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until at le~st 4,500 yr B.P. No You ger Dryas-equivalent climatic 

deteriorati~ was detected. These i terpretations corroborate results 

' of glacial geological studies in the Lake Region. 



INTROD CTION 

I 
A disprrportionately high perce tage of the paleontological 

investigatiors carried out to recons ruct late Quaternary envi;ronments 

and climates: have been from areas in the Northern Hemisphere. Conse­

quently, the. late Quaternary climatiq history of Europe has often been 

taken to rep~esent the normal sequende of global 

Mercer (1969~ in an early, controverlial article 

events. However, 

proposed that the North 

Atlantic was atypical during the last glacial maximum because it was 

bounded to the east and west by large ice sheets and presumably to the 

north by extrnsive ice shelves. He 

configuratioi·would have had a uniqu 
i 

around the Nfrth Atlantic during deg 

and disintegtating ice shelves would 
I 

trends and Cfuld possi.bly have cause 
I 

uggested that this cryospheric 

influence on the climate of areas 

aciation because decaying ice sheets 

have retarded post-glacia~ warming 

temporary reversals in the warming 

trends. Rud~iman and McIntyre (1981) presented oceanographic evidence 
i 

supporting M~rcer's proposal. In co trast, temperate South America was 
I 

I 
not bounded ~y large ice masses and he amount of land ice has not 

decreased sikuificantly since the la~t glacial maximum (about 19,500 yr 

B.P.--
14c years Before Present). The major consequence of post""!llaximum 

climatic ame:J.ioration has been a dec~ease in the area covered by ice 
. I 

Fat this reason, Mercer (19!76) believed that areas such as shelves. 

southern South America responded more' rapidly during the last glacial­

-It-
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interglaciat transition to forcing factors controlling climatic change; 

it therefor~ provides more representative evidence for such changes than 

the North A~lantic areas. 

As with other areas of the Southern Hemisphere, paleoclimatic 

studies in ~outhern South America have lagged behind those in the 

Northern Hemisphere even though many of the hypotheses relating to the 

causes of ci\,.mate change are predicated on either in-phase or 
I 

out-of-phasei relationships between the polar hemispheres, Because the 

late Quaternrry glacial record of the southern Chilean Lake Region (39° 

to 42° S. lat.) is one of the most extensive and detailed in the 
i 

Southern HemJsphere, paleoclimatic investigations in the area can offset 

the bias of data from the Northern Hemisphere. Easily accessible, 

widespread, tell exposed, and radiometrically datable late Quaternary 

deposits areipresent in the Lake Region. Numerous glacial geological 
I 

(Mercer, 197~a, 1976, 1982, 1983, 1984a, 1984b; Laugenie and Mercer, 
I 

1973; Heusset and Flint, 1977; Porter, 1981) and palynological (Heusser, 
I 
I 

1966a, 1966b~ 1974, 1981, 1984a, 1984b; Heusser and Streeter, 1980; 

Heusser and ~thers, 1981) studies have been conducted there. The 
I 

investigatio~s, however, have produced conflicting hypotheses concerning 

the late Quat~rnary climatic history of southern Chile, 
I 

The latej glacial {Late Llanquihue) maximum in the Lake Region 
i 

occurred (Merfer, 1976) about 19,500 years ago (herein years ago or 

years old mea~s 14c years). This culmination falls within the same time 

range, 20,000
1 
to 18,000 yr B.P., as the last glacial (Late Wisconsinan-

i 
Late Weichselian) maxima in temperate latitudes of the Northern 

i 

Hemisphere. +ccording to Mercer (1972a), rapid glacial recession 

! 
i 
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followed th~ 19,500 yr B.P. maximum and by 16,300 yr B,P, the glaciers 
i 

were reduce~ to about one-half their maximum size. The warming trend 

that caused lthe recession was also noted by Heusser (1974) in pollen 

profiles frcim the Lake Region. One (Mercer, 1976, 1984b) or perhaps two 

(Porter, 191) readvences interrupted the general trend of post-1llaximum 

degleciatio. The most unequivocal evidence suggests that only one 

readvance o urred, culminating about 14,500 yr B,P. (Mercer, 1984b). 

Rapid withdr~wel followed the reedvence, Glaciers had retreated into 

the mountainf by about 12,500 yr B.P. and had contracted to their 

present positon by 11,000 yr B.P., remaining smaller then today until 

Neoglacial t, e (Mercer, 1976). Mercer's geomorphological studies 

implied thati interglacial climatic conditions were established in 

southern Chi~e by et least 11,000 yr B.P. end remained relatively stable 

until the Nerglacial. 

Important differences exist betwen Mercer's scenario and that 

determined by palynological investigations from the Lake Region. 

Vegetationallchanges implied by pollen studies were interpreted by 

' 

Heusser (197+) and Reusser and Streeter (1980) to represent gradual 

warming from: about 13,000 yr B.P., culminating in temperatures warmer 
! 

than today by 11,300 years ago. Their findings were in agreement with 
i 

the geomorph1c evidence indicating that glaciers retreated rapidly 

during that ~ime and were within their present margins by 11,000 yr B.P. 

But they int~rpreted their paleobotanical evidence to indicate a marked 

reversal in ~his warming trend from 11,300 yr B.P. until about 9,500 

years ago. ~ummer temperatures were estimated to have been about 6°C 

colder and p4ecipitation much greater than today during that short but 
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sharp period of climatic deterioration. A climatic setback of such 

magnitude should have caused glacier resurgence, an inference that is 

not corrobo~ated by Mercer's geomorphological studies. Significantly, 

this postul,ted cold and wet phase is approximately coeval with the 

I 

clearly def~ned Younger Dryas Stade of northwestern Europe, which 
! 

resulted in jglacier readvance there, The climatic history of southern 

Chile for the interval between 11,000 and 10,000 years ago, implied by 

palynological studies is, consequently, notably different than that 

inferred fr°"' glacial geomorphological studies. 

Becaus, the Younger Dryas was such an emphatic event in north­

western Euroji,e, many Quaternary researchers consider it to have been a 
I 

worldwide cllimatic reversal even though there is little, unequivocal 

evidence off limatic deterioration during that time in North America or, 

for that mat er, anywhere outside of northwestern Europe. Interpreta­

tions of pal obotanical evidence from the Lake Region support the 
I 

concept of "I global deterioration of climate during the Younger~ 

whereas geolrgical evidence from southern Chile does not. The 

importance o~ determining whether the Younger Dtyas was a global 

phenomenon o~ geographically restricted has far-reaching implications 

because, forl example, the global occurrence of the Younger Dryas Stade 

was assumed ~n setting the epoch boundary between the Pleistocene and 

Holocene at ~0,000 yr B.P. (Mercer, 1972b). 
I 

Through! analysis of fossil beetle assemblages, it is the intent of 

this study tb: 

(1) determine the environmental and climatic history of the 

so?thern Chilean Lake Region during the 18,000 to 4,500 
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-s­

YJ B.P. time period; 

a~tempt to resolve the problem presented by the conflicting 

p,leobotanical and geological interpretations concerning the 

t~ming and duration of climatic events in the Lake Region, 

e~pecially during the time of the European Younger Dryas 

S~ade; 

(3) determine the time of the last glacial readvance in the Lake 

Region and the rapidity of wanning and recession following the 

a~vance; 
i 

(4) c1mpare the findings with other Southern and Northern 

H~misphere records. 
! 

Although ossil beetles have been used extensively in the Northern 

Hemispher , :especially in western Europe and North America, to determine 

Quaternar environments and climates, no studies of this kind have 

previous! been attempted in the Southern Hemisphere, 

For h~ method to be successfully applied, well-dated sequences of 

fossil as eujblages must be available and knowledge of the autecology of 

the taxon m~c groups must be adequate. Four low-elevation sites (Puerto 

Octay, Pu r90 Varas Park, Puerto Varas Railroad, Rio Caunahue) in the 

southern h~lean Lake Region (Figures 1 and 4), previously discovered 

during gl c~al geological investigations, were chosen for this study 

because c l~ectively they span the time interval of the last 18,000 

years and ~fter cursory observation, were determined to contain beetle 
i 

fossil, de~tification of fossils and paleoecological interpretations 
! 

based on he~ are dependent on systematic, ecological, and distributional 

knowledge ofi the existing fauna. Although the southern Chile beetle 
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fauna is considered depauperate by entomologists, little is known of the 

community stiructure and population dynamics of the group. Consequently, 

' it was neces~ary to gather a comparative collection of existing beetle 

species from the Lake Region to aid in identification of the fossils and 

to establish! an elevational zonation of the Coleoptera fauna to attach 
I 

climatic sig~ificance to the fossil assemblages. Results of the study 

of the existfng coleopteran fauna are presented in Appendix A. The 
' 

fossil sitesiand modern fauna were collected during two 

each two monfhs in duration, during the austral summers 

1979. I 
I 
I 

field seasons, 

of 1977 and 



I PR<noas "°"' 
Quatetnary Paleoclimatic Studies in Southern South America 

i 
Prior tf this investigation, paleobotany and glacial geology were 

I 
the only mettods used to decipher the Quaternary climatic history of 

southern Soulh America. According to Markgraf (1980a), the earliest 

pollen analy es were by van Post, the "father of pollen analysis," who 

described potlen profiles from peat sections collected by the Swedish 

glacial geoligist, Caldenius, in Argentine Tierra del Fuego. Markgraf 

(l9B0a) presumed that his intent was to show the global applicability of 

the newly-deyeloped science of palynology. It was during that period 

that palynol~gical studies were initiated in Chile by the Finnish 

palynologistl Auer, resulting from collections obtained during the 

Finnish ExpeJition to Tierra del Fuego in 1928-1929. After the early 

exploratory expedition, Auer revisited the area he called Fuego­

Patagonia on;numerous occasions and collected samples for palynological 

analysis fro+ over 120 sites, most of them were in Argentina but some 

were in the ~gallanes area of Chile (Heusser, 1964). Auer established 

a comprehensfve late Quaternary chronology for southern Patagonia based 

on tephrochrfnology and on sea-level comparisons with Scandinavia and 

followed thejEuropean system of three late-glacial and five post­

glacial poll n zones (Markgraf, 1980a). Subsequent radiocarbon dating 

has demonstrited, however, that most of Auer's sections were Holocene in 

I -7-



. _., 

-8-

age (Auer, 1,74; Markgraf, 1980a). 

The modfrn era of paleoclimatic investigations in southern Chile, 

based on seq~ences of pollen assemblages, began with the 1959 American 
' 

Geographical'Society's expedition to Laguna de San Rafael in the 

Province of Aisen (46°40'S). The only prior palynological studies in 

Chile had been by Auer in the Province of Magallanes, and by Salmi 

(1955), who 4escribed the 
I 

Mylodon, drotpings found 

Province of ragallanes. 

Society's ex~edition were 
I 

changes in stuthern Chile 

' 

pollen recovered from giant ground sloth, 

in the cave at Ultima Esperanza also in the 

The objectives of the American Geographical 

to gain knowledge of Quaternary environmental 

and to determine if glacial events in both the 

Northern andjSouthern Hemispheres were in phase. Interpretations of 

pollen profi~es from peat deposits collected at Laguna de San Rafael 
l • 

were reporte1 by Reusser (1960, 1964, 1966a) in a series of articles. 

' 
In these wriqings, Reusser attempted to correlate the San Rafael post-

glacial pollin sequences with Auer's farther to the south and with those 

from Europe, !North America, Colombia, and other areas in the Southern 
' ' 

Hemisphere. IHe concluded that the San Rafael sequences were generally 

correlative ~1th others in the Northern and Southern Hemispheres and 

suggested th~t the findings reinforced the view that climatic events 

were in-phase between the polar hemispheres during post-glacial time. 

He later ext~nded the concept of synchrony of hemispheric climatic 

events to incjlude the late-glacial (Reusser, 1966b) and reiterated this 

opinion in maky later 
' 

papers. 

' 

Reusser'ls palynological studies (Reusser, 1960, 1964, 1966a, l 9&6b, 

1972a, 1972bi 1976, 1981, 1982, 1983, 1984a, 1984b; Reusser and Flint, 
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Heusser and others, 1981) in southern 

Chile, spann~ng more than two decades, have included data from the 

provinces ofiMagallanes, Aisen, Chiloe, Llanquihue, Osorno, Valdivia, 
I 

and O'Higgint from about 34° to 49°S latitudes. As a result of his 

work, a conttnuous pollen stratigraphy of the Lake Region has been 

established ~ack to 43,000 yr B.P. Most of Heusser's interpretations 

i 
were based 0$ pollen frequency diagrams but Heusser and Streeter (1980) 

and Heusser nd others (1981) used multivariate statistics in data 

analysis. Husser and Streeter (1980) constructed regression equations 

relating pre ent-day pollen taxa from surface samples to precipitation 

and temperat1res in southern Chile and applied these equations to a 

16,000 year-tong, radiocarbon-dated, pollen sequence from a lake core 

recovered atlAlerce near Puerto Montt. The record was extended back to 

about 43,000lyr B.P. by applying the same methods (Reusser and others, 

1981) to a pclllen sequence from a lake core at Taiquem6, Isla Chiloe. 

Results of tJeir quantified approach indicated that about 43,000 years 

ago summer t<jtnperatures were about 2°C less and annual precipitation was 
I 

about 1,5001lf more than at Taiquem6 today. Between about 31,200 and 

14,200 yr B.~. summer temperatures were relatively stable (about 4°C 

cooler than t,oday) and precipitation, although it fluctuated, was on the 
! 

average about: 1,500 mm annual less than today. The trend to warmer and 
i 

I 
wetter condit~ons began about 16,000 yr B.P. (Alerce record) or 14,000 

yr B.P. (Taiqrem6 record) and peaked at about 11,300 yr B.P. with summer 

temperatures ~°C warmer than at Alerce today. A cooling trend, between 

11,300 and 9,boo yr B.P., followed and a temperature minima, 6°C colder 

than Alerce's' average summer temperature, was reached by about 10,300 
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yr BJP. Betiween about 9,410 and 8,600 yr B.P. summer temperatures were 
. . 

about s•c w1rmer than today's average. After this warming trend cooling 

set in and sfuccessive minima were reached between 4,950 and 3,160 yr 

B.P., betwe~ 3,160 and 800 yr B.P. and during recent centuries, This 

cooling was ~nt:errupted twice by temperatures higher than today at about 

3,000 and 356 yr B.P. Precipitation maxima, much higher than today, 

were determired to coincide generally with temperature minima, peaking 

at 10,520 yrl B.P., between 4,950 and 3,160 yr B.P., after 3,160 and 
i 

before 890 Yf B.P., and between about 350 yr B.P. and the present. 

Heusser and Streeter (1980) concluded that variations in temperature and 

' i precipitatio!l recorded at Alerce closely paralleled glacial fluctuations 

in southern ile over the past 10,000 years, and Heusser and others 

{1981) comme ted that the temperature and precipitation trends reflected 

by the Alerc and Taiquem6 pollen records are generally representative 

of Quaternarf climates in middle-latitude areas of the Southern 

Hemisphere. iuowever, as was discussed earlier, these interpretations 

are not, at times, consistent with those formulated from geological 

studies and, [as will be shown later, with those inferred from analyses 

of beetle asfemblages. 

For com~leteness, and because of some of the studies will be 

referred to iater, the following noteworthy paleobotanical 

investigatio,s in southern South America are included in this historical 

review. Oth,r than Heusser's, the only palynological study from Isla 

Chiloe was b~ Godley and Moar (1973) who analyzed pollen from two post­

glacial bog ~ections. The vegetational history of Vincente Perez 
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Rosales Natirnal Park, Chile was described by Villagranl(l980). Aside 

from the earty work of Auer, the palynological studies y Markgraf 
I 

(1980a, 1980~, 1983, 1984) have contributed insight int~ the Quaternary 
i ' 

paleoclimatir history of southern Argentina. 

(1982) reviewed the Holocene climatic history 

Markgraf tnd Bradbury 

of South ,tmerica. 

Because 1 glaciers east of the Andes in southern Sou1h 
I 

America 

terminated ot semiarid plains, no chronology based on rldiocarbon dating 

is obtainabl~. Despite this, the first systematic inve,tigation of 

glacier actitity in southern South America was by Caldeqius in the 1930s 
i 

who mapped ftur 

(Mercer, 197~). 

53•s. 

end moraine belts in the lake district qf Argentina 

He traced the morainal systems from la~. 42°S to lat. 

varve chronology and preservation of the moraines, 
I 

Caldenius co,cluded that the three inner moraines were c1orrelatives of 

the Daniglac,al, Gotiglacial, and Finiglacial end moraits in 

Scandinavia (Mercer, 1976, 1982, 1983). The Scandinavia moraines are 
! 

now known to jhave been formed during the last 20,000 yea~s (Mercer, 

1984b), and 1f these, the Finiglacial moraine system is ~enerally 

equated with lthe Younger Dryas Stade (Clapperton, 1983).1 Caldenius 
' 

speculated th~t only the oldest, outermost moraine was Pte-Late Weichsel 
i 

in age (Mercer, 1976). 

and lat. 43°sl (east of 

Farther north in Argentina, betwren lat. 39°S 

the Chilean Lake Region), Flint ajtd Fidalgo 

(1964, 1969) ~ecognized three drift sheets based on weathering criteria. 
! 

In the.it 19691.
1 

paper, they correlated the three drift shetts with 

Caldenius' thfee inner moraines but concluded that his ojtermost moraine 

was not preseµt in the territory they mapped. They conc~rred with 
I 

Caldenius that the Finiglacial moraine was Late Wisconsinan in age but 
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believed th+t the Gotiglacial and Daniglacial moraines!ated from the 

pre-iate Wi4consinan. Mercer (1982) determined that t Daniglacial 

moraine (se~ond oldest of Caldenius' moraines) was cove. ed by 177,000-
; ; 

year•old la'la and concluded that Caldenius underestimad,d the age of all 

of his mora4ne belts. The chronology of the Argentine f: oraines and 

their relat~on to those on the west side of the Andes h s yet to be 

established, 

West of( the Andes, south of 43°S, the glaciers adv~nced into the 
I . 

Pacific Ocear during glacial maxima and no chronology of glacial 

acti'!ity is rbtainable. However, north of 43°S glacier! terminated on 

humid, veget~ted lowlands and the timing of glacial eve ts has been 

determined b~sed on well-dated sequences of moraines on:Isla Chiloe and 

in th.e Chile~n Lake Region. 
i -

Bruggen, Weifchet, Olivares, 
; 
; 

geological investigations in 

! 

Mercer (1976) summarized the results of 

Lauer, and Laugenie's earl+ glacial 

the Lake Region, but theselstudies were 

I 

completed without radiocarbon chronologic control. 

Laugeni+ and Mercer (1973) and Mercer (1972a, l976J, mapped and 

named four etid moraine systems in the southern part of 1·he Lake Region 

(Figure l); rom oldest to youngest the morainal belts re: Rio Frio, 
i 

Colegual, Catma, and Llanquihue, The oldest three are beyond the range 
; i 

of radiocarb,fn dating and are believed to have been deposited by either 

two or threejglacial advances. Outwash gravels underly,ng and cropping 

out west of he Rio Frio end moraine are thought (Merce,, 1976) to 

represent on1 or more pre-Rio Frio glacial advances, Mjrcer (1976) 

speculated t~at the Rio Frio Drift may be of the same age, between 1.2 

•• , 1.0., ·1'· .. ,,,,,. <n ,,,~,, •• ,.,.,~,. ·"" '~' ,., •• ,.,,,, .. 
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I 
Figure 1. MaJ:1 of the 
showing drift.lsheets, 
sites. Compi1,"d from 
Porter (1981). 
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gravels similar in age to the mid-Pliocene to mid-Pleistocene 
i 

Patagonian qravel, He did not speculate on the age of the Colegual or 

I 
Casma Drifts other than that they are younger than the Rio Frio, but ,he 

believed bot~ may have been deposited during the same glacial stage. 

The Llanquihbe moraine-complex, which dates from the last glaciation 
I 

(Merc'er, 197r), will be treated more fully below. 

Porter (1981) identified four glacial drift sheets in the Lago 

Llanqµihue atea naming them, in order of decreasing age, Caracol, Rio 

Llico, Santa 1 Maria, and Llanquihue (Figure 1). The three oldest are 
i 
I 

beyond the r,inge of radiocarbon dating techniques. The Caracol Drift! 

crops out lodally in the Central 

coastal mounJains and is usually 

Valley along the eastern slope of th~ 

overlain by Rio Llico till or outwash. 
i 

The d:irift wa4 deposited during a major glacial advance that extended, iin 

certa:tn areaJ, to the Coast Range. No end moraines have been identif~ed 
' i 

associated wifh the Caracol Drift, The most widespread drift recogni~ed 

by Porter, ca~led Rio Llico, was laid down during an extensive advance: 

that probably\ filled the Lago Llanquihue basin and perhaps reached the 

Pacific Oceaninear Maullin. Again, no end moraines were found in 

conjunction w~th this drift, Most of the surficial sediments in the 

lowland 

Drift.· 

west of Lago Llanquihue and 
I 

Seno de Reloncavi are Santa Maria 

The g+aciation resulting in deposition of this drift was not at 

extensive as {hose indicated 

its western l:(mit is 7 to 14 

by the Caracol or Rio Llico Drifts because 

km east of the maximum extent of the Rio 

Llico advance! According to Porter (1981), deposition resulted from a 
I 

coalescing pi~dmont ice lobe complex from Lago Llanquihue, Seno de 
I 

Reloncavi and \Golfo de Ancud source areas. The three older moraine 

: 
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belts descrtbed by Mercer (1976) are within the Santa Maria Drift, 

indicating multiple ice advances into the valley. Radiocarbon dating 

indicates alminimum age of 57,800 years for the drift. 
i 

Heusse\ and Flint (1977) mapped two drift sheets on Isla Chiloe .and 

interpreted ,them to indicate at least two glacial advances onto the 

island prio~ to 57,000 yr B.P, Their relationship to drifts on the 
i 

mainland has\ not been studied. 

Sediments deposited during the last glaciation were named the 
• I 

Llanquihue Dfift by Mercer (1976), following the designation by Heuss,r 

I 
(1974) of thf last major glaciation in the Lake Region as the Llanqui~ue 

Glaciation. \Heusser suggested that the glaciation was roughly 
I 

equi~alent t1 the Wisconsinan Glaciation of North America. Mercer 

(1976) ident{fied two end moraine complexes formed by the glaciation 

(Figure 1). \The westernmost (outer) ridge, most massive and associat~d 
I 

with the gre1test volume of outwash, was formed more than 40,000 year~ 

ago, probably more than 56,000 years ago. The eastern (inner) moraina 

belt, borderJ,g the western margin of the lakes, was built by a less 

extensive advrnce that culminated about 19,500 years ago. Mercer 

interpreted the end moraines to reflect two major advances into the . 

Region during\ the last glaciation. A third and perhaps fourth advance\, 

discussed belf"• was proposed 

Porter (~981) separated, 

by Mercer (1976, 1984b) and Porter (1981~. 

on morphostratigraphic and sedimentologit 

criteria, the\drifts deposited during Llanquihue time into three I 
complexes of 1'tadial rank. He informally called them Llanquihue I, II! 

and III and i £erred that they document three or possibly four advance~ 

or readvances \into the Region (Figure 1). Llanquihue I drift general!* 
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oJtermost morainal arc about 

dharacterized by kettle and 

s"" ~,, ., '"" ,,,,,,,, •• ~ 
krune topography with small lakes 

I \t includes Mercer's (1976) westernmost Llanquihue Glacia~ion 

Alrhough the drift has not been accurately dated, Porter 

and bogs. 

moraine. 

stated that ft may be substantially older than 57,800 years. He 

tentatively correlated moraines in the Seno de 

Llanquihue r\moraines west of Lago Llanquihue. 
I 

Reloncavi area with 

Mercer's easternmost 

It is most moraine beltl'corresponds to Porter's Llanquihue II drift. 

well develop,d south of Puerto Octay on the western margin 
i 

Llanquihue atd has been tentatively correlated by Porter with moraine1 

southwest of iPuerto Montt. The advance depositing the Llanquihue II I 

drift and as~ociated moraines is well dated, culminating between 20,oJo 
: 1: 

of Lago 

and 19,000 y<iars ago. This is the most reliable date for the last I: 

glacial maxinLm in the Southern Hemisphere (Mercer, 1984a}. During this 
I 

maximum the glacier complex was estimated to have 

in the latitu)ie of Lago Llanquihue and as much as 

been about 165 km w1'fe 

1000 m thick in 

calculated th~t 

800 to 

the Lago Llan~uihue basin (Porter, 1981). 

the snowline ~ust 
I 

1,900 to 2,25~ m. 

have been about 1,000 m 

Porter (1981) 

i 

below its present elevation rf 

i 
i 

By about[l8,900 yr B.P. the ice had receded from the lake marginaf 

moraines (Mercer, 1984b) and by 16,270 yr B.P. had retreated from end 
I 

the Lago Llan1uihue basin (Mercer, 1976). The inferred interval of 

shrunken glac:l!ers was called the Varas Interstade (Mercer, 1972a, 1976)'. 

Porter (1981) \proposed that a readvance occurred shortly after 14,200 Jr 

B.P., culmiria,ing about 13,000 years ago, represented by a third 
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morainal system, Llanquihue 

area. Howeier, the time of 

Ill, discovered in the Seno de Relon,avi i: 

till deposition has not been accurately :, 

dated and nJ end moraines resulting from that advance have been Jound 

along the w~stern margin of Lago Llanquihue. 
I , 

Mercer (1976) and Pprt,r 
i I 

(1981) stat,d that sequences of lacustrine sediments interbedded fith\ 

peats, exposed along the southwestern margin of Lago Llanquihue if th\! 
\ , I 

Puerto Varas; embayment, provide evidence for the advance. Repeat~d l~ke 

level change~ were inferred by them to have resulted from glacial! 
i ' 

fluctuations[ Peats were deposited presumably during times of lo*ere1 

lake level wten the glacier receded far enough to the east of the\laki 

to permit the lake to drain via its eastern outlet, the Rio Petrobue. , 

That outlet ~as since been abandoned and is now partially filled ~ith \ 

volcanic mud~low deposits from the volcanoes Osorno and Calbuco. 6.e i 
peats are ov,rlain by lacustrine sediments. This submergence, \ 

terminating prat formation, was interpreted to have been caused byi 

glacial advance blocking drainage through the eastern outlet thereby 

raising lake ~evel, Mercer (1972a) believed the advance culminate4 

about 14,800 ~ears ago but later (Mercer, 1976) revised the date t~ 
I I 

about 13,000 yr B.P. Porter (1981), however, postulated that two \ 

advances are recorded by the drowned peats: the first began about: 

l l 
15,700 yr B.P, and culminated about 15,000 to 14,000 years ago and 1a 

I i , 
second began 1bout 14,000 yr B.P. and culminated approximately 13,lpO ! 
years ago. P~rter discussed the assumptions and problems associate~ \ 

i ' 

with his post,lated sequence of glacial events but stated that Heusrer i 
and Streeter's' (1980) palynological record from the area appeared tf bei 

consistent witl his geological interpretations. Later, Mercer (1984b) 
1 

i I I 
I i 

I 
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reflected thrt both glacial variations and volcanic activity may havel 

affected thel lake level and concluded, from more direct evidence foun~ 

on Isla Chil~e, that the final full-glacial readvance occurred betweel 

i 1 about 15,000: and 14,500 yr B.P. 
I 

Glacial\geological evidence from both southern Chile and southe 
1 

Argentina inficates rapid deglaciation following the final late-glacijl 

readvance inlsouthern South America (Mercer, 1984a, 1984b). By 12,301 

yr B.P. the $laciers were confined to the mountains and by 11,000 yr i 

B.P. had retteated to their present positions and remained there unti 

Neoglacial tfmes (Mercer, 1976). No geomorphic evidence suggesting 

Neoglacial advances has been documented from the Lake Region but fart r 
! 

south in botij Argentina and Chile glaciers readvanced during three 
! 

periods and ~eached their Neoglacial maxima between about 4,600 and 

4,200 yr B,P,i, between about 

centuries (M,rcer, 1982). 

2,700 and 2,000 yr B.P., and during recell: 

Beetlesi as Indicators of Quaternary Environments and Climates 

For a of organisms to be useful for reconstruction of 

Quaternary en~ironments and climates it must be ecologically diverse 

well represenred in the fossil record. The fossils must be easily 

recoverable and reasonably easy to identify. In addition, to draw : 

paleoclimaticlinferences, the group must possess a demonstrated responte 

to climate chtnge, Moreover, before any paleoenvironmental 

interpretatiotts can be postulated, it must be reasonably certain that 1· 

the physiologtcal requirements of species within the group have remain d 

stable over tJe time of interest. Coope, in a number of reviews (CoopJ, 
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196 7, 1970, 11975, 1977, 1978, l 979), discussed the attributes of beetles 

I I 
making them,excellent indicators of Quaternary environments and cli~tes 

and revieweJ the tacit assumptions recognized relative to their use.\ 

Those attri~utes and assumptions are SUlll!llarized below. 
I 

To occ,r in abundance in the fossil record a group must be dive,'se 

in species "'i°mposition, species must generally generate high numbers rf 

individuals,: and the organisms must be preservable. Arnett (1971) 

estimated th~t there are well over 350,000 described beetle species abd 

at least one\out of every four named species of animals is a beetle. \ 

The Coleopteta are more diverse in species than any other group. Thet 

occur in al11but the most northern and southern latitudes and have 

colonized allost all terrestrial and freshwater habitats and have eveJ 
I 

invaded the n)arine intertidal zone. Many species are remarkably \ 
I 

restricted a1d precisely adapted to a particular environmental niche~ 

have represejtatives in all trophic levels of the community food web. 

In addition tp high species diversities, population density is often 

high in many boleoptera species. Examples from study of the Chilean 

Lake Region ffuna (Appendix A) include the discovery of over forty 
i 

individuals of one species of Bembidion under a single boulder in an 

alpine tundra 1 habitat and the recovery of thirty individuals of the dulilg 

beetle, Dichoiomius torulosus, in one baited pitfall trap in the \, 

Valdivian Raid Forest. Such findings are particularly common in aquat{c 
I 

environments ,here beetles are most well preserved. 

· Preserva,ion of Quaternary beetles is usually exquisite if the 

sediments have, not been oxidized. The fossils are not replaced by 
i 

secondary minerals 
' 

but are preserved through the robustness of their 

I 
I 

I 
' 

I 
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original chitin. Chitin is known to be resistant to both 

chemical and! biological disintegration for millions of years. Howev+·, 

complete bee~le fossils are rarely recovered and, most frequently, 

beetle fossit' s are found as disarticulated skeletal elements consistirg 

of heads, el tra and pronota. The less-chitinized anatomical parts, for 

example ante!nae, are often lost to decomposition. Nevertheless, the 

larger more 4urable fragments are generally the parts most useful for 

identificatidn. Deterioration is usually minimal; and scales (e.g., \ 

Plate 2, Fi~re 4), setae (e.g., Plate 6, Figures 2 and 4), pubescenc1, 

structural cdlor, and intricate patterns of microsculpture (e.g., Plaie 

5, Figure 4; \Plate 6, Figure 2) are often preserved. 

Present~day coleopteran species are differentiated by the 

morphology of\ the exoskeleton. The paleocoleopterist 's concept of 

species is exactly the same as that of the neontologist and the same 

criteria are ~sed to identify fossils as are used by entomologists to 

identify livi~g forms. Even though preservation is sufficient to pe~,· t 

precise identffication of the fossils, caution must be employed. 

Taphonomically induced aberrations, such as shape distortion, 

development of peculiar surficial rugosity, punctures or dimples and 

alteration or i complete loss of color frequently occur in fossils. 1· 

i 
Postmortem chtnges can occur and must not influence taxonomic decision .• 

In addition, tt must be kept in mind, when making paleoenvironmental 

interpretatiois based on assemblages of fossil beetles, that only a 

portion of th1 once-living community is represented. The success of :i 

on the researcher's ability to\ paleoecologic41 reconstructions depends 

i strip away taphonomic overprints (Lawrence, 1971). 
! 
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of preservability, species diversity, and individual 

beetles are often found in extraordinary abundances in 

Quaternary !on-marine sequences. Beetle remains are often the most 
i 

common comp
1

nent of the terrestrial fossil faunal assemblage. Altho1gh 

they have bien found in organic silts and loess, beetle fossils occuJ 

most conspi9uously in peats. However, extraction of fossils from pe1t: 

is often di,ficult and so organic silts are generally the media of , 

preservatio'\ most preferred because of relative ease in recovery. A \', 

simple and efficient extraction technique is described later. As a ,, 

general rule:, any sediments containing plant macrofossils will also 

yield beetle\remains. Coope (1970, 1975) noted that fossils 

incorporated
1

into sediments deposited in shallow pools, bogs or marshr,t 8 

or into sediments deposited in lake margina, on flood plafns of rivers 

environmentsjare the most informative 

Fossil assem~lages deposited in these 

in paleoenvironmental studies. 

settings are not only 

representative of the aquatic environment but also the immediate 

terrestrial 1nvironment. A wide spectrum of ecologically varied 

!' 

types will be incorporated into the fossil assemblages, reflecting th1 

mosaic of mi~rohabitats present in the vicinity of the actual site of, 

deposition. neep-water lacustrine sediments produce relatively 

depauperate b~etle assemblages because most aquatic species live in i 

shallow wat:eri and 

the deeper wa~er. 

terrestrial forms are less likely to be carried into\ 

Paleoclifuatic interpretations are predicated on the assumptions 
I 

that the distributions of species are controlled by climatic factors, 

principally t~mperature and moisture, and that the present-day 

I 
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geographic or elevational ranges of the species reflect the full 

climatic range that the species can occupy. Both assumptions are 

overgeneralizations. The first of these assumptions is often constr ed 

as being valid because beetles are poikilotherms and because many I 
I 

species are known to be restricted to fairly narrow climatic zones 
I. 

(Coope, 1977). However, the relationship of the distribution of bee1les 

to climatic variables is complex and mostly not understood. Beetles ,· 

live in microenvironments, but it is believed that the distribution ~f 
i 

these microenvironments is largely governed by macroclimate (Coope ain 

others, 1971), Other non-climatic factors, such as food availability\, 

competition and disease, are known to regulate the distribution of so~e 

taxa, but Coope (1977) argued that these factors are density-dependenf 

and are most important when climatic conditions are optimal for i 

existence of the taxa. He also reflected that these controlling factirs 
I 

diminish at the periphery of the range and, in these cases, the 

distributional limit of the taxa are controlled by climate. Some 

species occupy habitats (e.g., leaf-litter, soil burrows) partially 

insulated from short-term climatic changes and the distributions of 

others, particularly those that are host specific on plants, animal d'fg 

or carrion, may be controlled by factors other than climate. It 

appears, however, that even in these situations climate is probably th~ 

most important secondary factor controlling distribution. Even though\ 

Coope (1967, 1977) described a number of ways in which climate can 

control species distributions, the roles that temperature and 

precipitation play in regulated distribution is unknown except for a 
I 

few, well-studied species. Because this information is mostly lacking\ 
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the range of climatic variables within which a species exists is 

inferred from its geographic or elevational range. 

geographic or elevational range reflects the full 

Whether a species\' 

climatic range in 

which the species can exist is seldom known. For these reasons, the 

geographic or elevational ranges of all species within a fossil 

assemblage are considered, not just a few selected 

before interpretations of past climatic conditions 

i 

indicator species,\ 

are attempted. 

Also, before past environmental and climatic conditions can be 

inferred from the fossils, it must be assumed that the species' 

physiological requirements were the same in the past as they are toda~. 

It has been demonstrated that beetles have maintained their specific 

integrity for at least the last half of the Quaternary Period (Coope, 
i 

1978). It is clear no large-scale morphological evolution has occurre, 
I 

in the group during that time interval. Of course, fossil evidence dots 

not preclude the possibility of speciation within the Coleoptera, but :. 

the fact remains that there is no indication of evolutionary change in! 
any of the late Quaternary European (Coope, 1975, 1978) or North \ 

American (Ashworth, 1979) species studied to date. Some idea as to 

far back in geologic time constancy of beetle 

through Matthew's (!970, 1974a, 1974b, 1976a, 

species extends is gained 

1976b, 1977) studies in \ 

Alaska and the Canadian Arctic Archipelago. He analyzed fossil i 
' assemblages from 400,000- to 800,000-year-old sediments recovered at 
I 

i 

I 
Cape Deceit, Alaska, probably the oldest Quaternary fossil beetle-

bearing deposits in North America, Many species from the site were 
' 

Assemblages from\ found to be extant and still living in Alaska today. 
i 

the Beaufort Formation, exposed on Meighen Island, arctic Canada, and I 
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estimated to be Miocene or Pliocene in age, contained beetle fossils' 

falling within the range of variability of modern-day species. OtheJ 

species from the same assemblages were found to be similar to, but nJ't 

conspecific with, living forms. Furthermore, sediments overlain by ~ava 

radiometrically dated at 5.7 MY, exposed at Lava Camp in western Alas~, 

yielded assemblages that contained a mix of both extant, and apparently 

extinct, species. In view of these findings, Coope (1977) concluded \ 
I 

that speciation in the Coleoptera, at least in temperate and northern\ 
i 

latitudes, occurred mostly during the late Tertiary except, perhaps, 1n 
isolated geographic areas such as caves or islands. 

The demonstration that late Quaternary beetles are morphologically 

i.dentical to extant species does not necessarily mean that their I 
i 

ecological and environmental requirements have also been unchanging. I 
' Because there is no evidence of morphological evolution, it cannot be [ 

inferred that there has been no nonmorphologically-expressed . 

physiological evolution. Although there is no way to test empirically\, 

the assumption that physiological stability in beetles has paralleled\ 
I 

morphological constancy, there is substantial and growing circumstanti'l 

evidence from the fossil record that 

species composition, late Quaternary 

resemble living beetle colllmUnities. 

the assumption is valid. ln j 
fossil assemblages strongly 

There is no decrease or distortio 

of these species associations with time; this implies ecological and I 
i 

environmental consistency, as would be expected if no physiological I 
changes had occurred. 

I 

Ecological homogeneity of fossil assemblages is \ 

evident as far back in geologic time as the first signs of morphologicat 

stability; this apparently indicates that physiological evolution has I 
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proceeded at the same slow pace as morphological evolution. This 

conclusion draws corroboration from collateral information such as 

association of beetle fossils with other ecologically and 

environmentally compatible members of the biota. One example is the\ 

I 
finding of host-specific phytophagous beetle fossils in the same 

I 

stratigraphic horizon as remains of the appropriate plants. Geologicl31 

evidence has also reinforced the assumption. For example, sediments \; 
,, 

believed to be deposited in cold climatic conditions because they I 
as! 

I 
contain fossils of tundra beetles may show physical evidence, such 

cryoturbation features, of a severe climate. 

Perhaps the most detrimental belief hindering the recognition 
'· 

th4t 

fossil beetles could be used to reconstruct Quaternary environments a+ 
climates was the concept that the fossils were remains of extinct I 

animals and that the modern-day beetle fauna evolved rapidly during 

latter part of the Quaternary. The belief was based on the premise thrt 
I 

rapid extinction and evolutionary rates should be expected during timer 

of intense and numerous climatic changes wherein populations become 

fragmented and isolated. After all, it was believed that more 

conspicuous members of the biota, for example mammals (Kurten, 1968), 

showed rapid evolution and extinction rates during the late Cenozoic, [ 

largely in response to fluctuating climates. Coope (1977) argued, 

i' however, that this climatic instability caused morphological and 

physiological constancy in the Coleoptera. He reasoned that the 

expansion and contraction of the range and continual movement of beetle 

populations ·as a result of climatic changes during the Quaternary would! 

produce short periods of isolation but these episodes of population 
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fragmentation would be followed by times of convergence. He 

that this type of mixing would maintain a homogenous gene pool therei'y 

insuring species constancy. Whatever the mechanism was to maintain, 

species integrity in the Coleoptera, the 

the same species that live today permits 

observation that fossils ar1 

a reasonably straight-forwa~d 
I 

approach in assessing past environmental and climatic conditions. 

I 
Coope (1979) emphasized that a beetle species has three options 

1 

when environmental change makes an area uninhabitable for its existe~e. 

The species can either become adapted to the newly established 

environmental conditions, become locally extinct, or migrate to an ar~a 

where conditions are still acceptable. Because most beetles are high~y 

active in their adult stages and can readily run or fly considerable\ 
i 

distances, they generally respond to environmental change by migratior·. 

It has been established through fossil studies that even relatively 

sedentary, apterous, ground beetle and weevil 

geographic ranges dramatically in response to 

species have shifted th1ir 

Quaternary environmenta~ 

changes (Coope, 1970). During the period of the last glaciation alon,, 

certain species altered the limits of their geographic range in Europ<1' 

by several thousand kilometres (Ullrich and Coope, 1974; Coope, 1975) .\ 

Similar large-scale geographic 

environmental change have also 

shifts of beetle faunas in response to i 

been documented in North America (Morg~ 

and others, 1983). There is growing evidence that migration of beetle:: 

communities occurs en masse in response to fluctuating environmental I 
conditions (Coope, 1978). 

Beetles are excellent indicators of climatic change because they 

usually respond rapidly to climatic events. The extreme rapidity with\ 
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which the specific composition of a beetle fauna can change from one 

ecological style to another is illustrated by the replacement within 

three or four hundred years, of arctic faunas by temperate faunas in 

Great Britain about 10,000 years ago (Ashworth, 1972). Coope (1977, 

1981) reviewed other studies showing the rapidity with which beetles 

respond to environmental flux. A recurring theme in Coope's writingsi 

has been to promote beetles by arguing that they show a greater alacr{ty 

in response to changing environmental conditions than other members ol 
i 

the biota, especially trees (Coope, 1970, 1977; Coope and Brophy, 1971). 

For example, Coope and Brophy 0972) noted that some fossil sites in ,,he 

British Isles contained assemblages of temperate beetles, but pollen 

spectra from the same sites implied tundra conditions because the 

spectra were devoid of tree pollen. They interpreted these 

paleontological discrepancies to indicate that the more mobile 

components of the biota, beetles, responded more rapidly to 

environmental changes than the more 

biotic community. Their conclusion 

i, 

sedentary, arboreal members of thei: 

was probably correct, but inferrin~ 
; 

that beetles always respond more rapidly than 

change is an unjustified generalization. The 

of organisms depends on the species' ecology, 

distance the species have to travel. Apterous 

arrive later than beetles that can fly. It is 

trees to environmental 

difference in arrival tire 

dispersal ability, and ' 

beetles will generally l' 

conceivable that certai ,, 
i trees can arrive in a newly-opened habitat before such beetles that may 

be habitat specialists and are incapable of dispersing rapidly. In thfs 

respect, an'ideal paleoenvironmental investigation should be 
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interdisciplinary and employ beetles, pollen and macroplants, such a, 

the one carried out by Ashworth and others (1981) at Norwood, Minnes,ta, 

In consideration of the assumptions discussed above, reconstruc~ion 

of past climates and environments based on beetles is a complicated I 
I 

process but has been demonstrated to work in Euorpe (Coope, 1977) and\ in 

I 
North America (Morgan and others, 1983). Studies in the palearctic ard 

nearctic regions have been successful primarily because professional •nd 
amateurs have been describing, documenting ranges and recording habitlt 

I 

preferences of existing beetles from those regions for many decades. \: 
I 
I 

Although the taxonomy of the Chilean beetle fauna is fairly well knowrr 

compared to other areas of South America, the ecology and biogeography 

of most species has not previously been well documented and data have\ 
i 

been insufficient for paleoenvironmental and paleoclimatic 

reconstructions. Consequently, the study of the modern-day fauna, 

summarized in Appendix A, is an integral part of this investigation 

because the knowledge gained provided base-line data on which 

paleontological comparisons and interpretations were based. 



STUDY AREA 

Piysiography, Tectonic History, and Pre-Qua ernary Geology 
I 

Chile is divided into five latitudinal zones. The Region de los 

Lagos (L~ke Region), extending from about 39° to 4 •s latitude, is in 
I 

part included in the Sur Chico or Little South Zon 

portion oif the Lake Region south of 41°S is in the 

PatagoniJ or Patagonia Occidental. The Region is 

(Koster, 1975). '1e 

I 

area called Westeni 

ivisible into three 

structuraf and physiographic longitudinal province (Figure 2): the 

I 
Cordilleri de la Costa (Coast Range), Valle Longit 

Valley), fnd Cordillera de los Andes (Andes). 

Subd*ctio~ of the Nazca Plate beneath the Sout 

began in 

seafloor 

resulted 

,he middle Cretaceous in conjunction with 

spreading in the South Atlantic (Lowrie an 

Jn an episode of intense folding, batholit 
' 

inal (Central 

American Plate 

he beginning of 

Hey, 1981). 
I 

This\ 

emplacements and , 

uplift of \the Andes--the initiation of the Andean O ogeny. Most of 

Lake Regi~ has been emergent since that mid-Cretac ous orogenic 

episode, bµt the continental margin of the Region r mains a seismicall~\ 

active, tebtonic boundary between the converging pl tes. Consumption or 
the Nazca flate at the Peru-Chile trench results in 

seismic ac\ivity along the Benioff zone and uplifte 

Bending of the Nazca Plate at the trench causes exte 
I 

olcanism on land, \ 

continental crust·\ 

sional stresses 1 

producing ~ensional rather than compressional tecton·cs in the Lake 

-29-
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Region (Katz, 1970, 1971; Gansser, 1973; Schwelle 
I 

As a restlt, the la~e Cenozoic deformation patter 

block-fa !ting and localized drag folds. Althoug 

physiogr1phic provinces, Coast Range, Central Vall 

generallt trend north-south, that is, parallel to 

of faults, fractures and lineaments are transverse 

are char,cteristically oriented in west-northwest 

and others, 1981) 

has been one of 

the morphotectonic: 

y, and Andes, 

he coast. the stri]i:es 

to the provinces 
id 

nd northeast 

directio1s. These structural alignments, derived rom pre-Andean 

tectonisJ, have been reactivated in the late Cenoz ic producing the 
; 

present !ock-tectonic framework. Portions of the Coast Range, Centr 1 

Valley, , d Andes bounded and transected by lineam nts, have experien ed 

repeated ~ertical tectonic displacements throughou the late Cenozoic 

with vari~us blocks ,being displaced independently nd, at times, in 

opposite ~irections. 
I 

The jmslaciated,, tectonically active Coast Ra ge borders the 

Pacific O~ean and is: about 30 km wide in the Lake egion. Elevations ; 

are low cbmpared to the Andes and do not exceed m except in the Ri~ 

Bueno arei where suDJ1Dits reach heights of about m. Isla Chiloe if 

the south1rn extension of the Coast Range. e metasedimentary l' 

rocks, coisisting principally of schist, quartzite, phyllite and gneis 

and localtzed plutonics constitute (Plafker and Sav ge, 1970; GonzalezL 

Bonorino ,µid Aguirre, 1970; Gansser, 1973; Koster, 

of the Co1'st Range (Figures 2 and 3), 

late Pale zoic, perhaps Carboniferous, 

basement 

occurred 

Radiometric 

age for the 

975) the main body 

ating indicates a 

etasedimentary 

nic episodes 

ng the Permian 
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(Gonzalez-Bonorino and Aguirre, 1970) and in the urassic, early 

Cretaceous, late Cretaceous and early Cenozoic (Sholl and others, 

1970). The rocks exposed in the truncated Coast ange are steeply 

folded and faulted and were, according to Zeil (1 64), involved in a 

least two major orogenies and several deformation of less intensity 

Strong pre-Mesozoic compressive tectonism is indi ted by the early 

deformatiqn but block faulting has dominated sine the Mesozoic, was 

accentuated in the Pliocene, and continues today. 

The Central Valley is an actively subsiding b sin about 90 km 

at its maximum in the Lake Region (Figure 2). As ries of piedmont 

lakes punctuates the valley, and this gives then e to the Region. 

lakes occupy glacially scoured depressions and are dammed on their 

western margins by arcuate moraines. Lago Llanqui ue, the largest, 

2 encompasses an area of about 850 km, has a surfac elevation of 51 m 
i 

and attains depths of at least 350 m. The valley s submerged south 'f 

about 41°30'S latitude, Bays and sounds, for exam le Reloncavi and 

Ancud, were formerly glacial lakes such as those t 

been drowned by the sea through recent subsidence. 

the 

i 
north but havJ 

The low-lying, 

graben-like Central Valley is filled with poorly c nsolidated 

terrestrial, marine and volcanic sedimentary rocks (Figures 2 and 3). 

,, ,, 

I 

Exploratory wells drilled by ENAP, the Chilean oil company, penetrate. 

in excess of 4,000 m of Eocene and younger strata f which 1,340 mar 

of Quaternary age (Galli-Oliver, 1969; Scholl and 

strata are underlain by crystalline basement rocks 

thers, 1970). 

Major normal 

bound and transect the basin indicating that, as w th the coastal 

Thee 

i1 

fau~ts 
' 
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block tectonics has been the major str 

uring the late Cenoz ic (Katz, 1970; Pl 

97 3). Although the ormations are gene 

972) noted subtle st ctural trends in 

flextures and broadjwarps. As in the 
! 

ctural control in ~e 

fker and Savage, 1 :70; 
I 

ally flat-lying, 

e basin, such as 

ast Range, verticai~ 
11 

tectonicj isplacement dates mainly from the Plioc 
!i 

e but continues to~ay 

as reflec ed by the great thic ess of Quaternary ediments. 

in 

Thel 

bread~ 
i 

its extef 

but 
I 

Trana 

and the~ 
! 

the main 

des is a highly gla iated mountain ran complex about 1301km 

in the latitude of he Chilean Lake Re on; however, most 'f 

is in Argentina. C estal elevations a rage about 2,000 m 

r, a dormant volcan1 straddling the Ch e-Argentina 

hest peak in the ar'a, has an elevation of 3,554 m. 

border ii 
! 

West ~f 
I 

xis of the Andes is n alignment of stra ified volcanoes 

reachingl levations of about 1 500 to 2,000 m. Th most picturesque 

stratovo{ ano, Osorno, is 2,65 m high. Lakes do ccur in the high 
i 

Cordille~ but are generally r stricted to abandon d cirque basins. 
ii 

I 
Although! e Andean batholith ciomplex dominates th 

a geologically complJx province in which 
i 

I 
Andes (Figures 2 ~nd 

according to PlafJer 
:! 

and Savag (1970) and Herve an' others (1974), def rmed Paleozoic 
I 

metamorp~ c and Cretaceous thr gh Tertiary sedime tary rocks are cut 
1

by 

' granitic I lutons of Cretaceous nd Tertiary age. 

are unco1f rmably overlain by i latively undeforme 

andesitic: olcanic sequences and are locally venee 
I 

Halpern Fuenzalida (1978) d~termined, from stu 

e older formation 

late Cenozoic 
!1 
I 

ed by glacial drif~i. 
I 

ies of plutonic ro~ks 

exposed ip Argentina at the sllll!' latitude as the C ilean Lake Region, 

that ma ic activity began at least 150 MY ago. The main Andean 
! 
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Orogeny a~pears, therefore, to have taken placed ring he Cretaceous 

with emp~acement of the Andean. batholith belt. V rgara and Gonzalez-i 

Ferran (1972) recognized two p ases of neovolcani m in rhe Lake Regiop. 

Fissuralr-l!ype volcanism domina ed during the Mioc ne to late Pliocene, 

forming Vdlcanic plateaus int e Andes. Central- in 
I . 

the Plio~Pleistocene and conti ues today. They s ggested that the 

transiti~n period between the wo volcanic styles as m rked by block 
' 
' tectonisf resulting in additioial uplift of the A des. 
! 

