second	interval	lasting	from	30	seconds	to	one	minute	

(Thackray	&	Touchstone,	1970).	

		 Vlasak	(1969)	in	his	study,	investigated	the	effects	of	startle	on	a	continuous	

task.		This	task	was	measured	for	accuracy	and	consistency.		Test	participants	were	

given	a	task	of	continuous	mental	subtraction.		Subtraction	was	found	to	be	significantly	

impaired	for	15	secconds	following	stimulation	(Vlasek,	1969).		For	the	reaction	time	

tasks,	there	was	insufficient	data	given	to	determine	the	precise	duration	of	

impairment,	although	both	were	impaired	temporarily	following	startle	event	(Vlasek,	

1969).		In	a	similar	study,	Woodhead	(1969)	found	decrements	on	decision-making	

following	sudden	noise	stimulation	that	lasted,	from	17	to	31	seconds.	It	would	appear	

from	the	results	of	Woodhead’s	study,	and	from	others	who	have	investigated	

performance	recovery	that	major	performance	decrement	following	startle	probably	

occurs	within	the	first	few	seconds	(Thackray	&	Touchstone,	1970).			A	lesser	but	

significant	decrement	may	last	for	periods	from	10	to	30	seconds	after	startle.		This	

underperformance	has	been	shown	in	some	accidents	to	be	a	period	of	time	where	
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making	correct	decisions	were	critical	to	recovery.		Interviews	with	startled	pilots	and	

qualitative	data	in	flight	simulator	experiments	suggest	that	the	negative	effects	of	

startle	effect	are	real	and	in	some	cases	can	be	significant	(Martin,	Murray,	&	Bates,	

2012).	

Decision-Making	Model	

	 There	are	a	number	of	decision-making	models	that	attempt	to	explain	how	

pilots	make	decisions.		Aeronautical	decision-making	is	complex	and	there	is	not	always	

a	clear	link	between	the	decisions	made	and	event	outcome	(Plant	&	Stanton,	2013).		

Schema	theory	explains	how	people	interact	and	make	decisions	using	stored	mental	

representations,	and	forms	an	integral	part	of	the	perceptual	cycle	model	(PCM).			

Aeronautical	decision-making	is	a	form	of	naturalistic	decision-making	(NDM);	(Klein,	

Calderwood,	&	Macgregor,	1989)	in	which	decision	makers	have	domain	expertise	and	

make	decisions	in	contexts,	which	are	usually	characterized	by	limited	time,	goal	

conflicts	and	dynamic	conditions	(Plant	&	Stanton,	2013).		A	high	proportion	of	pilot	

errors	are	related	to	decisional	errors	(Diehl,	1991;	Orasanu	&	Martin,	1998;	Shappell	&	

Wiegmann,	2009).	

Naturalistic	decision	making	(NDM)	is	complex	due	in	part	to	the	weakly	

correlated	link	between	event	outcome	and	the	decision	process.		Outcomes	cannot	

always	be	used	as	a	reliable	means	to	quantify	a	reasonable	decision	(Orasanu	&	Martin,	

1998).		The	perceptual	cycle	model	(Neisser,	1976)	is	based	upon	the	idea	of	a	reciprocal	

and	cyclical	relationship	between	the	operator	and	the	environment	(Plant	&	Stanton,	
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2013).		Neisser	presented	the	view	that	human	thought	is	closely	connected	with	a	

person’s	interaction	in	the	world,	both	informing	the	other	(Neisser,	1976).			

World	knowledge	(schemata)	leads	to	the	anticipation	of	certain	types	of	

information	or	clues.			Accurate	cue	perception	is	critical	to	decision	making.		In	most	

operational	environments,	there	are	multiple	cues	available;	however,	when	pilots	

become	startled,	there	is	a	tendency	to	reduce	the	number	of	cues	that	are	sampled	

(Wickens	&	Flach,	1998).			Selective	cue	sampling	can	lead	to	a	cycle	of	confusion	that	

further	complicates	the	situation	(Hilscher,	Breiter,	&	Kochan,	2012).		Schemata	can	be	

conceptualized	as	having	mental	‘slots’	that	are	used	to	structure	the	information	linked	

to	them.			Schemata	represent	linked	neurons	and	memories	of	abstract	concepts.		They	

are	generally	formed	from	specific	instances	and	allow	abstract	knowledge	to	be	

derived	at	the	time	of	retrieval	by	sampling	from	domain-specific	instances	(Plant	&	

Stanton,	2013).		Schemata	are	internal	knowledge	structures	that	are	based	on	similar	

experiences	that	capture	the	common	features	of	this	experience	(Lieberman,	2012).			

The	use	of	schemata	in	decision-making	is	advantageous;	they	act	as	natural	standard	

operating	procedures	(SOPs)	to	direct	decision	makers	to	make	appropriate	responses	

to	environmental	stimuli	based	on	previously	successful	experiences	(Plant	&	Stanton,	

2013).	

According	to	the	perceptual	cycle	model	(PCM),	when	an	environmental	

experience	is	encountered,	relevant	experiences	(schemata)	are	retrieved	to	help	

develop	an	appropriate	response	(Plant	&	Stanton,	2013).		This	leads	to	seeking	out	

certain	types	of	additional	information	in	as	a	way	of	interpreting	that	information	using	
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a	form	of	bottom-up	processing.	The	environmental	experience	can	result	in	the	

modification	and	updating	of	cognitive	schemata	and	thus,	in	turn,	influence	further	

interaction	with	the	environment	(Plant	&	Stanton,	2013).	

Smith	and	Hancock	(1995)	have	argued	that	the	usefulness	of	the	PCM	

explanation	lies	in	the	interaction	between	operator	and	environment,	rather	than	

considering	the	two	separately.		Decision	issues	arise	when	the	selected	schema	(stored	

and	cataloged	memories)	is	inappropriate	for	the	current	situation.		In	general,	pilots	

were	found	to	utilize	a	number	of	different	schemas	in	determining	an	initial	response	

to	a	situation.		The	use	of	schema	aids	perception	and	decision-making	(Plant	&	Stanton,	

2013).		When	the	unusual	happens,	pilots	tend	to	pay	closer	attention	to	information	

related	to	specific	cues	relating	to	the	unusual	situation	instead	of	seeking	out	

additional	information	to	keep	the	“big-picture”	in	mind	(Hilscher,	Breiter,	&	Kochan,	

2012).		Alternative	scenario	interpretations	are	usually	only	considered	when	they	are	

consistent	with	preexisting	expectations	(Muthard	&	Wickens,	2002).	

Morris	and	Leung	(2006)	found	that	mental	workload	was	not	significantly	

increased,	when	task	demand	increased	if	pilots	could	revert	to	pre-existing	schemata.	

When	inappropriate	schemata	are	selected,	incorrect	actions	and	decisions	can	follow.		

Over-reliance	on	pre-existing	but	inappropriate	schemata	have	been	shown	to	lead	to	

fixation	on	certain	cues	in	relation	to	other	cues	(Stanton,	et	al.,	2010;	Plant	&	Stanton,	

2013).	
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Dual-Process	Account	of	Decision	Behavior	

In	unfamiliar	situations,	when	proven	rules	are	not	available,	behavior	may	

become	goal-controlled	using	knowledge-based	reasoning	(Rasmussen,	1983).		Coping	

with	complexity	is	largely	due	to	the	availability	of	a	large	repertoire	of	different	mental	

representations	of	the	environment	from	which	rules	can	be	generated	ad	hoc	

(Rasmussen,	1983).		Purposeful	behavior	is	based	on	a	pilot’s	perception	of	an	event	and	

is	experiential	knowledge	of	similar	situations.			

Human	behavior	can	be	characterized	by	three	levels	of	constraints	or	

performance	levels.		The	levels	make	use	of	pattern	matching	and	are	defined	as	skill-

based,	rule-based	and	knowledge-based	performance.			Skill	based	behavior	is	

characterized	by	sensor-motor	performance	during	activities	following	a	state	of	

intention	and	generally	take	place	without	conscious	thought.		They	are	usually	smooth,	

automated	and	highly	integrated	(Rasmussen,	1983).		This	mode	is	mostly	used	for	quick	

and	accurate	movements.		The	body	acts	as	a	multivariable	continuous	control	system	

synchronizing	movements	with	the	behavior	of	the	environment	(Rasmussen,	1983).		

When	asked,	pilots	cannot	generally	describe	their	thought	process	involved	in	this	type	

of	cognition.		They	refer	to	it	as	an	automatic-like	response.		This	type	of	cognition	is	

sought	by	training	departments	in	response	to	time	critical	aircraft	emergencies	such	as	

an	engine	failure	at	rotation	where	a	quick,	automated,	and	precise	response	is	needed.	

At	the	rule	based	level,	information	is	typically	perceived	as	signs,	which	serve	to	

activate	or	modify	predetermined	actions	or	manipulations	(Rasmussen,	1983).		The	
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boundary	between	skill	based	and	rule	based	performance	is	not	always	distinct,	and	

depends	on	the	level	of	training	and	attention	of	the	individual	(Rasmussen,	1983).		

These	signs	are	used	to	select	or	modify	the	rules	controlling	the	sequencing	of	skilled	

sub-routines,	and	cannot	be	used	for	functional	reasoning	to	generate	new	rules.				

During	unfamiliar	situations	that	have	no	known	rules	for	control,	performance	

moves	to	the	highest	cognition	level	that	is	knowledge	based	(Rasmussen,	1983).		In	this	

situation,	the	goal	is	formulated	based	on	an	analysis	of	the	environment.		This	mode	

can	be	characterized	by	evaluation	of	different	solutions	and	can	also	include	trial	and	

error.		Figure	2	describes	the	various	levels	of	how	Rasmussen	describes	his	behavior	

model.	

	

Figure	2.		Behavior	Model	(Rasmussen,	1983)	

Many	decision-process	models	mark	the	first	step	of	assessing	the	situation	by	

observing	information	and	data	scanning	(Salmon,	et	al.,	2008).		The	second	part	of	the	

process	involves	examining	possible	solutions	depending	on	the	interpretation	of	this	
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assessment.	Decision	errors	occur	when	there	is	a	lack	of	consideration	of	important	

data	displays.		The	perceptual	step	builds	the	foundational	level	of	Endsley’s	concept	of	

situation	awareness	(Endsley,	2006).	

Cognition	and	Emotion	

Emotions	are	evolved	situation	responses	that	have	multiple	aspects.		They	

involve	subjective	feelings,	cognition,	information	processing,	expressive	behavior,	

motivation,	and	physiological	responses	(Diamond	&	Aspinwill,	2003).		In	fact,	cognition	

and	emotion	are	intertwined	constructs	(Hilscher,	Breiter,	&	Kochan,	2012).		Cognitions	

that	pilots	have	stored	in	memory	may	not	be	sufficient	for	exceptional	events	(Hilscher,	

Breiter,	&	Kochan,	2012).		Insufficient	cognitions	changes	pilot	perception	and	as	a	

result,	place	more	emphasis	on	how	pilots	perceive	and	interpret	events	based	on	their	

motivational	and	behavioral	significance	(Compton,	et	al,	2003).		Pressures	such	as	

emotional	pressures	can	alter	rational	reasoning	by	shifting	decision-making	criteria	

from	safety	rules	to	subjective	ones	(Causse,	Dehais,	Peran,	&	Pastor,	2013).		Emotion	

and	stress	can	bias	decision-making	and	cognitive	functioning	particularly	during	

complex	tasks	that	involve	higher	cognitive	abilities	(Causse,	Dehais,	Peran,	&	Pastor,	

2013).		Adding	to	this	issue	is	an	ingrained	confidence	on	the	aircraft’s	reliability.		This	

sense	of	safety	can	leave	pilots	unprepared	for	sudden	emergencies	(Hilscher,	Breiter,	&	

Kochan,	2012).			

	

	



	 	 29	

Inflight	Loss	of	Control	

In	terms	of	aircraft	accidents,	people	often	incorrectly	associate	takeoff	and	

landing	phases	to	be	the	area	where	the	highest	risk	occurs.		In	total	numbers	of	

accidents	and	incidents,	as	defined	by	the	National	Transportation	Safety	Board	(NTSB),	

takeoffs	and	landings	are	the	largest	accident	category.				However,	according	to	Boeing	

(2012),	inflight	loss	of	control	is	the	single	largest	category	of	fatalities	over	the	past	ten	

years	accounting	for	1413	fatalities	from	18	accidents	(Boeing,	2012).		Inflight	loss	of	

control	accidents	have	more	fatalities	that	both	controlled	flight	into	terrain	(CFIT)	and	

landing	accidents.		Many	of	these	inflight	loss	of	control	accidents	were	the	result	of	an	

unusual	event	at	the	beginning	of	the	accident	sequence.			Loss	of	control	in	flight	can	

develop	rapidly	and	suddenly	following	inappropriate	decisions	by	the	flight	crew.		

Figure	11	below	shows	the	various	accident	fatalities	ranked	by	category	with	inflight	

loss	of	control	having	the	most.			
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Figure	3.		Causes	of	Accidents	(Boeing,	2012)	

The	next	sections	of	this	literature	review	discusses	two	widely	known	airline	

accidents	in	which	inflight	loss	of	control	occurred	following	a	startle	event.			

Aircraft	Accident	Colgan	3407	

As	referenced	in	the	last	paragraph,	inflight	loss	of	control	represents	a	majority	

of	airline	accident	fatalities.		Many	of	these	incidents	have	been	preceded	by	a	startle	

event.		When	airline	crews	are	presented	with	a	sudden	onset	of	unusual	circumstances,	

they	sometimes	react	contrary	to	what	are	generally	accepted	correct	procedures	

(NTSB,	2010).			



	 	 31	

On	February	12,	2009,	a	Colgan	Air	Bombardier	DHC-8-400	(Q400)	operating	as	

Continental	Connection	3407	crashed	while	on	approach	to	the	Buffalo	International	

Airport.		All	45	passengers,	4	crew	members,	and	1	person	on	the	ground	perished	as	a	

result	of	the	crash.		The	aircraft	impacted	a	residential	area	approximately	five	nautical	

miles	northeast	of	the	airport	while	attempting	an	instrument	approach.		At	the	time	of	

the	accident,	night	visual	meteorological	conditions	(VMC)	prevailed	at	the	time	(NTSB,	

2010).				

The	METAR	for	the	airport	indicated	that	the	winds	were	from	240	

degrees	at	15knots	gusting	to	27knots.		The	visibility	was	3	miles	in	light	

snow	and	mist	with	a	few	clouds	at	1,100	feet,	broken	clouds	at	2,100	

feet	and	overcast	clouds	at	2,700	feet.		The	temperature	was	-1	degree	C	

with	a	dew	point	also	at	-1.		PIREPS	both	before	and	after	the	accident	

reported	light	to	moderate	icing	from	3,000	to	14,000	feet	(NTSB,	2010).			

The	flight	had	departed	Newark	Liberty	International	Airport	at	2118	EST	(NTSB,	

2010)	for	the	50-minute	flight	to	Buffalo.		The	flight	had	been	routine	up	until	that	time	

with	the	exception	of	non-standard	communication	during	sterile	portions	of	the	flight	

(below	10,000	feet).			

