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ABSTRACT 

Subsidence at abandoned underground mines in south-central and 

southwest North Dakota has produced numerous sinkholes. Previous 

studies in the Northern Great Plains have suggested depression-focused 

recharge may be a significant ground water recharge mechanism in this 

region. Thus, sinkholes may increase soil moisture and ground water 

recharge. Current reclamation practices include filling sinkholes with 

non-topsoil fill material. However, the benefits of increases in soil 

moisture and ground water supplies may outweigh the benefits of 

expensive reclamation. The purpose of this study was to determine 

whether soil moisture and, hence, the potential for ground water 

recharge, was greater in sinkholes than non-collapsed settings at an 

abandoned underground coal mine near Wilton, North Dakota. 

Site stratigraphy consists of till overlying interbedded sands, 

silts, clays, and coal. The water table lies within or slightly above 

the coal seam mined at the site, at a depth of 40 to 110 feet, with the 

exception of two wells set in structural highs in the coal seam. The 

topography is gently rolling hills with integrated drainage. Annual 

precipitation is 17 inches, 80% of which falls from April 1 through 

September, which is also the period of greatest evapotranspiration. 

Relative changes in soil moisture were measured in six sinkholes 

and five non-collapsed settings with a neutron probe. Tensiometers were 

installed to establish the direction of hydraulic gradients in the 

shallow unsaturated zone. Climatic data were obtained from the National 

Weather Service station in Wilton. 

Soil moisture conditions were monitored from the middle of 

February 1990 through early December 1990. These data show that soil 

moisture was greater in sinkholes than non~collapsed settings during 
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this eptire monitoring period, producing conditions more conducive to 

ground water recharge in sinkholes. Deep infiltration occurred only in 

sinkholes. Correlation of climate and soil moisture data suggest deep 

infiltration, possibly leading to storage or recharge, will occur only 

in sinkholes under normal climatic conditions. These data also indicate 

the greatest potential for deep infiltration and ground water recharge 

are in the spring and fall. Reasons for greater soil moisture in 

sinkholes include snow and run-off capture. Sediments in sinkholes also 

have greater porosity and permeability due to collapse. 

Although deep infiltration was measured in some sinkholes and not 

in non-collapsed settings, estimates of recharge indicate that the 

recharge measured was several orders of magnitude lower than the flux of 

water from the local water table to a lower aquifer. Reclamation would 

eliminate these sinkholes as recharge mechanisms but their loss as a 

recharge mechanism may not be that important. Because of the benefits 

of increases in soil moisture (creating more productive pasture) and 

ground water recharge potential, sinkholes at abandoned underground 

mines in this region could be left unreclaimed if they do not endanger 

surface structures and are not at risk of contamination. If they pose a 

threat to the general public or are at risk of contamination, they 

should be reclaimed • 
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INTRODUCTION 

General 

Starting in the 1870's and continuing into the 1930's, underground 

mining of coal was conunon in North Dakota with at least 73 mines in 

existence prior to 1900 (Oihus, 1983, p. 5). Although underground 

mining of coal has given way to strip mining in North Dakota, its legacy 

remains in the numerous abandoned underground mines in the south-central 

and southwestern regions of the state. 

Subsidence at abandoned underground coal mines in North Dakota has 

resulted in the formation of numerous sinkholes. Aside from creating 

hazards to surface structures such as roads and buildings, sinkholes may 

influence soil moisture and the potential for ground water recharge. 

Current reclamation practices include filling sinkholes with mine spoils 

or other available materials. The purpose of this study was to 

determine what effect sinkholes might have on soil moisture and ground 

water recharge at an abandoned underground coal mine. Current 

reclamation practices may need to be modified if the net effect of 

sinkholes on soil moisture and ground water recharge is found to be 

beneficial to local land and ground water users. 

The Abandoned Mined Lands Division (AML) of the North Dakota 

Public Service Commission (PSC) has been given the responsibility of 

identifying these abandoned mined lands and designing and overseeing 

reclamation projects to ensure public safety and minimize state 

liability. In the past, reclamation has included filling of tunnels 

with sand and gravel and the filling of sinkholes, mine slopes, and pit 

mines with mine spoils or other earth materials. 

In 1988 the Energy and Environmental Research Center (EERC), at 

1 



Figure l. 
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Location of the study area near Wilton, Burleigh county, 
North Dakota. 
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Figure 2. 

7 

Site location in relationship to physiographic districts and 
subdistricts in Burleigh County (modified from Kume and 
Hansen, 1965). See Figure 1 for location of Burleigh 
County. 
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Figure 3. 
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Topographic map with locations of wells (numbered 1 to 
13), gauging posts (denoted as GP-1 and 2), geologic 
cross-section (labeled A-A'), two hydrostratigraphic cross­
sections (B-B'), and some reclaimed areas at the site. The 
mine pits in Sections 7 and 8 and the sinkholes in area I 
were reclaimed in 1989. The mine pit in the southeast 
corner of Section 5 and the sink.holes in area II were 
reclaimed at an earlier date. Soil moisture monitoring 
equipment was installed in area III (See Figure 15). The 
area enclosed by the heavy dashed line represents the border 
of Figures 6 and 45 (modified from USGS 7.5 minute, Grass 
Lake topographic quadrangle, 1979). 
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Figure 4. 
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Generalized stratigraphic column for northwest Burleigh 
County (Bluemle, 1988). 
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Figure 5. Geologic cross-section parallel to North Dakota State 
Highway 36. Six wells installed along the cross-section 
have been included on the figure. See Figure 3 for the 
locations of the cross-section and wells. Stratigraphic­
ally, the till belongs in the Coleharbor Group. The 
remainder of sediments in the cross-section are part of the 
Bullion Creek Formation. 
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Figure 6. 
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Contour map of the base of the coal seam. Elevations of the 
base are posted below corresponding well numbers. Well 
locations are represented by plus signs. The heavy-dashed 
line on Figure 3 represents the border of this map. Well 
locations can also be found on Figure 3. 
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Vertical fractures in the till can be seen in sinkhole walls and 

on the walls and roofs of caves that have formed in the sides of 

sinkholes. These fractures are often mineralized, containing calcite or 

iron oxide. Vertical fractures can also be found in selected cores 

collected from bedrock sediments. Fracture surfaces are indicated by 

iron oxide coatings. 

Regional Bydrogeoloqy 

Ground water supplies in Burleigh County occur in bedrock, glacio­

fluvial, and alluvial deposits. Approximately 70% of the domestic and 

stock wells are set in bedrock aquifers, although aquifers with the 

greatest potential yield are in buried channel deposits, alluvial 

deposits, and glacio-fluvial (outwash) deposits (Randich and Hatchett, 

1966) • 

Water-bearing units in Cretaceous and Tertiary bedrock materials 

in Burleigh County include fractured rock, sands, and sandstones. 

Lignites may also serve as local aquifers in Tertiary deposits. 

Quaternary buried channel deposits are composed of glacio-fluvial and 

alluvial sediments, mainly sand and gravel. The major alluvial deposits 

are associated with the Missouri River and also consist of sand and 

gravel. Well yields from the different aquifer types are extremely 

variable (Table 1). 

Regionally, ground water recharge to deeper aquifers occurs from 

streams, potholes, buried channel deposits, and glacio-fluvial deposits 

during periods of high precipitation and run-off. Locally, under 

similar climatic conditions, recharge may occur in surficial sand and 

gravel deposits (Randich and Hatchett, 1966), in small surface 

depressions and ephemeral streams (Lissey, 1968), and sloughs (Meyboom, 

1966) • 
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TABLE 1 

Average well yields and total 
aquifers in Burleigh County. 
Randich and Hatchett (1965). 

Well 

dissolved solids for various 
Data and terms in quotes from 

Yields Total Dissolved 
(gpm) Solids (ppm) 

Quaternary Aquifers: 

"Buried > 1000 600 - 1500 
Channel 
Deposits" 

"Alluvial > 1000 1000 - 1300 
Deposits" 

"Glacio-fluvial < 20 1000 
Deposits" 

''Glacial < 20 800 - 1500 
Drift" 

Tertiary < 20 500 - 1900 
Bullion 
Creek Fm. 

Cretaceous < 50 450 - 2500 
Aquifers 

Ground water flows from streams and potholes into shallow aquifers 

during wet periods. In turn, water from these shallow aquifers will 

recharge deeper aquifers. The direction of ground water flow may be 

altered by dry periods. Ground water flow in the buried channel 

deposits is toward the Missouri River (Randich and Hatchett, 1966). 

Rehm and others (1960) summarized the hydraulic properties of 

sediments at 13 coal mine sites in the Northern Great Plains, reporting 

a range of hydraulic conductivities of l x 10·• ft/a to 3 x 10-9 ft/a, 

with a mean of l x 10·' ft/a for 70 measurements in Paleocene aquifers, 

which includes the Bullion Creek Formation. These values were found to 

be the same for coal, sand, and sandstone aquifers, although values for 

the sand and sandstone aquifers were more strongly skewed toward lower 
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conductivities. Sixty-three measurements in Paleocene silts and clays 

ranged from 3 x 10·' ft/s to 3 x 10·11 ft/s, with a mean hydraulic 

conductivity of 1 x 10·' ft/s. 

Twenty-seven hydraulic conductivity measurements made in 

Quaternary sands and gravels ranged from 3 x 10·2 ft/s to 3 x 10_. ft/s, 

with a mean hydraulic conductivity of 2 x 10~ ft/s (Rerun and others, 

1980). Values for thirty-five measurements for pebble loam, or till, 

ranged from 3 x 10_. ft/s to 3 x 10·11 ft/s, with a mean of 2 x 10 .. ft/s 

(Rerun and others, 1980). Hydraulic conductivities of 3 x 10·' ft/s to 3 

x 10_. ft/shave been reported for fractured tills in central North 

Dakota (Sloan, 1972), while hydraulic conductivities of l x 10·10 ft/s 

have been reported for unfractured tills (Grisak and Cherry, 1975). 

Rerun and others (1980) attribute the wide range of values for all these 

materials to fractures. 

Two types of porosity exist in the till at the Wilton site, 

intergranular and fracture. Intergranular porosities ranging from 0.18 

to 0.40 have been reported for unfractured borehole samples of till in 

the Interior Plains region of Canada (Grisak and Cherry, 1975), which 

are lithologically similar to the tills in North Dakota (Grisak and 

others, 1976). Grisak and others (1976) calculated fracture porosities 

for till of approximately 0.0002, using two different methods. This 

number seems negligible, and probably does not reflect highly fractured 

till. 

Water Co•poaition 

Water in cretaceous aquifers in Burleigh County varies between 

sodium chloride bicarbonate, sodium bicarbonate, and sodium sulfate 

types (Randich and Hatchett, 1966; Naplin, 1979). Water in Tertiary 

rocks varies from sodium bicarbonate to sodium bicarbonate sulfate in 

the Cannonball Formation to either sodium or calcium-magnesium 

bicarbonate water in the Bullion Creek Formation (Naplin, 1979). Total 
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dissolved solids for Cretaceous and Tertiary rocks are listed in Table l 

(from Randich and Hatchett, 1966, and Naplin, 1979). Values reported 

for the Sentinel Butte Formation by Naplin (1979) have been included in 

values for the Bullion creek Formation, since the sediments identified 

as Sentinel Butte by Naplin (1979) have been included as part of the 

Bullion Creek Formation in this study. 

Aquifers 

There are two aquifers at the site, an unconfined one, which lies 

slightly above or within the Wilton coal seam, and a confined one in a 

clayey, silty sand below the coal seam. The two aquifers are separated 

by a thick gray clay. The depth to the water table ranges from about 40 

to more than 115 feet. The ground water flow conditions at the site are 

discussed in detail later. 

Factors Affecting Infiltration 

Several factors may determine whether moisture infiltrates beyond 

the root zone and/or effective depth of evapotranspiration in any given 

setting. These factors include the amount and timing of precipitation, 

antecedent soil moisture conditions, evapotranspiration, depth to the 

water table, topography, and the composition and texture of materials in 

the unsaturated zone. 

Moisture from a single precipitation event is unlikely to 

infiltrate directly to the water table as ground water recharge, because 

of the depth to the water table. Infiltration can occur as moisture 

drains downward in conjunction with spring melt and successive 

precipitation events. Moisture that infiltrates into the subsurface is 

not considered to be ground water recharge until it reaches the water 

table. 

Most precipitation in northwest Burleigh County occurs during the 

summer when evapotranspiration rates are the highest. As a result much 
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of the annual precipitation is lost before it infiltrates to any 

appreciable depth. Because most precipitation occurs as thunderstorms 

of short duration, infiltration during summer is most likely to occur 

after a aeries of successive storms that produce excess soil moisture. 

When the rate of precipitation exceeds the infiltration capacity 

of a soil, surface run-off will occur. surface run-off intercepted by 

sinkholes will be partially protected from the evaporative effects of 

wind and direct sunlight providing a greater possibility for deeper 

infiltration, in comparison to non-collapsed settings. 

An increase in soil moisture will result in a higher unsaturated 

hydraulic conductivity (Freeze and Cherry, 1979, p. 42) until the 

moisture content exceeds the field capacity of the soil. The rate of 

infiltration reaches a constant value as the soil pores become saturated 

(Freeze and Cherry, 1979, p. 211). Birkeland (1984, p. 18) defines 

field capacity as the point at which the force that holds a film of 

water in pore spaces in a soil is equal to the downward force of 

gravity. Fetter (1980, p. 472) defines it as the maximum amount of 

water a soil can hold in its pores against gravity. Thus, if rain 

storms occur in close succession, soil moisture can remain at higher 

levels, reducing the effect of evapotranspiration. The wetter soil 

conditions allow successive precipitation to infiltrate faster because 

of higher hydraulic conductivities. This provides a greater chance for 

moisture to infiltrate beyond the depth that evapotranspiration is 

effective in depleting soil moisture. The end result is that wetter 

soil conditions will generally increase the potential for moisture to 

infiltrate into storage, and eventually, into the saturated zone. 

Soil texture also plays a role in determining whether infiltration 

occurs or not, or how much infiltration occurs .. At moderate to high 

moisture content, flow of water in coarser, unconsolidated deposits, 

such as sand, is greater than flow in fine-textured, unconsolidated 

deposits, such as silts and clays. But at low moisture contents, a 
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fine-textured soil might have a greater unsaturated hydraulic 

conductivity than a coarse soil because the finer soil will hold more 

water in its pore spaces due to a greater particle surface area, 

facilitating water movement through the pores (Fetter, 1980, p. 91). 

Pores in a coarse-grained soil will drain more than a fine soil 

resulting in a lower unsaturated hydraulic conductivity at low moisture 

contents, because the pores must be rewetted by subsequent moisture to 

re-establish saturation. Regardless of the texture, increases in soil 

moisture in fine or coarse soils results in higher hydraulic 

conductivities, until the soil becomes saturated. 

The presence of mineralized layers in soils is important in at 

least two ways. A mineralized zone may define a depth to which water 

typically infiltrates, but not normally beyond. Soluble minerals such 

as calcite and gypsum may be precipitated in these zones. Mineralized 

layers can develop to the extent that water is restricted or prevented 

from infiltrating any deeper. A common mineral found in the glacial 

sediments at the Wilton site is calcite. A soil zone in which calcite 

has accumulated, where calcite is less than 50 % of the horizon, is 

referred to as a Bk horizon (Birkeland, 1984, p. 8). 

There should be no significant differences in the amount of 

flushing of soluble minerals in sinkholes and non-collapsed settings 

that do not receive run-off. During winter, however, sinkholes tend to 

collect and hold snow (Figure 7), creating moist soil conditions. 

Infiltrating moisture from this snow might be sufficient to flush 

soluble minerals to greater depths in sinkholes. Translocation of clay 

minerals may also be enhanced in sinkholes. This would create greater 

permeability in the flushed zone but would reduce permeability at 

greater depth where the clay accumulates. 

Another factor influencing infiltration is the presence of joints, 

fractures, or any other form of secondary porosity that can increase the 

permeability of sediments. Inter-block channels and porosity are formed 
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Photograph of sinkholes holding snow. Note lack of snow on 
non-collapsed areas. 
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Figure 8. 
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Photograph of cave developed in the aide of a sinkhole. 
Note both the inter-block channels/porosity between blocks 
on the cave floor and the arched roof. Calcite-coated 
fracture surfaces can be seen in the cave roof in 
foreground. Also note the presence of calcite, the 
ubiquitous white material, in the cave. 
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The relationship between soil moisture and collapsed versus 
non-collapsed settings. A and A' represent the depth to a 
given level of soil moisture, as do Band B'(e.g., A and A' 
mark the occurrence of 20% volumetric moisture content and B 
and B' mark 30%). 
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Figure 10. A portion of the Wilton mine map illustrating geometry of 
mine tunnels and rooms beneath the study site in the 
southwest corner of Section 5 (see Figure 3 for the location 
of Section 5). Slanted-line pattern indicates coal 
pillars (modified from mine map by Thomas, 1929). 
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typically 10 to 14 feet wide and 8 to 9 feet high, and from several 

yards to more than 1 mile in length (Figure 10). 