Quafernary Geology 

The i major modifying geolo$1C processes activ in t e Lake Region! 
! 

: ' 

during the late Quaternary are.(l) tectonism, (2) oles.ism, 

(3) glacfaition, and (4) erosio 

Tectonic activity continu d from the Tertia intoithe Quaternary 
! 

and continues today as evidenc d by frequent and v olent: earthquakes •• 
1 

The oppo~i~g motions of the co verging Nazca and s uth American Plate!! 

produce ~ajor shallow-focus ealjthquakes, As a res lt, hile is one of 
' 

the mostlhighly. seismic countr~es in the circumpac fie egion,. The Lake 

Region h'lshistorically been t~e focal point of mu h of the major 

earthqua1e activity in the coun,try. Recent tecton c ac ivity has thuf! 

had a majoJ: affect on modifyin i the area's surfici. 1 ge logy. Valdivia, 

located lnl the northern part o the Lake Region ha bee!'.\ severely 

damaged tjy earthquakes at least five times (Lomnit • 19~0). One of 
! 

these di the earthquake of February 20, 18 5, resulted in upl:l:ft 

of coast near Conceptio as much as 2.7 m Darw·' 
' 1839). The 
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earthqua~e of 1960 was one of the major seismic 

earth (M~ ,approx. 8.5). The cities of Valdivia 

events rver recorded On 

and Ancpd subsided mo~e 
i 

than 2 mj during the event (Plafker and Savage, 1970). 
i 

Interestingly, 
I 

accordinf to Plafker and Savage (1970), the earthquake [ccurred in 

essentia~,y the same place as the 1835 tremor. Lomnitz (1970) estimated 

that sei~~ic events of magnitude 8+ occur about once ev ry ten years in 

the Lake1~egion. Recent tectonic activity is also indi~ated by the 

great thickness of Quaternary fill in the Central Valle!'. 

Since the end of the Pliocene continuous central-t pe volcanism 

been restrrcted to the Andes (Figures 1, 2, and 3). Th rty-three 

volcanoet have been active in historic times in Chile (6asertano, 196t; 

Segerstr~', 1964), many of which are situated in the L4e Region. Th,!, 

most ele~ant appearing volcano in the Lake Region, Osor10, was observ,!,d 

in erupt1on by Darwin (1839) on January 19, 1835, and w4s active as late 
i ! 

has 

as 1850. \ Volcan Calbuco, 30 km south of Volcan Osorno, ,was active in 

1929 and 11960 (associated with the earthquake of that yJar). This 

latter e~ent produced destructive massive mudflows foll~wed by extrus~on 

of andes~tic lava (Casertano, 1963). 

of volcaii~ activity was suggested by 

of the lin•ar arrangement of volcanic 

extrusive~,consist mostly of basaltic 

The possibility o~ fault control, 

Plafker and Savag1 (1970) becau~e 

centers and hot s,rings. The 

andesite, and andesite lava flo~s, 

! and pyroc~astics. Volcanic clasts and beds of tephra are often found i 

incorpora~ed into, interbedded with, and overlying glac~l drifts in ~he 

Lake Regi n. Repeatedly occurring volcanic mudflows havr at · 

' 
times, di ,;upted major drainage patterns (Mercer, 1976).' Paleontological 

records h v:e occasionally been interrupted by ash falls. Volcanic 
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eruptio~s;have undoubtedly affected the past and prese1t plant 

communi~.its of the Lake Region (Veblen and others, l 97~). 
I I 

Duxf.lr:tg the Quaternary the Lake Region was, on num~.rous occasion"1, 

invaded~~ piedmont glacial lobes discharging from exte~sive ice fie1ds 

capping ~he Andes (Figure 1). Glacial tongues flowing ~estward fortnejd 

multiple! end moraines west of the basins now occupied br lakes dammed! by 

morainici tiamparts. The glacial lobes are named for thel lake basins t)1at 
i ' ' 

they sco~red (e.g., Llanquihue Lobe). Glacial sedimentb are widesprekd 

and comp~ise most of the surficial deposits in the Central Valley. 

Locally,1:1.:n the eastern part, recent lahars cover glaci~l sediments, ~s 

in the v41can Calbuco area. At maximum extent, glacier! reached as f•r 

west as ¢he eastern slopes of the Coast Range and perha s as far as the 

Pacific ~c~an.near Maullin. Numerous drift sheets and ~erminal morai~es 

have bee~ recognized by comparison of composition, exte{t, morphologi~al 

characte1istics, depth of overlying pyroclastics, disseqtion of 

landformJ, thickness of weathering rinds on volcanic cljsts, extent of 

Mn02 depo/'ition on clasts and matrix, and by stratigrap ic relationships 
I i 

. (Mercer, \1976; Heusser and Flint, 1977; Porter, 1981). :0utwash and t~ll 

are the Prlncipal components of the drift sheets, but d1ift is commonly 

interbedd~d with non-glacial sediments (e.g., sand, loesis, organics, 

tephra, abd buried soils). Although numerous drift sheets have been 

identifie~ ,(reviewed in an earlier section), their numbe, extent and 
I 1 

lateral rt~ationships have not been fully defined througrout the Lake 

Region. ~e drifts, particularly from the late glacial fnterval, are 

often int :ricalated with peats and highly organic sediments. The preseht 

climate i conducive to preservation of the organic in the 
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sediments. These organic-rich sediments have provided a basis for a, 

reasonably good radiocarbon chronology for the drift sh~ets and 

palynological and insect material for paleoenvironmentai studies. 

Erosion has had a marked influence on landscape de•,elopment, on 

continental and ocean margin sedimentation, and on the freservation of 

the Quaternary geologic record in the Lake Region. Ac mbination of 

factors, tectonic activity, topographic relief, glaciat ans, and high 

annual rainfall, have caused incredible denundation rats. Landscape 

modification, for example, is illustrated by the entren hing of deep 

gorges by rivers draining the larger lakes. These majo drainage ways, 

the Rios Bueno, Pilmaiquen, Rahue, and Maullin, carry d scharge from 

Lagos Ranco, Puyehue, Rupanco, and Llanquihue, respecti. ely, t.o the 

Pacific Ocean. These rivers, presumably following the ancient 

structural grain of the Region, flow slightly north of ~est across 

glacial sediments and transect the present structural pkavinces. Rapid 

erosion is also indicated by the great thickness, approximately 1340 in, 

of Quaternary sed.iments in the Central Valley. In addition, the 
i 

substantial volume of sediment, mostly turbidites, lite ally filling the 

Peru-Chile trench in the latitude of the Lake Region, i believed 

(Schweller and others, 1981) to have been deposited wit.in the last 1 MY 

(Figure 3). This wedge-shape deposit is up to 2 km thi k and 75 km 

wide. Sch-011 and others (1970) estimated that 54 x 103 km3 of sediment 

were deposited in the trench adjacent to the Region dur ng the 

Quaternary, mostly during periods of glacial sea-level lowering, and 

that denudation rates have averaged 50 cm/103 yr. Although erosive 

processes have exposed Quaternary deposits for examination, 

I 

the amount 
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I 
of infotmation removed by the process is not known, \but is probably 

I 
substa.n\ial. 

Present Climate 

, I 
Becfuse Chile spans almost 40° of latitude, it exhibits a great 

I 
The Atacama Desert, north of t~e 23rd parall~l, 

i 

contras•t \ in climate, 
I 

receiv:tni less than 5 cm of precipitation annually, ts one of the driest 

regions tjn earth. In contrast, south of 43°S latitu4e, precipitation is 

as high ~ 750 cm per year. Most of Chile, however, \enjoys a mild, 

Mediterra~ean-type climate with cool, moist winters ajnd dry, warm 

summers. ! Chile's climate is influenced principally b~ Antarctica a)ld 

I 
its ice masses. It is cooled by outbreaks of polar a~r and the 

transport:\of polar water toward the equator by the Pebu Current. 

The 1ake Region lies in the latitude of prevailiJg west winds known. 

colloquia41y as the "roaring forties." Because of itJ position proximal 
, I 

to the p<;>liar front, the boundary between subantarctic ,and subtropict1.l 
I I • 

air massesr it receives the brunt of cyclonic storms. i The storms ' 

originate ~ver the mid-Pacific Ocean where air masses ff the subpolar 

westerlies\and the subtropical Pacific anticyclone mee( These cycl,>nic 

storms, asJociated with frontal systems of the westerlfes, repeatedly 
I I ' 

encounter ~he Region's coast and are manifest by stroni winds and he~vy 

precipitation (Miller, 1976). Storms occur most frequ~ntly in the 

I 
winter bec:ause during the summer months the polar frontj shifts 

I 
southward. \Consequently, precipitation, which is almos~ entirely 

form of raif, occurs mostly in the fall and winter. Tw~-thirds of 

I 
I 
I 

in ~he 
i 
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Puerto Mou,t's 196 cm average annual rainfall (Table 1) is received 

during th~, time exemplifying the phenomenon of winter rainfall maxillla. 

Throughout !the Lake Region, precipitation amounts received during autumn 

and winter ~re characteristically twice those received in the spring ~nd 
i 

summer motlt~s. Average annual precipitation in the Region is about 

to 200 cm prr year, but the orographic influence of the Coast Range 

results iq ~igh, 400 cm, precipitation on the windward slopes of the 
. i 

range. The: lee side of the ·coastal mountains and the Central Valley ~re 

in the rai'n\shadow and receive relatively less rainfall. However, asi 
I 

the storm~ ass eastward, precipitation increases again resulting from 

the orograplic influence of the Andes; average annual rainfall is 

i 

commonly ov•r 500 cm in the high Cordillera (Reusser, 1981). The 

climatolog~tal data presented in 

influence ot the mountain ranges 
. 

Region. 

Table 1 illustrate the orographic 

on precipitation patterns in the Lake 

Air tf'D1peratures are controlled primarily by surface temperatureiof 

the south r1cific Peru Current and by the prevailing westerly winds 

(Heusser, i~74). The Peru Current, a branch of the West Wind Drift, 

originates i'n antarctic waters and travels northward along the Chilean 
i 

coast produ~ing cool temperatures in the Lake Region. At the Parque 

Nacional de ·~yehue (40°S, 72°W) mean January (summer) temperatures a~e 

14°C at the evation of Lago Puyehue (Figure 1), and 11°C at tree-line 
' 

' 
(Mufioz S,, 1980). Average temperature ranges in the Lake Region 

I 

(Heusser, l9al) are 7-8°C in the winter Uuly) and 14-16°C in the sulIIIIJler 

(January). 



Table l, Temperature and precipitation records from selected stations in the Chilean Lake Region. 
Compiled by Reusser (1974) from Almeyda and Saea:'s (1958) data. 

Average 
Temperature 

Elev. c•c) Avera~e Preci2itation (mm) 
Station Location (m) Jan July Autumn Winter Spring Summer Total 

Central Valley 

La Union 40°15•s, 73•02•w 29 -- -- 360 560 216 125 1250 I 

Rio Bueno 40•29•s, 12°5s•w 58 363 469 217 132 1214 
,,. -- -- I-' 

Osorno 40°35's, 73°09'w 24 17.6 8.3 368 530 232 149 ] 330 I 

Puerto Octay 40°s9•s, 12°52•w 51 -- -- 434 602 300 214 1600 
Puerto Varas 41°20'S, 72°57'W 51 15.7 9.0 549 624 355 278 1823 
Alerce 41°23's, 72•54•w 107 -- -- 513 689 396 277 1933 
Puerto Montt 41°28 1s, 72"56'w 5 15. 3 7.6 540 685 415 320 1960 

Andean Foothills 

Lago Ranco 40°14'S, 72°20'W 70 -- -- 524 665 339 239 1809 
Rupanco 40°50'S, 72°25 1W 141 -- -- 536 703 374 234 1894 
Ensenada 41•12•s, 12°32•w 51 -- -- 599 675 384 300 1993 

Andean Cordillera 

Punirre 40°l6 1 S, 72°12 1W 120 -- -- 990 1365 680 325 3400 
Peulla 41°os•s, 12°02•w 190 -- -- 930 1260 670 470 3468 
Puntiagudo 41°05 1 S, 72°17'W 190 15.0 6.4 860 1065 590 500 3080 
Petrohue 41°01•s, 12°i3•w 190 -- -- 970 1200 840 425 4000 
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The relationship of the beetle fauna to temperature and 

precipitation patterns in the Lake Region is discussed in Appendix A. 

It is inferred that migration of the polar front, presumably as a result 

of changes in atmospheric circulation in the southern polar latitudes, 

caused climatic changes in the Lake Region during the Quaternary 

{Heusser, 1981). 

Regional Vegetation 

In southern Chile, from about the latitude of the city of Osorno to 

the Province of Magallanes, the major vegetational type is temperate 

rain forest in which evergreen and deciduous species of the southern 

beech, Nothofagus, occur together and are the dominant trees in the 

forest community. Optimal growth of the rain forest is seen in the Lake 

Region, there called the Valdivian Rain Forest. The general 

characteristics of this complex rain forest community are described by 

Heusser (1966a, p. 274) as follows: 

The Valdivian rain forest is dense, dark and evergreen, consisting 
of a profusion of shrubs, lianas, epiphytes, ferns, mosses, 
hepatics and lichens, among trees whose strongly deliquescent 
trunks and branches at maturity can reach heights of 40 m or more. 
There is a multiplicity of species, many of which are monotypic and 
endemic, Because of an equable climate, the season for growth is 
lengthy, and near sea level, cessation of growth probably does not 
take place in most species. Flowering and fruiting occur 
throughout the year, some plants bearing flowers even in mid-winter 
(June and July). The forest floor is littered with slowly decaying 
fallen leaves and boles, overlying thick, damp, peaty soils. 
Lakes, bogs, swamps and riverA with their distinctive plant 
communities interrupt the forest continuity. 

Between 41°S latitude and the southern end of Isla Chiloe {43° 30'8), 

the Valdivian Rain Forest is the dominant vegetational unit from sea 

level to at least 650 m. Scattered remnants of a more northerly 
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occurring forest called the Lowland Deciduous Forest {Reusser, 19Bl) 

range from the northern part of the Lake Region to about 41°S latitude, 

the northern limit of the Valdivian Rain Forest. Specifics of the 

floristic composition of the Valdivian Rain Forest and other 

vegetational communities occurring at higher elevations in the Lake 

Region are presented by Heusser (1966a, 1974, 1981) and Veblen and 

others (1977, 1979) and are summarized in Appendix A {Figure A2). 

Prior to European colonization of the Lake Region in the 19th 

century, the Central Valley was completely forested (Heusser, 1974). 

The forest was cleared for agriculture, construction materials, and 

fuel. Today, only scattered remnants of the Valdivian Rain Forest, in a 

savanna-like setting of grasses and forbs, remain in the valley 

(Heusser, 1974; Veblen and others, 1977). Although the natural 

vegetation within the Central Valley has been significantly altered by 

the presence of man, fewer anthropogenic effects are seen in the 

cordilleran forest communities. Undisturbed stands of natural rain 

forest vegetation begin at an elevation of about 500 min the Region's 

Andean foothills. However, instability of forest communities in the 

mountains is maintained by natural catastrophes such as earthquakes 

triggering mass movements, volcanism and forest fires (Veblen and 

Ashton, 1978; Veblen and others, 1979, 1980). 

It is believed that rain-forest communities were much more 

extensive and continuous at various times during the Pleistocene 

(Heusser, 1972b). Remnants of rain-forest vegetation occur as disjunct 

plant communities in scattered areas of the coastal mountains and 

elsewhere in Chile, for example in the national parks of Fray Jorge and 
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Talinay (30° JO'S). In that area of the Coquimbo Province, rain-forest 

plant communities form enclaves in the semi-arid, shrub-succulent zone 

(Reusser, 1972b). Quaternary climatic fluctuations and associated 

glaciations appear to have been the fundamental causes of major 

vegetation pattern alterations. Temporal biotic changes in the Lake 

Region, resulting from Quaternary climatic flux, will be discussed in 

detail later. 



METHODS 

Field Methods 

Surface exposures at the Puerto Varas Park and Rio Caunahue Sites 

were sampled after the vegetation had been cleared and the sections cut 

back, measured, and described (Figures 8 and 15). 

The Puerto Varas Park Site was sampled in November 1977. The 10 

cm-thick peat horizon was collected in two 5-cm intervals; each sample 

weighed about 14 kg (Figures 9 and 10). 

The northeast portion of the Rio Caunahue exposure was sampled 

during the 1977 and 1979 field seasons (Figure 15). In 1977, samples 

were taken at 10-cm intervals from the base of the terrace gravels to a 

depth of 4.3 m (Figures 16 and 17). The lower 50 cm were collected from 

below water-level. A bulk sample (BS), from a stratigraphically higher 

horizon, was also taken from an exposure 500 m upstream from the main 

section. An additional 160 cm of the main section was exposed when the 

site was revisited in 1979 because of lowered river-level during the 

drought conditions that year. Seven samples of distinct organic 

horizons (PDO-PD6), ranging in depth from 30 cm above the prominant 

volcanic ash horizon to river level, were collected from the main 

section. In addition, three more samples (Al-A3) were taken from the 

upstream exposure and three samples (Bl-B3), above the prominent 

volcanic ash marker horizon, were taken from an exposure about 100 m 

-45-
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downstream from the main section, Each sample from the Rio Caunahue 

Site weighed about 3 kg. The total weight of sediment collected from 

the Rio Caunahue Site during the two field seasons was about 150 kg. 

The Puerto Octay Site, a bog, was sampled with a piston corer in 

November 1977 (Figure 7). Nine complete cores, averaging 2.5 min 

length and 5 cm in diameter, were obtained from an area 4 min diameter 

in the center of the abandoned meltwater channel about 50 m west of 

highway U-55~V (Figures 5 and 6), Coring was terminated at a resistant 

volcanic ash horizon, Detailed lithologic descriptions of each of the 

cores were recorded and the cores were correlated by lithologic 

comparison. Each core was sampled at 10 cm intervals. A total of about 

34 kg of sediment was collected from the Puerto Octay Site; individual 

samples on the average weighed 180 g. 

The November 1977 excavation of the Puerto Varas Railroad Site was 

hindered by the emplacement of a concrete retaining wall constructed 

since Heusser's (1974) study of the site (Figure 12). A trench was dug 

behind the retaining wall to a depth of 160 cm before water seepage 

problems prevented further digging (Figure 13). Samples were collected 

at 10 cm intetvals from the top of the excavation to a depth of 80 cm 

(Figure 14) •. Because of the water problems, samples were taken at 20 cm 

increments from a depth of 80 cm to the bottom of the excavation. A 

total of about 47 kg of sediment, each sample weighing about 4 kg, were 

collected from the Puerto Varas Railroad Site. 

Individual samples from the four sites were secured in plastic bags 

with a label indicating collecting site and stratigraphic position. 
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They were air-freighted to the North Dakota State University (NDSU) 

Fossil Beetle Laboratory for processing. 

Laboratory Procedures 

Sample processing techniques for isolating insect fossils from 

Quaternary sediments have evolved from simply inspecting bedding planes 

to a wet-sieving and kerosene-flotation procedure. The flotation method 

was developed;at the University of Birmingham, England, to expedite 

fossil recovery (Coope and Osborne, 1967; Coope, 1968). However, the 

process is still time consuming. Ashworth {1979) briefly described 

the procedure but a detailed outline of the method is provided in 

Appendix B. 

All samp~es recovered from the Puerto Octay, Puerto Varas Park, 

Puerto Varas Railroad, and Rio Caunahue sites were processed according 

to this procedure except that the Calgon solution dispersion was seldom 

used because most samples disaggregated easily during wet sieving. 

A sample preparation report sheet was maintained for each processed 

sample recording weight, lithology, observed fossils and processing 

procedures used. Catalogs containing the report sheets for each fossil 

site studied are housed at the NDSU Fossil Beetle Laboratory. All 

subsamples retained for additional radiocarbon dating, pollen and 

macroplant analysis, and all washed residues are curated at NDSU. 

Following the extraction procedure, the insect fossils were 

transferred from the storage vials into petri dishes containing ethanol. 

Beetle fossi·Is Were sorted, under the binocular microscope, into groups 

of similar skeletal elements {e.g., heads, pronota, etc.). In addition, 



I i 

-48-

they were segregated into taxonomic categories when possible. Fossils 

were removed: from the petri dish with a dissecting forceps and mounted 

on micropaleontological slides with water-soluble, gum tragacanth glue. 

Other insects and arachnids were mounted on separate slides. The 

fossils on each slide were numbered. Information including fossil site, 

sample number, slide number and number of slides per sample was written 

on the edge df the slide. Data sheets, recording the types of skeletal 

elements and ,names of the fossils when obtained, were kept for each 

slide. In addition, summary data sheets were maintained for each sample 

indicating the species found, kind and number of skeletal elements on 

which the determinations were made, and minimum number of individuals 

per species. All slides and catalogs containing the data sheets are 

deposited in the NDSU Fossil Beetle Laboratory. 

Identification to genus and species was attempted only with the 

fossil Coleoptera. Other insects and arachnids were identified to order 

or to family. Most fossils were identified by comparing them with 

species recovered during a modern faunal survey (Appendix A), Other 

specimens were:named by careful comparison with identified specimens in 

the insect collections of the United States National Museum (USNM), 

Canadian National Collection (CNC) in Ottawa, and private collections 

(e.g., Dr. Charles O'Brien's weevil collection in Tallahassee, Florida). 

Fossil specimens not identified by these methods were sent to 

systematists in the United States and other countries for 

determinations. Many specimens were examined by these experts for 

confirmation of: identifications, 
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All iderltifiable fossils were counted to determine relative 

abundances and diversities. In each sample, one left elytron, or one 

right elytron, or one head, or one pronotum from a beetle taxon, or a 

combination of single specimens of any or all of these skeletal elements 

was considered one individual. In many instances, numerous left elytra, 

right elytra,,heads, and pronota of one taxon were recovered from each 

sample. The ~keletal element that was present in highest numbers was 

considered an estimate of the number of individuals of that taxon in 

that sample. 

Information concerning the ecological requirements and present 

geographical distribution of southern Chilean beetle species is rarely 

encountered in the literature because studies have concentrated on 

taxonomy. The.paleoenvironmental and paleoclimatic interpretations 

presented herein are based largely on an integration of the ecological 

and distributional data derived from information obtained through study 

of the existing Lake Region fauna (Appendix A) and are governed by the 

fundamental assumptions summarized earlier. Supplemental information 

was gained by visits to major museums and private collections and from 

the sparse literature available. However, a great deal of pertinent 

ecological and distributional data were acquired through correspondence 

with numerous taxonomic experts. This knowledge was invaluable in 

defining the past environments in which the fossil communities lived; 

and because the$e coleopterists will be cited as personal colJllllunicants 

frequently, a list of their names and affiliations is presented in 

Appendix C, 

I i 
i 

I 
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To facilitate discussion and interpretation of the fossil 

assemblages from the four sites, the sequences were divided into 

intervals based on sedimentological breaks or changes in the fossil 

insect assemplages. The Puerto Octay sequence was divided into four 

intervals, the Rio Caunahue sequence into three and each of the Puerto 

Varas sequences into one. The intervals are not formally named and are 

not considered as zones to avoid the implication of biostratigraphic 

utility. The intervals are numbered according to the sample numbers 

they include (e.g., Puerto Octay interval 25 through 24). A 

paleoenvironmental analysis of each interval will be presented later 

based on the species associations within the interval. 

Abundant datable material was available from the four sites 

studied. Twenty, either wood or peat, samples (fifteen from Rio 

Caunahue, three from Puerto Octay, one from each of the Puerto Varas 

sites) were submitted for radiocarbon dating (Appendix D). 

Standard. Scanning Electron Microscope techniques were used to 

produce the photomicrographs illustrated in Plates 2 through~ of some 

of the representative and well preserved beetle fossils recovered during 

this study. 

Mathematical Treatment 

Cluster analysis, a technique for analysis of multivariate data 

sets, has been extensively developed in recent years (Sokal and Sneath, 

1963; Sneath and Sokal, 1973; Krumbein and Graybill, 1965; Harbaugh and 

Merriam, 1968; Davis, 1973). These methods were initially devised for 

numerical taxonomy; subsequently, they have become of interest to 
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researchers involved in bioassociational studies such as biostratigraphy, 

paleoecology, ecology, and biogeography because they provide consistent 

ways of searching for bioassociational patterns in large data sets. The 

methods are simple, repeatable, and objective, but they are not 

statistical because they have no theoretical statistical basis and no 

tests of significance have yet been devised. 

In this study, the purpose of cluster analysis was to define 

collecting loc'alities that have similar beetle faunas, so as to 

establish an elevational zonation of the fauna in the study area (see 

Appendix A). Further, the method was used to establish the similarity 

of fossil beetle assemblages, from various time intervals, to 

communities existing today at distinct localities and restricted 

elevations. This polythetic ecological and paleoecblogical approach was 

accomplished through utilization of digital computers to generate binary 

similarity coefficients and, ultimately, the clustering results. The 

approach is free of ,!!£,r_iori or circular reasoning because the technique 

establishes that distinctive groups (bioassociations) are present before 

various taxa for the recognition of the bioassociations are determined. 

Cluster analysis involves two computational procedures: 

(1) the calculation of similarity coefficients, numerical measures 

of the similarities between all the objects to be clustered; 

(2) and the grouping of samples on the basis of these similarity 

coefficients. 

The type of similarity coefficient analysis employed is called 

Q-mode where the various samples are compared to one another on the 

basis of the taxa they contain. In this study, these coefficients are 
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merely quantitative descriptive numbers based on the presence or absence 

of taxa. A number of binary (presence - absence) similarity 

coefficients have been used in bioassociational studies. The properties 

of those that have been most consistently used were compared by Cheetham 

and Hazel (1969). Every type of similarity coefficient has some bias 

which can introduce distortion into an analysis. It is, therefore, left 

up to researchers to choose the coefficient that best fits their concept 

of what they want the similarity measure to portray. That decision is 

governed by experience and through experimentation with a variety of 

coefficients. 

The Jaccard coefficient omits consideration of negative matches 

(absence of a species from both samples being compared) and 

consequently, emphasizes differences, By contrast, although it is 

monotonic with the Jaccard, the Dice coefficient gives twice as much 

weight to matches as to mismatches, thereby emphasizing similarity. The 

Dice coefficient was developed by Dice (1945), advocated by Hall (1969) 

and is used in this study because it emphasizes similarity. Other 

coefficients (Jaccard, Fager, Otsuka, and Phi) were compared with the 

Dice but the latter yielded groupings that seemed more natural. The 

Dice coefficient is expressed by the formula: 

= 2C 
X 100 

where, 

CD= Dice coefficient 

C = Number of taxa common to both samples 
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N
1 

Number of taxa present in the first sample 

N
2 

Number of taxa present in the second sample 

The program to calculate the Dice coefficients in this study was 

developed by Dr. Richard D. LeFever (unpublished, Geology Department, 

University of North Dakota). 

A matrix of similarity coefficients is produced when coefficients 

are calculated between all pairs of samples. The data matrix is square 

and symmetrical about its principal diagonal. The diagonal contains no 

information and, because the matrix is symmetrical, only the upper or 

lower triangular portion of the matrix is needed to describe the 

relationships, Convention is to publish only the lower left triangular 

part of the matrix, In the matrices presented here, the coefficients 

have been replaced by symbols representing ID-point classes and are 

called shaded trellis diagrams (Figure 11 and Figure A7). The trellis 

diagram is read in the same manner as a road mileage chart. The pattern 

in the square at the intersection of the column of one sample and the 

row of another sample indicates the degree of similarity in faunal 

composition between the two samples, For example, the measure of 

similarity between samples 21 and 39 falls within the 31-40 percent 

similarlity, level. Dark patterns proximal to the diagonal, as from 

localities 11 to 8, indicate groups of localities with many taxa in 

common. 

Input for cluster analysis is the matrix of similarity 

coefficients. The clustering procedure is used to define inter­

relationships within the similarity coefficient matrix. Similar samples 

are grouped,(clustered) and clusters are displayed in a two-dimensional 
I 
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tree-like hierarchical dendrogram. Although there are numerous 

clustering techniques, the most widely used are the weighted (WPGMA) and 

the unweighted pair-group averaging (UPGMA) methods developed by Sokal 

and Michener (1958) and discussed in detail by Sokal and Sneath (1963) 

and Sneath and Sokal (1973). Which method is generally best has been a 

subject of debate. Hazel (1970, 1972, 1977) and Sneath and Sokal (1973) 

recommend the use of the UPGMA because the generated dendrograms, when 

compared to the original similarlity matrices, show less distortion than 

those produced by WPGMA, However, Davis (1973) favors the WPGMA on 

empirical grounds. Nevertheless, the above authors agree that there are 

occasions when the WPGMA is preferable, especially when there is a 

disparity in the size of samples being compared. Such is the situation 

in this study and, consequently, the WPGMA technique was used. The 

computer program for the procedure is given by Davis (1973). 

In the pair-group method all samples are compared to each other by 

using similarity coefficients. After the similarity coefficient matrix 

has been generated, the first step in WPGMA is to scan the matrix for 

the highest similarity value. The highest similarity coefficient 

indicated in Figure A7, is 52 percent between samples 2 and 5. These 

two samples are, therefore, considered to represent a group or cluster. 

The degree,of similarity between the two samples is indicated on the 

dendrogram by closing the branch between the samples with a line drawn 

at the 52 percent similarity level. The similarity matrix is then 

recomputed treating the clustered samples, 2 and 5, as a single sample. 

Similarities between cluster 2,5 and other samples is calculated as the 

average between each sample in the cluster and each new sample. In the 
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example (Figure A7) the similarity between cluster 2,5 and sample 12 

would be calculated in the following way. The original similarity 

coefficient between samples 2 and 12 is 45 percent and the original 

similarity coefficient between samples 5 and 12 is 47 percent. The 

similarity between cluster 2,5 and sample 12 is simply the average of 

these two values: (45 percent+ 47 percent)/2 = 46 percent. The degree 

of similarity between cluster 2,5 and sample 12 is entered onto the 

dendrogram by adding a branch to represent sample 12 and connecting it 

to cluster 2,5 with a line drawn at the 46 percent similarity level 

(Figure A7). The process is repeated until all samples or clusters of 

samples are joined together. 

The resulting dendrogram, in summarizing the original matrix of 

similarity coefficients through the process of averaging together 

members of a cluster and tre~ting them as a single new object, distorts 

the original relationships between the samples being compared. At 

times, the degree of similarity between two samples is masked. 

I Valentine (1966), Valentine and Peddicord (1967) and Hazel (1970, 1972) 

\ counteracted this problem by using shaded trellis diagrams in 
i 

I 
I 

I 
conjunction with dendrograms because comparisons of samples between the 

major groupings can be determined in the trellis diagram, thereby 

compensating for the inherent distortion in the dendrogram. For 

example, as seen in Figure A7, some localities in bioassociation II and 

III have a number of taxa in common as indicated by dark patterns within 

the matrix. For that reason, combined trellis diagrams and dendrograms 

\ were used in this study. 

Major clusters are distinguished on the completed dendrogram by 
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tight groupings of samples joined at high similarity levels. The major 

clusters or bioassociations, I-V (Figure A7) and I-V, F1 and F2 (Figure 

11) are indicated to the left of the trellis diagrams and are separated 

by patterns on the dendrogram.s. 

It would have been ideal to subject all fossil assemblages to the 

clusterin~,procedure, but this proved to be impossible because many 

samples did not exhibit enough diversity in species composition to make 

the analysts meaningful and because of limits imposed by the computer 

program. There.fore, the assemblages recovered from nine samples were 

chosen for the analysis because collectively they span the time 

interval from about 4,500 to about 15,700 yr B.P., although most are 

late glacial in age. In addition, all but one of the samples were 

radiocarbon dated. Eight of the samples were from the Rio Caunahue Site 

and the other was from Puerto Varas Park. No assemblages were used from 

the Puerto Varas Railroad or Puerto Octay sites because of inadequate 

species diversities. Hazel (1970) cautioned against using samples 

containing less than ten species in the cluster method. His 

recommendation was followed except for the Puerto Varas Park assemblage 

which contained only seven species. It was included in the analysis 

because it was older and appeared to be distinctive and markedly 

different than the Rio Caunahue assemblages. The samples used, their 

age and the number of species in each sample are presented in Table 2. 

The stratigtaphic position of the samples and species used for the 

analysis are indicated on Plate 1. 
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Table 2. Fossil samples chosen for cluster analysis, The table also 
gives the ages of the samples and the number of species in each sample, 

14 Age Number 
Site/Sample Cyr B.P. of Species 

Rio Caunal)ue BS-A3 4,525 :!: 145 65 

Rio Caunahue 21 10,000 :!: 280 11 

Rio Caunahue 27 10,200 (estimate) 20 

Rio Caunahue PDO 10,440 :!: 240 26 

Rio Caunahue PD1 11,290 :!: 250 16 

Rio Caunaniue 42 11,680 :!: 280 52 

Rio Caunahue PD4 12,385 :!: 340 20 

Rio Caunalme PD6 12,810 ± 190 26 

Puerto Varas Park PVl 15,715 :!: 440 7 



PUERTO OCTAY SITE 

Location, Site Description, and Radiocarbon Chronology 

The Puerto Octay Site (Figures 1, 4, 5, 6 and 7), in a former, 

eastwest trending, meltwater channel of Lago Llanquihue, is about 3 km 

north of Puerto Octay (lat. 40°56'40"S., long. 73°52'30"W.). The 

abandoned spillway's best geomorphic expression is about 150 m north of 

the intersection of routes U-55-V and U-925 where U-55-V crosses it, 

The channel, now a fen, has an elevation of 150 m or 100 m above present 

lake level: and is located in an area of deforested past:ureland. Coring 

at the site revealed a sequence of silty peat, silty clay, gyttja and 

volcanic ash to a depth of 2.5 min the channel (Plate 1 and Table 3). 

Samples of the 2.5 m section were taken at 10-cm increments. 

The channel drained a proglacial lake that occupied the area of the 

Lago Llanquihue basin northeast of Puerto Octay during the late glacial 

maximum when the glacier abutted against the western shore of Lago 

Llanquihue, Mercer (1976) suggested that the ice-marginal lake was not 

an ephemeral feature formed during ice recession; it occupied the basin 

for a considerable length of time but only when the glacier was in 

contact with the western shore. Porter (1981) argued, however, that the 

spillway drained the lake during early recession of the glacier from the 

Llanquihue I! moraine because the channel truncates Llanquihue II 

outwash. Deposition of organic-rich sediments began in the channel 
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Figure 5. View of the abandoned Puerto Octay spillway west from route 
U-55-V. Note terraces in background . Howard Mooers is with coring 
apparatus in the middle of the channel. 

Figure 6 . Photograph of the piston corer and some of the cores 
recovered from the Puerto Octay Site . The top of the cores is to the 
left. The dark layers are organic rich and the light contain volcanic 
ash . John Mercer is on the right and the writer on the left. 
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Figure 7. Photograph of coring at the Puerto Octay Site. John Mercer 
is on the left and Howard Mooers on the right . The abandoned spillway 
terrace is evident in the background. Note retrieved core in 
foreground. 
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Tabl,e 3. Lit,hologic description of the Puerto Octay Section. 
The composite section is based on nine cores. 

Location., Abandoned meltwater channel 3 km morth of Puerto Octay (lat. 
40°56'40'1S., long. 73°52'30"W.). Cores taken 50 m west of highway 
U-555-V about 150 m north of the junction of U-55-V and U-925 
(Figure 4). 

Sample 
Numbers 

Not sampled 

1-3 

4-9 

10-23, 

24-25 

Description Thickness 
(cm) 

Removed because of bioturbation by 10 
grazing cattle. 

Black (5YR 2.5/1) silty peat. Penetrated 30 
by modern plant roots. Abrupt contact with 
unit below. Sample14 (20-30 cm below top) 
dated at 1,190±135 Cyr B.P. (GX-5505). 

Brown (lOYR 4/3) slightly silty clay. 60 
Somewhat darker in upper 10 cm. Contains 
disseminatd volcanic ash. Gradational 
contact with unit below. Sample 91£80-90 
cm below top) dated at 16,000±540 Cyr 
B.P. (GX-5506). 

Dark, reddish brown (5YR 2.5/2 to black 140 
(SYR 2.5/1) organic rich clay (gyttja). 
Becomes increasingly darker down hole. 
Thin volcanic ash laminae in sample 12 
(120 cm below top) and in sample 19 (190 
cm below top). Abrupt contact with unit 
below. Organics from the base of sample 
23 (238 cm below top) dated at 18,170±650 14c 
yr B.P. (GX-5274). 

Grayish brown 
clayey silt. 
volcanic ash. 

(2.5YR 5/2) slightly sandy 
Probably water-lain 

13 

Base of cored section 
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after the spillway was abandoned when the proglacial lake level was 

lowered 4uring glacier recession. The date for these sediments has been 

taken asithe age for retreat of the glacier from the western shore of 

Lago Llanquihue following the late glacial maximum (Mercer, 1976) or a 

minimum age for the late glacial maximum, Llanquihue II, advance (Porter 

14 1981), 'Jibe date of 18,170±650 Cyr B.P. (GX-5274) obtained during 

this study from the basal organic-rich sediments is slightly older than 

the date of 17,370±670 14c yr B.P. (RL-120) reported by Mercer (1972a, 

1976) from the same stratigraphic level, 

14 Two ,additional dates, 1,190±135 Cyr B.P. (GX-5505) from sample 3 

14 (20-30 c1 below the top of the section) and 16,000±540 Cyr B.P. 

(GX-5506} from sample 9 (80-90 cm below the top of the section), were 

obtained ~rom the Puerto Octay Site (Plate 1, Table 3, and Appendix D), 

These dates indicate that either the upper 90 cm of the section is 

highly co~pressed or that a hiatus exists somewhere in the upper part of 

the seque"ce. The basal 1.5 m of section, however, contains beetle 

assemblag~s spanning the 18,000 to 16,000-year interval. 

Analysis of the Fossil Assemblages 

Representatives (Plate 1) of six orders of insects and two orders 

of arachnids were identified from the twenty-five samples collected at 

the Puerto Octay Site. Plate 1 also shows the minimum number of beetle 

individuals per identified taxon, the number of unidentified but 

potentially identifiable beetle fragments, and the number of additional 

insect and arachnid fragments recovered from each sample. The 
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occurrende of charophyte oogonj_a, diatoms, quillwort macrospores and 

unidentiflied ma.croplant remains is indicated on the stratigraphic column 

(Plate 1). No mollusks or ostracods were found in any of the Puerto 

Octay SaJIIPles. 

Of ~he 516 identifiable beetle fossils recovered from the Puerto 

Octay Sitie (Tables 4 and 5), 498 (97 percent) were identified to family, 

334 (65 p~rcent) to genus and 179 (35 percent) to species. At least 42 

species tjepresenting 14 beetle families, both aquatic and terrestrial, 

' were recognized. Ninety-three percent of the taxa were identified by 

direct comparison to specimens collected during the modern faunal 

survey. The assemblage was dominated by five beetle families (Table 6). 

Twenty-th~ee percent of the species were staphylinids, 14 percent 

hydrophilids, 11 percent curculionids, 14 percent carabids and 9 percent 

pselaphid1a. 

The beetle fossils were not evenly distributed throughout the 2.5 m 

section. Interval 3 through 1, the upper peat horizon, contained a 

relativelv diverse assemblage but interval 9 through 4, silty clay 

containing volcanic ash, was devoid of beetle fossils except for 

pselaphidiS (Table 5). A relatively diverse beetle assemblage, dominated 

by water ~eetles, mostly hydrophilids, and significant species of 

carabids ~nd curculionids, was recovered from interval 23 through 10. 

Only a single aleocharine was found in the basal unit of presumed 

volcanic ash. 

Representatives of five orders of insects (Table 7), in addition to 

the Coleo~tera, were present. Hemiptera (bugs) including Saldidae 

(shorebugs), Homoptera, specifically Cicadellidae (leafhoppers), 
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Table 4. Taxonomic list of fossil Coleoptera recovered from the Rio Caunahue, Puerto Varas Park, Puerto 
Varas Railroad and Puerto Oc_tay Sites in.dicatin,& .. their prJ1,i;;e11t ele:\l'ationaL.i::anges, skeletal e.lelllents from 
which they were identified and plates on which they are illustrated. 

FOSSIL COLEOPTERA TAXA 

TRACHYPACHIDAE 

Systolosom.a brevis Sol., 1849 

CARAllIDAE 

Ceroglossus valdiviae (Hope, 1838) 
Ceroglossus sp. 
Creobius eydouxi Guer., 1B39 
Creobius sp. 
Bembidion cf. dubei Sol., 1849 
Bembidion marginatus Sol., 1849 
Bembidion cf. posticalis Gmn., 1906 
Bembidion setiventre Neg., 1973 
Bembidion sp. 5 
Bembidion sp. 7 
Bembidion sp. 8 

PUERTO PUERTO 
RIO VARAS VARAS PUERTO 

~ CAUNAHUE RAILROAD PARK OCTAY 

~ ~~ ~~ ~~ ~~ < ,,:~ ,,:~ ,,:~ -~ z ~~ ~~ ~~ ~~ 

g a~~ ~~~ !~d a~~ 
~ s~~,,: s~~,,: ~ s~ ~ 

; ~~t~~~~t§~~ot~~~~~~~ ~ ~~~~s~~~,,:S~~~~§~~~~o 

6 X 

4 XX 

4 J!. 
4 XX XX 1 ? 
4 xx 
3 X 
4 X 
2 X 
2 X_X 
2 XX XX 
2 X 
2 X X 

PLATE 
NUMBER I 

"' Y' 



Table 4, (Continued) 

R. P. VARAS 
FOSSIL COLEOPTERA TAXA CAUNAHUE RAILROAD 

l>l P L R P L R 

! HT EE 0 H T E E 0 

CARAllIDAE (CONT.) 

Bembidion spp. 6 XXX 
Aemalodera centromaculata Sol., 1849 3 XX 
Aemalodera dentimaculata Sol., 1849 2 XX 
Aemalodera spp. 4 X X X X X 
Trechisibus nigripennis Group Sol., 1849 6 X X X X 
Trechisibus sp. 6 X 
Gipsyella patagonica Schw., 1958 2 X X 
Trechinotus striatulus Mateu & Neg., 1972 2 XX XX 
Trechini gen, indet, 6 X XX ---
Trirammatus (Feroniomorpha) sp. 1 2 X 
Trirsmmatus sp. fi 
Parhypates (sensu stricto) sp, 4 X X X 
Metius sp. 1 3 X 
Metius spp. 3 X 
Abropus carnifex Fabr., 1775 6 X X X X 
Agonum sp. I I X 
Agonum Sp, 2 4 ? 
Agonum sp. 4 2 xx 
Agonum spp. 4 X X X 
Pterostichini gen. indet, 4 X X' 
Pelmatellus (sensu lato) sp, 1 4 X X 
Pelmatellus (sensu lato) sp. 4 xx 
Bradycellus (Goniocellus) sp. 4 X 

P. VARAS 
PARK 

P L R 
H T E E 0 

X 

X 

X X 

PUERTO 
OCTAY PLATE 
P L R 

H T E E 0 

X 
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Pl.8, Fig. 1 

Pl.4, Fig. 1 
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FOSSIL COLEOPTERA TAXA 

CARABIDAE (CONT,) 

Bradycellus (Liocellus) sp. 
Bradycellus (Stenocellus) sp. 
cf. Bradycellus (Stenocellus) sp. 
Bradycellus spp. 
Plagiotelum irinum Sol., 1849 
Carabidae gen. indet. 

DYTISCIDAE 

Lancetes sp. 
Rhantus validus Sharp, 1882 
Liodessus delfini (Rgmb., 1899) 

HYDRAENIDAE 

Gymnochthebius spp. 

HYDROPHILIDAE 

Hydrochus stolpi Grnn., 1901 
Tropisternus setiger (Germ., 18?4) 
Enochrus fulvipes Sol., 1849 
Enochrus vicinus Sol., 1849 

Table 4. (Continued) 
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FOSSIL COLEOPTERA TAXA 

HYDROPHILIDAE (CONT,) 

Enochrus spp. · 
Hydrophilidae gen. indet. 

PTILIIDAE 

Ptiliidae gen. indet. 

LEIODIDAE 

Dasypelates sp. l 
Dasypelates spp. 
Eunemadus chilensis Ptvn., 1914 
cf. Eunemadus sp. 
Colon sp. 
cf. Hydnobiotus sp. 
cf. Neohydnobius sp. 
Leiodidae gen. indet. 

SCYDMAENIDAE 

Euconnus spp. 
Scydmaenidae gen. indet. 

Table 4, (Continued) 
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CAUNAHUE 

I P L R 
H T E E 0 
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4 XX 
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Table 4. (Continued) 

-----------·-- -- ·-----x. - . ·-·-7; VARAS . 11·: 1T,U{A1f PUERTO. 
FOSSIL COLEOPTERA TAXA CAUNAHUE RAILROAD PARK OCTAY PLATE 

I'> PL R PL R P L R P L R 
~ HTEEO HT E E 0 H T E E 0 H T E E 0 

STAPHYLINIDAE 

Psettdopsis cf. adustipennis F.& G., 1861 + XX 
cf. Pseudopsis spp. + XX 
Glypholoma pustuliferum Jean., 1962 2 XX Pl.6, Fi • 3 
Gl;i:pholoma sp. 4 X I 

"' Omaliopsis spp. 4 XX "' I 
Neophonus bruchi Fauv., 1905 + X X X Pl. 7, Fig, 3 
Omaliinae gen. indet. 4 X X X X 
Carpelimus spp. + X XX 
Thinodromus sp. l 2 X 
Thinodromus sp. 2 1 X 
Thinodromus sp. 3 2 ? X X 
cf. Thinodromus sp. 4 1 X X ---cf. Thinodromus sp. 6 2 X 
cf, Thinodromus spp. X 
Anotylus chilensis C, & S., 1968 Fig. 6 
Bledius cf. chilensis C. & S,, 1968 
cf. Oxytelinae gen. indet. 
Stenus chilensis Ben., 1926 X X X 
Stenus spp. 
Baryopsis araucanus C. & S., 1968 4 
BaryoEsis sp. 
Philonth!!_! (Edeius) punctipennis 

(Sol., 1849) 



Table 4. (Continued) 

----- -- ---------·· --·· .1' .• JZA!l !\S 
FOSSIL COLEOPTERA TAXA CAUNAl!UE RAILROAD 

µ> p t R P L R 
t, 

~ H T E E 0 H T E E 0 

STAPHYLINIDAE (CONT,) 

Cheilocolpus cf. sp. 2 5 XX 
Cheilocolpus sp. 3 4 X 
Cheilocolpus sp. 4 ~ 
Cheilocolpus spp. 6 XX XX 
Loncovilius (Lienturius) sp. 2 XX X 
Loncovilius sp. 4 X 
Quediinae gen. indet. 4 ·x 
cf. Bolitobius asperipennis C.& S.,1968 + X 
Leucotachinus luteonitens (F,& G,, 1861) l X X X X 
Nomimoceras marginicollis (Sol., 1849) 3 X X X X 
Aleocharinae sp. 3 1 XX 
Aleochsrinse sp. 8 2 XX 
Aleocharinse sp. 9 2 X X X 
Aleocharinae sp. 10 4 X 
Aleocharinae sp. 12 4 X 
Aleocharinae Group l 6 X X 
Aleocharinse Group 2 2 xx 
Aleocharinae gen. indet. 6 XX XX XX 
Homalotrichus cf. impressicQ!lis Sol., + X 

1849 
Staphylinidae gen. indet. 6 xxxx 
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Table 4. (Continued) 

-----~·~--1'.VARAS_ _____ P. :VARAS PUERTO 
FOSSIL COLEOPTERA TAXA 

PSELAPHIDAE 

Dalminiomus araucanus Jean., 1962 
Dalminio:mus spp. 
Achillia app. 
Tryopsis spp. 
Pselaphidae gen. indet. 

LUCANIDAE 

Chiasognathus granti Steph., 1831 
Sclerognathus bacchus Hope, 1845 
Sclerognathus caelatus Blanch., 1837 
cf, Sclerognathus femoralis Guer., 1839 
Sclerognathua sp. 

SCARABAEIDAE 

Sericoides chlorosticta Blanch., 1851 
Sericoides viridis Sol,, 1851 
Sericoides sp. 2 
Sericoides sp. 4 
Sericoides ap. 5 
Sericoides sp. 10 
Sericoides sp. 11 

CAUNAHUE RAILROAD PARK OCTAY PLATE 
~ PL R P L R P L R P L R 
~ HTEEO H T E E O H T E E O H T E E 0 

2 X 
2 XX X XX X XX 
6 XX XX X X X X X X 
3 X X X X ? X X X 
6 X X X X X X 

L 
X L 
X 

X 
p 

3 XX 
2 X X X X 
2 X 
4 XX X 
2 X 
2 X 
2 X X 

I .... 
'i' 

~ 



llim ..-........ ~ 

Table 4. (Continued) 

R, P. VARAS 
----i:"'SSir.cULEOPn:RA TAXA ----,C"'ACTIUNAffffE~ RAILROAD 

SCARABAEIDAE (CONT,) 

Sericoides spp. 
Scarabaeidae gen. indet. 

HELODIDAE 

cf. Microcara sp. 
cf. CYPhon sp. 
Prionocyphon sp. 
Helodidae sp. 7 
Helodidae gen. indet. 

CLAMllTDAE 

Clambidae gen. indet. 

BYRRHIDAE 

cf. Byrrhidae gen, indet. 

ELMIDAE 

Austrolimnius chiloensis (Champ., 1918) 
Austrolimnius sp. 

[j PLR PLR 
~HTEEO HTEEO 

6 X X X X X X 
6 X X X X 

6 X X X X 
4 X 
4X 
-4-

6 X X X X 

3 XX 

+ X 

l X X 
I X X 

J 

P. VARAS PUERTO 
PARK OCTAY PLATE 

P L R P L R 
H T E E O H T E E 0 

X 
X 

I 

"' "' I 

X 
X 

Pl.6, Fig. 6 



Table 4. (Continued) 

····-····· FOSSIL COLEOPTERA TAll'A:·~ 

ELMIDAE (CONT. ) 

Neoelmis n. sp. 
Neoe !mis sp • 
Stethelmis sp, 
Hydora snnectens S. & B., 1981 

ELATERIDAE 

Semiotus luteipennis Guer., 1838 
Deromecus sp, l 
Deromecus spp, 
cf. Medonis sp , 
Negsstrius sp. 
Elsteridae gen, indet. 

LAMPYRIDAE 

Pyractonema nigripennis Group Sol., 1849 

CANTHARIDAE 

Dysmorphocerus dilaticornis Guer., 1838 
Oontelus sp. 
Hyponotum cf. krausei (Phil. , 1861) 

R. P. VARAS P. VARAS PURRTO 
CAUNAHUE··-· RAILROAD PARK OCTA~Y~---=py=-,AccT=E 

~ PLR PLR PLR PLR 
~RTEEO HTEEO HTEEO HTEEO 

l XX X PL 8, Fis_. 3 
+ X 
3 X X X 
l X X Pl.5, Fig, 3 

4 X 
2 X 
6 ? X ? 
2 X 
2 XX 
6 X X X 

2 X 
4 X X X 
2 X 

I 
-.I 

"" I 

41 



Table 4. (Continued) 

R, P, VARAS P. VARAS PUERTO 
FOS8_IL COLE()PTERA 'r~-- __________ .CAUNAJ!UE ---l<AILROA!l- - ---PARR:-- - -e,euy--- 1'.LA'fls- --- ---- -

CANTHARIDAF. (CONT.) 

