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ABSTRACT 

Two major igneous rock types occur in the Sundance, Wyoming area 

including foyaite of the Bear Lodge Mountain sill and quartz latite of 

Sundance Mountain and Sugarloaf Mountain. The igneous bodies were 

mapped on a scale of 1:5000 in an effort to determine petrogenetic 

relationships between the two rock types. 

Sundance Mountain and Sugarloaf Mountain are extrusive in origin. 

Quartz latite occurs as subparallel units of breccia, tuff, and massive 

flows without any clear cross-cutting relationships. Fragmental types 

(breccia and cuff) constitute 41 to 76 percent of the rocks, suggesting 

that Sundance Mountain is a mixed cone. ,The quartz latite has a pre­

dominantly cryptocrystalline groundmass consisting of alkali feldspar 

and quartz. Oligoclase occurs as microlites and as zoned phenocrysts. 

The phenocrysts have distinct, oscillatory zones with narrow ranges 

in composition, suggesting that the crystals were subject to sudden 

changes in pressure. Sugarloaf Mountain is interpreted to be a 

satellite volcano of Sundance Mountain. Rocks from both igneous bodies 

have similar texturest structures, and compositions. 

The Bear Lodge Mountain sill was passively emplaced along the con­

tact between the Pennsylvanian Minnelusa Formation and the Mississip­

pian Pahasapa Formation. Foyaite dikes in the area have similar tex­

tures and compositions, and were probably emplaced during the same 

ix 



intrusive eve,1t, Primary analcime is the only feldspathoid present in 

the foyaite. 

The quartz latite is interpreted as being the youngest of the two 

rock types, A maximum age for the quartz latite is Paleocene, based on 

the presumed age of plagiofoyaite(?) clasts found in Sugarloaf Mountain 

breccla, If the rocks are extrusive in origin the establishment of the 

present erosional character of the Black Hills region gives a younger 

age of post-early Oligocene. 

X 



INTRODUCTION 

Location of the study area 

Sundance, Wyoming is located in Crook County, approximately 40 km 

southwest of Spearfish, South Dakota and about 35 km southeast of 

Devil's Tower. The study area is in the northwestern part of the 

Black Hills region (fig. 1). A general geologic map was prepared on a 

scale of 1:10000 (Plate 1) which includes the following sections: 1, 

2, 3, 
<I, 

4, 10, 11, 
II 

12, 13, 14, 23, 24, 25, 26, (T, 52 N., R. 63 W,) and 

the western halves of 6 and 7 (T. 52 N., R. 62 W.). Detailed maps were 

prepared on a scale of 1:5000 for the major igneous bodies, including 

Sundance Mountain (Plate 2; sections 23, 24, 25, and 26, T. 52 N., 

R. 63 W.), Sugarloaf Mountain (Plate 3; section 12, T. 52 N., R. 63 W. 

and section 7, T. 52 N., R. 62 W.), and a portion of the southern Bear 

Lodge Mountains (Plate 4; sections 2 and 3, T. 52 N., R. 63 W.). 

Previous work 

Darton (1905) mapped the Black Hills region on a scale of 

1:125000. Sundance Mountain rocks were mapped as syenite porphyry and 

igneous rocks of the southeastern Bear Lodge Mountain as phonolite. 

Darton interpreted Sundance Mountain as being a "remnant of a laccolith 

on a platform of Sundance Formation'1
• 

Brown (1952) attempted to model the igneous history of the Bear 

Lodge Mountains. He postulated the presence of an earlier trachyte 

1 



Fig. 1. Location map of the study area. 
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magma which separated from a parent phonolitic magma in a ' 111accolith01 

chamber. According to his hypothesis the trachyte was first emplaced 

to form a domal structure. Phonolites were subsequently injected into 

the 11 ruptured 11 laccolith~ 

Chenoweth (1955) did semiquantitative work on igneous rocks from 

the central and southern Bear Lodge Mountains. He suggested that 

"older intrusives" could be distinguished from "younger intrusives11 by 

the effects of alteration and mineralization on the former. The "older 

intrusives" were classified as porphyrytic syenites,, while "younger in­

trusives11 were called "aphanites". 

Other related studies in the Black Hills are being done by the 

following University of North Dakota geologists: Don Halvorson 

(Devil's Tower,·Ph.D. dissertation), Stanley White (central and south­

western Bear Lodge Mountains, M.S. thesis), Dr. Frank Karner (Inyan 

Kara Mountain), Dr. Odin Christensen (central Bear Lodge Mountains), 

Mike Yaeger (Ragged Top Mountain, M.S. thesis) and John Ray (Tinton 

District, M.S. thesis). 

2 
Of the 39 km area mapped, the sedimentary units comprised about 

2 
33 km. Chenoweth's (1955) work served as a basis for distinguishing 

the formatiot>Sin the study area. Maps prepared in this study differ 

from Chenoweth's in regard to the relative size and shape of the 

igneous exposures and the amount of structural detail shown. 

Emphasis was placed on igneous extrusive and intrusive bodies in 

the Sundance, Wyoming area. Particular emphasis was placed on Sun­

dance Mountain and Sugarloaf Mountain geology, since no detailed work 

has been done on these igneous bodies. 



s 

Proble~_'l~d approach 

Prior to this study no attempt has been made to determine the 

petrogenetic relationships between the igneous rocks in the Sundance 

area. All of the igneous "intrusivesu have been considered to be 

Tertiary in age (Chenoweth, 1955; Brown, 1952). The close proximity 

of Sundance Mountain oversaturated rocks and Bear Lodge Mountain under­

saturated rocks of similar age presents a petrologic problem. 

The approach to the problem involved mapping the sedimentary units 

and the igneous bodies (Plate 1) to insure that significant cross­

cutting relationships were not overlooked. It was necessary to 

evaluate any structural and stratigraphic control that the sedimentary 

units may have had over the emplacement of the igneous rocks. 

The following information has been compiled on the maps (Plates 1, 

2, 3, and 4): outcrops (shown in darker shades), joint sets, partings, 

bedding, pyroclastic layering, faults, and contacts. A great deal of 

the structural information has been generalized on Plate 1 for reasons 

of limited graphic representation on that scale. The outcrop numbers 

shown on Plates 2, 3, and 4 correspond to rock and outcrop descriptions 

summarized in Table 1 (Appendices A and B) and Table 2 (Appendices C 

and D). 

Sedimentary rocks were sampled when outcrops were close to con­

tacts with the igneous bodies. Sampling of the igneous rocks was done 

on the basis of outcrop availability and lithologic variability. Out­

crop accessibility was also an important factor on Sundance Mountain 

where some cliff exposures on the west side could not be safely studied. 
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General geology of the igneous bodies 

Sundance Mountain 

Sundance Mountain is located just south of the town of Sundance. 

The landmark occupies an area of approximately 2 krn
2 

and obtains local 

relief of about 170 rn. The most notable exposures are on the north and 

northwest sides where shear cliffs rise above a prominent talus slope. 

From a distance the rocks are greenish-gray to white on weathered, 

lichen-covered surfaces. Numerous grass-covered lobes of colluvium 

extend out from the base of Sundance Mountain while the highest eleva­

tions have thick pine groves. 

Two prominent joint sets can be identified on the northwest cliff 

face. Columnar jointing is most strongly developed in the lower two­

thirds of the exposure, while subhorizontal joint sets are dominant 

near the top of Sundance Mountain. The subhorizontal joint set is sub­

parallel to the layered fabric of the rock. It is difficult to dis­

tinguish between internal planes of weakness (partings) and the sub­

horizontal joint set but usually the latter are marked by conchoidal 

patterns. Near the top the conchoidal pattern is concave out from the 

interior of Sundance Mountain. Similar joint systems are found 

throughout Sundance Mountain but are nowhere as well exposed as on the 

north and northwest sides. 

The rock is a light to dark gray, weakly porphyritic quartz­

latite with an aphanitic groundmass. Three modes of occurrence include 

monolithic breccia (Fig. 2), layered sequences (Fig. 3) and massive 

varieties. 



Fig. 2 . Monolithic breccia from SE side of Sundance 
Mountain. Angular clasts are randomly oriented with no 
apparent grading. The average size of the clasts is about 
5 cm. 
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Fi g . 3 . Laye red sequence of quartz latite tu ff f rom Sundance 
Mountain . Light and dark g ray laminat i ons are partial l y a ttributed 
t o devitri fica tion o f i gnimbritic f lows . Tabular oligoclase phen­
ocrys ts (white) are usually subparallel to the flow layers. Light 
colored stra tum n ea r the middle of the p ho t ograph i s more porous 
a nd fo rms a n irregular contact with the layered sequences . 
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Individual breccia units thicker than 2.5 m were not observed and 

aggregate thicknesses never exceeded 5 m. Generally the breccia (Fig. 

2) occurs low in a given section (Fig. 4), but it is not unconnnon for 

units 10 to 20 cm thick to be interlayered with massive and layered 

types. 

The layered sequences consist of alternating light and dark gray 

laminations about 1 mm thick. Commonly the layered sequences dip out 

from the interior of Sundance Mountain. The layered units are in­

terpreted as being welded ash fall and ash flow tuffs. 

Massive quartz latite generally occurs in the middle part.of a 

section (Fig. 4). Thicknesses range from 5 to 36 m but massive units 

less than 10 m thick are rare. Often the layered sequences grade up­

ward into massive units. 

Sugarloaf Mountain 

Sugarloaf Mountain, located northeast of Sundance, consists of a 

northern and southern hill. The southern hill has exposures of light 

and dark gray, laminated rocks (outcrop numbers 77-80) which are con­

sidered to be equivalents of the Sundance Mountain layered tuffs. The 

layering is very irregular and is often folded. Tuffs occur at the 

base of the northern hill and are overlain by graded breccia (Fig. 5). 

The graded breccia is highly weathered and ranges in color from a 

bleached, "chalky" white to a dark greenish-gray. A maximum thickness 

of about 13 mis present along the southernmost exposure of the north­

ern hill (outcrop number 65). The clasts appear tc. have a bimodal size 

distribution, with one set ranging from 0.1 to 1.0 min diameter, while 
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E. ridge W. side 
175m 

S, side 

1 

20 

SUNDANCE FORM A·T ION 

(talus or colluvium) breccia ash fall/flow tuffs massive 

-Fig. 4. Generalized measured sections from Sundance Mountain. 
Breccias are usually found in the lower part of the section, massive 
quartz latite in the middle, and tuffs throughout. Much of Sundance 
Mountain bedrock is unexposed. 
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Fig . 5 . Graded brecc i a f rom Sugar loaf Mountain . Grading is 
gener a l ly norma l with clasts abou t 2 mm in diameter at the base of 
the be d (ligh t gray ) and microscopic clasts near t he top (dark gray ) . 
Note the r ever se faults . 
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another set ranges from .02 to .04 m. Clasts make up 30 to 40 percent 

of the rock. 

Bear Lodge Mountains 

Sundance is located a few kilometres south of a 40 km long domal 

structure known as the Bear Lodge Mountains. Brown (1952) and 

Chenoweth (1955) have described the structure as a laccolith formed by 

two stages of igneous activity. Primary igneous activity resulted in 

the laccolithic structure. A second stage of igneous events is marked 

by the emplacement of dikes on the periphery of the structure (Brown, 

1952). The study area includes the extreme southern part of the in­

trusive complex. 

The igneous rocks are black to dark green, strongly trachytic 

foyaite. Generally the groundmass is aphanitic but phaneritic tex­

tures are occasionally observed. A foliation is produced in the 

foyaite by subparallel arrangement of tabular alkali feldspar pheno­

crysts. Elongated phenocrysts are aligned paralle: to the dip of the 

foliation. 

Two joint sets can usually be observed. The dominant set is 

vertical and columnar, while the other is less distinct and subhor­

izontal. The intersection of the joint sets produces a blocky cleav-

age. 