Pillar extraction leads to almost immediate collapse of the mined 

areas. In mines where the pillars are left intact, collapse may occur 

over many years. New sinkholes are still forming at the Wilton 

site,although underground mining ended no later than the mid 1940s, and 

much earlier than that in older portions of the mine. This continued 

collapse at Wilton suggests that coal pillars are still effective in 

controlling subsidence patterns. 

As a result of the mine geometry at Wilton, the sinkholes are 

generally circular or oval and aligned in linear patterns. Individual 

sinkholes are usually less than 25 feet wide and 15 feet deep. Length 

varies because sinkholes may coalesce over time, or collapse may follow 

a tunnel, resulting in a trench. The orientation of these trenches 

mirrors the orientation of underlying mine tunnels and rooms. The 

pattern of sinkholes and trenches is readily observable in the field and 

on aerial photographs of the site (Figure 11). 

Several large caves, all of which have a similar morphology, have 

developed in the sides of sinkholes. The cave walls are vertical, 

which give way to an arched roof that extends horizontally away from the 

sinkhole (Figure 8). Cave widths approximate the average width of 

underlying tunnels in the mine, with cave length varying. The greatest 

observed height of a cave roof was approximately 7 feet. These caves 

have been observed only in glacial sediments at the site. Whether or 

not the process of collapse just described occurs in deeper bedrock 

sediments is unknown. Similar void morphology is likely to have been 

produced in the unconsolidated bedrock sediments at the site, although 

this was not observed. 

In the caves formed in till, sediments have spalled off the cave 

roofs and walls in blocks ranging from a few inches to three or more 

feet in length (Figure 8) producing inter-block channels and porosity. 
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Figure 11. Reproduction of aerial photograph of the SWl/4 Sec.5 T. 142 
N., R. 79 W., illustrating distribution and impact of 
sinkholes on landscape. The road at the bottom of the photo 
is ND 36. The scale is 1:4800. 
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This permeability and porosity are most likely reduced, but not 

eliminated, by the weight of overburden materials as collapse continues 

upward and the material exposed on the floor of a void is buried. The 

presence of these inter-block channels undoubtedly increases the 

vertical hydraulic conductivity of the collapsed zones, thereby 

enhancing the hydraulic connection between the water table and ground 

surface. The collapse zone can extend more than 100 feet in depth at 

Wilton, or the entire thickness of the unsaturated zone. 

Concentric patterns of vertical fractures can be observed on the 

ground surface in areas surrounding sinkholes. These fracture zones are 

wider than the underlying room or tunnelt and are produced as the sides 

of a sinkhole expand outward at ground level through erosion. Whether 

concentric fractures occur in the bedrock surrounding collapse zones is 

unknown. 

Mine Reclamation 

Reclamation projects were conducted during the summer of 1989 by 

the NDPSC. These projects included the filling of mine tunnels within 

the ND 36 highway right-of-way, a mine pit and numerous sinkholes in the 

northwest quarter of Section 8, and a mine pit in the northeast quarter 

of Section 7 (Figure 3). The mine pit in Section 8 contained several 

large gullies, 4 to 7 feet in depth, indicating that run-off into the 

pit was substantial. Several reclamation projects have been carried at 

this mine site since the early 1980s. 

Land Use 

Abandoned mined land near Wilton is used in several ways. some 

areas covered with mine spoils have been converted into wildlife 

management areas. Unreclaimed areas with sinkholes are used for 

grazing. Most land containing reclaimed sinkholes is used for grazing, 

although some is used as cropland. 
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METHODS 

In order to quantify differences in soil moisture or ground water 

recharge potential between non-collapsed settings and sinkholes, changes 

in soil moisture, direction of soil moisture movement, timing and amount 

of precipitation, the total area of sinkholes, and the configuration of 

the water table were determined. 

Relative changes in soil moisture were measured with a neutron 

probe. Soil tension and the direction of hydraulic gradients in the 

unsaturated zone were monitored with tensiometers. 

Precipitation data were provided by the National oceanic and 

Atmospheric Administration, which maintains a nearby observation station 

in the city of Wilton. The amount of snow capture in sinkholes was 

quantified by measuring snow volume in several sinkholes and converting 

those values to equivalent moisture. 

The total area of sinkholes was measured using a digitizer and 

topographic maps of the site. The topographic maps were previously 

generated from an aerial survey conducted in May, 1981, for the NDPSC. 

The configuration of the water table was determined through 

exploratory drilling and the monitoring of ground water wells installed 

at the site. Also, water samples were collected from wells and surface 

ponds to establish background water quality. 

Mopitorinq pesiqn 

Monitoring wells were completed in the coal seam mined at the site 

to determine relative head values, and thus, the general direction of 

ground water flow. A total of thirteen wells were installed to provide 

38 
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this and other information, including stratigraphy and water quality 

across the site. 

The southwest quarter of Section 5 was chosen for the installation 

of soil moisture monitoring equipment. The NDPSC had no immediate plans 

to reclaim the numerous sinkholes in this section. 

Soil moisture monitoring equipment, including 11 access tubes for 

neutron probe applications and 4 tensiometer nests, were selectively 

located to determine differences in soil moisture and direction of soil 

moisture movement in collapsed and non-collapsed settings. There are 

variations between the non-collapsed and collapsed settings in terms of 

topography, the size, depth, and overall geometry of sinkholes, and the 

capacity to collect run-off. 

Four distinct settings were identified on a topographic basis and 

instrumented with soil moisture monitoring equipment: l) sinkholes with 

low run-off accumulation potential; 2) sinkholes with high run-off 

accumulation potential; 3) non-collapsed areas with low run-off 

accumulation potential; 4) non-collapsed areas with high run-off 

accumulation potential. A location with a high run-off accumulation 

potential receives run-off from a large surface area. Conversely, 

settings with low run-off accumulation potential receive little if any 

surface run-off. High run-off accumulation potential locations include 

sinkholes or non-collapsed areas situated at the base of slopes, or at 

the end of a ·small ditch or drainage feature leading to those sinkholes 

or non-collapsed areas. Low run-off accumulation potential areas 

include sinkholes or non-collapsed settings on local topographic highs 

or that are surrounded by many other sinkholes or surface drainage 

features that intercept run-off. 

Well Conatruction 

The initial three wells, MW-1, 2, and 3, were used to determine 

the general direction of ground water flow in the Wilton coal seam (See 
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Figure 3 for well locations and Table 2 for well depths). The remaining 

Table 2 

List of well depths, MSL elevation of well base, riser 
height, and top-of-casing elevation~ 

Elev. of 
Well Well Elev. of Riser Top of 
Number Depth Well Base Height Riser 

MW-1 85.4 2091.0 3.4 2179.8 
MW-2 109.7 2091.9 3.3 2204.9 
MW-3 98.1 2103.6 1.5 2203.3 
MW-4 81.9 2104.6 2.8 2189.4 
MW-5 66.5 2116.0 2.6 2185 .1 
MW-61 71.1 2081.2 2.4 2154.7 
MW-7 1 51.9 2100.4 2.2 2154.S 
MW-81 25.2 2127 .1 2.1 2154.3 
MW-9 67.3 2091. 8 2.2 2161.4 
MW-10 105.0 2090.2 2.5 2197.7 
MW-11 27.2 2105.9 2.3 2135.4 
MW-12 84.7 2095.7 2.0 2182.4 
MW-13 116.5 2113. 6 2.5 2232.6 

All measurements are in feet 
(1) MW-6, 7, and 8 are nested 

10 wells were installed later to provide detailed information on ground 

water flow direction, hydraulic gradients, and background water quality 

(See Appendix VI for well completion summaries). One well nest (MW-6, 

7, and 8) was installed to determine the vertical hydraulic gradient. 

Stratigraphic logs were compiled during the installation of each well 

(See Appendix VII for lithologic logs). 

Borings were completed with an air-rotary drill rig, with some 

water used occasionally during drilling. The wells were constructed of 

schedule 40, flush-joint threaded PVC plastic pipe, with 0.010 inch, 

continuous-slot PVC screens. Five-foot screens were used for MW-6 and 

8, with ten-foot screens used for the remaining wells. 

With the exception of MW-6 and 8, the bottoms of the monitoring 

wells were set at the base of the Wilton coal seam. The base of MW-6 
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was set 19 feet below the coal seam and the base of MW-8 was set 17 feet 

above the coal seam. 

A filter pack of 12/30-grade commercial silica sand was slurried 

down a tremie pipe to a height of about l foot above the top of the 

screen. The tremie pipe was placed near the base of the well and raised 

as the annular space around the screen filled with sand. Approximately 

one foot of bentonite pellets were placed on top of the filter pack to 

form a seal. 

The wells were then grouted to ground level using neat cement, 

consisting of portland cement with six percent bentonite. A portable 

grout pump was used to mix and pump the grout through a tremie pipe set 

at the top of the bentonite pellet seal. The grout was pumped until it 

reached ground surface, thereby filling the annular space around the 

well casing from the bottom up. Figure 12 is a schematic diagram of a 

completed well. The monitoring wells were developed by hand-bailing at 

least three casing volumes, or to dryness in wells with minimal 

recharge. 

Neutron Probe 

Relative changes in soil moisture were determined using a neutron 

probe manufactured by Campbell-Pacific Nuclear, Inc. The probe contains 

an americium-241/beryllium-9 radioactive source that produces fast 

neutrons. Thermalized neutrons are measured using a boron tri-fluoride 

detector, which is adjacent to the source. 

The americium-241 emits alpha particles which strike the 

beryllium-9. The beryllium-9 then emits fast neutrons which collide 

predominantly with hydrogen nuclei, such as those in soil water. Upon 

collision, these neutrons slow down, or are thermalized. A cloud of 

thermalized neutrons forms within the radius of influence of the source. 

The number of collisions recorded by the detector is scaled to represent 

the relative amount of hydrogen in the material being monitored. The 
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Figure 12. Schematic of well design • 
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amount of hydrogen measured is assumed to represent free moisture in the 

soil. Goodspeed (1981) and Bell (1976) are sources of detailed 

explanations of neutron probe theory. 

Measurements were made by placing the probe shield on top of an 

access tube installed in the ground, which consists of a 9 or 10-foot 

long piece of 2-inch (inside diameter) aluminum conduit pipe. Access 

tubes prevented the radioactive source from becoming wedged in the 

ground and protected it from sediment and water. The source was lowered 

into the access tube to the desired depth by means of a coaxial cable, 

which was graduated to ensure that readings were taken at consistent 

intervals. Two JO-second measurements were taken at various depths 

during monitoring (Appendix I). 

Use of Calibration Curves 

The number of counts recorded by the neutron probe were converted 

to volumetric soil moisture content using a calibration curve, which is 

a plot of counts-per-minute versus volumetric moisture content. Either 

the field measured counts-per-minute or the ratio of the field measured 

counts-per-minute and counts-per-minute in a standard, usually water, is 

used. A neutron probe user can develop site-specific calibration 

curves, or can use curves derived for standard soils by the probe 

manufacturer. Site-specific curves are more accurate {Freeze and 

Banner, 1970). There are no units of measurement for volumetric 

moisture content because this value is a ratio of the volume of water 

present in a given volume of sediment, causing the units to cancel out. 

The volumetric moisture content muitiplied by 100 is the percent 

moisture in the sediment being measured. 

Graecen and others (1981, p. 54-60) discuss how an inaccurate 

calibration curve might be developed due to improper statistical 

methods. Improper methods cited include the grouping of data for 
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materials with different absorption cross-sections or different bulk 

densities into one calibration curve. 

Calibration Curve Developaent 

Calibration curves were derived for different materials at the 

Wilton site to provide the greatest accuracy. Sediment samples were 

collected at the depths to be measured with the neutron probe. As soon 

as a hole was augered, an access tube was installed and neutron probe 

readings taken. 

Sediment samples were collected at all appropriate depths using a 

2-inch diameter soil auger designed for clay-rich sediments. Each 

sample collected represented 4 inches of material, extending 2 inches 

above and below the interval of interest. The samples were taken from 

the center of the auger head, which has two steel re-inforcing bands 4 

inches apart with an inside diameter of 2 inches. Samples were then 

sealed in airtight containers for transport back to the laboratory. 

sediment samples were weighed and then dried in a convection oven 

for a period of 24 hours at 1os•c, as suggested by Gardner (1965, p. 

92). Drying at temperatures higher than this causes lose of 

constitutional hydrogen from the lattices of clay minerals and from 

organic material (Holmes, 1955). Each sample was again weighed to 

determine the dry weight. The dry weight was subtracted from the wet 

weight to determine the amount of free water present in the sample. 

These data were used to determine dry bulk density and volumetric 

moisture content (Graecen and others, 1981, p. 77). Neutron probe 

counts and soil moisture data collected for the calibration curves were 

fitted to a regression curve to convert probe readings to volumetric 

moisture content (See Appendix I for neutron probe data, calibration 

equations, and probe readings converted to volumetric moisture content). 

Till is generally defined as unsorted, non-stratified sediment 

deposited by glacial processes (Bird, 1980, p. 44-45; Ritter, 1986, p. 
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380). Bluemle (1975) identified the till at the site as ground moraine 

that includes material dropped as the retreating glacier melted. 

Clayton and others (1980, p. 40) identified the surface sediments at 

Wilton as thin drift, unbedded, draped overlying a pre-existing bedrock 

landscape. The till appears to have a relatively homogeneous bulk 

density and mineralogical and textural composition. This homogeneity 

should provide uniform absorption cross-sections and levels of 

constitutional hydrogen. Therefore, the calibration curve developed for 

access tubes in this till (Figure 13) includes data from different depth 

intervals. The correlation coefficient (r) for this curve is 0.92. 

However, a separate calibration curve was developed for two access 

tubes, AT-5 and AT-8 (Figure 14), because the sediments at these two 

sinkholes sites are darker and less sandy than the till. This textural 

change, resulting from a difference in the amount of clay present in the 

two types of sediments, alters the amount of constitutional hydrogen 

present, effectively producing separate absorption cross-sections. The 

correlation coefficient (r) for this curve is 0.91. 

Although the two calibration curves are similar in slope, a curve 

including data from both graphs would shift the regression line of the 

till curve to the right and of the non-till curve to the left for any 

given number of probe counts-per-minute. This indicates there is some 

difference in the neutron absorption cross-sections for the two 

materials, requiring the use of separate curves. 

Access Tube• 

Several factors may affect data collected with a neutron probe. 

The presence of neutron-absorbing elements, such as chlorine, iron, and 

boron, can affect neutron probe readings. other factors include the 

presence of cavities against the access tube, the type of material ussd 

for access tubes (Prebble and others, 1981, p. 82-85), differences in 

bulk density (Graecen and Schrale, 1976; Graecen and others, 1981, p. 
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Figure 13. Neutron probe calibration curve for till at the study site. 
Correlation coefficient is posted in upper right hand corner 
of graph. 

Figure 14. Neutron probe calibration curve for non-till sediments. 
Correlation coefficient is posted in upper right hand corner 
of graph. 
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53-54), the presence of constitutional hydrogen, high content of organic 

matter (Holmes, 1955), condensation on the inside of an access tube, and 

instrument drift (Williams and Sinclair, 1981, p. 37). 

Neutron probe results can be adversely affected by improper access 

tube installation and by the material used for access tubes. Proper 

installation of access tubes requires a tight fit between the access 

tubes and the surrounding sediments. The presence of a cavity within 

the radius of measurement of the probe will reduce the actual volume of 

sediment being measured, leading to an inaccurate estimate of the amount 

of soil moisture present. An overestimate of soil moisture occurs if a 

cavity within the sphere of measurement held an amount of water 

exceeding the volumetric moisture content of the surrounding soil, while 

an underestimate of soil moisture would occur if the volumetric moisture 

content of the cavity was less than the volumetric moisture content of 

the surrounding soil. 

Aluminum was chosen over PVC and stainless steel for access tube 

material because it is transparent to fast neutrons. Chlorine and iron, 

contained in PVC and steel, respectively, are neutron absorbers. A 

calibration curve for PVC or steel tubes could be determined, but may be 

less accurate due to possible heterogeneities in composition or 

thickness within a tube. 

The till at the site is relatively homogeneous in terms of bulk 

density and the distribution of any minerals containing a relatively 

large amount of constitutional hydrogen. Therefore, no corrections for 

these factors were applied to the calibration curves. 