Hyponotum cf. violaceipenne (Pie, 1928) 
Hyponotum spp. 
Micronotum nodicorne (Sol,, 1849) 
Plectocephalon testaceum (Pie, 1928) 
cf. Cantharidae gen, indet, 

Dl!RODONTIDAE 

Nothoderodontus dentatus Lawr., 1979 

ANOBIIDAE 

Byrrhodes nigricolor (Pie, 1912) 
Byrrhodes sp. 
Caenocara spp. 
Stichtoptyohus cf. brevicollis (Sol., 

1849) 
Stichtoptyohus spp. 

BOSTRIDHIDAE 

Bostrichidae gen. indet. 

~ PL_R, PLR PLR PLR 
~HTEEO HTEEO HTEEO HTEEO 

5 X 
4 XX 
4 XX 
6 X X Pl.6~ Fig, 7 
6 X 

+XX XX Pl. 3 _._ F!.g_. 1 

2 X 
2 X 
1 XX XX Pl. 3, Fig. 3 
2 X 

2 xx 

+ X 

I 

" t 



~L .GOLEOPTll'RA ·TAXA ·---

TROGOSITIDAE 

cf. Diontolobus sp. 1 
cf. Diontolobus sp. 2 
cf, Diontolobus sp. 

PELTIDAE 

Acalanthis sp. 

MELYRIDAE 

Dasytes haemorrhoidalis Sol., 1849 
Melyridae gen. indet. 

NITIDULIDAE 

BrachYPterus n. sp. 
Perilopsis flava Rttr., 1873 
Cryptarcha sp, l 
Cybocephalus sp. 
Nitidulidae gen. indet. 

RHIZOPHAG IDAE 

cf. Rhizophagidae gen, inde,t, 

Table 4, (Continued) 

R. P. VARAS P, VARAS 
----fC~AUNAHUE RAILRtlAfl· PARK 

PL. R PL R PL R 
H T E E O H T E E O H T E E 0 I 

3 XX XX 
3 XX XX 
3 X 

+ X 

3 X X X 
3 X X 

2 XX 
2 X X X X 
l X 
+ X X 
4 X X 

+ XX 

PUERTO 
!JCTAY' 

P L R 
H T E E 0 

RATr 

Pl.4,]ig. 3 

Pl.6, Fi , 2 
Pl.3, Fi&, 4 

I 
"' Y' 



FOSSIL COLEOPTERA TAXA 

CRYPTOPHAG IDAE 

Pseudochrodes suturalis Rttr., 1876 
Cryptophagidae gen. indet. 
cf. Cryptophagidae sp. 3 

COCCINELLIDAE 

Rhizobius chilianus Mader, 1957 
Orynipus spp. 
Adalia kuscheli Mader, 1957 
Adalia spp. 
Sarapidus cf. australis Gord., 1977 
Strictospilus darwini Brths., 1924 
Coccinellidae gen. indet. 

LATHRID I IDAI! 

Aridius heteronotus (Belon, 1891) 
Lathridiidae cf. sp. 2 
Lathridiidae gen. indet, 

COLYDIIDAE 

cf. Colydiidae gen. indet. 

Table 4. (Continued) 

~ 

~ 

R, 
CAUNAHUE 

P L R 
HT EE 0 

1 X 
4 X X 
+ XX 

1 X 
4 XX 
1 X 
2 X X 
2 X X 
3 X X X X 
6 X 

4 X 
1 X 
4 xx 

... xx 

P. VARAS 
RAILROAD 

P L R 
HT EE 0 

P. VARAS 
PARK 

P L R 
H T E E 0 

XX 

PUERTO 
OCTAY 
P L R 

PLATE 

H T E E 0 

Pl. 3 L.!!!• 2 

X 

I 

" 'f' 



FOSSIL COLEOPTERA TAXA 

TENEllRIONIDAE 

cf. Adeliurn sp. 

SAI.PINGIDAE 

Cycloderus rubricollis Sol., 1851 
Vincenzellus sp. 
Salpingidae gen. indet. 

OEDOMERIDAE 

Platylytra vitticollis F. & G., 1863 

MELANDRYIDAE 

Orchesia sp. l 
Orchesia sp. 2 

MORDELLIDAE 

Mordellidae cf. sp. 3 
Mordellidae gen. indet. 

Table 4. (Continued) 

R. 
CAUNAHUE 

~ PL, R 3 HTEEO 

2 XX 

2 X 
+ X X 
6 X 

2 X 

4 X X X X 
l XX 

2 XX 
2 XX 

P. VARAS 
RAILROAD 

P L R 
HT E E 0 

P, VARAS 
PARK 

PL R 
H T E E 0 

? ? 

PUERTO 
OCTAY 
P L R 

H T E E 0 

,,] ;.;; 

PLATE 

I ._, ..., 
l 



FOSSIL COLROPTERA TAXA 

ANTHICIDAE 

Anthicidae gen. indet. 

CERAMllYC IDAE 

Hoplonotus spinifer Blanch., 1851 

CHRYSOMELIDAE 
Pachybrachis sp. 
Strichosa eburata Blanch., 1851 
cf. Gavirga sp, 
Altica sp. 1 
Altica sp. 2 
Alticinae sp, l 
Alticinae gen. indet, 
cf. Crepidodera sp. 1 
cf. Crepidodera sp. 
Chaetocnema sp. 
Chrysomelidae gen. indet. 

NEMONYCHIDAE 

Rhynchitomacer flavus Voss, 1937 
Rhvnchitomacer fuscus (Kusch., 1954\ 

Table 4. (Continued) 

R. 
CA!lNAHUE 

I 
p I; R 

H T E E 0 

2 X X 

?. X 

2. X 
3 X 
5 X 
4 X X 
.5 X 
4 X X X X 
4 X X X X 
?. X X 

P. VARAS 
RAILROAD 

P L R 
H T E E 0 

P. VARAS 
PARK 

P L R 
HT EE 0 

PUERTO 
OCTAY 
P L R 

H T E E 0 

X 

PLATE 

1 XX X --------~-
2 X 
4 X X X 

+ X Pl.6, Fig. 5 
+ X 
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Tahle 4. (Continued) 

R. 
FOSSIL COLEOPTERA TAXA CAlJNAHUE 

I H~~:o 
ANTHRillIDAE 

1 X 
+ X 

Onniscus parvulus (Blanch., 1851) 
Choraginae gen. indet. 
Anthribidae gen. indet. 4 X X X 

SCOLYTIDAE 

Pityophthorus sp. _! X 
Monarthrum sp. + XX 
Amphicranus sp, _! X 
cf, Corthylus sp. ~+~~-.e.: 
cf, Araptus sp. 0+~~--=~ 

P. VARAS 
RAILROAD 

P L R 
H T E E 0 

P. VARAS 
PARK 

P L R 
H T F. E 0 

PUERTO 
OCTAY 
PL R 

PLATE 

H T F. E 0 

Pl. 5 1 Fig. 1 

Gnathotrupes cf. sextuberculatus Sehl., _:+:=~=-:-'--:'::=::::---:--::=:========================================= 
-1--951 

2 XX X Gnathotrupes spp. 
Phloeotribus cf. spinipennis 
Scolytidae gen. indet. 

Eggrs., 1930 + XX Pl. 6, Fi , 1 

ATTELABIDAE 

Eugnamptoplesius violaceipennis 
(F. & G,, 1860) 

Minurus testaceous Wtrh., 1845 

2 X X 

2 XX 

2 X X X Pl. 8, FiB_, 6 
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FOSSIL COLEOPTERA TAXA 

BELTDAE 

Table 4. (Continued) 

R. 
CAUNAHUE 

ti! PLR 
~HTEEO 

P. VARAS 
RAILROAD 

P L R 
H T E E 0 

P. VARAS 
PARK 

P L R 
H T E E 0 

PUERTO 
OCTAY 
P L R 

H T E E 0 

PLATE 

X Trichophthalmua miltomerus (Blanch., 1851,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

CURCUI.IONIDAE 

Nototactus angustirostris Kusch., 1952 
Polydruaus nothofagi Kusch., 1950 
Dasydema hirtella Blanch,, 1851 
Paulsenius carinicollis (Blanch., 1851) 
Listroderes dentipennis Gmn,, 1895 
Listroderes sp. 
Listronotus bonariensis (Kusch., 1955) 
cf. Listronotus sp. 
:llyUbllt!ae ·n:, ~--
Tar tar isu s signatipennis (Blanch., 1851) 
Nothofagobius brevirostris Kusch., 1952 
Nothofaginoides andinus Kusch., 1952 
Nothofaginus lineaticollis Kusch,, 1952 
Neopailorhinus collaris (Blanch., 1851) 
Neopsilorhinus sp. 
Rhopalomerus tenuirostris Blanch., 1851 

-~oides _ sp. 
Epaetius carinulatus Kusch,, 1952 
Notiodes sp. 

3 X X X 
2 X X X 
4 X X X X 
6 
6 X X 
6 
+ 
+ X X 

x-
3 L 
4X 
5 XX 
+ X 
2 X 
1 X 
3 XX 
3 X ? 
2 X X X 
+ X X 

xxxx X X X M Pl.2~.4 
XX 
XX XXXXA XX A Pl.2,__!!a.1 

XX X 
X 

Pl.6, Fig.4 

Pl. 7, Fig. 2 

Pl. 7, Fig.5 

&, 
0 
I 



Table 4. (Continued) 

R. 
FOSSIL COLEOPTERA TAXA CAUNAHUE 

I H;i:o 
CURCULIONIDAE (CONT.) 

Aoratolcus estriatus Kusch., 1952 + XX 
Wittmerius longirostris Kusch., 1952 .!_XX XX 
Erirrhinoides unicolor Blanch., 1851 + 
Erirrhininse n. sp. 1 5 X X X 
Erirrhininae n. sp. 2 3 X X X X 
Erirrhininae gen. indet. ~ XX X 
Aegorhinus vitulus bulbifer Kusch., 1951 ~ 
Aegorhinus sp. ~ 
Apion spp. 4 X X ? ? 
Allomagdalis cryptonyx Kusch., 1950 + X 
Berberidicola crenulatus (Blanch., 1851) 3 ? X 
Berberidicols exaratus (Blanch., 1851) 3 XX 
Berberidicola sp. 3X 
Psepholax dentipes (Blanch., 1851) ~ X 
Acalles tristis Blanch., 1851 2 
Ac all es cf. sp. 4 ?. X 

P. VARAS 
RAILROAD 

P L R 
H T E E 0 

X 

L 
X 

X 

X X X M 

P. VARAS 
PARK 

PL R 
H T E E 0 

PUERTO 
OCTAY 
PL R 

H T E E 0 

PLATE 

p 1. ?. ......E.!s.. 3 

Lophocephala faseiolata Blanch., 1851 "'" A A A A rl.8, Fig.4 
Rhyephenes sp. 
Cryptorhynchinae n. sp. 1 
Cryptorhynchinae n. sp. 2 
Cryptorhynchinae gen. indet. 
Dryophthorus canus (Phil., 1864) 
Pentarthrurn castaneum (Blanch., 1851) 

4 
+ 
+ X 
4 X X X X 
+ X 
+XX XX 

L 
X X X X X X 

? XX XX Pl. 8 ......E_!g_. 5 

Pl. 2 ......E_!g_, 2 
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FOSSIL COLEOPTERA TAXA 

CURCULIONIDAE (CONT.) 

Curculionidae gen. indet. 

Table 4, (Continued) 

R. 
CAUNAHUE 

~ PL R 
~ HT EEO 

6 X X X X 

P. VARAS 
RAILROAD 

P L R 
H T E E 0 

X 

·,f)~:,·,1"·'' 

P. VARAS 
PARK 

P L R 
HT EE 0 

X X 

':;;: 

PUERTO 
OCTAY 
PL R 

HT EE 0 

X X 

Additional identifiable anatomical parts: M = Metasternum, P = Prosternum, A• Aedeagus, L = Leg. 

The elevational range of existing species in the Parque Nacional de Puyehue area is indicated by: 

l = taxa ranging up to 150 m, 2 • taxa ranging up to 650 m, 3 = taxa ranging up to 1000 m, 
4 = taxa ranging up to 1200 m, 5 = taxa occurring only between 1000-1200 m, 6 = taxa ranging 

above 1200 m, 
+ = taxa not collected in the modern survey. 

Familial order foJ.lowed by the U.S. Department of Agriculture and U.S. National Museum. 
Systematic order of infrafamilial taxa after Blackwelder (1944-1947). 

PLATE 

Numbered species correspond to distinct but undescribed species collected during the modern faunal 
survey. See species list in Appendi.x A. 

.l., 
';> 
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Table 5. Table indicating the number of identifiable beetle fossils recovered by sample from the Puerto 
Octay Site and the number and percent of the fossils identified to family, genus, and species. The table 
also shows the minimum number of identified taxa and the number and percent of taxa identified to genus 
and species in each sample. See Plate 1 for stratigraphic position of each sample. 

Total 
Number of Total Total Total Minimum Number (%) Number (%) 

Identifiable Number(%) Number(%) Number(%) Number of of Taxa of Taxa 
Sample Beetle Identified Identifjed Identified Identified Identified IdentiHed 

I I Number Fossils to Family to Genus to Species taxa to Genus to Species 

1 25 24 (96) 16 (64) 12 (48) 13 10 (77) 7 (54) I 
0:, ;:.~ 2 2 2 (100) 2 (100) 1 (50) 2 2 (100) 1 (SO) w 
I 

3 2 1 (SO) 1 (50) 0 (0) 1 1 ( 100) 0 (0) 
4 1 1 (100) 1 (100) 0 (0) 1 1 (100) 0 (0) 
5 1 0 (0) 0 (0) 0 (0) 0 0 (0) 0 (0) 
6 1 l ( 100) 1 (100) 0 (0) 1 I (100) 0 (0) 
7 1 1 (100) 0 (0) 0 (0) 1 0 (0) 0 (0) 
8 0 0 (0) 0 (0) 0 (0) 0 0 (0) 0 (0) 
9 3 0 (0) 0 (0) 0 (0) 0 0 (0) 0 (0) 

10 3 3 (100) 2 (67) 0 (Ol 3 2 (67) 0 (Ol 
11 10 10 (100) 5 (50) 2 (20) 7 4 (57) 2 (29) 
12 42 42 (100) 29 (69) 11 (26) 12 6 (50) 3 (25) 
13 51 50 (98) 36 (71) 20 (39) 12 8 (67) 7 (58) 
14 50 5 (100) 29 (58) 13 (26) 12 8 (67) 5 (42) 
15 62 60 (97) 40 (65) 22 (35) 15 10 (67) 7 (47) 
16 51 50 (98) 37 (73) 28 (55) 14 9 (64) 6 (43) 
17 51 50 (98) 38 (75) 2(1 (39) 18 14 (78) 7 (39) 
18 28 '17 (96) 22 (79) 10 (36) 13 10 (77) 5 (38) 
19 37 36 (97) 19 (51) 10 (27) 13 9 (69) 5 (38) 
20 5?. 51 (98) 28 (54) 15 (29) 16 12 (75) 6 (38) 



Table 5, (Continued) 

Number of Total Total Total Minimum Number(%) Number (%) 
Identifiable Number(%) Number(%) Number(%) Number of of Taxa of Taxa 

Sample Beetle Identified Identified Identified Identified Identified Identified 
Number Fossils to Family to Genus to Species taxa to Genus to Species 

21 28 26 (93) 21 (75) 14 (50) 11 7 (64) 4 (36) 
22 5 3 (60) l (20) 0 (0) 2 I (50) 0 (0) 
23 9 9 (100) 7 (78) 2 (22) 5 3 (60) 1 (20) 
24 l l { 100) 0 (0) 0 (0) l 0 (0) 0 (0) 
25 0 0 (0) 0 (0) 0 (0) 0 0 (0) 0 (0) I 

"' ,_.. 
I 

TOTAL 516 498 (97) 334 (65) 179 (35) 
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Table 6, Families and number of species per family recovered from each 

, site and the percent: of each site's assemblage that: these species 
represent. 

PUERTO PUERTO VARAS PUERTO VARAS RIO 
FAMILY OCTAY PARK RAILROAD CAUNAHUE 

1. Trachypachidae 0(0) 0 (0) 0(0) 1 ( 1) 
2. Carabidae 6(14) 6(22) 7(32) 34 ( 14) 
3. Dytiscidae 1 (2) 0(0) 0(0) 3(1) 
4. Hydraenidae 1 (2) 1(4) 0(0) 0(0) 
5. Hydrophilidae 6(14) 3(11) 0(0) 3(1) 
6. Ptiliidae l (2) 0(0) 0(0) l ( 1) 

7. Leiodidae 2 (5) 0(0) 0(0) 8 (3) 
8. Scydmaenidae 0(0) l ( 4) 0(0) 2( 1) 
9. Staphylinidae 10(23) 2 (7) 3(14) 38(16) 

10. Pselaphidae 4(9) 4(15) 0(0) 5(2) 
11. Lucanidae 0 (0) 0 (0) 0(0) 5 (2) 
12. Scarabaeidae 2(5) 1(4) 2 (9) 9(4) 
13. Helodidae 2 (5) 0(0) 0(0) 4 (2) 
14. Clambidae 0(0) 0(0) 0(0) l ( 1) 
15. Byrrhidae 0 (0) 0 (0) 0(0} I ( l) 
16. Elmidae 0(0) 0(0) 0(0) 6(2) 
17. Elateridae 0 (0) 0(0) 0 (0) 6(2) 
18. Lampyridae 0(0) 0(0) 0(0) 1( 1) 
19. Cantharidae 1 (2) 0(0) 0(0) 7 (3) 
20. Derodontidae 0(0) 0(0) 0(0) 1( 1) 
21. Anobiidae 0(0) 0 (0) 0(0) 5 (2) 
22 .. Bostrichidae 0(0) 0(0) 0(0) 1( 1) 
23. Trogositidae 0 (0) 0(0) 0(0) 3(1' 
24. Peltidae 0(0) 0(0) 0(0) 1( 1) 
25. Melyridae 0 (0) 0(0) 0 (0) 2( l) 
26. Nitidulidae 0(0) 0(0) 0(0) 5(2) 
27. Rhizophagidae 0(0) 0(0) 0(0) 1 ( 1) 
28. Crypt:ophagidae 0(0) 0(0) 0 (0) 3(1) 
29. Coccinellidae 0(0) 1(4) 0(0) 7 (3) 
30. Lat:hridiidae 1(2) 0(0) 0(0) 3(1) 
31. Colyd!idae 0(0) 0(0) 0(0) l ( 1) 
32, Tenebrionidae 0(0) 0(0) 0(0) 1 ( 1) 
33. Salpingidae 0(0) 0(0) 0(0) 3(1) 
34. Oedomeridae 0(0) 0(0) 0(0) 1 ( 1) 
35. Melandryidae 0 (0) 1 (4) 0 (0) 2 ( 1) 
36. Mordellidae 0(0) 0(0) 0(0) 2( 1) 
37. Anthicidae 0 (0) 0(0) 0(0) 1 ( 1) 
38. Cerambycidae 0(0) 0(0) 0(0) 1( 1) 
39. Chrysomelidae 2(5) 0 (0) 0 (0) 10(4) 
40. Nemonychidae 0(0) 0(0) 0(0) 2 ( 1) 
41. Anthribidae 0(0) 0(0) 0(0) 3(1) 



FAMILY 

42. Scolytidae 
43. Attelabidae 
44, Belidae 
45. Curculionidae 

TOTAL 

PUERTO 
OCTAY 

0(0) 
0(0) 
0(0) 
5(11) 

44 
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Table 6. (Continued) 

PUERTO VARAS Plll!RTO VARAS RIO 
PARK RAILROAD CAUNAHUE 

0(0) 0(0) 9(4) 
0 (0) 0(0) 2 ( 1) 
0(0) 0(0) 1 ( 1) 
7(26) 10(45) 35(15) 

27 22 241 
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Table 7, Additional Insecta and Arachnida recovered from each fossil 
site. 

PUERTO PUERTO VARAS PUERTO VARAS RIO 
FOSSIL OCTAY PARK RAILROAD CAUNAHUE 

INSECTA 

Plecoptera (stonefly) X 
Hemiptera (bug) 

Saldidae (shorebug) X X 
Other X X 

Homoptera 
Cicadellidae (leafhopper) X X 

Neuroptera 
Corydalidae (dobson fly) X 
Other X 

Trichoptera (caddisfly) X X X 
Diptera (fly) 

Chironomidae (midge) X X 
Other X X 

Hymenoptera 
Formicidae (ant) X X X 
Other X X X 

ARACHNIDA 

Chelonethida(pseudoscorpion) X 
Acari (mite) X X X X 
Araneida (spider) X X 
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Trichoptera (caddisflies), Diptera (flies), including Chironomidae 

' 
(midges), and Hymenoptera, including Formicidae (ants). Two arachnid 

orders were identified; the Acari (mites) and Araneida (spiders). Most 

of the insect fossils, other than Coleoptera, and the arachnids were 

identified by head capsules. The occurrence of these fossils closely 

followed the uneven distribution of the Coleoptera (Plate 1). Only 

mites and caddisflies were found in interval 9 through 4 and only mites 

in interval 25 through 24. 

Diatoms of the genera Melosira and Anomoeoneis were observed 

throughout the section below sample 3 and were exceedingly abundant in 

samples 24 and 25. Charophyte oogonia were found in interval 3 through 

1 and again in interval 23 through 10. Macrospores of the quillwort, 

Isoetes savatieri Franchet, occurred fairly consistently throughout the 

section below the upper peat and were extremely abundant in interval 25 

through 24. 

Paleoenvironmental and Paleoclimatic Interpretations 

Interval 25 through 24 (slightly older than 18,000 yr B.P.) 

Only one aleocharine (Staphylinidae) fragment was recovered from 

the water-lain volcanic ash horizon; it carries no environmental 

significance. No other insects were found, but the abundant diatoms, 

Melosira and Anomoeoneis, indicate (Bradbury, 1980) that the former 

spillway contained freshwater of low alkalinity at the time of 

deposition. Additional information on water quality was provided by 

abundant macrospores of the quillwort Isoetes savatieri. The plant 

favors shallow, oligotrophic aquatic habitats (Reusser, 1980). 
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Unfavorable substrate, water chemistry, oligotrophic conditions, low 

water temperature, or lack of open water could all explain the absence 

of an aquatic insect community. However, the almost c0<mplete absence of 

any insect fossils, including terrestrial forms, may suggest that severe 

climatic conditions were, at least in part, responsible for the sparsity 

of insects inhabiting the Puerto Octay area when glaciers were 

beginning to recede from the Central Valley about 18,000 years ago. 

Interval 23 through 10 (18,000 to 16,000 yr B.P.) 

A marked sedimentological change took place in the abandoned Puerto 

Octay channel about 18,000 years ago, indicated by an abrupt change from 

deposition of nearly abiotic volcanic ash to organic-rich sediment 

containing insect and macroplant fossils. The relatively diverse water 

beetle assemblage, including the hydrophilids, Tropisternus setiger, 

Enochrus fulvipes and_!. vicinus, suggest that the depositional 

environment was an areally restricted, quiet, shallow pond. Rich 

aquatic plant growth is suggested by the dytiscid, Liodeasus delfini 

which, according to Doyen and Ulrich (1978), spends at least part of its 

life cycle within mats of filamentous algae, the hydrophilids, whose 

larvae are herbaceous on living and decaying aquatic vegetation (Pennak, 

1978), and chironomid larvae that are mostly herbaceous on algae and 

higher aquatic plants (Pennak, 1978). Shallow, well oxygenated water 

conditions are also reflected by the presence of high numbers of fossil 

caddisfly frontoclypeal apotomes and chironomid larval heads. The 

decrease in abundance of Isoetes savatieri, increase in unidentifiable 

vegetable matter, and presence of charophyte oogonia, as compared to 



-90-

the previous interval, indicate that eutrophic conditions were 

established in the pond. 

The pond was probably partially fringed by vegetation, indicated by 

the occurrence of the cantharid Dysmorphocerus dilaticornis, the 

curculionid Dasydema hirtella (Plate 2, Figure 4), helodids, and 

leafhoppers. However, other areas of the shoreline were perhaps muddy 

and open, reflected by the water-marginal taxa, Agonum sp. 2 (carabid, 

Plate S, Figure 2) Gymnochthebius (hydraenid), Hydrochus stolpi 

(hydrophilid, Plate 4, Figure 2), shorebugs (Saldidae), and the 

staphylinids, Stenus and Cheilocolpus. Marshy areas were probably 

present as inferred by the occurrence of the weevil, Lophocephala 

fasciolata (Plate 8, Figure 4), a phytophagous species host specific on 

the shrub, Pseudopanax laetivirens (Kuschel, 1981). The shrub is found 

today in marshy areas in southern Chile (Munoz S., 1980). 

ln comparison to the relatively diverse aquatic beetle assemblages 

recovered from the interval, terrestrial species were exceedingly 

sparse. The only ground-dwelling taxa were the pselaphids, DalminiOll!us, 

Achillia, and Tyropsis; the staphylinid, Baryopsis, and the weevil, 

Listroderes ~~ntipennis (Plate l, Figure!), Only the latter provides 

an insight into the paleoenvironment of the region and is particularly 

significant for reconstructions of conditions during the 18,000 to 

16,000-year time period. Kuschel (1981a, 1982) comlllented that 

Listroderes is generally found in open, dryish country feeding on 

cushion mat and rosette plants of all kinds of dicots, especially 

Umbelliferae, Cruciferae and Compositae, He further noted, however, 

that L. dentipennis may be one of the very few species in the genus 
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that has become somewhat adapted to forest margins, but that it is 

unlikely the species could exist in a normal forest with a dense canopy. 

As Kuschel stated, although 1_. dentipennis lives today principally on 

the composite Senecio in forest margins from Valdivia to Isla Wellington 

(approx, 50° S. lat,), in the latitude of the Lake Region, it is 

confined to alpine and subalpine areas, broad riverbed lowlands and in 

open coastal areas. Kuschel's observations were confirmed by ecological 

information obtained in this study (Appendix A) because!:_. dentipennis 

was found only in tundra habitats (Bioassociation V) and in open forest 

areas inhabited by beetles of Bioassociation III. Its occurrence in 

this interval suggests that the pond was in an open-ground setting, and 

explains the absence of arboreal species in the site area between 18,000 

and 16,000 years ago. 

It is tempting to speculate that a tundra environment existed in 

the Puerto Octay area between 18,000 and 16,000 years ago because of the 

lack of arboreal taxa, occurrence of open-ground forms, low species 

diversities, temporal position of the interval and geographic location 

of the site. However, no modern analog for the beetle assemblages was 

observed during the survey of the existing Lake Region faunas. If the 

sparsity of terrestrial taxa and lack of arboreal elements, coupled with 

the presence of the open-ground species, Listroderes dentipennis, 

signifies tundra conditions, the assemblages are signific2ntly different 

than the alpine tundra beetle faunas, Bioassociation V, identified in 

Appendix A, The terrestrial element of the fossil assemblages is much 

more depauperate than the terrestrial beetle faunas living in alpine 

tundra habitats in the Lake Region today, although 1_. dentipennis is a 
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major fauna! component in, but not restricted to Bioassociation V, 

Most of the species recovered from the interval are eurythermic and 

cosmopolitan existing today in broad geographic and elevational ranges 

in southern South America. For example, many of the water beetles range 

from far to the north of the Lake Region to the Magallanes (Moroni, 

1973) and also span numerous elevational zones (Appendix A). 

Listroderes dentipennis, Dasyd~ hir~ and Agonum sp. 2 also inhabit 

broad elevational ranges. The observation that most species can exit in 

cool climates perhaps strengthens the possibility that cold conditions 

existed in the area 18,000 to 16,000 years ago. However, data in Tables 

4, B, and 9 show that some taxa range only up to 150 min the Lake 

Region today, indicating that open-ground conditions, not necessarily 

cold temperatures, was the main controlling factor. The fossil beetle 

assemblages may, therefore, represent an early seral stage of biotic 

succession into the region after temperatures had increased sufficiently 

to cause glacial retreat from the Central Valley, thereby opening new 

habitats for colonization. Without a modern analog, it cannot be 

certain whether climatic regime or habitat availability was ultimately 

responsible for the composition of the beetle faunas living in the 

Puerto Octay area during the time interval of 18,000 to 16,000 years 

ago. 

Interval 9 through 4 (Age not precisely known but less than 16,000 yr 

Although the contact is gradational, a significant sedimentological 

and biological change occurs between interval 9 through 4 and 
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interval 23 through 10. The high organic content of the sediment 

observed in interval 23 through 10 decreased upward, associated with 

increased amounts of volcanic ash in interval 9 through 4. The only 

insect fossils recovered from interval 9 through 4 were Trichoptera and 

pselaphids (e.g., Dalminiomus), neither of which provides much 

paleoenvironmental information, although the former suggests that the 

site was hygric. The high numbers of Isoetes savatieri and absence of 

charophyte oogonia imply that oligotrophic conditions returned to the 

Puerto Octay pond, 

The dates bracketing this interval are extremely important because 

they indicate either that a hiatus exists somewhere in the interval or 

that the interval is highly compressed. In either case, this part of 

the sequence is of no value for paleoenvironmental and paleoclimatic 

reconstructions because of poor age control, potential long time span 

involved and scarcity of fossils. As will be shown later, however, the 

recognition of depositional anomalies in the upper part of the Puerto 

Octay section has direct bearing on the inferred paleoclimatic history 

of the Lake Region proposed by earlier workers. 

Interval 3 through 1 Jl,200 yr B.P. to Present) 

The presence of Enochrus (hydrophilid), organic-rich sediment 

(peat), and charophyte oogonia and the absence of quillwort macrospores, 

suggest the rejuvenation of eutrophic conditions at the Puerto Octay 

Site by at least 1,200 years ago. The occurrence of Enochrus suggests 

that water depths were probably extremely shallow and, perhaps, only an 

ephemeral marsh existed at the site throughout this time, similar to 
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today's setting. The ground-dwelling fauna inhabiting the shorelines 

consisted of staphylinids, including Stenus spp., Philonthus (Edeius) 

punctipennis and Nomimoceras marginicollis (Plate 5, Figure 4); 

~nochthebius (hydraenid); Dalminiomus. (pselaphid) and the carabids, 

Bradycellus (Goniocellus) sp. and Bradycellus (Stenocellus) sp. A 

fairly diverse floral community probably existed in the area, suggested 

by the occurrence of the chrysomelids, cf. Crepidodera sp. 1, which was 

found only on Fuchsia magellanica during the survey of the existing 

fauna, and Chaetocnema, which was commonly found on Amomyrtus luma 

during the survey. Lathridiids, existing today in the Lake Region on a 

number of plants including Nothofagus ~ombeyi, cicadellid homopterans 

and Hemiptera also indicate a relatively well-established plant 

community in proximity to the site, 

Aquatic conditions, similar to those observed today, were 

apparently established at the Puerto Octay Site by at least 1,200 years 

ago. However, at the present time, the site is surrounded largely by 

open pasture and farmland, not bearing a relatively diverse plant 

community as is inferred from beetle species present in the interval. 

As stated earlier, historical accounts have shown that the Lake Region 

was densely forested prior to European settlement in the early 19th 

century. The fossil record seems to confirm that the last deforestation 

of the Central Valley occurred in relatively recent time. 

Most of the beetle taxa recovered from the interval do not range 

above 1000 min the Lake Region today and a high percentage of the 

species occur only below 650 m (Tables 4, 8 and 9), It seems likely, 

therefore, that climatic conditions similar to today were established 
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in the Central Valley by at least and, as will be shown later, probably 

much earlier than 1,200 years ago. 

Discussion 

Although Mercer (1976) and Porter (1981) expressed conflicting 

opinions regarding exactly when and for how long the Puerto Octay 

channel was an active spillway of proglacial Lago Llanquihue, both 

agreed that deposition of lacustrine sediments began in the depression 

after the spillway was abandoned when lake level fell during glacial 

recession. The date of the basal organic-rich sediment in the channel 

was taken as the age of the initial retreat of the glacier from the 

western shore of Lago Llanquihue after the late glacial maximum (Mercer, 

1976; Porter, 1981), Both authors apparently inferred that the channel 

is floored by peat or gyttja probably because of Heusser's (1974) 

initial description of the site in which he reported gravel beneath 

gyttja in the bottom of his core. Gravel was not encountered at the 

base of any of the cores taken for this study from the abandoned 

spillway. All cores bottomed in a siliceous silt be.lieved to be 

volcanic ash deposited in an oligotrophic lacustrine environment of low 

alkalinity, implied by the occurrence, in great abundance, of the 

freshwater diatoms, Melosira aod Anomoeones, and Isoetes macrospores. 

The pond initially occupying the channel was essentially devoid of 

insects and was probably in a treeless setting inhabited by few 

terrestrial organisms. Climatic conditions may have been severe during 

that time. The thickness of the basal silt is not known and the type of 

sediments below the silt has not been determined. The age of the 
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organic-rich sediment above the silt does not, therefore, provide a date 

for the onset of recession of the glacier from the western shore of Lago 

Llanquihue but indicates only that retreat had begun prior to 18,170 yr 

B.P. The date (about 19,500 yr B.P.) of the late glacial maximum is 

well established (Mercer, 1976; Porter, 1981), so recession of the 

glacier had to have begun sometime between 19,500 and 18,170 years ago. 

Between 18,000 and 16,000 years ago, the abandoned spillway, at 

least in the sampled area, was occupied by a shallow, eutrophic, 

probably areally restricted pond containing abundant aquatic vascular 

plants and filamentous algae supporting a relatively diverse aquatic 

insect fauna. Hygrophilous vegetation was present in some of the pond 

marginal areas, although open, muddy shores were also common. Marshy 

areas were probably present adjacent to the pond, but essentially 

treeless, open-ground habitats characterized the regional setting in the 

Puerto Octay area. 

Insufficient information is available regarding the meaning of the 

species associations and ecological requirements of the beetle species 

recovered from interval 23 through 10 to make an unequivocal statement 

about the climatic conditions during that time. The absence of arboreal 

beetle taxa, occurrence of open-ground forms and low beetle diversity 

may indicate that treeless conditions in a tundra environment existed in 

the site area between 18,000 and 16,000 years ago. It is equally 

plausible, however, that the beetle assemblage may represent an early 

seral stage of biotic succession into the area. Heusser's (1974) pollen 

diagram from the Puerto Octay section provides additional 

paleoenvironmental information, It is difficult to ascertain from the 
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diagram why he divided the 18,000 to 16,000 yr B.P. interval into two, 

L-5 (lower) and L-4 (upper), pollen zones. The nonarboreal component of 

the spectra is consistently high (80 to 90 percent) throughout the 

entire interval and no major shifts in the percentages of other taxa are 

noted in the diagram. He interpreted the pollen spectra of zone L-4 to 

indicate a climatic amelioration and advance of beech forest around 

Puerto Octay even through the values for Nothofagus were extremely low 

and only traces of other tree pollen were present. In contrast, he 

interpreted the low values of Nothofagus in zone L-5 (even through the 

values were slightly greater than in zone L-4) to indicate a return of 

climate to glacial conditions. There is no indication from the beetles 

that climatic amelioration occurred or that trees invaded the Puerto 

Octay area during deposition of zone L-4, It is suggested here that 

there is little evidence of this in the pollen record either, and it is 

proposed that the pollen diagram indicates, similar to the beetles, that 

essentially treeless, perhaps tundra, conditions prevailed throughout 

the 18,000 to 16,000 year period. 

It should be pointed out that Reusser had only one date, 17,370 yr 

B.P., from the base of the Puerto Octay section on which to base his 

interpretations. He believed that the upper boundary of zone L-5 dated 

from 12,000 yr B.P. because he correlated, by pollen stratigraphy, the 

Puerto Octay section with more well-dated sequences at Alerce located 

about 10 km northeast of Puerto Montt (Reusser, 1966a). The correlation 

proved to he inaccurate because the assumed date of 12,000 yr B.P. for 

the top of zone L-5 is much younger than the radiocarbon date of 16,000 

yr B.P. obtained during this study from about the same stratigraphic 
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position. Furthermore, Beusser (1974) correlated the Puerto Octay L-4 

and L-5 zones with pollen zones L-4 and L-5 at the Puerto Varas Railroad 

Site; correlation of the pollen spectra from the two sites is difficult 

to accept because zone L-4 at the Puerto Varas Railroad Site contains 

about 68 percent Nothofagus pollen, whereas zone L-4 at the Puerto Octay 

Site contains only about 19 percent. Arboreal percentages are also much 

greater in the Puerto Varas Railroad L-5 zone than in zone L-5 at Puerto 

Octay. If the 16,000 yr B.P. date is accurate for the top of zone L-5 

at Puerto Octay, both pollen zones L-5 and L-4 at Puerto Octay are older 

than the basal sediments at the Puerto Varas Railroad Site and 

correlation is not possible. 

The 60-cm thick section within interval 9 through 4 is bracketed by 

the dates of 16,000 yr B.P. and 1,190 yr B.P. This modest amount of 

sediment deposited over a considerable length of time implies that a 

hiatus exists somewhere within the interval or that the section is 

compressed, probably as a result of very slow sediment.ation rates, or 

both. About 16,000 years ago the eastern outlet (Rio Petrohue) of Lago 

Llanquihue opened (Mercer, 1976), resulting in a fall of lake level. 

Perhaps the Puerto Octay pond also drained at that time leaving very 

little water in the channel. A depositional hiatus may have resulted 

and sedimentation rates would have declined. The meager fossil evidence 

suggests that the site was, at least at times, hygric but apparently did 

not support an aquatic insect fauna or provide a depositional 

environment for terrestrial beetles. Consequently, no pal,oclimatic 

information is available from the Puerto Octay Site from the 16,000 to 

1,190 yr 6.P. time period. Beusser (1974) divided the portion of the 
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1 9 through 4 into two pollen 
Puerto Octay section equivalent to interva 

zones, L-6 and L-7. He inferred, as a result of the previously 

mentioned miscorrelat1on to the Alerce sequences, the base of zone L-6 

(top of the zone L-5) to be 12,000 years old. In addition, he 

interpreted the top of zone L-6 to be 11,000 years old and the top of 

zone L-7 to date from 10,000 yr B.P.' The radiocarbon date of 1,190 yr 

B.P. obtained during this study was from about the same stratigraphic 

level as Heusser's inferred 10,000 yr B.P. date. Pollen zone L-7, 

inferred by Reusser to span the 11,000 to 10,000 yr B.P. time interval, 

is particularly important because he interpreted the spectra from the 

zone to indicate a major climatic deterioration during that time. A 

discussion of the importance of the incompatibility of Heusser's pollen 

stratigraphy correlations and radiocarbon chronology for this critical 

time period will be deferred until later. 

Reusser (1974) named the upper 30 cm (interval 3 through 1) of the 

Puerto Octay sequence pollen zone P-1. Beetle assemblages from the 

interval reflect deposition in a marshy environment surrounded by a 

fairly diverse floral community. Climatic conditions were probably 

similar to those of today. Heusser's pollen diagram of the interval, 

dominated by arboreal and aquatic plants, is consistent with the 

interpretation. However, Reusser thought, again because of pollen zone 

correlation with sections at Alerce, that the interval was deposited 

between 10,000 and 9,000 yr B.P., and he believed the record to indicate 

early postglacial invasion of tree taxa into the Central Valley. In 

actuality, the sediments were deposited after 1,190 years ago. 



PUERTO VARAS PARK SITE 

Location, Site Description, and Radiocarbon Chronology 

The record of post-late glacial maximum ice-marginal fluctuations 

in the Lake Region is documented along the southwest margin of Lago 

Llanquihue (Figures 1 and 4). In and near the city of Puerto Varas, 

peat is overlain by lake sediment. Five such sequences have been 

identified, of which two were sampled for this study.' The peats 

represent times of low lake level when organic sediments accumulated at 

elevations as low as 60 m (10 m above present lake level) around the 

borders of the Puerto Varas embayment. Advancing ice blocked the 

eastern outlet of Lago Llanquihue, the Rio Petrohue, resulting in lake 

level rise and cessation of peat accumulation. Mercer (1976) proposed 

that the sedimentary sequences are evidence of one advance culminating 

about 13,000 years ago. He later revised the date of the culmination to 

about 14,500 yr B.P. (Mercer, 1984a). Porter (1981), however, in 

consideration of elevational and age differences of the peats, suggested 

that a more complex history of ice-marginal fluctuations is indicated by 

the drowned peats and postulated two episodes of advance, one 

culminating about 15,000 to 14,500 years ago and the about 13,000 years 

ago. The Puerto Varas sites are significant because it is important to 

determine the time of the last glacial advance or advances into the 

Region. Determining the timing of the last glacial advance 
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would provide a datum point for interpreting the rapidity of 

deglaciation and presumably the rate of climatic amelioration in the 

Region. 

The Puerto Varas Park Site (Figures 1, 4, 8, 9 and 10), a 

north-facing roadcut, is exposed in Bella Vista Park, The site is 

located on route CH225 about 200 111 east of the Bella Vista Hotel between 

Puerto Varas and the village of Puerto Chico (lat. 4l 0 l9 1 lO"S., long, 

72"58'30"W.). Approximately 10 111 of sand, interpreted to be a lahar 

deposit by Porter (1981), overlies at least 25 cm of laminated 

lacustrine silt in the upper part of the section (Plate 1 and Table IO). 

The lahar is in turn overlain by about 2 m of tephra and loess. Beneath 

the lacustrine silts, at an elevation of 60.1 m or 9.1 m above present 

lake level, is a peat horizon 10 cm thick (Porter, 1981). In excess of 

2 m of lacustrine silts and clays occur beneath the peat. The 

lacustrine silts were barren of fossil beetles and only the peat-horizon 

was sampled. A radiocarbon date (Plate 1, Table 10 and Appendix D) of 

14 
15,715±440 Cyr B.P. (GX-5275) was obtained for the upper 5 cm of 

peat. 

Analysis of the Fossil Assemblages 

Representatives (Plate l) of three orders of insects and one order 

of arachnids were identified from the two (PVl and PV2) samples 

collected at the Puerto Varas Park Site. No mollusks or ostracods were 

found in either of the samples. 
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Figure 8. Photograph of the Puerto Varas Park section exposed in Bella 
Vista Park taken from the north across route CH225. Allan Ashworth 
(kneeling) is examining the 15,700-year-old peat horizon. Most of the 
overgrown sediment above the peat is lahar and beneath it lacustrine 
clays. Left to right are: Allan Ashworth, Howard Mooers, Judy Mercer, 
Jane Soens and John Mercer. 

Figure 9. Photograph of Allan Ashworth sampling the Puerto Varas Park 
peat horizon . Route CH225 and Lago Llanquihue are in the background . 
Howard Mooers is assisting Ashworth. 
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Figure 10. Photograph of part of the section at the Puerto Varas Park 
Si te showing the upper peat horizon (dark) and underlying lacustrine 
clays. Tape is 65 cm long. 
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Table 10. Lithologic description of the Puerto Varas Park Section. 

Location" 
Bella Vi 
Excavati' 

North-facing roadcut on highway CH225 about 200 m east of the 
a Hotel, Puerto Varas (lat. 41°19'10"S., long. 72"58'30"W.). 
made at Bella Vista Park (Figure 4). 

Sam~le 
NumRers 

! 

Not sainp~ed 
I, 

Not samp: ed 

1-2 

i 
I' 
'' 

Not samp:JJed 

Not samp: ed 

Not samp1 .ed 

Base of ~xcavation 
'! 

Description 

Covered interval consisting mostly of 
medium sand containing angular grains 
of various lithologies. 

Dark gray (7.SY 3/2), rhythmically 
bedded silt. 

Very dark grayish brown (2.SY 3/2), 
peaty silt. Under s

1
~m (sample 1) 

dated at 15,715±440 Cyr B,P, 
(GX-5275). 

Thickness 
(cm) 

approx. 1000 

25 

10 

Dark grayish brown (2.SY 4/2), slightly 80 
sandy silt. 

Gray, finely laminated, rhythmically 90 
bedded silt, 

Covered to road level approx. 250 
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Of tre 302 identifiable beetle fossils recovered from the Puerto 

Varas Pat Site (Table 4 and 11), 302 (100 percent) were identified to 

family, 2[55 (84 percent) to genus and 171 (57 percent) to species. At 

least 27!,species representing 10 beetle families, both aquatic and 

terrestr~al, were recognized. Ninety-three percent of the taxa were 

identifiid by direct comparison to specimens collected during the modern 

faunal s1rvey. The assemblages were dominated by five beetle families 

(Table 6l Twenty-six percent of the species were curculionoids, 22 

percent 4arabids, 15 percent pselaphids, 11 percent hydrophilids and 7 

percent ·1·caphylinids. 

The,two samples collected at this site possessed similar 

assembl~~es of beetles but the upper sample was slightly more diverse. 

The 

but 

the 

ass,blages were characterized by low species and family diversities 

highjnumbers of individuals, particularly, the carabid Agonum sp. 2, 

hydr~philid Hvdrochus stolpi, and the curculionid Listroderes 

denti e 'is (Plate 1). Other significant beetle taxa particularly 

weevils,, were also found in the samples. 

Repyesentatives (Table 7) of two orders of insects, Trichoptera and 

Hymenopt:ira, 

Park Sitt in 

were f"1.lnd. 
! 

including Formicidae, were recovered from the Puerto Varas 

addition to the Coleoptera. Of the arachnids, only mites 

As with the beetles, the upper sample exhibited a greater 

diversit:r' of other insect 

and only Trichoptera were 

groups than the lower sample, No arachnids 

recovered from the lower sample (Plate 1). 

' Macroplai,t fossils were observed in the samples but no attempt was made 
! 



Table 11. Table indicating the number of identifiable beetJe fossils rec9ver"d 1:>y sample frotn. th"' 
- Parle Site -at,J ttle ·uuil-1i1ei al-td pE!ic.eut-nf the fossils ident:tfied to family, genus·;· ~ffi·~--------' 

species. The table also shows the minimum number of identified taxa and the numher and percent of taxa 
identified to genus and species in each sample. See Plate l for stratigraphic position of each sample, 

Total 
Number of Total Total Total Minimum Number(%) Number (%) 

Identifiable Number(%) Number(%) Number(%) Number of of Taxa of Taxa 
Sample Beetle Identified Identified Identified Identified Identified Identified 
Number Fossils to Family to Genus to Species taxa to Genus to Species 

I 
l 204 204 (100) 166 (81) 97 (48) 25 16 (64) 9 (36) 1--

0 
0:, 
I 

2 98 98 (100) 89 ((91) 74 (76) 15 10 (67) 4 (27) 

TOTAL 302 302 (100) 255 (84) 171 (57) 
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Th' b,eetle assemblage from sample PVl was subjected to cluster 

analys~ to determine its similarity to fossil assemblages from 

differd t ages and other localities and to beetle faunas living today 

in the Lake Region, Assemblage PVl (15,700 yr B.P.) (AppenJ X A) 

groupe~ \with the basal Rio Caunahue beetle assemblage from sample PD6 

(12,80d yr B.P.) to form subcluster F1 (Figure 11). This association is 

somewh misleading, however, because the PD6 assemblage is actually 

more si: ilar to the beetle assemblages from Rio Caunahue samples BS-A3, 

42 and ttO as seen on the trellis diagram. This illustrates the 

usefuln~ s of the trellis diagram in comparing samples between clusters. 

The ass~ blages in subcluster F1 show similarities to beetle faunas in 

Bioassoc ation II. The PD6 assemblages is, however, about equally 

similar' o beetle faunas in Bioassociations II and III and shows little 

resembl4 ce to beetle faunas in Bioassociations IV and V, whereas, the 
'i 

PVl ass 'blages is most similar to beetle faunas in Bioassociation II 

and sho'lol little resemblance to beetle faunas in Bioassociation III, IV 

and V. 

, Paleoenvironmental and Paleoclimatic Interpretations 

The' 15,700-year-old Puerto Varas Park assemblages are less diverse 

than. est 
recovere<il 

B.P.). + I 

Enochrus; 

restrict4 

Park 

cially in aquatic insects, but similar to the assemblages 

from Puerto Octay interval 23 through 10 (18,000 to 16,000 yrs 

e peaty nature of the sediment and presence of caddisflies and 

including!• vicinus, indicate that either an areally 

, quiet, shallow pond or marsh existed at the Puerto Varas 

15,700 years ago. Emergent vegetation, reflected by the 
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Similarity matrix (trellis diagram) and binary tree 
am) showing patterns of similarity among 41 present-day, 
una, collecting localities and 9 fossil assemblages. See 
A for locations of modern fauna collecting localities and Plate 
atigraphic position of the fossil assemblages. Similarity is 
by Dice's Coefficient. Large numbers along diagonal are 
g localities or fossil sample numbers, small numbers in 
es are taxa collected. The pattern of each square in the 
dicates the degree of similarity, as depicted in the 
on. The dendrogram shows the order of clustering by WPGMA. 

groups (clusters), I-V (modern fauna) and F
1 

and F
2 

(fossil 
es), are indicated to the left of the matrix and are separated 
ns on the dendrogram. See text and Appendix A for further 
on and interpretations. 
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ds, scarabaeids and abundant coccinellids, grew in the marshy 

Water-marginal areas, inhabited by the carabids, Bembidion, 

B. marginatus and Agonum, including A. sp. 2; GY:"nochthebius 

Hydrochus stolpi (dytiscid) and Stenus (staphylinid), were 

least in part, muddy, open and bare. No strictly arboreal 

found but sparse, shrubby vegetation, possibly including 

(curculionid} and the melandryid, Orchesia sp. 1. The ground­

fauna was depauperate, consisting of the pselaphids, 

Achillia, and Tyropsis; Listroderes (curculionid), 

dentipennis and cf. Creobius eydouxi (carabid). More than 

one spec·es of Listroderes occurred in this interval, but!:_. 

species in the assemblages. As stated earlier, the occurrence 

ti ennis in abundance, as well as the presence of other 

n the site area. A similar setting is suggested by Listronotus 

places its larvae mine grass stems (Kuschel, 1982). 

Bee use the Puerto Varas Park and Puerto Octay interval 23 through 

10 assem lages are similar, it is inferred that similar environmental 

and clim tic conditions existed at the two sites during their respective 

times of deposition. The climate and environment of the Central Valley, 

reflecte by the 18,000- to 16,000-year-old Puerto Octay assemblages, 

appear t have been stable until at least 15,700 yr B.P., as indicated 

erto Varas Park fossils. No information was gained from the 
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Puerto Varas Park assemblages to either strengthen or preclude the 

speculation that tundra conditions existed in the Central Valley between 

18,000 and 15,700 years ago. As with the Puerto Octay assemblages, most 

taxa recovered from Puerto Varas Park either occur below 150 min the 

Lake Region or range to or extend above timberline (Tables 4, 12, and 

13). Again the only conclusion that can be drawn from the data is that 

open-ground habitats dominated the regional setting in the Puerto Varas 

Park area 15,700 years ago. 