Two crescent-shaped foyaite bodies have been mapped in sections 2, 

3, and 4 (Plates 1 and 4). The igneous exposures conform to the 

regional strike of the sedimentary units, and although no actual con­

tacts were observed, it appears that the foyaite assumes a 
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stratigraphic position between the Missippian Pahasapa Formation and 

the Pennsylvanian Minnelusa Formation. Good exposures are found in the 

SE~ of section 3 and in the SW~ of section 2. The two crescent­

shaped exposures have similar stratigraphic relationships and it is 

likely that they are part of the same igneous body. Since the under­

lying and overlying sedimentary units have the same structural attitude 

the igneous body is interpreted as being a sill. Emplacement of the 

foyaite probably preceeded formation of the laccolithic structure. 

The sedimentary rocks of the Bear Lodge Mountains have more dis­

tinct joint patterns on the flanks of the uplift than near the sill • 

Joints are especially well developed in the Permian Goose Egg For­

mation (sections 9, 10, 11). Generally the strike of the joints is 

subparallel to the bedding and dip at high angles to the south. There 

is no apparent relationship between the jointing in the sedimentary 

units and the position of the sill. 

A foyaite dike is located on the northeast end of Sundance 

(section 13; T. 51 N., R. 63 W.) and will be referred to as the Sun­

dance dike. The dike strikes parallel to the contact between the 

Minnekahta Formation and the Spearfish Formation and dips from 75 to 85 

degrees north. A foliation is produced in the foyaite by subparallel 

arrangement of tabular alkali feldspar phenocrysts. Vertical, colum­

nar joints intersect the foliation at high angles, producing a blocky 

cleavage similar to that of the Bear Lodge Mountain sill. 

An inferred dike is located in section 9 (Plate 1). The dike is 

mapped on the basis of high concentrations of boulders at the surface 

(Plate 1). 
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All of the foyaitic rocks in the study area have similar textures 

and compositions and were probably emplaced during the same igneous 

event. 



FIELD RELATIONSHIPS 

Introduction· 

Four principal igneous bodies have been described--Sundance 

Mountain, Sugarloaf Mountain, the Bear Lodge sill and the Sundance 

dike. With the possible exception of Sundance Mountain, the igneous 

bodies have geologic settings which suggest that the sedimentary units 

provided stratigraphic control over magmatic emplacement. The Bear 

Lodge sill is the most obvious example, where foyaite was emplaced 

along the contact between the Pahasapa and Minnelusa Formations. The 

Sundance dike was emplaced along the contact between the incompetent 

Spearfish siltstone and the competent Minnekahta limestone. Sugarloaf 

Mountain quartz latite was deposited along the same contact (Plate 3).· 

No intermediate rock types between the quartz latite and the 

foyaite have been identified. With similar stratigraphic controls 

over magmatic ascent some hybrid might be expected. The different 

modes of emplacement may partially account for the two distinct 

tithologies. Magmas that ascend rapidly through the crust would 

probably not assimilate the.host rock as readily as magmas that are 

passively injected. Structures and textures observed in the field 

provided most of the evidence for the modes of emplacement. Petro­

graphic and petrologic evidence is included in the following section 

of the thesis. 

15 
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Sundance Mountain and Sugarloaf Mountain 

The breccias of Sundance Mountain consist of angular to sub­

angular clasts of quartz latite set in a weakly anisotropic ground­

mass (Figures 6 and 7). The clasts constitute over 60 percent of 

the rock and range in size from .01 mm to 0.5 m (outcrop number 230). 

The breccia contains layered clasts of tuff that were deposited before 

formation of the breccia. 

The contact between a given breccia unit and overlying tuff is 

always a sharp disconformity (Fig. 7). Layers tend to fill in spaces 

between the angular clasts in the breccia. Similar contacts are 

present between breccia and underlying tuff. An example is found on 

the west side of Sundance Mountain (outcrop number 230) where a block 

0.5 min diameter appears to have depressed the tuff layers by 10 to 

15 cm. The block apparently caused deformation of the layers as op­

posed to the contact shown in figure 7 where overlying tuff layers con­

form to the shapes of the breccia clasts. 

A similar relationship occurs within layered tuff. Oligoclase 

phenocrysts often have layers wrapping around them (Fig. 3). In some 

instances individual layers a few millimetres thick form spires around 

the crystals. The structures resemble those of soft sediment deforma­

tion but differ in that the distorted layering in the tuffs is probably 

produced by mechanisms of transport and deposition and is not the re­

sult of density differences within a deposited sedimentary sequence. 

The phenocrysts are often rotated in the downslope direction, suggest­

ing that passive transport occurred after deposition. 
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Fig. 6. Sundance Mountain breccia (SD-98) under plane polarized 
light. Distinct resolution between the groundmass and the clasts is 
pos sible . Cl asts h ave trachytic textures, produced by s ubparal l el 
arrangement of ol i goc l ase microlites . Magnification: 27X 



Fig. 7. 
(upper unit). 
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Contact between breccia (lower unit) and layered sequence 
The layerin g is continuous and wraps around the clas t s 

at the contact. 
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Small scale folds, 5 to 8 cm in amplitude are often present. Good 

examples occur in the southern hill of Sugarloaf Mountain and on the 

northwestern cliff face of Sundance Mountain. The folds are asym­

metrical and often overturned in the direction of dip. 

Porous, light yellow colored layers of quartz latite may interrupt 

the tuff sequence (Fig. 3). Thickness varies from .5 to 5 cm, but beds 

about 3 cm thi~k are most common. The porous material consists of 

angular cavities, sometimes elongated subparallel to the layering. The 

cavities range in length from .01 to .5 mm. Often the cavity walls are 

surrounded with magnetite(?). Wedges that appear to be torn from the 

layered material project upward into the porous strata. The contact 

between the porous strata and overlying layered material is not nearly 

as irregular and often forms a sharp break in a tuff sequence (Fig. 3), 

Elongated pods, composed of the same porous material sometimes 

occur in the layered sequences (Fig. 3). The strur.tures are usually 

less than a centimetre in length. 

Striations, generally parallel to the direction of dip, are some­

times present within the layers of tuff (Fig. 8). These striations may 

be analogous to parting lineations found on sedimentary bedding sur-

faces. 

Two kinds of xenoliths are present in the Sundance Mountain rocks. 

Sandstone xenoliths are sometimes found in the massive quartz latite. 

The inclusions are angular and range from 7 to 20 cm in diameter, A 

second variety of xenolith is a dark green, porphyritic rock. These 

xenoliths are rounded, less than a centimetre in diameter and highly 

altered. The most abundant optically determined mineral is chlorite 
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1 

Fi g . 8 . Pyroclastic parting lineat i ons . 
bedding sur faces of t h e tuffs form l inea tio n s 
of the dip. Lineations trend from lowe r left 
corner of photograph . 

cm 

Striat i ons in the 
parallel to t he direction 
to upp e r righ t-hand 
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which occurs as fibrous groundmass material and as an alteration pro­

duct of biotite. Alkali feldspar occurs as subhedral crystals with re­

sorbed margins. Pseudomorphs of epidote after feldspar(?) are present. 

Magnetite(?) occurs as a secondary exsolution product on the margins of 

chloritized biotite and as subhedral grains. It is not certain whether 

these xenoliths represent material derived from the Bear Lodge in­

trusive complex or if they are from the metamorphic Precambrian base­

ment. 

Both varieties of xenoliths occur in the Sugarloaf Mountain 

sequence. In addition to these inclusions Sugarloaf Mountain has plagio­

foyaite(?) xenoliths (samples 62, 62a, and 175). The xenoliths are 

dark green, subrounded and strongly porphyritic. A more detailed dis­

cussion of the xenoliths is included in the following section. 
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PETROGRAPHY AND CHEMISTRY 

Analytical techniques 

Five samples were chemically analyzed including S-7, BL-27, 

SL-67b, SD-114 and SD-134. Two fused pellets were prepared according 

to techniques described by Welday et. al (1964) using USGS standards 

(Flanagan, 1967; Fleischer, 1969). A Philips X-ray spectrometer was 

used, following procedures outlined by Malick (1977). Sodium analyses 

were obtained from microprobe work (Karner, personal communication). The 

results are summarized on Table 6. Microprobe analyses of an oligo­

clase crystal (Table 4) and cryptocrystalline groundmass material 

(Table 5) were also obtained. 

Sundance Mountain 

Modal analyses 

Sundance Mountain rocks are composed of 40 to 60 percent crypto­

crystalline material, making thin section point counting an impractical 

means of obtaining modal analyses. The remaining microcrystalline 

material consists of microlites of plagioclase feldspar. Optically 

identifiable phenocrysts of oligoclase generally constitute less than 

5 percent of the rock. Point counting of stained thin sections and a 

semi-quantitative X-ray diffraction techniques, used to obtain quartz 

percentages, involved spiking a rock sample with a known weight frac­

tion of quartz (S). The control and spiked sample were X-rayed using 

22 
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Ni-filtered CuK alph radiation (37 Kv, 18 ma) and scanned at a rate of 

1 degree 20 per minute, The relative difference in the intensity 

between the control (Cp) and the spiked sample (Cp+s) is inversely 

proportional to the weight fraction of quartz in the sample (P), This 

relation is described by Norrish and Chappel: (1967) and is summarized 

in the formula given below: 

p = C 
s Cp+s - Cp 

or 

p S x Cp 
Cp+s - Cp 

Three samples from Sundance Mountain and one sample from Sugarloaf 

Mountain were used. The results given on Table 3 are plotted on 

Figure 9. 

TABLE 3 

MODAL QUARTZ DETERMINATIONS USING SPIKING TECHNIQUES 

sample no. SD-114 SD-134 SD-126 SL-68B 

outcrop no. 181 202 193 68 

Cp 70.6 73.2 64.0 58.3 

Cp+s 93.3 95.5 131. 95.7 

s .10 .10 .30 • 20 

p X 100% 31.1 33.0 28.6 31.1 

Figure 9 shows a generally linear relationship between the in-

crease in chart units (Cp+s - Cp) and the percent dilution (S). It is 
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Fig. 9. Effects of quartz spike on (101) peak intensity. For 
the five samples there is little departure from the average percent 
quartz in ·the quartz latite of Sundance Mountain and Sugarloaf 
Mountain. C + = peak intensity of spiked sample; C = peak intensity 
of unspiked ~aiple. p 
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reasonable to assume that the quartz content does not vary appreciably 

among rocks from the two quartz latite bodies. The average percent 

quartz in the four samples is 31.0. There is about 6 percent more 

modal quartz than normative quartz. 

Staining techniques were employed to distinguish alkali feldspar 

from plagioclase in thin sections. The technique, as described by 

Bailey (1960), involves precipitating potassium rhodizonate (red) on 

plagioclase feldspars and sodium cobaltinitrite (yellow) on alkali 

feldspars. 

The staining technique was useful in distinguishing the crystal­

line feldspar component from the groundmass. Both, the phenocrysts and 

the microlites, were determined to be plagioclase. The microlite tech­

nique (Heinrich, 1965) was used to confirm that the groundmass crystals 

are oligoclase. Actual. percentages of alkali feldspar in the crypto­

crystalline groundmass could not be determined directly from staining 

techniques. However, the modal percent alkali feldspar can be deter­

mined by subtracting the known weight percent quartz (obtained from 

spiking) and oligoclase (alter converting to weight percent) from 100 

percent. Since other minerals are rare, this gives a 11reasonablen 

percent of alkali feldspar in the rock. The rock is approximately 31 

percent quartz, 38 percent oligoclase, and 29 percent alkali feldspar. 

According to Streckeisen (1967) a volcanic rock of this composition is 

a quartz latite. 

General petrography of the quartz latite 

In thin section, the breccia is best studied using plane polarized 

light (Fig. 6). A distinction between clasts and groundmass is not 
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always possible using crossed polars. Broken crystals of oligoclase 

are present in the breccia but euhedral phenocrysts never occur in the 

groundmass. The angular oligoclase grains appear to have been broken 

loose from the clasts during brecciation and transport. 

The tuffs are characterized by a strongly trachytic texture. 

Absence of a fragmental texture is discussed in the following section. 

Individual layers are best resolved using plane polarized light (Fig. 