	While	preparing	for	the	approach	at	4000	feet,	the	first	officer	asked	the	captain	

if	the	aircraft	was	accumulating	ice	to	which	he	responded	that	there	was	ice	on	his	side	

of	the	windshield.		The	first	officer	then	responded,	“lots	of	ice”	and	the	captain	again	

commented,	“that’s	the	most	I’ve	seen	–	most	ice	I’ve	seen	on	the	leading	edges	in	a	
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long	time”	(NTSB,	2010).		Air	traffic	control	(ATC)	continued	to	monitor	the	descent	of	

the	airplane	to	2300	feet	(MSL)	and	at	2212	EST,	the	flight	was	cleared	for	the	ILS	to	

runway	23.		The	crew	had	the	autopilot	engaged	during	this	portion	of	the	flight	and	the	

airspeed	was	180	knots.		Approximately	three	miles	from	the	outer	marker,	the	captain	

began	to	slow	the	airplane	toward	its	final	approach	speed	by	reducing	engine	power	

towards	flight	idle.		At	2216:21	EST,	the	first	officer	lowered	the	landing	gear	and	

selected	flaps	to	15	degrees	as	requested	by	the	captain.		The	airspeed	at	this	time	was	

145	knots	and	decreasing.		At	2216:27	(six	seconds	later)	the	cockpit	voice	recorder	

(CVR)	recorded	a	sound	similar	to	the	stick	shaker	and	the	autopilot	disconnect	horn	

that	sounded	until	the	end	of	the	recording	(NTSB,	2010).		The	flight	data	recorder	(FDR)	

that	at	the	time	recorded	an	airspeed	of	131	knots.		Within	.5	seconds	of	the	autopilot	

disengaging,	the	FDR	showed	that	the	control	column	moved	aft	(commanding	a	pitch	

up).		The	power	levers	were	also	advanced	to	about	75%	torque	(a	measure	of	engine	

power).		The	FDR	also	showed	that	while	the	power	levers	were	being	advanced	the	

airplane	pitched	up	and	rolled	to	the	left	approximately	45	degrees	and	then	quickly	

rolled	to	the	right	(NTSB,	2010).		Concurrent	with	the	roll,	the	stick	pusher	also	activated	

(it	would	activate	two	more	times)	attempting	to	push	the	nose	of	the	aircraft	down.		At	

2216:34	the	first	officer	selected	the	flaps	to	zero	(uncommented	by	the	captain),	

airspeed	at	that	time	was	100	knots	(NTSB,	2010).		FDR	showed	that	the	roll	angle	

reached	105	degrees	right	wing	down	before	the	airplane	again	began	rolling	left.		The	

airplane	rolled	approximately	35	degrees	to	the	left	and	then	began	a	rapid	roll	to	the	

right	reaching	100	degrees	right	wing	down.		At	2216:50,	the	FDR	indicated	that	the	
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airplane	had	pitched	25	degrees	nose	down	(NTSB,	2010).		Impact	with	the	ground	was	

at	2216:54.		From	the	onset	of	the	stick	shaker	where	the	airplane	was	still	flyable	to	

impact	with	the	ground	was	26	seconds.	

	

Figure	4.		Flight	3407	–	One	Minute	from	Impact	–	Situation	Normal	(NTSB,	2010)	

	

Figure	5.		Flight	3407	–	30	Seconds	from	Impact	–	Stick	Shaker	Activation	(NTSB,	2010)	
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Figure	6.		Flight	3407	-27	Seconds	from	Impact	-	Roll	to	the	Left	(NTSB,	2010)	

	

Figure	7.		Flight	3407	–21	Seconds	from	Impact	-	Roll	to	the	Right	(NTSB,	2010)	
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Figure	8.		Flight	3407	–	10	Seconds	form	Impact	-	Final	Roll	to	the	Right	and	Pitch	Down	
(NTSB,	2010)	

The	accident	was	investigated	by	the	National	Transportation	Safety	Board	

(NTSB).		An	extensive	review	of	both	pilot’s	qualifications	was	conducted	by	the	Board.		

The	captain	had	experienced	several	unsuccessful	events	during	his	flying	career	

requiring	additional	training,	however,	other	pilots	who	had	flown	with	both	the	captain	

and	first	officer	described	their	performance	as	“good”	(NTSB,	2010).			

The	NTSB	in	its	findings	stated	one	of	the	primary	causes	of	the	accident	was	the	

captain’s	incorrect	actions	in	response	to	the	stall	warning	during	the	approach	(NTSB,	

2010).		It	also	stated	that	the	icing	on	the	airplane	would	have	resulted	in	minimal	

performance	degradation	(NTSB,	2010).		When	the	stick	shaker	activated,	the	captain	

responded	by	applying	a	37-pound	pull	force	to	the	control	column,	which	resulted	in	a	

nose	up	elevator	deflection.		The	angle	of	attack	(AOA)	increased	to	13	degrees	with	a	

pitch	of	18	degrees.		As	a	result	of	the	power	settings	and	the	captain’s	actions,	the	
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airspeed	dropped	to	125	knots.		After	the	first	stick	pusher	activation,	the	captain	again	

applied	a	nose	up	force	on	the	control	column	(NTSB,	2010).		The	captain	applied	two	

additional	pull	forces	of	increasing	magnitude	in	response	to	the	two	other	stick	pusher	

activations.	The	NTSB	characterized	the	captain’s	actions	as	“abrupt	and	inappropriate”	

(NTSB,	2010).			

According	to	the	NTSB,	the	captain’s	performance	suggest	that	he	was	startled	

by	the	activation	of	the	stick	shaker	and	responded	by	making	inappropriate	control	

inputs	(NTSB,	2010).		The	NTSB	further	stated:	

“The	captain’s	failure	to	make	a	standard	callout	or	even	a	declarative	

statement	associated	with	a	recovery	attempt	and	his	failure	to	silence	

the	autopilot	disconnect	horn	(which	continued	for	the	remainder	of	the	

fight	and	could	have	been	silenced	by	pushing	a	button	on	the	control	

wheel)	further	suggest	that	he	was	not	responding	to	the	situation	using	

a	well-learned	habit	pattern.		The	first	officer	was	not	providing	guidance	

consistent	with	an	understanding	of	the	situation	(NTSB,	2010)”.	

A	scientist	at	the	NASA-Ames	Research	for	Aerospace	Human	Factors	stated	that	

people	under	stress	might	not	respond	appropriately	to	events	in	their	environment	

(NTSB,	2010).		The	captain’s	response	to	the	stick	shaker	should	not	have	required	

cognitive	effort	to	make	the	correct	inputs	or	callouts	(NTSB,	2010).		In	a	possible	

explanation	to	the	captain’s	response,	the	NTSB	cited	Colgan’s	training	on	icing	in	which	

a	video	on	tail	plane	stalls	was	shown	(NTSB,	2010).		The	recovery	that	the	captain	



	 	 37	

attempted	was	similar	to	that	which	should	be	taken	during	a	tail	plane	stall,	however,	

the	aircraft	itself	presented	no	evidence	of	such	an	event	(NTSB,	2010).		It	is	more	

probable	that	in	reaction	to	a	startle	event,	the	captain	chose	the	incorrect	cognitive	

pathway	for	resolution	and	was	never	able	to	correctly	diagnose	the	true	issue	with	the	

airplane.			

Aircraft	Accident	Air	France	Flight	447	

Air	France	flight	447	(AF447)	also	represents	a	case	where	startle	of	the	crew	

may	have	adversusly	affected	initial	decision	making	resulting	in	a	loss	of	the	aircraft	

(BAE,	2012).		AF447	was	a	regularly	scheduled	flight	from	Rio	de	Janeiro	to	Paris.		AF447,	

an	A330,	departed	Rio	on	June	1st,	2009	carrying	216	passengers,	three	pilots,	and	nine	

flight	attendants.		Routing	of	the	flight	was	over	the	central	Atlantic	Ocean.		The	flight	

proceeded	normally	for	the	first	two	hours	and	was	flying	level	at	35,000	feet.		

Approximately	2:10:05,	the	aircraft	encountered	freezing	precipitation	which	

obstructed	the	pitot	probes	(BAE,	2012).		The	loss	of	the	pitot	probes	affected	the	

autoflight	system	and	the	cockpit	airspeed	indications.		The	total	time	from	onset	of	the	

pitot	issue	to	impacting	the	ocean	was	4:23.		When	the	autoflight	system	disconnected,	

the	pilot	flying	(PF)	began	applying	a	nose	up	command	on	the	sidestick.		The	cockpit	

speed	indications	dropped	from	275	knots	to	60	knots	(typical	of	an	icing	event).		At	

2:10:16	the	pilot	not	flying	(PNF)	stated	“we’ve	lost	the	speeds”	then	“alternate	law	

protections”	(BAE,	2012).		The	PF	made	rapid	and	high	amplitude	roll	control	inputs	

(from	stop	to	stop).		He	also	made	an	additional	nose-up	input	that	increased	the	
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airplane’s	pitch	attitude	up	to	11	degrees	(BAE,	2012).		The	airplane	was	in	a	climb	

through	37,700	feet	at	this	point.		At	2:10:36	the	airspeed	on	the	left	side	of	the	cockpit	

became	valid	as	the	ice	melted	in	the	pitot	probe.		Airspeed	at	this	point	was	223	knots	

which	represented	a	loss	of	50	knots.		The	PF	reduced	the	pitch	of	the	airplane	

momentarily	at	2:10:47	however,	he	then	resumed	a	pitch-up	beyond	10	degrees	and	

the	airplane	again	began	to	climb.		This	pitch	caused	the	airplanes	stall-warning	system	

to	trigger	in	a	continuous	manner	(BAE,	2012).			

The	PF	selected	maximum	thrust	on	the	engines	and	made	additional	pitch	up	

inputs	towards	13	degrees.		Approximately	15	seconds	later	the	right	side	airspeed	

indicator	became	valid	and	recorded	an	airspeed	of	185	knots	(BAE,	2012).		The	PF	

continued	to	command	a	pitch	up	and	the	airplane	reached	a	maximum	altitude	of	

38,800	feet	and	an	angle	of	attack	(AOA)	of	16	degrees.		At	2:11:42	the	captain	re-

entered	the	cockpit	from	a	rest	break.		At	that	time	all	three	airspeed	indicators	were	

displaying	valid	airspeed	data.		Also	around	this	time,	the	airplane	was	descending	

through	35,000	feet	with	an	AOA	of	40	degrees,	which	resulted	in	a	vertical	speed	of	-

10,000	feet	per	minute	(fpm).		The	airplane	was	also	experiencing	roll	oscillations	

exceeding	40	degrees	(BAE,	2012).					

Due	to	the	extremely	low	airspeed,	the	stall	warning	ceased.		The	PF	

momentarily	reduced	the	pitch	of	the	airplane	which	again	triggered	the	stall	warning	as	

the	plane	gained	a	little	speed.		Unfortunately,	the	PF	resumed	the	commanded	pitch	up	

and	the	AOA	approached	35	degrees.		The	last	recorded	data	for	the	airplane	was	at	

2:14:28.		Data	indicates	a	vertical	speed	of	-10,912	fpm	with	an	airspeed	of	107	knots.			
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Figure	9	is	a	graphical	reproduction	of	the	flight	parameters	from	the	flight	data	

recorder.		The	timeline	for	this	diagram	is	the	first	50	seconds	of	the	event	where	the	

aircraft	goes	from	controlled	flight	to	a	descent	rate	of	over	10,000	feet	per	minute.		

The	chart	shows	the	aggressive	handling	by	the	first	officer	in	both	pitch	and	roll.		It	also	

shows	when	the	airspeed	information	became	valid.	
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Figure	9.		Parameters	from	2:10:50	to	2:11:46	(BAE,	2012)	

Figure	10	shows	that	the	airspeed	indications	were	normal	just	prior	to	the	

event.		It	also	shows	that	the	airspeed	indications	(for	the	first	officer)	may	have	not	
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been	reliable	for	a	period	of	40	seconds.		It	also	shows	that	once	the	airspeed	

indications	were	valid,	a	constant	decrease	in	speed	occurred	until	the	end	of	the	event.			

	

Figure	10.		Evolution	of	Airspeed	and	Pitot	Icing	(BAE,	2012)	

Figure	11	summarizes	the	event	from	the	onset	of	the	frozen	pitot	tubes	until	

impact	with	the	ocean.		Large	variations	in	pitch	and	angle	of	attack	can	be	seen	

throughout	most	of	the	event.		The	aircraft	is	completely	stalled	for	the	last	minute	of	

the	event,	finally	impacting	the	ocean	is	a	nose	high	with	almost	no	forward	airspeed	

and	at	a	rate	of	descent	of	-15,000	feet	per	minute.	
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Figure	11.		AF447	FDR	Data	(MM43,	2011)	

In	its	findings,	the	BAE	studied	13	incidents	related	to	icing	and	unreliable	

airspeed.		Air	France	had	four	such	cases	in	their	history	with	the	A330	aircraft.		The	BAE	

determined	that	in	less	than	one	minute	after	the	autopilot	disconnected,	the	airplane	

exited	its	flight	envelope	following	inappropriate	pilot	inputs	(BAE,	2012).	The	airplane	

went	into	a	sustained	stall	as	signaled	by	the	stall	warning	system	and	strong	airframe	

buffet.			Even	though	the	stall	warning	sounded	for	54	seconds,	neither	pilot	made	any	

reference	to	the	stall	warning	or	the	associated	buffet.		The	crew	never	applied	the	stall	

recovery	maneuver.		The	incident	startled	the	crew	and	they	had	difficulties	handling	

the	airplane	(BAE,	2012).		The	excessive	pitch	and	vertical	speed	added	to	the	erroneous	

indication	and	emergency,	caution,	and	monitoring	(ECAM)	messages,	which	added	
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complexity	in	the	diagnosis	of	the	situation.		The	crew	likely	never	understood	that	it	

was	a	simple	loss	of	airspeed	data	(BAE,	2012).			

Conclusion		

Although	not	intended	to	be	all	encompassing,	this	literature	review	seeks	to	

provide	the	reader	a	broad	background	on	which	to	base	this	study.		The	review	

discussed	startle	effect	and	the	current	understanding	of	its	effect	upon	decision	

making.		Emergencies,	where	flight	crews	made	the	incorrect	initial	decision,	become	

progressively	more	difficult	to	successfully	manage	as	pilots	often	selectively	filter	

information	to	confirm	their	initial	decision.		Decisions	evolve	from	past	experiences	and	

knowledge	where	bits	of	similar	experiences	are	pasted	together	in	the	model	

generation	phase.			

Decision-making	is	a	complex	process	that	researchers	are	only	beginning	to	

understand.		It	is	known	that	when	pilots	are	startled	by	a	sudden	emergency	that	their	

decision-making	and	subsequent	performance	can	be	adversusly	affected.		The	startle	

effect	may	lead	to	a	breakdown	in	crew	coordination	and	puts	additional	cognitive	load	

on	the	individual	pilot.		With	over-reliance	on	automation,	crews	may	not	be	well	

equipped	to	handle	a	sudden	inflight	emergency	that	requires	the	use	of	hand	flying	

skills.		The	startle	effect	may,	in	some	cases,	result	in	incorrect	model	

generation/selection	with	incorrect	decisions	and/or	actions	being	applied	to	an	

emergency	situation.		Boeing	(2012)	suggests	that	inflight	loss	of	control	is	the	single	

highest	category	for	airline	fatalities.			Startle	effect,	cognitive	overload,	and	crew	
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breakdown	can	all	be	seen	in	both	the	Air	France	and	Colgan	accidents.		In	many	cases,	

simulator	training	in	conjunction	with	deliberate	practice	has	been	demonstrated	to	

increase	crew	performance.		Deliberate	practice	has	been	widely	applied	as	an	industry	

solution	to	other	inflight	emergencies	and	applying	it	startle	effect	may	be	an	effective	

way	to	mitigate	some	of	its	inherent	risks.			
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CHAPTER	II	

METHODOLOGY	

	Introduction	

	 This	study	was	a	mixed	methodology	study	focusing	on	whether	startle	training	

could	help	successfully	mitigate	the	cognitive	gap	that	exists	during	a	startle	event.		The	

first	part	of	the	study	was	a	survey	given	to	each	of	the	participating	pilots.	The	second	

part	of	the	study	evaluated	the	crews	as	they	flew	one	of	the	selected	maneuver	sets	

and	was	quantitative	in	nature.		The	simulator	part	of	the	study	was	a	quasi-

experimental	design	with	crews	that	did	not	receive	startle	training	serving	as	the	

control	group.		Each	participating	crew	was	evaluated	either	a	low	or	high	altitude	

scenario	depending	on	the	day	of	the	week.		Randomly	selected	crews	received	training	

on	handling	the	aircraft	during	a	startle	event.		The	training	consisted	of	both	a	briefing	

and	simulator	practice.		Practice	in	the	simulator	was	equal	for	the	crews	in	the	trained	

group	lasting	approximately	one	hour.		The	briefing	consisted	of	personal	instruction	

using	a	power	point	presentation	discussing	the	proper	pitch,	power,	bank,	and	time	

recognition	(see	Appendix	B).		The	briefing	ended	with	a	mnemonic	device	that	pilots	

were	expected	to	use	and	verbalize	both	in	the	practice	events	and	the	evaluation	

event.		Simulator	practice	consisted	of	a	startle	event	not	related	to	the	evaluation	
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profiles.		It	was	intended	to	have	equally	trained	and	untrained	crews	to	compare	

performance	between	the	groups.			