To test the interpretation, the Puerto Varas Park assemblage from 

sample PVl was subjected to the clustering procedure outlined 

previously. As shown in the trellis diagram (Figure 11), the assemblage 

is most similar to the beetle faunas of Bioassocation II, those living 

in disturbed lowland forest habitats, and exhibits very little 

similarity in species composition to faunas in Bioassociation III, IV, 

and V. This corroborates the inference that open-ground conditions were 

necessary for existence of the beetle fauna living the Puerto Varas Park 

area 15,700 years ago. Because open-ground conditions exist today in 

the Central Valley as a result of recent anthropogenic disturbance of 

natural forest habitats, it seems logical to suppose that climatic 

conditions were too severe to support a well developed floral and 

associated beetle fauna 18,000 to at least 15,700 years ago. However, 

the Puerto Varas Park assemblages and, as shown earlier, the Puerto 

Octay assemblages, are significantly different than the alpine tundra 

beetle faunas living in the Region today. This is confirmed by cluster 

analysis because the PVl assemblage is only slightly similar in species 



Table 12. Table indicating the number and percent of Puerto Varas Park and Puerto Varas Railroad beetle taxa, in each sample, 
tJ1at occur today at restrictert e1cvationa1 ranges in the Lake Re9ioo deten11ined through study of the modern fauna (Appendix A)· 
See Plate 1 for stratigraphic position of each sample. 

----- --- - ---- --~ --- --- -·---- ---- --------
Number Number Number Nllmber Number Number Total Number Total Number Total Number 

--·------- -·- --
Number (%) (%) T""a (%) Taxa (%) Taxa (%) Taxa (%) Taxa (%) Taxa (I) Taxa (%) Taxo (%) Taxa 

Minimum Taxa Not Ranging Ranging Ranying Ranging Occurring Ranging Occurring Occurring Occurring 
Sample Number Collected in up to up to up to up to Only Between Above Only Below Onfy Below Only Below 
t«Jmber _ of Taxa i'lodern Sur®::__ 150 m __ 650 m_ 1000 m 1200 m 1000-1200 m _ 1200 m _ --···-· 650 m _____ 1000 __ '11 _____ 1200 "'-

PUERTO VARAS 
RAILROAD 

l 
2 
3 
4 
5 
6 
7 
8 
9 

10 
ll 
12 

PUERTO VARAS 
PARK 

1 
2 

9 
5 
5 
3 
1 
4 
0 
I 
3 
5 
3 
5 

2S 
IS 

0 (0) 
0 (0) 
0 (0) 
0 (0) 
0 (0) 
0 (0) 
0 (0) 
0 (0) 
0 (0) 
1 (20) 
0 (0) 
0 (OJ 

2 (8) 
l (7) 

0 (OJ 
0 (0) 
0 (0) 
0 (0) 
0 (0) 
0 (0) 
0 (0) 
0 (0) 
0 (OJ 
0 {OJ 
0 (0) 
0 (OJ 

l (11) 
0 (OJ 
0 (0) 
0 (0) 
0 (0) 
0 (0) 
0 (0) 
0 (0) 
0 (0) 
0 (0) 
0 (0) 
0 (0) 

1(4) 2(8) 
1 (7) l (7) 

. - ---- ~ --- - ----- -- --

0 (0) 
0 (0) 
0 (0) 
0 (0) 
0 (0) 
1 (25) 
0 (0) 
0 (0) 
0 (0) 
0 (0) 
0 (OJ 
0 (0) 

3 ( 33) 
2 (40) 
2 (40) 
l ( 33) 
1 (100) 
2 (50) 
0 (0) 
0 (0) 
l (33) 
l ( 20) 
1 (33) 
3 (60) 

(4) 9 (36) 
(7) 5 (33) 

l (l l) 
1 (20) 
l (20) 
0 (0) 
0 (0) 
0 (0) 
0 (OJ 
0 (0) 
l (33) 
l (20) 
0 (OJ 
0 (0) 

0 (0) 
0 (0) 

4 (44) 
2 (40) 
l (20) 
l ( 33) 
0 (0) 
1, (25) 
0 (OJ 
0 (0) 
l ( 33) 
0 (0) 
2 (6 7) 
2 (40) 

9 (36) 
4 (27) 

l ( ll) 
0 (OJ 
0 (0) 
0 (0) 
0 (0) 
0 (0) 
0 (0) 
0 (0) 
0 (0) 
0 (0) 
0 (0) 
0 (0) 

3 (12) 
2 (13) 

l ( 11) 
0 (0) 
0 (0) 
0 (0) 
0 (0) 
l (25) 
0 (0) 
0 (0) 
0 (0) 
0 (0) 
0 (0) 
0 (0) 

4 ( 16) 
3 (20) 

5 (56) 
3 (60) 
3 (60) 
1 (33) 
l (100) 
3 (75) 
O {O) 
0 (0) 
2 (67) 
2 !40) 
1 33) 
3 (60) 

13 (52) 
8 (53) 

I 
I-' 
I-' 

'i' 
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Table lJ. Table indicating the number and percent of Puerto Varas Park and Puerto Varas Railroad beetle species. in each.sample. 
that occur today at restricted elevational ranges In the Lake Region determined through study of the modern fauna (Appendu A). 
See Plate 1 for stratigraphic position of each sample. 

---·-------- ---------- --- ----- -

Number (%) Total Total Total Number(%) Number {%) Number (%) Number (%) N-er (%) Species N-er (%) N-er (%) Number {%) Number {%J Number Species not Species Species Species Species Occurrinq Species Species Species Species Sample (%) Taxa Collected Ranginli RanQinq Ranging Ranging Only RanCJing Occurring Occurring Occurring Identified tn Modern up to up to up to up to Between Above Only Below Only Below Only Below Number to ~ecies Survel 150 m 650 m 1000 m 1200 m 1000-1200 m 1200 m 650 m 1000 m 1200 m 
PUERTO VARAS 

RAILROAD 

1 
3 !33! g !2l 2 mi I pl) 0 (OJ I (33) I ( 33) 0 (0) 1 (33) I (33) 1 poo) I 2 3 60 0 0) 0 (0) I (33) I (33) 1 pl) 0 (0) 0 (0) 2 67) ,... 3 2 (40) 0 (0) 0 (OJ 0 (OJ 

0 (O! I (50) 1 (50) 0 0) O !O) 0 {Ol 2 (100) 
,... 
.p-4 0 (0) 0 (0) 0 (O) 0 (0) o lo 0 (OJ O (O) 0 10) 0 0) 0 (0 0 (0) I 5 1 !100) 0 (0) 

0 l°' g mi 0 0 1 poo) 0 {Ol 0 0) 

g mi 
0 (OJ I ( 100) 6 3 75) 

~ lgl 
0 0) I (33) I 33) o 

1
o I (33) I !33) 2 (67) 7 0 0) 0 0) 0 (0) 0 (0) 0 10) 0 0) 0 0) 

o ol 0 !O) 8 o lo) 0 (0) 0 {O) 
0 !°) 0 (0) 0 0) 0 (0) 0 (0) 

g lg! 
0 (0 0 0) 9 2 67l 0 (0) 0 (0 l 0 0) 

g 1g1 
I (50) 1 (50J 

g mi o lo 2 (IOO) 10 
3 160 1 !33) 0 (0 0 0) 1 (33) 1 !33) 0 0) 2 l67) 11 2 67) 0 0) 0 (0) 0 (0) 0 0) 1 (50) o ol 1 (50) 0 (Ol 0 (0) 1 50) 12 2 40J 0 (0) 0 (0) 0 (0) 0 (0) 2 (JOO) 0 (0 0 (0) 0 (0 0 (0) 2 (100) 

PUERTO VARAS 
PARK 

l : !ril 2 (22J I (I!) 0 (0) 0 (0) 5 (56) 0 !0) 1 (11) 1 !11) l (11) 6 (67) 2 1 (25) I (25) 0 (0) 0 (0) I (25) O 01 I {25) 1 25J I (25) 2 (50) ---------- --- --··---·-- -- -- --....-·-- -·-- --- -- ---------
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composition to faunas of Bioassociation v. As with the assemblages from 

the 18,000 to 16,000 yr B.P. Puerto Octay interval, the Puerto Varas 

Park assemblages could indicate either severe climatic conditions or 

represent an early seral stage of biotic. succession. 

Discussion 

The 15,700-year-old Puerto Varas Park beetle assemblages are 

similar to the 18,000 to 16,000 yr B.P. Puerto Octay assemblages. 

Open-ground, treeless, perhaps tundra habitats appear to have existed in 

the Central Valley from at least 18,000 to 15,700 years ago. But, as 

with the Puerto Octay assemblages, the Puerto Varas Park fossils may be 

indicative of an early seral stage of biotic succession into low 

elevation areas in the Lake Region and not severe climatic conditions. 

No pollen diagrams have been published from the Puerto Varas Park Site. 

Interpretation of the depositional history of the Puerto Varas Park Site 

will be included with discussion of the Puerto Varas Railroad record. 



PUERTO VARAS RAILROAD SITE 

Location, Site Description, and Radiocarbon Chronology 

The Puerto Varas Railroad Site (Figures 1, 4, 12, 13 and 14) is a 

north-facing roadcut on route V-55 (Calle San Jose) on the western 

outskirts of Puerto Varas beneath the railway bridge (lat. 41"18'50"S., 

long. 72°59'20"W.). Approximately 440 cm of poorly consolidated sand 

and silt (Plate 1 and Table 14) overlie a 10 cm thick peat horizon at 

the site. The peat is at an elevation of 66.2 m or 15.2 m above present 

lake level (Porter, 1981). Reusser (1974) described the stratigraphy 

and pollen sequence of the site, interpreting the sands and silts to be 

volcanic ash, lapilli, and tuff. They were later interpreted to be 

lahar deposits (Porter, 1981). Reusser (1974) encountered 240 cm of 

gyttja underlain by gravel beneath the peat horizon. Reexcavation 

during this study exposed 150 cm of gyttja beneath the peat before 

digging was terminated. The gyttja and peat were sampled for beetle 

fossils. 

14 A date of 14,060±450 Cyr B.P. (GX-5507) was obtained from the 

peat (Plate 1, Table 14 and Appendix D). This date is consistent with 

14 
others, 13,300±550 Cyr B.P. (GX-2947) (Mercer, 1976) and 14,250±400 

14c yr B.P. (GX-2948) (Reusser, 1974) for the horizon. Adequate organic 

material was not available to obtain a radiocarbon date from the basal 

part of the sequence. However, in an earlier study, Mercer (1972a, 
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Figure 12 . Photograph of the north-facing Puerto Varas Railroad Site 
roadcut exposure taken f rom across Calle San Jose. The photograph shows 
the railroad bridge abutment, concrete retaining wall and lahar 
deposits, vegetation covered, above the peat . Peat horizon is being 
examined by Allan Ashworth (left) and Howard Mooers (right). 

Figure 13 . Photograph of the writer excavating the Puerto Varas 
Railroad Site. Dark horizon at the top of the excavation is the 
14,000-year-old peat. 



- 118-

Figure 14. Photograph of the excavated Puerto Varas Railroad Site 
section. Dark horizon at top is peat underlain by gytt~a to the hottom 
of the section. The tape is 170 cm long from the top to the bottom of 
the photograph. 
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Table 14. Lithologic description of the Puerto Varas Railroad Section. 

Location. North-facing roadcut on highway V-55 (Calle San Jose). West 
side of Puerto Varas (lat. 41°18'50"S., long. 72°59'20"W). Excavation 
made at intersection of V-55 and railway overpass (Figure 4). 

Sample 
Numbers 

Not sampled 

Not sampled 

Not sampled 

1 

2-12 

Base of excavation 

Description Thickness 
(cm) 

Very poorly sorted, massively bedded, 120 
medium sand with angular to subangular 
grains. Rare pebble-size clasts. 
Grains and clasts of mixed lithologies. 
Partially indurated. 

Buff to yellow silt with plant fragments. 30 

Very poorly sorted, massively bedded, 286 
medium sand. Grains subangular and of 
mixed lithologies. Less consolidated 
than upper sand unit. 

Peat with largy4wood fragments dated 5-10 
at 14,060±450 Cyr B.P. (GX-5507). 

Dark brown (lOYR 3/3) to dark grayish 150 
brown (lOYR 4/2), organic-rich, silty 
clay (gyttja). Limonitic staining in 
upper part. Rhythmically bedded. 
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1976) reported an age of 16,270t360 
14c yr B.P. (RL-113) for a piece of 

wood collected from a depth of about 80 cm below the bottom level in 

this study, The beetles recovered from the site provide a 

paleoenvironmental record from about 15,000 to 14,000 years ago, 

Analysis of the Fossil Assemblages 

Fossil recovery was poor from the Puerto Varas Railroad Site. 

Representatives (Plate 1) of only one order of insects, Coleoptera, and 

one order of arachnids, Acari, were recovered from the twelve samples. 

No mollusks or ostracods were found in any of the samples. 

Of the 99 identifiable beetle fossils recovered from the Puerto 

Varas Railroad Site (Tables 4 and 15), 96 (97 percent) were identified 

to family, 78 (79 percent) to genus and 63 (64 percent) to species. At 

least 22 species representing 4 beetle families were recognized. 

Ninety-five percent of the taxa were identified by direct comparison to 

specimens collected during the modern fauna! survey. All of the species 

found are considered to be terrestrial. Forty-five percent of the 

species were curculionids (Table 6), 32 percent carabids, 14 percent 

staphylinids and 9 percent scarabaeids, 

Although the sparse assemblage was rather evenly scattered 

throughout the 1,6 m section, the upper peat sample had higher diversity 

and greater numbers of fossils than the lower samples. The only species 

that occurred consistently throughout the sequence was the weevil, 

Dasydema !1i£1:ella. Even though the assemblages were impoverished, 

numerous, significant species were present. Of these, four curculionid 

species, .Paulsenius carinicollis, Erirrhinoides unicolor, Aegorhinus 
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Table 15. Table indicating the number of identifiable beetle fossils recovered by sample from the 
Puerto Varas Railroad Site and the number and percent of the fossils identified to family, genus, and 
species. The table also shows the minimum number of identified taxa and the number and percent of taxa 
identified to genus and species in each sample. See Plate 1 for stratigraphic position of each sample. 

-~··········-·················--

Total 
Number of Total Total Total Minimum Number (%) Number (%) 

Identifiable Number(%) Number(%) Number{%) Number of of Taxa of Taxa 
Sample Beetle Identified Identified Identified Identified Identified Tdentified 
Number Fossils to Family to Genus to Species taxa to Genus to Species 

1 25 24 {96) 21 (84) 18 (72) 9 6 (67) 3 (33) I 
2 6 6 (100) 5 (83) 4 (67) 5 4 (80) 3 (60) 

,_. 
N 

3 6 5 (83) 4 (67) 2 (33) 5 4 (80) 2 ( 40) 
,_. 
I 

4 4 4 ( 100) 3 (75) 0 (0) 3 _2 (67) 0 (0) 
5 1 1 (100) 1 (JOO) I (100) J I ( 100) 1 (JOO) 
6 5 5 (100) 5 (100) 4 (80) 4 4 (100) 3 (75) 
7 0 0 (0) 0 (0) 0 (0) 0 0 (0) 0 (0) 
8 2 2 (100) 0 (0) 0 (0) 1 0 (0) 0 (0) 
9 9 9 {100) 4 (44) 4 (44) 3 2 (6 7) 2 (6 7) 

10 25 24 (96) Z1 (84) 19 (76) 5 4 (80) 3 (60) 
11 8 8 (100) 7 (88) 7 (88) 3 2 (67) 2 (67) 
12 8 8 (100) 7 (88) 4 (50) 5 4 (80) 2 ( 40) 

TOTAL 99 96 (97) 78 (79) 63 (64) 
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vitulus bulbifer and Acalles tristis, were not found in any of the other 

three sites studied. 

The impoverished nature of the assemblages is exemplified not only 

by the low diversity and numbers of Coleoptera fossils but also by the 

lack of other insects in the sediments. Not even the generally 

ubiquitous caddisflies were found. In addition, mites, usually common 

in Quaternary lacustrine sediments, were found only in the upper peat 

horizon. Macroplant fossils were observed only in the peat but no 

attempt was made to identify them. 

Paleoenvironmental and Paleoclimatic Interpretations 

Although the 15,000- to 14,000-year-old beetle assemblages 

recovered from the Puerto Varas Railroad Site contain species also found 

in the Puerto Varas Park and Puerto Octay interval 23 through 10 

assemblages, they are, in some respects, notably different than the 

older assemblages. For example, no aquatic insect fossils were found in 

the Puerto Varas Railroad sediments, even though the organic rich silts 

and overlying peat imply deposition in an aquatic environment. As 

discussed earlier, a number of possible situations could have inhibited 

development of an aquatic insect community. It is uncertain what the 

cause was at the Puerto Varas Railroad Site, nevertheless, very little 

information is available to speculate on conditions of the aquatic 

habitat. The site was, however, apparently marshy because of the 

occurrence of Erirhinoides ~nicolor (curculionid) which is, according to 

Kuschel (1982), found today in open-ground, more or less swampy areas. 

The carabids, Ag_o~ and Pelmatellus, and the staphylinid, Stenus, also 
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indicate hygric conditions at the site. 

Terrestrial components of the assemblages do, however, give some 

indication of the regional paleoenvironment of the area. 

Ground-dwelling species found were the carabids, Creobius and 

Bradycellus (Liocellus) sp.; the staphylinids, Anotylus chilensis (Plate 

7, Figure 6) and cf. Barvopsis araucanus; and the weevils, Listroderes 

dentipennis, Paulsenius carinicollis and cryptorhynchines, including 

Acalles tristis. Most of these taxa are eurythermic and cosmopolitan, 

but!!• dentipennis, A. tristis, !• carinicollis, and as mentioned before 

!• unicolor, indicate that open-ground habitats were prevalent near the 

site. Unlike the Puerto Varas Park and 18,000- to 16,000-year-old 

Puerto Octay assemblages, arboreal taxa, the polyphagous carabid, 

Aemalodera and the more fastidious weevils, Aegorhinus, including A. 

vitulus bulbifer, occurred in the Puerto Varas Railroad assemblages. 

The latter species is almost always found on Nothofagus and, as noted by 

Kuschel (1951), prefers!• dombeyi. The shrubs, Berberis and Ribes, 

probably grew in the area because Berberidicola exaratus (weevil) 

thrives on Berberis (Kuschel, 1979), but was also found on the currant, 

Ribes, during the survey of the existing fauna. Dasydema hirtella, 

because it occurs on almost all kinds of plants, may also indicate 

forest foliage. Because of the co-occurrence of both open-ground and 

arboreal taxa, it seems likely that stands of trees and shrubs, in a 

parkland setting, existed in the marshy site area about 15,000 to 14,000 

years ago. 

Almost all of the taxa recovered from the Puerto Varas Railroad 

Site are eurythermic, extend to treeline in the Lake Region today 
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(Tables 4, 12 and 13), and have broad latitudinal ranges in southern 

South America. Only circumstantial paleoclimatic interpretations are, 

therefore, obtainable from the assemblages. The open-ground conditions 

that dominated the Central Valley between 18,000 to 15,700 yr B.P., 

continued through the 15,000 to 14,000 year time interval. It is 

suggested, however, by the occurrence of arboreal taxa in the Puerto 

Varas Railroad assemblages, that conditions were conducive for growth of 

trees and associated shrubs between about 15,000 and 14,000 years ago. 

If the older Puerto Octay and Puerto Varas Park assemblages reflect 

tundra habitats, it is proposed that between about 15,000 and 14,000 

years ago climatic conditions had ameliorated sufficiently to permit 

invasion of tree-dwelling taxa into the Central Valley. However, the 

Puerto Varas Railroad assemblages of mixed open-ground and arboreal taxa 

could represent a more advanced seral stage in a biotic succession that 

may have began about 18,000 years ago in the Central Valley. Although 

species diversities, in each sample, were too low to use cluster 

analysis to determine similarities between the Puerto Varas Railroad 

assemblages and existing Lake Region beetle faunas, the species 

associations are similar to those observed in Bioassociation IV--beetles 

living today in the subalpine forest. 

Discussion 

The depositional environment at the Puerto Varas Railroad Site, 

between about 15,000 and 14,000 yr B.P., did not support an aquatic 

insect community and, consequently, little information is available 

regarding the lacustrine conditions at the site. The co-occurrence of 
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open-ground and arboreal beetle species in the fossil assemblages 

indicates that the site was in an area of open-ground with stands of 

trees, mostly Nothofagus, and shrubs probably in a parkland setting. 

Either climatic conditions ameliorated sufficiently between about 15,000 

and 14,000 yr B.P. to permit invasion of arboreal biota into the Lake 

Region or the assemblages of mixed ecological indicators reflect 

continuation of biotic succession that had begun prior to 18,000 yr B.P. 

in the Central Valley. Pollen spectra from the bottom portion of the 

section analyzed for beetles are dominated by No_thofagus (up to 68 

percent) (Reusser, 1974). Nothofagus decreases to a low of 23 percent 

in the upper part of the sequence but the percentage of arboreal pollen 

throughout the entire Puerto Varas Railroad section is greater than in 

the 18,000 to 16,000 yr B.P. interval at the Puerto Octay Site. 

Heusser's pollen diagram appears consistent with the interpretation, 

based on beetle fossils, that between about 15,000 and 14,000 years ago 

the Puerto Varas Railroad Site was in a grassland containing patches of 

trees and shrubs. 

The numerous, but laterally and vertically (only 5 to 15 cm thick) 

restricted, peat deposits (including those at the Puerto Varas Park and 

Puerto Varas Railroad sites) accumulated in depressions or channels on a 

lacustrine terrace around the Puerto Varas embayment during a low water 

phase of Lago Llanquihue when the eastern outlet to the Rio Petrohue was 

opened, presumably as a result of glacial recession (Porter, 1981). The 

Rio Petrohue flows into the tidewater Fiordo Reloncavi, Lago Llanquihue 

could not drain via the outlet until the Fiordo Reloncavi was nearly 

ice-free (Mercer, 1976). Deposition of lacustrine sediments over the 
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peats has been taken as evidence for closure of the eastern outlet by 

advancing ice and subsequent termination of peat formation by rising 

lake level (Mercer, 1976; Porter, 1981). Mercer (1972a) initially 

believed that the eastern outlet was dammed by ice about 14,800 years 

ago because off the age (14,820t230 14c yr B.P.) of the peat horizon at 

Calle Santa Rosa and concluded that the shores of Lago Llanquihue were 

submerged at virtually the same time up to the level of the western (Rio 

Maullin) outlet (Mercer, 1976). 14 A date of 13,300t550 Cyr B.P., 

obtained later from peat at the Puerto Varas Railroad Site (Reusser, 

1974), prompted Mercer (1976) to revise his date for the damming of the 

eastern outlet and final major readvance into the Lake Region to about 

13,000 yr B.P. As a result of fairly recent field work, especially on 

Isla Chiloe, Mercer (1983, 1984a) reconsidered the timing of the last 

glacial readvance and reverted to his earlier view (although for 

different reasons) that the final incursion of glaciers into the Central 

Valley occurred between 15,000 and 14,500 years ago. 

Porter (1981) carefully resurveyed the peat horizons in the Puerto 

Varas embayment and determined that they occur at different altitudes 

although all are vertically within 6 m of one another. He plotted the 

ages, plus one standard deviation, of the peats as a function of 

altitude and postulated that the resulting sinuous curve indicates two 

episodes of advance culminating about 15,000 to 14,500 yr B.P. and 

shortly after 13,100 yr B.P., separated by a brief period of lake-level 

lowering, presumably caused by opening of the eastern outlet as a 

consequence of glacial recession. Porter stated, however, that his 

interpretation of two advances is predicated on the assumptions that 
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radiocarbon ages of the peats at the Bella Vista 

14 
yr B.P.), Calle Santa Rosa (14,820±230 Cyr 

B.P.) and Bella Vista Park {15,715±440 14c yr B.P.) sites are different. 

According to his survey, the three sites differ in elevation by less 

than 2 m. Although he defended the accuracy of his survey, he did not 

rule out the possibility of differential postglacial uplift resulting 

from isostatic recovery. In addition, and somewhat surprisingly, he did 

not consider the possibility of differential tectonic activity in that 

area with known tectonic instability. He further questioned his 

postulated recession between the two advances after the late-glacial 

maximum by pointing out that at two standard deviations the radiocarbon 

dates for successive pairs of sites are statistically identical and 

could be interpreted as a simple curve indicating a continuously rising 

lake level caused by a single blockage of the eastern outlet by 

advancing ice prior to 15,000 yrs B.P. This interpretation would be 

consistent with Mercer's {1983) later view and, as will be shown later, 

consistent with interpretations from this investigation. 

The scenarios presented by Mercer {1976, 1983) and Porter (1981), 

for the depositional history of the sedimentary sequences exposed around 

the Puerto Varas embayment, are based on the assumption that changes in 

Lago Llanquihue water levels were caused by the opening and closing of 

the eastern outlet as a result of glacier fluctuations. Mercer (1976) 

dispelled Bruggen's early suggestion that volcanic mudflow deposits were 

the damming agent, not glacial ice, of the eastern outlet but also noted 

that no end moraines have been discovered in the Lago Llanquihue area to 
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document the final readvance, He did, however, speculate that the 

glacier may have reached a band of undated moraine ridges about 25 km 

east of Puerto Varas and inferred that the readvance did not reach the 

western shore of Lago Llanquihue. Apparently, glacial lobes (Rupanco, 

Puyehue, and Ranco) located farther north in the Lake Region did extend 

to the western margins of their respective lake basins during that time 

(Mercer, 1976). Porter (1981), at variance with Mercer, believed that 

the final readvance of the Llanquihue Lobe reached the western margin of 

the basin and formed kame terraces rather than end moraines along the 

western and southern shores of the Puerto Varas embayment. Lake 

sediments above the pest layers in the terraces along the western and 

southern margins of the embayment are overlain by a series of lshsrs, 

Porter argued that the lahars, presumably originating from eruptions of 

Volcan Calbuco, were deposited when the glacier abutted against the 

western and southern margins of the Llanquihue basin because, if the 

basin had been ice-free, the lahars would have flowed directly into the 

lake adjacent to the volcano rather than along the top of the terrace. 

Porter (1981) presented additional evidence for glacier fluctuations, 

after the late-glacial maxiumum, in the vicinity of Punts Penas, just 

west of Puerto Montt along the northern margin of Golfo de Reloncavi. 

At that locality, organic sedimentation was terminated about 14,200 yr 

B.P. by rising lake waters, presumably as a result of the Reloncavi Lobe 

advance. Locally occurring dropstones in the lacustrine sediments, 

intercalated with the peat horizons near Puerto Varas, were also cited 

as evidence for damming of the eastern outlet of Lago Llanquihue by 
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glacial ice (Mercer, 1976; Porter, 1981). Both authors interpreted the 

dropstones to indicate that a calving glacier terminus was located 

within the Llanquihue basin but probably well east of Puerto Varas. The 

most direct and compelling attestation for a final late-glacial advance 

in the Lake Region was presented by Mercer (1983, 1984a) from Isla 

Chiloe. At Dalcahue, on the east coast of Isla Chiloe, an end moraine 

of outwash sediments beneath till covers peat, Dates from the peat were 

intrepreted by Mercer to indicate an advance of the Reloncavi Lobe from 

the mainland onto Isla Chiloe about 15,000 to 14,000 years ago. 

Interpretations of the glacial and climatic history of the Lake 

Region after the late glacial maximum rely heavily on the record of 

events from sedimentary sequences located around the Llanquihue basin. 

The arguments presented by Mercer (1976) and Porter (1981) for the 

opening and closing of the eastern outlet and resultant raising and 

lowering of lake level by glacial activity are persuasive but more field 

work and additional radiocarbon dates are needed to completely rule 

out other possible causes, such as outlet damming by volcanic debris or 

differential tectonic movements in and around the basin, for those lake 

level fluctuations. If glacial advance was the cause of lake level 

rise, the eastern outlet would have had to been closed about 15,700 yr 

B.P. to terminate peat accumulation at the Puerto Varas Park Site. The 

Puerto Varas Park beetle record may indicate tundra conditions at that 

time and would be consistent with the interpretation of glacial advance 

resulting from a deterioration of tempeTatures. However, the Puerto 

Varas Railroad beetle assemblages and pollen spectra indicate that 
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conditions had ameliorated sufficiently by at least 15,000 yr B.P. to 

permit arboreal biota to invade the area, implying that the inferred 

climatic deterioration was an ephemeral event. There is no indication 

from the Puerto Varas Railroad beetle assemblages or, as will be 

discussed later from the Rio Caunahue record, that a second and later 

glacial readvance, as proposed by Porter (1981), occurred in the Lake 

Region. The drowning of the peats around the Puerto Varas embayment was 

probably caused by continuously rising lake level due to damming of the 

eastern outlet by one glacial event about 15,700 years ago. Additional 

comparison of the Puerto Varas beetle records and interpretations of the 

timing of glacial activity in the Lake Region will be presented later. 



RIO CAUNAHUE SITE 

Location, Site Description, and Radiocarbon Chronology 

One of the most complete postglacial sections exposed in southern 

Chile is a southeast-facing cutbank (Figure 15) of the Rio Caunahue 

located in the Andean foothills (Figures land 4) near the northeast 

corner of Lago Ranco (lat. 40°07'55"S., long. 72°14'20"W.). The 

exposure is situated about 3 km north of where route T-55 crosses the 

Rio Caunahue and about 1.5 km below the confluence of the Rio Caunahue 

and Estero Chaichaguen in an area of slightly disturbed Valdivian Rain 

Forest. Although the cutbank is several hundred metres long, most of it 

is either overgrown or covered by slump blocks (Figure 15). Sample 

collecting was concentrated in the area of greatest vertical exposure 

(main section), but outcrops 500 m upstream (section A) and 100 m 

downstream (section B) from the main section were also sampled. The 

ancillary sections were correlated to the main section by radiocarbon 

chronology and by comparing volcanic ash horizons. Approximately 13 m 

of gently dipping, laminated silts and clays intercalated with numerous 

organic laminae and tephra horizons (Plate land Table 16) are exposed 

above river level and below a prominent terrace (Figures 15, 16, and 

17). The terrace, lowest of three mapped in the valley, is 150 min 

elevation or 85 m above lake level. It is capped by 2 m of fluvial 

gravels similar to those in and on the shores of tbe river below. 
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Figure 15. Photograph of the southeast-facing Rio Caunahue cutbank 
exposure taken from across the river. Arrow points to the area sampled 
for this study. Much of the sampled section had been slumped over the 
time this photo was taken by Allan Ashworth in February, 1983. Note the 
great thickness of lacustrine clays overlain by terrace gravels. 

~ 

Figure 16. Photograph showing part of the Rio Caunahue section. This 
area of the exposure consists of lacustrine clays except for the light, 
volcanic ash horizon (center). The ash is about 10,500 years old and 
sediments at the base of the section were deposited about 12,800 yr B.P. 
Allan Ashworth is seen taking notes. 
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Figure 17 . Photograph of part of the sampled sequence at the Rio 
Caunahue Site. The volcanic ash horizon being pointed out by Allan 
Ashworth is . the same one seen in Figure 16 . Note that some of the 
lacustrine clays, especially just above the ash, are rhythmically 
bedded. 



-134-

Table 16. Lithologic description of the Rio Caunahue composite section. 

Location. South-facing cutbank exposure along the Rio Caunahue about 5 
km east of Lago Ranco (lat. 40°07'55"S., long. 72°14'20"W.). Excavation 
made about 1.5 km below the confluence with Estero Chaichaguen 
Fi ure 4). 

Sample 
Numbers 

Not sampled 

Not sampled 

BS&A3-Al 

Not sampled 

1-8 

9 

10-22 

Description 

Covered interval 

Very coarse grained river terrace 
gravels. Hard pan limonitic 
surface at base (erosional surface). 

*Very dark grayish brown (lOYR 3i2) 
rhythmically bedded silty clay. 
Occasional laminae of carbonized 
plant debrt~· Sample BS dated at 
4,525H45 C yr B.P. fGX-5512),• 
Sample Al dated at 5,220±240 C 
yr B.P. (GX-6503). 

Covered interval 

Very dark grayish brown (lOYR 3/2) 
rhythmically bedded silty clay. 
Occasional laminae of carbonized 
plant debris. Rare lapilli grains 
and wood fragments. Sample 3 
(20-30 cm below tery~ce gravels) 
dated at 7,730±220 Cyr B.P. 
(GX-5502). 

Similar to above with a 1 cm thick 
light yellow, silty sand lamina at 
base and a thin light gray lamina of 
volcanic ash 5 cm above base. 

Very dark grayish brown (lOYR 3/2) 
rhythmically bedded silty clay. 
Occasional laminae of carbonized 
plant debris. Wood fragments common. 
Scarce lapilli grains. Sample 21 
(200-210 cm below tey~ace gravels) 
dated at 10,000±280 C vr B.P. 
(GX-5503). . 

Thickness 
fem) 

approx. 200 

200 

approx. 200 

unknown 

80 

10 

130 
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Table 16. (Continued) 

Sample 
Numbers 

Description Thickness 
(cm) 

23 Similar to above with two laminae of 10 
limonitic stained silty sand at base. 

24-26 Very dark, grayish brown (lOYR 3/2), 130 
rhythmically bedded, silty clay. 
Occasional laminae of carbonized 
plant debris. Wood fragments common. 
Sample PDO (330 cm below terr1~e 
gravels) dated at 10,440±240 Cyr 
B ,P. (GX-6508). 

37 Prominent light gray volcanic ash 3.5 
horizon. 

38-PD6 Very dark grayish brown (lOYR 3/2), 180 
rhythmically bedded, silty clay. Occa­
sional laminae of carbonized plant 
debris, volcanic ash laminae, and thin 
sand partings. Sample PDl (395 cm bel~ 
terrace gravels) dated at 11,290±250 C 
yr B.P. (GX-6507). Sample 42 (420-430 cm 
~!low terrace gravels) dated at 11,680±280 

Cyr B.P. (GX-5504). Sample PD3 (430 cm 
y~low terrace gravels) dated at 12,140±390 

Cyr B.P. (GX-6506). Sample PD4 (445 cm 
Y!low terrace gravels) dated at 12,385±340 

Cyr B.P. (GX-6505). Sample PD6 (535 cm 
y~low terrace gravels) dated at 14,635±440 

Cyr B.P. (GX-6504)**• 

Base of excavation (1979 river level). 

* Upper part of section, samples BS&A3-Al, collected about 500 m 
upstream from main section and correlated with main section by 
radiocarbon dating. 

** 14 A second date of 12,810±190 Cyr B.P. (I-12995) was obtained 
from the PD6 interval and is probably a more accurate age. 
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Approximately 2 m of soil occurs above the gravel. The basal 4 m of 

silt and clay are inorganic and are underlain by gravels consisting of 

angular to rounded boulders of mixed igneous lithologies. The laminated 

silts, organic laminae, and tephra horizons below the terrace gravels 

and above the inorganic silt and clay were sampled. 

The lacustrine sediments and associated organic debris and tephra 

horizons were deposited in a narrow embayment of Lago Ranco that 

occupied the lower reaches of the Rio Caunahue valley after the glacier 

had receded from the lake basin into the mountains. Lake level, at that 

time, was apparently about 150 m higher (elevation of the highest 

terrace) than today. Partial, perhaps catastrophic, drainage of the 

lake in the late Holocene and subsequent fluvial erosion has exposed the 

sequence. 

14 Fifteen radiocarbon dates, ranging from 4,525±145 Cyr B.P. 

14 (GX-5510) to 13,900±560 Cyr B.P. (GX-9979) were obtained from the 

site for this study (Plate 1, Table 16 and Appendix D). Sample PD6, the 

basal sample analyzed from the Rio Caunahue Site, produced a date of 

14,635±440 14c yr B.P. (GX-6504). The date was considered suspect 

because it appeared too old relative to the well known chronology of the 

area and so a second sample from the same stratigraphic level was 

submitted for radiocarbon analysis. The 14,635 yr B.P. date was 

rejected in favor of the second date of 12,810±190 14c yr B.P. (I-12995) 

because the latter more accurately fit the chronology and, more 

specifically, because the PD6 sample is 76 cm stratigraphically above a 

14 wood sample dated at 13,900±560 Cyr B.P. (GX-9979). 

,< • - , 

. , •'"'-" ,. 
' *'' 

'i 

" 
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Samples (Bl-B3), from section B, produced anomalous dates. The 

dates were reversed, with the older coming from strata higher in the 

section than the younger. Because the section was not structurally 

aberrant, the problem probably resulted from laboratory error either in 

sample numbering or confusion at the dating facility. The three dates, 

all within one metre of section, centered around 10,500 yr B.P. and were 

statistically about the same at two standard deviations. It was 

decided, however, that the fossil assemblages from these samples, 

although they are almost identical to 11,000- to 10,000-year-old 

assemblages from the main section, would not be included, only briefly 

mentioned, in analysis of the Rio Caunahue record. The beetles from the 

particularly important Rio Caunahue Site provide a paleoenvironmental 

record from 12,800 to 4,500 years ago. 

It should be noted that the Rio Caunahue Site had been completely 

altered between 1979 and 1983 as a result of slumping and continued 

fluvial erosion (Ashworth, 1983). Erosion had, by the latter time, 

exposed more lacustrine sediments and underlying gravels thereby 

providing additional data for interpretation of the deposit:!.onal history 

of the site. 

Reusser (1981) described the stratigraphy of the site and presented 

a pollen diagram for part of the section. His results will be discussed 

in a later section. 

Analysis of the Fossil Assemblages 

By far, the greatest number and highest diversity of insect fossils 

recovered during this study were from the Rio Caunahue Site. 
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Representatives of eight orders (Plate 1) of insects and three orders of 

arachnids were identified from the fifty-two samples. One ostracod and 

one immature gastropod, the only ones found during this investigation, 

occurred in sample PDO. No attempt was made to identify them. 

Of the 4,586 identifiable beetle fossils recovered from the Rio 

Caunahue Site (Table 4 and 17), 4,129 (90 percent) were identified to 

family, 2,698 (59 percent) to genus and 1,783 (39 percent) to species. 

At least 241 species representing 44 beetle families, both aquatic and 

terrestrial, were recognized. Eighty-four percent of the taxa were 

identified by direct comparison to specimens collected during the modern 

faunal survey. Although diversity was high at the family level the 

assemblages were dominated by three beetle families (Table 6). Sixteen 

percent of the species were staphylinids, 15 percent curculionids and 

14 percent carabids. 

Although taxa diversity was greatest in interval Al through BS-A3 

and interval PD6 through 17, the relative balance of ecological types 

remained essentially consistent throughout the 5.5 m section (Plate 1). 

Diversity differences observed between specific stratigraphic intervals 

in the sequence will be discussed later. Beetles from numerous families 

associated today with rain forest habitats occurred consistently 

throughout the section and were represented by arboreal, understory 

shrub, forest floor, decaying wood and fungus taxa. Aquatic taxa were 

rare, scattered throughout the sequence and dominated by running-water 

species of the family Elmidae except in the top sample, BS-A3, and the 

basal sample, PD6, where standing-water forms were present. Shoreline 

taxa (e.g., certain carabids and staphylinids) and species occurring on 



. ' '},:£ 

Table 17, Table indicating the number of identifiable beetle fossils recovered by sample from the Rio 
Caunahue Site and the number and percent of the fossils identi.fied to family, genus, and species. The 
table also shows the minimum number of identified taxa and the number and percent of taxa identified to 
genus and species in each sample, See Plate 1 for stratigraphic position of each sample, 

Number of Total Total Total Minimum Number (%) Number (%) 
Identifiable Number(%) Number(%) Number(%) Number of of Taxa of Taxa 

Sample Beetle Identified Identified Identified Identified IdentHied Identified 
Number Fossils to Family to Genus to Species taxa to Genus to Sped.es 

BS-A3 615 530 (86) 376 (61) 294 (48) 119 87 (73) 68 (57) I 
A2 298 262 (88) 159 (53) 110 (37) 84 53 (63) 39 (46) .... 

w 
Al 288 251 (87) 184 (64) 130 (45) 80 59 (74) 44 (55) "' I 

1 13 13 (100) 6 (46) 4 (31) 6 4 (67) 3 (50) 
2 6 5 (83) 3 (SO) 1 (17) 4 2. (5()) 1 (25) 
3 23 21 (91) 12 (52) 9 (39) 10 7 (70) 4 (40) 
4 21 17 ( 81) 8 (38) 4 (19) 11 6 (55) 4 (36) 
5 12 10 (83) 5 (42) 2 (17) IO 5 ( 50) 2 (20) 
6 10 9 (90) 2 (20) 1 (10) 5 2 (40) 1 (20) 
7 10 8 (80) 3 (30) 2 (20) 6 3 (50) 2 (33) 
8 13 12 (92) 4 (31) 2 (15) 7 4 ( 5 7) 2 (29) 
9 15 14 (93) 6 (40) 3 (20) 9 6 (67) 3 (33) 

10 10 7 (70) 3 (30) 2 (20) 5 3 (60) 2 (40) 
11 11 9 (82.) 3 (27) 2 (18) 7 3 ( 43) 2 (29) 
12 22 19 (86) 6 (27) 2 (9) 10 5 (50) 2 (20) 
13 12 12 (100) 6 (50) 2 (17) 6 3 (50) l (17) 
14 12 12 000) 6 (50) 3 (25) 9 .5 ( 56) 3 (33) 
15 5 5 (100) 4 (80) 2 (40) 5 4 (80) 2 (40) 
!6 18 1 7 (94) 9 (50) 6 (33) 9 5 (56) 4 (44) 
17 69 65 (94) 27 (39) 15 (22) 33 14 (42) 12 (36) 
!8 29 27 (93) 12 ( 41) 8 (28) 13 9 (69) 5 (38) 



Table 17, (Continued) 

Total 
Number of Total Total . Total Minimum Number(%) Number(%) 

Identifiable Number(%) Number(%) Number(%) Number of of Taxa of Taxa 
Sample Beetle Identified Identified Identified Identified Identified Identified 
Number Fossils to Family to Genus to Species taxa to Genus to Species 

19 40 37 (93) 20 (50) 10 (25) 16 10 (63) 6 (38) 
20 28 25 (89) 15 (54) 9 (32) 14 10 (71) 6 (43) 
21 54 50 (93) 32 (59) 16 (30) 26 20 (77) 13 (50) 
22 15 14 (93) 8 (53) 5 (33) 11 7 (64) S (45) I 
23 5 5 (100) 3 (60) 0 (0) 4 3 (75) 0 (0) 

,_. 
~ 

24 15 15 (100) 7 (47) 3 (20) 10 6 (60) 3 (30) 0 
l 

25 18 17 (94) 6 (33) 5 (28) 13 6 (46) 5 (39) 
26 14 14 (100) 4 (29) l (7) 5 3 (60) l (20) 
27 95 87 (92) 51 (54) 38 (40) 49 27 (55) 23 (47) 
28 25 25 (100) 9 (36) 5 (20) 17 9 (53) 5 (29) 
29 31 28 (90) 16 (5 2) 14 (45) 12 9 (75) 7 (.58) 
30 54 4 7 (87) 24 ( 44) 15 (28) 24 15 (63) 10 ( 42) 
31 38 35 (97.) 16 (42) 10 (;>7) 18 13 (72) 10 (56) 
32 27 27 (100) 19 (70) 6 (22) 13 9 (69) 5 (38) 
33 31 30 (97) 15 (48) 12 (39) 14 10 (71) 7 (50) 

PDO 246 2?5 (92) 153 (62) 88 (36) 60 47 (78) 28 ( 4 7) 
34 26 23 (88) 15 (58) 9 (35) 16 10 (63) 6 (38) 
35 26 24 (92) 11 ( 42) 8 (31) 11 6 (55) 4 (36) 
36 35 30 (86) 17 (49) 14 (40) 16 12 (75) 9 (56) 
37 0 0 (0) 0 (0) 0 (0) 0 0 (0) 0 (0) 
38 48 45 (94) 23 (48) 18 (38) l7 10 (59) 7 (41) 
39 35 21 (89) l 5 ( 43) 9 (26) 13 8 (62) 5 (38) 

PDl 199 176 (88) 121 (61) 72 (36) 55 35 (64) 23 (42) 
40 19 19 (JOO) 11 (58) 8 ( 42) 11 8 (73) 5 ( 45\ 



Table 17. (Continued) 

Total 
Number of Total Total Total Minimum Number(%) Number (%) 

Identifiable Number(%) Number(%) Number(%) Number of of Taxa of Taxa 
Sample Beetle Identified Identified Identified Identified Identified ldentiHed 
Number Fossils to Family to Genus to Species taxa to Genus to Species 

PD2 191 175 (92) 125 (65) 65 (34) 57 43 (75) 23 (44) 
41 125 116 (93) 72 (58) 53 (42) 39 25 (64) 16 (38) 
42 929 834 (90) 615 (66) 429 (46) 108 84 (78) 54 (50) 

PD3 296 271 (92) 185 (63) 105 (35) 68 48 (7]) 29 (43) I 
PD4 169 156 (92) 103 (61) 65 ( 38) 47 34 (7 2) 22 (4 7) 1--.... 
PD5 68 67 (99) 51 (75) 37 (54) 30 22 (73) 12 ( 40) 1--

I 
PD6 172 156 (91) 92 (53) 50 (29) 61 44 (72) 30 (49) 

TOTAL 4586 4129 (90) 2698 (59) 1783 (39) 
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emergent vegetation (e.g., helodids and various coccinellids) were 

fairly common throughout the section. 

Representatives of seven orders of insects (Table 7), in addition 

to Coleoptera, were identified. They are: Plecoptera (stoneflies), 

Hemiptera, including Saldidae, Homoptera, specifically Cicadellidae, 

Neuroptera, including Corydalidae (dobson flies), Trichoptera, Diptera, 

including Chironomidae, and Hymenoptera, including Formicidae. The 

three arachnid groups present were the Chelonethida (pseudoscorpions), 

Acari, and Araneida. These additional insect and arachnid fossils 

occurred consistently throughout the sequence but, like the beetles, 

were more abundant in interval Al through BS-A3 and interval PD6 throug 

17 (Plate 1). Unidentified macroplant fossils and charophyte oogonia 

were common in the section but less abundant in interval 16 through 1. 

Isoetes savatieri was found only in the bottom two metres. 

The beetle assemblages from eight Rio Caunahue samples (Table 2), 

ranging in age from 12,800 to 4,525 yr B.P., were subjected to cluster 

analysis to determine their similarity to fossil assemblages from 

different ages and other localities and to beetle faunas living today 

(Appendix A) in the Lake Region. Seven of the assemblages were from th 

critical 12,800 to 10,000 yr B.P. late-glacial time interval. 

A number of factors are responsible for the disparity in species 

diversity observed between the fossil assemblages. The most obvious is 

merely a sampling artifact related to the amount of material available 

for processing. For example, the high numbers of species present in 

samples BS-A3 and 42 in attributable, at least in part, to having large 

sediment samples than the other Rio Caunahue samples. This is not to 
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imply, however, that the other samples were of inadequate size to yielC 

representative assemblages. Even though most of the diversity 

differences are artifactual, the assemblages adequately reflect past I 

environmental conditions in the site areas at their respective times of 

deposition. Some samples were, in addition, obviously richer in overall 

biotic content than others. This may be associated with changes, at 

various times, in diversity of microhabitats proximal to the basin of 

deposition or in the dynamics of the depositional system. In contrast 

as shown earlier, the low diversity of the Puerto Varas Park assemblag s 

is believed to reflect the depauperate nature of the beetle fauna livi g 

in the site area 15,700 years ago. 

The relative faunal similarities between the 41 modern fauna 

collecting localities and the nine fossil assemblages is shown in the 

trellis diagram and dendrogram presented in Figure 11. It was assumed 

that introduction of fossil assemblages into the clustering program 

would alter the groupings obtained from analysis of the modern fauna 

(Figure A7) because of anticipated similarities of some of the fossil 

assemblages with contemporary faunas from specific collecting 

localities. This was not the case, and the exact bioassociational 

groupings of the modern fauna were maintained because the fossil 

assemblages, surprisingly, formed their own cluster (group Fin Figure 

11). These results indicate that the nine fossil assemblages are more 

similar in faunal composition to one another than to the contemporary 

faunas. Taphonomic intervention is probably at least partially 

responsible for this observed phenomenon. 
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Of particular interest, from a paleoenvironmental perspective, \is 
i 

that the assemblage of sample 42 (11,680 yr B.P.) is most similar t9 the 

assemblage of sample BS-A3 (4,525 yr B.P.) and that the assemblage df 
I 

sample PDO (10,440 yr B.P.) is most similar to the assemblage of sample 

42. In turn, the assemblage of sample PD4 (12,385 yr B.P.) is most\ 
I 

similar to the assemblage of sample PDO. \ 
I 

The cluster of the fossil assemblages includes two subclusters,\F1 

and F2 • Subcluster F1 consists of the basal Rio Caunahue assemblage\ 

PD6 (12,800 yr B.P.) and the Puerto Varas Park assemblage, PVl (15,7qo 

yr B.P.). The other seven Rio Caunahue assemblages, ranging in age irom 

4,525 to 12,385 yr B.P., comprise subcluster F
2

• 

The cluster of fossil sssemblages, F1-F2 , joins the major cluste~ 
I 

consisting of Bioassociations II, III and Ib at about the 8 percent 

I 

level, indicating that the fossil assemblages have a number of speciei 

in common with the faunas in those bioassociations. This broad 

similarity is rather meaningless for paleoenvironmental reconstructiots. 

However, dark regions on the trellis diagram indicate that the fossil\ 

assemblages in subcluster F, are generally more similar to modern fau4as 
I 

in Bioassociation III and show little resemblance to those in 

Bioassociations IIa, IV and V. The F
2 

assemblages are also similar 

faunas :In subcluster IIb, modern fauna collecting localities Cl and 

The reason for this is that elmids, beetles living in running-water 

habitats and other stream-marginal species, found consistently in the~ 
i 2 

assemblages were collected, almost exclusively, at localities Cl and Pr. 

In contrast, the assemblages in subcluster F1 are most similar to faunfs 

in Bioassociation II. As explained earlier, the PD6 assemblage is abott 

I 
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equally similar to faunas in Bioassociations II and III and shows little 

resemblance to faunas in Bioassociations IV and V, whereas, the PVl 

assemblage is most similar to faunas in Bioassociation II and exhibits 

little similarity to faunas in Bioassociations III, IV and V, The 

importance of the trellis diagram in determining relative similarities 

between the fossil assemblages and modern faunas is evident. The 

interpretations of these clustering results will follow later. 

Paleoenvironmental and Paleoclimatic Interpretations 

Interval PD6 through 17 (12,800 to about 9,500 yr B.P.) 

The beetle assemblages from interval PD6 through 17 and the other 

Rio Caunahue intervals discussed later are significantly different than 

those recovered from the Puerto Octay and Puerto Varas sites. The most 

apparent difference is the high numbers and diversity of obligate 

woodland taxa, illustrated by the assemblages from interval PD6 through 

17, found in the Rio Caunahue deposits. However, shallow-water, aquatic 

beetles were scarce in the interval, represented by only one dytiscid, 

Lancetes, in sample PDl. Shallow""'Water beetle taxa (e.g., the 

hydrophilid Enochrus, including 1!_. vicinus) were more common in the 

basal, 12,800 year old sample, PD6. The fact that the sediment is 

rhythmically bedded indicates deposition in relatively deep water in a 

reasonably large lake, Lacustrine beetles most frequently inhabit 

quiescent, shallow-water areas near the shore. Their remains are seldom 

carried to deeper depths, and this undoubtedly explains their scarcity 

in the sediments of the interval. Other apparently more easily trans­

ported shallow""'Water indicators (e.g., caddisflies, chironomoids and 
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charophyte_oogonis) were, however, consistently found in high numbers. 