Access tubes were swabbed with a dry rag before readings were 

taken to remove condensation from their inner walls. Also, the upper 1 

foot of sediment at access tube sites was not monitored because of the 

organic content and presence of numerous roots. There is also a safety 

factor of placing the radioactive source too close to the ground 

surface. 
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No correction factors were applied to the curves to account for 

instrument drift because there have been no comparative studies 

performed with the neutron probe used for this study. Conditions to 

check would include behavior under a range of temperatures, humidity, 

and time since the battery was last charged. 

Eleven access tubes were installed, with 5 in non-collapsed 

settings, for background comparison, and 6 in sinkholes (Figure 15 and 

Table 3), using 2-inch (inside-diameter) aluminum conduit pipe. 

Table 3 

List of access tubes and topographic classification. 

Access Tube setting Interval 
Number Monitored (ft) 

AT-1 C,Lr 2-9 
AT-2 Nc,Lr 2-9 
AT-3 C,Lr 2-8 
AT-4 Nc,Lr 2-9 
AT-5 C,Hr 2-9 
AT-6 Nc,Hr 2-9 
AT-7 Nc,Lr 2-9 
AT-8 C,Hr 2-9 
AT-9 C,Hr 2-9 
AT-10 Nc,Hr 2-9 
AT-11 C,Lr 2-9 

C = collapsed (sinkhole) 
Ne = non-collapsed 
Lr = low run-off potential 
Hr = high run-off potential 

These were installed using a power auger or hand auger. At least 2 to 3 

inches of conduit were left above ground on which to rest the neutron 

probe shield. The access tubes were tapped into slightly undersized 

holes with a hammer, to insure a tight fit. PVC expanding wingnut caps 

were used to plug the tops of the access tubes to keep out 

precipitation. Because the tubes were well above the water table, they 

were left open at the bottom.soil moisture movement • 
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Figure 15. Location of access tubes (numbered) and tensiometer nests 
(A,B,C,D) on a reproduced aerial photograph of the SWl/4 
Sec. S, T. 142 N., R. 79 w, marked by X. The road at the 
bottom of photograph is ND 36. A corresponds to TNAT-3, B 
to TNAT-4, C to TNAT-7, and D to TNAT-8. Scale is 1:4800. 
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Tansiometers 

Although the neutron probe allows the determination of relative 

values of soil moisture, it does not directly indicate the direction of 

soil moisture movement. The best method to determine this direction is 

with tensiometers, which measure soil tension, or pressure head. The 

hydraulic head is equal to the sum of the pressure head and the 

elevation head. Hydraulic head values are used to determine the 

direction of moisture flow in the soil. 

The basic components of a tensiometer consist of a pressure 

measuring device and a sealed plastic tube with a porous ceramic cup at 

the base. Available measuring devices include Bourdon gauges, mercury 

manometers, and pressure transducers (Morrison, 1983). The type of 

tensiometer used for this study consists of a Bourdon gauge and 

reservoir at the top of the tube (Figure 16). The reservoir allows for 

easy replacement of water lost through the ceramic cup to the 

surrounding soil. The tube body and ceramic cup are 7/8 inch in outside 

diameter. 

The ceramic cup provides the hydraulic connection between the soil 

and the water in the tube. Under dry conditions the soil pulls moisture 

from the tube through the ceramic cup, creating a vacuum in the tube. 

Gauge readings will stabilize when the pressure in the tube is equal to 

the pressure in the soil surrounding the cup. The ceramic cups used 

have an air entry rating of 0.98 atmosphere. Soil tensions are normally 

below this value. 

The elevation head will be different for the gauge and the ceramic 

cup because they are at different depths. To account for this, 0.01 

atmosphere should be subtracted for every 4 inches of depth when using a 

Bourdon gauge tensiometer at depths greater than 25 inches (Richards, 

1965, p. 158) • 
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Figure 16. Schematic of tensiometer design. Cuttings from 
the borehole were used as fill material • 
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The tensiometers were assembled and filled in the field according 

to the instructions provided by the manufacturer. De-ionized, distilled 

water containing an algal growth inhibitor was used to fill the 

tensiometers. Air was evacuated from the tensiometers using a hand pump 

supplied by the manufacturer. This procedure is necessary to remove air 

bubbles from the water, ceramic cup, tube body, and Bourdon gauge. 

In order for the ceramic tip to operate, it must be in intimate 

contact with the surrounding soil. Different methods of installation, 

developed to handle a variety of soil types, have been reported in the 

literature (Richards, 1965; Ingersoll, 1981; SoilMoisture, Inc., 1990). 

A l.5 to 2-inch diameter hole was bored using a power or hand 

auger to install the tensiometers to within 4 to 5 inches of the desired 

depth. A 0.5-inch inside diameter black iron pipe was then driven the 

remaining 4 to 5 inches into the bottom of the hole. The hole created 

by a 0.5-inch inside-diameter pipe is slightly less than 7/8 inch, 

providing the tight fit desired for the ceramic cup. Excavated material 

was used ta back fill the annular space surrounding the tensiometer. 

This material was tamped with a metal rod to prevent water from flowing 

down along the sides of the tensiometers. 

Four tensiometer nests were installed, with each nest placed near 

an access tube. Two nests of three tensiometers were installed in non­

collapsed settings, while two nests of four tensiometers were installed 

in sinkholes (Figure 15). The nests were placed near access tubes in 

the four different topographic settings in order to determine the 

direction of moisture movement in each setting (Table 4). The 

tensiometers were set at 2-foot intervals. None were installed beyond 8 

feet because they do not work well at greater depths. The amount of 

vacuum lost because of the weight of the water column in tensiometers at 

greater depths limits the range of soil tensions the gauge can measure. 

Using the water table as a datum, a topographic map was used to 
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determine the elevation head for each tensiometer, the pressure head 

being taken from the tensiometer gauge, and converted to feet of water. 

Table, 

Tensiometer nests and their topographic classification (See 
Figure 15 for locations). 

Nest Type of Intervals Access Tube 
Number Setting Monitored (ft) Adjacent To 

TNAT-3 sinkhole 2,4,6,8 AT-3 
TNAT-4 non-collapsed 2,4,6 AT-4 
TNAT-7 non-collapsed 2,4,6 AT-7 
TNAT-8 sinkhole 2,4,6,8 AT-8 

Equivalent Moisture 

Snow depths were measured in more than 20 sinkholes in March, 

1989, to determine the amount of equivalent moisture, and to estimate 

the contribution of snow capture to soil moisture. The equivalent 

moisture is determined by comparing the depth of snow in a cylinder to 

the resulting depth of water, upon melting of the snow, in the same 

cylinder. This value may be reported as a ratio of the volume of snow 

versus the volume Of water p~oduced by melting. A cylinder was inserted 

into snow, removed, and the snow was then melted. Equivalent moisture 

ratios reported in this study are depth of snow to depth of equivalent 

water. 

Depth of snow in the sinkholes was measured by forcing a graduated 

pole through the snow to the base of a sinkhole. several snow depths 

were measured in each sinkhole to insure the pole had not encountered a 

boulder or some other irregularity on the floor of the sinkhole. An 

average value for snow depth for each sinkhole was recorded. 

The amount of snow in sinkholes ranged from nearly none to full, 

which in the deepest sinkholes observed could be as much as 15 feet. 

The sinkholes selected for snow depth measurement were typically nearly 

full of snow. Sinkholes full of snow were chosen for measurement to 

illustrate the greatest potential contribution of snow capture. Also, 
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the snow in many partially filled sinkholes rested along one side of the 

sinkhole rather than at the base of the sinkhole, making equivalent 

moisture determinations difficult because of the asymmetrical geometry 

of the snow deposits. 

Water Sample COllectiop 

Water samples were collected to determine background water quality 

at the site. A teflon hand-bailer was used to collect the samples from 

developed monitor wells. At least three casing volumes were removed, 

when possible, before a water sample was collected. 

The temperature, pH, and electrical conductivity of each sample 

were measured in the field with digital meters. Water samples for major 

anion and cation analyses and trace metal analyses were collected for 

most of the wells and two nearby surface ponds. 

All samples were filtered using a pre-filter and a 0.45 micron 

membrane filter. The filtering device was rinsed with distilled, de­

ionized water and flushed with water from the well to be sampled. 

Sample bottles were also rinsed with filtered sample when enough water 

was available. Samples collected for trace metals analysis were 

preserved with l\ nitric acid. Water analyses were performed by EERC 

analytical research laboratory staff (See Appendix V for analytical 

equipment used and water composition data) • 
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RESULTS 

Precipitation 

The drought years of 1988 and 1989 (Figure 17) produced extremely dry 

soil conditions. Although precipitation in 1990 was about average, soil 

conditions remained very dry. The distribution of precipitation during 

1990 (Figure 18) was normal, with approximately 80% of the precipitation 

occurring during April through October. Most of the soil moisture data 

were collected during this period. The bulk of summer precipitation 

coincides with the period of highest evapotranspiration. 

Soil Moisture Profiles 

Changes in soil moisture during the monitoring period can be shown 

using a series of volumetric moisture content versus depth profiles. 

The monitoring dates presented in profiles discussed in the upcoming 

sections were selected to display the greatest variation in volumetric 

moisture content and do not represent the total number of monitoring 

dates (See Appendix I for complete listing of neutron probe data). 

Hon-collapsed settings 

Soil moisture data collected on 2/17/90, 3/23/90, and 4/24/90, 

show little change in soil moisture content deeper than 24 inches at 

most of the access tube locations. In fact, profiles for the five 

access tubes in non-collapsed settings, AT-2, AT-4, AT-6, AT-7, and AT-

10 (Figures 19-23), show almost no change in volumetric moisture content 

at all until 6/6/90. soil moisture profiles for AT-2, AT-4, and AT-7 

(Figures 19, 20 and 22, respectively) show no change in volumetric 

57 
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Figure 17. Precipitation for years 1985 through 1990 (National Weather 
Service data for Wilton station). 

Figure 18. Temporal distribution and amount of precipitation for 1990 
(data from National Weather service station in Wilton). 
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Figure 19. Volumetric moisture content profile for AT-2, set in till; 
non-collapsed, low run-off accumulation potential. 

Figure 20. Volumetric moisture content profile for AT-4, set in till; 
non-collapsed, low run-off accumulation potential. 
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Figure 21. Volumetric moisture content profile for AT-6, set in till; 
non-collapsed, high run-off accumulation potential. 

Figure 22. Volumetric moisture content profile for AT-7, set in till; 
non-collapsed, high run-off accumulation potential. 
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Figure 23. Volumetric moisture content profile for AT-10, set in till; 
non-collapsed, high run-off accumulation potential. 
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moisture content deeper than 36 inches during the entire monitoring 

period. 

The profile for AT-6 shows little variation in moisture content 

between 35 and 70 inches, but shows changes in moisture content between 

70 and 108 inches (Figure 21). Although AT-6 was classified as a high 

run-off accumulation potential site, it was not affected by run-off. 

The increase in moisture content at the lower intervals may be due to 

soil moisture migrating upward or laterally from infiltration in nearby 

sinkholes. 

Changes in volumetric moisture content at AT-10 were recorded to a 

depth of approximately 48 inches (Figure 23), or about 12 inches deeper 

than the other access tubes set in non-collapsed material. No changes 

in moisture content greater than 11 were recorded below 48 inches during 

the monitoring period. 

Collapsed settings 

The volumetric moisture content profiles for access tubes set in 

sinkholes, AT-1, AT-3, AT-5, AT-8, AT-9, and AT-11, show greater 

variations in depth and the amount of change in soil moisture (Figures 

24-29). Changes in volumetric moisture content were recorded during the 

February-June monitoring period in all but one of the access tubes set 

in sinkholes (AT-11 was installed at a later date). The first increase 

in volumetric moisture content in the sinkholes was recorded on the 

3/23/90 sampling date, which coincided with the spring thaw. 

With the exception of AT-9, changes in volumetric moisture content 

were observed over the entire depth of each access tube set in a 

sinkhole. Variations of 8% to 18\ were measured at the 24-inch depth, 

with variations of about 2% being measured at the 108-inch depth (96-
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Figure 24. Volumetric moisture content profile for AT-1, set in till; 
sinkhole, low run-off accumulation potential. 

Figure 25. Volumetric moisture content profile for AT-3, set in till; 
sinkhole, low run-off accumulation potential. 
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Figure 26. Volumetric moisture content profile for AT-5, set in non­
till sediments; sinkhole, high run-off accumulation. 

Figure 27. Volumetric moisture content profile for AT-8, set in non­
till sediments; sinkhole, high run-off accumulation. 
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Figure 28. volumetric moisture content profile for AT-9, set in till; 
sinkhole, high run-off accumulation potential. 

Figure 29. Volumetric moisture content profile for AT-11, set in till; 
sinkhole, low run-off accumulation potential. 
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inch depth for AT-3). Regardless of the estimated run-off accumulation 

potential, the greatest variation occurred at depths of 24 to 48 inches 

in all the access tubes set in sinkholes. This interval is very 

susceptible to evapotranspiration. 

AT-5 and AT-8 are the only two access tubes in non-till material. 

Average values of volumetric moisture content were much higher at AT-5 

(Figure 26) in comparison to the other access tubes, with values at AT-8 

(Figure 27) being most similar to those measured at access tubes in 

sinkholes in till. The profile for AT-5 (Figure 26) shows that 

volumetric moisture contents were near or above the normal range of 

field capacity for soils most of the summer. A long, narrowl drainage 

ditch empties into the sinkhole containing AT-5. 

The lowest or nearly lowest volumetric moisture content in the 

upper part of the soil column at most of the access tubes was measured 

on 2/17/90, with the exception of AT-5 and AT-11. A few access tubes 

had slightly lower levels on either 8/14/90 or 9/29/90, but these 

differences were within 1% to 2% of the volumetric moisture content on 

2/17/90. 

Many of the soil moisture profiles exhibit sharp deflections 

toward higher or lower moisture contents, as opposed to a gradual or 

linear change (Figure 23). The causes of these deflections can be 

attributed to such heterogeneities as changes in stratigraphy in the 

non-till settings (AT-5), the presence of stones within the sphere of 

neutron bombardment, or a layer rich in a neutron-absorbing element, 

such as iron. In cases where the deflection is toward drier conditions 

in till, stones or a large stone may be within the sphere of neutron 

bombardment. This interpretation is baaed upon the presence of gravel 

to boulder-sized material in the till. The sharp deflection measured at 

the 96-inch depth at AT-5 (Figure 26) is the result of a stratigraphic 

heterogeneity. Neutron probe readings from a second access tube 

installed for calibration purposes showed a similar deflection at the 
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96-inch depth. Both tubes were set in the same sinkhole, within a few 

inches of each other in terms of elevation, but approximately 20 feet 

apart. Regardless of such heterogeneities, relative changes in soil 

moisture with increasing depth are still apparent. 

Effects!!.! Precipitation and 

Evapotranspiration 2D Soil Moisture 

Increases in soil moisture content at all the access tube 

locations correlate with the timing and amount of precipitation, and in 

the case of sinkholes, the spring thaw. 

Fluctuations in moisture content above 36 to 48 inches at all 

access tubes correlate with precipitation events and subsequent 

evapotranspiration. Increases in volumetric moisture content between 

April 24 and June 6 ranged from 4\ to 10\ at 24-inch depth with no 

change occurring below 36 inches in the non-collapsed sites. The first 

significant increase in soil moisture levels in the non-collapsed 

settings were recorded on 6/6/90, which was preceded by nearly 4 inches 

of rain in the last three weeks of May (Table 5). 

The highest volumetric moisture content measured at 24 inches in 

all monitored sinkholes occurred on 6/28/90, after more than 6 inches of 

rain during June alone (Table 5). AT-5 and AT-11 were not monitored 

because water had accumulated in the access tubes. 

By 7/31/90, soil moisture had decreased at most depths at nearly 

all of the access tube sites, although soil moisture levels were still 

higher than levels prior to June, from the precipitation that occurred 

in June and July. However, evapotranspiration was greatest during June, 

July, and August, resulting in most infiltration being returned to the 

atmosphere. Average daily high and low temperatures increased from June 

through July (Table 5) . 
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Table 5 

Climatic data for summer of 1990 (National Weather Service data 
for Wilton station). 

May June July Aug. Sep. 

Average daily high •• 75.6 79.1 83.3 75.4 
("F) 

Average daily low ** 52.l 55.2 55.8 48.2 
( D F) 

Precipitation:: (in.) 

Week 1 0.09 l.84 1.01 0.00 l.88 

Week 2 0.00 0.47 0.52 0.05 o.oo 
Week 3 1.31 2.44 0.45 0.45 0.39 

Week 4 0.89 1.91 0.28 0.94 0.14 

Total 2.29 6.66 2.26 1.44 2.41 

** data not available 

By 8/14/90, soil moisture had declined to the lowest levels of the 

summer. September's average daily high was nearly identical to June's, 

but the average daily low was 4°F cooler than in June. Soil moisture 

increased significantly by 9/29/90 in sinkholes, but relatively no 

change was measured in access tubes in non-collapsed areas. In fact, 

the highest levels of soil moisture below 48 inches for most of the 

monitored sinkholes were measured on 9/29/90. By 12/05/90, levels of 

soil moisture had declined again. 