	 The	first	test	scenario	was	a	low	altitude	and	low	fuel	profile.		The	scenario	

degrades	with	a	system	failure	that	causes	a	missed	approach	and	a	resequence	for	

landing.		Time	pressure,	low	fuel,	and	the	unexpected	missed	approach	combine	to	form	

the	startle	event	and	event	evaluation	begins	at	the	missed	approach.				

	 The	crew	flew	a	standard	arrival	procedure	into	Newark	Liberty	International	

Airport	(KEWR).		The	routing	for	the	arrival	had	both	lateral	and	vertical	restrictions	and	

would	be	considered	a	routine	procedure	for	approaching	the	airport.		The	specific	

arrival	chosen	for	this	study	was	the	DYLIN	arrival	(see	Appendix	D).			The	weather	at	

KEWR	combined	with	traffic	saturation	has	caused	holding	(at	the	METRO	intersection).		

This	holding	is	unexpected	by	the	crew	resulting	in	somewhat	of	a	low	fuel	situation	that	

adds	an	initial	stress	element	to	the	scenario.		The	crew	is	cleared	out	of	holding	for	the	

instrument	approach	to	runway	4R	(see	Appendix	D)	with	approximately	one	hour	of	

fuel	remaining.		The	exact	amount	of	fuel	depends	on	the	aircraft	in	the	scenario	(See	

Appendix	D).	The	vectors	and	the	initial	part	of	the	instrument	approach	to	runway	4R	

were	normal.		The	weather	was	instrument	flight	rules	(IFR)	with	a	500-foot	overcast	

ceiling	and	a	visibility	of	one	mile.		

	 When	the	crew	selected	the	landing	gear	down,	around	approximately	2000	feet	

on	the	approach,	one	of	the	landing	gear	fails	to	extend.		It	was	expected	that	the	crew	

will	execute	a	missed	approach	at	this	point	in	order	to	try	and	rectify	the	landing	gear	
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issue.		The	landing	gear	malfunction	is	the	startle	event	and	time	pressure	due	to	low	

fuel	serve	to	add	stress	to	the	crew.			

	 The	second	test	scenario	was	a	high	altitude	profile.		The	crew	was	briefed	that	

they	are	on	a	flight	that	terminates	in	KEWR,	with	routing	via	the	DYLIN	arrival.		The	

flight	is	at	35,000	feet	(FL350),	with	a	descent	planned	via	the	arrival.		There	have	also	

been	reports	of	light	icing	descending	into	KEWR.			Pilots	are	in	instrument	conditions	

with	light	turbulence.	The	scenario	involves	loss	of	the	aircraft's	air	data	system,	which	

disables	many	of	the	auto-flight	systems.		With	the	air	data	loss,	an	engine	fire	warning	

was	introduced.		The	air	data	loss	was	the	startle	event	and	the	engine	fire	warning	

added	a	distractor	and	stress	to	the	crew.		Evaluation	began	at	the	loss	of	air	data.		The	

air	data	loss	renders	the	aircraft’s	speed,	altitude,	and	vertical	trend	unreliable	with	the	

side	effect	of	the	autoflight	system	automatically	disconnecting.		The	air	data	

interruption	was	of	short	duration	and	only	a	few	seconds	elapsed	before	instrument	

indications	return	to	normal.		The	autoflight	disconnection	forces	the	crew	into	a	hand	

flying	situation	and	the	engine	fire	warning	serves	as	both	a	distraction	and	a	startle	

event.		

	 Data	collection	consisted	of	crew	performance	as	it	relates	to	aircraft	control	for	

each	scenario.		Each	scenario	is	made	up	of	five	sub-tasks	which	were	evaluated	and	

used	to	determine	an	overall	score.		The	scoring	methodology	was	taken	directly	from	

participating	airlines’	FAA	approved	advanced	qualification	program	(AQP)	evaluation	

manual.			Each	pilot	group	was	compared	using	a	one-way	ANOVA	against	the	FAA	

proficiency	standard	and	then	compared	to	the	other	group	for	significance.		T-tests	
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were	performed	on	the	different	maneuver	sets	to	determine	if	the	proximity	of	the	

maneuver	affects	the	pilot's	ability	to	successfully	fly	the	aircraft.		If	the	study	

hypothesis	is	correct,	the	untrained	crews	should	show	a	significant	statistical	difference	

as	compared	to	the	standard	pilot	performance	as	defined	by	the	FAA.		In	addition,	

regression	analysis	was	performed	on	various	aspects	of	the	collected	data	to	gain	an	

insight	as	to	where	the	variability	lies.			

Subjects	

	 The	population	for	this	study	were	professional	pilots	of	an	FAR	121	commercial	

air	carrier.		Furthermore,	the	study	focused	on	pilots	of	scheduled	passenger	airlines.		

Flight	crews	from	the	participating	airline	were	asked	during	their	recurrent	training	

cycle	if	they	wished	to	participate	in	this	study.		They	were	selected	based	on	their	

willingness	to	volunteer	for	this	study.		Selection	of	crews	generally	occurred	during	

their	final	day	of	training	when	there	was	often	extra	simulator	time	available.	If	the	

crew	volunteered,	they	were	requested	to	fill	out	a	survey	on	their	experience	and	

perceptions	of	their	flying	abilities,	especially	during	unusual	events.	The	crews	were	

informed	that	there	was	no	personal	data	kept	and	no	data	linking	an	individual	to	their	

performance.	

Beta	Testing	

	 A	small	group	test	was	completed	on	approximately	15	subjects.		The	nature	of	

the	beta	test	was	to	determine	an	estimated	effect	size	of	the	independent	variable.		

The	effect	size	was	used	to	complete	a	power	analysis.		In	addition,	the	beta	test	group	
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was	used	to	establish	the	simulator	parameters	for	items	such	as	weight,	fuel,	and	

induced	problems.		The	beta	test	results	are	reported	here	and	not	in	the	findings	

section	as	they	are	not	considered	part	of	the	actual	test	data.		IBM	SPSS	Statistics	

(SPSS)	was	used	to	analyze	the	overall	training	effect	and	then	for	each	scenario	(low	

and	high).		Tables	of	the	initial	results	are	listed	below.		Table	1	lists	the	basic	

descriptives.		A	total	of	15	crews	participated	in	the	beta	test.			

Table	1.		Descriptive	Statistics	Beta	Group	

Dependent	Variable:			Overall	score	collapsed	across	low	and	high	altitude			
Crew	training	
provided	

High	or	low	
altitude	scenario	

Mean	 Std.	Deviation	 N	

Yes	 High	Altitude	 4.0000	 .00000	 5	
Low	Altitude	 4.5000	 .57735	 4	
Total	 4.2222	 .44096	 9	

No	 High	Altitude	 2.3333	 .57735	 3	
Low	Altitude	 2.6667	 .57735	 3	
Total	 2.5000	 .54772	 6	

Total	 High	Altitude	 3.3750	 .91613	 8	
Low	Altitude	 3.7143	 1.11270	 7	
Total	 3.5333	 .99043	 15	

 
The	beta	test	found	that	the	training	effect	was	significant	with	p	=	.00	when	the	low	

and	high	altitude	groups	(trained	and	untrained)	where	compared.		The	results	are	listed	

in	table	2.	
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Table	2.		Tests	of	Between-Subjects	Effects	Beta	Group	

Table	3	below	compares	the	trained	and	untrained	groups	for	only	the	low	altitude	

scenario.		The	descriptive	statics	and	ANOVA	results	are	in	Tables	3	and	4.	

Table	3.		Descriptive	Statistics	Low	Altitude	Scenario	Beta	Group	

Dependent	Variable:			Low	Altitude	Scenario			
Crew	training	provided	 Mean	 Std.	Deviation	 N	
Yes	 4.5000	 .57735	 4	
No	 2.6667	 .57735	 3	
Total	 3.7143	 1.11270	 7	
 
 
 
 
 
 
 
 

Dependent	Variable:			Overall	score	collapsed	across	low	and	high	altitude			
Source	 Type	III	Sum	

of	Squares	
df	 Mean	

Square	
F	 Sig.	 Partial	Eta	

Squared	
Noncent.	
Parameter	

Observed	
Powerb	

Corrected	
Model	

11.400a	 3	 3.800	 17.914	 .000	 .830	 53.743	 1.000	

Intercept	 163.209	 1	 163.209	 769.414	 .000	 .986	 769.414	 1.000	
Training	 10.970	 1	 10.970	 51.716	 .000	 .825	 51.716	 1.000	
HighLow	 .622	 1	 .622	 2.932	 .115	 .210	 2.932	 .346	
Training		
HighLow	

.025	 1	 .025	 .117	 .738	 .011	 .117	 .061	

Error	 2.333	 11	 .212		 	 	 	 	

Total	 201.000	 15		 	 	 	 	 	

Corrected	
Total	

13.733	 14		 	 	 	 	 	

a.	R	Squared	=	.830	(Adjusted	R	Squared	=	.784)	
b.	Computed	using	alpha	=.05	
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Table	4.		Tests	of	Between-Subjects	Effects	Low	Altitude	Scenario	Low	Altitude	Beta	
Group	

Dependent	Variable:			Low	Altitude	Scenario			
Source	 Type	III	Sum	

of	Squares	
df	 Mean	

Square	
F	 Sig.	 Partial	Eta	

Squared	
Noncent.	
Parameter	

Observed	
Powerb	

Corrected	
Model	

5.762a	 1	 5.762	 17.286	 .009	 .776	 17.286	 .908	

Intercept	 88.048	 1	 88.048	 264.143	 .000	 .981	 264.143	 1.000	
Training	 5.762	 1	 5.762	 17.286	 .009	 .776	 17.286	 .908	
Error	 1.667	 5	 .333	 	 	 	 	 	

Total	 104.000	 7	 	 	 	 	 	 	

Corrected	
Total	

7.429	 6	 	 	 	 	 	 	

a.	R	Squared	=	.776	(Adjusted	R	Squared	=	.731)	
b.	Computed	using	alpha	=.05	

 
The	same	comparison	was	done	on	the	beta	group	for	the	high	altitude	scenario.		The	

results	are	listed	in	Tables	5	and	6.		Like	the	low	altitude	beta	group,	the	main	effect	of	

training	showed	significance.	

Table	5.		Descriptive	Statistics	High	Altitude	-	Beta	Group	

Dependent	Variable:			High	Altitude	Scenario			
Crew	training	provided	 Mean	 Std.	Deviation	 N	
Yes	 4.0000	 .00000	 5	
No	 2.3333	 .57735	 3	
Total	 3.3750	 .91613	 8	
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Table	6.		Tests	of	Between-Subjects	Effects	High	Altitude	-	Beta	Group	

Dependent	Variable:			High	Altitude	Scenario			
Source	 Type	III	Sum	

of	Squares	
df	 Mean	

Square	
F	 Sig.	 Partial	Eta	

Squared	
Noncent.	
Parameter	

Observed	
Powerb	

Corrected	
Model	

5.208a	 1	 5.208	 46.875	 .000	 .887	 46.875	 1.000	

Intercept	 75.208	 1	 75.208	 676.875	 .000	 .991	 676.875	 1.000	
Training	 5.208	 1	 5.208	 46.875	 .000	 .887	 46.875	 1.000	
Error	 .667	 6	 .111	 	 	 	 	 	

Total	 97.000	 8	 	 	 	 	 	 	

Corrected	
Total	

5.875	 7	 	 	 	 	 	 	

a.	R	Squared	=	.887	(Adjusted	R	Squared	=	.868)	
b.	Computed	using	alpha	=.05	

	
	 Analysis	suggest	that	between	73%	and	86%	of	the	variability	can	be	accounted	

for	due	to	the	training	effect.		G-Power	was	then	used	to	calculate	a	Cohen’s	D	to	

estimate	the	training	effect	size.		The	calculated	effect	size	was	.33	which	reflects	a	

medium	effect	size.		The	given	effect	size	was	then	used	to	estimate	the	number	of	

subjects	needs	to	ensure	an	adequate	sample	size	which	with	the	calculated	effect	size	

is	between	17	and	60	crews.	

Table	7.		Cohen’s	D	Calculation	Beta	Group	

Scenario	 Low	Altitude		 High	Altitude	
Mean	 3.167	 3.375	
Std.	Deviation	 0.916	 1.112	
Sample	Size	 7.0	 8.0	
Result	 Cohen's	d	=	(3.714	-	3.375)	⁄	1.018725	=	0.332769.	
Cohen's	d	=	(M2	-	M1)	⁄	SDpooled	SDpooled	=	√((SD12	+	SD22)	⁄	2)	
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Sample	Groups	

	 The	plan	was	to	evaluate	30	-	60	crews.		This	allowed	for	enough	data	to	be	

collected	even	if	the	effect	size	in	the	rating	scale	is	small	to	medium																								

(Cohen’s	d	=	.33	/	r	=	.19).	The	number	of	pilots	were	chosen	in	order	to	gain	a	

statistically	significant	sample	approximating	the	skill	level	of	the	general	professional	

pilot	population.		There	were	four	main	groups	for	comparison.		The	groups	were	

defined	as	follows:	

1. Low	Altitude	–	No	Training	(LANT)	

2. Low	Altitude	–	Training	(LAT)	

3. High	Altitude	–	No	Training	(HANT)	

4. High	Altitude	–	Training	(HAT)	

Equipment	

	 This	study	used	professional	airline	pilots	flying	two	different	scenarios	in	an	FAA	

approved	Level-D	full	flight	simulator	(FFS).		Simulators	that	were	utilized	include	A320,	

B737,	B757,	B767,	B777,	B787,	and	B747.		The	scenarios	were	flown	by	a	crew	consisting	

of	a	captain	and	first	officer,	similar	to	what	would	happen	in	actual	line	operations.		

The	training	that	some	of	the	crews	received	was	broad-based	and	not	aircraft	specific.	

Data	Collection	Methods/Procedures	

	 Data	collection	for	this	study	focused	on	two	parts:	a	survey	and	observed	

simulator	performance	data.			The	survey	consisted	of	approximately	10	multiple-choice	
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questions	that	were	evaluated	using	a	Lickert	scale.		Questions	focus	on	such	items	as	

outside	flying,	previous	military	and/or	aerobatic	flying,	and	general	hand	flying	

attitudes.			

	 The	simulator	portion	of	the	study	involved	flying	maneuver	profiles	in	an	FAA	

approved	Level-D	full	flight	simulator.		The	maneuver	sets	were	evaluated	by	the	

principle	investigator.		The	investigator	is	a	former	instructor	pilot	on	multiple	transport	

category	jet	aircraft	with	over	11	years	of	professional	instructional	experience.			The	

maneuver	evaluation	criteria	were	developed	in	accordance	with	airline	training	

procedures	and	protocols	as	set	forth	by	the	FAA.		The	specific	evaluation	criteria	were	

adopted	from	an	FAR	121	passenger	Advanced	Qualification	Program	(AQP)	program	

(with	permission),	which	was	approved	by	the	FAA.			The	criteria	match	closely	with	

evaluation	standards	set	forth	by	the	FAA	in	the	Airline	Transport	Pilot	(ATP)	practical	

test	standards	(PTS).			The	crews	were	evaluated	on	the	success	of	the	maneuver	as	

described	in	Tables	8-10.	
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Table	8.		High	Altitude	Analysis	

	

Table	9.		Low	Altitude	Analysis	

Score	 Criteria	

5	
The	crew	remained	well	within	standards	and	performance	was	exemplary.		The	
crew	recognized	the	issue	and	handled	promptly	while	recognizing	the	
deteriorating	fuel	state	of	the	aircraft.			

4	 The	situation	was	well	handled	with	the	safety	of	the	flight	not	in	jepordy.		The	
crew	was	aware	of	the	time	pressures	and	the	fuel	state	and	mitigated	both.	