Laminae of organic debris, the numerous species of stream-dwelling 

elmids, Austrolimnius (e.g., A. chiloensis, Plate 6, Figure 6), 

Stethelmis, and cf. Hydora annectens, and abundant stoneflies and dobson 

flies in interval PD6 through 17 indicate that flood waters periodically 

discharged into the lake. The staphylinid, Carpelimus, may also 

indicate a similar setting because Puthz (1981) noted its preference 

today for riparian habitats. The noteworthy absence of elmids, 

stoneflies and dobson flies in sample PD6 will be discussed later. The 

influence.of fluvial systems is, at least in part, responsible for the 

diversity of terrestrial beetles found in the interval from which a 

great deal of regional paleoenvironmental and paleoclimatic information 

was obtained for the 12,800 to 9,500 year period. 

The numerous hygrophilous shoreline taxa, including the carabids, 

Bembidion (e.g.,!, cf, posticalis and!• setiventre), Trechisibus 

nigripennis Group, Trirammatus (e.g.,_!. (Ferionimorpha) sp. 1), Agonum, 

Bradycellus (e.g.,!• (Stenocellus) and.!!_. (Goniocellus)), and 

Pelmatellus (sensu lato) sp. 1; the hydrophilid, Hydrochus stolpi; and 

the staphylinids, Thinodromius, Stenus (e.g.,~. chilensis), Loncovilius 

(Lienturius), Cheilicolpus and Nomimocerus marginicollus, imply that an 

array of microhabitats, marshy to bare, open and muddy, fringed the 

lake. Emergent vegetation, growing near the margins, provided habitats 

for staphylinids, helodids (e.g., cf. Microcara and Prionocyphon), 

alticine chrysomelids, coccinellids, Hyponotum (cantharid), 

Strichtoptyophus cf. brevicollis (anobiid) and Pseudochrodes suturalis 

(cryptophagid), The weevil, Notiodes, living today on aquatic and 
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semiaquatic vegetation (Kuschel, 1981a), also indi~ates that a 

relatively diverse aquatic flora was present. \ 

The consistent occurrence of organic laminae Fontaining macroplant 

fossils, including leaves, twigs, and seeds, and £~rest-dwelling beetle 

taxa, indicates that a dense forest existed near t!'e lake and probably 

extended to its shoreline. The numerous polyphago s, forest-dwelling 
• I 

beetles recovered from the interval that occur todfy in the Valdivian 

Rain Forest on a variety of both trees and understiry vegetation 

include: the carabid, cf. Aemalodera centromaculatla; the staphylinid, 

Leucotachinus luteonitens (Plate 7, Figure 4); the \scarabaeid, 

Sericoides (e.g., S. viridis); the elaterids, Deroniecus and cf. Medonia; 

the lampyrid, Pyra~tonema nigripennis Group; t~tharid, 
I 

Plectocephalon testaceum 

(Plate 3, Figure 3); the 

(Plate 6, Figure 7); the at· obiid, Caenocara 

trogositids, cf. Diontolob s sp. 1 and cf. 

Diontolobus sp. 2 (Plate 4, Figure 3); the nitiduli~, Perilopsis flava 
i 

(Plate 3, Figure 4); the coccinellids, Orynipus and\Sarapidus cf. 

australis; the salpingid, Cycloderus rubricollis; t~e melandryid, 

Orchesia sp. l; the chrysomelid, Pachybrachis; and ~he weevils, Dasydema 

hir~, Neopsilorhinus and Psepholax dentipes. 

leafhopper and Hemiptera fossils also indicate a 

proximal to the site of deposition. 
I 

An insight into the specific composition of thi 

was gained by the many strongly host-specific beetle, 

abundant 

established forest 

forest vegetation 

taxa in the 

assemblages. Evidently. the southern beech, ~othofa~s, and quite 

probably more than one species, were the dominant 

similar to today's Valdivian Rain Forest. Beetle 

i 

t~es in the forest 

t 
1

a recovered from 
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the interval, that were found exclusively or most co only on Nothofagus 

during the survey of the existing fauna, include: the carabid, Abropus 

carnifex (Plate 4, Figure l); the elaterid, Semiotus, luteipennis; the 

nitidulid, Cryptarcha sp. l; the coccinellids, Rhizo~ius chilianus and 

Strictospilus darwini (Plate 3, Figure 2); the anthr:Lbid, !)rmiscus 

parvulus; and the weevils, Nototactus angustirostrisi, Polydrusus 

nothofagi, Nothofagobius brevirostris, Epaetius cari ulatus (Plate 7, 

Figure 5), Erirrhininae n. sp. land Erirrhininae n •. sp. 2. Of these 

weevils, f. nothofagi, !• angustirostris, Erirrhinin en. sp. land 

Erirrhininae n, sp. 2 were also noted by Kuschel (19 0, 1979) to prefer 

Nothofagus. Nothofaginus lineaticollis (weevil), al hough collected 

only by trampling water-marginal vegetation during t e survey of the 

modern fauna is found on Nothofagus pumilio and N. dombeyi (Kuschel, 

1952, 1981a). The weevils, Wittmerius longirostris i(Plate 2, Figure 3) 

and Allomagdalis crYPtonx and the nemonychids, Rhych~tomacer f.lavus 

(Plate 6, Figure 5) and R. fuscus were not collected during the survey, 

but Kuschel (1981a) stated that they are host-specif' con Nothofagus. 

Other trees in the forest surrounding the site proba ly included Drimys 

winter!, reflected by the occurrence in this interva of the nitidulid, 

Brachpterus n. sp. (Plate 6, Figure 2), and Laurella serrata as 

indicated by the weevil, Tartarisus signatus (Plate , Figure 4). The 

latter, according to Kuschel (1952), is commonly dant on that plant 

species. Saxegothaea may also have been present in ~he forest because 

_!!.. darwini and!• brevirostris, although more frequently found on 

Nothofagus, was also collected on Saxegothaea 

survey. 

during! the modern faunal 

! 



-149-

The understory flora were apparently equally as diverse as the 

arboreal component of the forest. The bamboo-like plant, Chusquea, was 

probably growing in the forest as reflected by the occurrence of 

Micronotum nodicorne (cantharid), Dasytes haemorrhoialis (melyrid), 

Aridius heteronotus (lathridiid) and Vincenzellus (salpingid). The 

cerambycid, Hoplonotus spinifer, perhaps indicates the presence of 

Flotovia acanthoides. The occurrence of Pseudopanax laetevirens is 

suggested by the weevil, Lophocephala fasciolata. The chrysomelid, cf. 

Crepidodera sp. I and the attelabids, Eugnamptoplesius violaceipennis 

and Minurus testaceous (Plate 8, Figure 6) were found almost exclusively 

on Fuchsia during the survey, implying the presence of that plant in the 

forest. Voss (1951), however, noted the preference of those attelabids 

for Myrceuginella, Myrceugenia and Amomyrtus. The coccinellid, Adalia 

kuscheli, the chrysomelid, §trichosa eburata and, according to Kuschel 

(1979), the weevils, Berberidicola exaratus and!• crenulatus, are found 

today almost exclusively on Berberis, suggesting its presence in the 

flora. Kuschel (1952) noted that the pollen-feeding weevil, 

Rhopalomerus tenuirostris (Plate 7, Figure 2) occurs on a great number 

of flowering plants including the shrubs, Baccharis spaerocephala and 

Caldeluvia paniculata and the tree, Eucryphia cordifolia, perhaps 

indicating that one or all of these plants grew in the forest. 

A well developed forest, probably with a dense canopy, is also 

indicated by the forest-floor and other highly specialized 

forest-dwelling beetles. The following ground-dwelling taxa from the 

interval characteristically live in the Valdivian Rain Forest today: 

the trachypachid, Systolosma brevis; the carabids, Ceroglossus, Creobius 
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eydouxi, Trechinotus striatulus (Plate 8, Figure 1), Parhypates and 

Metius; the leiodids, Dasypelates, Eunemadus chilensis (Plate 7, Figure 

1), Colon and cf. Neohydrobius; the elaterid, Negastrius; the 

staphylinids, Gypholoma pustiliferum (Plate 6, Figure 3), Omaliopsis, 

Baryopsis araucanus (Plate 4, Figure 4), and Neophonus bruchii (Plate 7, 

Figure 3); the pselaphids, Dalmini0111Us, Achillia and;Tyropsis; and 

cryptorhynchine (Plate 8, Figure 5) weevils. Thayer and Newton (1978) 

observed that~- pustiliferum occurs in Nothofagus forest-floor, leaf 

litter. The abundance of ant, pseudoscorpion, and spider fossils also 

indicate a diverse forest-floor fauna. Perhaps it should be noted here 

that the open-ground-dwelling weevil, Listroderes ~entipennis, was found 

in the interval but only in the bottom sample, PD6. Its postulated 

significance will be discussed later. Of the highly specialized 

forest-dwelling species, Nothoderodontus dentatus (derodontid; Plate 3, 

Figure 1), although rarely collected today and not collected during the 

survey, is one of the most interesting. According to Lawrence and Havoc 

(1979) the species has been found living today only on Isla Chiloe, 

They suggested that it probably lives on molds growing on and under the 

bark of Nothofagus, similar to the New Zealand derodontid species. 

Other species that apparently prefer living under the bark of trees or 

in decaying wood are the lucanids, Sclerognathus baccpus and cf, 

Sclerognathus femoralis. In addition, Coiffait and Saiz (1968), found 

that Pseudopsis cf. adustipennis (staphylinid) prefers to live in rotten 

wood. 

The forest was not only diverse in floral composition but must also 

have been well established. This is confirmed by the, numerous 
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wood-boring beetle taxa found in the interval, many of which apparently 

prefer large dying or dead, felled trees. These taxa include 

bostrichids and the scolytids, Pitycophthorus, Amphricranus, cf. 

Corthylus, Gnathotrupes (e.g., G. cf. sextuberculatus), and Phloeotribus 

cf, spinnipennis (Plate 6, Figure 1). In addition, O'Brien (1980) 

stated that the weevil, Pentarthrum _£ilSt~~ (Plate 2, Figure 2) 

exhibits similar wood-boring habits as the bostricids and scolytids. 

The apparent significance of the lack of scolytids and bostricids in 

sample PD6 will be discussed later. 

The occurrence of the above-mentioned beetle taxa leaves little 

doubt that a large lake with a forested margin existed at the Rio 

Gaunahue Site from 12,800 to about 9,500 years ago. To test this 

conclusion, assemblages from samples 21 (10,000 yr B.P.), 27 

(approximately 10,200 yr B.P.), PDO (10,440 yr B.P.), PDI (11,290 yr 

B.P.), 42 (11,680 yr B.P.), PD4 (12,300 yr B.P.) and PD6 (12,800 yr 

B.P.) were subjected to cluster analysis (Figure 11) to determine their 

similarity in species composition to beetle faunas living today at 

specific localities in the Lake Region, Samples 21, 27, PDO, PDl, 42, 

and PD4 formed a tight cluster, F2 , indicating that the beetle faunas 

living in the Rio Caunahue area were very similar throughout the 12,300 

to 10,000 year time interval. This, in turn, implies that environmental 

and climatic conditions were reasonably stable during that time. Figure 

11 also shows that these assemblages are remarkably similar to the 4,500 

year old assemblage from sample BS-A3. The significance of this 

observation will be discussed later. In addition, patterns within the 
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trellis diagram indicate that the assemblages comprising cluster F2 are 

most similar to beetle faunas of Bioassociation III which inhabit the 

Valdivian Rain Forest. Therefore, cluster analysis not only confirms 

that environmental and climatic conditions remained reasonably 

stationary betwen 12,300 and 10,000 years ago, but also that the 

climate, during that time, must have been similar to those areas in the 

Lake Region today inhabited by Valdivian Rain Forest biota. Additional 

support for the interpretation, at least for the 11,000 to 10,000 year 

period, was provided by the beetle assemblages from the three samples 

collected at the Rio Caunahue B section. The assemblages were 

essentially identical to those from samples PD5 through 17. In 

addition, the data in Tables 18 and 19, show that a very high percentage 

of the ta><a recovered from interval PD6 through 17 occur only between 

the elevations of 200 to 1000 min the Lake Region today. 

The beetle assemblage from the basal, 12,800-year old sample (PD6) 

requires a slightly different interpretation than the other assemblages 

from the interval. That assemblage differs from others in the interval 

in having: (1) fewer forest-dwelling taxa; {2) more shallow-water 

aquatic forms; (3) no stream-dwelling elm.ids; (4) no wood-boring 

bostrichids and scolytids; and (5) the open-ground weevil Listroderes 

ftentipennis. The differences between these assemblages may reflect 

either a shift in environmental conditions or a change in the dynamics 

of the depositional system at the site between 12,800 and 12,300 years 

ago. The beetles provide evidence for both. 

The higher diversity of shallow-water, aquatic, beetle ta><a in 

sample PD6 compared to other assemblages in the interval implies that 
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Table 18, Table indicating the number and percent of Rio Cnunahue beet:1e taxa. in each a.ample, that occur today at: reetr1cted 
elevat;innal ranges io the Lake Region detet·mined through study of the modern fauna (Appendix A). See Plate 1 for stratJgraph1c 
position of each sample. 

Number Number Number Number Nuroer Number Tota 1 Number Tota 1 Number Tota 1 Number 
Number (%) (%) Taxa (%) laxa (%) Taxa (%) Taxa (%) Taxa ( %) laxa ( %) Taxa (%) Taxa (%) Taxa 

Minimum Taxa Not . Ranging Ranging Ranging Ranging Occurring Ranging Occurring Occurring Occurring 
Samg.1e Number Collected in up to up to up to up to On 1 "i Be tween Above Only Below Only Below Only Below 
Num r of Taxa Modern Survey 150 m 650 m 1000.m 1200-m. 1000-1200 m 1200 m 650 m 1000 m 1200 m ------- .. 

RIO 
CAUNAHUE 

BS-A3 119 19 116) 4 (3) 25 ( 21) 16 (13) 28 (24 J t Bl 20 (17) 29 (24) 45 (38) 77 (65l A2 84 7 8) 4 (5) rn c21J 14 (17) 17 (20) 15 ( 18) 22 ( 26) 36 (43) 54 (64 
Al 80 7 8) 7 (B) 18 {23) 9 (II) 15 (19) 3 (4) 17 (21) 25 ( 31) 34 (43) 52 ( 65) 

I 6 0 (0) 0 (0) 2 (33) I (17) 2 (33) 0 10) I (17) 2 (33) 3 (50) 5 (83) 
2 4 0 (0) 0 (0) I (25) 0 (0) 1 {25) 0 0) 1 ( 25) 

1 /25) 
l (25) 2 ( 50) 

3 10 1 ( 10) 0 (0) 4 (40) 2 (20) 1 poi 0 (0) 2 (20l 4 40/ g /~I 71701 4 ll 0 (0) 
~ lil j /Mil I (9) 2 18! 0 (0) 3 (21 3 27 6 55 

5 10 2 (20) 0 (0) 1 (10 0 (0) 1 ( JO 3 30) 3 (30) 5 (50) I 6 5 2 (40) o fol 0 (0) 0 (0) 1 (20) 0 10) 2 (40) o lo) o 
1
o) 1 (20) I-' 

7 6 0 (0) 0 0) 2 (33) 0 (0) 1 ( 17) 0 0) 3 ( 50) 2 33) 2 33) 3 (50l en 
w 8 7 0 (0) 0 (0) l (14) 2 (29) 1 (14) 0 (0) 2 (29) 1 ( 14) 3 ( 43! 4 (57 I 

9 9 0 {O) l ( 11) 2 (22) l {11) 1 ( 11) 0 (0) 3 (33) 3 33) 4 (44 5 (56) 
lO 5 1 (20) 0 (0) 1 ( 20) 1 (20) 0 (0) 0 (0) 1 (20) l 20! 2 (40) 2 (40) 
11 7 0 (0) 0 (0) 2 (29) l ( 14) l (14) 0 (0) 1 ( 14 ! 2 29 3 (43) 4 ( 57 l 12 10 l (10) 0 (0) l ( 10) 1 (lO) 2 (20) 0 (0) 3 (30 I 10) 2 (20) 4140 13 6 0 (0) 0 (0) l ( 17) 1 (17! J (17) 0 (0) 2 (33) l 17) 2 (33) 3 50) 
14 9 1 ( l1) 0 (0) 2 (22) J ( 11 0 (0) O (0) 4 (44) 2 (22) 

3 !33) 3 (33) 
15 5 0 (0) I (20) 2 (40) 0 (0) l (20) 0 

1
o) 0 (0) 3160) 3 60) 4 (80) 

16 9 0 (OJ 1 ( l1 J 2 (22) 2 (22) 2 (22) 0 O) 1 { 11) 3 33) 5 56) 7 170) 
17 33 3 (9) l (3) 5 (15) 3 (9) 6 (18) 0 {O) 6 {18) 6 psi 9 (27! 15 45) 
18 13 2 psj 0 (0 l 3 (23) 2 (15) l (8) 0 (0) 2 {15) 3 23) 5 (38 6 (46) 
19 16 3 19 l (6 3 (19) 3 (19) 2 (13! 0 (0) 2 (13) 4 (25) 7 (44) 9 (56) 
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Table 19, Table indicating the m1mher and percent of Rio Caunahue beetle species, in each nample> that occur today at 
restrictr::d elevational ranges ln the Lake Region determined tbrough study of the lllOdern fauna (App-endlx A}, See Plate 1 
for stratigraphlc po::iition -of each sample. 
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the Rio Caunahue lake was probably shallower 12,800 ears ago than 

between 12,300 and 10,000 yr B.P. In addition, sed at the bottom 

0£ the section exhibit less distinct rhythmic beddin than those higher 

in the sequence, suggesting deposition in shallower ter. The absence 

of elmids in sample PD6 and fewer laminae of organic ebris in the basal 

portion of the sequence probably indicate that stream flood waters were 

not discharging into the lake as frequently during th t time. The 

relatively few numbers and low diversity of forest-dw lling taxa in 

sample PD6 may have been caused merely by the absence of a mechanism 

(i.e., stream discharge) to transport terrestrial ele ents into the 

basin of deposition. Shallow-water lacustrine Condit ons and apparent 

decrease of fluvial activity 12,800 years ago may ind cate drier 

climatic conditions during that time than betwen 12,3 0 and 10,000 yr 

B.P. If that was the situation, moisture deficiency ould have retarded 

opttmal development of forest and its associated beet e fauna. Less 

than optimal forest development 12,800 years ago may lso be reflected 

by the absence of wood-boring scolytids and bostricid in the PD6 

assemblage. This is not meant to imply, however, tha terrestrial 

vegetation was sparse in the Rio Caunahue Site area 12,800 years ago. 

The PD6 assemblage is dominated by forest-associated b.etle taxa, 

indicating the presence of both trees and understory s rubs but, 

apparently, the forest was not as dense during that tie as between 

12,300 and 10,000 years ago, Indeed, tracts of open g ound must have 

existed in the forest 12,800 years ago as inferred by he occurrence of 

Listroderes dentipennis in sample PD6. This interpret tion is supported 

by cluster analysis (Figure 11). When compared to bee le faunas living 
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today in the Lake Region, the PD6 assemblage is about equally similar in 

species composition to faunas in Bioassociation III ( aldivian Rain 

Forest) and Bioassociation II (Lowland Disturbed Foret). The analysis 

confirms that forest habitats existed in the Rio Caun ue Site area 

12,800 years ago but that open-ground areas were also prevalent. 

Climatic conditions, although possibly somewhat rier, were 

apparently not significantly different 12,800 years a o than between 

12,300 and 10,000 yr B.P. in the Rio Caunahue Site ar a. That is to 

say, the climate was temperate and humid and probably not much different 

than conditions existing in the Central Valley and lo er slopes of the 

Andes today. If the interpretation of the Puerto Vars Railroad 

assemblages is correct, environmental conditions int e Lake Region 

were sufficient to permit patchy forest growth in the Central Valley 

between about 15,000 to 14,000 years ago. The 12,800 year-old PD6 

assemblage may reflect continuing development of fore t habitats in the 

Lake Region and perhaps marks a late phase in the con inuum from mostly 

open-ground habitats reflected by the 18,000- to 16,0 0-year-old Puerto 

Octay and 15,700-year-old Puerto Varas Park assemblag s to optimal 

forest development indicated by the 12,300- to 10,000 Rio 

Caunahue assemblages. If this is correct, the PD6 as 

illustrates that, although amenable climatic conditio shad been 

established much earlier, the biota had not reached e uilibrium 

with the climatic conditions. 

Interval 16 throu h 1 (about 9,500 to about 7,500 r .P.) 

A significant decrease in both the numbers of fo sils and diversity 
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of beetle taxa, fr01Jt all ecological categories, was oted in this 

interval compared to the preceding, PD6 through 17 i terval. This 

change, however, is gradational, and the boundary wa chosen where the 

transition becomes most evident. The upper boundary of interval 16 

through 1 is an erosional unconformity between spars ly fossiliferous 

lacustrine sediments below and unfossiliferous fluvi gravels above. 

The rhythmic bedding of the lacustrine sediment and sence of shallow­

water beetle taxa suggest that the lake was deep and robably areally 

extensive. Algae and other emergent vegetation grew 

shallow-water, lake-marginal areas as reflected abundant 

caddiflies, chironomids and charophyte oogonia in the deposits. The 

shoreline contained both marshy and muddy areas as in erred by the 

occurrence of the carabid, Bradvcellus (Stenocellus) d the 

staphylinids, Thinodromus, Nomimocerus marginicollis, and Bledius cf. 

chilensis. Bledius is a lake-1narginal mud burrower ( erman, 1962) while 

the other taxa mostly scavenge marshy shorelines. 

The scarcity of stream-derived organic-rich lami ae in interval 16 

through l is apparently responsible for the notable d crease in 

terrestrial taxa compared to interval PD6 through 17. The decrease of 

fluvial influence is also evidenced by the sparsity o stream-dwelling 

elmids (only one Austrolimnius was recovered from the basal portion of 

the interval) and dobson flies. A period of decrease precipitation may 

be inferred by this finding which, in turn, could sug est that fewer 

forest-dwelling taxa lived adjacent to the site of de osition. However, 

lowering of lake level would, presumably, also have a companied a 

decrease in precipitation. As shown earlier, this wa not the case. 
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Indeed the beetles, even though not as common or dive seas in interval 

PD6 through 17, indicate that a dense, well-establish d forest existed 

adjacent to the lake during that time. This implies hat a change in 

the depositional system, in this case an increased se imentation rate 

and less frequent flood water discharge, resulted in ewer terrestrial 

beetles deposited in the area of the lake that was su sequently sampled 

for this study. 

The presence of a forest proximal to the site of deposition is 

indicated by the occurrence of the following beetle t xa that today live 

on a variety of plants in the Valdivian Rain Forest: Caenocara 

(anobiid), cf. Diontolobus sp. l (trogositid), Perilo sis flava 

(nitidulid), Orchesia sp. l (melandryid), cf, Cre ido era sp. 1 

(chrysomelid) and Dasydema hirtella (curculionid). e COJlilllOnly 

occurring leafhoppers and Hemiptera also indicate abu _dant vegetation 

near the site, Nothofagus, reflected by the coccinel id Strictospilus 

darwini and the weevils, Polydrusus nothofagi, Wittme ious longirostri~ 

and Erirrhininae n. sp. 2, must have been a COJlilllonly ccurring tree in 

the forest. The existence of a well-established fore tis confirmed by 

the wood-boring scolytids, including Gnathotrupes and Phloeotribus cf. 

spinnipennis. The forest floor was inhabited by the arabid, Parhypates 

(sensu stricto); the leiodid, Dasypelates sp. 1; the taphylinid, 

Neophonus bruchi; the elaterid, Negastrius; the psela hids, Dalminiomus 

and ~ryopsis; crytorhynchine weevils, and ants, pseud scorpions and 

spiders. 

The fossil evidence indicates that no major env onmental or 

climatic changes occurred between about 9,500 and t 7,500 years ago 
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in the Rio Caunahue area. It appears that climatic conditions similar 

to today, in the Rio Caunahue area, were established by at least 12,800 

years ago, and remained essentially stable until at least 7,500 yr B.P. 

and, as will be shown below, probably much later. Although species 

diversities in each assemblage of this interval were too low to test 

this interpretation by cluster analysis, the data presented in Tables 18 

and 19 show that most of the taxa recovered do not range above 1000 min 

the Lake Region today implying similar climatic conditions to areas 

inhabited by the existing Valdivian Rain Forest biota. 

Interval Al through BS-A3 (5,200 to 4,500 yr B.P.) 

Although no paleoecological record is preserved younger than about 

7,500 yr B.P. at the Rio Caunahue main section, additional fossiliferous 

lacustrine sediment, dating from 5,200 to 4,500 yr B.P. and cropping out 

about 500 m upstream from the main section, escaped erosion and provided 

an extension of the record. Unfortunately, no information is available 

for the 7,500 to 5,200 yr B.P. interval. As at the main exposure, 

stream erosion has truncated the top of the upstream sequence 

terminating the Rio Caunahue record at 4,500 yr B.P. The beetle 

assemblages are remarkably similar to those recovered from interval PD6 

through 17 and, consequently, reflect a similar paleoenvironmental and 

paleoclimatic setting. Cluster analysis confirms this similarity 

because the BS-A3 assemblage clusters with assemblages from selected 

samples in interval PD6 through 17 (Figure 11). The beetle assemblages 

from interval Al through BS-A3 are, however, more diverse than those 
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from interval PD6 through 17 and provide additional paleoecological 

information~ 

The aquatic environment at the Rio Caunahue Site may have been 

slightly different between 5,200 and 4,500 years ago than between 12,800 

and about 7,500 yr B.P. The rhythmic bedding of the sediments of 

interval Al through BS-A3 indicates deposition in deep water similar to 

interval 16 through 1 and, at least, the upper part of interval PD6 

through 17. Unlike the lower intervals, however, the occurrences of the 

dytiscids, Rhantus validus and Liodessus delfini, in interval Al through 

BS-A3, suggest that shallow water habitats with abundant aquatic plant 

growth were not far removed from the site of deposition, probably 

implying that the sample site was somewhat closer to shoreline than the 

main section. In contrast to interval 16 through 1, the numerous 

laminae of organic debris and presence of elmids, including Neoelmis n. 

sp. (Plate 8, Figure 3) and Hydora annectens (Plate 5, Figure 3), and 

stoneflies and dobson flies in interval Al through BS-A3, indicate that 

periodic fluvial discharge into the lake was prevalent between 5,200 and 

4,500 years ago. Both the beetle and nonbeetle taxa found in interval 

Al through BS-A3, indicative of emergent flora in the shallow-water 

areas, are essentially the same as those in interval PD6 through 17. 

This is also true of the shoreline taxa, except for the addition of the 

carabids, Gipsyella patagonica (Plate 8, Figure 2) and Metius sp. 1, 

both of which prefer marshy areas. Collectively, the shoreline taxa 

suggest a variety of microhabitats around the margins of the lake. 

The terrestrial beetle taxa recovered from interval Al through 

BS-A3 are mostly the same as those from interval PD6 through 17 and 
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indicate that a well-developed Nothofagus forest was present in the site 

area 5,200 to 4,500 years ago. Beetle taxa not found in interval PD6 

through 17 but recovered from interval Al through BS-A3, that live today 

on numerous plants in the Valdivian Rain Forest, strengthen the 

interpretation. These taxa are the carabids, Aemalodera centromaculata, 

A. dentimaculata and Plagiotelum irinum; lucanids, Chiasognathus granti 

and Sclerognathus caelatus; scarabaeids, Sericoides (e.g.,~. 

chlorosticta); cantharids, Oontelus and Hyponotum cf. krausei; 

tenebrionid, cf. Adelium, and oedemerid, Platylytra vitticollis. 

Forest-floor dwelling beetle taxa where common in interval Al through 

BS-A3 and were again the same as those collected from interval PD6 

through 17 except for Ceroglossus valdiviae (carabid) and cf. 

Hydnobiotus (leiodid) which were found only in interval Al through 

BS-A3. Thia is also true for the wood-boring beetles except for the 

scolytids, Monarthrum (Plate 5, Figure I) and cf. Araptus and the 

weevil, Dryopthorus canus which were not present in interval PD6 through 

17. The anobiids, Byrrhodes (e.g., Byrrhodes nigricolor), that live 

today in fungal growths on trees in the Valdivian Rain Forest, were 

recovered only from interval Al through BS-A3. Although the forest was 

evidently well-established and dense 5,200 to 4,500 years ago in the Rio 

Caunahue area, the occurrence of Listroderes dentipennis implies that 

open patches existed in the forest. 

The beetle assemblages from interval Al through BS-A3 leave little 

doubt that the Rio Caunahue lake was situated in a rain-forest setting 

between 5,200 and 4,500 years ago. This interpretation is supported by 

the data presented in Tables 18 and 19 which show that most of the taxa 
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do not range above 1000 m, that is above the Valdivian Rain Forest in 

the Lake Region today. Furthermore, cluster analysis shows that the 

beetle assemblage from sample BS-A3, in addition to being very similar 

to assemblages from interval PD6 through 17, is similar in species 

composition to faunas in Bioassociation III (Figure 11). It is inferred 

from these findings that climatic conditions, between 5,200 and 4,500 yr 

B,P,, were not significantly different than areas in the Lake Region 

occupied by the Valdivian Rain Forest today. These conditions evidently 

remained reasonably stable from 12,800 to 4,500 yr B,P., excluding the 

7,500 to 5,200 year period of no record. 

Discussion 

The Rio Caunahue section was exposed only to the 12,800 yr B,P. 

level (sample PD6) during the final (1979) visit to the site for this 

investigation. An additional 5 m of lacustrine sediments was exposed 

beneath sample PD6 when Ashworth revisited the site in 1983. Although 

most of the newly exposed section consisted of inorganic silts and 

clays, Ashworth located an organic horizon, the basal plant debris 

14 (13,900 ~ 560 Cyr B.P.) horizon in the Rio Caunahue sequence, 76 cm 

below sample PD6. The discovery and radiocarbon dates of these older 

lake sediments have caused a reevaluation of the inferred glacial 

history of the Lago Ranco basin and consequently the entire Lake Region. 

Mercer and Laugenie (1973) mapped the end moraines west of Lago Ranco 

and estimated the inner (eastern), undated, moraine ridge to have been 

deposited 14,500 to 14,000 years ago, implying that the basin was 

ice-filled at that time. They also inferred that the glacier had 
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retreated out of the basin by 12,000 yr B.P., the age of the oldest 

known organic horizon then exposed at the Rio Caunahue Site. That 

postulated sequence of events was compatible with Mercer's (1972a) 

opinion that final readvance of the Llanquihue Lobe occurred about 

14,800 yr B.P. Later, Mercer (1976) advocated an extremely rapid 

deglaciation of the Lake Region and revised the date of the final 

readvance, and age of the easternmost end moraines on the western margin 

of Lago Ranco, to 13,000 yr B.P. Discovery of progressively older 

organic horizons, 12,800 and 13,900 yr B.P., at the site prompted Mercer 

(1983) to revert to his original view that the final readvance occurred 

about 14,500 years ago. There is no doubt that final deglaciation of 

the Lago Ranco basin must have occurred prior to deposition of the basal 

lacustrine sediments exposed at the Rio Caunahue Site. 

The following interpretation of the depositional history of the Rio 

Caunahue Site is based on geomorphological, stratigraphical, 

sedimentological, and paleontological evidence. Glacial debris and 

possibly colluvial gravels floored the valley after retreat of the Ranco 

Lobe from the basin and prior to deposition of lacustrine sediment. 

Sedimentation began in a drowned arm of Lago Ranco in the lower reaches 

of the Rio Caunahue valley before 13,900 years ago. The initial 

sediments were mostly inorganic, suggesting little vegetation in and 

around the lake at that time. The lake was presumably at the level of 

the highest terrace, about 150 m above present lake level, and drained 

by a western outlet. The glacier terminus was probably still at low 

elevation in the drowned valley east of the site and, as reflected by 

dropstones incorporated into the lake sediments, icebergs were calving 
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into the lake. Colonization of the lake margin began about 13,900 years 

ago, the age of the basal organic horizon in the sequence. Beetle 

assemblages indicate that by 12,800 yr B.P. the climate had ameliorated 

sufficiently to permit invasion of forest biota around the lake and by 

12,300 yr B.P. a well-established forest had developed in the Rio 

Caunahue area. 

Climatic conditions similar to those of lowland areas in the Lake 

Region today were established by at least 12,800 years ago and, assuming 

no change during the 7,500 to 5,200 yr B.P. interval of no record, 

remained relatively stable until at least 4,500 yr B.P. The pollen 

profile presented by Heusser (1981) for the late glacial portion of the 

Rio Caunahue sequence is consistent with these interpretations. 

Correlation using radiocarbon dates and tephra horizons indicates that 

his pollen profile spans the 13,000 to 10,000 yr B.P. interval. Reusser 

divided the sequence into three pollen zones. The lower zone (RC-3) was 

defined by the presence of Podocarpus andinus and slightly higher 

percentages of Graminae and the upper zone (RC-1) was differentiated by 

a slight increase of Weinmannia at the expense of the Nothofagus dombeyi 

type of pollen, Heusser, however, did not indicate why he divided the 

sequence into three zones and did not interpret the climatic conditions 

reflected by the spectrum. The remarkably consistent relative 

percentages of pollen types and dominance of Nothofagus imply forest 

conditions and a relatively constant climate. 

Lake level remained higher than today until about 4,500 yr B.P. 

because the western outlet was not deeply entrenched through the 

morainal ridges. Throughout much of the time that the lake was in 
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existence, periodic stream flood waters contributed organic detritus to 

the basin of deposition and, on occasion, volcanic ash was deposited in 

the lake. During the Late Holocene a morainic dam was breached by the 

western outlet and partial, perhaps catastrophic, drainage of the lake 

occurred. Downcutting of the Rio Caunahue through the lacustrine 

sediments commenced, exposing the sequence, and the exposed lake bottom 

was colonized by Valdivian Rain Forest biota. Today, the Rio Caunahue 

exposure is rapidly being altered by continuing fluvial erosion and mass 

wasting. 



DISCUSSION OF THE LATE QUATERNARY CLIMATIC HISTORY OF TRE LAKE REGION 

Three distinct beetle fossil associations are present in full 

glacial to late Holocene sediments of low elevation sites in the Lake 

Region of southern Chile. Between 18,000 and 15,700 yrs B.P. beetle 

faunas living in the Central Valley consisted primarily of species 

adapted to open-ground, bog habitats. The open-ground forms were joined 

by arboreal species between about 15,000 to 14,000 years ago, forming 

transitional faunas of mixed habitat specialties. By 12,800 yr B.P. 

faunas were dominated by obligate woodland taxa, indicating that forest 

conditions were well established in the Central Valley by that time. 

Those conditions remained relatively stable until at least 4,500 yr 

B.P., the youngest assemblages evaluated for this study. 

According to Mercer {1976, 1984a) and Porter (1981), the last 

glacial maximum (Llanquihue II) in the southern Lake Region culminated 

about 20,000 to 19,000 years ago and was generally synchronous with last 

glacial maxima in North America, Europe, Australia, New Zealand, and 

Antarctica. Geological investigations have shown that by about 18,900 

yr B.P. the Llanquihue Lobe had receded from the position of its maximum 

extent (Porter, 1981; Mercer, 1984a) and by 16,000 yr B.P. had retreated 

far enough to open the eastern outlet of Lago Llanquihue (Mercer, 1976), 

This interval of contracted glaciers, lowered lake level, and presumably 

higher temperatures, was termed the Varas Interstade {Mercer, 1972a, 
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1976) and was suggested to be coeval with the Erie Interstade recognized 

by Morner and Dreimanis (1973) in eastern North America (Mercer, 1976). 

The low species diversity of the 18,000- to 15,700-year-old Puerto 

Octay and Puerto Varas Park beetle assemblages and dominance of 

open-ground taxa (e.g., Listroderes dentipennis) may suggest that the 

faunas existed in a stressed, possibly cold environment. No modern 

analog has been found for these assemblages but they are almost 

identical in species composition and diversity to assemblages from the 

Rupanco Site (24,000 yr B.P. and 28,490 yr B.P.) near Lago Rupanco in 

the Lake Region, and the Dalcahue Site (14,970 yr B.P.) on Isla Chiloe, 

which are believed to have accumulated during glacial conditions 

(Ashworth and Hoganson, unpublished). The interpretation that the 

18,000- to 15,700-year-old beetle assemblages reflect cold climatic 

conditions is supported by Heusser's (1974) pollen diagram from the 

18,000 to 16,000 yr B.P. interval at the Puerto Octay Site interpreted 

to indicate essentially treeless, probably tundra conditions and Reusser 

and others' (1981) palynological study of a core from Isla Chiloe. 

In the absence of a modern analog, the paleoclimatic significance 

of the Puerto Octay and Puerto Varas Park beetle assemblages is 

equivocal but strongly suggests that glacial retreat during the Varas 

Interstade was not caused by a significant climatic warming. Perhaps 

the temperature fluctuation that caused the glacier recession was such a 

minor or ephemeral event that it did not affect the beetle fauna (or 

flora) existing in the Central Valley. There is also the possibility 

that the glacial retreat was not caused by thermal increase. Decreased 

precipitation, especially during times of generally depressed 
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temperatur~s, may have caused glacier recession. In consideration of 

Reusser and others' (1981) estimate that mean annual precipitation was 

about 1000 mm less than today in the Lake Region during that time 

interval, the possibility of glacial withdrawal through starvation 

cannot be ruled out. 

Cessation of peat accumulation at numerous sites along the southern 

edge of Lago Llanquihue by rising lake level has been taken as evidence 

for a glacial advance that blocked the eastern outlet of the lake 

(Mercer, 1972a, 1976; Porter, 1981). Because the evidence is indirect, 

a controversy has developed as to how many readvances took place and 

when they occurred. Mercer (1972a) proposed one advance about 14,800 yr 

B.P. but he later (1976) retracted that date in favor of a 13,000 yr 

B.P. culmination. Porter (1981), however, postulated two readvances 

(Llanquihue III) culminating about 15,000 and 13,000 yr B.P. The only 

direct evidence for a final glacial incursion into the Lake Region comes 

from the island of Chiloe where Mercer (1984a) obtained dates of 14,355, 

14,970, and 15,600 yr B.P. on peats buried by till of an end moraine of 

the Reloncavi Lobe. From this evidence Mercer (1984a) inferred that 

there was only one late glacial advance that culminated between 15,000 

and 14,500 years ago. 

If the Llanquihue Lobe was acting in concert with the Reloncavi 

Lobe and the Llanquihue Lobe closed the eastern outlet of Lago 

Llanquihue, the advances must have begun shortly after 15,700 yr B.P., 

the age of the lowest peat horizon (Puerto Varas Park Site) drowned by 

the rising lake level. If so, the Llanquihue Lobe terminus must not 

have receded very far to the east of the outlet during the previous 
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retreat. The regional extent of the event is unknown but presumably the 

end moraines that dam lakes Ranco, Rupanco and Puyehue were formed at 

that time. Deglaciation proceeded rapidly after this last major 

readvance into the Lake Region and by 12,500 yr B.P. the glaciers had 

withdrawn into the mountains (Mercer, 1976, 1982, 1984a). 

The final period of expanded glaciers lasted only a few hundred 

years because by about 15,000 yr B.P. climate had ameliorated 

sufficiently to permit migration of forest-dwelling beetles into the 

Central Valley as documented at the Puerto Varas Railroad Site. These 

transitional beetle assemblages of mixed environmental indicators mark 

the pivotal shift toward interglacial conditions in the Lake Region 

between about 15,000 and 14,000 years ago. Initiation of post-glacial 

warming at about that time is also indicated by the temperature curve, 

based on palynological data presented by Reusser and others (1981). In 

addition, radiocarbon dates obtained at the Rio Caunahue Site suggest 

that lacustrine deposition began after final deglaciation of the Lago 

Rauco basin, prior to 13,900 yr B.P. The recognition of a full glacial 

readvance and subsequent rapid warming is important because this change 

from glacial to interglacial conditions is generally synchronous with 

similar events recorded in other areas of the world. 

Glacial studies in New Zealand have shown that the last main 

Pleistocene glacial event, the Kumara-3 pulse of the Otira Glaciation, 

ended before 14,000 yr B.P. and was followed by rapid recession (Suggate 

and West, 1967; Zinderen Bakker, 1969; Suggate and Moar, 1970; Burrows 

and Gallatly, 1982; Chinn, 1982). Palynological studies indicated that 

warming, accompanied by postglacial spread of shrubland and forest, 
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began about 14,000 yr B,P, (Moar, 1973; Moar and McGlone, 1977; Wilson, 

1978), and by 12,000 yr B,P, a podocarp forest had expanded widely over 

much of New Zealand (McGlone and Topping, 1973). Stewart and Neall 

(1984) determined the accumulation rates of detrital quartz and biogenic 

carbonate and silica in a deep-sea core recovered east of southern North 

Island. The percentages of these sedimentary constituents, much higher 

during glacial than post-glacial times, showed a synchronous, rapid 

decline at about 14,700 yr B.P. A similar late glacial history is also 

documented in Australia and Tasmania. Glaciers had mostly disappeared 

by 14,500 yr B.P. from the Snowy Mountains in southeast Australia 

(Bowler and others, 1976). Glacial aridity, reflected by maximum eolian 

activity and lowered lake levels in Australia, ended about 14,500 yr 

B.P. (Bowler, 1978) and by 12,000 years ago the dunes were stabilized, 

The post-glacial warming trend in southern Tasmania began well before 

11,500 yr B,P. (Macphail, 1979) and the glaciers had begun to retreat 

about 14,000 years ago (Burrows, 1979). 

Marion Island south of Africa in the southwest Indian Ocean, 

ice-covered during the last glaciation, was mostly deglaciated by 14,000 

yr B.P. as a result of abrupt warming (Zinderen Bakker, 1969, 1973). 

A similar late-glacial sequence of climatic events has also been 

recognized in Europe. Although poorly dated, the last major readvance 

of the Scandinavian Ice Sheet to the position of the Pomeranian moraines 

in Germany occurred about 14,800 years ago (Mercer, 1972b, 1984a), 

Rapid recession of the Alps glaciers in Switzerland between 14,000 and 

13,000 yr B.P. was documented by Anderson (1981). 
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The chronology of glacial activity during the late glacial in North 

America is better known than in Europe because of the availability of 

more radiocarbon datable sequences. The last major readvance (Cary) of 

the Laurentide Ice Sheet south of the Great Lakes region culminated 

about 14,700 to 14,300 years ago and was followed by rapid recession 

(Dreimanis, 1977; Mayewski and others, 1981; Mickelson and others, 

1983). By 14,500 yr B.P. the ice had retreated into the basins of the 

Great Lakes (Mickelson and others, 1983). However, farther west, the 

Des Moines Lobe did not reach its late Wisconsinan maximum position in 

Iowa, Minnesota, and South Dakota until about 14,000 yr B.P. {Mayewski 

and others, 1981; Clayton and Moran, 1982; Mickelson and others, 1q83). 

Soon after 14,000 yr B.P. the Laurentide ice front was in full retreat 

throughout its southern margin--the beginning of the Cary-Port Huron 

interstade (Mayewski and others, 1981). Mayewski and others (1981) 

inferred that the recessional event after the short-lived Cary advance 

was initiated by rapid climatic amelioration. 

Paleontological records from areas south of the Laurentide ice 

front reflect the onset of the transition to interglacial conditions 

shortly after 15,000 yr B.P. As a result of his paleobotanical studies 

in Florida and Tennessee, Watts (1983) determined that the first 

response of trees to wanning climate in the southeast United States 

occurred about 15,000 yr B.P. In the Midwest, tundra flora present 

between 20,500 and 14,700 yr B.P. at Wolfcreek, Minnesota, was replaced 

by Picea earlier than 13,600 years ago (Birks, 1976). As the Laurentide 

Ice Sheet was receding in the Midwest about 14,000 years ago, a mixed 

forest of mostly deciduous taxa replaced the Picea forest (Webb and 
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others, 1983). Between 16,700 and 15,300 yr B.P. the arctic-subarctic 

beetle fauna living south of the Laurentide ice front was nearly totally 

exterminated as a result of climatic warming (Schwert and Ashworth, 

1984). 

Rapid deglaciation of moutainous and interm.ontane areas in western 

North America also occurred at about that time. Valley glaciers in the 

Colorado Front Range began to recede after the last Pinedale Glaciation 

advance between 14,600 and 13,000 years ago (Nelson and others, 1979; 

Madole, 1980). Deglaciation of many mountain valleys, according to 

Porter and others (1983), started well before 14,000 yr B.P. By about 

15,000 yr B.P. one of the largest glaciers in the southern Rocky 

Mountains, the San Juan icefield in southwestern Colorado, had 

disintegrated (Carrara and Mode, 1979; Carrara and others, 1984); and by 

13,680 years ago the South Park Range was largely ice-free (Carrara and 

others, 1984). Deglaciation of the Pinedale ice cap on the Yellowstone 

Plateau was mostly completed by about 14,000 yr B.P. (Pierce, 1979) and 

extensive deglaciation of west-central Montana occurred prior to 12,750 

years ago (Lemke and others, 1975). Termination of the Angel Lake 

Glaciation occurred before 13,000 yr B.P. in Lamoille Canyon, Ruby 

Mountains, Nevada (Wayne, 1984). 

The Fraser-Puget Lobe of the Cordilleran Ice Sheet attained its 

maximum late Pleistocene position between about 15,000 and 14,000 years 

ago in the Puget lowland of Washington during the Vashon Stade of the 

Fraser Glaciation (Mayewski and others, 1981; Hollin and Schilling, 

1981; Barnosky, 1981) and withdrew quickly during rapid climate warming. 
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Tundra-parkland vegetation was replaced by a mixed woodland of subalpine 

and lowland conifers at Davis Lake in the southern Puget Lowland as a 

result of this climate amelioration (Barnosky, 1981). In the Cascade 

Range of Washington, valleys south of the Cordilleran Ice Sheet were 

mostly deglaciated between 14,000 and about 12,500 years ago (Porter and 

others, 1983; Beget, 1984). Elk Valley in British Columbia was also ice 

free before 13,400 yr B.P. (Ferguson and Osborn, 1981). 

Rapid glacial retreat and ice disintegration, marking the shift to 

interglacial conditions, has been dated at about 13,500 yr B.P. in the 

north-central Alaskan Range (Ten Brink and Ritter, 1980) and at about 

14,000 yr B.P. in the St. Elias Mountains on the Alaskan-Yukon border 

(Denton, 1970). The onset of interglacial climatic warming has also 

been documented by pollen records from many areas of Alaska. Ager 

(1983) found that a full glacial herbaceous tundra flora was replaced by 

dwarf Betula about 14,500 to 14,300 years ago in the Squirrel Lake area 

in northern Alaska. Climatic warming just before 14,000 yr B.P. is 

indicated by the pollen spectrum from Hidden Lake on the Kenai Peninsula 

(Ager, 1983). In addition, Rymer and Sims (1982) noted a 

sedimentological break in a core from Hidden Lake at the same level as 

the change in the pollen record and suggested that the break marks the 

time of recession of the glacier from the Hidden Lake drainage basin. 

The glacial to interglacial change from herbaceous tundra plants to 

dwarf Betula, at about 14,000 yr B.P., has also been recognized in 

numerous cores from southwest AJ.aska (Ager, 1983). 

In the tropical areas of the world that have adequate radiocarbon 

dating control (northern South America, New Guinea and equatorial 
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Africa), glaciers reached their maximum late-glacial extent about 15,000 

to 14,000 years ago (Mercer, 1983; Clapperton, 1983). Glacial retreat 

began earlier than 13,000 yr B.P. in Venezuela (Schubert, 1974) and was 

mostly completed by 12,700 yr B.P. (Hollin and Schilling, 1981). 

Glaciers in Colombia (Gonzalez and others, 1966; Herd and Naeser, 1974) 

and Peru (Mercer, 1982, 1983) also began to distintegrate about that 

time. Deglaciation in the mountain valleys of New Guinea started 

shortly after 15,000 yr B.P. {Walker, 1978; Bowler ·and others, 1976). A 

pollen record from the Mt. Carstensz area of New Guinea was interpreted 

by Burrows (1979) to indicate the beginning of post-glacial warming by 

about 14,000 years ago. The youngest moraines in the Ruwenzori Range of 

Uganda, just north of the equator in the Lake Victoria area, were 

abandoned shortly after 14,700 yr B.P. (Livingstone, 1962). 

Deglaciation of mountainous areas in Ethiopia was completed by 11,500 

years ago (Hamilton, 1977; Gillespie and others, 1983), Pollen records 

from southern and eastern Africa reflect post-glacial warming beginning 

about 14,000 years ago (Coetzee, 1967; Zinderen Bakker and Coetzee, 

1972). The tropical and subtropical areas of Africa, almost totally 

arid during the late glacial maximum, were inundated by monsoonal rains 

during the climatic amelioration about 14,000 yr B.P. (Fairbridge, 

1983). 

Additional evidence for the initiation of post-glacial warming 

about 15,000 years ago is provided by deep-sea and ice-cap cores. Based 

mainly on foraminiferid productivity, Ruddiman and McIntyre (\981) 

measured meltwater influx into the North Atlantic and determined that 

between 16,300 and 13,000 years ago the Northern Hemisphere ice sheets 
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disintegrated rapidly. Slightly more than 50 percent of the ice 

disappeared during that time interval. Duplessy and others (1981) also 

estimated that the beginning of deglaciation in the North Atlantic 

occurred about 15,000 yr B.P., but Berger and others (1985) suggested 

that the event began abo.ut a millenium later. Hays (1978) reported that 

the relative abundance of the cold-indicating radiolarian, Cycladophora 

davisiana, in a core from the southern Indian Ocean, declined abruptly 

about 15,000 years ago and noted that many cores from the Subantarctic 

sector of the Indian Ocean showed similar trends. He also stated that a 

sharp reduction of sea-ice cover south of the oceanic Polar Front 

occurred about 14,000 yr B.P. The transition from low oxygen-isotope 

values, representing the last glacial maximum, to higher values, 

indicating change to post-glacial climatic conditions, occurred about 

15,000 to 14,000 years ago in the Dome C (Lorius and others, 1979) and 

the Byrd and Vostok ice cores (Burrows, 1979). Microparticle 

accumulation in the Greenland and Antarctic ice cores, presumably 

resulting from the high eolian activity during the late glacial maximum 

in many parts of the Southern Hemisphere, also declined abruptly about 

15,000 to 14,000 years ago (Bowler, 1978; Thompson and Mosley-Thompson, 

1981; Fairbridge, 1983). 

The concept that the last, major, globally synchronous, glacial­

interglacial transition occurred between about 15,000 to 14,000 years 

ago has been strengthened during the last decade or so by investigations 

of deep-sea cores and the recognition that many areas of western North 

America were deglaciated much earlier than previously thought. The 
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sparsity of information from the Southern Hemisphere, especially the 

temperate, glaciated areas of South America, has hindered recognition of 

the magnitude of the event. The final, unequivocal, major, climatically 

controlled excursion of glaciers into the Lake Region of Southern Chile 

about 15,000 yr B.P., documented by Mercer (1984a), and subsequent 

climatic amelioration implied by beetle fossils provide additional 

evidence to support the concept. It is interesting to note, however, 

that as early as 1972, Mercer (1972b) suggested that the last major 

world-wide warming occurred about that time and lobbied, to no avail, 

for placement of the Pleistocene-Holocene boundary at the onset of that 

warming trend rather than at 10,000 yr B.P. Recently, he reflected 

(Mercer, 1984a) that this last glacial-interglacial cycle is more 

suitable for comparison of the timing of climatic changes between the 

Northern and Southern Hemispheres because it was a much more sharply 

defined event, in both hemispheres, than the earlier late-glacial 

maximum when the Laurentide ice front oscillated over a rather long time 

interval between 21,000 to 14,000 years ago. 