10) but layer boundaries are sometimes discernible with crossed polars 

on the basis of contrasting interference colors. In Figure 10 the 

microlites of oligoclase are continuous across the layer boundaries. 

It appears that in most instances the layering results from higher con­

centrations of finely disseminated microcrystalline material in the 

layers which are darkest in plane polarized light (Fig. 10). 

Chemistry and mineralogy of the quartz latite 

The chemical compositions of Sundance Mountain rocks (Table 5) are 

similar to the average composition (Nockolds, 1954) of a dellenite 

(quartz latite). Sundance Mountain quartz latite has lower iron and 

slightly more sodium than average. Iron is contained in rare wedge­

shaped grains of horneblende and is dispersed throughout the ground­

mass as very fine grained magnetite(?). 

A limited amount of chemical data was obtained on the crypto­

crystalline groundmass using microprobe techniques (Table 5). Norm­

ative calculations give a mineralogical composition of 57.2% quartz and 

41.3% alkali feldspar (from microprobe analyses). This qualitatively 

agrees with results obtained from spiking and staining techniques but 
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Fi g . 10. Layer ' ng of quartz latite in plane polarized light 
(SD-168) . Note that the microlites of oligoclase are sometimes 
c ontinuous across the layer boundary . The layering may be attributed 
to differences in alteration. Magnification 27X . 
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Fig, 11. Ordering of Si/A:1 in alkali feldspars from Sundance 
Mountain (SD), Sugarloaf Mountain (SL), Bear Lodge Mountains (BL), 
and the Sundance dike (S) as determined from the Z04 and 060 method 
(after Wright, 1968). Alkali feldspars from the Bear Lodge Mountain 
intrusive body are intermediately ordered (orthoclase), while Sugar­
loaf Mountain rocks are highly disordered (sanidine). Alkali feld­
spars from Sundance Mountain are slightly ordered. 
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suggests that the area analyzed may have contained a high proportion of 

quartz. 

The alkali feldspar is a slightly ordered sanidine, (Fig. 9). 

Sugarloaf Mountain samples (SL-65b, SL-59a) have high sanidine, imply­

ing that virtually no ordering of the aluminum and silica had taken 

place in the feldspar crystal structure during the cooling of these 

rocks. 

TABLE 4 

CHEMICAL COMPOSITION OF SUNDANCE MOUNTAIN CRYPTOCRYSTALLINE GROUNDMASS, 
SAMPLE SD-133b 

FeO 

85.2 0.3 

cao 

0.2 2.2 

TOTAL 

99.4% 

Oligoclase megacrysts constitute 4 to 11 percent of the quartz 

latite. The oligoclase occurs as subhedral to euhedral, tabular laths, 

ranging in length from about 1 llllll to 5 mm. Lengths of 3 mm are most 

common~ 

The mineralogic composition of the oligoclase was obtained from 

, 
oil immersion studies and optically using the Michel-Levy method 

(Heinrich, 1965). Compositions vary from Ab
73 

to Ab88 but generally 

are between Ab
79 

and Ab
88

• 

Most of the oligoclase megacrysts examined displayed oscillatory 

zoning. Earlier formed zones are rounded (subhedral), suggesting that 

the phenocrysts were partially resorbed before renewed precipitation of 

successive outer zones. As many as five resorhed surfaces can be 

observed in a given pheyocryst. Table 5 gives the chemical composition 
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of 6 points in a zoned crystal (Fig. 12). The significance of the data 

is that even though there are four distinct optical zones, there is a 

very narrow range in composition (Ab
73

-Ab
76

) across the entire crystal. 

TABLE 5 

CHEMICAL ANALYSES OF ZONED OLIGOCLASE FROM SD-133b 

Sio2 63.32 63.18 63.17 62,12 62.92 62.87 

A1
2
o

3 22.66 22.73 22.60 22.98 22.59 22.45 

FeO .25 .25 .17 .09 .13 .12 

MgO .11 .11 .17 .23 .32 

Cao 3.91 3.91 3.66 4.22 3.60 3.97 

Na
2

o 8.59 8.67 9.22 9.05 9.29 9.15 

K
2
o .84 .84 .95 .94 1.01 1.06 

Tio
2 .09 .09 .08 

P205 .12 .12 

MnO 

Cl 0 

so
3 .15 .11 .08 .20 

%Ab 75 75 76 73 76 75 

Data point 
(Fig. 12) 1 2 3 4 5 6 
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Fig . 12 . Zoned oligoclase f r om SD- 133b. 
r espond to chemical compos itions on Table 6. 
(Magni f ication : 45X) 

Six data points cor ­
bar=0 . 5 mm . 
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Sugarloaf.Mountain 

The petrography and chemistry of Sundance Mountain and Sugarloaf 

Mountain rocks are nearly identical. Sugarloaf Mountain tuffs have a 

less anisotropic groundmass than Sundance Mountain tuffs. Microlites 

are subhedral and are resolved only under high magnification. Sugar­

loaf Mountain tuffs often have blotchy masses of cryptocrystalline 

material surrounded by radiating oligoclase(?) microlites. There are 

no compositional differences in oligoclase from the two igneous bodies, 

but megacrysts from Sugarloaf Mountain are more often broken. 

Some of Sugarloaf Mountain breccias are dark gray (Fig. 4), as 

opposed to the light gray Sundance Mountain breccias (Fig. 2). In 

thin section the Sugarloaf breccias are almost isotropic. Diffraction 

patterns are nearly identical, aside from the montmorillinite peak, 

which is more intense in Sugarloaf Mountain rocks. Unique to Sugar­

loaf Mountain breccias, are the distinct bedding surfaces produced by 

normal grading. Bed boundaries are sharp contacts, often marked by a 

red, oxidized interface. 

Of particular interest are the plagiofoyaite(?) clasts (samples 

62a, 63, 65a, 175) found in Sugarloaf Mountain breccia. Optically 

identified andesine composes 30 to 40 percent of the rock, as deter­

mined from visual estimation. Crystals 0.1 to 3.0 mm in length are 

broken, partially resorbed and sometimes replaced with calcite. Com­

positions vary from An42 (SL-66a) to An
54 

(SL-62a). Augite(?) com­

prises 5 to 10 percent of the clasts and occurs as subhedral, highly 

altered (chloritized(?) grains. Crystals are often mantled with 

hematite(?). 
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The cryptocrystalline groundmass is largely composed of alkali feldspar 

and analcime, as determined from X-ray diffraction studies. Calcite 

(15%) is an abundant secondary mineral. It is interesting to note that 

the above minerals do not occur in the same proportions. Sample 65a, 

for example, is composed largely of groundmass analcime, as compared to 

sample 175, which has questionable analcime diffraction peaks. The 

occurrence of andesine is especially noteworthy since andesine is not 

present in Bear Lodge Mountain rocks within the defined study area. 

Bear Lodge Mountains 

According to Streckeisen (1967) shallow intrusive (hypabyssal) 

rocks are a subdivision of plutonic rocks. Using this classification 

scheme, the foidal rocks of the Bear Lodge Mountains are appropriately 

called foyaite. Several workers in the Black Hills region (Russell, 

1896; Irving, 1899; Darton, 1905; Darton and Paige, 1925; Allington, 

1962; Kirchner, 1971) have referred to rocks of similar compositions 

and textures as being phonolite intrusives. The author prefers the 

term foyaite for Bear Lodge Mountain rocks because the rock name de­

notes an intruSive origin and usage is consistent with a relatively 

contemporary and widely used classification scheme (Streckeisen, 

1967). This same classification scheme is used for naming oversaturat­

ed (extrusive) rocks, also found in the thesis area. 

The foyaite of the southeastern Bear Lodge Mountain consists of 50 

to 60 percent euhedral to subhedral, tabular phenocrysts of alkali 

feldspar (2V ~ 75-85°), ranging in length from 0.1 to 15 mm. A com­

position of or83 (±3%) was obtained from unit cell dimension 
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calculations (Evans and others, 1963). The feldspar (samples BL-17, 

BL-25, and BL-27) is an intermediate ordered orthoclase (Fig. 11). 

Other feldspars, as determined from X-ray diffraction, include sodium­

rich alkali feldspar, albite, and anorthoclase. It appears that these 

feldspars are major constituents of the felted, hypidiomorphic granular 

groundmass. 

Analcime is visually estimated to make up 15 t:, 25 percent of the 

rock. Isotropic crystals less than 0.1 mm in diameter are found in the 

Sundance dike and in rocks from the sill margins (samples S-7, S-11, 

S-17, BL-25). Occasionally eight-sided crystals, suggesting a 

trapezohedral habit, are observed. In phaneritic rocks from the sill 

interior (BL-27) the crystals are ~eakly anisotropic. Optical discon­

tinuities acrOS? grains suggest that the analcime has been altered, 

possibly to albite and some other feldspathoid(?). 

The rock consists of 10 to 15 percent aegerine(?) and aegerine­

augite. Elongated crystals range in length from 1.0 to 0.1 mm. Com­

monly the aegerine-augite occurs in dispersed clusters, Crystals are 

optically positive and often have light green, weakly pleochroic, 

aegerine-augite cores (2V = 60-70°) with dark green highly pleochroic 

aegerine(?) rims (2V = 65-80°). Smaller, unzoned microcrysts of sub­

hedral aegerine-augite are also present. Often crystals are mantled 

with an opaque mineral (possibly magnetite). 

Accessory minerals include biotite, garnet and secondary calcite. 

The biotite occurs as subhedral laths in the groundmass and is usually 

chloritized. The garnet, possibly almandine, is typically euhedral and 

zoned. Calcite replacement of the orthoclase is common. 
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Other minerals present include sericite and chlorite which are 

alteration products of potassium feldspar and biotite, respectively. 

Chemical composition of the foyaite 

Two samples (S-7 and BL-27) were analyzed (Table 6). As compared 

to other recorded "phonolites" (Nockolds, 1954) the Bear Lodge Mountain 

foyaite is slightly enriched in silica, aluminum and potassium. The 

sill rock (BL-27) may be slightly more undersaturated than the dike 

rock (S-7). 

TABLE 6 

CHEMICAL ANALYSES AND NORMATIVE MINERAL PERCENTAGES 

Si02 58.11 57.58 70.38 69.88 68.84 

Al 2o
3 21. 31 21.51 16.21 16.42 16.48 

FeO 2.15 1.90 .12 .31 .29 

MgO .32 .11 .19 .21 .07 

cao 1.69 1.45 1.25 1.12. 1.25 

Na O* 
2 7.70 8.23 4.10 4.22 4.43 

K2o 6.57 7. L5 4.36 4.87 4.49 

TiOz . 05 .07 

P205 .12 .11 .11 .11 .11 

MnO .29 .23 . 04 .15 .11 

Cl O* .03 .18 .04 .07 

so * 3 .60 .12 

Total 98.34 99.12 96.89 97.33 96.14 

------
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TABLE 6--Continued 

Rock type Foyaite Foyaite Q. latite Q.latite Q. latite 

Sample S-7 BL-27 SL-67B SD-114 SD-134 

Quartz 28'.0 24.6 24.0 
Corundum 2.8 2.5 2.4 
Ort hoc lase 39.5 43.0 26.6 29.6 27.6 
Al bite 30.8 24.7 35.9 36.7 39.0 
Anorthite 4.3 0.6 5.7 5.0 5.7 
Nepheline 19.2 25.0 
Wollastonite 1.5 2.5 
Enstatite 0.2 0.2 0.5 0.5 0.2 
Ferrosilite 1.3 2.6 0.3 0.9 0.8 
Forsterite 0.4 0.1 
Fayalite 2.4 1.0 
Ilmenite 0.1 0.1 

*microprobe analyses 

Occurrence of primary analcime 

Analcime-rich foyaite has 19.2% and 25.0% normative nepheline in 

samples S-7 and BL-27, respectively (Table 3). However, the rock con­

tains no optically identifiable nepheline. Studies by Peters et al. 