Unsaturated Hydraulic Read 

Soil moisture and hydraulic head profiles for July through 

September 1990 show the relationship between moisture content and 

hydraulic head, and the direction of moisture movement within the soil • 

Soil moisture flows from higher to lower hydraulic head. But increases 
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in moisture content at shallow depths does not always lead to downward 

moisture movement to greater depth because of evapotranspiration. 

Hydraulic gradients may be downward at shallow depths immediately after 

a rain, but evapotranspiration removes this moisture before it can 

infiltrate very deep. 

Changes in the slope of the hydraulic gradient are represented by 

pivot points. These changes in hydraulic gradient mark the confluence 

of downward and upward moisture movement. However, more tensiometers 

are needed to determine the precise depth of changes in hydraulic 

gradient (See Appendix II for complete listing of hydraulic head data). 

Non-collapsed Settings 

The hydraulic head data, along with the volumetric moisture 

profiles, show that infiltration was limited to shallow depths in the 

non-collapsed settings monitored. The hydraulic head profile for TNAT-4 

(Figure 30) shows that the hydraulic gradient above 48 inches was 

variable, with a downward gradient on 7/21/90 and 9/29/90, and an upward 

gradient on 7/21/90 and 8/13/90. Upward gradients were measured below 

48 inches on three of the four monitoring dates. The volumetric 

moisture profile for AT-4 (Figure 31) shows no change in moisture 

content, even with the one downward gradient. 

The hydraulic gradient above 48 inches was downward on three 

monitoring dates for TNAT-7 (Figure 32), with slight upward gradient on 

8/13/90. Hydraulic gradients were upward for the 48 to 72-inch depths 

on all four monitoring dates for TNAT-7. No changes in volumetric 

moisture content were measured below 48 inches in AT-7 (Figure 33). 

The hydraulic head profiles for TNAT-7 (Figure 32) show no change 

in the direction of hydraulic gradients, even though the relative 

magnitude of head decreased during July. The changes in head indicate 

at least a small change in volumetric moisture content should have 

occurred but this was not observed, probably because tensiometer 
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Figure 30. Unsaturated hydraulic head profile from tensiometer data for 
TNAT-4, set in till; non-collapsed, low run-off 
accumulation potential. 

Figure 31. Volumetric moisture content profile for AT-4 with monitoring 
dates that correspond to monitoring dates for tensiometer 
nest TNAT-4. 
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Figure 32. Unsaturated hydraulic head profile from tensiometer data 
for TNAT-7, set in till; non-collapsed, high run-off 
accumulation potential. 

Figure 33. Volumetric moisture content profile for AT-7 with monitoring 
dates that correspond to monitoring dates for tensiometer 
nest TNAT-7. 
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monitoring was not frequent enough, and soil moisture movement had 

equilibrated so that pre-existing gradients were re-established between 

monitoring dates. 

Collapsed Settings 

The hydraulic head profile for TNAT-3 (Figure 34) shows that a 

downward gradient was present over the entire depth monitored for all 

dates except 8/13/90. An upward gradient accompanied by a decline in 

soil moisture was measured on S/13/90 above 48 inches, with a downward 

gradient below 48 inches. Downward gradients were present even though 

the amount of soil moisture was fluctuating (Figure 35). The strongest 

downward gradient and highest moisture content below 48 inches at TNAT-3 

were recorded on 9/29/90, which resulted from a combination of the late 

August/early September precipitation and lower evapotranspiration rate. 

At TNAT-8 the highest hydraulic head (Figure 36) and volumetric 

soil moisture content (Figure 37) were measured in early July. During 

the remainder of the monitoring period, simultaneous declines in 

hydraulic head levels and volumetric moisture content were measured at 

TNAT-8 and AT-8, respectively. The hydraulic gradient was usually 

upward above 72 inches at TNAT-8, and downward below 72 inches, during 

the monitoring period. 

~ gt Sinkhole• and Equivalent Moisture Data 

The total surface area of sinkholes in the southwest quarter of 

Section 5 was measured to emphasize the potential impact of infiltration 

in sinkholes on soil moisture conditions, mainly through snow capture. 

If only a few sinkholes existed in the area, the potential for 

contributions by sinkholes to infiltration would be very low. The 

measured surface area in the southwest quarter of section S, is more 

than 6.3 acres, or about 41 of the quarter section, as determined from a 
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Figure 34. Unsaturated hydraulic head profile from tensiometer data 
for TNAT-3, set in till; sinkhole, low run-off 
accumulation potential. 

Figure 35. Volumetric moisture content profile for AT-3 with monitoring 
dates that correspond to monitoring dates for tensiometer 
nest TNAT-3. 

• 

• 



• Hydraulic head (ft.) 
2120 2126 2132 2138 

24 t 
' •' 

./·· / 7/11/90 ...... .. 
,• ... 
I .. 7/21/90 

48 .. ·· 
1 I 

-+--C: 7/31/90 e 

I .c: I --- ! 8/13/90 C. 
Cl) ' a i ' 

/j --72 ' 9/29/90 

96 

TNAT-3 

Volumetric moisture content 
0.15 0.25 0.35 0.45 

20 

30 

40 7/11/90 

-9--
50 7/21/90 --- 60 7/31/90 

C: 
:.::. -+-

i 8/14/90 
70 Cl) --a 

9/29/90 
80 

90 I 
' " 100 • AT-3 

110 



Figure 36, 

Figure 37. 

84 

Unsaturated hydraulic head profile 
TNAT-8, set in non-till sediments; 
accumulation potential. 

from tensiometer data for 
sinkhole, high run-off 

Volumetric moisture content profile 
dates that correspond to monitoring 
nest TNAT-8. 

for AT-8 with monitoring 
dates for tensiometer 
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topographic map produced from air photos taken in 1981. More sinkholes 

have formed since 1981, so 6.3 acres is a conservative value. A ratio 

2.4:1.0 of depth of snow to depth of equivalent water was obtained from 

measurements in seven sinkholes in March 1989. Values for the depth of 

equivalent water in the sinkholes ranged from 0.85 to 3.39 feet (Table 

6). The ratio is high because of warm temperatures, creating slushy 

conditions. Under normal conditions, the average snow/equivalent water 

ratio is 10 inches:l inch (Oliver and Hidore, 1984, p. 84). Whichever 

ratio is used, the area of sinkholes available for snow capture is 

significant. 

Table 6 

Equivalent moisture data for March 1989 in SWl/4 Sec.5, 

T. 142 N. , R. 79 w. 

Sinkhole Length Width Depth of Equivalent 
Number (ft) (ft) Snow( ft) Water (ft) 

l 28.0 19.8 3.00 1.27 
2 31.0 30.5 5.75 2.44 
3 25.0 24.0 5.00 2 .12 
4 21.0 17.0 2.75 1.17 
5 19.0 19.0 3.00 1.27 
6 15.5 13.0 2.00 0.85 
7 20.0 18.0 2.75 1.17 
8 24.0 22.0 3.67 1.56 
9 19.0 17.5 2.25 0.95 

10 24.0 18.0 3.50 1.48 
11 20.0 17.0 2.50 1.06 
12 9.0 8.0 7.50 3.18 
13 28.0 28.0 8.00 3.39 
14 72.0 24.5 7.00 2.97 
15 7.0 7.0 4.00 1. 70 
16 21.0 17.0 7.00 2.97 
17 26.0 22.0 6.00 2.54 
18 ll.0 10.0 7.00 2.97 
19 29.0 23.0 4.00 1. 70 
20 19.0 18.0 3.00 1.27 
21 35.0 11.0 4.00 l. 70 
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Water Level• 

Ground water levels and the water levels of two ponds were 

monitored to determine the vertical and horizontal components of ground 

water flow at the Wilton site (Appendix III), Water levels steadily 

declined over the entire monitoring period in the wells set in the 

Wilton coal seam and the one well set below the Wilton coal seam 

(Figures 38 and 39). The water levels in the surface ponds experienced 

marked seasonal fluctuations but no strong trend of increasing or 

decreasing levels are apparent {Figure 40). A north-northwest hydraulic 

gradient of 11 ft/mi. is present at the site, measured from MW-4 to GP-2 

(See Figure 41 for hydrograph of wells along this line). MW-1, 2, and 

3, which are close to ND Highway 36, experienced a sharp fluctuation in 

water levels during the summer of 1989 (Figure 38). The timing of these 

fluctuations coincided with reclamation of mine tunnels within the 

highway right-of-way. Aside from these fluctuations, water levels 

declined at a fairly steady rate during the monitoring period. 

MW-6, 7, and 8 are nested, with MW-6 the deepest. The top of the 

screen of MW-6 is 14 feet below the base of the screen of MW-7, the base 

of MW-7 is at the base of the Wilton coal seam, and the base of MW-8 is 

about 17 feet above the coal seam (Table 2), A downward hydraulic 

gradient of approximately 0.21 ft/ft exists between MW-7 and MW-6 

(Figure 39), Dl, the change in length term of the gradient Dh/Dl, was 

measured from the water level in MW-7 to the top of the screen in MW-6. 

MW-8 held water only in June 1991, 

Slug or bail tests were not conducted in wells set in the coal 

seam because recovery was almost immediate after bailing. Using the 

Hvorslev method (Hvorslev, 1951), a hydraulic conductivity of 2 x 10~ 

ft/s was calculated from a bail test performed in MW-6, the only well 

screened below the Wilton coal seam (See Appendix IV for bail test 

data) • 
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Figure 38. Hydrograph of Wells MW-1,2,3. See Figure 3 for well 
locations. 

Figure 39. Hydrograph of Wells MW-4,6,7,9,12. See Figure 3 for 
well locations. 
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Figure 40. Hydrograph of gauging posts set in two ponds. see Figure 3 
for location of posts. 

Figure 41. Hydrograph of wells MW-1,4,7,9 (or 
from upgradient to downgradient). 
of wells. 

4,1,7,9, in order 
See Figure 3 for location 
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Gauging posts were installed in two ponds at the site. GP-1 is at 

the base of strip mine spoils in the east-central portion of Section 6 

(Figure J). The pond has no feeder or discharge streams. GP-2 is in a 

pond in the northeast corner of Section 6. This pond is a small, 

spring-fed marsh. Water drains from this marsh toward the northeast by 

means of a drainage culvert. 

The water level at GP-l remained fairly constant, experiencing 

mainly seasonal fluctuations, such as one sharp increase during June of 

1990 (Figure 40), a month of high precipitation. The water level at GP-

2 also remained relatively constant (Figure 40) because of the presence 

of the drainage culvert. 

water CO.position 

Water samples were collected to provide background water quality. 

Samples were collected from the two ponds and selected wells and 

analyzed for major anions and cations and for trace elements (Appendix 

V). The most abundant cations in the wells and ponds sampled are ca'• 

and Mg'•, with so,,,. and HCOi as the most abundant anions (Table 7). 

Field and laboratory values for pH range from 6.7 to 8.0. 

Between a pH of 7 and 10, dissolved carbonate species will be 

predominantly Hco,- (Drever, 1988, p. 51-52). Some carbonate species 

will be present as H,CO, when the pH approaches 6.4, or as co," when the 

pH approaches 10.2. The concentrations of Hco,- and 11,co, are 

approximately equal at a pH of 6. 4, with concentrations of Hco,- and co," 

being approximately equal at a pH of 10.2. Under most conditions total 

alkalinity is equal to the carbonate alkalinity (Drever, 1988, p. 52). 

Thus, considering the pH of water samples collected from Wilton, the 

carbonate alkalinity is assumed to be equivalent to the concentration of 

aco,- • 
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Table 7 

Wells sampled for water quality. 

Screen 
Well Length Enclosing Sampled for 
Number (ft) Material Water Quality 

MW-1 10 coal m,t 
MW-2 10 coal m,t 
MW-3 10 coal m,t 
MW-4 10 coal m,t 
MW-5 10 coal 
MW-6 1 5 sandy cl. m,t 
MW-7 1 10 coal m,t 
MW-8 1 5 silty cl. 
MW-9 10 coal m,t 
MW-10 10 coal 
MW-11 10 coal 
MW-12 10 coal m,t 
MW-13 10 coal 

l s MW-6, 7, and 8 form a well nest 
m = major anions and cations 
t = trace metals 

A trilinear plot of the major anions and cations of the water 

samples (Figure 42) shows that the composition of water in the Wilton 

coal seam is of a calcium magnesium bicarbonate sulfate type. Most 

water samples plot on top or very near each other on the diagram (Figure 

42). Ground water below the coal seam (MW-6) is a sodium bicarbonate 

sulfate type. 

Ground water composition varies across the site, as illustrated 

with a series of Stiff diagrams for selected wells (Figure 43). Stiff 

diagrams are geometric shapes used to quickly illustrate differences in 

water composition {Stiff, 1951). Keep in mind that a northwest 

hydraulic gradient exists in the Wilton coal, and a downward hydraulic 

gradient exists between MW-6 and 7. Water samples from MW-1 and 4, 

located upgradient, have similar compositions, calcium magnesium sulfate 

bicarbonate. Moving northwest, samples from MW-7 and 9 are also of a 

calcium magnesium sulfate bicarbonate type, but with greater 

concentrations ca2•, Mg'+, so/, and HCOi, and greater TDS than either MW-
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Figure 42. Trilinear diagram showing classification of water samples by 
composition. The size of the circles indicates relative 
abundance of total dissolved solids, with the larger circles 
having greater TDS (Appendix V). The single circle 
indicating higher values of Na+ represents MW-6, which is 
screened below the Wilton coal seam. 
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Figure 43. stiff diagrams overlaid upon map showing selected well 
locations and suspected recharge areas, including reclaimed 
mine pits and sinkholes~ MW-6 and 7 are nested, with 
the top of the screen of MW-6 14 feet below the base of 
MW-7. 
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1 and 4. Water collected from MW-6 has a distinct composition, sodium 

sulfate bicarbonate. Water from the pond in which GP-2 is set is 

compositionally intermediate to water samples from MW-land 4, and MW-7 

and 9. These changes in composition occur in the direction of the slope 

of the water table (see horizontal vector of ground water flow in Figure 

43). The other wells sampled but not shown in Figure 43 have 

compositions similar to MW-1 and 4. 

MW-7 and 9, which are downgradient of the reclaimed mine pits and 

sinkholes in Sections 7 and 8, have the highest concentrations of ca2+, 

Mg2+, sot, and TDS of all the wells and ponds sampled. 

Bk Horizon 
A pronounced Bk soil horizon is present at all access tubes and 

tensiometer nests set in non-collapsed areas. This horizon starts at 18 

to 30 inches below ground surface and varies from approximately 12 to 24 

inches in thickness. This Bk horizon was not found in any of the 

sinkholes monitored . 
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DISCUSSION 

Soil Moisture and Ground Water Recharge 

Infiltration deeper than 48 inches was measured only in sinkholes. 

The range of moisture in the upper half of the soil profile was greater 

in sinkholes than in non-collapsed areas, as was average moisture 

content, during the entire monitoring period. Conditions for deep 

infiltration and recharge were better in sinkholes than non-collapsed 

areas because of greater soil moisture. The differences in soil 

moisture between the collapsed and non-collapsed areas can be attributed 

to differences in snow accumulation, run-off interception, and to some 

degree, differences in the effects of evapotranspiration. 

Winter and early spring precipitation in 1990 was leas than 2 

inches. Increases in soil moisture during late winter/early spring 

occurred at the 12 to 36-inch depths in all the monitored sinkholes, 

with increases of 1% or less within the same intervals in non-collapsed 

settings. Thia difference in moisture conditions is attributed to snow 

capture and run-off interception. Even sinkholes in topographically 

higher areas registered increases in soil moisture in the upper 12 to 24 

inches during the spring thaw. These increases cannot be attributed to 

run-off, suggesting snow capture and infiltration, possibly under frozen 

conditions, or redistribution of soil moisture, as explanations. 

snow capture is effective in supplying moisture to sinkholes. 

Thia moisture may have infiltrated through partially frozen soil or may 

have remained ponded until the soil thawed. Moisture may also have 

migrated upward toward the frost zone during the winter, only to return 

to lower depths as the spring thaw progressed, meaning soil moisture was 

just redistributed. The presence of snow in sinkholes suggests that 

99 
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snow capture is an important mechanism for concentrating precipitation4 

Monitoring throughout the winter would be necessary to determine the 

magnitude of these processes. 