The climatic amelioration that began about 15,000 years ago was 

uninterrupted through the late glacial interval; and by 12,800 yr B.P. 

forest habitats, although probably somewhat open, were well established 

in the Lake Region, as indicated by beetle assemblages from the Rio 

Caunahue Site. Climatic conditions similar to those of the lowland 

areas today were reached by that time and remained relatively stable 

until at least 4,500 years ago. Beetle species associations, virtually 

the same as those observed in the undisturbed Valdivian Rain Forest 
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today, were not, however, established until about 12,300 yr B.P.; this 

illustrates the role of succession in development of the Lake Region's 

beetle fauna. There is no indication of climatic deterioration that 

would have caused readvance of glaciers into the Central Valley about 

13,000 yr B.P., as proposed by Porter (1981), or an emphatic cold period 

coeval with the European Younger Dryas Stade, as advocated by Heusser 

(1974, 1984a,b). Results of the present study are consistent, however, 

with the chronology of glacier activity in the Lake Region determined by 

Mercer (1982, 1983, 1984a, 1984b). 

Perhaps the most controversial topic concerning the late-glacial 

climatic history of southern South America is whether or not a climatic 

deterioration equivalent to the European Younger Dryas Stade occurred in 

southern Chile. Reusser (1966a) initially proposed an event equivalent 

to the Younger Dryas in the Lake Region from the Alerce I pollen record 

recovered by coring a bog located northeast of Puerto Montt. The 

dominance of Nothofagus dombeyi-type pollen and presence of Podocarpus 

nubigenus and Pseudopanax laetiverens between 11,000 and 10,000 yr B.P. 

(Zone III) suggested to him that the post-glacial warming trend was 

interrupted by cooler and moister conditions during that time. He 

employed the European system of three late glacial and five post-glacial 

pollen zones and proposed that the European chronology was applicable in 

correlating the Chilean record with that of the northwestern United 

States, even though many of the Chilean zonal boundaries did not 

coincide with the tempor,al boundaries of the European zonation. He 

interpreted his data to lend support for harmonious climatic 
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fluctuations between the Northern and Southern Hemispheres during late 

glacial time. 

Reusser (1966b) again used European zonal terminology in presenting 

interpretations of additional pollen profiles from the Lago Llanquihue 

area and suggested that the spectra supported his argument for a Younger 

Dryas-equivalent event in the Lake Region. His interpretation was based 

on the occurrence, in the 11,000 to 10,000 yr B.P. interval, of the same 

plant taxa as those found in Zone III of the Alerce I core plus an 

influx of Fitzroya-type pollen. Based on that information he estimated 

that summer temperature was about 5°C lower than today and speculated 

that glaciers became stationary or even advanced during that time. He 

again proposed in-phase, hemispheric, climatic changes and stated that 

back to 16,000 yr B.P. temperature trends have been identical in 

equatorial latitudes as well as in higher latitudes of both hemispheres. 

Reusser (1974) interpreted a similar pollen association, from what 

he assumed to be the 11,000 to 10,000 yr B.P. interval at the Puerto 

Octay Site, to reflect a period of deteriorated climate coeval with the 

Younger Dryas. His assumption was based however, as was discussed 

earlier in the section concerning the Puerto Octay Site, on faulty 

biostratigraphic correlation with pollen diagrams from Alerce. 

Heusser's interpretation was therefore founded on a circular argument 

and_!': priori reasoning and illustrates the caution that Watts (1980) 

expressed in using pollen zones for correlation even in localized areas. 

Reusser did note that a Xounger Dryas-equivalent climatic deterioration 
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was not supported by any geological evidence of an ice advance. 

The high percentages of Podocarpus andinus pollen between 10,440 

and 10,000 yr B.P. at the Rucanancu Site (39°33'S) was the evidence that 

prompted Reusser (1984a, 1984b) to infer that climate during that period 

was 5-8°C colder and about 2,000 mm annually wetter than present in the 

site area, He cited the occurrence of that plant as definitive evidence 

for a Younger Dryas-equivalent climate deterioration in the northern 

part of the Lake Region. 

Thus, Heusser's argument for an event equivalent to the Younger 

Dryas in southern Chile is based on the dominance of Nothofagus 

dombeyi-type pollen and occurrence of Podocarpus nubigenus, Pseudopanax 

laetiverens and, at times, Fitzroya pollen, in samples from the 11,000 

to 10,000 yr B,P, interval from the southern Lake Region and Podocarpus 

andinus in a spectrum from the northern Lake Region, Birks (1981) 

reviewed the assumptions involved and limitations of this floristic or 

indicator-species palynological approach. He pointed out that the major 

limitation of the method is that it must be assumed that the 

distribution of a particular indicator-species is controlled by one or a 

few climatic variables. The autecology of the species must be precisely 

known, Heusser's argument calls for distribution of his indicator­

species to be controlled by temperature alone. It is suggested here 

that their distribution may be influenced more by edaphic, moisture and, 

in the case of Fitzroya, historical factors rather than temperature. 

Although, on numerous occasions, Reusser cited the dominance of 

Nothofagus dombeyi-type pollen as indicative of cool and humid climatic 
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conditions, seven of the ten species of Nothofagus found in the Chilean 

flora are grouped into that pollen category, and species cannot be 

differentiated on pollen alone (Reusser, 1966b, 1974), Species that 

generate!• dombevi-type pollen range from sea-level to timberline in 

the Lake Region and occur as far south as the southern tip of South 

America. In addition, Heusser has not been consistent in evaluating the 

significance of!• dombeyi-type pollen in his profiles. For example, he 

(1972a) interpreted!, dombeyi-type pollen at the Puerto Eden Site (Isla 

Wellington) to reflect decreased precipitation and decreased storminess 

because, as he pointed out, cooling and greater storm frequency are 

restrictive to!• dombeyi-type pollen. At that site, he suggested that 

occurrence of this pollen indicated enhanced edaphic conditions for 

forest development. 

The distributions of Podocarpus nubigenus, !'._. andinus and 

Pseudopanax laetiverens are probably also controlled more by edaphic and 

moisture conditions rather than temperature. Podocarpus nubigenus is 

characteristic of peaty paludified soils in moist climates (Reusser, 

1972a). !'._. andinu.~ is a low latitude species adapted to withstand 

summer drought conditions (Heusser, 1984b). According to (Munoz S., 

1980), Pseudopanax laetiverens thrives in many low-elevation, marshy 

areas in southern Chile today. As with N. dombeyi-type pollen, Reusser 

has been inconsistent in interpretation of the climatic significance of 

!'._. nubigenus. In section 2 on Isla Chiloe, a site older than 57,000 yr 

B.P., he interpreted the, peak of!'._. nubigenus, when herb percentages 

were lowest, to indicate an episode of maximum warmth {Reusser and 

Flint, 1977). 
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Of all the species Heusser used to imply thermal .decline equivalent 

to the Younger Dryas, the most puzzling is the influx of Fitzroya pollen 

in some diagrams. It is true, as Heusser (1974, 1981) noted, that today 

Fitzroya inhabits upper montane areas in the Lake Region. However, 

prior to European colonization, Fitzroya forests were extensive in the 

Central Valley (Reusser, 1974, 1981). The plant's absence in areas of 

low elevation today has resulted from logging. 

Heusser and Streeter (1980), using a multivariate approach, derived 

regression equations relating taxa from surface pollen samples to mean 

summer temperatures and annual precipitation based on estimates from 

meteorological records. They then applied the equations to the Alerce I 

fossil pollen spectrum and generated paleotemperature and 

paleoprecipitation curves back to 16,000 yr B.P. Their exercise showed 

a warming trend after about 16,000 yr B.P. Maximum summer temperatures, 

about 7°C warmer than at Alerce today, were reached about 11,300 yr B.P. 

A cold interval between 11,300 and 9,400 yr B.P. (peaking at about 

10,250 yr B,P,), at which time they estimated summer temperature to have 

been about 6°C lower than today's, interrupted the warming trend, 

According to their paleoprecipitation curve, although they noted that 

their estimate was unrealistically high, annual precipitation was 3,000 

mm more than today during the inferred cold interval. They concluded 

that the extremely wet and cold interval was equivalent to the Younger 

Dry as Stade. It should be noted that the 6 •c thermal decline postulated 

during the interval is greater than Heusser and others' (1981) estimate, 

using the saine multivariate technique on the pollen diagram from 
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Taiquem6 (Isla Chiloe), for the late glacial maximum (about 19,500 yr 

B.P.) in the Lake Region. A thermal decline of such magnitude, 

especially accompanied by a marked increase in precipitation, would 

surely have triggered a pronounced glacier readvance into the Central 

Valley. Ala noted earlier, glaciers were generally quiescent during that 

period. It is difficult to reconcile how such slight changes in the 

Alerce I pollen profile (minor relative percentage changes in Nothofagus 

dombeyi-type pollen, Podocarpus nubigenus, Myrtaceae, Tepualia, and 

Weinmannia) during the inferred cold interval (Heusser, 1966a) could 

produce the major changes observed in the paleotemperature and 

paleoprecipitation curves. 

As discussed by Birks (1981), the basic assumption of the 

multivariate or vegetational assemblage approach, that modern vegetation 

must be in equilibrium with climate and past vegetation must have been 

in equilibrium with past climate, has been invalidated by many 

paleobotanical studies. Tbe paleoclimate curves presented by Reusser 

and Streeter (1980), considered suspect because of the amplitude of 

changes in the curves compared to subtle changes in the pollen record, 

are even more questionable in light of Birks (1981) appraisal of the 

multivariate method. 

On numerous occasions Reusser has cited evidence from other areas 

in the Southern Hemisphere to support his argument for a Younger~­

equivalent climatic deterioration in southern Chile. Reusser (1974) and 

Reusser and Streeter (1980) noted that glaciers advanced on Mount 
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Carstensz, New Guinea at that time (Galloway and others, 1973; Bowler 

and others, 1976), However, Galloway and others (1973) concluded that 

the advances may have been confined to particular valleys and Bowler and 

others (1976) believed that they were caused by local snowfall events. 

Overall, Bowler and others (1976) determined that ice retreat in New 

Guinea began about 15,000 to 14,000 yr B.P. and proceeded rather 

steadily until about 10,000 yr B.P., at which time most mountains were 

ice-free. Galloway and others (1973) stated the fluctuations equivalent 

to the Younger Dryas are unknown in New Guinea; Bowler and others (1976) 

reflected that evidence for an Aller~d oscillation in New Guinea is 

absent from the record. 

Burrows (1975) and Burrows and Gellatly (1982) reported that 

glaciers were active in New Zealand during this critical time interval. 

Reusser and Streeter (1980) and Reusser (1984b) cited their results as 

corroborating evidence to support the argument for a Younger Dryas 

equivalent in the Southern Hemisphere. However, Burrow's (1975) 

estimate of the age of the Wildman moraines from Cameron Valley in the 

Arrowsmith Range, on which he made his interpretations, was based on 

extrapolation and not radiocarbon dates. Burrows and Gellatly's (1982) 

evidence for glacial advance between 14,000 and 9,000 yr B.P. was 

supported only by a minimum number of dates and on relative dating 

methods. Moreover, they suggested (1982) that more data are needed to 

establish a concise glacial chronology for that period, Suggate and 

West (1967) concluded that no correlative of the European Younger Drvas 

moraines has been recognized in New Zealand; glaciers are not known to 
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have paused significantly in their recession after the last (about 

14,000 yr B.P.) advance. According to Chinn (Salinger, 1981), climatic 

conditions similar to those in New Zealand today were established by 

about 13,500 years ago. Furthermore, no Aller,d oscillation equivalent 

has been recognized in pollen diagrams from South Island (Moar, 1966, 

1971). 

A Younger Dryas-equivalent climatic deterioration is also absent 

from the southern Australian record (Bowler and others, 1976). In 

Tasmania, palynological studies have shown that a rapid rise in 

temperature, accompanied by forest development, occurred between about 

11,500 and 9,500 years ago (Macphail, 1979; Calhoun and others, 1982). 

Reusser and Streeter (1980) cited a study on South Georgia Island 

in the Subantarctic to support the Younger Drys~ hypothesis. On that 

island, a stillstand or readvance of valley glaciers occurred earlier 

than 9,000 yr B.P. (Clapperton and others, 1978). But the dates for the 

event are minimal ages and are only permissive to support the argument. 

Pollen diagrams from other Subantarctic islands (Marion and Tristan da 

Cunha), according to Burrows (1979), show no changes attributable to 

climatic flux in the last 12,000 years. Zinderen Bakker (1973) has 

shown that climate has been similar to today's on Marion Island for the 

past 11,000 to 12,000 years. 

Mercer and Palacios (1977) documented a late glacial readvance of 

the Quelccaya ice cap in Peru which Reusser and Streeter (1980) cited as 

additional evidence of a Younger Dryas event in South America. However, 

Mercer and Palacios (1977) emphasized that the minor advance of the ice 
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cap occurred 500 to 800 years earlier than the Younger Dryas Stade in 

Europe. The only other reports supporting a climatic deterioration 

equivalent to the Younger Dryas in South America are from Colombia. Van 

der Hammen and others (1981) reported glacier advances equivalent in age 

to Younger Dryas advances in Europe. Clapperton (1983) observed, 

however, that no absolute radiocarbon dates support the events and that 

their interpretations were based on a combination of minimal dates, 

extrapolation, and palynological interpretations. Van der Hammen and 

Vogel (1966) suggested that late-glacial climatic changes in Colombia 

were identical to those in Europe. But Mercer (1969, 1972a) noted an 

unresolved discrepancy in their radiocarbon chronology and, furthermore, 

because the palynological sites on which they based the interpretations 

were at high elevation, suggested that the changes in the pollen record 

may be a result of precipitation rather than temperature changes. Watts 

(1970) commented that drawing a direct comparison between the Colombian 

and European pollen records was unjustified. 

The Younger Dry as climatic deterioration, between 11,000 and 10,350 

yr B.P., was first recognized at its type locality in Demnark in 1901. 

Subsequently, the event has been documented throughout western Europe 

south of the Fennoscandian moraines (see Anderson, 1981, for a review). 

Evidence for an abrupt, severe but short-lived cooling comes not only 

from geological studies (Mercer, 1984a) but also from paleobotanical 

(Watts, 1980) and fossil beetle (Ashworth, 1972, 1973; Coope and 

Joachim, 1980) investigations. There appears to be little doubt that 

this sharp cooling, that brought full-glacial conditions .back to 
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northern Europe, was climatically caused. It was such an emphatic event 

that many authors believed (a few still do) that it was an 

astronomically-caused, global phenomenon. There is no reliable 

evidence, however, that glaciers advanced during that time anywhere 

except in the northern North Atlantic area (Mercer, 1984a). 

The Sumas Stade in the North American Pacific Northwest and the 

Valders advance of the Lake Michigan Lobe, initially thought to be 

coeval with the Younger Dryas, did not occur at the same time as the 

European event (Mercer, 1969, 1972b, 1976, 1984a). A stillstand of the 

portions of the Laurentide Ice Sheet (Algonquin Stade) in the Great 

Lakes region, also initially thought to be a Younger Dryas equivalent, 

may have been caused by ice dynamics rather than climatic reversal 

(Mayewski and others, 1981). There is no evidence for glacier advances 

equivalent to the Younger Dryas in the Rocky Mountains (Porter and 

others, 1983) and glaciers on the St. Elias Mountains of Alaska had 

shrunk to near their present margins by 11,300 yr B.P. (Denton, 1974), 

Pollen records from New England (Davis, 1983), southeastern United 

States (Watts, 1983), midwestern United States ('?ebb and others, 1983\, 

Pacific Northwest (Barnosky, 1981), southwestern United States (Martin 

and Mehringer, 1965) and the northern Rocky Mountains of the United 

States (Waddington and Wright, 1974; Baker, 1976, 1983; Mehringer and 

others, 1977) show no record of cooling equivalent to the Younger Dryas 

Stade. In view of the paleobotanical records from the United States, 

Watts (1983) concluded that a search for a Younger Dryas equivalent in 

North America is futile because no comparable event occurred in North 

America, 
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The evidence indicating that the Younger Dryas climatic 

deterioration was restricted to·northern Europe is pervasive. The 

localized influence of the event was illustrated by Watts (1980) who 

discovered that the cooling produced a marked change in the flora of 

northwestern Europe; but farther south in central Europe, it is weakly 

expressed in the paleobotanical record and was merely a delaying factor 

in a little-changed floral succession. There are few geological or 

paleobotanical data supporting a Younger Dryas equivalent in North 

America and reports of its occurrence in the Southern Hemisphere are 

equivocal. In southern Chile the fossil beetle record indicates 

relatively constant climatic conditions, similar to those of today, and 

there is no evidence for regional expansion of glaciers during that time 

(Mercer, 1976, 1983, 1984a, 1984b). In addition, no change in the 

interval has been noted in pollen diagrams from adjacent areas of 

Argentina (Markgraf and Bradbury, 1982; Markgraf, 1983, 1984). 

Furthermore, some of Heusser's pollen profiles from southern Chile, most 

notably those from Rio Caunahue (Reusser, 1981) and Tagua Tagua 

(Reusser, 1983) show very little or no change during the critical time 

period. 

As early as 1969, Mercer suggested that the Younger Dryas event was 

not a global setback in the post-glacial warming trend but a local event 

confined primarily to northwest Europe. He hypothesized that the 

cooling was caused by eruption, into the North Atlantic Ocean, of large 

amounts of ice produced by the break-up of ice shelves in the Arctic 

Ocean and not by cosmic factors. It was not until 1981 that Mercer's 
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hypothesis gained support from Ruddiman and McIntyre's (1981) paleo­

oceanographic studies in the North Atlantic. 

Perhaps it is appropriate to end this discussion on a defensive 

note. Reusser (1984a, 1984b), in defense of his argument for a Younger 

Dryas equivalent in southern Chile, questioned Hoganson and Ashworth's 

(1981, 1982a, 1982b) interpretation of the beetle record from the Rio 

Caunahue Site. He argued that the beetle assemblages would be difficult 

to interpret because they are virtually all allochthonous, having been 

transported to the site through fluvial activity. It is true that most 

of the fossils found in the Rio Caunahue sediments were washed into the 

basin by stream discharge, and it is conceivable that species from 

different climatic zones could be found in association in that type of 

situation. However, Ashworth and Hoganson (1984b) pointed out that if 

mixing occurred, then species adapted to higher elevation habitats would 

have been found together with those from low-elevation habitats. On the 

contrary, the Rio Caunahue assemblages were completely dominated by 

low-elevation taxa. Therefore the type of contamination proposed by 

Reusser can be ruled out. In addition, the late-glacial beetle 

assemblages from the Rio Caunahue Site are almost identical in species 

composition to a 13,000-year-old beetle assemblage from the Monte Verde 

paleoindian site near Puerto Montt that accumulated in a bog not 

influenced by periodic floodwater discharge (Ashworth and Hoganson, 

1984a). In actuality, the configuration of the depositional system at 

the Rio Caunahue Site was ideal because a wide spectrum of habitats, not 

only those in the basin but also those around the basin of deposition, 

.. 
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are represented by the fossil assemblages. The assemblages, therefore, 

seem to provide an intricate picture of the ecological and environmental 

conditions of the area. 

Reusser (1984a, 1984b) concluded that the Rio Caunahue beetle data, 

ind!cating relatively stable climatic conditions over a relatively long 

time span from about 12,800 to 4,500 yr B.P., are equivocal because 

cooling during the early Neoglacial (occurring after 6,850 yr B.P. and 

culminating about 4,500-4,000 yr B.P.) is not documented by the beetles. 

Although it was a minor event, it was the most extensive of the three 

Neoglacial advances recorded in southern South America (Mercer, 1976). 

Evidence for the first Neoglacial is from only a small number of 

glaciers, all located south of 46°S latitude (Mercer, 1982). Glaciers 

were apparently not active during that time in the Lake Region. 

However, Reusser (1974) proposed that summer temperatures were 2°C 

cooler than today's in the Lake Region between 6,500 and 4,500 years ago 

because of the occurrence of Fitzroya and Podocarpus in zone P-3 at the 

Alerce Site. Reusser and Streeter's (1980) paleoclimatic curves, based 

on the Alerce record, show only a slight thermal decline during the 

interval but a major increase in precipitation (about 3,000 mm annually 

more than today's average). The upper portion of the Alerce section is 

poorly dated and Reusser and Streeter's evidence for a correlation 

between their paleoclimate curves and neoglaciations is weak. 

Even if very minor neoglacial advances did occur in the Lake Region 

it is doubtful if the climate was sufficiently modified to be reflected 

by the Rio Caunahue beetle assemblages. Another possible explanation is 
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that the minor glacier advances were caused more by increased 

precipitation than thermal decline. Beetle faunas are generally less 

sensitive to precipitation changes (especially when the change is from 

rain-forest conditions to even wetter rain-forest conditions) than 

temperature changes. Heusser and Streeter's (1980) paleoclimatic curves 

support this possible explanation for the suggested neoglaciations. 

One of the most important topics of investigation, that has direct 

bearing on hypotheses concerning the mechanism and causes of climate 

change, is to differentiate between major climatic events that were 

definitely global phenomena and events of lower rank, that were emphatic 

but not world wide in extent. The European Younger Dryas Stade appears 

to be one of these lower-rank climatic events. Interpretations of 

geological and fossil beetle evidence from southern Chile support this 

contention but interpretations of palynological data do not. Additional 

studies in southern Chile, spanning the critical time interval, are 

therefore warranted perferably on sites that are conducive to both 

paleoentomolgoical and paleobotanical analyses. 



CONCLUSIONS 

(1) Cluster analysis was found to be a useful method to define 

collecting localities with similar beetle faunas and to establish an 

elevational zonation of the beetle fauna living today in the Lake Region 

of southern Chile. Four zones or bioassociations were defined by the 

method. The procedure also proved to be useful in comparing the 

similarity of fossil beetle assemblages to contemporary faunas, The 

Dice similarity coefficient was determined to be the best coefficient to 

use for these purposes. 

(2) Deposition of lacustrine sediments began at the Puerto Octay 

Site sometime between 19,500 and 18,170 yr B.P. after the spillway was 

abandoned when lake level fell as a result of glacier recession. After 

it became inactive, the spillway initially contained an oligotrophic 

pond with freshwater of low-alkalinity. Very few insects lived in it or 

in the vicinity. Severe climatic conditions may have been responsible 

for the sparsity of insects inhabiting the Puerto Octay area at that 

time, Between about 18,000 and 16,000 yr B.P. the spillway was occupied 

by a shallow, well-oxygenated, eutrophic, probably areally restricted 

lake containing abundant aquatic vascular plants, filamentous algae, and 

a relatively diverse aquatic insect fauna. Hygrophilous vegetation was 

present in some of the pond-marginal areas although open, muddy shores 

were also common, Essentially treeless, open-ground probably bog 
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habitats characterized the regional setting in the Puerto Octay area 

during that interval. No information is available from the Puerto Octay 

Site from 16,000 yr B.P. to 1,190 yr B.P. From about 1,190 yr B.P. to 

the present, the Puerto Octay Site has been a marsh and, until recent 

centuries, was surrounded by a fairly diverse flora. 

(3) Either an areally restricted, quiet, shallow pond or marsh 

existed at the Puerto Varas Park Site 15,700 years ago. Emergent 

vegetation grew in the marsh; and water-marginal areas were probably, at 

least in part, muddy, open and bare. Sparse, shrubby vegetation grew in 

the vicinity but mostly open-ground, probably treeless habitats existed 

around the site. 

(4) The beetle faunas living in the Central Valley between 18,000 

end 15,700 years ago, although no modern analog was observed to assist 

in the interpretation, probably existed in a stressed, cold environment. 

This was, however, a period of contracted glaciers (Veras Interstade). 

It is suggested that climate may have warmed sufficiently to permit 

invasion of beetles into the lowlands but was still severe enough to 

support only the most eurythermic species. 

(5) The marsh that existed at the Puerto Varas Railroad Site, 

between about 15,000 to 14,000 yr B.P., was in an area of open-ground 

with stands of trees, mostly Nothofagus, and shrubs in a parkland 

setting. 

(6) The final glacial advance into the Lake Region, that began 

about 15,700 yr B. P., las.ted for only a few centuries; because, by about 

15,000 yr B.P., climate had ameliorated sufficiently to permit migration 
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of forest-dwelling beetles into the Central Valley. These transitional 

beetle assemblages of mixed environmental indicators mark the pivotal 

shift toward interglacial conditions in the Lake Region. This change 

from glacial to interglacial conditions is generally synchronous with 

similar events recorded in other areas of the world and supports the 

concept that the last major, globally synchronous, glacial-interglacial 

transition occurred between.about 15,000 and 14,000 years ago. 

(7) Lacustrine deposition began at the Rio Caunahue Site before 

13,900 yr B.P. after the Ranco Lobe retreated from the Lago Ranco basin. 

Initially, few organisms existed in and around the lake. The glacier 

terminus was still at low elevation in the drowned valley east of the 

site and icebergs were calving into the lake. Colonization of the lake 

and its margin began about 13,900 years ago, and by 12,800 yr B.P. rain­

forest biota inhabited the area around the lake. By 12,300 yr B.P. a 

well-established forest, similar to the modern Valdivian Rain Forest, 

had developed in the Rio Caunahue area. Throughout much of the time 

that the lake was in existence, periodic stream flood waters 

contributed organic detritus to the basin of deposition and, on 

occasion, volcanic ash was deposited in the lake. Lake level remained 

higher than today until about 4,500 yr B.P.; and during the late 

Holocene, partial, perhaps catastrophic, drainage of the lake occurred. 

Downcutting of the Rio Caunahue through the lacustrine sediments 

commenced, exposing the sequence, and the dry lake bottom was colonized 

by Valdivian Rain Forest biota. 

(8) The climatic amelioration that began about 15,000 years ago 

continued uninterrupted through the late glacial interval. By 12,800 yr 
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B.P. climatic conditions similar to those in the Lake Region today were 

established. Those conditions remained relatively stable until at least 

4,500 years ago. 

(9) There is no indication from the fossil beetle assemblages of a 

climatic deterioration that would have caused readvance of glaciers into 

the Central Valley about 13,000 yr B.P. as proposed by Porter (1981). 

(10) The determination that the climate of southern Chile from 

11,000 yr B.P. to 10,000 yr B.P. was similar to that of today supports 

Mercer's interpretation, from geological evidence, that a Younger Dryas­

equivalent climatic deterioration did not take place in southern Chile 

and does not support Heusser's view, based on palynological studies, 

that the late glacial climate of southern Chile followed the same 

pattern as that of Europe. 



ILLUSTRATIONS OF REPRESENTATIVE BEETLE FOSSILS 

It is beyond the scope of this study to include a systematic 

treatment of the fossil beetle taxa. The following illustrations· 

(Plates 2 through 8) are included to show the variety of skeletal 

elements recoveredt exquisite preservation of the specimens, and some of 

the representative taxa on which paleoenvironmental and paleoclimatic 

interpretations were based. 
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Plate 2 

Scanning electron photomicrographs of representative fossil 
Coleoptera from the Puerto Varas Park and Rio Caunahue sites. 
Scale bars equal l nmi except where indicated. 

Figure l. Listroderes dentipennis Gmn., Curculionidae. 

la. Head. Puerto Varas Park Site. Sample PVl. 

lb. Thorax. Puerto Varas Park Site. Sample PVl. 

le. Articulated left and right elytra. Puerto Varas 
Park Site. Sample PVl. 

ld. Penis. Puerto Varas Park Site. Sample PVl. 

Figure 2. Pentarthrum castaneum (Blanch.), Curculionidae. 

2a. Head. Rio Caunahue Site. Sample 42. 

2b. Thorax. Rio Caunahue Site. Sample 42. 

2c. Left elytron. Rio Caunahue Site. Sample 42. 

2d. Right elytron. Rio Caunahue Site. Sample 42. 

Figure 3. Wittmerius longirostris Kusch,, Curculionidae. 

3a. Head. Rio Caunahue Site. Sample 42. 

3b, Thorax. Rio Caunahue Site. Sample 42. 

Jc, Left elytron. Rio Caunahue Site. Sample 42, 

3d. Right elytron. Rio Caunahue Site. Sample 42. 

Figure 4. Dasydema hirtella Blanch., Curculionidae. 

4a. Head. Rio Caunahue Site. Sample BS-A3. 

4b. Thorax. Rio Caunahue Site. Sample BS-A3. 

4c. Magnified view of a portion of the thorax showing 
preservation of scales. Rio Caunahue Site. 
Sample BS:.A3. 

4d, Articulated left and right elytra. Rio Caunahue 
Site. Sample 35. 
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Plate 3 

Scanning electron photomicrographs of representative fossil 
Coleoptera from the Rio Caunahue Site. Scale bars equal 1 nun. 

Figure 1. Nothoderodontus dentatus Lawr., Derodontidae. 

la. Articulated head and thorax. Rio Caunahue Site. 
Sample PDO. 

lb. Left elytron. Rio Caunahue Site. Sample 42. 

le. Right elytron. Rio Caunahue Site. Sample 42. 

Figure 2. Strictospilus darwini Brths., Coccinellidae. 

2a. Articulated head and thorax. Rio Caunahue Site. 
Sample PDl. 

2b. Left elytron. Rio Caunahue Site. Sample 42. 

2c. Right elytron. Rio Caunahue Site. Sample 42. 

Figure 3. Caenocara sp., Anobiidae. 

3a. Head, Rio Caunahue Site. Sample PDO. 

3b. Thorax. Rio Caunahue Site. Sample 42. 

3c. Left elytron. Rio Caunahue Site. Sample 42. 

3d. Right elytron. Rio Caunahue Site. Sample 42. 

Figure 4. Perilopsis flava Rttr., Nitidulidae. 

4a. Head. Rio Caunahue Site. Sample PDl. 

4b. Thorax. Rio Caunahue Site. Sample BS-A3. 

4c. Left elytron. Rio Caunahue Site. Sample BS-A3. 

4d. Right elytron. Rio Caunahue Site. Sample BS-A3. 
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Plate 4 

Scanning electron photomicrographs of representative fossil 
Coleoptera from the Puerto Octay. Puerto Varas Park and Rio 
Caunahue sites. Scale bars equal 1 mm. 

Figure 1. Abropus carnifex Fabr •• Carabidae, 

la. Head. Rio Caunahue Site. Sample BS-A3. 

lb. Thorax. Rio Caunahue Site, Sample BS-A3. 

le. Left elytron, Rio Caunahue Site. Sample BS-A3. 

ld. Right elytron, Rio Caunahue Site. Sample BS-A3. 

Figure 2. Hydrochus stolpi Gmn., Hydrophilidae. 

2a. Read. Rio Caunahue S:l.te. Sample PD6, 

2b. Thorax. Puerto Octay Site. Sample 13. 

2c. Left elytron. Puerto Varas Park Site. Sample PVl. 

2d. Right elytron. Puerto Varas Park Site. Sample PVl. 

Figure 3. cf. Diontolobus sp. 2, Trogositidae, 

3a. Head. Rio Caunahue Site. Sample Al. 

3b. Thorax. Rio Caunahue Site. Sample BS-A3. 

3c. Left elytron. Rio Caunahue Site. Sample BS-A3. 

3d. Right elytron. Rio Caunahue Site. Sample BS-A3. 

Figure 4. Barvopsis araucanus C. and s. ' St:aphylinidae. 

4a. Head. Rio Caunahue Site. Sample PD6. 

4b. Thorax. Rio Caunahue Site. Sample PD6. 

4c. Left elytron. Rio Caunahue Site. Sample Al. 

4d. Right elytron. Rio Caunahue Site. Sample BS-A3. 
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Plate 5 

Scanning electron photomicrographs of representative fossil 
Coleoptera from the Puerto Varas Park and Rio Caunahue sites. 
Scale bars equal 1 mm except where indicated. 

Figure 1. Monarthrum sp., Scolytidae. Left elytron. Rio 
Caunahue Site. Sample BS-A3. 

Figure 2. Agonum sp. 2, Carabidae. Thorax. Puerto Varas 
Park Site. Sample PVl. 

Figure 3. Hydor~ annectens S. and B., Elmidae. Right elytron. 
Rio Caunahue Site. Sample A2. 

Figure 4. Nominocerus marginicollis (Sol.), Staphylinidae. 

4a, Head. Rio Caunahue Site. Sample 36. 

4b. Thorax. Rio Caunahue Site. Sample PD3. 

4c. Left elytron. Rio Caunahue Site. Sample PD3, 

4d. Magnified view of a portion of the left elytron showing 
microsculpture and setal puncture. Rio Caunahue Site. 
Sample PD3. 

4e. Right elytron. Rio Caunahue Site. Sample 17. 
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Plate 6 

Scanning electron photomicrographs of representative fossil 
Coleoptera from the Rio Caunahue Site. Scale bars equal l mm 
except where indicated. 

Figure l. Phloeotribus cf. spinipennis Eggrs., Scolytidae. 
Left elytron. Rio Caunahue Site, Sample 42, 

Figure' Brachypterus n. sp., Nitidulidae. 

2a. Magnified view of the right elytron hinge area showing 
microsculpture and setae. Rio Caunahue Site. 
Sample PD3. 

2b. Right elytron. Rio Caunahue Site. S.ample PD3. 

Figure 3. Glypholoma pustuliferum Jean., Staphylinidae. 
Left elytron. Rio Caunahue Site, Sample BS-A3. 

Figure 4. Tartarisus signatipennis (Blanch.), Curculionidae, 

4a. Magnified view of the tibial distal end showing 
ornamentation and setae. Rio Caunahue Site. 
Sample BS-A3. 

4b. Articulated femur and tibia. Rio Caunahue Site, 
Sample BS-A3. 

Figure 5. 

Figure 6. 

Figure 7. 

Rhynchitomacer flavus Voss, Nemonychidae. Head, 
Rio Caunahue Site. Sample 36. 

Austrolimnius chiloensis (Champ.), Elmidae. Thorax. 
Rio Caunahue Site. Sample 41. 

Plectocephalon testaceum (Pie), Cantharidae, Head. 
Rio Caunahue Site. Sample A2, 
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Plate 7 

Scanning electron photomicrographs of representative fossil 
Coleoptera from the Puerto Varas Railroad and Rio Caunahue 
sites. Scale bars equal 1 mm except where indicated. 

Figure 1. Eunemadus chilensis Ptvn., Leiodidae. 

la. Right elytron. Rio Caunahue Site. Sample BS-A3. 

lb. Magnified view of the right elytral humeral area 
showing ornamentation. Rio Caunahue Site. 

Figure 2. 

Figure 3. 

Sample BS-A3. 

Rhopalomerus tenuirostris Blanch., Curculionidae. 
Left elytron. Rio Caunahue Site. Sample BS-A3. 

Neophonus bruchi Fauv., Staphylinidae. 

3a. Head. Rio Caunahue Site, B section. Sample B2. 

3b. Right elytron. Rio Caunahue Site, B section. 
Sample Bl. 

Figure 4. Leucotachinus luteonitens (F. and G.), Staphylinidae. 

4a. Thorax. Rio Caunahue Site. Sample 42. 

4b. Right elytron. Rio Caunahue Site. Sample 42. 

Figure 5. Epaetius carinulatus Kusch., Curculionidae. 

5a. Head. Rio Caunahue Site. Sample BS-A3. 

5b. Left elytron. Rio Caunahue Site, B section. 
Sample Bl. 

Figure 6. Anotvlus chilensis C. ands., Staphylinidae. 

6a, Thorax. Puerto.Varas Railroad Site. Sample 1. 

6b. Right elytron. Puerto Varas Railroad Site. 
Sample 1. 
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Plate 8 

Scanning electron photomicrographs of representative fossil 
Coleoptera from the Rio Caunahue Site. Scale bars equal 1 mm. 

Figure 1. Trechinotus striatulus Mateu and Neg., Carabidae. 

la. Thorax, Rio Caunahue Site. Sample Al. 

lb. Left elytron. Rio Caunahue Site. Sample BS-A3. 

Figure 2. Gipsyella patagonica Schw., Carabidae. 

2a. Head. Rio Caunahue Site. Sample 1. 

2b. Thorax. Rio Caunahue Site. Sample 1. 

Figure 3. Neoelmis n. sp., Elmidae • 

3a. Thorax. Rio Caunahue Site. Sample BS-A3. 

3b. Right elytron, Rio Caunahue Site. Sample Al. 

Figure 4. 

Figure 5. 

Figure 6. 

Lophocephala fasciolat~ Blanch,, Curculionidae. 
Left elytron, Rio Caunahue Site, Sample BS-A3. 

Cryptorhynchinae gen. indet. Curculionidae. 
Articulated left and right elytra. Rio Caunahue 
Site. Sample BS-A3. 

Minurus testaceous Wtrh., Attelabidae, Right 
elytron, Rio Caunahue Site. Sample Al. 
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and 
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ABSTRACT 

A diverse Coleoptera fauna of 462 species in 48 families was collected 
from 41 locations in the Parque Nacional de Puyehue and adjacent parts of 
the Lake Region of southern Chile. The sample locations ranged from rain 
forest habitats at sea-level to Andean tundra habitats at 1500 m msl. 
Cluster analysis of a Dice similarity coefficient matrix revealed a broad 
pattern of bioassociations within the large data base, Boundaries between 
the bioassociations correspond largely with those of the major vegetation 
zones implying that the distribution of the fauna is strongly influenced 
by the distribution of plants. Evidence from fossils indicates that the 
lowland beetle fauna during the interval 26,000 to 15,500 yr B,P. had a 
low diversity and was dominated by species of open-ground habitats. 
Forest species appeared in the lowlands between 15,000 and 14,000 yr B,P., 
at about the time of the last deglaciation. A fauna with similar 
characteristics to that of the Valdivian Rain Forest was not in place 
until about 13,000 yr B.P. No evidence was found to support claims made 
from palynological studies for a pronounced episode of colder and wetter 
climatic conditions in the interval from about 11,000 to 9,500 yr B.P. 
The patterns observed in the fauna began to develop about 13,000 yr B.P. 
and continued to do so until the present without any significant 
dis.ruptions. 
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INTRODUCTION 

The first beetles from southern Chile to arouse scientific curiosity 

were collected on voyages to the Pacific during the eighteenth and 

nineteenth centuries. Specimens were carried back to Europe and described 

by eminent systematists. Johann Fabricius, for example, described the 

Patagonian endemic carabid species Ceroglossus suturalis in 1775. Charles 

Darwin collected extensively from the forests on the Isla Chiloe and from 

the vicinity of Valdivia during 1833 and 1834. Although beetles were an 

early love of Darwin's, he did not describe any Chilean specimens 

preferring to leave the systematics to Waterhouse, Hope, and Babington. 

Many of the holotypes, such as that of the carabid Ceroglossus darwini 

described by Hope in 1838, are perfectly preserved in the British Museum. 

The French naturalist Claudio Gay, collected numerous beetles during 

his travels in Chile from 1828 to 1842. The specimens were described by 

Solier, Blanchard and Spinola and the descriptions with color plates were 

included in the 1849 and 1851 volumes of Gay's monumental treatise 

"Ristoria fisica y politica de Chile". The descriptions and illustrations 

in these volumes are still useful, and after more than a hundred years, 

the work remains the most comprehensive treatment of the Chilean 

Coleoptera fauna. Essentially no other information, neither 

distributional nor ecological, was included in the descriptions, and 

consequently the work is principally of systematic interest. 

Studies of the Lake Region biota increased dramatically following the 

German colonization in the middle part of the nineteenth century. 

Systematic study flowered under the direction of Rodolfo Philippi, a 
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German refugee, who followed Claudio Gay as the director of the M~seo 

Nacional in Santiago. Coleoptera collected by Philippi and his assistant 

the French entomologist Filiberto Germain, were sent to Europe to' be 

described by eminent systematists in France, Germany, and England!. In 

recent years collections made by the Chilean entomologist, Luis P~na, have 

added enormously to the knowledge of the Coleoptera fauna. The niumber of 

revisionary studies has grown exponentially with the result that :the 

systematics of some groups is well-known. At least 43 percent of the 

species that we identified in our study had been previously desc~ibed. 

The fauna is especially interesting because of the importance of 'the 

region to the biogeography of the Southern Hemisphere {Darlingtotj, 1965). 

Kuschel {1969) discussed the affinities and origins of the coleoJterous 

fauna and provided {1960) an excellent survey of the biology of 1he major 
' 

biomes. 

Through the study of fossils we are analyzing the effects t~at 

glaciation had on the fauna. In order to interpret the signific~nce of 

the fossil assemblages we needed to know more about the structur~ of the 

' fauna along an elevational gradient and hence the reason for this study. 

The most intensive fieldwork was carried out in the Parque Nacional de 

Puyehue but samples were also collected from locations in the no~thern 

part of the Isla Chiloe, from the southern and western shores of !Lago 
I 

Llanquihue in the Valle Longitudinal, and from Pucatrihue in the: 

Cordillera de la Costa {Figure Al). 
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Figure Al, Map of the southern Chilean (see insert) Lake Region showing 
location and elevation of beetle fauna collecting sites, location :of the 
Parque Nacional de Puyehue, extent of glacial ice during the last :glacial 
maximum and location of extant and inactive volcanoes. Extent of iglacial 
ice compiled from Mercer (1976), Heusser and Flint (1977), and Po~ter 
(1981). Information on volcanoes from Gasertano (1963). ' 
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THE PARQUE NACIONAL DE PUYEHUE 

Physiography and Geology 

The Parque Nacional de Puyehue (the park), between latitude$ 40°30'S 
I 

and 41°10'S, and longitudes 71°50'W and 72°30'W, lies on the western 

flanks of the Cordillera de los Andes (the Andes). In the eastern and 

central parts of the Andes, deformed sedimentary and metamorphicirocks are 
I 

intruded by granites of the Cretaceous and Tertiary-aged Andean ~atholith 

(Plafker and Savage, 1970; Herv, and others, 1974). Along the wtstern 

margin extant strata-volcanoes are aligned on a south-north axis 1 Volcan 
t 

Tronado (3554 m msl), an inactive volcano straddling the Chile-Afgentina 

border, is the highest peak in the region. According to Vergaraiand 

I 
Gonzalez-Ferran (1972), the existing central-type volcanism bega~ in the 

Plio-Pleistocene, following an early phase of fissure eruptions. The park 

is bordered to the west by the Valle Longitudinal (Central Valle~), a 90 

km-wide rift valley (Galli-Oliver, 1969; Scholl and others, 1970). The 

lakes, such as Llanquihue, Rupanco, Puyehue, and Ranco, that giv~ the 
I 
I 

region its name are located in the valley. They occupy glacialli-scoured 
I 

depressions, dammed on their western margins by a series of arcu1te 

moraines. To the west, the relatively low (950 m msl), unglacia9ed 

Cordillera de la Costa (Coastal Mountains), rise between the Cen~ral 

Valley and the Pacific Ocean. The topography results from the rJgion 

be:tng at the margin of the converging South American and Nazca Pljates. 

The Nazca Plate is being subducted at the Peru-Chile Trench, resu'lting in 

volcanism, seismicity, and uplift of continental, crust. 

i 
The park is located on Volcan Casablanca, a strata-volcano wjith an 
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elevation of 1990 m. There is no historical record of eruptio~ but the 
' 

unweathered tephra, and the youthful form of cinder cones, sue~ as Cerro 

Haique, imply activity within the past few centuries. Vo lean C~lbuco·, 30 

km to the south, has erupted several times in 
\ this centurv·, the, last • I 

eruption was in 1961 (Casertano, 1963; Simkin and others, 1981) f Darwin 

(1839) observed Volcan Osorno (Figure A6) erupting in 1834 and in 1835 

' while the HMS Beagle was at anchor off the Isla Chiloe; the las~ eruption 
i 

on Vn. Osorno was in 1869 (Simkin and othrs, 1981). Earthquakes, are also 
! 

relatively common in the Lake Region; Lomnitz (1970) estimated tjhat 

seismic events of M 8+ have a frequency of one per decade in th~ area. 
s 

The 1960 earthquake (ca. M
8 

8.5), was one of the greatest seismic events 
I 

ever recorded (Plafker and Savage, 1970). Veblen and Ashton (19f8) and 

Veblen and others (1980) discussed the importance of catastrophi~ events, 

mainly earthquake induced landslides and volcanic eruptions, to ~he 

maintenance of No~Jiofagus-dominated forests. The dynamic charac~er and 

lack of long term stability in these forests must influence the 

distribution of all other components of the biota, including the 

Coleoptera. 

Most of the collecting sites for our study were located in t~e broad 

gently sloping Antillanca Valley in which the Rio Chanleufu and o¢her 

streams flow westward to Lago Puyehue, where they are constructing a delta 

with the Rio Golgol. At the last glacial maximum, ice existed as :far west 

as Entre Lagos at the west end of Lago Puyehue. At that time glac~al ice 

presumably covered the entire region of the park. The glacial forln of the 

Antillanca Valley is still obvious even though it has been modifie~ by 

volcanic activity. 
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Glaciations that resulted in ice periodically advancing from the 
! 

I 
Andes into the Valle Longitudinal and the climatic changes thatlproduced 

them, have disrupted the biota on a larger scale than either te~tonism 

volcanism. A radiocarbon chronology of glacial events 

established during the last decade through the studies 

has beeni 
I 

of Mercet (1972, 

1976, 1982), Laugenie and Mercer (1973), Reusser and Flint (1971), and 

Porter (1981). The last glacial maximum, according to Mercer (,976), 
I 

14 · 
culminated about 19,200 yr B.P. ( C years !efore .!'._resent) and was 

I 

approximately synchronous with the glacial maxima of the Northe1n 

or 

Hemisphere. Porter (1981) estimated that the glacial complex atj that time 

was about 165 km wide in the southern Lake Region, and the ice ~s much as 
! 

800 to 1000 m thick in the Lago Llanquihue basin. To account f9r the ice 

volume, he calculated that snowline would have been 1000 m belo~ its 

present elevation of 1,900 to 2,250 m. 

The deglaciation that followed was interrupted by one (Mercer, 1976) 
I 

or perhaps two (Porter, 1981) significant readvances. The best ~vidence 

(Mercer, 1984) for the last glacial advance in the Lake Region is that it 

occurred between 15,000 and 14,500 yr B.P. Mercer (1976) believ~d that 

! 
the glaciers had retreated to their present positions high in the Andes by 

11,000 yr B,P. Neoglacial ice advances have not been documentedjfor the 

Lake Region, but based on evidence from further south (Mercer, 1~76, 

1982), several minor advances may have occurred. Small glaciers, at most 

a few km in length, presently occur in cirques and high valleys $t 

elevations of greater than 2000 m. Isolated peaks, such as the tolcanoes 

Osorno and Calbuco, are :l.ce-capped remnants of the once ext ens iv~ glacial 

cover .. 
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Climate 

The climatic data available for the park are summarized 

compilations by Munoz S, (1980) and Veblen and others (1977), 

frdm 
I 
I 

'I!he range 

of mean temperatures for the warmest (January) and coldest {Aug~st) months 
I 

. I 
at Central Pilmaiquen, near the western end of Lago Puyehue, is lfrom 15 •c 

to 6°C, and at Antillanca, near treeline on Volcan Casablanca, ills from 

ll°C to 3°C. Over the same gradient precipitation increases fr"F 1950 

mm/yr to 5420 mm/yr. The number of frost days/yr is less than 1b at the 

elevation of Lago Puyehue and about 150 at treeline. The numberj of days 

with snow cover also increases with elevation, from a few at elevations 

below 250 m, to about 180 at elevations above treeline. In 1977! snow did 

not melt from the large crater above Antillanca at 1250 m until ~he middle 
I 

of December. 
I 

The climate of the Lake Region is controlled by proximity tp the 

polar front and position next to the cold Peru current. The region is in 

the "roaring forties" and as a result receives frequent cyclonic, storms. 

Precipitation is heaviest in the fall and winter because of nortrward 

shifts in the position of the polar front (Miller, 1976). The 

ocean-facing slope of the Coastal Mountains receives about 4000 

precipitation whereas the lee side, and the Central Valley in th, rain 
I 

shadow receive about 2000 mm/yr (Almeyda and Saez, 1958). As th~ storms 

pass eastward, precipitation rises to o.ver 5000 mm/yr due to the I 

orographic influence of the Andes. 

Vegetation 

The vegetation of the Chilean Lake Region has been described by 
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Schmithusen (1956, 1960) and Oberdorfer (1960). Summaries of tieir 

studies together with earlier floristic works were included in ryeusser's 
I 

(1966) description of the vegetation, The following comments 01 the 

vegetation in the park are based on our own observations, the d~scriptions 

of Heusser (1974, 1981, see Figure A2 for 
I 
I 

position of vegetatioqal zones), 
I 

the floristic studies of Munoz S. (1980), and the ecological an~ community 

studies of Veblen and Ashton (1978) and Veblen and others (1977, 1979, 

1980). 

The native vegetation of the Central Valley and the foothi~ls of the 

Andes up to elevations of 500 m has been disrupted by man. Prior to 

European colonization in the mid-nineteenth century, the Central Valley 

was probably extensively forested (Heusser, 1974). Presently otjly tiny 
I 

remnants of the Valdivian Rain Forest survive at low elevations,! In the 

vicinity of Lago Puyehue, relatively undisturbed forest occurs~ the 

delta, and along the road east of Termas Puyehue, The vegetati"f of most 
I 

of the Central Valley and of the low foothills consists of meadors and 

forest remnants (Figure A3). The flora is a mixture of native apd 
I 

introduced species. European imports such as buttercups (Ranuncrlus), 
! 

plantains (Plantago), and dandelions (Taraxacum officinale), arej evident 

in every meadow, and blackberries (Rubus ulmifolius), gorze (Ulex 

europeaeus), and foxgloves (Digitalis purpurea) are common in hedgerows 

and woodland margins. 

The Valdivian Rain Forest (Figure A4) is present to about 8~0 m msl, 

In the park the forests above 500 mare relatively undisturbed e~cept for 

selective logging of the largest trees along the road to Antilla~ca, The 

wet temperate climate and the thick volcanic soils support a lus~ rain 
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Figure A3. The delta at the west end of Lago Puyehue (elev . 205 m above 
msl), Parque Nacional de Puyehue. Disturbed lowland forest habitats 
occupied by Bioassociation II. Volcan Puyehue is in the background . 

Figure A4. Laguna La Copa in the Parque Nacional de Puyehue (elev. 530 m 
above msl). Undisturbed Valdivian Rain Forest habitats occupied by 
Bioassociation III. 
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forest. The larger trees reach heights of 40 m and have trunk kliameters 

of 1.5-3 m. Within the area of Aguas Calientes, near the park 

headquarters, the forests are composed of 13 species of trees, ~nd 11 

species of shrubs. 

The dominant trees are the evergreen, broad-leafed species:Laurelia 
! 

philippiana, Nothofagus dombeyi, and Eucryphia cordifolia, and ~he confier 

Saxegothaea conspicua. The tree species Aetoxicum punctatum, Weinmannia 

trichosperma, Caldcluvia paniculata, Dasyphyllum diacanthoides,1Drimys 

winteri, and F.mbothrium coccineum are also common. Trunks are tovered in 

mosses, lichens, fungi, climbing plants with red flowers as Asteranthera, 

and Mitraria, and lianas of the genus Hydrangea. 

The undergrowth consists of trees and shrubs of Fuchsia magellanica, 

Buddleva globosa, Amomyrtus ~. Myrceugenella apiculata, Myrc~ugenia 

planipes, Berberis darwini, and Ribes magellanicum. Ferns, inc~uding the 

magnificant 
I 

ubi' uitous, 

und rgrowth. 