(1966) show that analcime of anhydrous composition (Ab
50

Ne
50

) in the 

system Ne-Ab-H2o is in invariant equilibrium with albite, nepheline, 

liquid and vapour at 665°C and 4.75 Kb. Figure 10 shows the invariant 

conditions and the stability fields of the components. The effect of 

potassium on che system is to displace the invariant point to 2.3 Kb at 

650°C (Sorenson, 1974). Analcime in this equilibrium situation would 

contain 2 Wt. % K2o. The significance of the equilibrium relations is 

that primary analcime can crystallize directly out of a magma at 

pressures greater than 2.3 Kb and can coexist with residual liquid over 

a narrow temperature range. 
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Fig. 13. Invariant and univariant phase relationships as deter­
mined by Peters et al. (1966). Univariant reactions include: 
analcime=Ab+Ne+Vapour (A); analcime+Ab+vapour=liquid (B); Ne+liquid= 
analcime+llapour (C); analcime=Ab+Ne+liquid; Ab+Ne+llapour=liquid (D). 
The phase relationships and petrographic observations suggest that 
primary analcime crystallized directly from the melt over a narrow 
range of temperatures within the analcime + vapour stability field. 
Unit cell dimensions suggest crystallization at lower temperatures, A 
shift in the invariant point to Xis caused by the presence of 2 wt.% 
K

2
0. This would broaden the stability field over which primary 

analcime may crystallize without albite or nepheline. The complete 
absence of nepheline in the rock suggests that equilibrium conditions 
between univariant reactions A and D never occurred. 
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Calculated unit cell dimensions (Saha, 1963) are a ; 13.736 X 
0 

for analcime from the Sundance dike. From relationships between cell 

dimensions and temperature of formation (Liou, 1966) it was found that 

the analcime crystallized at about 550°C, The presence of potassium 

in the system evidently lowered the invariant point and broadened the 

analcime stability field. The phase relationships are consistent with 

observations of primary analcime and groundmass albite (as determined 

from X-ray diffraction). It was not determined whether analcime is 

present in the groundmass but it is likely that conditions during final 

crystallization of the residual liquid were within the albite+analcime 

stability field (Fig. 10). 



INTERPRETATION 

The origin of .Sundance Mountain and Sugarl.oaf. Mountain 

The composite of observations strongly supports an extrusive 

origin for Sundance Mountain and Sugarloaf Mountain. Conclusive 

volcaniclastic structures such as shards and pumice fragments are 

absent. Some mechanism(s) must be incorporated into the extrusive 

model that will account for the destruction of glassy material and 

fragmental textures of the tuffs. Structures which have been preserved 

provide petrographic and field evidence which suggest that the tuffs 

were welded and devitrified. 

It was suggested that the layered units are ash fall and ash flow 

tuffs and that the layers are not entirely depositional structures. 

Petrographic evidence for this is the truncation of trachytic textures 

across layer boundaries. In most cases, ho~ever, the trachytic texture 

is continuous and the layering is evident because of contrasting inter­

ference colors. Often the attitude of the tuffs and breccias exceed 

the angle of repose and it is not uncommon for the units to dip at 

angles greater than 40°. It is proposed that deposition of ignimbritic 

flows provided heat for devitrification of pre-existing welded tuffs. 

Welding of "sticky" glass facilitated the preservation of steeply in­

clined depositional surfaces. Heat from near vent sources may account 

for continued devitrification and compaction of the pyroclastic units, 

42 
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The character of the deformation strongly suggests that heat was 

retained by the deposits. Deformation of the tuffs resulted from load­

ing of clasts which ranged in size from blocks to oligoclase mega­

crysts. Asymmetrical folding was also recognized in the tuffs. Some 

small scale drag faulting (Fig. 4) attests to the partial rigidity of 

the pyroclastic sequences~ A continuous sequence of ignimbritic flows, 

adjacent to a hot vent, would account for initial devitrification 

across layered boundaries and total destruction of the vitroclastic 

character upon burial. Vlodavetz (1966) described similar instances 

where the close proximity to the vent eventually caused complete com­

paction and devitrification. 

The pyroclastic "parting lineations" (Fig. 8) are supporting 

evidence for a gas-liquid-solid transporting medium. Parting linea­

tions on sedimentary bedding surfaces are produced at the intersection 

of parallel vortices (Allen, 1970). The fluid dynamics of ignimbritic 

flow is controversial (Sparks, 1976; Lock, 1978) but laminar flow 

4 (Re< l:x 10) has been identified in pyroclastic rocks (Sparks, 1976). 

Field observations 

Field observations which support an extrusive model include: 1) 

the lack of cross-cutting relationships, 2) vertical sequences of 

breccia, tuff and massive flows, 3) structural relationships between 

the sedimentary units and the igneous bodies, and 4) lobate ridges 

radiating out from Sundance Mountain which bear a geomorphic similarity 

to lava flows. 

A fundamental distinction can be made between intrusive breccias 

and extrusive (pyroclastic) breccias. Intrusive breccias will commonly 
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display cross-cutting relationships with the country rock (Parsons, 

1969). Sundance Mountain breccias are concordant with the tuffs. 

Cavities between clasts in the breccia are filled with continuous 

layers of vitroclastic material (Figure 5). 

Since the breccia contains clasts which are themselves layered 

it is probable that the tuffs were deposited and welded before vent 

explosions and internal gas autobrecciated the material. The breccia 

was immediately transported and rewelded in a gas-solid-liquid mixture. 

In acidic volcanic terranes it is not uncommon to find pyroclastic 

rocks (breccias and tuffs) at the base of a pile with more massive 

flows near the top (Parsons, 1969). A generalized section of Sundance 

Mountain can be summarized as follows: l)monolithic breccia in basal 

sequences with tuff, 2) tuffs with interstratified breccia, and 3} 

massive flows and tuffs near the top. The generalized sections {Fig. 

4) support a model of explosive felsic volcanism. 

Relationships between structural attitudes of the sedimentary 

units and the quartz latite provide regional evidence supporting an 

extrusive model. The Permian Goose Egg Formation (Minnekahta Member) 

dips at low angles away from Sugarloaf Mountain. The Jurassic Sundance 

Formation dips at equally low angles out from the Sundance Mountain 

summit. The sedimentary rocks are not altered or recrystallized. If 

Sugarloaf Mountain were intrusive in origin, one would expect the 

attitudes of the surrounding sedimentary units to conform to layered 

structures in the igneous rocks, and evidence for secondary silicifica­

tion and perhaps anhydrite (after gypsum) in the Spearfish Formation. 

Within close proximity of the inferred contact there is no distortion 
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of the primary mineralogical and sedimentological character of the 

gypsiferous siltstone. An extrusive model provides for heat transfer 

to the surface with little or no metamorphism of the surrounding sed­

imentary units-

The geomorphology of Sundance Mountain presents a somewhat weaker 

argument for an extrusive model. Noteworthy, however, are the lobate, 

rounded ridges that extend out from Sundance Mountain. The ridges are 

especially conunon on the east side of the mountain. Usually it is 

questionable whether the outcrops are intact but the concentrations and 

orientation of layered rocks suggest that the bedrock is not far below 

the surface (outcrop numbers 166,167, 168, 215). Since the lobes are 

often narrower than would be expected for an alluvial fan, it is 

possible that they are actually ignimbritic flows which were directed 

away from the summit by prevailing winds and pre-existing geomorphic 

features (e.g. gullies). 

Petrol"S__ic evidence for an extrusive model 

The oligoclase phenocrysts bear evidence of vertical movement and 

subsequent pressure release. Crystals may exhibit rounded, resorbed 

surfaces, around which euhedral overgrowths are precipitated. This 

resorption effect may be observed five times in a single crystal 

(sample SL-77). More commonly, three resorption surfaces are present. 

The phenomena produces oscillatory zoning and an overall tendency for 

normal zoning from the core to the rim. 

Oscillatory zoning of this sort suggests episodic eruptive 

activity (Smith, 1974). The rapid drop in pressure, associated with 

the vertical ascent of a parcel of magma caused plagioclase crystal-
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liquid disequilibrium. Figure 14 (sample SD-95) is a model used to 

explain the narrow range in composition across oscillatory zones in the 

oligoclase. The model calls for equilibration at a given set of tem­

perature and pressure conditions. If the system is modified by a sud­

den drop in pressure the liquidus and solidus will be re-established at 

a lower pressure. A given parcel of magma would be subject to rapid 

changes in pressure during explosive volcanic activity. Oligoclase 

would precipitate on the rounded, resorbed surfaces when eruptive 

activity slowed or subsided, 

Further petrologic evidence supportive of an extrusive model is 

inherent in the composition of the cryptocrystalline groundmass. It 

was found that the microlites are all plagioclase feldspar (oligoclase) 

while the crypto~rystalline component of the groundmass is composed 

of alkali feldspar plus quartz. Figure 15 (after Carmichael, 1963) il­

lustrates the solidus relationships for a four component system. The 

liquidus cooling path (Ll-U) corresponds to the solidus cooling path 

(Pl-Af). As seen from the figure, plagioclase becomes more sodic until 

reaching A3, where anorthoclasestarts to crystallize. Upon further 

cooling, the liquid finally reaches a compositional surface, WSGX, 

where quartz and alkali feldspar precipitate from the remaining melt. 

Since anorthoclase and quartz do not occur as microscopically identi­

fiable components, it is possible that Sundance Mountain magma (lava) 

was quenched at some point between P2 and A3 (Figure 15). 
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Fig. 14. Phase relationships used to explain oscillatory zoning 
in Sundance Mountain oligoclase. Initial precipitation of oligoclase 
from bulk composition X occurs and zone A is precipitated as crystals 
and liquid change compositions along s1 and L1 , respectively, Eruptive 
activity causes pressure release and incomplete resorption of zone A. 
Equilibrium is then re-established between liquid and oligoclase under 
lower pressure conditions, Compositions change along L2 and s

2
, pre­

cipitating zone B. Following partial resorption, the final zone, C, is 
precipitated at approximately 1 Atm. pressure (L

3
-sc)' immediately 

before the lava is extruded. 
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Fi<>. 15 "Pos ibl 1 · h. 
NaA1s· o • . s ere at1ons 1ps in the system CaAl Si o -
' 

1
30a-KAlS1308-Si02• WS represents the quattz-alka112feld~par 

boundary curve; FEGH is the two-feldspar surface extending into the 
tetrahedron from the boundary curve EF. On the left it curves down 
to terminate along FH before reaching the base of the tetrahedron. 
GH is the intersection of the two-feldspar surface with the bounding 
surface of the quartz field. Compositions of feldspars Pl-A4-Af 
lie in the front face; Pl-A4 are joined by ties to their respective 
liquids Ll-L4." {after Carmichael and others, 1963) Sundance Mountain 
and Sugarloaf Mountain magma may have been quenched at some point 
between i

2 
and L, leaving a glassy groundmass that vas devitrified 

to quartz plus aikali feldspar. 
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Sundance Mountain--a mixed cone 

Cones greater than "a few hundred feet high are" (at least in 

part) "of composite construction" (Cotton, 1944). In larger ash cones 

the proportion of flows to fragmental material may be extremely low. 

Rittman (1962) described such cones as "mixed volcanoes" where lava and 

fragmental materials are important parts. An explosive index (E) was 

derived which is based on the relative amounts of fragmentary material 

(Rittman, 1962). 

Stratovolcanoes (?) 

---------------------------------------------------------~--

Mixed cones 

E 11-33%: lava rich 

E = 34-66%: intermediate or normal type 

E = 67-90%: rich in fragmental material 

------------------------------------------------------------
Cinder cones (?) 

The classification of mixed cones cannot be applied in the strict­

est sense because good exposures of an entire volcanic section are 

rare. Based on available exposures and measured sections (Fig. 4) 

found in Sundance Mountain the following explosive indices were de­

rived: E = 41% (east ridge), E = 34% (west side), E = 76% (south 

side). These values place Sundance Mountain in the intermediate to 

rich category of mixed cones. 