The greatest impact of frozen soils on soil moisture at the site 

is during spring melting. Drier soil conditions, which occur in non­

collapsed areas, result in more open pore space during the spring thaw 

(Horak, 1988), which should result in infiltration of moisture in non­

collapsed settings. But the potential for infiltration during the 

spring melt might be greater in sinkholes than in non-collapsed areas 

because the sinkholes often contain snow when very little snow ie found 

in non-collapsed areas. Also, the melting of snow begins before the 

ground has thawed, resulting in the concentration of run-off in low 

spots and sinkholes. The water remains ponded until it evaporates or 

infiltrates. The lack of change in moisture content at depths below 36 

inches at most sites in the late winter/early spring indicates spring 

melting did not produce any deep infiltration in either sinkholes or 

non-collapsed areas. Thia does not preclude the possibility that deep 

infiltration may occur in association with spring melting under wetter 

conditions. 

Changes in soil moisture observed during the summer and fall 

correlate with precipitation events, run-off, and evapotranspiration. 

The fluctuation of soil moisture in the upper part of the soil profile 

is much greater than in the deeper half of the profile. Precipitation 

that occurred was normally only enough to replenish soil moisture at 

shallow depths, most of which was lost to evapotranspiration before it 

could infiltrate beyond the effective root zone. This interpretation is 

supported by the hydraulic head data, which show upward hydraulic 

gradients in the upper soil profile under moat conditions. 

The amount of water that infiltrated beyond the root zone during 

the summer was kept to a minimum because this is also the period of 

greatest evapotranapiration. The maximum depth of infiltration measured 
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for sinkholes ranged from 48 to at least 108 inches, the greatest depth 

monitored, with infiltration deeper than 36 inches being measured at 

only one non-collapsed setting. Even with 6.6 inches of rain in June 

and 2.2 inches in July, soil moisture declined during the last two weeks 

of July, Further declines in soil moisture in August were the result of 

lower precipitation and higher average daily temperatures than in July. 

The largest increases in soil moisture beyond 48 inches in the 

sinkholes occurred in September, with the exception of AT-8. Although 

the nearly 1 inch of rain in the last week of August (Table 5) and the 2 

inches in September encountered the driest levels of soil moisture for 

the summer, soil moisture increased at depth in monitored sinkholes 

because evapotranspiration rates were lower, due to declining 

temperatures and dormant vegetation. The largest increase in soil 

moisture at AT-8, with a high run-off accumulation potential, occurred 

on 7/11/90, or after the 6.6 inches of rain in June. 

Volumetric moisture content in non-collapsed settings ranged from 

0.14 to 0.30 and from 0.16 to 0.37 in sinkholes. AT-5, in a sinkhole, 

is an exception, with a high value of 0.53. Most of these values are 

within the range of values reported for porosities for unfractured till 

in this region (Grisak and Cherry, 1975). The presence of a swelling 

clay, montmorillonite, results in the production of desiccation cracks 

and joints in the till upon wetting and drying, which contribute to 

higher porosities and, hence, to higher moisture content than might be 

expected in non-collapsed settings. These same factors and inter-block 

channels produced in collapsed material contribute to higher moisture 

content in the sinkholes. 

Precipitation in 1990 was average, but antecedent moisture 

conditions were poor because of two years of severe drought. Soil 

moisture profiles indicate that under such circumstances, deep 

infiltration might only occur in sinkholes. Moisture profiles for non­

collapsed areas show that infiltration was restricted to the upper 36 
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inches of the soil profile in June and July, after a total of nearly 9 

inches of rain during these two months. Therefore, it is unlikely 

significant infiltration leading to storage, and possibly ground water 

recharge, occurred at all during the summer months in non-collapsed 

areas. Deep infiltration may possibly occur during a summer of 

unusually high precipitation, but even under these conditions, the soil 

moisture data suggest that deep infiltration is more likely in the 

sinkholes. 

Under normal climatic conditions deep infiltration and recharge 

appears to be restricted to spring and fall. This seasonal restriction 

of recharge was found at two sites north and northwest of Wilton, at the 

Coal Creek Power Station near Center (Johnson, p. 57, 1990) and near 

Falkirk, North Dakota (Rehm and others, 1982), which is about 25 miles 

northwest of Wilton. 

A rough estimate of the amount of water moving into storage at 

access tube sites where deep infiltration was measured can be made by 

converting the volumetric moisture to inches of water at each interval. 

A 100-inch column of soil with a 30\ volumetric moisture content would 

contain 30 inches of water by volume. A 12-inch long core with a 30% 

volumetric moisture content would contain 3.6 inches of water. In this 

way, fluxes in volumetric moisture content can be expressed in terms of 

inches of water or the volume of water measured at each interval. 

Consider a sinkhole with a diameter of 10 feet, which is equivalent to 

approximately 78.5 square feet using the equation of area= rrr'. Also, 

assuming that the infiltrating water is following a cylindrical path of 

the same diameter as the sinkhole, and that this sinkhole experienced 

2.0 inches (0.17 ft) of deep infiltration, approximately 13.3 cubic feet 

of water would have moved into storage. Moisture may also be 

infiltrating outward from the base of the sinkhole, decreasing the 

amount available to move deeper beneath the sinkhole • 
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The sides of most sinkholes normally slope in toward the bottom, 

so that water ponds over only a fraction of the total surface area of a 

sinkhole. Also, access tubes were installed at the lowest points in 

sinkholes, never along the side of a sinkhole. In order to estimate the 

area through which recharge is occurring, several access tubes would 

have to be installed in a transect across one or more sinkholes to 

determine changes in soil moisture laterally, because soil moisture may 

be migrating outward from, as well as downward through, a sinkhole. 

This area is necessary to calculate the total volume of water 

infiltrating at depth. 

A measured increase or decrease in soil moisture at any given 

depth may not represent the total flux past that interval since the last 

monitoring date, merely the conditions at that time. For example, the 

volumetric moisture and hydraulic head profiles for AT-3 and TNAT-3, 

respectively, indicate increases in soil moisture accompanied by 

downward flow on 9/29/90 below the 48-inch depth. The moisture content 

converted to inches of water at each depth show increases ranging from 

0.18 to 0.40 inches. Rehm and others (1982) state that at the Falkirk 

study site, evapotranspiration is insignificant at depths below 

approximately 4.9 to 6.5 feet. Adding the increases in water volume at 

the 7 and 8-foot intervals yields 0.55 inches of water in the sinkhole 

in which AT-3 was set. This sinkhole has a diameter of approximately 8 

feet, giving an area of about 50 square feet. The area times the 

increase in soil moisture, 0.55 inches or 0.046 feet, gives a volume of 

about 2.3 cubic feet of water. This represents the amount of water that 

had moved into storage at AT-3 when readings were taken on 9/29/90. How 

much water passed the 7 and 8-foot intervals before and after 9/29/90 is 

not known. This is why the estimate of water moving into storage is a 

minimum amount. This amount is known to have reached a depth where 

evapotranapiration is considered ineffective • 
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Bk Rqrizap 

Infiltrating water dissolves soluble salts and minerals and 

transports them downward. Evapotranspiration removes this water from 

the soil before it has a chance to infiltrate very deep in the non­

collapsed settings. When water carrying dissolved salts and carbonates 

is removed through evapotranspiration, the dissolved minerals 

precipitate out in the soil. Repetition of this shallow flushing of 

soluble minerals and subsequent precipitation caused by evapo­

transpiration concentrates the soluble minerals. This process is 

responsible for the Bk horizon in the non-collapsed settings. The 

existence of a well-developed Bk horizon in the non-collapsed till, but 

not in till in sinkholes, indicates there are differences in the amount 

of flushing and, hence, infiltration, that occurs in the two settings. 

Any Bk horizon present before collapse would have been disrupted by 

sinkhole formation, but calcite from the Bk horizon should still be 

abundant in the collapsed material. Less calcite in sinkholes is the 

result of deeper transport of the calcite by deeper infiltration, 

indicating moisture is moving through the soil profile, beyond the 

effects of evapotranspiration. The great depth of the water table, 40 

to more than 115 feet, eliminates the possibility of calcite 

precipitation from discharge processes. 

Equivalent Moisture 

The equivalent moisture data confirm the significant contribution 

of snow capture to soil moisture in sinkholes. Many sinkholes were at 

least partially, if not completely, filled with snow, though very little 

snow cover existed in non-collapsed areas. If the sinkholes were not 

present, the snow would be distributed elsewhere across the landscape. 

But by being concentrated in sinkholes, snow accumulates to depths of 

several feet or more. Ponded conditions result upon melting of the 

snow. 
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These ponded conditions might have occurred in natural topographic 

lows if the sinkholes were not present. But snow and melted snow 

distributed across the non-collapsed areas would be more susceptible to 

sublimation and evaporation because of a greater surface area exposed to 

the sun and wind. Ponding of water probably would not have reached 

depths of 1 to 3 feet were sinkholes not present. 

The equivalent moisture data are unusual in that the 

snow:equivalent water ratio is quite high. This can be explained by the 

fact that samples for equivalent moisture were collected from the 

surface of snow deposits. The upper surface was exposed to high enough 

temperatures to cause melting of the snow, making it more icy or more 

dense. But saturation of the snow was not limited to the upper surface. 

For example, water flowed for several minutes from a hole created by 

pushing a graduated pole to the base of snow in one sinkhole. The snow 

was seven feet deep, and was saturated through its entire depth, so the 

measured ratio might be accurate for some of the sinkholes. Under 

normal conditions the amount of equivalent water will still be greater 

in the sinkholes than in non-collapsed settings.because of snow capture 

and run-off from spring thaw. 

Bydroqaology 

Water Levels 

Water levels at the study site showed relatively steady declines 

during the entire monitoring period. Randich and Hatchett (1965) 

reported that most wells in Burleigh county tend to recover to the same 

levels from one year to the next, but that steady declines occur in some 

areas due to irrigation. No irrigation has been observed at the study 

site. 

If these declining water levels are the result of the dry 

conditions of 1988 and 1989, water table response to climate must be 

fairly rapid. When the depth to the water table is considered, 40 to 



• 

• 

106 

more than 11S feet, the decline of water levels is difficult to explain 

only in terms of precipitation. The declines could be the result of 

several factors, including low precipitation, response to conditions 

prior to monitoring, impacts from reclamation projects, and increased 

use of ground water supplies. 

Water level declines may be partly in response to events that 

occurred prior to the time monitoring began. The years 198S and 1986 

were wetter than normal, with 1987 being slightly below average. The 

water table may have been higher than normal due to these wetter years, 

with the decline in water levels representing a return to more normal 

conditions. Long-term monitoring of water levels might reveal a similar 

water table response if a series of wet years were encountered. 

The decline in water levels may also be attributed to the 

reclamation of the mine pits in Sections 7 and 8 (Figure 3) during the 

summer of 1989, and the reclamation of sinkholes at the site. The base 

of each pit was within 20 to 2S feet the coal seam, providing a short 

path for run-off to reach the water table. Reclamation eliminated the 

chance for run-off to infiltrate directly to the water table, although 

water levels were already declining when these pits were reclaimed. 

These early declines may therefore have been a seasonal response that 

continued due to the reclamation of the pits. 

Another possible, but less likely, factor could be increased 

utilization of water stored in the coal seam by local residents. 

Information concerning estimates of annual water usage was not collected 

for this study. Usage is limited to a few nearby domestic and livestock 

wells. 

Model of Infiltration, Recharge, and Ground Water Flow 

Figure 44 is a conceptual diagram illustrating the likely paths of 

infiltration and ground water flow at the Wilton site. Precipitation, 

in the form of rain and snow capture, is concentrated in sinkholes and 
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Figure 44. Hydrostratigraphic cross-section showing interaction of 
precipitation, evapotranspiration, infiltration, and 
direction of ground water flow. The mine pit has been 
superimposed upon cross-section. See Figure 3 for location 
of cross-section. 

• 

• 



• 
B 
SE 

MSL 
Elevation 
(ft.) 
2200 

2150 

Wilton 
Bed 
2100 

Precipitation 

er~ 
\7//fj<2 

~I /j,1 
f I I I 

/~ '/ 
;' ///_/.,./ 

/ '/ 

.,,ffifn-!flf:--

Mine Pit 
I I 

0 

-- -- -- --- --- -- - ---- - -- -- -- -- - --

~ TIii U Evopotronspirotion 
Inferred 

F=::=i lnterbedded sands, -+- Direction of 
~ silts,cloys,cool Ground Water Flow 

~ Collapsed Material 

"v Water Tobie 

N 

~ 

~Pond 

B' 
NW 

0 
I 

1200' 
I 

• 



• 

• 

109 

topographic lows. Prior to reclamation, precipitation was also 

concentrated in the mine pits in Sections 7 and 8 (Figures 3). As 

indicated by arrows in Figure 44, moisture probably moved into storage 

in the mine pits and sinkholes, which could possibly drain to the water 

table present in the Wilton coal seam. Ground water flow in the coal 

seam has both a horizontal and vertical component. 

The configuration of the water table appears to be strongly 

influenced by the geometry of the base of the Wilton coal seam (Figure 

45), rather than the configuration of mine tunnels. This indicates that 

ground water is not readily drained by the mine tunnels. Therefore, the 

mine tunnels appear to have little overall effect on ground water 

velocity across the mine. 

Because the room and pillar mining method used at the site removes 

approximately only 60% of the coal, and not all areas of the coal seam 

were mined, a volume of coal remains that is probably at least equal to 

the combined volume of open tunnels, collapsed tunnels, and reclaimed 

tunnels. One way to estimate the hydraulic properties of the coal is to 

assume that the tunnels do not affect ground water flow in the coal 

seam. Values for the hydraulic properties of the unmined coal can be 

estimated from studies carried out at nearby sites, such as Falkirk 

(Rehm and others, 1980). 

Most of the effective porosity and permeability in coal is from 

fractures (Rehm and others, 1980). If fractures in the coal are assumed 

to provide the porosity within the coal, the specific yield can be used 

as a measure of effective porosity (Rehm and others, 1980). Values for 

fracture porosity of coal are normally a fraction of 1% (Freeze and 

Cherry, 1979, p. 157). There are few data on measured fracture 

porosities or specific yield of coal in this region. A specific yield 

of 0.01 was determined from a pump test in an unconfined coal aquifer in 

North Dakota (Moran and others, 1978) . 
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Figure 45. Contour map depicting configuration of water table on 
11/4/89 (in feet). Well numbers are posted as single-digit 
numbers, with well positions marked by plus signs. MSL 
elevations of the water table are posted below the well and 
gauging post numbers. The heavy-dashed line on Figure 3 
represents the border of this map. 
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Assuming fractures account for the porosity of the coal seam, an 

estimate of ground water velocity can be made using an average value for 

hydraulic conductivity for lignite deposits in this region. The 

equation used is 

v 2 Ki/n 

where K is the hydraulic conductivity, i is the hydraulic gradient, and 

n is the porosity. Using 1 x 10·' ft/s for hydraulic conductivity (Rerun 

and others, 1980), a porosity of 0,01 (Moran and others, 1978), and a 

gradient of 11 ft/mile (2 x 10·' ft/ft) measured at the site, the average 

ground water velocity in the coal seam would be 2 x 10~ ft/s, or 

approximately 63 ft/yr, assuming that all ground water flow in the coal 

seam remains horizontal, which may not be the case. 

The actual length water will travel in the Wilton coal seam before 

moving downward is difficult to quantify with assumed values of 

hydraulic conductivity. The presence of the clay between the coal seam 

and the clayey, silty sand, and the difference in water composition 

between the two water-bearing units suggests that ground water flow may 

be predominantly horizontal. But, the difference in water quality 

between MW-6 and 7 can be explained by the process of cation exchange as 

ground water passes from the coal through the clay. Also, the water 

levels of MW-6 and MW-7 show simultaneous declines during the monitoring 

period, suggesting hydraulic connection between the two water-bearing 

units. Additional information that may support the interpretation of a 

stronger downward flow component, rather than horizontal, is the 

apparent lack of effect of mine tunnels on flow within the coal seam. 

Flow lines can be drawn for sediments above the coal, within the 

coal, and the underclay, using estimates for the hydraulic 

conductivities of the coal and the underclay, Once again assuming a 

hydraulic conductivity of 1 x 10·' ft/s for the coal and an average value 

of 1 x 10-7 ft/s for the hydraulic conductivity of the underclay (value 

for Paleocene aquitards from Rerun and others, 1980), flow lines can be 
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drawn using the relationship of tangential refraction of flow in 

heterogeneous materials (Figure 46), as described by Frseze and Cherry 

(1979, p. 173). This diagram indicates refraction causes flow lines in 

the coal seam to be locally horizontal, but without knowing the actual 

values of hydraulic conductivity for the coal and the underclay, the 

length of the horizontal pathline cannot be determined. A pump test in 

the lower aquifer, with piezometers in the coal, underclay, and lower 

aquifer could further clarify the horizontal and vertical components of 

ground water flow in and through the Wilton coal seam. Another unknown 

is the local stratigraphic variability of the underclay and the lower 

silty sand. Additional exploratory drilling and monitoring wells are 

needed to examine these relationships in more detail. 