I 

Lophosoria quadripinnata with leaves 2 m in length, !and the 

almost impenetrable cane Chusquea quila also thrive :in the 

The cane and the large-leaved Gunnera chilensis are 

esp_cially common along rocky ravines and slopes where the vegetation has 

bee disturbed. Sunlight rarely penetrates the forest floor, wh~ch 

con ists of thick, wet accumulations of leaf litter and deadfalll timber. 

Abu dant invertebrates including numerous beetles, large 5-cm di~ter 
I 

sna ls, slugs, leeches, scorpions, large spiders, and earthworms\are 

pre ent in this habitat. 

The numerous small lakes in the park, such as Lago Espejo, 
I 

have a 
I 
I 

ric aquatic and emergent vegetation and species of sedges (Carex), reeds 

(Ju cus), and shrubs of Escallonia occur in water-marginal envirqnments. 
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Stunted tees of Nothofagus antarctica are present in some lake-marginal 

environem ts and in bogs that have formed from the infilling of lakes. 

Fore ts with a high diversity of tree species and abundance of 

shrubs, 1 anas, epiphytes, ferns, mosses, hepatics and lichens extend up 

to about 60 m msl hut between 650 m and 850 m, the composition changes. 

Heusser ( 974, 1981) referred to the middle montane forest as the "high 

montane", or "North Patagonian Rain Forest" {Figure A2). The dominant 

trees rem in the broad-leaved evergreens Nothofagus dombeyi and Laurelia 

in Januar, does not occur above 650 m. Nothofagus nitida appears at 

690 m and ,Nothofa s betuloides and Nothofagus pumilio, the dominant 

trees of montane forest, appear near 900 m. The understory is 

slopes. obvious visual difference is that the species of cane 

Chusquea c leu that replaces f.. quila does not form such impenetrable 

thickets. The red-and-yellow flowers of the shrub Desfontainea spinosa, 

and the pi k hell-shaped flowers of the vine Philesia magellanica are 

colorful a ditions to this forest. 

Them ed Nothofagus forest above 960 m, referred to by Reusser 

(1974) as he "subalpine" or the "Subantarctic Deciduous Forest" (Figure 

A2), is ve different from the middle montane forest. This forest, 

consisting of the deciduous Nothofagus pumilio, and the evergreen 

Nothofagus betuloides, is much less diverse and has a more uniform 

appearance than those lower down the slopes (Figure AS). Three are 

smaller wi heights rarely exceeding 15 m, and trunk diame~ers rarely 
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Figure AS. Rase of the rim of the large crater on Cerro Colorado above 
Antillanca (elev. 1200 m above msl), Parque Nacional de Puyehue. 
Subantarctic Deciduous Forest habitats occupied by Bioassociation IV. 

Figure A6 . View to the south from the rim of the large crater on Cerro 
Colorado (elev. 1350 m above msl), Parque Nacional de Puyehue. Andean 
tundra habitats occupied by Bioassociation V. The pointed peak to the 
left is Cerro Puntiagudo. The classical, snow-capped stratovolcano on 
the right is Volcan Osorno. 
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larger than 50 cm. The under tory is also less dense and more diverse 
! 

than that of fhe lower and mi dle montane forests. CoUnnon shrubs 
! 

include Embothrium coccineum, Berberis buxifolia, Drimys winteri var. 

andina, Ovidia andina and the ubiquitous cane Chusquea tenuiflor~. The 

cane is not present in the fo ests above 1000 m. In clearings, such as 
I 

the military ~irfield near Re ugio Antillanca, lycopods and the shrubs 

I 
Pernettya, Em*etrum, and Esca lonia are well-represented. Gunnera 

occurl on roe~ slides and in ocky ravines. This forest extends to 

eleva ions ra1ging from 1040- 200 m on south- and north-facing slopes, 

respe 
1

tively. ! Above 1050 m o ly stunted, snow damaged, and flagged 

trees lof !• 

kr"4olz, 
. 

pumilio are preset immediately downslope from the 
! 

'J1he narrdwly-restricted rummholz on the steep slo~es above Refugio 

Antill' nca co~sist:s of a 20 miide zone of low shrubs of Nothofagus 

antarctica andl Nothofagus 
i 

umilio. South and east of the crater, on 
' • i 

gentlef slopes!, the krummholz is up to 500 m-wide. Lycppods are common 
i 

in the' ground ~over, and the s rubs of the upper montane forests 

, Pern~ttya, and Mate us, are especially abundant together with 

' i clumps,of the tomposite Seneci 
I • 

Tle high Andean grassland (Figure A6) or Andean tundra referred to 

as the "alpineltundra". by lieus er {1974), consists of lower association 

of grasses, lQTf-lying shrubs, d abundant brightly colored flowering 
I 

herbs., The shrubs include, Ma tenus, Embothrium, and Eq,petrum and the 

ericacious spe4ies Gaultheria nd Pernettya. Fell fields with 

discon~inuous ~atches of mosse, lichens, lycopods and individual plants 

of the (herbs o~ Senecio, Nassa via, and the legume Adesmia extend above 
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the shrub gr~sslands to elev tions of 1550 m. 

METHODS 

: i 
Beetl.es :were sampled du ing two field seasons that, when combined, 

span an entiJre austral summe Sites were revisited monthly so that 

adults eme:rging at different times would be included in the samples. 

The weather during the first field season, October-December, 1977, was 

unusually we~; during these ond, January-March 1979, it was 

exceptionally, dry, and fores fires (rare events in southern Chile) were 

widespread!in: the Central Va ley. 

Sampling\ stat:fons withi the park were established at approximately 

150 m elevational increments (Figure A2). Collections.were made from 

the delta on Lago Puyehue (el. 195 m msl) to the slopes above the large 

crater on Cerro Colorado (el. 1500 m msll. On the lower slopes 

collections were made from th valley of the Rio Chanleufu; and on the 
• 

upper slopes from the valley f the Rio Pescadora, and the valley of the 

Rio Pileufu. :All locations c llected from outside of the park were 

below 200 m trull; most were le s than 100 m (Figure Al). 

Select:fotj of specific co lecitng locations was dictated by ease of 

accessibility ;and diversity o microhabitats available for sampling, 

Locations wer~ sought that ex ibited a mosaic of arboreal, aquatic and 

open-ground h~bitats. Succes in locating sites varied between areas in 

the Lake Region. For example undisturbed forest habitats were rare in 

the Central, Va[lley because of deforestation; open-grounl'! areas were 

scarce in the rain forests of the park, and aquatic conuitions were 

seldom encount~red on the Ande n tundra. 
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All available microhabi ats were sampled at!each location using 

common collecting and trappi g methods (e.g •• aqtatic netting, sweeping, 

sifting leaf litter, beating 

unbaited and human dung-bait 

trapping was attempted on nu 

the nocturnal fauna was most 

droppings, carcasses, and bu 

i 

bark peeling, log Ind rock turning, 

d, pitfall traps an, fence traps). Light 

erous occasions wit{ little success, and 

i 

y obtained by "head\amping". Animal 

rows were inspected where available. 
I 

Detet1ninations of pinne and labeled spec1m4ns were made by 

reference to keys and descri tions in the litera1~re, and by direct 

comparison to previously col cted and identifiedl specimens in the 

collections of the Smithsonia Institution, the Crnadian National 

Collection, and the British M' seum. Specimens no~ located in the 

collections of these museums ere sent to systemahic experts for 

identification. Species whic 

which names could not be foun 

voucher specimens (e.g., 

have either not 

are represented 

betn described, or for 

in the collection by 

The collection is maintained n the NDSU Fossil B,etle Laboratory. 

All species, with the ex eption of those obviously foreign to a 

locality, were used in the qu ntitative analysis. I For example, the 

aviate, phytophagous scarab, Jrach sternus spectab:ilis, occurs on the 

I 
snow banks on the tundra but i carried there on t~ermals from the upper 

montane forest. Localities va 

diversity of microhabitats ava 

techniques employed at each lo 

in species number~ because of the 

lable for sampling,inumber of sampling 

ality, and amount of time spent at each 

locality. The latter two vari bles were kept as ctnstant as possible, 

therefore, disparity in faunal diversity between is largely a 



Table Al: Toxonomic 11st of the Coleoptero from the Parque Nacional de Puyehue and other locations in the southern Chilean La~e Region; 
the vegetational zonesi bioassociations, and habitats in which they occur, their abundance. and dates when collected. 
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TRACHVPACIHDAE OATES 

SyotoLoaoma brevia Sol., 1849 
Systoloiwma latet>itium Nf:g. 1 1973 

CARABlDAE 

T,•opopo i• 'biguttata So 1. , 1849 
Cevogloasuo ahilensiB (Esch .• 1829} 
Ceroglossus dan,,n,, (ttope, 1838) 
Ce.r'Ogloeoua apecioaue &erst., 1858 
c.,>oglo••u• •utu:raiia (Fabr .• 1775) 
Cerogloaau• valdivia,i (Hope, 1838) 
~nolob~B testaceue Sol .• 1849 

·•opopterua 
CaaceHius sp. 
Creol:.rlus e~dou:ci &uer., 1839 
Pm ""'I''"" ai:P,w.lifamii• (Sol •• ~184!!) 
Bembidion dubei So 1. , 1849 
Bembidiori sp. 3 
Bembidiori cf. poaticaUa Gmn. t 1906 
Bembidion setivont,e Neg., 1973 
Bembidion sp. 5 
&mbidion sp • 7 
Bembidion sp. 8 