Examples of known pyroclastic cones with lava flows of similar 

dimensions include Puy de Lassolas, France and Monte Pelato on the 

Lipari Islands, Italy (Rittman, 1962). Monte Pelato rocks are 

rhyolitic--similar in composition to Sundance Mountain quartz latite, 
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while Puy de Lassolas rocks have andesitic compositions. Unlike these 

volcanic centers Sundance Mountain and Sugarloaf Mountain appear to be 

the only volcanic centers in an intrusive terrane. 

Relative ages of the foyaite and quartz latite 

Quartz latite and foyaite occur within a few kilometres of one 

another and present a difficult petrologic problem. Unfortunately the 

data available is insufficient to determine the petrogenetic relation­

ship between the two rock types. 

It is possible to relate the foyaite of the Bear Lodge Mountains 

to the phonolite(?) of Devil's Tower. Rocks from both intrusives have 

analcime as the only feldspathoid (Halvorson et al., 1977) and are 

similar in chemical composition. Devil's Tower rocks have a fission 

track date of 53.5 ! 6.8 m.y., while the nearby Missouri Butte rocks 

have a date of 55.5 ± 7.1 m.y. (Hill et al., 1975). It is likely that 

the Bear Lodge Mountain rocks are of similar age~ 

The plagiofoyaite(?) xenoliths present in Sugarloaf Mountain can 

be interpreted in two possible ways. If the xenoliths are part of the 

Bear Lodge intrusive complex, then the quartz latite is the younger of 

the two rock types. The xenoliths are not of the same mineralogic com­

position as the foyaite but they may have undergone considerable alter­

ation. The possibility that the xenoliths are an intermediate dif­

ferentiate between the quartz latite and the foyaite can not be disre­

garded. No exposures of plagiofoyaite were observed in the study area 

but it may occur elsewhere in the Bear Lodge Mountains. 



CONCLUSION 

The foyaite of the Bear Lodge Mountains and quartz latite of 

Sundance Mountain and Sugarloaf Mountain are contrasting rock types 

with different modes of emplacement. The Bear Lodge Mountain intru­

sives are sills and dikes that were passively emplaced, while the 

quartz latite was explosively erupted. 

Evidence favoring an extrusive model for the quartz latite is as 

follows: 1) The breccia, tuffs and massive flows are stratified and 

occur in crude sequences~ 2) There are no cross-cutting relationships. 

There are, however, unconformities between some of the stratified 

units. 3) The hreccia consists of highly angular clasts of tuff. 

4) The tuffs generally dip away from the interior of Sundance Mountain. 

5) The oligoclase megacrysts display oscillatory zoning with narrow 

ranges in composition across the zones. The best explanation for this 

phenomenon is that, while episodes of eruption were taking place, 

ascending liquids were momentarily out of equilibrium due to different 

pressure and temperature conditions. 6) The microcrystalline com­

ponent of the rock is oligoclase, while the cryptocrystalline ground­

mass consists of alkali feldspar and quartz. The system may have been 

quenched before anorthoclase was permitted to crystallize. 7) Pyro­

clastic "parting lineations" suggest liquid-solid-gas transport by 

ignimbritic flows, 

52 
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No glassy volcaniclastic structures were observed but it is 

possible that such structures were destroyed by high vent temperatures 

(Vlodavetz, 1966). 

Sundance Mountain is a mixed volcano. Eruption probably commenced 

after the present topographic expression of the Black Hills region was 

established (Stone, 1973). This would give the quartz latite a 

relative age of post-early Oligocene. Eruptive activity was initially 

explosive. Tuffs, deposited by ignimbritic flows, were periodically 

brecciated and rewelded5 Volcanic activity became more continuous and 

flows were added to the pile. 

Sugarloaf Mountain is a satellite volcano of Sundance Mountain. 

Gas-charged magma was rapidly erupted along the contact between the 

Minnekahta and Spearfish formations. Ignimbritic flows deposited tuffs 

at first, but as waning stages of volcatlic activity were approached,, 

periodic, explosive erupt.ions resulted in the graded tuff breccias. 

The foyaite intrusive body is a sill that was ernplaced after the 

laccolithic structure was developed. The Sundance dike is the same 

composition and was probably emplaced at about the same time. Textural 

observations suggest that the magma cooled quickly. If nepheline had 

crystallized, partial preservation would be expected in the dike and 

near the sill margins. It is plausible that the presence of potassium 

in a water saturated melt had the effect of lowering the stability 

field and causing direct precipitation of analcime from the residual 

liquid. Further microprobe studies of the analcime may provide con­

firmation of 2 weight percent or more K
2
o in the analcime. Microprobe 
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investigations on the groundmass may also reveal information about the 

chemistry and equilibrium conditions of the residual liquid. 

More work is needed to solve the ultimate petrologic problem of 

how the two major rock types are related in time and space. Local 

seismic data would be useful in determining major cross-cutting re­

lationships at depth. Furthermore it may be necessary to use trace 

elements to determine if the rock types are indeed related. Finally, 

age dates on the sill, Sundance Mountain and the plagiofoyaite(?) 

xenoliths would be very useful in solving the problem. If the quartz 

latite is much younger than the foyaite the possibility arises that the 

two rock types were derived from separate petrotectonic events. 



APPENDICES 



APPENDIX A 

ABBREVIATIONS FOR TABLE 1 (APPENDIX B) 

... 
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sample number: A prefix is given followed by the number of the sample 

SD-Sundance Mountain 
SL-Sugarloaf Mountain 
BL-Bear Lodge Mountains 

S-Sundance dike 

outcrop number; corresponds to outcrop numbers on Plates 2, 3, and 4 

outcrop location: section number is followed by the numbers 1, 2, 3, 
or 4, indicating the NE quarter, NW quarter, SW 
quarter, and SE quarter, respectively. 

rock type: 

Ql-quartz latite 
Fo-foyaite 

structures: foliation, layering, parting, joint sets are indicated 
by "X" if the structural attitude is not certain. For 
multiple joint sets the "other" category is used. Other 
structures include: xn-xenoliths; v-vescicles(?). 

texture/composition: 

Po-Porphyritic 
Br-breccia 
Tb-tuff breccia 
Gl-glomeroporphritic 
Gp-graded pyroclastic 
Ag-agglomerate 
Af-ash fall/ash flow layering 
Ma-massive: nonlayered and non-brecciated (flows) 

Where two or more seemingly contradictory textures are 
listed it is understood that all of these textures are pre­
sent at the outcrop but only those textures that are under­
scored are carried over to hand specimens. 

Ehenocryst~ (percentage values are given if available) 
mi-minor (less than 5% of the rock) 

x-5 to 10 percent 
xx-10 to 20 percent 

xxx-20 to 50 percent 
G-garnet 
A-analci1ne 
B-biotite 
S-sericite 

Sp-sphene 
0-opaque(?) 
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groundmass 
grain size 

C-cryptocrystalline 
M-Microcrystalline 
F-fine grained (phaneritic) 

shape/arrangement 
Hy-hypidiomorphic granular 
Tr-trachytic 

alteration products 

Mt-montmorillinite 
Ch-chlorite 
Ep-epidote 
Ct-calcite 
Se-sericite 

Lim-limonite 
opal 



samoli?. number S-6 
outcroo number 18a 
outcroo location 13-1 
rock tvne Fo 

structures 
foliation 
laverinl! 
oartinP 
ioint sets '1AS1' 111.1 

other 

texture/composition 
~rmeral P~ 

nhenocrvsts 7 

alk. feldsnar 62 
oli2oclase 
aegerine/aunite 6 
hornblende 
other A25 

groundmass 
size M 
shaee/arrangement Tr Hv 

Se,Hm 
alteration oroducts Ct 

APPE!,.'DlX B 
TABLE 1 

IGNEOUS ROCK AND OUTCROP DESCRIPTIONS 

S-7 S-8 S-11 S-12 
18b 18c 18e 180 
13-1 13-1 13-1 13-2 
Fo Fo Fo Fo 

I 

.ii, 1\1.J • 2 8E N32W 7W NOW '4E X 

'M'lt:;T;' OLr, l\l1 flt:' nJ..., '!.l"'t "~. ""' 
.. ~ .... ,...,.,~ ,,.,,,.., 

MS7f' ,n~ ·ut;, t;t.l -..-..-. 

' ' 
n. "- n. "-
q R q V 

XXX XXX 65 XXX 

X xi?) 5 xi? 
X x/?) 5 xi? 
A.B(?)o A.B(?).O A25.B.O A B ?) 0 

M M M M 
Tr Hv Tr H" Tr Hv .,,_ u •• 

Ch.Se Ch. Se 

Ul -11 

19 
4-2 
Fo 
dike 

'\T'} 'H.! I:,.,.,,.. 

n 

·>() 

XXX 

M 
'f'r 

Lim 

BL-16A 
20A 
10-2 
Fo 
boulder 

!H 

? 

M 

BL-16B 
20B 
9-1 
Fo 
boulder 

" 
? 

M 

V, 

"' 



'l'Al!LE 1-ooniinulld 

:~~~~~;~~~r I ~z 1 z i~~ 25 i~ 26 
.BL 27 --+1)1 28 !BL 29 IBL 3~ _ 
121 __ . 12-1! _ 29 30 \31 

outcrop_ location 2-, 2-·, 2-3 -="'--- _ I 13-4 \3-4 \3-3 
rock type ,__ _____ _ 

l
J'O IFo -f.'.Q._---4Fo -lfo JFo IFo JFo 

s true tu res 
foliatio~ j N73E~N76E,7BE ill39E.42W N22E.4W N30E,llE N75E,17E N89E,20SE N47E,16!:_j 

!!ul' ring --1 
eartJ:~- _ N89E. 20SE 
joint sets "'°" .Q71, Mrnu ,av . - • 
!2t1l!il·~-- - · •· . ,_ ,l.5\,j_ 1\l1 <n crw 

- -' 

tex~~~,nposition ug !Po ~o ~_fo !Po ro 'Po IPo 
phen~_!}'_StS 5 x 50 x x x x x . 

alJ<;.__feldsJ:)a,;-__ _ _ _ xx x _ _ i<: x x ,x x I oligoclase 
aegerine/augite !mi \mi Ix pc- --- - pni -- ix---· I? 
jlor11blet1de 
othtl 

groundmass 
SiZEl 
shap_e/arrangement 

alteration pro~ucts 

A(?) 

M 

Se(?) 

A25 ,G,0 IAfLl 

F F 

Hv 
Se,Ep, 
K_(_?_l,Lim !Se(?) 

Af/J A(?) 

F M 

lse(?) Se(?) 

A(?) 

M 

IA(?} 

I 
!M 

Se,Ep 

nn:TJ 

M 

°' 0 



TABLE 1-continued 

sampl~numb~r n, - O< BL-44 BL-45 iBL-46 
fil!!!'rop n'3mber ,, o< 

·-•C 
' ~5 46 --

outcro.£.. location ,_, o_, ,-4 1-4 3-4 
rock type , __ 

·o Fo Fo ---·-..... 

structures I 
folJatiQ!.1_. "" n ?_4E ""SE 25W .. N88E 38W 
layeri!!.!L 
parti'!.!l_ ___ . --~-
~nt sets N9E.75W <85E.5TW N75E,~u 
QJ;h·;;,. .: .. ,..,, .. ,., ...... 4 .... ,,,.a .. -r .... ., 

N69W N2W 
texture/composition 

s_e~ral n- Po >o ~o Po 
phenocry_sts X xx i>< X 

alk. feldsear X xx K 

oligoclase 
ae~erine/au2ite ? ? " ht mi 
!,_ornblende 
other 

groundmass 
s.,. .. e M M 1M M 

shape/arran~ement 

alteration eroducts Se(?) Se(?) Se(?) 

Bl-47 59a 
47 59 
3-1 7-3 
Fo Ql 

' 

NlOW 25W 

Po Gp,Br 
X 

mi 

M le 

Se(?) ,le Ct,Mt(?) 

59b - 59 
7-3 
Ql. 

i 

N24W.54W 

Br 

mi 

C 

Mt(?) 

! 