Water Coapoaition and Ground Water Recharge 

The geochemical evolution of ground water at the site begins with 

water infiltrating into the soil. C01 and 0 1 are concentrated in the 

soil as a result of the decay of organic material and respiration of 

plant roots (Freeze and Cherry, 1979, p. 240). Levels of CO2 and 02 are 

normally higher in the soil than the atmosphere because of biochemical 

activity and restricted gas circulation in the soil (Trainer and Heath, 

1976). As water percolates through the soil, carbonic acid is formed: 

co, + a,o • a,co,. This acid production allows for the dissolution of 

carbonate minerals that are abundant in the till, namely calcite (CaC03 ) 

and dolomite (CaMg(C0,) 2). Continued biologic activity replenishes co, 

consumed in the dissolution of carbonates, in effect creating an acid 

pump (Freeze and Cherry, 1979). The dissolution of carbonates frees 

aco,· along with the ca2+ and Mg'+, producing a calcium magnesium 

bicarbonate water. This process explains the major constituents of the 

ground water in the coal seam with the exception of so,~, which is 

probably supplied by one or two sources at the site. ca2
• and so/ can 

be supplied by the dissolution of gypsum (Caso, • 2H,0), and so/ 
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Figure 46. Diagram illustrating refraction of flow lines (modified from 
Freeze and Cherry, 1979, p.173). K1 and K2 represent 
hydraulic conductivities, with K2 being 100 times greater 
than K1 • 

• 

• 
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also by the oxidation of iron sulfides (FeS,). Both gypsum and iron 

sulfides are common in Tertiary sediments (Bullion Creek Formation at 

the site) of North Dakota Groenewold and others, 1979, p. 7). 

The downward gradient between the aquifer in the coal seam and the 

underlying confined aquifer, along with the topographically high 

position of the site, suggest recharge is the source of water for the 

coal seam. The composition of the water in the coal seam is similar to 

the calcium sulfate bicarbonate Type III water of Freeze and Cherry 

(1979, p. 284), which they associate with ground water in glacial 

deposits in the Northern Great Plains. This agrees with the 

interpretation that recharge is occurring at the study site. 

Figure 47 is similar to Figure 43 in that it shows the 

distribution of different water compositions at the site. Figure 47 

provides a more graphic illustration of the potential contribution of 

the now-reclaimed mine pits and sinkholes to water composition. The 

differences in composition between MW-6, which is screened below the 

coal seam, and the wells screened in the coal seam indicate geochemical 

evolution of ground water as it moves from the coal seam to the lower 

aquifer. One possible explanation for this difference is that ca'+ and 

Mg'+ are substituting for Na+ through cation-exchange as ground water 

from the coal seam moves downward. The predominant clay minerals in 

Tertiary rocks in North Dakota are illite and sodium-rich 

montmorillonite (Groenewold and others, 1983). Montmorillonite has a 

high cation-exchange-capacity, in which calcium and magnesium easily 

exchange for sodium. As ground water migrates downward through the clay 

underlying the coal, its composition changes from a calcium magnesium 

bicarbonate sulfate to a sodium bicarbonate sulfate composition. 

Another possibility is the anaerobic reduction of so/, causing 

Hco,- to become the dominant anion. The reduction of so/ could result 

in the precipitation of gypsum and iron sulfides. As ground water loses 

ca2+and so/, and Ca2+ and Mg2+ exchange with Na+ on clay particle 
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Hydrostratigraphic cross-section 
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surfaces, water compositions should change from a calcium magnesium 

sulfate to a sodium bicarbonate composition, which is observed between 

MW-6 and 7. 

The differences in water composition between MW-7 and 9 and the 

remaining wells in the coal can also be explained in terms of recharge. 

The values for TDS, ca2+, Mg2+, and so/ are higher in MW-7 and 9 than in 

the other wells and ponds (Appendix V). Greater recharge upgradient of 

MW-7 and 9 might explain why these values are higher than values for 

surrounding wells in the coal seam. The mine pits and sinkholes 

reclaimed in 1989 are upgradient of MW-7 and 9, and the greatest 

concentration of sinkholes remaining at the site, and the sinkholes 

reclaimed in 1981, are upgradient of MW-9 (Figures 43 and 47). These 

two pits, due to the proximity of their bases to the coal seam, and the 

sinkholes probably contributed more to ground water recharge than non­

collapsed settings. 

If the differences in water composition between MW-1 and 4 and MW-

7 and 9 are the result of greater recharge upgradient of MW-7 and 9, 

this relationship might also be observed elsewhere, such as the spring­

fed pond in the northeast corner of Section 6 (GP-2). The composition 

of water samples collected from this pond is intermediate in terms of 

TOS, ca2+, Mg2+, and sot when compared to water samples from MW-7 and 9 

and the other wells in the coal seam (Figure 43). This may be the 

result of mixing of surface water and ground water similar to that in 

MW-7 and 9, with ground water similar to that of the other wells in the 

coal seam, which might indicate that water discharges to this pond from 

different directions. 

Bstiaating Recharge 

A rough estimate of recharge that occurs in sinkholes can be 

calculated from the soil moisture data. Thia estimate ii not very 

accurate but does show the relative magnitude of recharge in sinkholes 
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for 1990. A flux of water through the Wilton coal seam over one year 

can be calculated using the following equation: 

Q=Kil 

where Q is the discharge, K is the hydraulic conductivity in the coal 

seam, i is the vertical gradient, and A is area. Using an estimate of 1 

x 10·' ft/s (315 ft/yr) for hydraulic conductivity for regional coal 

seams (Rerun and others, 1980), a downward gradient of .21 ft/ft, and an 

area of approximately 7 x 106 ft2 (area of a quarter section), an annual 

flux of 4.6 x 108 ft'/yr can be calculated for the coal seam. The 

measured surface of area of sinkholes in the southwest quarter of 

section S was about 6.3 acres, which represents approximately 3.9% of 

the surface area of a quarter section. Multiplying the value of 0.046 

ft of deep infiltration measured in AT-3 for September by the total area 

of sinkholes (3.9% of 7 x 106 ft2) gives a volume of recharge of 1.3 x 

104 ft'. A comparison of these estimated values shows that recharge 

through sinkholes is several orders of magnitude less than flux through 

the coal seam. The estimate of recharge used assumes that the same 

amount of recharge occurs in all sinkholes in the southwest quarter of 

section S, which the soil moisture data show was not the case for 1990. 

Also, the amount of recharge is based on soil moisture data collected in 

a year following two years of drought. Sut even with a wet year, the 

amount of recharge occurring in sinkholes will probably represent a very 

small number in comparison to the flux through the coal seam over one 

year. 

If sinkholes do not supply much recharge to the coal seam, then 

recharge to the water table must be coming from other sources, such as 

topographic lows and formerly from unreclaimed mine pits. It may be 

that ground water use has been low enough that ground water levels have 

not declined dramatically since this area was settled. Continued use of 

local ground water supplies may outpace the capacity for recharge at the 

site, which would result in continued declines in water levels. 
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COHCLUSIOHS 

1. Data show that soil moisture was greater in sinkholes than non­

collapsed areas throughout the monitoring period, which may have 

resulted in higher hydraulic conductivities in sinkholes, producing 

conditions more conducive to infiltration and ground water recharge in 

sinkholes. Also, the formation of inter-block cracks and channels in 

collapsed sediment results in greater permeability in sinkholes than in 

non-collapsed areas. 

2. Measurement of hydraulic head in soils show that the hydraulic 

gradient was always upward at depths below 48 inches in non-collapsed 

settings monitored with tensiometers, with the exception of one 

monitoring date for TNAT-4 (Figure 30). No changes in moisture content 

were measured below 48 inches in non-collapsed areas, indicating there 

was no downward flow of moisture below this, even though temporary 

downward gradients may have existed immediately after a rain. The only 

downward movement of soil moisture below 48 inches occurred in 

sinkholes. 

3. No deep infiltration or recharge occurred in sinkholes or non­

collapsed areas as a result of the spring thaw in 1990 due to lack of 

winter precipitation and antecedent dry soil conditions. That is, field 

capacity was never exceeded during the spring thaw at any of the 

settings monitored. Moisture content did increase in the upper few feet 

of soil in the monitored sinkholes, though. 

4. The only measured deep infiltration occurred in sinkholes. This 

deep infiltration represents water that may have moved into storage. 

Future infiltration events and drainage by gravity could possibly move 

this moisture deeper • 

121 
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S. Only very rough estimates of the total amount of water that moved 

into storage in sinkholes during 1990 can be made because infiltration 

below the effective root zone was not measured in all monitored 

sinkholes. Also, the amount of infiltration measured was variable 

between monitored sinkholes. Estimates of deep infiltration or recharge 

made are for specific sinkholes on specific monitoring dates, can be 

extrapolated to include all the sinkholes, but his provides only an 

order-of-magnitude estimate, which is not necessarily very accurate. 

But it does provide a means for comparing the flux of ground water 

through the Wilton coal seam to recharge in the sinkholes in the 

southwest quarter of Section 5. This estimate shows that recharge in 

the sinkholes is several orders of magnitude less than the flux of 

ground water through the Wilton bed. More frequent monitoring of access 

tubes and more access tubes in sinkholes would be required to provide a 

statistical average of deep infiltration in sinkholes, and therefore a 

more accurate estimate of annual recharge in sinkholes, during any 

monitoring period. 

6. Soil moisture and climatic data from this and other studies in this 

region indicate that the highest potential for ground water recharge 

occurs in spring and fall. High evapotranspiration rates minimize the 

potential for recharge during the summer season, even though most 

precipitation occurs during this time. 

7. Deep infiltration or recharge is unlikely to occur in non-collapsed 

settings during summers with a normal amount and normal temporal 

distribution of precipitation. Most, if not all summer precipitation 

will be evapotranspired before it can infiltrate beyond the effective 

root zone in non-collapsed settings. If enough precipitation to lead to 

deep infiltration in non-collapsed settings did occur, recharge would be 

much greater in sinkholes than in non-collapsed settings. 

8. Water levels will probably continue to stabilize as a result of 
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reclamation of several recharge sites, including pit mines and possibly 

sinkholes. 

9. Simultaneous declines in water levels in both aquifers suggest 

hydraulic connection between the two. The apparent lack of effect of 

tunnels on the water table might suggest that the downward flow 

component is stronger than the horizontal flow component at the site. 

10. Water quality data suggest that the mine pits in Sections 7 and 8, 

which were reclaimed during the sununer of 1989, may have contributed 

significantly to ground water recharge. 

11. While differences in water composition might be interpreted as 

indicating hydraulic isolation between the Wilton bed and the silty 

sand, these differences can be explained by cation exchange and sulfate 

reduction as ground water moves through the clay underlying the Wilton 

coal seam. 

12. The greatest potential for recharge at ground surface was most 

likely in topographic lows prior to disruption of the landscape by 

mining. Recharge in the post-mining landscape occurs in topographic 

lows, mine pits, and sinkholes. The topographic position of the site 

and the downward hydraulic gradient between the Wilton coal seam and the 

lower clayey, silty sand suggests that recharge occurs at the site from 

the water table, which lies slightly above or within the Wilton coal 

seam, to underlying units. 

Although deep infiltration was measured in some sinkholes and not 

in non-collapsed settings, estimates of recharge indicate that recharge 

was several orders of magnitude lower than the flux of water from the 

local water table to a lower aquifer. Reclamation would eliminate these 

sinkholes as recharge mechanisms but their loss as a recharge mechanism 

may not be that important. If the amount of estimated recharge is 

tripled, it would still be orders of magnitude less than the flux of 

water through the coal seam. But the ground water at the site must have 

a source. Either ground water levels have continuously declined since 
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initiation of ground water or other mechanisms contribute the major 

portion of recharge to the coal seam aquifer. 

Even so, because of the benefits of increases in soil moisture 

(creating more productive pasture) and ground water recharge potential, 

sinkholes at abandoned underground mines in this region could be left 

unreclaimed if they do not endanger surface structures and are not at 

risk of contamination, saving the expensive cost of reclamation. If 

they pose a threat to the general public or are at risk of 

contamination, they should be reclaimed • 
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RECOMMEJfllATIORS POR P'U'rURE WORK 

The deep infiltration measured during this study was the amount 

that had occurred only at the time of measurement, not before or after a 

specific monitoring date. The total increase in soil moisture beyond 

the zone of effective evapotranspiration could be measured more 

accurately by monitoring on a daily basis during the spring thaw through 

the fall, until the surface freezes. 

Tensiometers should be installed at one-foot intervals or less. 

The two-foot intervals used for this study were not adequate to pinpoint 

deflections in the hydraulic head profiles. The tensiometers should 

also be monitored on a daily basis. Daily monitoring could be scheduled 

to measure diurnal effects on soil moisture movement. Remote data 

loggers could be used to record pressure head data, along with water 

level and precipitation data. 

Access tubes could be monitored throughout the year to study soil 

moisture redistribution during the winter. It would be interesting to 

see if any infiltration occurs while the ground is partially or 

completely frozen, and whether or not there is a difference in 

infiltration rate between sinkholes and non-collapsed settings during 

this time. 

For a relatively accurate estimate of recharge, a greater number 

of sinkholes should be monitored, due to the variations in infiltration 

between the six sinkholes monitored. Access tubes of at least 20 feet 

long would be very useful in determining if the assumption of 6.5 feet 

as the lowest depth of effective evapotranspiration is valid. Also, at 

least a few sinkholes should be monitored with one or more transects of 
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• 

• 

126 

access tubes across their widths, to determine the amount of, if any, 

lateral flow of soil moisture occurs from the sides of the sinkholes. 

Lysimeters could be installed at the site to provide data in at 

least three different areas. One would be to determine the chemical 

evolution of water from precipitation to recharge. Another area of 

study would be to determine whether infiltration mounds around an 

isolated sinkhole, or whether infiltrating moisture stays mostly within 

the collapsed material as it moves downward. Lysimeters could also be 

used to track wetting fronts at greater depths. 

The hydraulic properties of the coal seam were estimated from 

studies done at other sites. A pump test in the Wilton coal seam would 

provide site-specific data, but this data may be difficult to interpret. 

Flow rates during a pump test might be greater in the tunnels if the 

pumping well is situated near an indurated tunnel. Directional 

differences in hydraulic conductivities between different materials 

within the aquifer would be difficult to assess because the distribution 

of all open tunnels and collapsed tunnels, along with the presence of 

reclaimed tunnels and remaining coal is not known. 

Of more use would be a pump test in the aquifer below the coal. 

This would determine the amount of hydraulic connection between the 

Wilton coal seam and the lower aquifer. It would also determine whether 

the horizontal or vertical flow component in the coal was dominant. 