* • 

• 

... 
• 

• 

•• 

••• 

H, 

••• 

* *** * 
*** * 

• 
••• •• 
** *** • 

••• • 
••• ••• 

• 
• 
•• ••• • 

• 
• ••• ••• 

••• 
• •• ... •• 
•• 
••• • 
••• • 

• 

* 
* • 

•• * 
• 
• 
• 
••• • 

23/Xl to 7 /Il 
14/XTI to 26/1 

8/XI I 
5/Xll to 9/11 
22/XI to 6/11 
6/1! to 7/11 
5/Xll to 18/1 
5/XI I to 1/l I 
8/Xll 

~~~~1a1x11 
14/XI I to 22/l 
10/XI to 23/1! 
8/Xll 
10/XI to 21/11 
15/XII to 1/11 
18/Xl to 13/11 
18/XI to 23/ll 
8/Xll to 23/ll 
18/XI to 21/11 
18/XI lo 13/ll 

Tl,T5,T8,T9,Al2 
Tl 

T9 
Tl.T4, T8,T9,V32 
Tl ,T8,T9,V26 
Tl 
Tl,T8,T9 
Tl,T4,T8, T9 
V32 
T9 
Tl,T8,T9,Ai2 
Tl,T4,T8,T9 
T9 
T 4 ,t5 ,'rl0,V4 ,V32 ,AIO ,Al2 
TS ,Al ,AIO,Al2 
T9,TIO,Al2 
T5,T9 
T9, TIO,Al2 
T5,T7,TIO,Al,A4,Al0,Al2 
T5,T7,T9,Tl0,A4,Al0,Al2 

"' l,,) 

'i' 



COLEOPffRA TAXA 

CARAB10A£ (continued) 

Bembidion Sp, 9 
Hembidion 11twginatum Sol. , 1849 
Bembidion sp. 11 
Bembidion sp. 12 
liembidion sp. 13 
Bembidion sp. 14 
Aemaladera centJ>Omaoulata Sol.• 1849 
Aemalodera dentimacu l.ata So 1. 1 1849 
Aemalvdera 1.imbata b:run,ieipennia. 

(Jean., 1962) 
Aemalodel'a Umbata fumoaa So I. 1 1849 
Aema lodera limbii.ta timbata Sol . , 1849 
Aemalodera testae@a (Jean .• 1962) 
2'reahiaibus nf..g:ripenn·~a GrOU? Sol.~ 1849 

ye na patagonioa "'"'11·" , 
Tr>eahinotua fl.avoainatwa Jean. i 1962 
Treahinotzw atriatulua Mateu and N~g. 1 

1972 
Trechin1 sp. I 
Bothynoproctu.a sp. 
Ti>ix•anmatue (Feroniornorpha) sp. 1 
T.rii'amnatua (fe1•orriomorpha) sp. 2 
Pavhypates ( Al•guloridiuo) Sp. 
Pat'hypates (sanuu stricto) sp. 
Metiws sp, l 
Metiua sp. 2 
Ab:ropua earnifeJ: Fabr~, l 775 

Agonwn sp. 2 
Agon11n cf. sp. 2 
_Agonun sp. 3 
Agonum sp. 4 
AZ1endia aliile,isis (Sol., 1849) 
Pelma.teUua {sens~ Lato) sp. l 
Pelmatelluu {8ent1u foto) sp, 2 
1-e lnute l lus ( aent1u l.ato) s p '. 3 
Bi•adyoellWJ (Conio1l4"llua) sp. 
B~adyeellue (lio1.1ellUB) sp. l 

AT 

V 

... 

••• 

• 

• 

2 

TL 

• 

IV 

Table Al (continued) 
3 4 5 6 

SOF NPRF VRF CV 
7 

IC 
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• 

* 
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• 
• 
• 
• 

•• 
• 
• ... 
• 

111 

• 
••• 
• 
• 

• 
• 
•• 
• 
• 
• 
• • 
• 
• 
•• 
••• ... 
•• 
• •• 
• •• •• ... 
• •• 

•• 
• 
••• 
•• 
• 
• 

II 

• •• 

• •• 

• 

• • 
•• 

• 
"** • 
• •• 
• 
• • 
•• 
• -• •• 
• 

•• • 
• 
• 

•• • 

8 

C 

11/11! 

• 

• 

• 
• 

DATES 

1/1 l 
18/XI to 21/11 
15/Xll 
8/Xll 
10/Xl to 19/1 
21/Xll to 24/l 
9/Xl I to 18/l 
5/XI I to 7 /11 
5/XI I to 23/II 

7/Xll to 22/1 
10/1 to 7/11 
8/Xll to 14/l l 
20/Xl to 21/11 
29/l to 21/11 
17 /XII 
29/1 

HABITATS 

AI 
Tl,T5,T9,T!O,V32,A8,Al2 
Tl 
Al2 
V4,Al2 
TB, TIO 
V9,V23,V32 
Tl ,VII ,V32 
V6,V8,VIO,Vl7,V26,V31,VJ2 
AIO 
T4,Vll,Vl2,V23,V32 
V6,Vll,V32 
V26,V29,V32 
Tl 
T7 ,TIO,A2 
NO 
T8 

5/XI! to 14/1 T7,T8 
20/Xl to 24/1 T4,T5,T9,T!O,Al2 
10/XI to 13/II Tl,T5,T9,TJO,VJ,A1,AIO,Al2 
18/Xl to 13/11 Tl,T4,T5,T9,T10,V3,V32 
18/Xl to 9/1 T4,T9,TIO,VJ 
19/Xl to 7/11 T!,T4,T5,T8,T9,TIO,V3,V32 
23/XI to 21/11 T4,T5,T9,Al,AIO,Al2 
23/Xl to 10/1 Tl,T4,T5,T9,V32,AI2 
8/XII to 29/l T4,TIO,V23,V24,V32,Al2 
10/XI to 2Z/XI l v3,Al2 
19/Xl to 18/1 Tl,T4,T8,T9,TIO,A12 
18/XI to 17/XII TIO,AJ2 

·-··lJi/lli-. _ ....... JL.~-···-·-··· .. . 
18/Xl to 13/11 T5,TIO,Ai,AIO,Al2 
18/Xl to 9/1 NO 
10/XI to 1/11 Tl,T4,T5,T9,Al,AIO 
5/XII to 1/11 Tl,18,T9 

• 
15/Xll to 1/11 T9,Al,AIO 
20/XI to 14/11 T8,VB,Al2 
13/Xll to 9/1 T9 

N 
w 
N 
I 



Table Al {continued) 

2 3 4 5 6 7 8 
COLEOPTERA TAXA AT TL SDF NPRF VRF CV IC C OATES HABITATS 

CARABIOAE (continued) V IV . 111 11 11 /111 

fjradytJel.lu~ (Lioael.luaJ sp. 2 * * 15/Xl 1 to 13/11 TS,TIO 
BPad!Joel.lua (Stenocel.lUB) sp. ••• *** 10/XI to 1/11 T4,T5,T9,TIO,AIO,A12 
cf. Bradyoel.lue (Stenooellua) sp. * * 5/XI I to 29/1 Tl ,TB,T9 
E'lagiotelwn -lrimmr Sol •• 1849 * * ** * 16/XI I to 26/1 T4,TIO,Vll,Vl2,V21,V2S 
Dr•omiua cf. atd.catulua Sol. , 1849 * IS/XII T4 
cf. Drorrrius sp. * 7 /11 V32 
M·i.modromiutJ Sp. 1 * IS/XI I T9 
Mimodr•om-luu sp. 2 * 1/11 to 23/11 Vl ,'\II I 

OITISClOAE 

Lc:waophilWJ ahilenaia Sharp, 1882 * * 22/.Xl to 16/1 A12 
Lacaornia copelatoidBa (Sharp. 1882) * 10/XI to 19/Xl Al2 
Lancetes 11rl;ctua (Wtrh., 1881) * 17/1 ND I 

N 
Lwwt1.tes nigriceps Erich., 1832 *** ** * 29/1 to 13/11 Al ,A4 ,AS ,A6 ,Al I w 
l,aricetea rotundicollia Bbgt., 1841 * 16/l NO w 

I 
Lanaetes variua(Fabr., 1775) ** * •• 18/XI to 1/11 A6,A12 
Rhantua nignatua (Fabr., 1775) * *** *** •• ** 18/XI to 13/11 T4,A3.A4,A6,AIO,A12 
Rhantuo validua Sharp, 1882 * * * * 22/Xl to 13/11 A3,A12 
Rhantu1:1 sp. * 5/Xll ND 
Liodea~ua delfini (Rgnb., 1899) ** * *** *** ••• • •• •• 18/XI to 9/11 TS,A3,A4,AS,A12 

HVDRAENI DAE 

Gy1rmoohthebiu.a clandBs tinu~ Perk, 1 1980 * 31/1 AS 
Gyumoahthebiua germaini ( Zzv. , 1908) * ** ** * 10/XI to 9/11 T4,A4,A12 
lry_mnoalithebiua to[!_ali {J. B-B. 1 1971} * * S/Xll to 9/11 A12 
Gymnoahthebiua undifferentiated •• *** *** *** 18/XI to 9/11 A4 ,AS ,Al2 

HVOROPHILlOAE 
- --- ----- -

H!Jdr•oohus a to lpi Gmn. , 1901 *** * 10/XI to 6/11 V3,A12 
llemioaua dejeani (Sol., 1849) *** 29/1 A4 
TropisternWJ 8etiger (Genn., 1824) ••• *** * ** 10/X I to 13/11 A6,Al2 
Paracymus cor•rinae Wldge. , 1969 * 10/1 to 16/1 A12 
Awac!JmuB granifomitJ Bruch., 1915 ** 18/XI to I/XII A12 
E.'nochr'U.8 fuluipea Sol., 1849 ** *** ... 10/X I to 9/11 TS,V3,AB,A12 
ErUJoh1•utJ vfoinWJ So 1. , 1849 • * ••• ••• ** 10/X I to 9/ 11 A12,A3 
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COLEOPTERA TAXA 

H!UROPIIIL!OAE {continued) 

Enoch.r•us sp. 
Cercyon sp. 
Ceruyon n. sp. 
Andotypu• ai,ro.xirthi Spang., 1979 

PTILI IOAE 

Ptillidae sp. 1 
Ptili1dae sp. 2 
Ptil1idae sp. 3 

LflOO!OAE 

D""ype I.ates Sp. I 
Daaypelatea sp. 2 
Eunemadka ohitenaia Ptvn .• 1914 
Nemadiopaia sµ. 
Nemadiolus sp. 
Colon sp. 
Hydrwbiotue biaolor Jean.~ 1962 
cf. Hydnobiotus sp. 
Hydnodiaet},,l8 cf. bM.mneua Jean •• 1962 
cf. Neohyd.n.obius sp. 
Hydnobiini n. gen. 
Leiodidae undifferentiated 

SCYOMI\EHI DAE 

I!'uo-onnue s p, 
__ cf._.ET,Mnnua sp...._ __ _ 

S1LPH10AE 

OxeLytrwn Uneatooo!le (Lpt., 1840) 

1 

AT 

V 

• 

Table Al (continued) 

2 3 4 5 6 7 8 

TL SOF NPRt VRF 

• 
• 

l V • 111 

•• •• 

• 
• 

• ••• 
• • 

• 

• 

• 
• 

... 
• 
•• 

• ... 
• 
• • 
• 
• 
• 
• 
• 

CV IC C 

II • 11/111 

• 

• 

• 
• ••• 

* 

OATES HABITATS 

13/11 A3 
22/Ul T4 
29/1 Tl 
7/Xll to 7/11 Tl 

5/X II to 1/11 Tl,T2,T8 
7/XII Tl 
5/Xll to 9/1 Tl 

7/Xll to 16/Xll TI 
16/Xll to 7 /1 I Tl 
10/Xl to 7/ll T!,T2,T8,T9,V32 
8/X!l Tl 
7/Xll to 17/1 Tl 
8/Xll Tl 
15/1 Tl 
17/1 T8 
15/1 Tl 
18/X 11 to 6/11 Tl,T8 
29/1 TS 
7/Xll to 15/l Tl 

29/1 T8 * • ··-··-·-5/Xl_l AS - -------- -~-----

* * 1/11 to 6/11 Tl,T4 

I 
N 
w .... 
I 



Table Al (continued) 

2 3 4 5 6 7 8 
COLEOPTERA TAXA AT TL SOF NPRF VRF CV IC C DATES HABITATS 
STAPH¥LJNI0AE V • JV . Ill • 11 ll/lll 

G'lypholcma tempo,,ale T. & N., 1978 • 18/Xll Tl Glypholoma puatutiferum Jedn. 1 1962 • 5/Xll Tl Omaliopsia sp. •• • l8/Xll to 21ix11 Tl cf. Onaliopaia Sp. • •• • 15/l to 22/l Tl Thinodt>omus s p. 1 • 8/Xl I to 17 /l T4,V14 Thinodt'Omus Sp. 2 • 6/11 V32 Thinod1'0f1TUS Sp. 3 ••• ••• • 18/Xl to 13/1! Tl,T4,T5,T!O,A9,AI0,Al2 cf. 1'hinodromus sp. 4 • 9/11 A9 ThinodNmu8 sp. 5 • 20/Xl TIO cf. ThinodPOmu8 sp. 6 • 29/1 AIO Anotytus euloicollia U. & H. 1868 • • • 17/l to l/11 Tl Anotytus aomptanatua (Er., 1840) • 22/Xll to 1/ll Tl Blediw, ahilenais C. & S., 1968 • 8/XJI Al2 JiUJdiW:J oUlviventl.•ie F. & G., 1861 • 8/Xll Al2 I StenU$ aaizi Pz., 1972 .. ** ... *** 10/Xl to 19/l Al2 ..., 
Stenus hoga:naoni Pz.~ 1983 • .. • •• *** • 10/Xl to 9/11 V3,V32,A8,AI2 '-' 

"' Lithoaharia oohruoeu3 Grav.,.1802 • 22/Xll Al2 I Stiliaus chilen.sia Sol., 1836 • 22/Xl l Al2 Stiliaus sp. • • 8/XH to 1/11 TJ,T9,V32,Al2 B::tf'yopaia araiwanu.s C, & S., 1968 • 21/Xll Tl Philonthua varian• (Pyk]., 1789) •• • • 9/l to l/11 Tl,13,AIO Phi 'kmthue (b'ndeiu.s) punctipenniB • ** ... •• • 18/Xl to 6/ll Tl,T5,T9,TIO,Al,A4,Al0,Al2 (Sol., 1849) 
Phitonthus sp. • 8/Xl J Tl CheiwaoZpua impreeoif:rona (Sol., 1849) • 7 /XI l NO CfutZi.o,wlpus sp. 1 • 16/Xll Tl Cheilocolpus sp. 2 • 22/! Vll,V21 Chi,d. l.ocolpua Sp. 3 • • 16/Xll to 22/l Tl CheiWaolpw_; sp. 4 • • 22/Xll to l /ll TB.Al2 Valdiviodea aahworthi Smet.~ 1980 • • •• 16/X II to 29/ l Tl ,18 -l,0nOOViitu.i·- rL-Lent-UFiit8)--Cf: -hB@i;l --

* .- - - ,\--- - .------ rnm w,mr-- --A12 
(~kw., 1944) 

Lonaovl-liua {Uentutius) sp. • • 19/Xl to 22/Xl I T5 ,V3,Al2 l-onaovil.ius (Loni...vviUuu) Sp, 1 * 25/1 T], Vl3 Eorwo·viliua norwoviliu.a) Sp. 2 • • 17/XIJ to 25/l Vl3,V25 leuootachin.ua luteonite:ns {f. & G •• • 6/11 V32 1861) 
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Table Al (continued) 
6 7 8 

COUOPTERA TAXA AT TL SDF NPRF VRF CV IC C DATES HABITATS 
STAPHYLINIDAE (continued) V • JV . Ill , II . ll/[ll 

NcmimOQerua ma:rginicollia (Sol .• 1849} • * 22/Xl to 22/Xll Al2 
AUucha.ro sp. • • 19/Xl to 15/Xl l Tl,A12 
Aleochar1nae sp. 1 • l/ll Al 
Aleocharinae sp. 2 • * 22/l to 29/! Tl 
Aleocharlnae sp. 3 * 7/11 Tl 
Aleocharinae sp. 4 * 8/Xll AS 
Aleochar1nae sp. 5 • 18/l T8 
Aleocharinae sp. 6 •• 22/Xll to I/II Tl 
Aleocharinae sp. 7 • l/11 Al ,AID 
Aleocharlnae sp. 8 • 1/ll TS 
Aleocharinae sp. 9 • 29/1 T8 
Ateoi:lfartrrae sp. to ----·--- ------·· - ·•··· ···*··· ~/JH! to 7/U n 
Aleocharinae sp. 11 • 8/XI l A8 
Aleocharlnae sp. 12 ••• •• • 16/XII to 25/1 Vl3,V21,V28,V32,A8 I 
Aleocharlnae sp. 13 • •• • 14/Xll to 7/!l Tl ..., 

u.> Aleocharlnae sp. 14 • 5/Xll Tl "" Aleocharinae Group l .. • •• ••• .. . • !8/Xl to 7 /11 Tl,T4,JIO,V3,Vl2,A8,Al2 I 
Aleocharinae Group 2 • • •• 5/Xl l to 13/11 V32 ,A8 
Aleocharlnae Group 3 • • • •• • 5/Xl I to 14/ll V6,V32,Al,A7,A8,Al2 
Aleocharinae Group 4 ••• *** • • • 8/XI l to 23/l I 18,V6,Vll,Vl3,V21,V23,V25, 

V28,V32,A8 

PSELAPHIDAl 

Oalminicvmw a.rouaanua Jean •• 1962 • 1/11 Tl 
Aohilli a sp. l • 22/Xll Al2 
Aohi:ellia sp. 2 • 24/1 no 
Ty:r>opaie adumbrat:a Httr. > 1885 • l6/Xll Tl 
1'yr-opaie delarnarei Jean .• 1962 • 6/1! T8 

.. 7);~ .. $.Jl, ·-· • 8/Xll T9 -----
LUCAN1DAE 

Chiaaognathia, fll'""tci Steph .• 1831 ••• • 8/Xll to 1/11 T9,Vl9,AIO 
Chiasognathu.s latnillei Sol., 1851 ••• • 7 /Xl I to 29/1 T9,Tl0,V3 
ScleNgnathu3 bac<>hwi Hope, 1845 •• • • 23/XI to 6/ ll Tl,T5,T7,V3,V32 
PyenosiphoPus aaelatuu Blanch., 1837 • ••• * • • • 22/XI to l 4/l r Tl,T4,TS,T7,T8,T9,V3,Vl2. 

V23,V32 



Table Al {continued) 
2 J 4 5 6 7 8 

COLEOPTERA TAXA AT TL SDF NPRF VRF CV IC C DATES HABJTATS 
LUCANlllAE (continued) V • IV . I !l • II ! 1/11 l 

PiJ<moaiphoPUs femoral is Gu~r., 1839 • • • • • 5/Xll to 7/11 TB,T9,VJ,V2I,V2J,V32 Pyanoaiphol'J,js cf.femoPalia Gu~r., 1839 • * * • 9/I to 14/l I Ti,T8,T9 
Pycm.01Jipho:rw1 Sp. 1 • 7 /I I T9 
Pyc:Msiphorus sp. 2 * 17 /Xll VJ 

SCAllABAEIDAE 

!Jiahotorrrius to1.>J.tl.ot1us (Esch., 1822) ** *** 5/Xl I to 29/I Tl 
Aphodius ft;.lviventl'is fnnr .• 1860 •• * 8/Xll to 16/Xl I TI Aphodiua gMnarius (L., 1767) * 18/Xl VJ Martinaaoate• a•per (Phil., 1859) • 6/II Ti,TS T"°" ahilensis Hld., 1872 * ** 17/I to 29/1 TI 

.. .T,«t:.U>nf!i tar.au .l!ld., lBJ;/.. . ·-·- * ** 15LXIL.to 29JI . TJ,J'! 
P:r-ickiW:J vwiolosUD Gmn. ~ 1897 * • • • 1/Xll to 29/1 TI,TB I Eolborhinum laeaicolle (Fnnr., 1856) • 15/XII T9 N 
AataenUd sp. •• • 18/XII to 25/l Tl,TlO 

..., 
"" Seriooidee sp. 1 • 18/Xll Tl,T9 I Seriaoidca sp. 2 • 25/Xll V32 Se1•fooidea sp. 3 ••• 7/Xll to 29/I Tl ,T8,T9,Tl0 S~Piooideu sp. 4 • • 14/XI! to 21/Xll T4,Al2 Seriooides sp. 5 ** 22/Xl I to 1/II T4,V32 Sariaoides sp. 6 .. 18/Xll to 24/1 no SeriaoideH sp. 7 • 19/XII to 21/Xll n .no 

Se.riooides ahlorost.i,ctus 81 anch, 1851 • .. 15/XII to 22/Xll Tl,T4 SePi(J()idea sp, 9 • IO/I V6 Ser{,ooidea sp. 10 • 8/X 11 to 15/X!! TS ,V32 Seriaoidea sp. 11 • 29/l T8 Seriaoidev sp. 12 * I/II T9 Seriaoidea cf. c:hlor•ot1tictus Blanch .• • IB/1 Tl 1851 
Sericoidea sp. 14 • 25/1 Ti ---~;IJlf'Woiden-vtNatn---so f-.-;-;-85T·-- - ----- - ~ .. .....__ ... _~ ·*-- ~-"- ~~24/Xl to 21/lt ~--tt,f9,VH ,V26,V32,Al2~ 
Seriooide~ sp. 15 • 9/1 to !/II T4 Oryotomorphu.a bim(.;at,i-latus UuBr. , 1830 •• • 8/Xll to 21/11 T4,T9,V3,VJ2,Al0 Braahysternus epeatalrllis Erich.y 1847 ••• • .. •• • 20/Xl to l/l l T4,V2l,V22,V25 
!iy'lamorpfta @legane Burm. 1 1844 • • 2/Xl to 2J/1I Tl0,Vll,V32,Al,A!O,All 
LiaynaJ vi Uoaua Sunn .• 1847 • 6/1[ T7 
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Table Al (continued) 
2 3 4 5 6 7 8 

COLEOPTERA TAXA AT TL SOF NPRF VRF CV lC C OATES HABITATS 

H£L00IDAE V • IV lll • II . 11/111 

cf. Mia:roaara sp. • • * ** * 5/Xll to 21/11 T4,TIO,V6,V!2,VI7,V32 A12 
Cyplwn Sp. 1 * 9/I V32 
Oyphon sp. 2 * 1/Il T4 
Cyphon sp. 3 • 27/1 V2l 
C!Jplum sp. 4 ** .. 5/Xll to 10/1 V6,Vl!,V!2,VI6,V23,V24,V32 
Prianaayplu:m Sp. • •• ** ••• ** * • 19/Xl to 21/l l T4,Vl2,Vl7,V24,V32,AB,Al2 
Helodidae sp. l • * ... * * 5/Xll to 13/l l V6,Vll,Vl7,V32,AS 
Helodidae sp. 2 * 5/Xll to 10/1 V6,V32 
Helodldae sp. 3 * * 24/Xl to 9/Xll V32 
Helodidae sp. 4 • * 9/l to 22/l Vll ,Vl7 
Helodidae sp. 5. • 8/X ll to 10/1 T4,Vl7,V23,Al 
He l od iilae ~1', " --*--- ---* ---···· ___ ,,,,, "5f*H t<t l4/*ll· .. \/lf;VJ!3,V32 
Helodidae sp. 7 •• * ••• •• ** * 19/Xl to 14/ll T4,V6,Vll,Vl4,Vl8,V21,V23, 

V3l,V32,Al,AS,Al2 I 

Helodidae sp. 8 * 8/Xll V23 N 
l,J 

"' 
CLAM61DAE I 

cf. Clambidae sp. * 18/1 V31 

PSEPHEN!OAE 

Tyc,h•p•eplumw, cf. f• ii:£ Wtrh. , 1876 • 20/Xl Al2 

HETER0CERI0A£ 

Heteroceridae sp. •• • 22/Xl to 9/ll Al2 

ELMIOAE 

Auotraiimniua ohi!oenai• (Chdl!lp., 1918) •• 9/ll A9 

Neoelmf..e n. sp. • • 9/ll to 13/11 A9 
Stuthewns sp. • • 18/1 to 9/11 A9 
Hydo:r-a W'ln@oterw S. & B. • 1981 • 20/Xl TIO 
Elmldae n. gen. • * •• 18/l to 13/11 A9 
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Tabla Al (continued) 
2 3 4 5 6 7 8 

COLEOPTERA TAXA AT n SOF NPRF VRF CV IC C OATES HABITATS 

ElATER!DAE V . !V . 111 II 11/l l l 

Campyl.ounW:J pyrotho~ Fnnr .• 1860 * 5/Xll T9 
Anaapaeia paraUela (Sol., 1851) * 10/1 to 23/ll VII ,V12 
Santiotua tuteipennis Guir. , 1838 * * 9/Xll to 21/Xll V25 
cf. Coemeaua sp. 1 • 21/Xll Tl cf. Coamesua sp. 2 • 21/Xll Tl 
A(rrfotec auatr•alis fnnr., 1883 • 17 /Xl l Tl ,V3 
Isa/mode• readi Cand., 1881 • 1/ll V32 
cf, Ct.eniaeJ>a sp. 1 * 9/Xll V23 
cf. Ct.iinieera Sp. 2 • 9/Xll V23 cf. Cteni,tera sp. 3 • 17/l V32 
De;ricxneaua impresaua {Sol.t 1849) • 22/Xl I T4 
-1Jei,,nee1,1H,fh 1- •• • *- ---5.µl! to WU--.. --l4,I9,VS.119,Vl.2.,Vll,¥26..,.v.32. __ 
Daromec,i...e sp. 2 • 17 /1 V32 
lJe1•QT,'U:MWJ Sp. 3 • 8/Xll to 17/1 V14,V23,V32 I 
Derome1Jua s p. 4 • 6/11 to 1/11 V32 N 

w Deromecus sp. 5 * 22/XII to 9/1 V 16, V32 "' Deromeeus sp. 6 • 23/Xl Al2 I 
Deromecua s p. 7 • 29/1 V32 
Deromecus s p. 8 • • 15/Xll to 17/1 V32,Al2 
Der>ome,;,,.w Sp. 9 • !5/XI l T4 
De!'Ol1teaUB sp. ll • • 24/XI to 1/11 T4,Vl7,V32 
De:romeaus sp. 12 * * • 16/XI 1 to 22/1 Vll,Vl2 
Def'brne1.,."'U8 Sp. 13 • 7/11 V32 
Deromeous sp. 14 • • 23/Xl ,o 9/1 T9 
DemrrwoU8 sp. 15 • 7/XII V23 
cf. Deromeau::1 Sp. I • 5/Xl l Vl8 
cf. Wrotrieaus sp. 2 • 25/1 V32 
Ga.11,t1ephol'ut1 aande~ei Fl eut. , l 9D7 * 6/Xl! T9 
RypoUthus mageHanicus {Blanch., 1851) ... • 7 /Xl 1 to 29/1 Tl ,TB,T9,TIO 
Medi:mia sp. 1 * 6/ll V32 
~donia sp. 2 • • 5/Xll to 14/ll T5,Vl2 
~;1ru1~t ttn:1 ttiit.intt1 {Gcmli., l87Bl • 1BlXH ta 29ll Il IlO 
Nega.lJ tl"i LtS s p, •• 15/Xll to 22/Xll TS, TIO 
Pomachili48 sp. • • 9/1 to 22/1 Vll,V17 

lAMl'YRlOAE 

Py1•aatoriema aUvrn,u>ginata Sol.~ 1649 •• 17/! Vl4,V32 



Table Al (cont1nued) 

1 2 3 4 5 6 7 8 
COLEOPTERA TAXA AT TL SDf NPRF VRF CV IC C DATES HABITATS 

LAMPYRIDAE (continued) 
V • IV . 111 • 11 • ll/ 111 

Pyraotonema: angua tata McD. > 1960 • 29/l V32 
PyPaotonenta latio:ri, McD. ~ 1960 * • ** 5/XJl to 20/Xll Tl ,V21,V23,V32 
Pyfflotonem:.t cf. Zatior McD., 1960 • • 22/1 to 25/1 V21,V32 
Pyvtretor11:?t/Ul nigri pemiia Group • • ••• • • •• •• • * 18/Xl to 14/11 Tl,T5,T9,Tl0,V3,V5,V9,VIO, 

So I., 1849 Vll,Vl2,Vll,Vl4,Vl8,Vl9,V20, 
V2l,V23,V25,V29,V32,A8,AJO 

PyX>aatonli/Jlff.1 r>hododera Sol .• 1849 * • 5/XI l to 22/l Vll ,A8 Pyr>actonema sp. 1 ... 5/XI I to 29/1 Vl0,V32,Al0 
Pyraatonema sp. 2 • 1/l! AIO 

CANTHARIDAE 

- Dy~ra.,·-at·tattoarrn~-uuer~-;-1838·- ·---·- ••• .-.. TB/XI to 23/li -V6,Vfi;Vl2 ,Vl4,Vl7 ,V26,V32 
Al ,AS I 

Oontetw., Sp. * • 1/XI I to 22/ l Vll ,V32 N ... Chauliognathw, variablia (Sol., 1849) * • •• . .. • • • • 19/XI to 21/ll V8,V12,V14,Vl7,V19,V2l,V23, 0 

V2S,V29,V32,Al,A8,Al2 I 
Hyponotum albaolnatwn (Pies 1926~ • •• • 10/1 to 9/ll V6,Vl2,V32 
Hyponotwn yran.dioolle (Pie~ 1928 • •• 9/1 to 23/ll Vll,Vl3,V16,Vl7,V26,V32,Al 
Hyponotwn kmue•i (Phil., 1861) • 11/1 V32 
flyporwtwn vt'.olaceipemie (Pie. 1928) •• 17 /Xll V25,AS 
Hyponotu.m sp. • 17/1 V32 
Miar>0n.otum nodicor>ne (Sol.t 1849) ••• • 14/Xll to 22/1 V7,Vll,V32 
Pleotooephalon teutaaeum (Pie, 1928) • • • 7 /Xll to 21/Xll T4,V32 
Cantharidae sp. 1 • 1/l l Al 

J\N081 I llA£ 

sp. • 24/XI V32 
Xyletom.;:t'UB sp. • 22/Xll V32 

Blf1'l"liod8e niarioolor (Pie, 1912) • 8/Xll Vl 
8yrrhode a Sp. • 8/Xll Vl 
l'aen:aoo:ra dt.ttao'Ulahs { P1 c ~ 1923) ** 7/11 to 23/11 Vl0,V26,V32 
Caena<..'l:U>a ri: i:Jl'a (Phil., 1864) • 9/ll to 23/11 Vil ,V32 
cf. Paehot•lu• sp. • 1/11 V23 
Str•iahtvptyo'hua cf, b:reviaollis • 1/11 Al2 

(Sol., 1849) 
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Table Al (continued) 
l 2 3 4 5 6 7 8 

COLEOPTERA TAXA AT TL SDF NPRF VRF CV IC C DATES HABITATS 

TROGOS !Tl DAE V . IV 111 • 11 ll/111 

Calitye sp. • 22/Xll T4 
CLER I DAE 

Natatia i,rq-iressa (Spln., 1849) • 1/ll V32 bwlemidia sp. 1 • 7 /11 to 23/ll Vll ,V32 
gurymetopwn sp. 1 • 22/1 to 23/1 l VI1,V21 
EUl'ymewpum sp. 3 • 22/l VII 
r..'W'ymetopwn s p. 4 • 22/1 to 23/ l l VII 
h:W'ymtnqpwn sp. 5 * 9/1 VI7 
lt"'ul"y»Mltopum sp. -6 * 22/l Vil AUrymetopmu .s.p. __ .]_. __ ." • --- - -- -* - ·~I to-J!ttr Ylt,rn 
E'U.r1ym~topwr, sp. 9 • • 16/1 to 7 /ll VI 7 ,V32 

I E.'u:rymetopum sp. 10 • 8/Xl I Vl8 N Cler1dae sp. • * 22/1 to 7/ll V28,V32 "' I-' 

MEL YRIOAE I 

cf'. Asty lUtJ sp. • 15/X!I ND 
Da.aytea haemorrhoidaUa Sol .• 1849 * • • 6/Xll to 6/ll Vll,V32 
lJasytes marginipennis Sol., 1849 • 19/XI to 23/Xl V32,AI2 

NITIDUUDAE 

Brv:whyp tenw n. sp. * 6/Xll Vl2 
PcrP'il,opais [lava Rttr., 1873 * • 10/l to 23/ll V6,Vll ,V26,V32 
cf. Cyohrm11ua sp. •• 8/X[J to 22/Xll Tl ,T4 
Cryptm>ah.:~ sp. l • 14/1! V26 
Cryptar;;:iha sp. 2 • • • 9/l to 9/11 Vil ,V32 

PROTOCUCUJIDAE 

1:.'r•ianu:,daB fusc:ilaPsia Rttr, 1878 .. ... 7/Xll to 23/1 I V6,V9,Vll,VI7,V23,V26 h.'rofomode1J liylvaticus Phi 1., '1864 • *** • * * 23/XI to 14/11 V6,V8,V9,VI2,Vl6,Vl7,V26,V32 

CUCUJ!DAE 

Crypta,1rror>pJui relitenbaaJ:.:n,,.i Rttr. i 1876 .. 9/Xll to 18/1 V31,V32 



Tablo Al (continued) 
---- -- --

2 3 4 ; 6 7 8 
COLEOPTERA TAXA AT TL SOF NPRF VRF CV IC C OATES HABITATS 
CRYPTOPHAG!OAE V • JV ll 1 11 . 11/111 

fveudoahrodab dutur,atis Rttr., 1876 • • 19/XI to 6/ il V32,A12 Cryptophagidae sp. I • 15/XIJ to 1/11 T4, V32,AI Cryptophagidae sp. 2 • • * • 5/Xll to 17/1 Tl,Vl2,V17,V32 cf. Cryptophagidae sp. 2 • • 7 /XII to 22/1 V21 

PHALACR !DAE 

Pha lacrldae sp. •• 19/XI Al2 

COCCINELLIOAE 

Rh.izobiuo ahiiit2nus Mader, 1957 • 14/1! to 23/11 V26 Saymnus /P<.l!ua) sp. • * 10/! to 23/11 V!l ,V26 
l'l'ano:ryeaua ahiteneie (Crtch., 1874) • 7/Xll V23 I Ct>anoryBaw; gar,riaini Crtch .• 1874 • 8/Xll Vl2 N 
C.r-a:no:ryat1"8 sp. • 13/11 V32 '"" N Orynipua al,ilansiB (Crtch., 1874) • 14/11 V26 I Orynipua da:nJini Brths., 1924 • 18/1 VJ! cf. Di>ynt'.pus n. sp. l • 22/1 Vl I cf. Orynipus n. sp. 2 * • 10/1 to 9/11 V6,V32 
Epiopia connexa ahileneie Hfmn. 1 1972 * ••• *** •• 9/ll to 21/11 T9,Tl0,Vl4,V32,Al,A10 
Adalia anfl"lif•ru Huls., 1860 ** 19/Xl A8 
Adalia deficrierw Muls-, 1850 *** •• 8/Xll to 23/11 V3,V5,V6,Vll,Vl4,V23,V32 
Adalia kusoheli Hader, 1957 * 23/Xl to 14/11 V8,V9,V32 
Puy Uobo,v, piota ( Gmn. '" 1854) • * 24/Xl to 15/Xil V32 
Sal'apidus w.wtloalie Gord., 1977 * •• 5/Xl I to 9/11 V 18, V23, V32 
St:r>iotoopi ius da1'l.Jini. 8rths. ~ 192.4 * * * • l/11 to 18/11 V23,V31,V32,Al2 
Coccinelli11a n. sp. * 15/Xll to 23/!l V9,V32 

LATHR!O! !DAE 

Aridiua MteronvtUH (Belon, 1891) * * 8/XI I to 22/1 Vll,Vl7,V32,Al Lathridiidae Ip. I •• * • • 19/Xl to 14/l l V6,V23,V32,Al,A8,A!2 lathridildae sp. 2 • 7/11 V32 



Table Al (continued) 

2 3 4 5 6 7 8 
COlEOPTERA TAXA AT Tl SDF NPRF VRF CV IC C OATES HABITATS 
ffNEBR!ONlDAE V . IV 111 l [ . 11/111 

Thinobatia 1-u[ipea p,.i1ai Frde.. ] 960 ••• . 6/11 TS Nycter>inua abdorrrinalia Esch., 1829 ••• 6/11 T3,T5 FPaocie coetata Sol .• 1840 ... 6/ll T3, rs Oligoca:ra nitida Sol., 1851 • • 15/X! I to 6/11 T9,V32 cf. Adelium sp. • 15/Xll V32 Heliofugue imp1>eBdU8 Guer., 1830 • 16/Xl to 23/J l T9,V3 lJt.mtoayrtua dromedal"tua {Gu8r~. 1830) • • 5/Xll to 17 /I V32 
SALPlNGJOAE 

Cyal.odtl.rus rubricolli8 Sol., 1851 •• • 29/XI to 23/ll Vll ,V12 ,V32 Slilplngldae sp. • 16/XIJ ND 
OE DOMER JDAE 

I 
Macopaelaphus maouUaollia Sol.> 1849 • •• N • • • 19/Xl to 14/11 V5,V9,V!2,V26,V32,A8 " Platylyt:ra vittiaoitia F. & G., 1863 • 9/l V32 "' I Sieeneaanthal'ia ahiZenal.a (fnnr .• 1863) • 14/X!l to 16/Xll V7,Vl2 

HELANDRY l llAE 

Ol•aheaia sp. l •• • • •• 10/1 to 14/l 1 V6,V8,Vll,Vl7,V21,V32 Orahesia sp. 2 • 7 /11 Tl Me hndryidae sp. • 14/ll V26 
SCRAPTllOAE 

Sera pt! 1dae sp. • 15/Xl l to 22/Xll V5,V32 
MORDELUDAE 

MoPdella alboguttata Sol., 1851 • 7 /11 V32 Mordellidae sp. 1 • 29/1 VIO Mordellid•e sp. 2 • 1/ll T4 llordellldae sp. 3 •• • 15/Xl J to 9/ll V6,Vl2,V32 
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Table Al (cont1nued) 

2 3 4 5 6 7 8 
COLEOPTERA TAXA AT TL SDF NPRF VRF CV IC C DATES HABITATS 
MELOIDAE V IV . III I I 11/111 

Epicauta Sp. 
* 14/1 to 23/1 I T6,V32 

ANTHICIOAE 

Anthi cidae sp. *** * * * IB/XI to 14/11 V32,Al,A8,Al2 
PED ILIDAE 

Copobaenue cf. nobilis (F. & G., 1863) * 15/Xl I vs Lag1·ioj,da obaai.cl'alla F. & G., 1860 
** 6/11 T7,V32 

CERAMBYCIDAE 

Micr•oplophorua m::i.gelUlniaua Blanch., * IS/XII T4 1851 
I HoWptePua ehilemJia Blanch., 1851 * 15 /XI I V29 N ,,_ Sibylla eoemeterii Thomson, 1857 * 17/XII to 21/XII T4,V25,V29 ,,_ 

Chai•ierogua teataeeua (Blanch., 1851) * * 23/XI to 1/11 V23, V29, V32 I 
Callideriphua laetUB Blanch., 1851 * IS/XII to 1/11 T4,V29 Callideriphua Sp. * 15/XII V29 Hoplonotua npinifer Blanch., 1851 * * I0/1 to 9/11 TB,Vl6,V32 Aeonopterus criatatipennia Blanch., 1851 * 7/11 V32 Hebeatola cf. ear-ahariaa lamre., 1893 * I/XII V32 

CHRYSOMELI DAE 

Paehybl'aehia Sp. 1 * 1/11 V32 Paehybraehia sp. 2 * * 1/11 to 9/11 V32 cf. Cryptoeephalua Sp. * * * I/XII to 27 /I V21,V32 cf. Habrophopa Sp. * * * 22/XI to 7/11 V32 Strieh.oaa ebUPata Blanch .• 1851 *** *** * *** 22/XI to 14/11 T5,VS,V8,V32 Phaedon aemimarginatua argentinenaia ** 17/1 Vl4 Bech., I 950 
Phaedon semimaPginatus eyanopterus *** *** * 18/Xll to 6/1 I T5,Vl4,Vl9,V32,AI,A8,Al2 Guer., 1844 
cf. Gavirga Sp. ** 25/1 TI ,TB AuWnodera n. sp. * 7 /XI I TI 
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T•ble Al (continued) 

2 3 4 5 6 7 8 
COLEOPTERA TAXA AT TL SDF NPRF VRF CV IC C DATES HABITATS 
CHRYS0MEL10AE (continued) V • IV . I I I I I • I I/111 

Altiaa sp. 1 • ... • •• • •• 18/XI to 23/ll T9,Vl6,Vl8,Vl9,V32,AI,A3, 
A6,Al2 

AJlica Sp. 2 •• 22/l V21 Altlcinae sp. l • ·* 8/Xll to 17/Xll V14,A8 Altlclnoe sp. 2 • I5/Xll Tl,V23 Altlcinae sp. 3 • 7/Xll Vil AHicinae sp. 4 • 6/!l V32 Altldnoe sp. 5 • 25/I Tl 
cf. CrepidudEra sp. l • 7/Xll VI7 
cf. Cr•epidodera Sp. 2 * 7 /ll V32 
Aulacoohlamys sp. • 5/Xll to 10/I V6,V17 
l'haetoanema sp. * • • 1/11 to 14/1 I V6,V32 
Xiuichelina deaorata (Blanch., 1851) • • • 29/1 to 14/ll V32,A4 
Oyar•21wia s p . • 18/l T8 
P.aathyroaet'UB cf. uniaolor (Blanch., * 9/1 Vl/ I 

1851) "' ,,.. 
cf. Planagetea sp. . .. .. . ... •• 7/Xll to 18/1 T8,Vll,V12,Vl8,V2l,V22,V23. V, 

V24,V25,V28,V32 I 
cf. VaPiaoxa sp. . .. . .. 22/I to 27 /1 Tl,V2l,V32 

AlffHR18IDAE 

Ororiscus parvu!ua. (Blanch., 1851) • I4/11 V26 
cf. PlinthePia n. gen. sp. I • !4/11 V26 
cf. Plinth«ria n. gen. sp. 2 • 22/l V2l 
cf. Plintlwria n. gen. sp. 3 • 14/ll V26 
cf. PlinthePia n. gen. sp. 4 • 14/ll V26 

SCOLYT!DAE 

Gnathotrupea Sp. • 8/X I I to 15/~ II TI 

ATTELABIDAE 

f.'ugnamptop lesiuB vio laaeipennis • 5/Xll Vl8 
(F. & G., !860) 

MirUAPUB tesUweus Wtrh., 1842 • • 5/Xl l to 6/ll Vl8,V32 
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Table Al (continued) 

2 3 4 5 6 7 8 
COLEOPTERA TAXA AT TL S0f NPRF VRf CV IC C OATES HABITATS 

BELIOAE V • lV . 111 Jr • ll/111 

Tr>iohophthalmuB miitane:rue (Blanch .• • • • 19/Xl to 17 /I V6,Vl5.Vl2 
185!) 

CUR CULi ONlOAE 

Nototactua anguatiroatJ>ia Kusch •• 1952 •• 9/Xll to 14/Xl! V23,V24,V32 
l'olydra<e'"' notho(a¢ Kusch., 1950 .. •• 15/Xll to 9/1! V2l,Vl2 
Meyalometia spintfera Boh. 1 1842 • ••• •• 5/XII to 14/11 Tl,Vll,Vl2,Vl6,V26,V32 
Hybeeoleptope tub<irouUfeP (Boh., 1842) • • •• • 19/Xl to 14/1! Vll,V26,Vl2 
DaBydema hfrteUa Blanch., 1851 • ... •• ••• • •• • •• 5/Xll to 14/11 Tl,V2,V5,V6,V8,V9,Vl0,Vll, 

Vl3,Vl4,Vl6,Vl7,Vl8,V2l, 

Philippius aupOPbw> (Reed, 1872) 
V23,V25,V26,V28,V32 

• 15/1 Tl 
Paula.eniua cal-inicoHia (81anch., 1851) ••• • 7 /Xii to 29/1 Tl,T8,Tl0 
LiBtr>Oder>eB attguetia.itpa Blanch., 1851 • 18/XI Al2 I 

N I,iatrodereo attenuatUB Gmn., 1895 • 21/Xll to 11/1 Tl ~ 
Listrodariea dentipennia Gmn •• 1895 • •• 5/Xll to ll/1 T4,T9,Tl0,Al0 "' I Lil:ltroderes fulitlcor>nis &'nn.) 1895 • 18/Xll to 29/1 n.no 
LiJJt't'odel'ea sp. • • 15/Xll to 22/l T4,T9,V2 
Liatronotus tinsaticoZtiB (Blanch., • 22/Xl Al2 

1851) 
Listr>onotua minutuB {Blanch .• 1851) • • 10/Xl to I /l l Vl2,A12 
Pa;rergua a:cil!aris (f. & G., 1861) • 20/Xl to 23/l l T9,Al2 
Tariari-aua aignatipennis (Blanch., 1851) • 18/1 T8 
Notho fagino·i.des andiru.e Kusch. , 1952 • 18/Xll to 20/X!! V21 
Nothofagobius br-eviroatl'ia Kusch.~ 1952 • • • •• • 1/Xll to 14/ll V23,V25,V31,V32 
Neopsi!,whinw, oo z:taPie ( B hnch • , l 851) • 15/Xll V5 
NeopuiZ..Orhin.WJ variegatus (Blanch. i • 

1851) 
1/l l V32 

Neopsilor>hinUB sp. * 7 /11 to 14/11 V32 
Rhopalomerus tenui.rostl'is Blanch., 1851 * ••• • * • 23/Xl to 14/l l V5, V6, '18, Vl2, V26 ,V32 
OmoidB.a vaUdua ~usch .• 1952 • 9/XII V32 
l>noidea va.riabiiis (Phil., 1664) • I /XI l to lo/I Vll,Vl2 
tpaetiw:1 aarinulatua Kusch •• 1952 • 14/XI! V24 
cf. Aol"atoteue n. sp. • 14/ll vs 
Erlrrhininae n. gen. S?, I •• ••• 17/Xll to 25/l V2l,V25 
Erirrhininae n. gen. sp. 2 •• •• 5/Xll to 10/1 V2l,V26,V32 
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Table Al (continued) 

I 2 3 4 5 6 7 8 
COLEOPTERA TAXA AT TL SOF NPRF VRF CV re C llJ\TES HABlTArn 

CURCUL!ON!DAE (continued) 
V . lV Ill ! I . ll/ 111 

Erirrhininae gen. indet. • 24/1 T9 
Aegorhinue nodipem1io (Hope, 1836) • •• . .. * 24/ll to 23/ll Vll,Vl4,V21,V23,V25,V26, 

AegoPhinua oahpeolus Kusch •• 1951 
V29,V32 ••• *** • •• 5/XII to 14/ll Vl2,V23,V32 

Aegorhinuu oculatua Kusch., 1951 ... 7 /Xl I to 24/1 no 
Aegorhinl<IJ opaculus (Desbr., 1910) • • 8/Xl I to 13/ll Vl9,V32 
AegoJ>hinus 8..:Jl'lli Uei (Sol. • 1039) • • • • 19/Xl to 6/ll V5,VI2,V32 
Aegor>hinus viiulua bulbifeP Kusch., • •• • • • •• •• 22/Xl to 14/ll V23,V26,V32 

1951 
Saif'Picola ahilenaia (Blanch .• 1851) • 18/XI A8,Al2 
Apion sp. 1 ••• l/11 V32 
Apion Sp. 2 ... • 22/Xl to l/ll T4,V32,Al,A8 
Apion sp. 3 ••• • 22/l to 14/11 VH,V26 
Apion sp. 4 • •• • 22/Xl to 23/11 Vli,V23,V26,V32 
Apion sp. 5 •• • 22/1 to 14/ll V9,Vll ,V26 I 

N 
Apion Sp. 6 • • • • 17/Xll to 23/11 Vll ,V22,V26,V32 " Anthonomue ornatua Blanch •• 1851 • ... •• 5/Xll to 14/11 V8,V9,Vl2 

..., 
I 

i:ktrbePidiaola arenulata (Blanch., 1851) • ••• • •• 22/Xl to 14/11 V5,V8,V9,Vll,V17,V26,V29,V32 
Berbet•idioo la e.carata {Blanch .• 1851) * 16/Xll VJO 
Potylophua etegans Blanch., 1851 • 9/1 Vl7 
Peepho'la,; dentip•• {Blanch., 1851) •• • 24/Xl to I /II rs.vs .v20,v32 
Aaallea pictus Blanch •• 1851 • 7 /ll V32 
AcaJliia tPiatia Blanch.,. 1851 • 22/1 T9, 
A~aUea cf. val"iegatU1:1 Blanch., 1851 • 15/Xl I V23 
Ac..-atlea sp·. 1 • 15/Xli T4 
AoaUee Sp, 2 • 5/Xll V32 
Aaal Lea Sp. 3 • IB/1 Vil 
A(:aUes sp. 4 • 1 /1 I V32 
Rhyephen•• gou,..,aui (G. & S., 1839) • 1/Xl I V32 
Rhyeplienes maillei (G. & S., 1839) • • ... * • 24/Xl to 14/11 V3,V5,V21,V23,V26,V27,V29, 

V32 
Chileba.J•·i.a tenL1is (Blanch.• 1851) • I/XI I V32 
L'uac/l,wn lho1'acioue: ( Phi 1. , 1864) ••• 18/Xl to 24/Xl V32,Al2 
1'01•0Ud tuteolua Hust. , 1939 ••• ••• 24/Xl to 10/1 V32,A8,A!2 
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Table Al (continued) 

J, Systematic order of coleoptera infrafamilial taxa after Blackwelder (1944-1947). 

2. Familial order followed by U.S. Department of Agriculture and U.S. National Museum. 

3. Number of individuals: * = 1~5, ** • 6-10, *** = •10. 

4. Habitat types: Tl• dung-baited pitfall traps, T2 • dung-baited pitfall traps on open sand, T3 • 1n cattle dung, T4 light 
trapping, TS on open sand, T6 • on rocks, Tl• open sandy area (wet}, TB• unbaited pitfall traps, T9 • under log, 
TlO = under rock~ Vl = in fungus, V2 = in leaf litter, V3 * in.rotten wood, V4 = in wet leaves. V5 = on AB.:litOtioon punotatwn, 
V6 on Anvmyvtua tuma:. V7 = on Azal'a sp .• V8 = on Be~ber>is darwinii V9 = on Berbevie sp., VlO = on Chusquaa quila. 
Vll = on Chu1Jquea sp. 1 Vl2 = on Drimya win·te1·i, V13 = on cf. Ericaceae~ Vl4 = on Eaoalkmia virgata, Vl5 "" on fem, V16 = 
on Flotovia aaQ11tho·ides I Vl7 = on Ji'uc"rnlia mageltMica, Vl8 .. Ftichaia sp. 1 Vl9 • on Gunne1u ahi1..al18ie, V20 = on M;;.raeugeneila 
sp., V21 ""on Nothof'agua antarotiaal V22 = on Nothofagua betuloidas. V23 = on Nothofagus dC111.beyi, V24 ~ on Nothofagu.e nitida, 
V25 • on Nothofaf!UB pwniiio, V26 • on Nothofagu,, sp., V27 • on Nothofa.gu• sp. (deadfall), V28 • on Olndia mulina, V29 • on 
Peroea iingue, V30 • on Bibee sp., VJ!• on Sa.:r;egothaea sp., V32 • on vegetation, Al• in molst vegetation (pond marginal), 
A2 = 1n moss near waterfall, A3 • In shallow water, A4 • in shallow water (mud bottom), AS• in shallow water (no vegetation), 
A6 '= in· shallow water (weedy), A7 = on aquatic flowers. AS=- on emergent vegetation, A9 1111 shallow running water. AlO = shore­
line debris, All• small algal choked pools, A12 • trampling water marginal vegetation, ND• no habitat data. 

' N .... 
'f 
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function of the uneven distribution of microhabitats. 

The objective of the mathematical analysis was to discover patterns 

within the large data set. This was achieved (Figure A7) by cluster 

analysis of coefficients generated to express the similarity in species 

content between pairs of collecting localities. A Q-mode type of 

analysis was employed in which the various samples were compared to one 

another on the basis of the taxa they contain. In this study, these 

coefficients are merely quantitative descriptive numbers based on the 

presence or absence of taxa. Although a number of binary (presence­

absence) similarity coefficients have been used in bioassociational 

studies, the Dice coefficient, developed by Dice (1945) and advocated by 

Hall (1969), was used in this study because it emphasizes similarity. 

The Dice coefficient is expressed by the formula: 

Co= 

where C
0 

= Dice coefficient, C = number of taxa common to both samples; 

N
1 

= number of taxa present in the first sample, N2 = number of taxa 

present in the second sample. Coefficients were computer generated 

using a program written by R. D. LeFever, Geology Department, University 

of North Dakota. 

A computerized version (Davis, 1973) of the WPGMA clustering 

procedure was used to define relationships within the similarity 

coefficient matrix. This particular method of cluster analysis was 

chosen over others because of the disparity in the size of samples being 

compared. Similar samples were grouped (clustered) and clusters are 

displayed in a dendrogram (Figure A7). The dendrogram, in summarizing 
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C C c;i,. 
COO 0 0 0 

0 

EXPLANATION 

DICE COEFFICIENT 1%1 

• 51·60 

fl 41-50 

!! 31-40 

(!l 21·30 

11-20 

[ii] 1-10 

0 

LARS( •1.11tt1sER$ 6t.(IMC. ,()IACGfifAt r.lff cOW:C:TltlG ~oc,ur,Es 

'.iMAU. NIJll8tltS lff I I &Rf: UllA OOU.ECTED 

C 0 0 

Figure A7. Similarity matrix (trellis diagram) and binary tree 
(dendrogram) showing patterns of similarity among 41 beetle fauna 
collecting sites. See Figure Al and Figure A2 for location of sites. 
Similarity is measured by Dice's Coefficient. Large numbers along 
diagonal are collecting localities, small numbers in parentheses are 
taxa collected. The pattern of each square in the matrix indicates the 
degree of similarity, as depicted in the explanation. n,e dendrogram 
shows the order of clustering of the localities by WPGMA. Dark patterns 
proximal to the diagonal, as from localities 11 to 8, indicate groups of 
localities with many taxa in connoon. The major groups (clusters), 11-V, 
are indicated to the left of the matrix and are separated by patterns on 
the dendrogram. Dark patterns within the matrix (for example between 
localities of group II and III) indicate that some localities within the 
groups have a number of taxa in connnon. 
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the original matrix of similarity coefficients through the process of 

averaging, distorts the original relationships between the samples being 

compared. At times, the degree of similarity between two samples is 

masked. That problem was counteracted by showing similarities within 

the original matrix of similarity coefficients as a shaded trellis 

diagram (Figure A7). 

RESULTS 

A total of 462 species representing 48 families were collected from 

41 locations in the park and surrounding region. The vegetational zones 

and habitats from which the species were collected, their relative 

abundance, and the range of dates when collected are shown in Table Al. 

The number of taxa that occur in each zone and the percentage of taxa 

restricted to each zone are shown in Figure A8. 

The results of the cluster analysis of the similarity coefficients 

are shown in Figure A7. Major clusters are distinguished on the 

completed dendrogram by tight groupings of samples joined at high 

similarity levels. Four principal clusters of localities, separated by 

fsunal discontinuities, are evident in the dendrogram. The faunaly­

related groups of samples are also indicated by darkened regions in the 

trellis diagram. Each major group is defined by an elevationally 

restricted, Coleoptera bioassociation. 

Bioassociation II (BA II) consists of one major cluster, IIa, 

including the faunas from localities 11 through 8 and subcluster, IIb, 

including the faunas fron, localities Cl and P3 (Figures A2 and A7). All 

localities (Figure Al) in this group occur in lowland areas less than 
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Figure AB. Diversity diagram showing the number of taxa occurring in 
each bioassociation (II-V) and the number and percent of taxa restricted 
to each bioassociation. 
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200 m msl in elevation where natural habitats have been disturbed, 

Localities Cl and P3 are in lowland areas on Isla Chiloe and near 

coastal Pucatrihue, respectively. Although Cl and P3 are in separate 

and distinct geographic areas in the Lake Region, they are similar in 

faunal composition to the other disturbed lowland sites in cluster Tia 

as indicated in the dendrogram and are therefore included in BA II. 

Bioassociation III (BA III) consists of one major cluster, Illa, 

including the faunas from localities 18 through 30 and a subcluster, 

IIIb, includign the faunas from localities P2, C2 and Pl (Figures A2 

and A7). All localities in cluster Illa occur in natural rain forest 

habitats ranging in elevation from about 200 m to about 950 min the 

park (Figure A4). Localities Pl and P2 are in coastal mountain rain 

forest habitats near Pucatrihue and C2 is a rain forest locality on Isla 

Chiloe (Figure Al). The faunas of the localities in subcluster IIIb are 

included in BA III because they are similar to the faunas of localities 

in IIIa are indicated in the dendrogram even though they are from 

distinct geographic regions. 

The affinity of the disturbed lowland fauna, BA II, with the rain 

forest fauna of BA III is well defined by the clustering technique. 

Darker regions in the trellis diagram also illustrate that the faunas of 

some of the localities in BA II are similar in species composition to 

some localities in BA III. As noted earlier, all of the Lake Region was 

densely forested prior to European colonization. Today, in the lowland 

area, only scattered remnants of the rain forest remain between 

cultivated fi~lds and pastureland. BA II is therefore a mix of remnants 

of a once well established rain forest fauna and species that have 
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invaded since the forest clearance, This includes native species 

adapted to open habitats and also species such as Aphodius granarius L., 

a dung beetle, introduced from Europe with cattle, The major effect of 

man's intervention, however, has been to cause a marked reduction in the 

diversity of the lowland fauna. This is illustrated by both the 

relatively low number of species in, and the low percentage of species 

restricted to BA II as compared to BA III (Figure AB). 

BA III contains the greatest number and highest diversity of 

species of any of the bioassociations (Table Al, Figure AB); 52 percent 

of the 43 families and 64 percent of the 214 genera have the upper limit 

of their range within the zone, and 56 percent of the 375 species are 

restricted to the bioassociation. The faunal diversity reflects the 

diversity of the vegetation and habitats available within the Valdivian 

Rain Forest. 

The fauna associated with vegetation in BA III is the most 

abundant, For example, beetles of 19 families were collected on 

Nothofagus spp., of which weevils were the most abundant. Some common 

distinctive beetles restricted to BA III but which also may occur in the 

undisturbed forest fauna of BA II are the carabids, Ceroglossus darwini, 

the dytiscids Rhantus signatus, and Lancetes nigriceps, the hydrophilid 

Tropisternus setiger, the lucanids Chiasognathus granti, Sclerognathus 

baccus, and Pycnosiphorus caelatus, the scarabs Dichotomius torulosus 

and Sericoides viridis, the cantharid Dysmorphocerus dilaticornis, the 

protocucujids Ericmodes fuscitarsis, and_!;:_, sylvaticus, the coccinellids 

Eriopis connexa and Adalia deficiens, the chrysomelids Strichosa 

eburata, and Phaedon semimarginatus, and the weevils Megalometis 
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spinifer, Rhopalomerus tenuirostris, Aegorhinus ochreolus, and 

Berberidicola crenulatus. 

Many common species of BA III are also abundant at higher 

elevations. These include the trachypachid Svstolosoma brevis, the 

carabids Ceroglossus chilensis, .£, valdiviae, Creobius eydouxi, and 

!bropus carnifax, the dyticid Liodessus delfini, the hydrophilid 

Enochrus vicinus, the leiodid Eunemadus chilensis, lampyrids Pyractonema 

nigripennis Group, the cantharid Chauliognathus variablis, the oedomerid 

Mecopselaphus maculicollis, and the weevils Dasydema hirtella, 

Nothofagobius brevirostris, Aegorhinus nodipennis, !:_. vitulus, and 

Rhyphenes maillei. 

BA IV {Figures A2 and A7) includes the faunas from localities 42 

through 33 in the Subantarctic Deciduous Forest and the krummholz from 

about 950 m to about 1250 m msl. {Figure A5). The fauna is relatively 

depauperate compared to that of BA III. Most of the 93 species (Table 

Al) that comprise BA IV also occur at lower elevations; only 27 percent 

{Figure A8) are restricted to this group. Beetles restricted to, or 

most abundant in Bioassociation IV are the carahids Cascellius sp., and 

Plagitelum irinum, the scarab Brachysternus .'!l'ectabilis, and cantharids 

Hyponotum violaceipenne, and Micronotum nodicorne, and the chrysomelid 

cf. Varicoxa sp. 

BA V {Figures A2 and A7) includes the faunas of localities 21 

through 39, all in Andean tundra habitats (Figure A6) from about 1250 m 

to 1550 m msl. This bioassociation is characterized by low taxa 

diversity and a high percentage of species exclusive to the 

bioassociation {Table Al, Figure A8). Low taxa diversity is also 
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indicated by the nllil!bers of species to genera: 33 species in 31 genera. 

Occasionally individuals were especially abundant, For example 42 

specimens of 

area of about 

Bembidion sp. 14 were collected from beneath a rock with an 

2 1 m. Species restricted to BA V are the carabid 

Bembidion sp. 14, the pselaphid Achillia sp. 2, the scarabs Sericoides 

spp., the elaterids cf. Cosmesus spp. and Negastrius atomus, the 

staphylinid Cheilocopus impressifrons, an unidentified salpingid, and 

the weevils Listroderes fulvicornis, Aegorhinus oculatus, and an 

undetermined species of Erirrhininae. Species common on the tundra but 

which also occur occasionally at lower elevations include carabids of 

the Trechisibus nigripennis Group, the lucanid Chiasognathus latreillei, 

the scarab Astaenius sp., the elaterid Hypolithus magellanicus, and the 

weevils, Paulsenius carinicollis and Listroderes dentipennis. Some 

species collected on the tundra, particularly on snow banks, are 

believed to have been carried there on thermals. Among these are the 

carabids, Abropus carnifax, and Plagiotelum irinwn, the dytiscid Rhantus 

signatus, the scarab Brachysternus ~ectabilis, the helodid cf. 

Microcara sp. the cantharid Plectocephalon testaceum, and the 

coccinellid Eriopis connexa. 

The faunas of seven out of the total of 41 samples (sites in BA Ia, 

lb and locality LL), did not cluster where expected. All but one (site 

28), in BA Ia and Ib are from disturbed lowland habitats. Their faunal 

content, as shown in the dendrogram, is intermediate between BA II and 

III, reflecting partially. disturbed rain forest. The fauna, only 5 

species, of locality 28 at an elevation of 750 m msl in the park might 

have been expected to have clustered in Bioassociation III rather than 
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with the fauna of locality 7, a lowland disturbed site. The best reason 

for the unexpected result is simply the small sample size. Hazel (1970) 

cautioned against using samples of less than 10 species in the cluster 

method because in comparing samples with few species to samples with 

many species low similarity values are generated. This also explains 

why the fauna of locality LL, a lowland site near Lago Llanquihue 

containing only four species, clusters at a very low level. 

DISCUSSION 

The pattern of bioassociations developed because species were 

determined to have restricted elevational ranges. Undoubtedly further 

sampling will extend the range of some species and may permit the 

subdivision of BA III. More extensive investigations of the faunas from 

the geographically distinct regions of the Coastal Mountains, including 

the Isla Chiloe, are needed to determine if those faunas are really as 

similar to the faunas of the Central Valley and the Andes as inferred 

~rom the cluster analysis, 

The range of individual species is controlled by the complex 

interactions of large number of factors; such as competition for food 

and shelter, predation and disease, and microclimatic conditions that 

permit survival. How these factors act to limit the range of particular 

species is generally poorly understood, and especially so for the Lake 

Region Coleoptera. Undoubtedly the marked decrease in the diversity of 

Coleoptera that accompan_ies elevation (Figure A8) results directly from 

less favorable climatic conditions. The decrease in seasonal 

temperatures, the increase in number of days with snow cover and frost, 
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and the increase in the effects of wind that accompany progressively 

higher elevations in the park act in concert to produce conditions less 

favorable for insects. The most distinctive components of the fauna are 

those of the Valdivian and North Patagonian Rain Forests, BA III, and 

the Andean tundra, BA V; the former has 56 percent, and the latter 48 

percent of its species restricted to the zone (Figure AB). The fauna of 

the Subantarctic Deciduous Forest, BA IV, is much less distinct, 

representing an overlap between the lower forest fauna and the tundra. 

Congeneric species for the majority of the restricted tundra species 

occur in the forests, suggesting that the tundra fauna may have been 

derived by competitive exclusion from the forest faunas. An interesting 

example could involve the large lucanids of the genus Chiasognathus 

(Table Al). As might be expected for a large lucanid, the well-known, 

C. granti inhabits the dense forests of the Valdivian Rain Forest zone. 

By contrast, the similar-sized, .f_. latreillei, seems out of place on the 

tundra and in openings in the Subantarctic Deciduous Forest, where it 

apparently feeds on low ericaceous plants. 

In view of the large number of unknowns and inherent complexity the 

faunal clusters might be perceived to be accidental coincidences of the 

system. However, with a single exception, there is a Coleoptera 

bioassociation for each vegetation zone. The exception is that the 

Valdivian Rain Forest and the North Patagonian Rain Forest are 

represented by a single bioassociation (Figure A2). Notably the 

vegetation of these two zones is very similar and differs mostly in the 

species content and density of the undergrowth. The striking 

correlation between the bioassociational boundaries and those between 
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the principal vegetational zones (Figure A2) implies the existence of 

controlling factors and leads to the questions of why the zonation 

exists and when it develqped. 

Terbough (1971) tested three models in an attempt to explain the 

distribution limits of a large sample of birds in the Peruvian Andes. 

In his analysis, distribution limits could be determined by "factors in 

the physical or biologic~l environment that vary continuously and in 

parallel with the gradient", or by "competitive exclusion", or by 

"habitat discontinuities ,(ecotones)". He concluded that all play a role 

but that the most import8llt was an individualistic response to the 

changing character of the physical and biological factors along the 

gradient. The least important was the control exerted by the ecotone. 

In a general discussion of the distribution of plant species along 

gradients, Whittaker {1975) rejected the hypothesis that competing 

species exclude one another along sharp boundaries; and that evolution 

leads to the formation of distinct zones each with its own assemblage of 

species adapted to one another, and separated from others by sharp 

boundaries. He preferred the hypothesis that species act in an 

individualistic manner, and that competition does not produce sharp 

boundaries; and that evolution will not result in well-defined groups of 

species (zones). In a general way, our evidence supports the formation 

of groups, but that is not surprising considering that many of the 

beetles, especially the weevils, are host-plant specific (Table Al). To 

assume, however, that the distribution of beetles is simply controlled 

by the distribution of plants would be wrong. Beetles, as important 

pollinating agents, exert an equally strong influence on plant 



-260-

distribution, especially in Chilean rain forests. The coincidence of 

the boundaries between the Coleoptera bioassociations and the principal 

vegetational zones is perhaps better explained by reference to another 

of Whittaker's hypotheses (1975, p. 113) that while competition does not 

produce sharp boundaries, the evolution of species towards adaptation to 

one another will result in the appearance of groups of species with 

similar distributions. 

More information is available to answer the question of when the 

fauna began to assume its present configuration. During the last 

glacial maximum glaciers extended well out into the Central Valley 

(Figure Al), and the park was entirely covered by ice. The zonation 

could only have developed subsequent to deglaciation. Mercer (1976) 

provided evidence from the moraines at the western end of Lago Rupanco 

that the last glacial maximum occurred about 19,200 yr B.P. The 

position of the ice-front may have fluctuated but it was not until about 

14,000 yr B.P. (based on evidence from Lago Ranco), that deglaciation of 

the Andean valleys commenced (Mercer, 1984). Furthermore, according to 

Mercer (1976), glaciers had receded to their present diminuitive 

conditions by ll,000 yr B.P., and the western slopes of the Andes were 

open for colonization. 

Our studies of fossil beetles from the Lake Region provide direct 

evidence of the history of development of the fauna. Very little is 

known about the Coleoptera that existed prior to the last glacial 

maximum. Scant fossil evidence from peats older than 40,000 yr B.P. 

exposed in the sea cliffs southeast of Puerto Montt indicate the 

occurrence of a forest biota in lowland areas prior to the last phase of 
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glaciation. Based on fossil evidence from the western end of Lago 

Rupanco (Ashworth and Hoganson, unpub. ms.), the character of the 

lowland fauna at 26,000 yr B.P. was completely different than that of 

the earlier forest fauna. The fauna lacked forest species and, compared 

to both earlier and later faunas, was depauperate. We speculate that 

the reason for the depauperate fossil assemblages is that most forest 

species were unable to tolerate the colder clilllB.tic conditions 

associated with glaciation, and were regionally exterminated. Some 

support for this idea, other than the direct glacial evidence, comes 

from a palynologically-based interpretation by Heusser and others 

(1981), that mean sunnner temperatures were several degrees colder from 

about 40,000 to about 14,000 yr B.P. Depauperate faunas also existed at 

Puerto Octay from 18,000 to 16,000 yr B.P., and at Puerto Varas until 

about 15,500 yr B.P.(Hoganson, 1985). Further to the south, near Castro 

on the Isla Chiloe, faunas of this type existed until about 14,500 yr 

B.P. 

Between 15,000 and 14,000 yr B.P. forest-dwelling beetles began to 

appear in lowland sites around Puerto Varas (Hoganson, 1985) following 

climatic amelioration and the initiation of deglaciation. By about 

13,000 yr B.P., based on fossils from lacustrine sediments exposed along 

the Rio Caunahue east of Futrono (Figure Al), the fauna was much more 

diverse and dominated by species characteristic of BA !II, the Valdivian 

Rain Forest fauna (Hoganson and Ashworth, 1981; Ashworth and Hoganson, 

1984; Hoganson, 1985). tdditional fossil assemblages from the Rio 

Caunahue sections indicate that Valdivian Rain Forest-type faunas 

existed in the Rio Caunahue Valley from about 13,000 to 4,500 yr B.P. 
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No fossil assemblages younger than 4,500 yrs old have been examined from 

the Lake Region but there is no reason to suspect that they would 

represent anything other than a Valdivian Rain Forest fauna. 

From pollen studies, Reusser (1966, 1974, 1984) has proposed that a 

marked cooling between 11,000 and 9,500 yr B.P. ago interrupted the 

post-glacial climatic amelioration in the Lake Region. Heusser (1984) 

further interpreted this climatic reversal to be a South American 

equivalent of the emphatically cold Younger Dryas interlude of Europe. 

Reusser and Streeter (1980) used multivariate statistics to quantify the 

pollen data in order to produce paleoclimatic curves back to 16,000 yr 

B.P, The results of their analysis indicate that, during the reversal 

in the warming trend, mean January temperatures were as much as 6°C 

cooler than at present and that annual precipitation was more than twice 

the present amount of 2000 mm. Changes of this magnitude would have had 

a devastating effect on the beetle fauna • 

No change was observed in our examination of the fossil beetle 

assemblages from the Rio Caunahue sections that would support an 

extermination of the fauna between 11,000 and 9,500 yr B.P. Based on 

this evidence we questioned the existence of a marked climatic reversal 

in the warming trend of the Lake Region (Hoganson and Ashworth, 1982; 

Ashworth and Hoganson, 1984; Hoganson, 1985). Reusser (1981) also 

observed no significant changes in the pollen profile that he presented 

for this interval at the Rio Caunahue site, but he has never, to our 

knowledge, discussed how .the absence of change apparently contradicts 

his other paleoclimatic interpretations. In a recent palynological 

study from lacustrine sediments near Castro on the Isla de Chiloe, 
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Villagran (J 985) did not find .any evidence for a climatic deterioration 

during the interval in question. She interpreted the climate from about 

12,000 to 8,500 yr B.P. to be slightly warmer and wetter relative to 

that of the present. This supports our conclusion that after 13,000 yr 

B.P. no significant disruptions occurred in the development of the 

Coleoptera zonation which had begun to develop following deglaciation. 

The glacial climate of the Lake Region was too severe for survival 

of most species of the Valdivian Rain Forest biota. However, the 

rapidity with which the Coleoptera fauna, including a compliment of 

flightless species, became established in the Rio Caunahue valley 

between 14,000 to 13,000 yr B.P. after deglaciation implies that refugia 

were not too distant. The most probable locations for refugia were to 

the north in the Central Valley but the possibility that pockets of 

Valdivian Rain Forest biota survived in sheltered valleys in the 

Cordillera de la Costa cannot be ruled out. 

A final puzzle concerns the location of refugia for the Andean 

tundra beetle fauna, BA v. The 26,000 to 15,500 yr B.P. fossil 

assemblages representing the "glacial" fauna do not contain any species 

that are presently exclusive inhabitants of the Andean tundra. 

Furthermore, forest species and not tundra species, are in the oldest 

fossil-bearing sediments of the Rio Caunahue sections. This implies 

that the Andean tundra species did not simply disperse into the uplands 

from adjacent lowlands in which the fossil sites are located. Locations 

of full-glacial refugia for the tundra species are therefore unknown. 

One possibility is that these species never inhabited the lowlands but 

survived glaciation within the region in low-montane enclaves between 
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glacial lobes. Another possibility is that they survied in lowland 

refugia to the north and with deglaciation dispersed southward and to 

higher elevations through the foothils, never inhabiting the lowlands 

adjacent to the southern part of their present range, Yet another 

possibility, less likely for flightless species such as the weevil 

Aegorhinus oculatus, is that the tundra species survived in montane 

refugia to the north and have dispersed to their present position 

through the high montane areas above treeline. 
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APPENDIX B 

Sample Processing Procedures for Extraction of Insect Fossils 

Equipment and Supplies 

sample preparation report sheets pizza pan 

4 dram vials (patent lip) large aluminum pot 

Neoprene rubber vial stoppers (size 0) large wooden stirring stick 

card vial labels stainless steel spatula 

pencil teaspoon 

magic marker (permanent ink) dissecting forceps 

masking tape Pyrex petri dishes (60 x 15 mm) 

plastic tape Pyrex beakers (500 ml, 750 ml) 

Munsell soil color chart hand towels 

high capacity, general purpose balance rubber gloves 

lamp with magnifier 

binocular microscope 

electric hot plate 

2 wash bottles (500 ml) 

sink with rubber hose 

aluminum foil 

plastic wash basins 

2 SO-mesh (297 u) sieves) 

detergent (dish soap) 

Calgon solution 

95 percent ethanol 

kerosene 

distilled water 

Ziplock food bags 

dissecting needles 

illuminator 

Procedure 

1. Record the fossil site name and sample interval number on the sample 
preparation report sheet. 

2, Label two 50-mesh sieves, plastic washing basins, petri dishes and 
750-ml beakers with the sample number in pencil on masking tape. 
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3. Weigh the sample in its bag and record bulk weight on the report 
sheet. 

4. Place the sample into one of the labeled plastic wash basins. 

5. Describe the lithology of the sample and record it an the report 
sheet. Include notes on organic content (wood, peat, modern 
rootlets, insects, ostracods, mollusks, etc.), grain size and color 
(use the Munsell soil color chart). 

6. Remove samples for radiocarbon dating, pollen analysis, etc. and 
wrap them in aluminum foil or place them in Ziplock bags. If 
aluminum foil is used, label the sample in pencil on masking tape. 
If bags are used label the bag with a permanent ink marker. 

7. If the sample is c01npressed and peaty, split along bedding planes 
and inspect the surfaces under the lamp magnifier for visible or 
intact insect fossils. Remove fossils from the sediments with 
dissecting forceps or needles and place in a small petri dish 
containing ethanol. 

8. If the sample is exceedingly compressed, break along bedding planes 
into small pieces and place them in t~e large aluminum cooking pot. 
Cover the sample with Calgon solution and place on the electric 
hot plate. Boil gently to disaggregate the sample, stirring 
occasionally with the large wooden stirring stick to prevent the 
sample from sticking to the bottom of the pot. 

* Calgon solution formula: 
carbonate (Na2 C0

3
) in a 

l litre of solution. 

Place 38 g Calgon and 8 g sodium 
1-litre beaker with water to make 

Note: Organic fragments treated with the Calgon solution 
,.;:;-contaminated and should not be radiocarbon dated. 

9. Place the sample in a labeled, plastic wash basin and add water to 
cover the sample. Gently agitate and disaggregate the sample with 
your fingers. Abusive treatment will cause fossil breakage at this 
point, therefore, extreme caution must be employed. If the Calgon 
treatment was used additional washing is necessary to neutralize 
the solution. Pour the murky water and disaggregated sediment into 
a 50-mesh sieve. The finer sediment fraction will wash through 
with the coarser grain sediment, plant debris, mollusks, ostracods 
and insect fragments remaining in the sieve. Rinse the residue in 
the sieve with a gentle stream of water. 

10. Allow the residue t.o drain in the sieve, weigh it while it is still 
in the sieve and subtract the weight of the sieve. Record the wet 
residue weight on the report sheet, 
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11. "Pizza-pan" the sample. Place a heaping teaspoon of washed residue 
into a pizza pan and add about~ to~ inch of tap water. Inspect 
the pan for insect fragments using the lamp magnifier. Insect 
fragments can be distinguished from the remaining residue by 
colored and/or lustrous chitin surfaces and differential movements 
of the fragments. Carefully remove the fossils from the pan with a 
forceps and place them in an ethanol filled petri dish. 
Representative samples of the seeds, ostracods and mollusks can 
also be taken at this time and placed in a vial filled with 
ethanol. Wood fragments should also be removed and placed in a 
petri dish filled with distilled water. Caution: Wood fragments 
must be removed with a forceps as finger oil can contaminate the 
wood negating its value for radiocarbon dating. Repeat until all 
the residue is scanned. Record findings on the report sheet under 
fossil content before flotation. 

12. Pour the residue remaining in the pizza pan back into the sieve and 
let drain for five minutes. 

13. Pour kerosene into a labeled 750-ml beaker. 

14. Transfer the drained residue from the sieve into a clean, dry, 
labeled plastic wash basin. If the sieve is more than 3/4 full, 
split the sample into two or more subsamples and place them in 
separate labeled plastic wash basins. 

15. Add enough kerosene to the basin to just cover the residue. 

16. For five minutes, using your fingers, very gently mix the kerosene 
with the residue. Note: Rubber gloves can be worn for skin 
protection. If properly mixed, the kerosene will adhere to the 
fossil insect chitin. Again, caution must be employed to minimize 
damage to the fossils, 

17. Pour the excess kerosene back into the 750-ml beaker being careful 
not to allow residue to fall into it. 

18. With the rubber hose, very slowly add tap water to the residue in 
the wash basin. Undercut the residue with a gentle stream of water 
initially, then allow the hose to rest under the water surface 
until the wash basin is filled to about two inches below the top, 
Turn the water off and• carefully remove the hose from the basin. 
With a water-filled wash bottle, rinse the part of the hose that 
was in contact with the residue into a clean SO-mesh sieve. 

19. Allow the basin to sit undisturbed for 15 minutes. The kerosene 
coated fossil chitin will float to the surface. 

20. Carefully decant the floating fossil material into the clean sieve. 

21, Repeat steps 18 through 20. 
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Plac~ the sieve containing the fossil material into another plastic 
wash basin. 

Pour the residue remaining in the wash basin into the original 
siev~ and let drain. 

I Usin1 the same kerosene, repeat steps 14 through 21. If fossils 
are xceptionally abundant steps 14 through 21 may be repeated a 
thir time. 

Care~ully wash the floated fossil material in the sieve with a 
solu~ion of 1/3 dish detergent and 2/3 water. The kerosene will be 
removed from the fossils by this procedure. Thoroughly rinse the 
matetial with a gentle stream of water to remove the soap. 

26. Tran~fer the cleaned fossil material from the sieve to a clean, 
labe~ed 500--ml beaker using an ethanol-filled wash bottle. Fill 
the ijeaker with about 300 ml of ethanol. 

27. 

28. 

29. 

30. 

31. 

! 

Record the kerosening procedure used on the sample preparation 
repo~t sheet (e.g., kerosened twice with two decants each). 

Pour lthe remaining sample residue from the washing basin into a 
siev~ and allow to drain. Place the sieve contents into a dry wash 
basi1• spread it out and let it air dry, Put the dried residue 
back !into "the sample bag. 

I 
Make fial labels for insect fragments and seeds. Place them in 
separfte 4 dram vials filled about 2/3 full with ethanol. Note: 
Addit~onal vials may be prepared for mollusks, ostracods, etc. if 
desir~d. 

! 

Pour~ small amount of the fossil material into a petri dish 
containing ethanol. Remove the insect fossils (seeds, mollusks, 
etc.)'with a forceps by picking through the fossil material under a 
binocular microscope. Repeat until all desired fossils are removed 
and r~cord a general description of the fossil content after 
flotar ion on the record sheet. 

After' fossil removal, pour the remaining material into a sieve and 
allow to drain. Remove the material from the sieve and wrap in 
alumipum foil. Label the packet with a pencil on masking tape. 
Placei the packet inside the plastic sample bag containing the dried 
resid~e. Tape the bag closed with plastic tape and label the 
outsi1e of the bag with a permanent ink magic marker. Store the 
sample for future reference. 

I 
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Placl Neoprene stoppers in the labeled vials containing the 
extricted fossils. Store the vials until ready for mounting, 

Note! If only a small amount of residue remains after the 
initial. wet sieving process, the kerosening procedure may 
be omitted. The drained residue may be placed directly 
in water and picked under the binocular microscope. All 
other steps remain the same. 
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1 Appendix C 

List of c~leopterists consulted during this study indicating their 
affiliati n and taxonomic expertise and whether they examined fossil 
fragments! or modern, pinned specimens. 

I 

I 

CO EOPTERIST 
I 

BEETLE 
FAMILY 

Dr. Donal~ M. Anderson Scolytidae 
System.at!~ Entomology 

Laboratory - USDA 
National Museum of Natural History 
Smithsonian Institution 
Washington, D.C. 20560 

Dr. Ross f· Arnett, Jr. 
1330 Dill~n Heights Avenue 
Baltimore( Maryland 21228 

! 

Dr. Edwar~ U. Balsbough, Jr. 
Departmen~ of Entomology 
North Dak~ta State University 
Fargo, North Dakota 58105 

Dr. John!. Barron 
Hymenopteta and Arachnida Section 
Biosystem~tic Research Institute 
Agricultu~e Canada Research Branch 
Ottawa, Ontario KlA OC6 
Canada I 

Dr. Edwar4 C. Becker 
Coleopter4 Division 
Biosystem~'tic Research Institute 
Agricultu e Canada Research Branch 
Ottawa, 0 tario KlA OC6 
Canada 

1 

I 
Dr. D. E. [Bright 
Coleopter~ Division 
Biosystem~tic Research Institute 
Agricultu,al Canada Research Branch 
Ottawa, 0 tario KIA OC6 
Canada 

Oedemeridae 
Salpingidae 

Chrysomelidae 

Trogositidae 

Elateridae 

Scolytidae 

SPECIMEN TYPE 
MODERN FOSSIL 

X 

X 
X 

X 

X 

X 

X 
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COLEOPTERIST FAMILY 

Dr. J.M. Campbell Staphylinidae 
Coleoptera Division 
Biosystematic Research Institute 
Agricultural Canada Research Branch 
Ottawa, Ontario KlA OC6 
Canada 

Dr. W. A. Connell 
Department of Entomology and 

Applied Ecology 
249 Agricultural Hall 
University of Delaware 
Newark, Delaware 19711 

Nitidulidae 

Dr. Ginter Ekis Cleridae 
Entomology 
Carnegie Museum of Natural History 
440 Forbes Avenue 
Pittsburgh, Pennsylvania 15213 

Dr. Terry L. Erwin 
Department of Entomology 
National Museum·of Natural History 
Smithsonian Institution 
Washington, D.C. 20560 

Dr. Robert D. Gordon 
Systematic Entomology 

Laboratory - USDA 
National Museum of Natural History 
Smithsonian Institution 
Washington, D.C. 20560 

Dr. Henry F. Howden 
Department of Biology 
Carleton University 
Ottawa, Ontario KlS 5B6 
Canada 

Dr. John M. Kingsolver 
Systematic Entomology 

Laboratory - USDA 
National Museum of Natural History 
Smithsonian Institution 
Washington, D.C. 20560 

Carabidae 
Trachypachidae 

Scarabaeidae 
Coccinellidae 

Scarabaeidae 

Anthribidae 
Helodidae 

MODERN 

X 

X 

X 

X 
X 

X 
X 

X 

X 

FOSSIL 

X 

X 
X 

X 
X 

X 



COLEOPTERIST 

Dr. Guillermo Kuschel 
Department of Scientific 

and Industrial Research 
Entomology Division 
Mt. Albert Research Center 
Private Bag 
Auckland, New Zealand 

Dr. John F. Lawrence 
Cotnmonwealth Scientific and 

Industrial Research Organization 
Division of Entomology 
P.O. Box 1700 
Canberra City, A,C.T. 2601 
Australia 

Dr, Alfred F. Newton, Jr. 
Department of Entomology 
Museum of Comparative Zoology 
Harvard University 
Cambridge, Massachusetts 02138 

Dr, Charles O'Brien 
Entomology and Structural 

Pest Control 
Florida A & M University 
Tallahassee, Florida 32307 

Dr. Stuart Peck 
Department of Entomology 
Carleton University 
Ottawa, Ontario KlS 5B6 
Canada 

-278-

FAMILY 

Curculionidae 
Nemonychidae 
Colydiidae 
Belidae 
Anthribidae 
Attelabidae 

Derodontidae 

Staphylinidae 

Curculionidae 

Leiodidae 
Silphidae 

Dr, Phillip Perkins Hydraenidae 
Department of Entomology 
National Museum of Natural History 
Smithsonian Institution 
Washington, D.C. 20560 

Dr. Volker Puthz 
Vorderburg 1 
D-6407 Schlitz/Hessen 
West Germany 

Staphylinidae 

MODERN 

X 

X 
X 
X 

X 

X 

X 

X 
X 

X 

X 

FOSSIL 

X 
X 
X 

X 

X 



COLEOPTERIST 

Dr. Paul J. Spangler 
Department of Entomology 
National Museum of Natural History 
Smithsonian Institution 
Washington, D.C. 20560 

Dr. Ales Smetana 
Coleoptera Division - Room 4058 
Biosystematic Research Institute 
Agriculture Canada Research Branch 
Ottawa, Ontario KlA OC6 
Canada 

Dr. Eric H. Smith 
Division of Insects 
Field Museum of Natural History 
Roosevelt Road at Lake Shore Drive 
Chicago, Illinois 60605 

Dr. Ted Spilman 

-279-

Systematic Entomology Laboratory-USDA 
National Museum of Natural H:!.story 
Smithsonian Institution 
Washington, D.C. 20560 

Dr. Walter R. Suter 
Biology Department 
Carthage College 
Kenosha, Wisconsin 53141 

Dr. Barry D. Valentine 
Department of Zoology 
Ohio State Univerity 
1735 Neil Avenue 
Columbus, OH 43210 

Dr. John A. Wagner 
Biology Department 
Kendall College 
Evanston, Illinois 60204 

Dr. Richard E. White 
Systematic Entomology Laboratory-USDA 
National Museum of Natural History 
Smithsonian Institution 
Washington, D.C. 20560 

FAMILY MODERN 

Elmidae X 
Hydrophilidae X 
Dytiscidae X 
Psephenidae X 

Staphylinidae X 

Chrysomelidae X 

Tenebrionidae X 
Cucujidae X 
Cryptophagidae X 
Salpingidae X 

Scydmaenidae X 

Anthribidae X 

Pselaphidae X 

Chrysomelidae X 
Anobiidae X 

FOSSIL 

X 

X 



COLEOPTERIST 

Dr. Donald R. Whitehead 
Systematic Entomology 

Laboratory - USDA 
National Museum of Natural History 
Smithsonian Institution 
Washington, D.C. 20560 

Dr. W. Wittmer 
Naturhistorisches Museum Basel 
CH-4051 Basel 
Augustinergasse 2 
Basel, Switzerland 

Dr. Stephen L. Wood 
Brigham Young University 
Monte L. Bean Life Science Museum 
290 MLBM 
Provo, Utah 84602 

Dr. Daniel K. Young 
Department of Entomology 
Michigan State University 
East Lansing, Michigan 48824 

-280-

FAMILY MODERN 

Curculionidae X 
Belidae X 

Cantharidae 
Melyridae 

Scolytidae 
Bostrichidae 

Pedilidae 

X 
X 

X 

X 

FOSSIL 

X 
X 



i 
I 

j 

APPENDIX D 

RADIOCARBON DATES OBTAINED FOR THIS STUDY 



-~--·· ______ , 

APPENDIX D 

Radiocarbon dates obtained for this study (GX dates from Geochron Laboratory, Cambridge, Masschusetts, 
and I date from Isotopes Laboratory, Westwood, New Jersey). 

Laboratory 
Number 

GX-5510 

GX-6503 

GX-5502 

GX-5503 

CX-6508 

GX-6507 

GX-5504 

14 Age: 
C years B.P. 

4,525±145 

5,220±240 

7,730±200 

10,000±280 

10,440±240 

11, 290±250 

11,680±280 

Locality, sample number and 
stratigraphic position 

Rio Caunahue Site. Sample number BS, Sample 
taken at river level about 525 m upstream from 
main section. 

Rio Caunahue Site. Sample number Al. Sample 
taken at river level about 500 m upstream from 
main section. 

Rio Caunahue Site. Sample number 3. Sample 
taken from 20-30 cm below terrace gravels. 

Rio Caunahue Site. Sample number 21. Sample 
taken from 200-210 cm below terrace gravels. 

Rio Caunahue Site. Sample number PDO. 
taken from 330 cm below terrace gravels 
above prominent volcanic ash horizon. 

Sample 
and 30 cm 

Rio Caunahue Site. Sample number PD!. Sample 
taken from 395 cm below terrace gravels and 35 
cm below prominent volcanic ash horizon, 

Rio Caunahue Site. Sample number 42, Sample 
taken,from 420-430 cm below terrace gravels and 
60-70 cm below prominent ash horizon. 

Sample Material 

Twig fragments 
and leaves 

Peat 

Wood 

Wood 

Peaty plant 
debris 

Peaty plant 
debris 

Wood 

I 
N 
co 

"' 1 



Laboratory 
Number 

GX-6506 

GX-6505 

GX-6504 

I-12995 

GX-9979 

GX-6500 

GX-6501 

GX-6502 

~=-,,,,,--~-~*-

14 Age: 
C years B.P, 

12,140±390 

12,385±340 

14,635±440 

12,810±190 

13,900:t560 

10,050±230 

10,900±305 

11, 145±260 

··-----··--"-------~ ----------- _----41 

Locality, sample number and 
stratigraphic position 

Sample Material 

Rio Caunahue Site. Sample number PD3, Sample 
taken from 430 cm below terrace gravels and 70 
cm below prominent ash horizon. 

Peaty plant debris 

Rio Caunahue Site. Sample number PD4. Sample 
taken from 445 cm below terrace gravels and 85 
cm below prominent ash horizon. 

Rio Caunahue Site. Sample number PD6. 
taken from 535 cm below terrace gravels 
cm below prominent ash horizon. 

Sample 
and 175 

Rio Caunahue Site. Additional date for the PD6 
sample. 

Rio Caunahue Site. Sample taken from 251 cm below 
prominent ash horizon. 

Rio Caunahue Site. Sample number B3. Sample taken 
from 30 cm above prominent ash horizon about 100 m 
dowostream from main section. 

Peat 

Wood 

Wood 

Wood 

Peat 

Rio Caunahue Site. Sample number B2. Sample Wood and Peat 
taken from 91 cm above prominent ash horizon 
about 100 m dowostream from main section. 

Rio Caunahue Site. Sample number Bl. Sample taken Wood 
from 123 cm above prominent ash horizon about 100 m 
dowostream from main section. 

I 
N 

"' w 
I 



Laboratory 
Number 

GX-5507 

GX-5275 

GX-5505 

GX-5506 

GX-5274 

14 Age: 
C !ears B,P. 

14 ,060±450 

15, 715±440 

1,190±135 

16,000±540 

18,170±650 

. ---· , ......... ~.·-----0 ~--··----- ------

Locality, sample number and 
stratigraphic position 

Samp1e Material 

Puerto Varas Railroad Site, Sample number 1, Sample 
taken from a peat horizon in the Llanquihue III 
terrace beneath lacustrine sediments and lahars. 

Puerto Varas Park Site. Sample number PVl. Sample 
taken from the upper 5 mm of a peat horizon in the 
Llanquihue III terrace beneath lacustrine sediments 
and lahars. 

Puerto Octay Site. Sample number 3 - core 8. 
Sample taken from 20-30 cm below surface of a 
spillway channel cut in Llanquihue II outwash. 

Puerto Octay Site. Sample number 9 - core 8, 
Sample taken from 80-90 cm helow surface of a 
spillway channel cut in Llanquihue II outwash. 

Puerto Octay Site. Sample number 23 - core 8. 
Sample taken from ?30 to 240 cm be1ow surface of 
a spillway channel cut in Llanquihue II outwash. 
Basal peat in channel. 

Wood 

Peat 

Peat 

Peat 

Peat 

I 

"' (XI 

"' I 
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ORDER OF AD DITIONAL INSECTA 
GRO UPS AN D ARACHN IOA 
AFTER BORROR AND DELONG ( 1964 J 
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