°' f-' 



TABLE 1-oont.inued. 

sample number M<n ,r 59d ,a~ ',Qf 

,a ,0 "' so -outc~~er 
outcrop location ,. -1 ·-~ '-1 7 1 
rock type C\1 nl [l1 "l 

s tt"uc ture s 
folia t iQJ:L . -·- --

'iun. [, CT.~ 

'''"'"'- ~ -~!.t).l ____ 
join~"!.S.-__ 

<n Xn Yrt QJ:llilr -. I 

texture/composition 
Tb Cp,Tb "b Gp,Tb -seneral 

ehenocrys t~ 
alk. feldsear 
oligoclase 
ae~rin!'/au2ite 
)1ornblende 
Q.1:her 

~ 
groundmass 

C size C C 
shape/arrangement 

alteration oroducts Mr ~ ... ,. "· 

•50~ ISOh 

so <;Q 

7-1 7-'\ 

"l 01 

Vrt V 

Gp,Tb Gp,Tb -

C C 

Mr Mt 

'iQi -
'iQ 

7-3 
Ql 

'"-

Gp,Tb 

·-~ 

le 

!Me 

59i I 
c;q 

7-3 
01 

~ 
Gp,Tb 

i 

C 

Mt 

"' N 



Sample.~mbH 
~T '"' 

~C!'.£1'..Jlumber "" "1 
outcro_e_ location 7-2 7-2 
rock tyoe 01 "1 

structures ________J_ 
follation . -
J~ri.!)JL . lll75E 53E N59E 55W 

~!..!11.!L 
Join~.ets 
Qth.er u_ U .• 

texture/composition 
I 

l!eneral .Tb,GE Tb.Gn 
phenocrysts_. 

alk, feldsnar 
oligoclase 
aeserine/augite 
!,ornblende 
other 

groundmass 
•ize {' in 

shape/arran2ement 

alteration oroducts Mt Mt 

!L'AlUJi 1-oontinued 

L62A RL62B 1SL62C 
2 ,2 62 
-2 7-2 7-2 

)1 ~o (?) QL 

-~1ow.1ow trou2h trough 

, ,.-N40W Xn 
Xn 

~-,Ag Po Tb 
XXX 
KX 

X 

r C C 
"r 

Mt ,Ct Se Mt 

SL62D 638 ·~--62 63 
7-2 7-2 
Ql Fo(?) 

N0,35W 

Xn 

Tb 

I 

C M 

Mt 

SL63A 
61 
7-2 
Ql 

Tb 

-

C 

Mt 

"' "' 



TABLlii 1-oontinued 

Sample numbfcr OT LO " LOn ·:r f.L 

outc~um_!:,er ./u ___ " .I, ,/, ---
outcr9.e .. !ocat ion 7-~ ' -" '-~ 1-~ 
rock type "' n1 01 

structures 
f.Ql_ia ti@_._ ----
laye_E_!ng ~l'H? t:;,t::n LtC'f.l 1. C.U 

partii:,_a -------
joi_rH sets 

9.thl! - ,X.n__. -- . - Xn.......... ,_ Kn.. ... _ 
-- ----

texture/composition 
general _. Tb. r.n Tb.Gu b.Gn '" phenocry_sts - -

alk, feldspar ___ 
oligocl~_ 
ae.:erine/auJdte 
!)2rnblende 
other 

groundmass 
size C C r: c 
shape/arrangement 

alteration oroducts Mt Mt nt ~· 

(f 65 Sl65A 
;s ; <; 

1 ?-" 1 ?-0 

01 

l.1'1C.U f,llJ 

"25W 61W --

Xn._ ___ Lc:N.2.5.1,1 --
Xn 

Po Po 
IV IVY 

, .... 
~ 

_, 
'" 

C C 

Mt Se 

2lli_ ____ 

6 
7-1 
/11 

N~nu 1.1.u 

--------

Ag 

I 
!c 

Mr 

.,L67 
DJ 
7-1 -
01 

M~')t.T ~?tJ ! 

N32W 52W 

--·-

Af 

'" 

C. 

Mc 

"' "' 



.. 
dL,t:. . .i,cJ., '.,_ii.,,~:, '><1~.i'~:~·,.: ... 

TAl!LB 1-oont.inued 

Sample numbESr _ .. c.o .. SL68B L69 L71 -£!!!SC £C>j>___.!l_umbe r £0 ,,o 
" '1 

outcrop location 1 9_4 12-4 2-4 2-4 
rock type f\1 "l 11 11 

structures 
foJJa ti Q..n_ --
&eri'l&_ N77W 31E HBE. 77W 
11artir11L NIBE, 77W 
joint sets 
;;-,h~- v .... 1,.rn "- ifn __ 

texture/composition 
general Aq Al! IAo ~f --
phenoc rys ts -alk. feldsoar 

<Jligoclase IX 
ae2erine/au<tite 
hornblende 
other 

I 
groundmass 

size f' ~ ~ "' 
shape/arran2ement 

alteration oroducts Mt Mt Mt Mt,Se 

ST.73 SL74 
71 74 
12-4 12-4 
QI QI 

N42E.58E 

Af Af 

X 1 

C C 

Mt Mt 

J./!,.," 

SL75 
75 
12-4 
Ql 

N80E,70E 

Af 

IC 

Mt 

·1,L.:;_::;.. 

SL76 
76 
12-4 
QI 

Ma 

X 

C 

Mt 

--

l 
! 

I 
·1 

"' l.n 



sample numhecr SL77 SL78 
outc~(!mber 77 77 
outcrop location 12-4 12-4 
rock type 01 n1 

structures 
f_c,J_ia t iQ..n __ 
layer i!llL 
parting 
joint sets 
other 

texture/composition 
general Af.Po Ma 
phenocrys ts mi mi 

alk. feldsaar 
~llgoclase mi mi 
ae2erine/au2ite 
_!tornblende 
other 

groundmass 
size C C 
shape/arran2ement tr 

Mt,Ct, 
alteration orrducts 1 im .. Mt 

TABLE 1-oontinued 

SL79 SL80 --~18h 
"7 77 18 
12 4 12-4 13-2 
01 Ql Fo 

NllW.llW 
"0?~ /,ow 

v- -.Tr.s.1.? \ 

Af Ma Po 
mi hni 5 

X 

lmi hni 
mi 

~ c<SO\ M 

Mt Mt.Se Se.Ch.ED 

Sl8i BL83 
18 136 
13-2 3-3 
Fo Fo 

X 

N52W.71E 

Po Po 
X xx 
X / II 

mi 8 

A(8) 

M .M 
Hy 

Se.Ch.En Se 

BL84 
137 
3-3 
Fo 

N85E,56W 

N85E.56W 

Po 
X 

X 

? 

A0/3\ 

M 

Se 

(7, 
(7, 



TABLE 1-oonU.nued 

sampl~umbecr BL85 0, 071\ D94 
outcrop numbe,:- 138 139 41 55 -
outcrop location 3-3 3-3 -2 4-3 
rock type Fa Fo ~o ll 

structures I 

fgJJa t i9p_ ! 1'8SE. 65W N86E, :j_6W ~62W .45N I 
!_ay_e_r.!!llL - qssw,ssE 
par tin.a__~ 185W. 55E 
joint sets 

I other '"' --- _,_ 

texture/composition 'i 
I 

2eneral Po Po 'o ~f 
pheuocrysts X X " ' 

alk. feldsoar ~ '- "' 
oligoclase ml -
ael(e r ine / au2 i te ? ? 
jlornblende mi 
otb~i; A I?) 1, '?' 

groundmass 
size I~ ~, ~, C 

shace/arran~ement 

al teretion oroduc ta Ch Ch Mt 

ISD94A SD96A SD96B 
156 158 158 
24-3 24-3 24-3 
Ql Ql QI 

N63W,46E N39W76 
N21W.51,E N39W,7E 

I I 

laf,br br af 
X 

mi 

I 
I I 
~ C !c 

Mt Mt Mt 

SD97 
59 

24-3 
QI 

. '-

N35E,73W 

Ma 
X 

mi 

mi 

C 

Mt 

I 
1 

I 

I 
I, 

I 
i 

"' --l 



!!ample number nn"O nnM> 

outc rop__!!umber ,,n '" ~utcr9_e__!ocation "·-> "'-' 
rock type t\1 "1 

i 
i 

structures 
fQJ,_ia q<2_1}__ 

layer in&_ ""'" ''" ,,o ~,., I~ OU 

partl,.n.L 
joint sets 
other · 

texture/composition 
l!ene ral ,..,_ n- Br Af 
pheno32sts_ X 

alk. feldsn~r 
oJ.!Koc lase _, Is 
aeJ?.erine/aueite 
!,ornblende 
other 

groundmass 
size n '<M n 

shape/arranJ?.ement 

alteration oroducts ,.,. Mt 

TABLE 1-oontinued 

.. ,m no 1SD101 ,, 6 '\ 164 
"·-3 24 3 24-3 
)1 01 QI 

I 

·"' 1 7E N41E.40E N75W.71W 
,o .17E N41E.40E; N75W,71W 

f Br Af ·-. Po,Af 
X X X 

mi mi X 

~, I,,,; 

'" '" Ir 

"t Mt Mt 

165 166 
24-4 24-4 
Ql QI 

I 

boulders 

Af 

. 

,., I 

Mt Mt 

SD102 
167 
24-4 
Ql 

N75W,90 
N7 5\./, 90 

Ma,Gl 
X 

5 

C/45) 

opal, 

! 

! 

"' 0:, 



sample numb~r ~nllH 

outf~.'!mher 1 68 
outcrE.e...location 0 I, ,4 

rock type 01 

s true tu res I 
fol,iation 
layeri!l!L.. 
p_arting 
joint sets 
~--· --

texture/composition I 
general Ma.Po 
phenocrys_ ts 

alk. feldsoar 
X 

oligoclase X 

ae11:erine/ auocite 
!lornblende mi 
other -

groundmass 
size C 
shaoe/arran2ement 

alteration oroducts Mt 

TABLE 1-oontinued 

sn104 SD105 --~ 
1<n 1Q 171 . lll. .. 
01._1, 24 3 24-3 24-3 
01 )1 Ql Q1 

.. _____ 
N51W 15E "85W 43W Nl5W 45W N58E.15W 

NlSW, 45W 
N60E. 90 ... N62E,54W 

··----1----,,,--- ---- -
I 

I 
Af 'Af Ma Ma,Jl.i,Br ·- -
X X X 

mi mi mi 

mi mi mi 

C C C C 

Mt Mt Mt Mt 

173 
24-3 
Ql 

N48W 115N 

N,rnE,o,E 
-----

Mt 

SD107 
174 ·--
24-3 
QI 

N8E,65W 

NLUW, / u, 

Af 
X 

mi 

ml 

,C 

Mt 

175 
24-3 
Ql 

Af,Br 

Mt 

"' '° 



TAllLB 1-oontinued 

llamele number "lllQ9 SDllO SD112 SD113 SDllS ISD116 
o u tc !:2.e_!lllmbe r n 

- ·- - - 182-- m no 78 79 180 181 
-

outcrop location ?4-1 24-3 4-3 '4-3 24-3 24-3 24-3 24-3 
rock tyjl_e__ ____ Ql Ql 11 Ql Ql Ql Ql ~l 

strf~~~~~~\tll_ -- ------ L _ \ ____ -
~l'.!!M___ ____ ~ N67E.11E N55W.17W N46E,60W -- N69lf;z2E 

~~!~~- - -n .. sou - Nl1W 81W N20E 40W N89~.56W. N25E.f>oE --
Wll. "- . -- ' _

1 
_ ____ ''" :,2.SR__ ____ _ lnorous 

texture/composition I --
general Ma _Af __f-,f IAf jAf jMa jAf __ 
phenocryst! I _ 

alk. _feldspar . 