The differences in water composition between the nested wells, MW-

6 and 7, may be the result of cation exchange and not hydraulic 

separation. Isotope analysis might show whether the ages, and 

therefore, sources of water are different for the coal and clayey, silty 

sand. This may also help determine the connection between the two 

aquifers • 
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APPENDIX I 

NEUTRON PROBE DATA 

CALIBRATION EQUATIONS 

VOLUMETRIC MOISTURE CONTENTS 
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128 • NEUTRON PROBE COUNTS·PER·MINUTE 

TUBE DATE DEPTK (in) 
NUMBER 24 36 48 60 72 84 96 108 -----~--

02/17/90 51052 45889 55740 61269 57007 73962 76814 78987 
03/23/90 77408 71344 68600 71630 60017 73607 77605 80388 
04/25/90 73390 69320 71280 73628 60122 74668 76768 80119 
06/06/90 74473 74721 74076 71849 59360 74738 76335 80089 
06/28/90 78857 79879 m44 73723 61851 74547 76m 79450 

AT-1 07/11/90 75029 72091 74563 75632 59512 73981 76089 79668 
07/31/90 69264 67143 70635 72494 59017 73992 76063 79543 
08/14/90 64733 63325 66839 68961 57527 73448 74960 79309 
09/29/90 71355 69312 73366 78216 64901 m10 78326 80453 
12/05/90 68670 66018 69778 73008 60152 75015 76607 80002 
06/15/91 78970 78928 78641 81240 66310 78606 79750 82887 

02/17/90 42199 43742 46191 50234 52422 55088 57857 60947 
03/23/90 42287 43649 46203 50325 52108 55010 58144 60053 
04/25/90 42217 42915 46048 50315 52502 54586 58399 60219 
05/17/90 43047 43561 46096 50332 52154 54384 58322 60322 
06/06/90 56512 43499 46525 49812 52012 55002 57990 60384 

AT-2 06/28/90 60242 43547 46459 50306 52229 54902 58079 60377 
07/11/90 61390 44302 46447 50472 52016 54738 58745 60194 
07/31/90 46917 44265 45963 49761 52195 54722 58180 60292 
08/14/90 42120 43641 46106 49626 51850 54830 58050 60599 
09/29/90 42496 43691 46181 50370 52396 54863 58367 60170 
06/15/91 28869 49414 45851 49934 52083 54823 58188 60039 

02/17/90 80819 58982 60188 67101 67778 71197 74485 
03/23/90 85496 71389 70496 70369 67466 71276 74635 
04/25/90 80188 69870 70092 69277 67258 71584 74219 
06/06/90 85495 76744 73662 68584 66916 71843 74822 
06/28/90 90466 83860 75595 70492 68118 71462 74867 

AT-3 07/11/90 86025 74734 76182 72837 67387 71981 74256 
07/31/90 79353 71394 72870 71575 67587 71963 74254 
08/14/90 72695 68361 71091 70428 67103 71603 74087 
09/29/90 80420 72264 74548 74395 73313 76394 77879 
12/05/90 78669 69783 71636 72273 70789 74171 76103 
06/15/91 89m 79070 78388 76042 72997 76096 76825 

02/17/90 41167 41527 48576 63473 66284 67285 68548 70260 
03/23/90 41549 41457 48562 63377 66193 67192 68317 70150 
04/25/90 41990 41859 48799 62683 66003 67075 68751 70152 
05/17/90 42457 41967 48937 62974 65937 67201 67750 69m 
06/06/90 52727 41959 48952 62946 65578 67164 67781 69374 

AT·4 06/28/90 52712 42578 49382 63213 66179 67207 69970 
07/11/90 51632 42883 49976 62886 65942 67509 68106 69862 
07/21/90 46701 42472 49454 63110 65896 67084 67981 70244 
07/31/90 41958 42616 48742 62799 65995 67408 68447 69721 
08/14/90 40140 41533 47736 62975 66004 66783 68626 70579 
09/29/90 41535 41673 48179 62667 66322 67558 68521 69939 
12/05/90 41864 41762 48370 62581 66537 67397 68830 69931 
06/15/91 53700 55661 49923 61910 65570 67003 68191 69455 

02/17/90 75383 79840 87628 96031 93598 97299 85511 95651 
03/23/90 84318 83014 87859 96379 94427 98540 88208 94646 
04/25/90 81458 79929 88766 96714 93808 97306 85051 95227 

AT·5 05/17/90 89009 82110 88139 96643 93660 97471 84454 94831 
07/31/90 76214 ma2 92431 98681 94352 98381 88823 98181 
08/14/90 72218 70829 73468 94797 94738 99059 88041 98106 
09/29/90 87539 93955 94868 96452 93876 98865 88831 97080 
12/05/90 88849 91957 92921 95964 94383 98539 87191 95994 

02/17/90 30834 46743 61951 64406 71077 68049 70187 64728 
03/23/90 31468 45567 61724 63708 71612 67979 69609 64388 
04/25/90 31904 47523 61246 64445 71064 68476 69004 64849 
06/06/90 42808 46486 61454 64653 71446 67492 69956 64302 
06/28/90 49032 46631 61451 64031 71337 67738 69398 64428 

AT·6 07/11/90 50719 47336 61270 64293 71201 67626 69665 63713 
07/21/90 42686 48001 61901 63557 ~ 67750 69707 64335 • 07/31/90 35746 47788 61779 64946 70941 67403 68905 63468 
08/14/90 32190 47740 61788 63679 71182 71187 66841 68668 



129 • TUBE DATE DEPTH (in) 
NUMBER 24 36 48 60 n 84 96 108 

--------
09/29/90 32886 47154 61751 63517 70599 65931 67290 62690 

AT·6 12/05/90 32753 46783 61751 63261 70927 65851 67454 62407 
06/15/91 40717 51027 61692 63784 70383 65562 66488 61370 

02/17/90 47610 48789 50070 53906 56462 59742 61866 66129 
03/23/90 47393 48083 50023 54210 56223 59695 61522 65841 
04/25/90 47862 48056 49831 54075 56317 59714 61788 65305 
05/18/90 48337 48347 50092 53407 55807 59516 61670 65306 
06/06/90 65028 48627 50081 53744 56339 60054 62063 65846 

AT·7 06/28/90 68315 48451 50364 53936 56392 60001 61947 65837 
07/11/90 68375 48759 49864 54305 56164 59668 61290 65183 
07/21/90 60974 49316 50479 54174 56308 59523 62004 65507 
07/31/90 51291 48721 50358 54462 56004 59858 61596 65531 
08/14/90 45747 47888 49746 54078 56083 59488 61753 65895 
09/29/90 49435 47559 50215 54295 56076 59587 61643 65344 
12/05/90 48688 48165 50444 53638 56529 60033 62164 65611 
06/15/91 56302 48955 49241 53794 55666 59402 61704 65366 

02/17/90 64033 70011 73666 75815 86195 86499 76923 80692 
03/23/90 80060 71029 73298 74495 85264 86377 77030 80734 
04/25/90 88509 80500 77011 77423 85391 85544 76362 80224 
05/18/90 90096 80564 76744 77772 84844 85971 76446 79264 
06/06/90 91594 86932 80958 81084 85449 85887 75961 79924 

AT·8 06/28/90 92570 81973 79575 81049 86834 86053 76353 79813 
07/11/90 87658 80827 78655 80487 86863 86156 76422 79862 
07/21/90 85057 77692 77695 78076 85992 85411 75979 79436 
07/31/90 81390 74929 75853 76433 85264 86281 75744 79525 
08/14/90 74948 70815 73266 74008 84399 84429 76042 79632 
09/29/90 84530 75477 72136 71892 81991 82743 75212 79520 
12/05/90 79576 72611 71880 71686 81911 81236 74270 79437 
06/15/91 90895 85635 80804 82722 89418 91529 79055 

02/17/90 47816 47396 47013 53303 70314 73031 76465 77971 
04/25/90 80616 57702 46812 54050 70644 72781 76860 78140 
06/06/90 89127 80593 4m6 53907 70439 72836 76399 77181 
06/28/90 92678 82933 55162 53800 70560 72801 76715 77963 

AT·9 07/11/90 86458 84401 60623 54622 70745 72670 76519 77129 
07/31/90 71898 75026 60647 54165 70546 72598 76165 77983 
08/14/90 54761 60150 57828 54286 70688 72345 76048 77421 
09/29/90 71047 64110 54067 56364 70621 72001 75929 m81 
12/05/90 66696 62467 53547 56563 70522 72135 76078 76366 
06/15/91 85116 88476 76826 81684 84540 82158 82790 83010 

02/17/90 37792 41405 44211 38953 54176 57905 59196 59962 
03/23/90 40161 41192 44227 38548 54063 57669 59049 59796 
04/25/90 41570 40519 43902 38266 54532 57485 59574 60133 
06/06/90 66301 40954 43844 38899 54629 57090 59295 59779 

AT·10 06/28/90 68116 43764 43739 38827 54165 5m1 59166 59904 
07/11/90 65092 47877 44153 38559 54039 57478 59383 59672 
07/31/90 48168 46723 44167 39029 54253 57676 59465 59722 
08/14/90 38211 43129 44233 38553 53985 57406 59381 59907 
09/29/90 37246 41017 44387 38960 54645 57623 59679 59381 
12/05/90 37000 41116 44032 39045 53758 57501 59325 60084 
06/15/91 51765 61276 50865 38611 54171 57931 59590 59717 

05/18/90 63539 47300 68969 72039 73363 70700 78380 78187 
06/06/90 76341 73332 70497 71944 72489 70752 78781 77794 
07/11/90 79339 mB4 89160 81200 75451 70368 78587 78336 

AT·11 07/31/90 72677 73469 86965 79611 76075 71042 78569 78398 
08/14/90 34577 69957 84023 78995 75459 70795 78431 78362 
09/29/90 74251 74656 88317 81322 84040 79024 81891 79426 
12/05/90 69763 70058 84104 78792 78893 74851 80082 79302 

• 
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130 • Equatfon used to convert neutron probe counts to volunetric moisture content: 

Till: e • 4.32 x 10'(nl - o.02316 
Non-tHl: 9 • 6.54 X 10.'(n) · 0.11463 

where n = nunber of neutron probe cCM11ts. 

AVERAGE BULK OENS!Tll'i:ll • 1.41 g/cm' 
Non-till= 1.43 g/cm3 

VOLUMETRlC MOISTURE CONTENT 
(X 100 = I Moisture Content) 

TUBE DATE DEPTH ( in) 
NUMBER 24 36 48 60 n 84 96 108 _____ ,. __ 

--.------
02/17/90 0.20 0.18 0.22 0.24 0.22 0.30 0.31 0.32 
03/23/90 0.31 0.29 0.27 0.29 0.24 0.29 0.31 0.32 
04/25/90 0.29 0.28 0.28 0.29 0.24 D.3D 0.31 0.32 
06/06/90 0.30 0.30 0.30 0.29 0.23 0.30 0.31 0.32 

AT-1 06/28/90 0.32 0.32. 0.31 D.30 0.24 0.30 0.31 0.32 
07/11/90 0.30 0.29 0.30 0.30 0.23 0.30 0.31 0.32 
07/31/90 0.28 0.27 0.28 0.29 0.23 0.30 0.31 0.32 
08/14/90 0.26 0.25 0.27 0.27 0.23 0.29 0.30 0.32 
09/29/90 0.29 0.28 0.29 0.31 0.26 0.31 0.32 0.32 
12/05/90 0.27 0.26 0.28 0.29 0.24 0.30 0.31 0.32 
06/15/91 0.32 0.32 0.32 0.33 0.26 0.32 0.32 0.33 

02/17/90 0.16 0.17 0.18 0.19 0.20 0.21 0.23 0.24 
03/23/90 0.16 0.17 0.18 0.19 0.20 0.21 0.23 0.24 
04/25/90 0.16 0.16 0.18 0.19 0.20 0.21 0.23 0.24 
D5/17/90 D.16 0.17 o. 18 0.19 0.2D 0.21 0.23 0.24 
06/06/90 0.22 0.16 0.18 0.19 0.20 0.21 0.23 0.24 

AT-2 06/28/90 0.24 o. 16 0.18 0.19 0.20 0.21 0.23 0.24 
07/11/90 0.24 0.17 0.18 0.19 0.20 0.21 0.23 0.24 
07/31/90 0.18 0.17 0.18 0.19 0.20 0.21 0.23 0.24 
08/14/90 0.16 0.17 0.18 0.19 0.20 0.21 0.23 0.24 
09/29/90 0.16 0.17 o. 18 0.19 0.20 0.21 0.23 0.24 
06/15/91 0.10 0.19 0.17 0.19 0.20 0.21 0.23 0.24 

02/17/90 0.33 0.23 0.24 0.27 0.27 0.28 0.30 
03/23/90 0.35 0.29 0.28 0.28 0.27 0.28 0.30 
04/25/90 0.32 0.28 0.28 0.28 0.27 0.29 0.30 
06/06/90 0.35 0.31 0.30 0.27 0.27 0.29 0.30 
06/28/90 0.37 0.34 0.30 0,28 0.27 0.29 0.30 

AT-3 07/11/90 0.35 0.30 0.31 0,29 0.27 0.29 0.30 
07/31/90 0.32 0.29 0.29 0.29 0.27 0.29 0.30 
08/14/90 0.29 0.27 0.28 0.28 0.27 0.29 0.30 
09/29/90 0.32 0.29 0.30 0.30 0.29 0.31 0.31 
12/05/90 0.32 0.28 0.29 0.29 0.28 0.30 0.31 
06/15/91 0.36 0.32 0.32 0.31 0.29 0.31 0.31 

02/17/9D 0.15 0.16 0.19 0.25 0.26 0.27 0.27 0.28 
03/23/90 0.16 o. 16 0.19 0.25 0.26 0.27 0.27 0.28 
04/25/90 0.16 0.16 0.19 0.25 0.26 0.27 0.27 0.28 
05/17/90 o. 16 0.16 0.19 0.25 0.26 0.27 0.27 0.28 
06/06/90 0.20 0.16 0.19 0.25 0.26 0.27 0.27 0.28 

AT·4 06/28/90 0.20 0.16 0.19 0.25 0.26 0.27 0.28 
07/11/90 0.20 0.16 0.19 0.25 0.26 0.27 0.27 0.28 
07/21/90 0.18 o. 16 0.19 0.25 0.26 0.27 0.27 0.28 
07/31/90 0.16 0.16 0.19 0.25 0.26 0.27 0.27 0.28 
08/14/90 0.15 0.16 0.18 0.25 0.26 0.27 0.27 0.28 
09/29/90 0.16 0.16 0.18 0.25 0.26 0.27 0.27 0.28 
12/05/90 0.16 0.16 0.19 0.25 0.26 0.27 0.27 0.28 
06/15/91 0.21 0.22 0.19 0.24 0.26 0.27 0.27 0.28 

02/17/90 0.38 0.41 0.46 0.51 0.50 0.52 0.44 0.51 
03/23/90 0.44 0.43 0.46 0.52 0.50 0.53 0.46 0.50 
04/25/90 0.42 0.41 0.47 0.52 0.50 0.52 0.44 0.51 

AT-5 05/17/90 0.47 0.42 0.46 0.52 0.50 0.52 0.44 0.51 • 07/31/90 0.38 0.39 0.49 0.53 . 0.50 0.53 0.47 0.53 



• TUBE 

131 

DATE DEPTH (in) 
NUMBER 24 36 48 60 n 84 96 108 
···---·· ----·----

DB/14/90 0.36 D.35 0.37 0.51 0.5D 0.53 0.46 0.53 
AT-5 09/29/90 D.46 0.50 0.51 0.52 0.50 0.53 0.47 0.52 

12/05/90 0.47 0.49 0.49 0.51 0.50 0.53 0.46 0.51 

02/17/90 o. 11 0.18 0.24 0.26 0,28 0.27 0.28 0.26 
03/23/90 0. 11 0.17 0.24 0.25 D.29 0.27 0.28 0.25 
04/25/90 0.11 0. 18 0.24 0.26 0.28 0.27 0.27 0.26 
06/06/90 0.16 0.18 0.24 0.26 0.29 0.27 0.28 0.25 
06/28/90 0.19 o. 18 D.24 0.25 0.29 0.27 0.28 0.26 

AT·6 07/11/90 0.20 o. 18 0.24 0.25 0.28 0.27 0.28 0.25 
07/21/90 o. 16 0.18 0.24 0.25 0,28 0.27 D.28 0.25 
07/31/90 0. 13 0.18 0.24 0.26 0.28 0.27 0.27 0.25 
DB/14/90 0.12 0. 18 0,24 0.25 0.28 0.28 0.27 0.27 
09/29/90 0.12 o. 18 0.24 0.25 0.28 0.26 0.27 0.25 
12/05/90 o. 12 0.18 0.24 0.25 0.28 0.26 0.27 0.25 
06/15/91 0.15 0.20 0.24 0.25 0,28 0.26 0.26 0.24 

02/17/90 0. 18 0.19 0.19 0.21 0.22 0.23 0.24 0.26 
03/23/90 o. 18 0. 18 o. 19 0.21 0.22 0.23 0.24 0.26 
04/25/90 0.18 D.18 D.19 0.21 0.22 0.23 0.24 D.26 
05/18/90 o. 19 D.19 0.19 0.21 0,22 0.23 0.24 0.26 
06/06/90 0.26 o. 19 0. 19 0.21 0.22 0.24 0.24 0.26 

AT-7 06/28/90 0.27 0.19 o. 19 0.21 0.22 0.24 0.24 0.26 
07/11/90 0.27 0.19 0.19 0.21 0.22 0.23 0.24 0.26 
07/21/90 0.24 0. 19 0.19 0.21 0.22 0.23 0.24 0.26 
07/31/90 0.20 0.19 0.19 0.21 0.22 0.24 0.24 0.26 
08/14/90 0.17 o. 18 0.19 0.21 0.22 0.23 0.24 0.26 
09/29/90 0.19 o. 18 o. 19 0.21 0.22 0.23 0.24 0.26 
12/05/90 0.19 0.18 o. 19 0.21 0.22 0.24 0.25 0.26 
06/15/91 0.22 0.19 0.19 0.21 0.22 0.23 0.24 0.26 

02/17/90 0.25 0.28 0.30 0.30 0.35 0.35 0.31 0.33 
03/23/90 0.32 0.28 0.29 0.30 0.35 0.35 0.31 0.33 
04/25/90 0.36 0.32 0.31 0.31 0.35 0.35 0.31 0.32 
05/18/90 0.37 0.32 0.31 0.31 0.34 0.35 0.31 0.32 
06/06/90 0.37 0.35 0.33 0.33 0.35 0.35 0.30 0.32 