3	 The	flight	landed	safely	with	no	major	deviations	for	SOPs	with	at	least	30	minutes	
of	fuel.	

2	 Landed	the	aircraft	in	less	than	desirable	conditions	with	regards	to	configuration,	
fuel	and	time	management.	

1	
The	pilot	committed	major	deviations	from	standards	that	were	not	promptly	
corrected	and/or	were	unsafe,	or	was	unable	to	perform	the	maneuver/task	
without	assistance.		The	pilot	crashed	or	lost	control	of	the		aircraft.	

	

Score	 Criteria	

5	
Crew	performance	was	excellent	in	both	aircraft	handling	and	problem	diagnosis.		
The	crew	had	minimal	altitude	and	heading	changes,	recognized	the	issue	promptly	
and	applied	the	correct	mitigation	strategies.	

4	 Crew	performance	was	good.		Problem	was	correctly	diagnosed	with	pitch	and	roll	
not	exceeding	5	deg/50	feet.	

3	 Crew	performance	was	average.		Some	difficulty	diagnosing	the	problem.		Pitch	and	
roll	not	exceeding	10	deg/	100	feet.	

2	
Crew	performance	was	below	average.		Problems	and/or	confusion	diagnosing	the	
problem	or	misdiagnosed	of	the	problem.		Major	deviations	in	pitch	and	roll	more	
than	20	deg/200	feet.	

1	 Crew	performance	was	unacceptable.		The	crew	could	not	diagnose	the	problem	
and	misdiagnosed	the	problem.		Excessive	deviations	and	handling	of	the	aircraft.	
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Table	10.		Evaluated	Factors	and	Seat	Positions	

	 High	Altitude	 Low	Altitude	

Factors	 Problem	Diagnosis	 Missed	Approach	

Pitch	 Irregular	Checklists	

Roll	 Time	Management	

Altitude	Control	 Fuel	Management	

Overall	Control	 Approach	and	Landing	

Overall	Score	 Overall	Score	

Seat	Position	 Pilot	Flying	 Pilot	Flying	

Pilot	Monitoring	 Pilot	Monitoring	

		

Data	Analysis	and	Statistical	Modeling	

	 Analysis	was	planned	for	within	groups	and	between	groups	comparisons	with	

further	analysis	of	significant	factors.		An	additional	analysis	compared	the	training	

groups	and	non-training	groups	versus	the	FAA	standard.			Overall	factor	and	seat	

position	scores	were	also	compared	to	the	FAA	standard,	which	for	this	study	was	a	

grade	of	three	as	described	above	in	the	data	collection	section.		The	statistical	

modeling	program	SPSS	was	primarily	used	to	analyze	the	data.		In	addition,	the	survey	

data	was	compared	and	analyzed	to	see	if	any	significant	correlations	can	be	

determined.		ANOVA,	linear	regression,	and	post-t-	tests	were	the	primary	statistical	

models	used.	
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Within	Group	Comparison	

	 The	first	data	set	for	analysis	were	the	within	group	comparisons.		Analysis	was	

conducted	between	Low	Altitude	Trained	Group	(LAT)	and	Low	Altitude	Non-Trained	

Group	(LANT)	and	the	High	Altitude	Trained	Group	(HAT)	and	the	High	Altitude	Non-

Trained	Group	(HANT).		The	first	part	of	the	analysis	used	the	overall	grade	score	(see	

Appendix	1).			Analysis	looked	for	significant	findings	within	each	group	using	a	one-way	

ANOVA	with	the	alpha	level	set	at	.05.			Comparison	between	the	overall	grade	and	the	

FAA	standard	grade	(3)	was	also	compared.		A	second	round	of	analysis	occurred	for	the	

contributing	factors	of	the	overall	grade.		Linear	regression	was	used	to	determine	what	

part	of	the	variance	each	factor	(if	any)	are	significant.		Again	the	alpha	level	was	.05.		

Finally,	as	part	of	the	within	groups	comparison,	the	seat	position	(captain	or	first	

officer)	was	tested	for	significance	as	a	contributor	to	the	overall	grade	using	regression.	

Between	Group	Comparison	

	 The	between-group	comparison	was	similar	to	the	within	group	comparison	

using	the	same	tests	and	tools.		The	between	groups	was	between	LAT	and	HAT	

followed	by	LANT	and	HANT	groups.		The	analysis	sought	to	determine	significant	

findings	of	the	final	grade,	using	a	one-way	ANOVA	with	an	alpha	level	of	.05.		As	with	

the	within	group	comparison,	linear	regression	was	used	to	analyze	both	the	

contributing	factors	and	the	seat	position.		Comparison	to	the	FAA	standard	was	

conducted	in	the	between	group	comparison.	
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Comparison	versus	a	Known	Standard	

	 The	final	set	of	comparisons	was	conducted	by	collapsing	across	groups	(trained	

versus	untrained,	and	then	comparing	against	a	known	set	standard.		The	set	standard	

was	determined	by	the	tolerances	set	forth	by	the	FAA	for	an	Airline	Transport	Pilot	

(ATP)	certificate.		The	data	collection	section	above	describes	the	grading	standards	as	

set	by	the	FAA	and	airline	policies,	which	since	they	are	approved	are	also	part	of	the	

FAA	standard.		Crews	receiving,	at	least,	an	overall	grade	of	(3)	were	considered	to	meet	

the	FAA	standard.		Any	grade	below	(3)	was	considered	below	standard.			

	 The	training	groups	(LAT	and	HAT)	and	non-training	groups	(LANT	and	HANT)	

were	collapsed	and	then	compared	to	the	FAA	standard	using	a	one-way	ANOVA	with	

an	alpha	level	of	.05.		Comparison	of	the	collapsed	groups	was	also	compared	to	the	

survey	responses	using	the	Pearson	Correlation	test.	

Protection	of	Human	Subjects	

	 The	crews	in	this	study	were	exposed	to	unusual	but	not	extraordinary	aircraft	

failures	in	the	simulator.		These	failures	are	regularly	practiced	during	initial	and	

recurrent	training.	The	crews	are	accustomed	to	having	their	performance	evaluated.		

There	is	also	a	minimal	risk	of	performing	in	front	of	a	colleague	if	the	performance	is	

substandard	even	though	the	evaluation	will	be	as	a	whole	crew.		This	is	mitigated	by	

not	identifying	a	particular	pilot	with	an	individual	performance.		The	volunteer	subjects	

were	also	encouraged	not	to	evaluate	each	other’s	capability	based	on	this	testing	

scenario.		Finally,	crews	will	be	requested	to	refrain	from	talking	about	the	testing	with	
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other	crews	as	to	not	compromise	the	test	data.		There	will	be	no	identifiable	link	

between	the	performance	of	the	crew	and	any	individual	crew	member	(a	condition	set	

by	the	participating	airline	in	granting	use	of	their	simulators).		Individual	performance	

will	not	be	reported	to	any	airline	or	entity	outside	the	research	project.	

	 Since	minimal	risks	will	be	involved	in	the	study,	the	subjects	will	be	informed	

that	the	study	will	include	various	maneuvers	that	will	be	flown	in	the	simulator	and	

that	the	crew's	performance	will	be	analyzed.		There	will	be	a	check	box	on	the	survey	

form	indicating	that	the	participants	have	volunteered	for	the	study.		The	specific	

language	is	as	follows:	“	By	checking	this	box,	I	agree	that	I	have	volunteered	for	this	

study	and	have	felt	no	undue	pressure	from	the	airline,	the	University	of	North	Dakota,	

or	the	principle	investigator	to	participate.		I	have	also	been	informed	that	no	data	will	

be	kept	linking	any	simulator	performance	to	a	specific	pilot.		Data	collected	is	for	this	

research	project	only	and	will	not	be	reported	to	any	entity	or	airline.		Final	aggregate	

results	may	be	viewed	in	the	published	dissertation	that	will	be	available	at	the	

University	of	North	Dakota	Chester	Fritz	Library.		The	researcher	has	informed	me	that	I	

will	fly	as	part	of	a	crew	and	may	encounter	some	unusual	situations	in	the	simulator.		I	

also	understand	that	I	have	the	right	to	refuse	participation	or	withdraw	from	the	study	

at	any	point	without	a	change	in	relationship	with	my	airline,	the	University	of	North	

Dakota	or	the	research	team.”		All	participants	acknowledged	and	signed	the	

participation	consent	form.		 	
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CHAPTER	IV	

RESULTS	

	 This	study	consisted	of	two	main	parts,	a	survey	and	a	flight	evaluation.			There	

was	data	recorded	in	an	FAA	approved	Level-D	flight	simulator,	flown	by	pilots	for	a	

major	US	based	passenger	airline.		Volunteer	crews	were	asked	to	fly	one	of	two	

different	scenario	profiles.		Random	crews	received	training	that	consisted	of	a	briefing	

and	simulator	practice.		The	training	sought	to	mitigate	the	negative	cognitive	effects	

following	a	startle	event.		The	data	mainly	focuses	on	the	effect	the	training	had	on	the	

trained	pilot	group.		Analysis	consisted	of	both	within	and	between	main	groups	with	

regression	analysis	on	the	contributing	factors	that	made	up	the	maneuver	set	scores.		

Crews	were	presented	with	either	a	low	altitude	and	low	fuel	scenario	or	a	high	attitude	

scenario	with	a	loss	of	air	data.		The	survey	was	conducted	in	order	to	gain	a	perspective	

into	how	pilots	at	major	airlines	fly	their	aircraft,	and	how	they	perceive	their	own	flying	

skills.			

Demographics	

	 Forty	crews	who	flew	for	a	U.S.	Global	passenger	airline	participated	in	the	

study.		All	of	the	subjects	were	active	line	pilots	and	volunteers.		The	pilots	flew	as	a	

crew	consisting	of	a	Captain	and	First	Officer	and	had	flown	in	their	respective	aircraft	
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for	at	least	one	year.	Crews	were	also	divided	by	which	profile	they	flew	and	whether	

they	received	training	and	practice	prior	to	flying	the	profile	scenario.		Each	scenario	

(low	or	high)	was	flown	by	20	crews.		In	addition,	crews	were	separated	by	what	type	of	

aircraft	that	they	flew.		There	were	21	wide-body	aircraft	crews	(B747,	B787,	B777,	

B767)	and	19	narrow-body	aircraft	crews	(B737,	A320,	B757).		

Survey	Responses	

	 The	survey	was	divided	into	two	distinct	parts:	a	pilot’s	experience,	and	their	

perception	of	their	own	skills.		The	pilot	flying	(PF)	the	scenario	was	asked	to	complete	

the	survey.			The	first	survey	question	asked	if	the	pilot	flew	outside	of	their	current	job	

in	another	professional	manner	such	as	flight	instructing.			The	results	are	displayed	in	

Table	11	and	Figure	12	

Table	11.		Flying	Outside	of	Professional	Job	

	
Frequency	 Percent	 Valid	Percent	

Cumulative	
Percent	

Valid	 Yes	 6	 15.0	 15.0	 15.0	

No	 34	 85.0	 85.0	 100.0	

Total	 40	 100.0	 100.0	 	
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Figure	12.		Outside	Flying	

Survey	responses	indicated	that	only	15%	of	the	pilots	flew	outside	of	the	

current	job.			Outside	flying	generally	consists	of	less	sophisticated	aircraft	that	require	

more	routine	flying	skill	practice.		Since	only	15%	indicated	that	they	flew	outside	of	

their	airline	job,	the	results	were	not	considered	significant.		

	 The	next	survey	question	asked	whether	the	pilot	flew	in	the	military.		Of	the	

survey	responses,	32.5%	indicated	that	they	have	flown	in	the	United	States	military.		

The	results	are	displayed	in	Table	12	and	Figure	13	
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Table	12.		.		Did	You	Fly	in	the	Military?	

	
Frequency	 Percent	 Valid	Percent	

Cumulative	
Percent	

Valid	 Yes	 13	 32.5	 32.5	 32.5	

No	 27	 67.5	 67.5	 100.0	

Total	 40	 100.0	 100.0	 	

	

	

Figure	13.		Civilian	versus	Military	Flying	

Anecdotal	personal	interviews	with	military	pilots	suggested	that	those	exposed	

to	military	flying	have	a	greater	exposure	to	startle	events	and	in	some	cases	have	

developed	coping	mechanisms.			 	

The	next	survey	question	asked	if	the	pilot	had	any	type	of	formal	aerobatic	

training.		This	type	of	training	may	indicate	better	recognition	of	unusual	attitudes	and	
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lead	to	a	more	effective	response	to	an	unusual	event.		The	results	are	displayed	in	

Table	13	and	Figure	14.	

Table	13.		Do	You	Have	any	Formal	Aerobatic	Training	

	
Frequency	 Percent	 Valid	Percent	

Cumulative	
Percent	

Valid	 Yes	 23	 57.5	 57.5	 57.5	

No	 17	 42.5	 42.5	 100.0	

Total	 40	 100.0	 100.0	 	

	

More	than	57%	of	the	pilots	indicated	that	they	had	received	some	type	of	formal	

aerobatic	training.	

	

Figure	14.		Aerobatic	Training	

	 The	final	survey	question	related	to	pilot	experience,	asked	whether	the	pilots	

had	ever	encountered	an	unusual	event	that	they	would	describe	as	“startling”.		This	
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question	was	asked	to	gage	how	many	pilots	have	experienced	events	(while	flying)	that	

caught	them	by	surprise.		The	results	are	displayed	in	Table	14	and	Figure	15.	

Table	14.		Startle	Events	

	
Frequency	 Percent	 Valid	Percent	

Cumulative	
Percent	

Valid	 Yes	 32	 80.0	 80.0	 80.0	

No	 8	 20.0	 20.0	 100.0	

Total	 40	 100.0	 100.0	 	

	

A	majority	of	the	pilots	(80%)	indicated	that	they	had	been	startled	while	flying,	leading	

to	the	conclusion	that	startle	is	somewhat	common	among	professional	fight	crews.			

	

Figure	15.		Startling	Events	

The	next	section	of	the	survey	sought	to	gain	a	perspective	on	how	pilots	

generally	flew	the	aircraft	in	normal	line	operations.		This	section	of	the	survey	asked	
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the	pilots	to	rate	the	questions	based	on	a	sliding	scale	of	agreement	(1-5)	from	

“strongly	agree”	to	“strongly	disagree”.		The	pilots	were	asked	to	select	their	agreement	

with	the	survey	questions.		There	was	no	option	to	select	responses	outside	of	the	five	

standard	ones.			

	 The	first	statement	asked	whether	a	pilot	knows	the	proper	pitch	and	power	

settings	for	phases	of	flight	such	as	cruise	and	approach.		This	is	important	because	if	

various	flight	instruments	are	lost,	safe	flight	can	be	continued	with	just	a	pitch	and	

power	setting.		No	pilots	disagreed	with	this	statement	with	50%	strongly	agreeing	that	

they	knew	the	correct	pitch	and	power	settings.		The	results	are	described	in	Table	15	

and	Figure	16.	

Table	15.		I	Know	the	Proper	Pitch	and	Power	Settings	

	
Frequency	 Percent	 Valid	Percent	

Cumulative	
Percent	

Valid	 Strongly	Agree	 20	 50.0	 50.0	 50.0	

Somewhat	
Agree	

15	 37.5	 37.5	 87.5	

Neutral	 5	 12.5	 12.5	 100.0	

Total	 40	 100.0	 100.0	 	
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Figure	16.		Pitch	and	Power	Settings	

When	combined	with	“somewhat	agree”,	positive	responses	provided	by	the	

pilots	recorded	at	87%	.		None	of	the	pilots	indicated	that	they	disagreed	with	the	

statement.		Responses	indicate	that	a	majority	of	pilots	believe	that	they	know	the	

correct	pitch	and	power	settings	for	the	phase	of	flight.			