IN63W, SSW 

ol igoclase _ j mi jmi j pni . jmi I Ix _______ -1------ __ _ 

aegerine/augite 
~I.riblende I -• 1-.t lm;l ·mi mi 
other i 

I 

gro~~~=ass I c le j _____ k le j !c le I 
shape/arrangement 

alteration Pl:'C>ducts 

"' 0 



Sample number ~n117 SD118 
out~EQ£.__rlumber rn1, 185 
OL1tcrop_location 25 2 24 3 
rock type 01 Ql 

structures 
(ctl_ia t iQ_n_. -
la ye_ri!!lL N69E. 70E N63E.40E 
parting 
joint sets 
n•-ha;; 

texture/composition 
general Ma.H I Af.Po 
phenoc rys ts 

alk. feldsoar 
oligoclase ffl' V 

ae1<erine/ au.,ite 
liornblende _, ,_, 
other 

groundmass 
size (' (' 

shaoe/arran2ement 
. 

alteration oroducts 

TABLE 1-oontinued 

SD119A SD119B ISD119C 
186 186 186 
26 1 26 1 26 1 
31 Ql Ql 

N40E N68W, 78W 

-
N37E 39W 

"" 
I,_ ... ,,...\.,, 

structure 

Ma.Af t,f Af 
. 

~i mi mi 

-i mi 
C-

~ ~ -
Mt(?) 
Se(?) 

SD120 SD121 
187 188 
26 1 23-4 
Ql Ql_ 

N73W,88E 

Lensoidal 
layering 

Af Af 

X mi 

mi mi 

C le 

SD122 
189 
23-4 
ll/l 

N26E,20W 

Ma,Af 

mi 

C 

..., 

.... 



TAl!LB 1-oontinued 

l!ample number snl23 ;n124A >1\124R sDl 25 
Qg_l:£ ro.e..cny!Jlber 1Qfl 1 01 •Ql Q? 

outcrop ,!ocation 1'-1, 0, -1 .,._ 1 H-1 
rock type 01 Ql 1 n 
structures I 

foliati<m . L _____ 
f-·---- ----

g;,eri!llL_ MO I, ?/'\<,1 ,isai, °'''·' 
parting ___ 
~inl sets N60W. 7W 
Q.thgr "' ----~-

texture/composition 
I 

I 

~nerd Ma Af Ma •~ ~a 
pllenocrysts 

alk. feldsoar 
~ltgoclase mi -i .. , 
ae2erine/augite 
jiornblende _, .. , 
other 

groundmass 
size r. -
shape/arrangement iv 

alteration oroducts 

1sn126 SD127 
1Q1 1 QI, 

O<-? "5-2 
01 I'll 

I I I 
I 

M>I, 1' S 7W "1. sr.1 om, 

N45W JOE 

1Af~Gl Af 

_, _, 

_, ,_, 

c ~ 

9v. Tr 

SD128 -,a, 

,26-1 
Ql 

NSST.I s>t; 

N55W.53E 

- -

Af Ma 

~ 

SD129 
1% 
26-1 

1 

I 

B4E 12E 

,M 

-~ 

mi 
I 

! 

I -

I 

.._, 
N 



TAJ!I& 1-oontinued. 

Sample number «111 °'' SD131 SD132 
ou tc !'."Q__!l_ umber 1 2z 1no qq 200 
outcrop location %-1 ?1'-1 "-4 23-4 
rock type n1 "1 Dl Ql 

structures 
f:olia t iQ_n --- } __ 
!_!ye r i!!.!L.. - -;.,77,J <io M25W.60E N21W.58W 
parti'!L N77W. 90 
joint sets ---- -
QJ;her ------- ---- " 

texture/composition I 
general Ma Af Ma,Af Ma,Af 
phenocrysts . 

alk. feldsoar 
oligoclase mi mi 
ae2erine/au2ite ' 
tiornblende 
other 

groundmass 
size (' C C 
shaoe/arran2ement 

alteration nroducts opal 

SD132 SD133B 
201 201 
23-4 23-4 
Ql Ql 

I 

N60E.14E 

N44E 33W 
. ~-·-·- -. ...... -e 1,r-..,,... ... :=._.:1 

Ma,Af Ma,Af, Gl 

4 

tree 

C C 

opal opal 

. SD134 SD135 
·m, - 203 

23-4 23-4 
Ql Ql 

N5W,46W 
N17W,39W N>W ,4bW 

N45E.55E 

Ma Af 

\ 

mi riii 

' 
le C 

Mt(?) 

·-

...., 
w 



TABLE 1-oontinued 

!lample number SD136 Dl37 0138 
outc:,::S!.E.._number ____ [lQL 05 06 "117 
outcro.e__ location "-~- ?1-!1 '-:\-4 03-4 
rock type __ 111 Ql __ ll 01 

structures I I 
f.o lia t .lQ!l __ I 

·-· 
W'_!!-!1illL _ 1.lOrlr., £'. f\1:;, •~l'. (\y:;, I. (\,r~ .lC"IT~ J.1,1'..' r-J1 £'.~ t:. 1,1.' 

parti1!JL _ N80E 60E N60E 40W 
J.~i!'_t _ se t_s N_65E H7E 32E 
2.t.ll;:, r <r(?\ ---· 

texture/composition l 
~er~---- Af Af.Po ,f Po if 
phenocrysts X , 

alk. feldspar 
<>_lJ:.goclase X , 

aegerine/augite . 

!_tornblende 
ocher ----· ~-

groundmass 
size C " ' 

shape/arranRement Tr Hv -

alteration oroducts 

,0139 SD140 
·----

OflO or,a 

23-4 23-4 
ill 01 

I 
--·-

- ;------

N2lfLl,ClE_ ---- -

"a Ma.Af 

mi mi 

I 

" 
,.. 

-----
1,.... ...... ~ 1 

·---

-----
010 . 

23-4 
Ql 

N75R 17W 
,-- -- - --

. 

0141 
211 
26-1 
01 

N50W 65W 

£-" ........... ,,,.r1 

! 
!Af .Ma 
X 

mi 

~1 

" 

_J 

--J 

"' 



TABLE 1-continued 

!!ample number ,......, .. I "'I SD143 D144 D145 
~g~~tJmber ?1? ?H 

----14 15 -
~EJ£_!~cation 26-1 ?6-1 6-1 3-3 
rock type 01 01 1 1 

structures 
foliation ---- -
!ca ~J;.! illL '0,1£'.ATt 1 l:T.l 

hlh "·' "~!J ,1 /\!,! ,; , f.T o,nw 27E 
earti~<L. uLl\n" 1 i;t,1 ,!C::f\U ')7'fi' 

jo1n_t _.!'_e ts_ "l,.l'°)"lf.l ~/1.' ~11..c.u h.11;' 

Qtb1a: --
texture/composition i 

!.l.':_rue r a 1 Af Af f Ma f -phenoct:l_S. ts X 
. 

alk. feldspar 
- ·-

o_ligoclase mi mi ni ni 
~erine/auJ?ite . 

!>ornblende lmi h,f 

other 

groundmass 
size (' " ' "' 
shaoe/arranJ?ement 

alteration oroducts 

SD146 
216 ·117 
26-1 26-1 
Ql t;l 

N47E.16E N7E.45E 

.,.: ~ _; ., VM 

Af -
X 

ml 

Im< 

' 

Dl4? ___ 
18 
6-1 

ll 

N20E.48W 

,, ... ,,.,..,..i.c 1 "'""" 

Af Po 
X 

X 

" Hy 

lim. 

,Dl48 
"~ 

c3-4 
,ii 

Nl t;:t' 'llR 

--
?) 

Ma.A£ 

1ml 

·-· 

" 

ooal 

"' V, 



TABLK 1-oontinued 

l!amp!:_~umbe,r SD149 D151 ~n, 'i? 
out~rop nlltnber nn 221 ??? 12?1 
outcrop location 21-4 21-4 ?1-4 21-4 
rock ty_pe 01 111 01 01 

structures 
f_olia tion_. 

' ' 

!!u'.~ r i!llL NS1tr 5 7E "'!iDE, !n,J as5w f.l,LI 

parti',ll N60E.8W 
joint sets N82E.37W NBOE.17W NSOW. 28E 
othe-;:-· -- M S(n, ? S!,T VM 

texture/composition I I 
! 

~neral Af H ~. 
ehenocr;tsts 

1----

alk. feldsoar 
oligoclase _, L., _, 
aeRerine/auRite 
hornblende 
othei;: 

groundmass 
size C ~ r. 
shape/arrangement 

alteration oroducts 

i_sn1,1 ~n, S/, A 

2?1, 225 
21-4 23-4 
n1 01 

,11.zi, 17R 

N42E.37E 
N80E.43W N40W 73W 

l'rn'hh 1 ,...,.:; 

I._ Mo IMo 

'" 
., 

,_, 

~ (' 

sn, ,4.Jl.. 
226 
23-4 
n1 

I 

N11W 76W 

N40W 73W 
1 ........ Q!"i,., p~ 

Af o~ 'Pl. 

IV 

I 
1. 
Hy,Tr 

Sn1 'i'i -----
1227 
23-4 
n1 

l\TS6W 28W 

? }J..> .... ,....J-;-no-

Lineatiorn 

1'~ H 

' 

C 

I 
I 
I 
I 

I 

i 
! 

--J 

"' 



TAI!LR 1-continued 

!!ampl" numb1;r SD157 ~Dl58B D160A 
outf!E .. e ... 1wmber 227 229 '30 ,31 
outcrop location 23-4 23-4 23-4 ,3-4 
rock type Ql Ql 01 Ql 

structures 
· f<u_iati.sLn __ ! ! I 

.... ,..... ___ .. I 
!;Ly~:,-ing N50E,60W N22W,27W %2E,33W 

l'_!lrt~f!L_ 
joint sets N75E,45W ~10W,67E 
other • ""1 .... - ?Jb,rJ;i-· .. 

lineations 
texture/composition 

general IAf Af Af 
phenocrysts 

alk. feldsoar 
olhtoclase ·t ni 
aegerine/ augite 
ho_rnb lende 
other 

' g roundrna s s i 
size C n C 
shape/arraniement Hy 

alteration oroducts 

ISD160B SD161 SD162 
231 LjL 4j_j 

23-4 23-4 23-4 
Ql <;> Ql 

I 

I 
I 

NB:>W, 4UJ;; N75E,4W 

NlOW,5~11 NZW,4oi,, 
N8W. 70E 

Br Af Af,Po 
X 

mi X 

! ' 
C !c le 

SD163A - <J~ 

ZJ ... 4 
t.;J. 

' I 

N54W ,B5W 

·1 
Af,Po 
X 

11 

,_, 

I ,C,mi 
Hy 

"' "' 



TABLE 1-oontinued 

S'ample number SD163B SD164 SD16S 
__ 1~~66 -!1.!!_g t"J)_l]_l!!11ber ?U ?35 236 

_outcrop location 21-4 23-4 23-4 23-4. 
rock t)'.'pe Ql 01 01 Ql 

structures ! I 

foliation·-·. I - -·---layerigg_ __ NS4W.85W N26W.60W M14E.36E . 

partinL ____ N5E.8E 
joint sets N7E.49E M25W. 31W N14E. 7 SE ~;:-;;;,r---

M? 'IB,Jl.11,l._ -
texture/composition I I 

general H Af Po ii\f r,.ia 
phe?_O."rysts ·-

X 
alk. feldspar -
oligQclase m~ V mi 
aes,:erine/ augite 
!iornblende _, 

<>thei;: 

groundmass 
size {' {' (; (' 

shape/arrangement 

alteration products 

~~!67 SD168 
239 

23-4 23-4 
Ql Ql 

N45E.27W J,25E.59E 
NlSW. 71W 

lMa 
Po,Ma 
Af 
X 

mi X 

(; C 

Hy,Tr 

SD169 
240--
23-4 
Ql 

N55E.43E 
N55E.43E 

Af,Ma 

ml 

I 
'C 

SD170 
v;r· 
23-4 
Ql 

N25E.64W 
N25E,64W 

I 
IMa,Af 

C 

I 
I 

I 
I 
i 

--J 
00 



Sa!1:£le n umbi; r ""; 1 

Q.\I !.<: ro!L!!.umber ?!,, 
outcrop __ location ,_, 
rock type Fo 

s true tu res 
fQ.!J.fil.!Q.n __ y 

layeri!llL. 
partinif ____ 
j__oint sets 
!l.tlli\r -

texture/composition I 
2eneral PoJL_ _ 
phenocrysts XXX 

alk. feldsr,ar X" 
oligoclase 
ae1:erine/au2ite X 

!'lornblende 
othei: Al?) 

groundmass 
size -· shape/arran2ement T_r1 Hy 

alteration oroducts 

t:·.cw;;;-··.-

TAllLE 1-oontinued 

~L175 D95 l --h~ s7 -
7-1 4-3 
Fo (?) )1 

! 
Ix --- -

- - --

'"" ---- -- --·-· --

}l . 
xx ~ --
10 

1 
3 

•(10) ,n 

r> ' Tr, Hy "r 
ep,cn,mt, 

Ch,Se lim. 

-------

--

. 

I I 

I 

" "' 



APPENDIX C 

ABBREVIATIONS TO APPENDIX D (TABLE 2) 



81 

rm-Formations 
Js-Sundance 
Jg-Sypsum Springs 

-Spearfish 
Pm-Minnekahta Member 
Po-Opeche Member 

-Minnelusa 
Mp-Pahasapa 

sample number: A prefix is given, followed by the number of the sample 
SD-Sundance Mountain area 
BL-Bear Lodge Mountain area (includes area surrounding 

Sugarloaf Mountain) 

outcrop location: section numbers are followed by numbers 1, 2, 3, 
or 4, indicating the NE quarter, NW quarter, SW 
quarter, and SE quarter, respectively. 

rock type 
Sitst-silstone 

Ss-sandstone 
Sh-shale 
Ls-limestone 

Gyp-gyprock 
Q-quartzite 

additional adjectives: 1. - limey; s. - sandy 

example: Ls/Ss means sandstone 
distinct lithologies. 
sandstone. 

and limestone occur as 
1.Ss means limey 

grain size 
F-fine to very fine (0.25 - .062 mm) 

Silt-(.062 - .004 mm) 
Clay-less than .004 mm (clay-size meterials) 
F-n-fine grained, nondetrital 
F-r-recrystallized (metamorphosed) 

M-medium (0.25 - 0.5 mm) 

example: F-n/F means that fine grained, nondetrital 
materials occur with (e.g. interbedded) fine 
grained, detrital material 



I sample outcrop 
Fm number number 

1 

2 

Pm BL-1 3 

Pm 4 

Pm 5 , ___ 
Pm 6 

Pm 7 

" 
Pm 
Do 0 

n, -? 10 

PT -'1 10 
Pm 
o~ 11 

:r 
12 

APPENDIX D 
TABLE 2 

SEDIMENTARY ROCK A.~D OUTCROP DESCRIPTIONS 

outcrop s t r u c t u r e 
location rock type bedding joints other 

9-4 Sitst - N43F.,19E 0 arting 

9-4 Sltst N78W,7E >arting 

9-1 Ls N63E,14E Parting 

9-1 Ls Parting 

10-2 Ls N90E, 24S Parting 

10-2 Ls N60E,11E Parting 

10-1 Ls N85E,9S 
N75W65W 
Nl2W84W Parting 

a_, ? So 
-

Q-? LslSs 

4-3 Ss laminated 

4 3 Ss vugs 

4-3 Ss/Ss N35W, 26W X-bedding 

4-3 Ls N85E, 26S 

grain size 

Silt/clay 

Silt/clay 

F-N 

F-N 

F-N 

F-N 

F-N 

M 

F-N/F 

F 

F 

F/F 

F-N 

co 
"' 



sample outcrop outcrop 
Fm m.m,ber number location -- '-

Mn 13 4-2 

Mp 14 4-4 

Mp 15 4-1 

Mp 16 4-1 

· Rs 
Pm 21A 0-1 

Pm 21B 3-4 

Mp 21D 3-4 

Pm 22 1-2 -
Po 23 2-3 

i Pm 32 3-4 

Pm 33 2-3 

Mp BL-36 36 2-3 

Mp 37 3-1 

''··,0h~i;,;,;;f•. 

TABLE 2--Continued 

s t r u c t u r e 
rock type ~edding joints other 

Partings 
Ls N75W, 38W fossilifero•· 

Ls/Sh N42E,22E Parting 

S.Ls N85E,31E 

Sh N82E,41E 

S.Ls N90E,l4S 

l.Ss N78E,54E Parting 

1.Ss N61W,36W 

Ls 

Ss -·-
Ss N47E,16E 

Ls N62E,34W 

Ls 

Ls ossiliferou, 

grain size 

"F-N 

F-N/clay . 

F-N/d 

day/silt 

F-N/d 

F-d/N 

F-d/N 

F-N 

M/F 

F 

F-N 

F-N 

F-N 

00 
w 



sample outcrop outcrop 
Fm nurr,ber number location 

Mn 38 3-1 

Mp BL-37 39 3-2 

Mp 40 3-4 

Mp 41 3-4 

42 3-4 

BL-41 43 3-4 

Pm 48 9-1 

Pm 49 9-1 

Pm 50 9-3 

Pm 51 9-3 

Pm 52 9-2 

Pm 53 9-2 

Pm 54 9-2 

TABLE 2--Continued 

structure 
rock type bedding joints other -
Ls 

Ls 

Ls N64W81W os s i 1 if erous 

Ls N64E,17E N5E,80E 

Ss 

Ss Chert 
Nodules 

Ls N54W, 25E 

Ls N88W,24E 

Ls N60W,19W -· 
Ls 

Ls N63W,10W 

Ls N10W,21W 

Sitst/Ls 

grain size 

F-N 

F-N 

F-N 

FN 

F 

F 

Ls-N 

Ls-N 

Ls-N 

Ls-N 

Ls-N 

Ls-N 

Silt/Ls-N 

00 

" 



,1;;'",;,.·S· 

l sample outcrop outcrop 
1 Fm nurr,ber number location 

Mn 55 4-2 

Mp 56 4-2 

Mp 57 4-2 

Mp 58 4-2 

Pm 70 12-4 

Pm 81 12-4 

Pm 82 12-4 

Pm 83 12-4 

Pm 84 12-4 
-· 

Pm 85 12-4 

Pm 86 12-4 

Pm 87 12-4 

Pm 88 12-4 

TABLE 2··Continued 

s t r u c t u r e 
rock type l;edding joints 

Ss/Ls 

Ls 

Ls N75E,40E 

Ls N80E,43E 

Ls N62E,8E 

Ls N60E,11E N60E,81W 

Ls NSOE,lOE 

Ls N40E,90E 

Ls N3E, 23E 

Ls N36E,24E 

Ls N35E,31E 

Ls Nl9E,23E 

Ls N28E,24E 

other grain size 

F/F-N 

F-N 

F-N 

F-N 

F-N 

F-N 

F-N 

F-N 

F-N .. 
F-N 

F-N 

F-N 

F-N 

I 

00 
V, 



sample outcrop ! outcrop 
Fm nurr,ber number location -
Pm 89 12-4 

Pm 90 12-4 

Pm 91 1-3 

Pm 92 12-3 

Pm 93 12-1 

Pm 94 12-1 

Pm 95 12-1/4 

Pm 96 13-2 

Pm 97 13-2 -
Pm 98 13-2 

f1; ., [,\ Pm 99 14-1 

Pm 100 14-2 

Pm 101 14-4 

f)' 

-~'S,z~;:·' 

TABLE 2--continued 

s t r u c t u r e 
rock type l;edding joints 

Ls N86E,l9S 

Ls N45E,9E 

Ls N82W,2W . 

Ls N37E,7E 

Ls N62W, 24E 

Ls N20E,14E 

Ls NSE,9E 

Ls N30E,35E 

Ls N30E,25E 

Ls N54E,21E 

Ls N45E,4E 

Ls N59W,18W 

Ls Nl5E, 11E 

other grain size -
F-N 

F-N 

F-N 

F-N 

F-N 

F-N 

F-N 

F-N 

F-N 
-· 

F-N 

F-N 

F-N 

F-N 

. 

I 

{X) 

"' 



sample outcrop outcrop 
Fm nurr.ber number location 

,,_ 1M H-~ 

Pm 103 1-4 
Pm 
Po 104 1-4 

105 1-4 

Pm 106 1-4 

107 1-4 

Pm 108 1-2 

Pm 109 1,..2 

Pm HO 1-2 

Pm 111 1-2 

Pm 112 1-2 

Pm 113 1-3 .. 
Pm 114 2-1 

rA.BLE 2--Continued 

s t r u c t u r e 
rock type bedding joints other -
,_ N33W 6E 

Ls N24E, 24E 

Ls/Silst 

Ss NSOE, 13E x-bedding 

Ls 

Ss-congl. 

Ls NSE, JOE 

Ls 

Ls N90W,10E 

-· 
Ls NlOE,lBE 

Ls 

Ls N40E,9E 

Ls 

grain size 

11-N 

Ls 

11-N/ 

F 

F-N 

F 

F-N 

F-N 

F-N 

F-N 

F-N 

F-N 

F-N 

00 ..., 



sample outcrop outcrop 
Fm nurr,bcr number location 
Pm 
Po 115 2-4 

116 2-4 

117 2-4 

Po 118 1-3 

Po 119 1-3 

Pm 120 1-3 
t'm 
Po 121 1-3 
Pm 
Po 122 1-3 -

123 1-1 -
124 1-1 

125 1-1 

126' 7-3 

127 7-3 

I.. 

TABLE 2--Continued 

s t r u c t u r e 
rock type t:.edd:tng joints 

Ls/Silst 

Ls N67E,11E 

Ls 
. 

Silst 

Silst 

Ls 

Ls N32E,10E 

Ls/Silst 

Ss 

Ss 

Ss N66E, 10E 

SI1st/Gyp 

Silst/Gyp N40W, 29E 

other --

. 

. 

grain si.ze 

F-N/F 

F-N 

F-N 

F 

F 

F-N 

F-N 

F-N/F 

M 

M 

M 

}' /F-N 

Silt/ clay 

. 

00 

"' 



sample outcrop outcrop 
Fm nurr.ber number location 

1?R u-u 

Mn 129 4-4 

Mp 130 4-1 

Mp 131 4-1 

Mp 132 3-2 

Mp BL-82 133 3-2 

134 3-3 

135 3-3 -
BL85 140 3-3 -
BL87A 141 4-2 

BL89A 144 4-2 

Mp 145 4-2 

Mp Bl90 146 3-1 

*May be Cambrian, Deadwood Formation. 

TABLE 2--Continued 

s t r u c t u r e 
rock type. 1:,eddl.ng joints other -
". 

Ls 

-
Ls 

Ls/Sh 

Ls 

Ls/Sh N53E,11E vugs 

Ss N87,67E 

Ss N86E,36E x-bedded 

Ss N42W,14E ---
Q N75W, 49E 

Q 

Ls 

Ls (dol.) 

grain size 

F 

F-N 

F-N 

F-N/F 

F-N 

F-r/F 

F 

F 

F-r(?) 

F-r 

M-r 

F-n 

F-r 

"' '° 



:'{, 

sample outcrop 
I 

outcrop 
Fm number number lac.a tion 

Mc 147 3-1 

Pm 148 9-1 

149 3-3 

Pm 150 3-3 

151 3-3 

BL-91 152 3-3 

Js 154 24-2 

242 2-3 

Pn\ 243 11-2 

Po 244 2-4 
Jg 

246 24-1 

Js 247 24-1 

Js 248 24-4 

TABLE 2--Continued 

s t r u o t u r e 
rock type bedding joints other -
Ls Nl5E.14E 

Ls 

-
Ss 

Ls 

Ss 

Ss N77W,22E 

Ss N65E,19W x-bedded 

Ss N49E, 25E 

Ls N27W,5E 
-·-

Ss N84W,8W vugs 

Gyp/SI1st N58E, 25W slumped 

Silst N6W,4E 

Ss N2W,SE 

grain size 

F-N 

F-N 

F 

F-N 

F 

F-r(?) 

F 

F 

F-N 

F/M 

F-N/sil t 
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