	 The	next	survey	question	asked	if	the	pilots	often	hand-flew	the	aircraft	during	

departure	and	approach	below	10,000	feet.		These	phases	of	flight	often	contain	the	

most	complex	aircraft	maneuvering.		Changes	in	altitude,	speed,	and	course	are	routine	

in	these	phases.		Departures	involved	changes	in	routing	while	climbing	and	configuring	

the	aircraft	for	high	speed	flight.		Arrivals	involve	a	similar	sequence	only	in	reversus	

order.		The	results	are	displayed	in	Table	16	and	Figure	17.	
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Table	16.		Hand	Flying	Below	10,000	Feet	

	
Frequency	 Percent	 Valid	Percent	

Cumulative	
Percent	

Valid	 Strongly	Agree	 27	 67.5	 67.5	 67.5	

Somewhat	
Agree	

9	 22.5	 22.5	 90.0	

Somewhat	
Disagree	

4	 10.0	 10.0	 100.0	

Total	 40	 100.0	 100.0	 	

	

Responses	to	this	question	were	indicate	that	67.5%	strongly	agreed	with	this	

statement	and	22.5%	somewhat	agreed.		Only	10%	of	the	pilots	disagreed	with	the	

statement.		There	was	no	neutral	or	strongly	disagree	statements.		This	indicates	that	

most	pilots	are	hand	flying	the	aircraft	below	10,000	feet.			

	

Figure	17.			Hand	Flying	Below	10,000	Feet	
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	 Mental	rehearsal	of	different	flight	scenarios	has	been	found	to	helpful	in	

shaping	pilot	responses	to	unusual	situations.		At	the	major	airline	studied	for	this	

research,	pilots	are	required	to	view	and	participate	in	organized	“chair	flying”	during	

the	recurrent	training	cycle.		The	next	survey	question	asked	whether	the	pilots	

extended	this	practice	outside	of	their	recurrent	training	cycle.		The	results	are	displayed	

in	Table	17	and	Figure	18.	

Table	17.		Chair	Fly	Scenarios	to	Help	Determine	Courses	of	Action	

	
Frequency	 Percent	 Valid	Percent	

Cumulative	
Percent	

Valid	 Strongly	Agree	 6	 15.0	 15.0	 15.0	

Somewhat	
Agree	

17	 42.5	 42.5	 57.5	

Neutral	 11	 27.5	 27.5	 85.0	

Somewhat	
Disagree	

3	 7.5	 7.5	 92.5	

Strongly		
Disagree	

3	 7.5	 7.5	 100.0	

Total	 40	 100.0	 100.0	 	

	

The	pilots	indicated	that	they	somewhat	agreed	to	this	statement	42%	of	the	

time.		The	next	largest	group	was	neutral	representing	27.5%	of	the	responders.		
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Figure	18.		Chair	Flying	

The	statement	recorded	responses	in	all	categories.		Responses	indicated	that	a	

57.5%	of	the	pilots	use	this	practice.	

	 Being	able	to	fly	the	airplane	without	advanced	automation	has	been	shown	as	a	

key	element	in	recovering	from	an	unusual	situation.		When	an	aircraft	is	upset	(outside	

of	the	normal	flight	envelope),	the	automation	will	often	disconnect	(United	Airlines,	

2016).		This	survey	question	asked	if	the	pilots	were	comfortable	flying	the	aircraft	

without	the	use	of	the	flight	director,	autothrottles,	and	map	mode.		The	results	are	

displayed	in	Table	18	and	Figure	19.	
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Table	18.		Comfort	Flying	Raw	Data	

	
Frequency	 Percent	 Valid	Percent	

Cumulative	
Percent	

Valid	 Strongly	Agree	 17	 42.5	 42.5	 42.5	

Somewhat	
Agree	

15	 37.5	 37.5	 80.0	

Neutral	 3	 7.5	 7.5	 87.5	

Somewhat	
Disagree	

5	 12.5	 12.5	 100.0	

Total	 40	 100.0	 100.0	 	

	

There	were	no	pilots	who	strongly	disagreed	with	this	statement.		Pilots	selecting	

strongly	agree	and	somewhat	agree	were	80%	of	the	responses.			

	

Figure	19.		Raw	Data	Flying	
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These	responses	indicate	that	most	pilots	feel	that	they	are	comfortable	flying	

the	aircraft	with	raw	data	only.			

	 Hand	flying	the	airplane	during	the	day	in	good	weather	is	common,	however	

deliberate	practice	in	conditions	other	than	day	visual	flight	rules	(VFR)	is	important	in	

maintaining	flying	skills.		The	next	survey	questions	asked	pilots	if	they	hand	flew	in	

various	conditions.		The	results	are	displayed	in	Table	19	and	Figure	20.	

Table	19.		Often	Practice	Raw	Data	Skills	

	
Frequency	 Percent	 Valid	Percent	

Cumulative	
Percent	

Valid	 Strongly	
Agree	

22	 55.0	 55.0	 55.0	

Somewhat	
Agree	

10	 25.0	 25.0	 80.0	

Neutral	 7	 17.5	 17.5	 97.5	

Somewhat	
Disagree	

1	 2.5	 2.5	 100.0	

Total	 40	 100.0	 100.0	 	

	

Of	the	pilots	surveyed,	80%	either	strongly	agreed	or	somewhat	agreed	with	the	

statement.	A	larger	number	of	pilots	indicated	that	they	were	neutral	17.5%	with	this	

statement	when	compared	to	the	other	questions.		

	

	



	 	 73	

	

Figure	20.		Skills	Practice	

The	responses	indicate	that	most	of	the	pilots	practice	hand	flying	under	various	

conditions.			

	 The	final	question	asked	if	the	pilots	used	the	autopilot	for	a	majority	of	the	

flight	above	1000	feet.		This	question	is	in	contrast	to	the	10,000-foot	altitude	hand	

flying	question	and	sought	to	determine	what	percentage	of	pilots	predominately	use	

the	autopilot	for	flight.		The	results	are	displayed	in	Table	20	and	Figure	21.	
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Table	20.		Autopilot	Usage	Above	1000	Feet	

	
Frequency	 Percent	 Valid	Percent	

Cumulative	
Percent	

Valid	 	 1	 2.5	 2.5	 2.5	

Strongly	
Agree	

8	 20.0	 20.0	 22.5	

Somewhat	
Agree	

5	 12.5	 12.5	 35.0	

Neutral	 2	 5.0	 5.0	 40.0	

Somewhat	
Disagree	

13	 32.5	 32.5	 72.5	

Strongly		
Disagree	

11	 27.5	 27.5	 100.0	

Total	 40	 100.0	 100.0	 	

	

This	statement	had	the	most	varied	responses	with	a	slight	majority	(56%)	of	the	

pilots	either	disagreeing	or	strongly	disagreeing	with	the	statement.		Pilots	agreed	with	

the	statement	32.5%	of	the	time.			

	

	

	

	

	

	



	 	 75	

	

Figure	21.		Autopilot	Usage	

	

Flight	Evaluation	-	Quantitative	Analysis	

	 A	quantitative	analysis	was	completed	using	SPSS	on	the	high	and	low	altitude	

profiles	and	the	sub-factors	that	comprised	each	profile.		The	profiles	were	analyzed	

both	individually	and	then	collapsed	together	with	the	independent	variable	being	

training	as	described	in	the	Methods	Section.		Each	of	the	three	groups	(high,	low,	and	

combined)	were	analyzed	using	a	one-way	ANOVA.		In	addition	to	descriptive	statistics,	

regression	analysis	was	conducted	on	the	factors	that	made	up	each	individual	scenario	

score.				Finally,	the	combined	group	was	compared	to	the	FAA	standards	for	Airline	

Transport	Pilot	(ATP)	certification.		The	results	are	discussed	below.	
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High	Altitude	

	 Crews	flew	the	high	altitude	scenario	20	times.		There	were	nine	untrained	crews	

and	11	crews	received	the	training	as	described	in	the	Methods	Section.		SPSS	was	used	

to	model	a	one-way	ANOVA	testing	for	the	effects	of	training	(independent	variable)	on	

the	overall	scenario	event	score.		The	descriptive	statistics	are	summarized	in	Table	21.	

Table	21.		Descriptive	Statistics	High	Altitude	

High	Altitude	Scenario			

	 N	 Mean	 Std.	
Deviation	

Std.	
Error	

95%	Confidence	
Interval	for	Mean	

Min-
imum	

Max-
imum	

Between-	
Compon-
ent	
Variance	Lower	

Bound	
Upper	
Bound	

No	 9	 2.666	 .70711	 .23570	 2.1231	 3.2102	 2.00	 4.00	 	

Yes	 11	 3.727	 .64667	 .19498	 3.2928	 4.1617	 2.00	 4.00	 	

Total	 20	 3.250	 .85070	 .19022	 2.8519	 3.6481	 2.00	 4.00	 	

Mod
-el	

Fixed	
Effects	

	 	 .67420	 .15076	 2.9333	 3.5667	 	 	 	

Random	
Effects	

	 	 	 .53252	 -3.5163	 10.0163	 	 	 .51653	

	

The	untrained	crews	had	a	mean	score	of	2.67	and	a	standard	deviation	of	.70,	

which	is	slightly	below	the	standard	for	FAA	certification	(a	score	of	3),	while	the	trained	

crews	had	a	mean	score	of	3.72	and	a	standard	deviation	of	.65	which	is	above	the	FAA	

standard.		There	were	no	crews	that	received	a	score	of	one	(1)	indicating	loss	of	control	

of	the	aircraft.		There	were	also	no	scores	of	five	(5)	indicating	a	near	perfectly	flown	

scenario	set.	



	 	 77	

	 A	Levene’s	test	was	conducted	on	the	high	altitude	scenario.		The	test	indicates	

that	there	was	no	significant	difference	in	the	trained	and	untrained	group	variances.		

The	test	results	were	F(1,	18)	=	.674,	p	=	.422.		See	Appendix	E	for	additional	detailed	

statistical	test	results.	

	 A	one-way	ANOVA	was	conducted	comparing	the	trained	and	untrained	groups	

(see	Table	22).		There	was	a	significant	effect	of	training	on	the	high	altitude	scenario	

score,	F(1,	18)	=	12.25,	p	=	.003.		The	test	confirms	the	research	hypothesis	that	

targeted	training	can	be	successful	in	helping	pilots	maintain	aircraft	control	during	an	

unusual	and	sudden	startle	event.		In	the	case	of	the	high	altitude	scenario,	the	null	

hypothesis	is	rejected.			
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Table	22.		Tests	of	Between-Subjects	Effects	High	Altitude	

Dependent	Variable:			High	Altitude	Scenario			

Source	 Type	III	
Sum	of	
Squares	

df	 Mean	
Square	

F	 Sig.	 Partial	Eta	
Squared	

Noncent.	
Parameter	

Observed	
Powerb	

Corrected	
Model	

5.568a	 1	 5.568	 12.250	 .003	 .405	 12.250	 .911	

Intercept	 202.368	 1	 202.368	 445.210	 .000	 .961	 445.210	 1.000	

CrewTrng	 5.568	 1	 5.568	 12.250	 .003	 .405	 12.250	 .911	

Error	 8.182	 18	 .455	 	 	 	 	 	

Total	 225.000	 20	 	 	 	 	 	 	

Corrected	
Total	

13.750	 19	 	 	 	 	 	 	

a.	R	Squared	=	.405	(Adjusted	R	Squared	=	.372)	b.	Computed	using	alpha	=	.05	

	

The	effect	size	was	calculated	from	the	ANOVA	results	using	the	formula	

R2=SSM/SST	with	the	result	being	n	=	.64.		This	represents	a	large	effect	size	R2	=	h2	

=5.568/13.750		Eta		h=	.64.		The	result	indicates	that	the	average	person	in	the	

experimental	group	would	score	higher	than	73%	of	a	control	group	that	was	initially	

equivalent	(Coe,	R.,	2002).	

Regression	High	Altitude	

	 Regression	analysis	was	conducted	on	the	factors	that	made	up	the	overall	

scenario	event	score.		This	was	done	to	explore	any	significant	factors	leading	to	the	

overall	score	and	to	pinpoint	possible	areas	of	future	training.		The	factors	are	

summarized	in	the	table	below.		Each	factor	was	evaluated	20	times.	
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Table	23.		Descriptive	Statistics	Regression	High	Altitude	

	 Mean	 Std.	Deviation	 N	

High	Altitude	Scenario	 3.2500	 .85070	 20	

Crew	Training	Received	 .5500	 .51042	 20	

Problem	diagnosis	 3.6000	 1.14248	 20	

Pitch	control	 3.5000	 1.10024	 20	

Roll	control	 3.8500	 .81273	 20	

Altitude	control	 3.3500	 .93330	 20	

	

The	regression	analysis	was	conducted	in	two	blocks	with	block	one	being	crew	

training	and	block	two	consisting	of	the	described	factors	in	the	previous	table.		The	

ANOVA	indicates	that	both	models	significantly	improve	the	ability	to	predict	the	

outcome	variable	compared	to	not	fitting	the	model.		Model	1	had	F(1,	18)	=	12.25,	p	=	

.003	and	Model	2	had	F(5,	14)	=	10.02,	p	=	.00.		See	Appendix	E.	

	 The	regression	coefficients	were	also	analyzed	to	determine	which	factors	(other	

than	crew	training	in	model	1)	showed	significance.		Significance	was	noted	for	the	

factor	of	problem	diagnosis	p	=	.00.		The	other	factors	did	not	show	significance	(p	>	

.05).		Collinearity	analysis	indicates	that	there	are	no	examples	of	multicollinearity	(VIF	>	

10).		See	Appendix	E	

Low	Altitude	Scenario	

	 The	low	altitude,	low	fuel	scenario	was	flown	by	20	crews.		There	were	10	

trained	and	10	untrained	crews	as	described	in	the	methods	section.		SPSS	was	used	to	
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analyze	the	results	using	a	one-way	ANOVA.		The	mean	score	of	the	untrained	crews	

was	2.60	with	a	standard	deviation	of	.70	and	the	trained	crews	was	3.70	with	a	

standard	deviation	of	.82.		As	with	the	high	altitude	scenario,	the	untrained	crews	

performed	below	the	ATP	standards	and	the	trained	group	performed	above	the	

standard.		There	were	no	scores	of	one	(1)	which	would	indicate	a	loss	of	control	or	

crash	of	the	aircraft.		There	were	scores	of	five	(5)	indicating	performance	well	above	

the	FAA	certification	standard.		The	descriptive	statistics	are	summarized	in	the	Table	24	

below.	

Table	24.		Descriptives	Low	Altitude	

Low	Altitude	Scenario			

	 N	 Mean	 Std.	
Deviation	

Std.	
Error	

95%	Confidence	
Interval	for	Mean	

Mini-
mum	

Maxi-
mum	

Between-	
Compon-
ent	
Variance	Lower	

Bound	
Upper	
Bound	

No	 10	 2.600	 .69921	 .22111	 2.0998	 	3.1002	 2.00	 4.00	 	

Yes	 10	 3.700	 .82327	 .26034	 3.1111	 	4.2889	 3.00	 5.00	 	

Total	 20	 3.150	 .93330	 .20869	 2.7132	 	3.5868	 2.00	 5.00	 	

Mod
-el	

Fixed	
Effects	

	 	 .76376	 .17078	 2.7912	 	3.5088	 	 	 	

Random	
Effects	

	 	 	 .55000	 -3.8384	 10.1384	 	 	 .54667	

	

	 A	Levene’s	test	was	conducted	on	the	low	altitude	scenario.		The	test	indicates	

that	there	was	no	significant	difference	in	the	trained	and	untrained	group	variances.		

The	test	results	were	F(1,	18)	=	.450,	p	=	..511.		See	Appendix	E.	
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	 A	one-way	ANOVA	was	conducted	on	the	low	altitude	scenario	to	test	the	main	

effect	of	crew	training.		There	was	a	significant	effect	of	training	on	the	low	altitude	

scenario	score,	F(1,	18)	=	10.37,	p	=	.005.		The	test	confirms	the	research	hypothesis	that	

targeted	training	be	successful	in	helping	pilots	maintain	aircraft	control	during	an	

unusual	and	sudden	startle	event.		In	the	case	of	the	low	altitude	scenario,	the	null	

hypothesis	is	rejected.		The	ANOVA	results	are	summarized	in	Table	25.	

Table	25.		Tests	of	Between-Subjects	Effects	Low	Altitude	

Dependent	Variable:			Low	Altitude	Scenario			

Source	 Type	III	Sum	
of	Squares	

df	 Mean	
Square	

F	 Sig.	 Partial	Eta	
Squared	

Noncent.	
Parameter	

Observed	
Powerb	

Corrected	
Model	

6.050a	 1	 6.050	 10.371	 .005	 .366	 10.371	 .861	

Intercept	 198.450	 1	 198.450	 340.200	 .000	 .950	 340.200	 1.000	

CrewTrng	 6.050	 1	 6.050	 10.371	 .005	 .366	 10.371	 .861	

Error	 10.500	 18	 .583	 	 	 	 	 	

Total	 215.000	 20	 	 	 	 	 	 	

Corrected	
Total	

16.550	 19	 	 	 	 	 	 	

a.	R	Squared	=	.366	(Adjusted	R	Squared	=	.330)	

b.	Computed	using	alpha	=	.05	

	

The	effect	size	was	calculated	from	the	ANOVA	results	using	the	formula	

R2=SSM/SST	with	the	result	being		h	=	.60.		This	represents	a	large	effect	size	R2	=	h2	

=6.05/16.55		Eta		h=	.60.		The	result	indicates	that	the	average	person	in	the	
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experimental	group	would,	as	in	the	high	altitude	scenario,	score	higher	than	73%	of	a	

control	group	that	was	initially	equivalent	(Coe,	2002).	

Regression	Low	Altitude	

	 Regression	analysis	was	conducted	on	the	factors	that	made	up	the	overall	

scenario	event	score,	similar	to	the	high	altitude	scenario.		This	was	done	to	explore	any	

significant	factors	leading	to	the	overall	score	and	to	pinpoint	possible	areas	of	future	

training.		The	factors	are	summarized	in	the	table	below.		Each	factor	was	evaluated	20	

times.		See	Table	26.	

Table	26.		Descriptive	Statistics	Low	Altitude	

	 Mean	 Std.	Deviation	 N	

Low	Altitude	Scenario	 3.1500	 .93330	 20	

Crew	Training	Received	 .5000	 .51299	 20	

Missed	approach	 2.8000	 1.10501	 20	

Checklist	procedures	 3.1500	 .98809	 20	

Time	Management	 3.1500	 1.03999	 20	

Fuel	Management	 3.2500	 .91047	 20	

Approach	and	landing	 3.3000	 .92338	 20	

	

The	regression	analysis	was	conducted	in	two	blocks	with	block	one	being	crew	

training	and	block	two	consisting	of	the	above	described	factors.		The	ANOVA	indicates	

that	both	models	significantly	improve	the	ability	to	predict	the	outcome	variable	
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compared	to	not	fitting	the	model.		Model	1	had	F(1,	18)	=	10.37,	p	=	.005	and	Model	2	

had	F(6,	13)	=	28.13,	p	=	.00.		See	Appendix	E.	

The	regression	coefficients	were	also	analyzed	to	determine	which	factors	(other	

than	crew	training	in	Model	1)	showed	significance.		Significance	was	noted	for	the	

factor	of	missed	approach	p	=	.01	and	time	management	p	=	.00.			The	other	factors	did	

not	show	significance	(p	>	.05).		Collinearity	analysis	indicates	that	there	are	no	

examples	of	multicollinearity	(VIF	>	10).		See	Appendix	E.			

Each	predictor	had	variance	loading	onto	a	different	dimension.		This	also	

indicates	no	issues	with	multicollinearity.	

Low	and	High	Altitude	Combined	

	 The	final	set	of	analyses	were	conducted	by	collapsing	the	effect	of	crew	training	

across	both	the	low	altitude	and	high	altitude	scenarios.		There	was	no	regression	on	the	

sub-factors	of	the	combined	scores	due	to	the	factors	already	being	analyzed	in	the	

individual	scenarios.		Analysis	was	also	conducted	on	the	effects	of	pilot	flying	(PF),	pilot	

monitoring	(PM)	and	the	type	of	aircraft	involved	(narrow	body	or	wide	body).		Further	

analysis	was	conducted	to	compare	both	the	high	altitude	and	low	altitude	scenario	vs	

the	FAA	standard	for	ATP	certification	for	both	the	trained	and	untrained	groups.			

	 A	total	of	40	crews	(80	individuals)	volunteered	for	the	study,	of	which	19	did	not	

receive	startle	training	and	21	received	startle	training.		The	mean	for	the	untrained	

crews	was	2.58	with	a	standard	deviation	of	.6.		The	mean	was	3.71	with	a	standard	

deviation	of	.71	for	the	trained	group.		The	determination	of	the	scenario	score	was	
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described	in	the	Methods	Section.		Table	27	summarizes	the	group	means	and	standard	

deviation.			

Table	27.		Descriptive	Statistics	Combined	

Dependent	Variable:			Low	and	High	Altitude	Combined			

Crew	Training	Received	 Mean	 Std.	Deviation	 N	

No	 2.5789	 .60698	 19	

Yes	 3.7143	 .71714	 21	

Total	 3.1750	 .87376	 40	

	

A	further	breakdown	was	analyzed	to	determine	if	there	were	significant	

differences	between	the	high	and	low	scenarios	when	comparing	trained	and	untrained	

crews.		The	results	are	summarized	in	Table	28.			 	

Table	28.		High	and	Low	Altitude	Mean	Comparison	

Crew	Training	Received	 High	Altitude	Scenario	 Low	Altitude	Scenario	

No	 Mean	 2.6667	 2.6000	
N	 9.0	 10.0	
Std.	Deviation	 .70711	 .69921	

Yes	 Mean	 3.7273	 3.7000	
N	 11.0	 10.0	
Std.	Deviation	 .64667	 .82327	

Total	 Mean	 3.2500	 3.1500	
N	 20.0	 20.0	
Std.	Deviation	 .85070	 .93330	
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A	t-test	was	utilized	to	test	for	significance	between	the	mean	of	the	trained	

crews	for	both	the	low	and	high	altitude	scenarios.		The	test	did	not	show	significance	in	

either	case	(p	=	.89	and	.91)	See	Table	29.	

Table	29.		Means	Comparison	with	Training	

	

Test	Value	=	3.7/3.73	

t	 df	
Sig.	(2-
tailed)	

Mean	
Difference	

95%	Confidence	Interval	of	
the	Difference	

Lower	 Upper	

High	to	
Low	

.140	 10	 .892	 .02727	 -.4072	 .4617	

Low	to	
HIgh	

-.115	 	9	 .911	 -.03000	 -.6189	 .5589	

	

The	untrained	groups	were	also	analyzed	for	significance	between	the	low	and	

high	altitude	scenarios.		The	mean	for	the	untrained	also	did	not	show	any	statistical	

significance	with	p	=	.78	and	.76.		See	Table	30.		
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Table	30.		Means	Comparison	No	Training	

	

Test	Value	=	2.60/2.67	

t	 df	
Sig.	(2-
tailed)	

Mean	
Difference	

95%	Confidence	Interval	of	
the	Difference	
Lower	 Upper	

High	to	
Low	

.283	 8	 .784	 .06667	 -.4769	 .6102	

Low	to	
High	

-.317	 9	 .759	 -.07000	 -.5702	 .4302	

 

The	results	of	the	t-tests	indicate	that	there	was	no	significant	difference	

between	the	trained	and	untrained	groups	when	the	trained	and	untrained	groups	are	

combined	across	scenario	sets.		The	research	question	that	sought	to	determine	if	the	

proximity	of	the	scenario	had	any	effect	on	the	outcome	was	answered.		The	data	

indicates	that	the	null	hypothesis	in	this	case	is	retained.	

As	with	both	the	high	and	low	altitude	scenario,	a	Levene	test	for	equal	variances	

was	conducted.		The	test	did	not	yield	significant	results	F(1,	38)	=	.046,	p	=	.83,	

therefore	the	assumption	is	that	the	variances	are	equal	across	the	groups.			See	

Appendix	E.	

	 The	next	step	in	the	analysis	was	an	ANOVA	calculated	using	SPSS.		The	ANOVA	

tested	for	crew	training	when	collapsed	across	both	high	and	low	altitude	scenarios.		

The	test	revealed	that	the	effect	of	crew	training	was	significant	F(1,	38)	=	28.89,	p	=	.00.		

This	means	that	the	trained	crews	showed	a	statistically	significant	increase	in	

performance	due	to	the	effect	of	crew	training.		The	results	are	summarized	in	Table	31.	
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Table	31.		Tests	of	Between-Subjects	Effects	Combined	

Dependent	Variable:			Low	and	High	Altitude	Combined			

Source	 Type	III	Sum	
of	Squares	

df	 Mean	
Square	

F	 Sig.	 Partial	Eta	
Squared	

Noncent.	
Parameter	

Observed	
Powerb	

Corrected	
Model	

12.858a	 1	 12.858	 28.881	 .000	 .432	 28.881	 .999	

Intercept	 395.058	 1	 395.058	 887.387	 .000	 .959	 887.387	 1.000	

CrewTrng	 12.858	 1	 12.858	 28.881	 .000	 .432	 28.881	 .999	

Error	 16.917	 38	 .445	 	 	 	 	 	

Total	 433.000	 40	 	 	 	 	 	 	

Corrected	
Total	

29.775	 39	 	 	 	 	 	 	

a.	R	Squared	=	.432	(Adjusted	R	Squared	=	.417)	

b.	Computed	using	alpha	=.05	

The	effect	size	was	calculated	from	the	ANOVA	results	using	the	formula	

R2=SSM/SST	with	the	result	being		h	=	.66.		This	represents	a	large	effect	size	R2	=	h2	

=12.86/29.78	Eta		h=	.66.		The	combined	effect	size	was	larger	than	both	the	high	and	

low	altitude	scenario	effect	sizes.		The	result	indicates	that	the	average	person	in	the	

experimental	group	would	score	higher	than	73%	of	the	control	group	that	was	initially	

equivalent	(Coe,	2002).	

The	next	test	measured	for	significant	differences	in	the	pilot	flying,	pilot	

monitoring	(Captain	or	First	Officer),	and	the	type	of	aircraft.		ANOVA	testing	for	

differences	between	PF,	PM	and	NB/WB	yielded	no	significant	results.		The	results	are	

summarized	in	Table	32.			
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Table	32.		ANOVA	Other	Factors	

	 Sum	of	Squares	 df	 Mean	Square	 F	 Sig.	

Low	and	High	
Altitude	
Combined	

Between	
Groups	

12.858	 1	 12.858	 28.881	 .000	

Within	Groups	 16.917	 38	 .445	 	 	

Total	 29.775	 39	 	 	 	

Captain	or	First	
Officer	

Between	
Groups	

.226	 1	 .226	 .877	 .355	

Within	Groups	 9.774	 38	 .257	 	 	

Total	 10.000	 39	 	 	 	

Pilot	
Monitoring	

Between	
Groups	

1.684	 1	 1.684	 2.410	 .129	

Within	Groups	 25.158	 36	 .699	 	 	

Total	 26.842	 37	 	 	 	

Narrow	or	Wide	
body	acft	

Between	
Groups	

.095	 1	 .095	 .367	 .548	

Within	Groups	 9.880	 38	 .260	 	 	

Total	 9.975	 39	 	 	 	

	

The	ANOVA	indicated	that	were	no	differences	in	scenario	scores	with	either	the	

Captain	or	First	Officer	flying	F(1,	38)	=	.88,	p=.36.		It	also	indicated	that	there	was	no	

significance	to	which	crew	member	was	the	pilot	monitoring	F(1,	36)	=	2.4,	p	=	.129.		

Finally,	the	test	indicated	no	significance	between	aircraft	type	F(1,	38)	=	.37	p	=	.55.		

This	test	answered	the	research	question	seeking	to	explore	if	significant	differences	

could	be	determined	within	these	categories.		In	the	above	cases,	the	hypothesis	of	

significant	differences	is	rejected	and	the	null	hypothesis	is	retained.			
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Performance	versus	FAA	Standard	

	 The	next	segment	of	the	analysis	was	conducted	using	a	series	of	t-tests	to	

explore	differences	of	crew	performance	from	the	FAA	standard	for	ATP	certification.		

The	crews	for	this	study	had	just	completed	their	recurrent	training	cycle	where	they	

were	certified	to	FAA	standards.	

	 The	first	t-test	explored	the	FAA	standard	of	three	(3)	to	the	overall	mean	(high	

and	low	altitude	scenario)	of	the	untrained	crews.		The	results	are	summarized	in	Table	

33.	

Table	33.		T-test	Training	versus	FAA	Standard	

	 Test	Value	=	3	
t	 df	 Sig.	(2-tailed)	 Mean	

Difference	
95%	Confidence	Interval	of	
the	Difference	
Lower	 Upper	

No	Crew	
Training	

-3.024	 18	 .007	 -.42105	 -.7136	 -.1285	

Crew	
Training	

4.564	 20	 .000	 .71429	 .3878	 1.0407	

	

The	t-test	revealed,	that	in	the	case	of	no	crew	training,	that	performance	was	

significantly	below	the	FAA	certification	standards.		The	mean	score	difference	was	-.42	

that	resulted	in	a	significance	of	p	=	.01.		This	indicates	that	crew	performance	during	a	

startle	event	is	significantly	different	from	the	FAA	standard.		In	the	case	of	crew	

training,	the	results	were	also	significant	but	in	a	positive	direction	resulting	in	a	mean	

score	difference	of	.71	with	a	p	=	.000.			
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Survey	and	Performance	Correlations	

	 The	final	set	of	analysis	was	conducted	to	determine	if	survey	responses	

correlated	with	crew	performance.		Analysis	was	conducted	separately	for	both	the	

trained	and	untrained	crews.		The	first	set	of	tests	for	the	untrained	crews	used	a	

Pearson’s	correlation	to	highlight	significant	result.		The	results	are	summarized	in	

Appendix	E.		

There	were	no	significant	survey	responses	that	correlated	with	the	performance	

of	the	untrained	crews.		There	were,	however,	significant	correlations	between	two	of	

the	survey	statements.		The	statements	“I	often	hand-fly	below	10,000	feet”	and	“I	

often	practice	my	raw	data	skills”	was	significant	with	p	=	.02.		The	statement	“I	am	

comfortable	flying	with	raw	data”	and	“I	often	practice	my	raw	data	skills”’	also	showed	

a	significant	correlation	with	p	=	.03.		These	questions	should	be	correlated	because	one	

question	generally	produces	the	other.			

	 Significant	correlations	were	also	explored	for	the	group	that	received	crew	

training.		The	results	were	identical	to	the	untrained	group	with	the	same	two	

statements	showing	significant	correlations	p	=	.00	and	p	=	.01.		The	results	are	also	

summarized	in	Appendix	E.	
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Results	Summary	

	 The	data	was	collected	and	analyzed	in	two	distinct	parts:	the	pilot	survey,	and	

the	crews	flying	a	scenario	in	the	simulator.		The	survey	was	designed	to	gain	the	pilot’s	

perspective	on	their	experiences	and	attitudes	towards	flying.		The	profile	scenarios	that	

were	flown	in	the	simulator	sought	to	produce	a	startle	event	for	the	crews	and	then	

record	their	performance.			

	 The	survey	data	indicated	that	over	80%	of	the	pilots	reported	that	they	had	

incurred	an	event	while	flying	that	surprised	them.		In	addition,	a	good	mix	of	both	

civilian	(67%)	and	military	(33%)	pilots	participated	in	the	study.		The	survey	questions	

were	not	correlated	with	crew	performance	in	either	the	low	altitude	or	high	altitude	

scenario	and	thus	were	not	a	predictor	of	crew	performance.	

	 The	event	scenarios	were	all	flown	in	an	FAA	certified	Level-D	full	flight	simulator	

(FFS),	with	accurate	visual	and	vestibular	sensory	input.		In	both	scenario	types,	the	

crews	that	received	training	that	consisted	of	a	briefing	and	simulator	practice	showed	a	

significant	improvement	in	performance	than	the	crews	that	did	not	receive	training.		

This	confirmed	the	hypothesis	that	targeted	training	on	mitigation	of	startle	effect	could	

increase	crew	performance.		Regression	analysis	was	also	conducted	on	the	factors	that	

made	up	each	crew	performance.		The	analysis	suggests	that	problem	recognition	in	the	

high	altitude	scenario	and	the	missed	approach	in	the	low	altitude	scenario	were	

significant	predictors	of	performance	on	the	overall	profile.					
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	 Crew	performance,	collapsed	across	both	scenarios,	was	also	measured	against	

the	FAA	standards	for	ATP	certification.		When	crews	received	training,	the	data	showed	

a	significant	improvement	in	performance	vs	the	FAA	standard.		Data	also	indicated	that	

untrained	crews	performed	significantly	worse	than	the	FAA	standard	when	presented	

with	a	startle	event.		This	result	was	unexpected.		There	were	no	significant	results	

when	examining	the	pilot	flying,	pilot	monitoring,	or	aircraft	type	as	it	related	to	crew	

performance,	rejecting	the	hypothesis	that	these	factors	would	be	significant.		There	

were	also	no	significant	results	between	the	low	altitude	and	high	altitude	scenarios	

when	looking	at	both	trained	and	untrained	crews.		The	null	hypothesis	was	retained	for	

this	research	question	related	to	event	proximity	(low	or	high	altitude).	

	 Finally,	the	survey	responses	were	correlated	with	crew	performance.		There	

were	no	significant	correlations	between	performance	and	survey	responses.		There	

were,	however,	two	significant	correlations	that	were	solely	related	to	the	survey	

questions.			
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CHAPTER	V	

DISCUSSION	

Introduction	

	 Startle	effect	has	been	well	documented	for	the	past	50	years.		Vlasak	(1969)	

found	significant	impairment	in	cognitive	function	for	the	first	15	seconds	following	a	

startle	event.		Other	studies	have	shown	similar	results.		Unfortunately,	it	is	often	during	

this	period	that	critical	aircraft	handling	decisions	must	be	made.		According	to	Boeing	

(2012),	inflight	loss	of	control	is	the	leading	cause	of	airline	fatalities.		Recent	accidents	

such	as	Air	Asia	and	FlyDubai	indicate	the	inflight	loss	of	control	continues	to	be	a	

significant	safety	issue	for	airlines.		This	study	sought	to	determine	if	targeted	training	

could	improve	simulator	performance	of	crews	during	a	startle	event.		Volunteer	airline	

pilots	flew	two	different	startle	scenarios	in	a	full	flight	simulator.		The	scenarios	were	

designed	to	be	similar	to	events	that	have	caused	major	airline	accidents.		The	volunteer	

groups	were	divided	into	low	altitude	scenario	groups	and	high	altitude	scenario	groups.		

The	groups	were	further	divided	into	trained	and	untrained	groups.		Data	analysis	was	

conducted	on	the	main	effect	of	training	within	and	between	each	volunteer	group.		

Additional	analysis	was	also	conducted	on	the	sub-factors	that	made	up	each	scenario	

such	as	pilot	flying,	aircraft	type,	and	maneuver	sub-parts.			
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Findings	

	 The	data	showed	that	targeted	startle	training	could	improve	crew	performance	

while	flying	startle	scenarios	in	the	simulator.		Significance	was	found	for	the	trained	

crews	in	both	the	low	and	high	altitude	scenarios	when	compared	to	the	untrained	

crews.		The	effect	of	the	training	was	shown	to	be	high,	predicting	that	trained	crews	

would	perform	73%	better	than	untrained	crews	(Coe,	2002).		Trained	crews	also	

showed	a	significant	increase	in	performance	when	compared	to	the	FAA	standards	for	

ATP	certification.				The	results	answered	the	research	question	asking	whether	targeted	

training	could	increase	crew	performance	during	a	startle	event	in	the	simulator.	

	 In	the	high	altitude	scenario,	crews	were	exposed	to	failures	similar	to	what	

occurred	in	the	Air	France	447	accident	as	described	in	the	literature	review	(BAE,	

2012).		Crews	that	received	training	that	consisted	of	a	briefing	and	simulator	practice,	

on	how	to	handle	startle	events.		This	group	performed	significantly	better	than	the	FAA	

standard	and	significantly	better	than	the	crews	that	flew	the	same	profile	but	did	not	

receive	training.			

	 The	low	altitude	scenario	was	modeled	after	the	Colgan	accident	in	Buffalo,	NY,	

and	presented	the	crews	with	a	low	altitude	startle	event	that,	in	most	cases,	pushed	

the	crews	into	a	missed	approach	in	a	low	fuel	situation.		The	results	were	similar	to	

those	of	the	high	altitude	profile	in	that	trained	crews	performed	significantly	better	

than	the	untrained	crews.			
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	 Unexpected	results	were	found	in	the	crews	that	did	not	receive	the	startle	

training	when	compared	to	the	FAA	standard.			The	data	analysis	showed	that	the	crews	

performed	statistically	significantly	below	the	level	for	ATP	certification	for	at	least	a	

portion	of	the	time	during	the	maneuver	profile.			It	should	be	noted	that	there	were	no	

crews	who	lost	control	of	the	aircraft	during	the	profile	and	that	all	crews	eventually	had	

a	successful	outcome.		This	data	explored	the	initial	reaction	of	the	crews	since	this	is	

the	critical	decision	making	time	frame.			The	crews	for	this	study	had	just	completed	

their	annual	recurrent	training	cycle	for	their	respective	aircraft	under	what	is	known	as	

the	advanced	qualification	process	(AQP).		In	an	AQP,	Training	Program,	when	a	crew	(or	

individual	pilot)	falls	below	the	FAA	standard	they	receive	training	and	then	are	required	

to	perform	the	skill	again.		This	concept	is	termed	“train	to	proficiency.”			Crews	in	this	

research	study	were	only	presented	the	scenario	one	time.		This	“first	look”	only	takes	a	

snapshot	of	a	crews’	performance	in	time	and	indicates	where	training	could	be	

effective.		It	is	not	meant	to	be	extrapolated	to	overall	crew	competency	

	 Each	maneuver	scenario	was	made	up	of	several	sub-factors	or	components	that	

comprised	the	overall	score.		These	factors	were	analyzed	to	determine	their	

significance	in	making	up	the	total	score	and	to	uncover	possible	dimensions	where	

training	should	be	targeted.		The	results	for	the	high	altitude	scenario	indicated	that	the	

most	significant	factor	in	determining	scenario	success	was	“problem	identification”.		

This	was	consistent	with	previous	research	findings	which	showed	that	when	crews	

make	an	initial	wrong	decision,	the	in-flight	issue	tends	to	rapidly	degrade.				The	low	

altitude	scenario	was	somewhat	less	clear	in	significant	factors.		Time	management	was	
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a	significant	predictor	of	crew	performance.		The	missed	approach	was	also	a	significant	

predictor	which	was	unexpected.		If	crews	performed	the	missed	approach	sucessfully,	

the	rest	of	the	scenario	generally	was	graded	better	than	if	the	missed	approach	was	

incorrectly	flown.		Minimum	amount	of	fuel	(45	minutes)	at	start	of	the	missed	

approach	likely	influenced	this	result.	

	 The	research	also	sought	to	determine	if	the	pilot	flying	(Captain	or	First	Officer)	

resulted	in	significant	differences	in	maneuver	performance.			The	study’s	data	

demonstrated	that	crew	performance	was	not	affected	by	which	pilot	was	flying.		The	

study	looked	at	this	dimension	since	in	a	majority	of	airline	accidents/incidents,	the	

Captain	is	the	pilot	flying	and	it	is	the	first	flight	of	the	trip	pairing	(United,	2016).			

	 Simulator	data	also	did	not	uncover	any	significance	between	the	types	of	

aircraft	in	predicting	the	success	of	the	scenario.		Aircraft	were	grouped	into	narrow	

body	and	wide	body	categories.		Narrow	body	aircraft	pilots	have	a	greater	frequency	of	

takeoffs	and	landings	than	those	pilot	who	fly	wide-body	aircraft.		This	difference	in	

frequency	may	add	to	narrow	body	aircraft	pilots	flying	proficiency	and	increase	the	

success	of	responding	to	a	startle	event.		In	addition,	most	wide-body	aircraft	rely	

heavily	on	automation	due	to	the	long	duration	of	their	flights	possible	making	a	sudden	

startle	event	more	challenging.			However,	pilots	who	fly	wide-body	aircraft	generally	

have	a	more	experienced	background	than	pilots	who	fly	narrow-body	aircraft	due	to	

the	airlines’	seniority	system.		The	research	question	on	practice	and	experience	sought	

to	determine	if	practice	and/or	experience	could	influence	the	overall	maneuver	score.			

The	research	question	relating	to	aircraft	type	did	not	show	it	affected	the	maneuver	
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scenario	in	either	a	positive	or	negative	way.			There	was	no	significant	difference	in	

either	pilot	group.		

	 The	pilots	in	this	research	study	were	also	requested	to	complete	a	survey	that	

asked	questions	about	their	background	and	flying	preferences.		The	survey	responses	

were	not	linked	to	any	crew	member’s	individual	performance,	but	were	analyzed	in	

aggregate	with	regard	to	simulator	performance.		The	pilot	flying	the	maneuver	scenario	

was	the	only	crew	member	asked	to	complete	the	survey.		This	was	done	to	keep	the	

survey	responses	equal	to	the	number	of	crews	observed	(40)	and	to	compare	the	

responses	with	the	pilot	who	flew	the	simulator	profile.		The	survey	responses	indicated	

that	the	pilots	generally	hand	flew	the	airplane	below	10,000	feet	and	that	they	knew	

the	proper	pitch	and	power	for	various	phases	of	flight.		Furthermore,	a	significant	

portion	of	the	pilots	surveyed	indicated	that	they	had	received	formal	aerobatic	

training.		The	responses	given	do	not	necessarily	correlate	with	simulator	performance	

when	taken	as	a	whole.		If	the	trained	crews	were	the	only	ones	examined,	then	the	

survey	responses	correlate	with	positive	performance;	however,	when	untrained	crews	

were	added,	pilots	tended	to	overestimate	their	flying	performance.			

Significance	

	 The	data	recorded	for	this	study	showed	that	targeted	training	can	help	pilots	

bridge	the	cognitive	gap	when	startled.		Crews	performed	equally	well	in	both	the	high	

altitude	and	low	altitude	scenario,	suggesting	that	the	training	had	a	broad	array	of	

effectiveness.		Both	scenarios	recorded	a	similar	main	effect:	power	of	eta	=	.6	
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suggested	a	medium	to	large	effect	size.		The	training	offered	consisted	of	a	briefing	to	

explain	the	effects	of	being	startled	along	with	a	short	and	simple	procedure	to	help	

mitigate	the	startle	effect	and	regain	(or	keep)	control	of	the	aircraft.		The	study	was	not	

designed	to	eliminate	the	startle	response	which	would	be	very	difficult	to	accomplish,	

but	sought	to	help	crews	manage	the	period	of	cognitive	impairment.		In	summarizing	

the	training,	the	motto	“live	for	the	next	60	seconds”	was	often	used.		This	is	the	time	in	

which	the	most	cognitive	impairment	occurs.		Unfortunately,	crews	often	have	to	make	

critical	decisions	in	this	time	to	keep	control	of	the	aircraft.		The	data	indicated	that	

trained	crews	were	more	successful	in	managing	the	aircraft	following	a	startle	event	

than	those	crews	that	did	not	receive	training.		Crews	that	received	training	flew	

significantly	better	than	the	FAA	standards	for	ATP	certification,	indicating	a	positive	

shift	in	event	handling	even	versus	a	standard	crew.	

	 The	training	suggested	in	this	study	has	implications	for	the	airline	industry	as	a	

whole.		As	previously	stated,	crews	that	were	not	trained	showed	a	statistically	

significant	degradation	below	FAA	ATP	standards.		Following	the	startle	event,	the	

untrained	crews	lapsed	out	of	ATP	standards	as	described	in	the	Methods	Section	of	this	

study.		All	of	the	crews	were	eventually	able	to	successfully	recover	from	the	simulated	

situation,	however	it	is	the	decision	making	at	the	onset	which	can	prove	critical	to	

event	outcome.		During	the	study	there	were	no	crews	put	the	aircraft	into	an	undesired	

aircraft	state	(UAS).		This	suggests	that	current	airline	training	may	be	improved	by	

incorporating	startle	training.		Several	published	papers	allude	to	this	idea	in	that	airline	

training	has	become	rote	and	routine;	not	challenging	crews	with	new	situations	and	
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scenarios	that	expand	flying	knowledge	and	experience	(Casner,	Geven,	&	Willliams,	

2012).			Most	airlines	have	a	standard	training	profile	that	is	determined	by	the	

regulatory	requirements	of	the	FAA.		This	training	is	generally	the	same	from	year	to	

year	resulting	in	repetition	and	expected	outcomes.		Training	outside	of	this	set	

standard	is	often	referred	to	as	“proficiency	training”	(United	Airlines,	2016),	and	usually	

exposes	the	crew	only	at	predetermined	cycles	and	has	more	to	do	with	technical	

failures	and	not	cognitive	loading.			

	 The	pilots,	through	their	survey	responses,	indicated	that	they	generally	hand	fly	

the	airplane	below	10,000	feet.		Hand	flying	below	this	altitude	provides	a	boost	to	skill	

maintenance	due	to	the	fact	that	changes	in	all	phases	of	flight	occur	frequently.		

Takeoffs,	approaches,	and	landings	all	require	changes	to	aircraft	speed,	configuration,	

and	navigation	(lateral	and	vertical).		These	maneuvers	challenge	piloting	skills	and	keep	

them	sharp	(Gillen,	2014).		Overall	piloting	skills	may	be	a	key	element	in	aircraft	

control.		A	pilot	proficient	in	hand	flying	will	require	less	cognitive	resources	(to	fly	the	

airplane)	and	may	be	able	to	devote	more	cognitive	processes	to	problem	detection.		

Pilots	in	the	United	States	generally	hand	fly	the	aircraft	more	than	in	other	parts	of	the	

world.		In	a	paper	presented	at	the	Lufthansa	Human	Factors	Conference	(Gillen,	2014),	

pilots	employed	by	airlines	from	various	global	carriers	were	surveyed	about	their	hand	

flying	practices.		The	results	are	summarized	in	Table	34.			
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Table	34.		Hand	Flying	Preferences	

Company	

Description	

Company	Policy		 Actual	Practice	

United	States	-	

Global	

Company	policy	states	that	

the	automation	level	is	at	

the	discretion	of	the	

Captain.	

A	majority	of	pilots	hand	fly	the	

aircraft	extensively	below	

10,000	feet.	

Major	European		 Hand	flying	is	encouraged	to	

maintain	proficiency	

Most	pilots	report	hand	flying	

below	10,000	feet.	

Middle	East	 Company	policy	prohibits	

hand	flying	above	10,000	

feet.	

Pilots	report	that	they	generally	

engage	the	autopilot	at	1,000	

feet	on	departure	and	disengage	

on	approach	once	the	aircraft	is	

fully	configured	for	landing.	

Asia	 Company	policy	encourages	

hand	flying	to	increase	pilot	

proficiency	

Company	regularly	uses	FOQA	

data	in	disciplinary	cases	against	

pilots.		As	a	result	pilots	rarely	

hand	fly	the	aircraft.	

Southeast	Asia	 Company	policy	states	that	

automation	is	at	the	

discretion	of	the	Captain	

Manual	flying	varied	widely	

depending	on	the	flight	crews.	

	

	 Lack	of	flying	skills	become	more	apparent	when	system	failures	cause	pilots	to	

revert	to	manual	flying	skills	to	maneuver	the	aircraft.		Simple	failures	can	lead	to	a	

cascade	of	errors	and	pilot	confusion	that	in	turn	can	lead	to	an	undesired	aircraft	state	

(Gillen,	2014).		These	system	failures	can	also	tax	a	pilot’s	cognitive	resources	well	

beyond	their	ability	to	cope	with	the	situation	(Gillen,	2014).			Based	on	hand	flying	
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preferences,	the	pilots	in	this	study	should	be	considered	the	most	proficient	and	thus	

the	results	should	trend	higher	when	compared	to	pilots	who	hand	fly	less.	

Critical	Evaluation	

	 Studies	involving	airline	crews	in	the	United	States	are	often	difficult	to	

complete.		Airlines	and	their	respective	pilot	unions	are	reluctant	to	have	a	researcher	

record	live	data	on	a	crews’	performance.		The	only	way	to	obtain	permission	for	such	a	

study	is	to	have	the	data	de-identified	so	that	no	individual	performance	can	be	linked	

back	to	a	specific	pilot	or	crew.		As	such,	this	research	was	only	able	to	observe	

volunteer	crews	one	time	to	determine	the	effect	of	the	training.		Training	results	could	

have	been	more	conclusive	if	a	revisit	of	the	trained	crews	had	taken	place.		

Unfortunately,	this	could	not	occur	as	it	would	make	the	individual	pilots	identified	

which	would	violate	the	permission	letter	from	the	participating	airline(s).		Data	

suggests	that	unused	training	skills	will	decrease	in	effectiveness	over	time	and	that	

deliberate	practice	is	required.		It	is	the	opinion	of	the	researcher	that	if	the	training	

presented	in	this	study	is	not	practiced,	then	the	effectiveness	(of	the	training)	will	most	

likely	decrease	over	time.	

	 Any	type	of	simulator	training	could	be	reasonably	expected	to	an	increase	in	the	

crews’	overall	scenario	scores.		Study	subjects	were	asked	to	volunteer	immediately	

following	their	annual	recurrent	training	cycle	which	included	8-12	hours	of	simulator	

training/checking.			All	crews	involved	in	the	study	received	simulator	training	and	
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practice	immediately	preceding	participation	in	this	study.		As	a	result,	scores	may	be	

skewed	higher	than	if	crews	flew	the	maneuvers	without	any	previous	practice.	

	 Results	in	this	study	could	possibly	be	biased	in	a	positive	direction	due	to	the	

voluntary	nature	of	the	participants.		Generally,	pilots	who	volunteer	for	these	types	of	

studies	are	comfortable	in	their	flying	skills	and	interested	in	aviation	safety.		Pilots	who	

have	difficulty	in	training	generally	would	choose	to	not	participate.		Therefore,	the	

overall	results	might	be	skewed	towards	the	higher	end	than	the	average	airline	pilot	

population.			

Implications	

	 The	startle	effect	is	not	a	new	concept	and	the	effects	of	being	startled	are	well	

known.		What	is	not	well	known	is	how	to	mitigate	the	startle	effect	in	airline	crews	

where	critical	decision	making	must	often	take	place	concurrent	with	the	time	of	

cognitive	impairment	following	a	startle	event.		Training	and	practice	have	been	shown	

to	increase	a	pilot’s	response	to	aircraft	control	during	an	event	that	catches	a	crew	

unexpectedly.		Targeted	training	should	be	procedural	in	nature	and	seek	to	become	

skill	base	(best)	or	rule	based	behavior.		This	method	requires	a	consistent	and	

systematic	approach	to	dealing	with	unusual	events.			

	 To	be	effective,	training	that	is	described	in	this	study	should	be	implemented	in	

both	initial	and	recurrent	pilot	training	in	addition	to	being	reinforced	in	actual	line	

flying.		This	study	has	shown	that	significant	positive	effects	of	training	can	be	realized	in	

as	little	time	as	60	minutes.	
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	 Follow	on	studies	should	look	at	the	effectiveness	of	this	type	of	training	over	

longer	intervals.		The	training	presented	in	this	study	was	designed	to	be	broad	in	nature	

and	cover	various	states	of	contingencies	as	it	relates	to	a	startle	event.		Such	training	is	

intended	to	be	applicable	in	a	general	way	and	is	not	intended	to	be	aircraft	or	airline	

specific.		It	is	more	of	a	philosophy	in	dealing	with	unusual	events	at	the	initial	decision	

making	point	to	help	bias	a	successful	outcome.		In	the	Air	France	and	Colgan	accidents,	

that	were	described	in	the	literature	review,	aircraft	control	was	lost	in	the	first	30	

seconds	following	a	startle	event.		Training	should	focus	on	this	time	period	to	be	most	

effective.		Although	sudden	and	unusual	events	cannot	be	prevented	in	aviation,	a	

pilot’s	response	to	them	(especially	at	the	onset)	can	be	positively	influenced	to	aid	in	a	

successful	outcome.		There	is	not	a	single	solution	in	airline	training	to	eliminate	the	risk	

of	a	startle	event,	only	mitigating	factors,	that	when	presented	in	multiple	layers	serve	

to	aid	crews	in	successfully	handling	the	event.		

Recommendations	

	 Startle	training	should	be	added	to	the	training	programs	at	airlines	to	make	

crews	aware	of	the	effects	on	performance	of	being	startled	and	mitigation	strategies	

that	can	help	pilots	successfully	fly	the	aircraft	immediately	following	a	startle	event.		

Startle	training,	in	order	to	be	effective,	has	to	be	reinforced	at	specific	training	intervals	

such	as	during	each	pilot’s	initial	and	annual	recurrent	training	cycle.		Positive	results	

were	shown	in	this	study	where	training	consisted	of	both	classroom	and	simulator	

practice	lasting	approximately	one	hour.		Training	should	focus	on	what	happens	from	a	

cognitive	standpoint	and	what	steps	pilots	should	take	to	stabilize	the	aircraft	so	that	
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they	can	then	determine	the	course	of	action	to	safely	fly	the	aircraft.		To	be	effective,	

this	training	will	have	to	be	varied	to	prevent	habituation.	

Recommendations	for	Further	Research	

	 Research	into	startle	training	should	continue.		This	research	should	attempt	to	

identify	the	best	training	interval	for	startle	training	to	prevent	degradation	of	startle	

response	skills.		There	may	be	a	link	between	hand	flying	ability,	and	the	general	ability	

to	handle	a	startle	response.		In	cases	such	as	the	Air	France	and	Colgan	accidents,	the	

pilots	were	faced	with	a	sudden	event	that	forced	them	into	hand	flying	the	aircraft.		

Pilots	who	are	competent	in	hand	flying	require	less	cognitive	resources	to	do	so,	and	

may	be	able	to	devote	more	resources	to	problem	definition.		This	would	be	a	good	area	

for	future	research	as	well.		One	further	area	for	research	may	look	at	the	link	between	

often	practiced	unusual	situations	in	the	simulator	and	their	negative	transfer	to	

unrelated	events	in	the	actual	aircraft.		During	training,	most	of	the	maneuvers	are	

performed	at	low	altitudes	and	require	an	immediate	pitch	up	of	the	aircraft’s	nose	

(engine	failures,	windshear,	and	missed	approaches	are	all	examples).		While	these	

responses	are	appropriate	for	low	altitudes,	the	initial	response	to	pitch	the	nose	up	

may	not	be	appropriate	at	high	altitudes	such	as	seen	in	the	Air	France	accident.			

Conclusion	

	 This	study	showed	that	targeted	training	can	improve	crew	performance	in	the	

simulator	during	a	startle	event.		Given	that	skills	learned	in	the	simulator	are	generally	

well	transferred	to	actual	operations,	the	study	results	should	also	be	highly	
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transferrable	to	the	actual	aircraft.		Data	shows	that	increased	startle	training	could	

significantly	improve	a	pilot’s	reaction	to	a	startle	event.			

	 Startle	events	continue	to	be	a	major	trigger	resulting	in	aircraft	inflight	loss	of	

control.		Although	not	every	event	will	result	in	a	loss	of	aircraft	control,	training	can	

help	bridge	the	cognitive	gap	that	exists	during	the	initial	seconds	of	a	startle	event.		

Training	such	as	what	was	presented	in	this	study	should	be	added	to	airline	training	

programs	to	aid	crews	towards	a	successful	outcome	of	a	startle	event.		A	key	element	

in	dealing	with	a	startle	event	often	involves	manual	manipulation	of	the	aircraft	

controls.		Pilots	who	are	proficient	in	hand	flying	will	have	an	advantage	in	dealing	with	

a	startle	event.		Training,	practice,	and	hand	flying	each	hold	an	important	element	in	

successfully	mitigating	a	startle	event	and	preventing	an	inflight	loss	of	control.		Further	

studies	should	seek	to	determine	the	optimum	integration	of	these	three	elements.		It	

will	take	a	partnership	between	the	airlines,	pilots,	and	the	regulators	to	implement	

startle	training.		Such	training	can	be	a	key	mitigation	strategy	in	reducing	the	leading	

cause	or	airline	fatalities.			
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APPENDICES	

Appendix	A	

Definitions	

AC:	Advisory	Circular	

ACO:	Aircraft	Certification	Office	

AD:	Airworthiness	Directive	

AEG:	Aircraft	Evaluation	Group	

ALPA:	Airline	Pilots	Association	

AQP:	Advanced	Qualification	Program	

ARAC:	Aviation	Rulemaking	Advisory	Committee	

ASAP:	Aviation	Safety/Accident	Prevention	

ASRS:	Aviation	Safety	Reporting	System	

ATA:	Air	Transport	Association	of	America	

ATC:	Air	Traffic	Control	

ATIS:	Automatic	Terminal	Information	Service	

ATP:	Airline	Transport	Pilot	

ATS:	Air	Traffic	Services	
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BIS:	Basic	Instrument	Skills:		The	ability	to	fly	the	aircraft	solely	by	reference	to	the	raw	
data	without	the	use	of	auto-throttles,	flight	director,	or	map	mode.	

CFIT:	Controlled	Flight	into	Terrain	

CMO:	Certificate	Management	Office	

CRM:	Crew	Resource	Management	

FAA:	Federal	Aviation	Administration	

FAR:	Federal	Aviation	Regulations	

FCOM:	Flight	Crew	Operating	Manual	

FCU:	Flight	Control	Unit	

FMS:	Flight	Management	System	

FOEB:	Flight	Operations	Evaluation	Board	

FSB:	Flight	Standardization	Board	

FSDO:	Flight	Standards	District	Office	

GPS:	Global	Positioning	System	

GPWS:	Ground	Proximity	Warning	System	

HF:	Human	Factors	

ICAO:	International	Civil	Aviation	Organization	

IFR:	Instrument	Flight	Rules	
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IOE:	Initial	Operational	Experience	

ILS:	Instrument	Landing	System	

JAA:	Joint	Aviation	Authorities	

JAR:	Joint	Aviation	Requirements	

LNAV:	Lateral	Navigation	

LOFT:	Line	Oriented	Flight	Training	

LOS:	Line	Operational	Simulations	

Modern	Aircraft/Glass	Aircraft:		Aircraft	that	have	advanced	automation	to	include:		CAT	
III	capability,	auto-throttles,	flight	director,	FMC,	and	CRT	displays	instead	of	
actual	instruments,	the	ability	to	LNAV	and	VNAV	

NASA:	National	Aeronautics	and	Space	Administration	

NOAA:	National	Oceanic	and	Atmospheric	Administration	

NOTAM:	Notice	to	Airmen	

NTSB:	National	Transportation	Safety	Board	

PDC:	Pre-Departure	Clearance	

PF:	Pilot	Flying	

PFD:	Primary	Flight	Display	

PM:	Pilot	Monitoring	

PTS:	Practical	Test	Standards	Defined	by	the	FAA	Pilot	Qualification.	
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RNP:	Required	Navigation	Performance	

TCAS:	Traffic	Alert	and	Collision	Avoidance	System	

VNAV:	Vertical	Navigation	

VOR:	Very	High	Frequency	Omnidirectional	Radio	Range	
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Appendix	B	

Briefing	Materials	

	 The	following	are	slides	from	a	Power	Point	presentation.		The	crews	that	

received	training	were	shown	these	slides	as	part	of	the	classroom	briefing.	
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Appendix	C	

Grade	Sheets	and	Survey	

	 Note:		The	grade	sheets	and	survey	are	presented	as	they	were	used	by	the	

investigator	during	the	data	collection	process.		They	have	only	been	formatted	to	fit	

within	the	page	margins	of	this	paper.	
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Appendix	D	

Simulator	Setup	

	 This	section	describes	the	simulator	setup	for	each	type	of	simulator	used	in	this	

study.		Each	simulator	was	an	FAA	approved	Level-D	full	flight	simulator.		The	setup	in	

each	simulator	was	different,	and	the	selections	required	to	achieve	the	failures	were	

also	different.		Crewmembers	flew	the	simulator	from	their	respective	seat	(Captain	or	

First	Officer)	and	were	briefed	to	treat	the	simulator	as	they	would	an	actual	flight.	

Simulator	 Low	Altitude	 High	Altitude	 Notes	

A320	 4500	–	Fuel	

15	NM	dogleg	to	
final	

35,000	–	cruise	

Fail	all	2	air	data	
sources	(Capt	and	
FO).	

Aircraft	goes	to	ALT	
law	in	the	high	
altitude	scenario	

B737	 4300	–	Fuel	

15	NM	dogleg	to	
final	

35,000	–	cruise	

Fail	3	air	data	
sources	(Capt,	FO,	
Stby)	

	

B747	 19,000	Fuel	

15	NM	dogleg	to	
final	

35,000	–	cruise	

Fail	2	air	data	
sources	

	

B757	 6000	–	Fuel	

15	NM	dogleg	to	
final	

35,000	–	cruise	

Mach/AS	unreliable	

	

B777	 12000	–	Fuel	

15	NM	dogleg	to	
final	

35,000	–	cruise	

Mach/AS	unreliable	

Engine	fire	

High	Alt	–	use	
lesson	plan	14A	
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DYLIN	Four	Arrival	KEWR	(Jeppesen,	2016).	
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ILS	4R	at	KEWR	(Jeppesen,	2016)	
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Appendix	E	

Additional	Statistical	Tests	

Levene	Test	of	Homogeneity	of	Variances	High	Altitude	

High	Altitude	Scenario			

Levene	Statistic	 df1	 df2	 Sig.	

.674	 1	 18	 .422	

Regression	ANOVA	High	Altitude	Factors	

Model	 Sum	of	Squares	 df	 Mean	Square	 F	 Sig.	

1	 Regression	 5.568	 1	 5.568	 12.250	 .003b	

Residual	 8.182	 18	 .455	

Total	 13.750	 19	

2	 Regression	 10.748	 5	 2.150	 10.024	 .000c	

Residual	 3.002	 14	 .214	

Total	 13.750	 19	

a. Dependent	Variable:	High	Altitude	Scenario

b. Predictors:	(Constant),	Crew	Training	Received

c. Predictors:	(Constant),	Crew	Training	Received,	Problem	diagnosis,	Altitude	control,
Roll	control,	Pitch	control	
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Levene's	Test	of	Equality	of	Error	Variancesa	Low	Altitude	

Dependent	Variable:			Low	Altitude	Scenario			

F	 df1	 df2	 Sig.	

.450	 1	 18	 .511	

Tests	the	null	hypothesis	that	the	error	variance	of	the	dependent	variable	is	equal	

across	groups.	

a. Design:	Intercept	+	Crew	Training

ANOVAa	Low	Altitude	

Model	 Sum	of	Squares	 df	 Mean	Square	 F	 Sig.	

1	 Regression	 6.050	 1	 6.050	 10.371	 .005b	

Residual	 10.500	 18	 .583	

Total	 16.550	 19	

2	 Regression	 15.367	 6	 2.561	 28.133	 .000c	

Residual	 1.183	 13	 .091	

Total	 16.550	 19	

a. Dependent	Variable:	Low	Altitude	Scenario

b. Predictors:	(Constant),	Crew	Training	Received

c. Predictors:	(Constant),	Crew	Training	Received,	Approach	and	landing,	Time

Management,	Checklist	procedures,	Fuel	Management,	Missed	approach
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Levene's	Test	of	Equality	of	Error	Variancesa	Combined	

Dependent	Variable:			Low	and	High	Altitude	Combined	

F	 df1	 df2	 Sig.	

.046	 1	 38	 .831	

Tests	the	null	hypothesis	that	the	error	variance	of	the	dependent	variable	is	equal	

across	groups.	

a. Design:	Intercept	+	Crew	Training
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