AT-8 06/28/90 0.38 0.33 0.32 0.33 0.35 0.35 0.31 0.32 
07/11/90 0.36 0.33 0.32 0.32 0.35 0.35 0.31 0.32 
07/21/90 0.34 0.31 0.31 0.31 0.35 0.35 0.31 0.32 
07/31/90 0.33 0.30 0.30 0.31 0.35 0.35 0.30 0.32 
08/14/90 0.30 0.28 0.29 0.30 0.34 0.34 0.31 0.32 
09/29/90 0.34 0.30 0.29 0.29 0.33 0.33 0.30 0.32 
12/05/90 0.32 0.29 0.29 0.29 0.33 0.33 0.30 0.32 
06/15/91 0.37 0.35 Q.33 0.33 0.36 0.37 0.32 

02/17/90 o. 18 0.18 0.18 0.21 0.28 0.29 0.31 0.31 
04/25/90 0.33 0.23 0.18 0.21 0.28 0.29 0.31 0.31 
06/06/90 0.36 0.33 0.18 0.21 0.28 0.29 0.31 0.31 
06/28/90 0.38 0.34 0.22 0.21 0.28 0.29 0.31 0.31 

AT-9 07/11/90 0.3S 0.34 0.24 0.21 0.28 0.29 0.31 0.31 
07/31/90 0.29 0.30 0.24 0.21 0.28 0.29 0.31 0.31 
08/14/90 0.21 0.24 0.23 0.21 0.28 0.29 0.31 0.31 
09/29/90 0.28 0.25 0.21 0.22 0.28 0.29 0.30 0.31 
12/05/90 0.26 0.25 0.21 0.22 0.28 0.29 0.31 0.31 
06/15/91 0.34 0.36 0.31 0.33 0.34 0.33 0.33 0.34 

02/17/90 0. 14 0.16 0.17 0,15 0.21 0.23 0.23 0.24 
03/23/90 o. 15 0.15 0.17 0.14 0.21 0.23 0.23 0.24 
04/25/90 0.16 0.15 0.17 0.14 0.21 0.23 0.23 0.24 
06/06/90 0.26 0.15 0.17 0.14 0.21 0.22 0.23 0.24 

AT·10 06/28/90 0.27 0.17 0.17 0.14 0.21 0.23 0.23 0.24 
07/11/90 0.26 0.18 o. 17 0.14 0.21 0.23 0.23 0.23 
07/31/90 o. 18 0.18 0.17 0.15 0.21 0.23 0.23 0.23 
08/14/90 0.14 o. 16 0. 17 o. 14 0.21 0.22 0.23 0.24 
09/29/90 0.14 0.15 0.17 o. 15 0.21 0,23 0.23 0,23 
12/05/90 0.14 o. 15 0.17 0.15 0.21 0.23 0.23 0.24 
06/15/91 0.20 0.24 0.20 0.14 0.21 0.23 0.23 0.23 

• 



132 • TUBE DATE DEPTH (in) 
NIMBER 24 36 48 60 72 84 96 108 -------- ---------

05/18/90 0.25 0.18 0.27 0.29 0.29 0.28 0.32 0.31 
06/06/90 0.31 0.29 0.28 0.29 0.29 0.28 0.32 0.31 
07/11/90 0.32 0.31 0.36 0.33 0.30 0.28 0.32 0.32 

AT·11 07/31/90 0.29 0.29 0.35 0.32 0.31 0.28 0.32 0.32 
08/14/90 0.28 0.28 0.34 0.32 0.30 0.28 0.32 0.32 
09/29/90 0.30 0.30 0.36 0.33 0.34 0.32 0.33 0.32 
12/05/90 0.28 0.28 0.34 0.32 0.32 0.30 0.32 0.32 

• 
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UNSATURATED HYDRAULIC HEAD DATA 
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134 • UNCORRECTED TENSIOMETER GAUGE READINGS 
(centibars) 

Tens. DEPTH (ft) 
DATE Nest l ! §. §. 

TNAT-3 18 42 44 53 
07 /11/90 TNAT-4 34 64 

TNAT-8 49 52 31 40 
TNAT-7 13 55 53 

TNAT-3 20 46 48 56 
07/21/90 TNAT-4 52 60 48 

TNAT-8 70 68 50 50 
TNAT-7 42 68 66 

TNAT-3 28 36 42 58 
7/31/90 TNAT-4 54 so 54 

TNAT-8 58 56 44 so 
TNAT-7 50 64 so 

TNAT-3 52 47 49 58 
08/14/90 TNAT-4 75 66 60 

TNAT-8 64 58 49 54 
TNAT-7 71 70 62 

TNAT-3 22 23 30 46 
09/19/90 TNAT-4 52 72 58 

TNAT-8 60 55 63 54 
TNAT-7 50 

UNSATURATED HYDRAULIC HEAD 
DATA IN MSL ELEVATIONS 

Tens. DEPTH (ft) 
DATE ~ l ! §. §. 

TNAT-3 2137 2129 2128 2125 
07 /11/90 TNAT-4 2139 2129 2144 

TNAT-8 2135 2134 2141 2138 
TNAT-7 2156 2142 2142 

TNAT-3 2136 2128 2127 2124 
07/21/90 TNAT-4 2133 2130 2134 

TNAT-8 2128 2128 2134 2134 
TNAT-7 2146 2137 2138 

TNAT-3 2134 2131 2129 2124 
07/31/90 TNAT-4 2132 2133 2132 

TNAT-8 2132 2132 2136 2134 
TNAT-7 2143 2139 2143 

TNAT-3 2126 2127 2127 2124 
08/13/90 TNAT-4 2125 2128 2130 

TNAT-8 2130 2132 2135 2133 
TNAT-7 2136 2137 2139 

TNAT-3 2136 2135 2133 2128 • 09/29/90 TNAT-4 2133 2126 2131 
TNAT-8 2132 2133 2130 2133 
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136 • WATER LEVEL MEASUREMENTS 

Depths from top of casing for wells: from top of post for GP-1 & 2. 

DATE MW-1 MW-2 MW-3 NW-4 MW-5 MW-6 NW-7 NW-8 

11/17/88 76. 17 101.15 97.79 
12/16/88 76.24 101.18 98.75 
03/16/89 76.49 101 .46 99.05 
06/03/89 75.03 101.50 99.07 
08/05/89 76.32 101.07 99.02 81 .93 67.33 55_93 52.03 25. 15 
08/27/89 75.98 100.95 98.90 81.94 Ory 55-98 51.90 27-08 
09/08/89 76.40 101.35 98.90 81.95 Ory 55.91 51 .93 Ory 
11/04/89 76.47 101.35 98.90 81.99 Dry 55.73 52.07 Ory 
11/29/89 76.83 101.48 99.30 82.00 Ory 55.94 52. 15 Ory 
02/17/90 n.14 102.81 99. 12 82. 11 Ory 56. 16 52.37 Ory 
03/23/90 n.22 101.87 99.13 82. 13 Ory 56.42 52.48 Ory 
04/24/90 n.28 101.94 99.08 82.14 Ory 56.27 52.56 Ory 
06/07/90 n.38 102.04 99. 16 82. 19 Ory 56.36 52.n Ory 
07/11/90 n,39 102.08 99.21 82.20 Ory 56.57 52.76 Ory 
08/14/90 n.48 102. 16 99.28 82.25 Ory 56.84 52.81 Ory 
09/29/90 n.51 102.2 99.31 82.26 Ory 56.8 52.8 Ory 
12/05/90 n.63 102.31 99.41 82.30 Ory 57.09 53.04 Trace 
06/15/91 n.10 102.43 Ory 81 .31 Ory 57.42 53.37 Ory 

Qlli. NW-9 NW-10 NW-11 MW-12 NW-13 GP-1 GP-2 

11/17/88 
12/16/88 
03/16/89 
06/03/89 
08/05/89 62- 12 98-27 27.07 79.88 115.07 
08/27/89 62. 16 • 27.21 79.68 118.67 
09/08/89 62. 16 • 27.26 79.62 Ory 2.75 3.00 
11/04/89 62.30 • 28. 16 79.06 Ory 2.75 2.92 
11/29/89 62.36 • 28.64 79.28 Ory 2.50 2.75 
02/17/90 62.56 * Ory 79.70 Dry 2.75 2.75 
03/23/90 62.64 * Ory 79.87 Ory 2.81 3.00 
04/24/90 62.72 * Ory 79.90 Ory 3.00 2.75 
06/07/90 62.80 * Dry 80.04 Dry 2.25 
07/11/90 62.86 * Dry 80.06 Dry 2.81 
08/14/90 62.97 • Dry 80.21 Dry 3. 16 3.00 
09/19/90 63.14 • Dry 80.26 Ory 3.3 2.75 
12/05/90 63.42 • Dry 80.38 Dry 3.30 2.75 
06/15/91 63.70 • Dry 80.52 Dry 3. 16 2.75 

* Destroyed 

• 



137 • WATER LEVELS AS MSL ELEVATIONS 

!llli. MW·1 MW·2 MW•3 MW-4 MW-5 MW-6 MW-7 MW·8 

11/17/88 2103.65 2103.76 2105.52 
12/16/88 2103.58 2103.73 2104.55 
03/16/89 2103.34 2103.45 2104.25 
06/03/89 2104.80 2103.41 2104.24 
08/05/89 2103.50 2103.84 2104.28 2107.46 2117.78 2098.n 2102.47 2129.18 
08/27/89 2103.84 2103.96 2104.40 2107.45 Dry 2098.72 2102.61 2127.25 
09/08/89 2103.42 2103.55 2104.40 2107.44 Dry 2098.79 2102.58 Dry 
11/04/89 2103.36 2103.55 2104.40 2107.40 Ory 2098.97 2102.43 Dry 
11/29/89 2103.00 2103.43 2104.00 2107.39 Dry 2098.76 2102.35 Dry 
02/17/90 2102.68 2103.10 2104.18 2107.28 Dry 2098.54 2102.13 Dry 
03/23/90 2102.60 2103.04 2104.17 2107.26 Ory 2098.28 2102.02 Dry 
04/24/90 2102.54 2102.97 2104.22 2107.25 Dry 2098.43 2101.94 Dry 
06/07/90 2102.44 2102.87 2104.14 2107.20 Ory 2098.34 2101.73 Ory 
07/11/90 2102.43 2102.83 2104.09 2107.19 Ory 2098. 13 2101. 74 Dry 
08/14/90 2102.34 2102.75 2104.02 2107 .14 Dry 2097.86 2101.69 Dry 
09/29/90 2102.31 2102.71 2103.99 2107.13 Dry 2097 .90 2101.70 Trace 
12/05/90 2102. 19 2102.60 2103.89 2107 .09 Dry 2097.61 2101 .46 Trace 
06/15/91 2102.12 2102.48 Dry 2108.08 Dry 2097.28 2101.13 Dry 

DATE MW·9 MW·10 MW·11 MW-12 MW•13 GP-1 GP·2 

11/17/88 
12/16/88 
03/16/89 
06/03/89 
08/05/89 2099.27 2099.44 2108.36 2102.56 2117.53 
08/27/89 2099.23 • 2108.22 2102. 75 2113.93 
09/08/89 2099.23 • 2108.18 2102.82 Ory 2096.82 2093. 12 
11/04/89 2099.09 • 2107.28 2103.38 Ory 2096.82 2093.20 
11/29/89 2099.03 • 2106.80 2103.15 Ory 2097.07 2093.37 
02/17/90 2098.83 • Dry 2102.73 Ory 2096.82 2093.37 
03/23/90 2098.75 • Dry 2102.56 Dry 2096.76 2093.12 
04/24/90 2098.67 • Ory 2102.53 Ory 2096.57 2093.37 
06/07/90 2098.59 • Dry 2102.39 Ory 2097.32 2093.37 
07/11/90 2098.53 • Dry 2102.37 Ory 2096.27 2093.31 
08/14/90 2098.42 • Dry 2102.22 Ory 2096.41 2093.12 
09/29/90 2098.25 • Dry 2102.17 Ory 2096.27 2093.37 
12/05/90 2097.97 • Dry 2102.05 Ory 2096.57 2093.12 
06/15/91 2097.69 • Dry 2101.91 Ory 2096.41 2093.37 

* Destroyed 

• 
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Ho• start;ng hydraulic head value 
ha hydraulic head value at specific time 

H-h = unrecovered hydraulic head 

Time h H-h H-h/H-Ho Time h H-h H-h/H-Ho 
(hrs.) (ft.) (ft.) (hrs-> (ft.) (ft.) 

0.008 70.98 13.90 0.969 0.425 61-13 4.05 0.282 
0.017 70.33 13.24 0.924 0.433 61.05 3.96 0.277 
0.025 69.91 12.82 0.895 0.442 60.96 3.88 0.270 
0.033 69.64 12.56 0.876 0.450 60.86 3.77 0.263 
0.042 69.23 12. 15 0.847 0.458 60.78 3.70 0.258 
0.050 69.06 11.98 0.835 0.467 60.69 3.60 0.251 
0.058 68.87 11.79 0.822 0.475 60.60 3.52 0.245 
0.075 68.51 11.43 0.797 0.483 60.53 3.45 0.240 
0.083 68. 19 11. 10 o.m 0.492 60.45 3.37 0.235 
0.092 67.99 10.90 0.761 0.500 60.38 3.30 0.230 
0.100 67.68 10.60 0.739 0.508 60.31 3.23 0.225 
0.108 67.40 10.32 o.no 0.517 60.24 3.16 0.220 
0.117 67. 11 10.03 0.699 0.525 60.17 3.09 0.215 
0.125 66.88 9.79 0.683 0.533 60.11 3.02 0.211 
0.133 66.62 9.54 0.665 0.542 60.03 2.95 0.205 
0.142 66.38 9.29 0.648 0.550 59.97 2.88 0.201 
o. 150 66.11 9.03 0.630 0.558 59.90 2.81 0. 196 
0.158 65.95 8.87 0.618 0.567 59.85 2.77 0.193 
o. 167 65.69 8.60 0.600 0.575 59.79 2.70 o. 189 
0.175 65.42 8.34 0.581 0.583 59.73 2.64 o. 185 
0.183 65.25 8.17 0.570 0.592 59.69 2.60 o. 182 
0.192 65.05 7.96 0.556 0.600 59.64 2.56 0.178 
0.200 64.84 7.76 0.541 0.608 59.57 2.48 0. 173 
0.208 64.63 7.54 0.526 0.617 59.52 2.44 0. 170 
0.217 64.47 7.38 0.515 0.625 59.47 2.38 0.166 
0.225 64.26 7.18 0.501 0.633 59.43 2.34 0.164 
0.233 64.15 7.07 0.493 0.642 59.37 2.28 0.159 
0.242 63.92 6.84 0.477 0.650 59.31 2.23 0.155 
0.250 63.75 6.67 0.465 0.658 59.27 2.19 0.152 
0.258 63.59 6.51 0.454 0.667 59.24 2.16 0.150 
0.267 63.44 6.35 0.443 0.675 59. 19 2.10 0.147 
0.275 63.29 6.20 0.433 0.683 59.16 2.07 0.145 
0.283 63. 15 6.06 0.423 0.692 59. 10 2.02 0.141 
0.292 63.02 5.94 0.414 0.700 59.06 1.98 0.138 
0.300 62.83 5.74 0.401 0.708 59.03 1.95 0.136 
0.308 62.73 5.64 0.394 0.717 58.99 1.91 0.133 
0.317 62.60 5.52 0.385 o.ns 58.95 1.87 0.130 
0.325 62.48 5.39 0.376 0.742 58.88 1.80 0.125 
0.333 62.31 5.23 0.364 0.758 58.82 1.73 0.121 
0.342 62.16 5.07 0.354 o.m 58.74 1.66 0.115 
0.350 62.06 4.98 0.347 0.808 58.62 1.53 0.107 
0.358 61.95 4.87 0.339 0.858 58.46 1.38 0.096 
0.367 61.82 4.74 0.330 0.942 58.24 1.16 0.081 
0.375 61.74 4.66 0.325 1.108 57.92 0.84 0.058 
0.383 61.62 4.53 0.316 1.275 57.70 0.62 0.043 
0.392 61.53 4.45 0.310 1.525 57.50 0.41 0.029 
0.400 61.42 4.34 0.302 2.025 57.33 0.24 0.017 
0.408 61.33 4.24 0.296 2.525 57.24 0.16 0.011 

• 
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1-----------------------

Figure 48~ 

2 
K= r ln(LJR) = 

2LTo 

To 

1.00 1.50 2.00 
Time (hrs) 

To= 0.32 hr. 

L = 5 ft. 

A= 1 in. 

r = 1 in. 

2.4 X 10-6 ft/S 

Plot of bait teat data for 1111·6 (Hvorslev, 1951) • 

3.00 
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Analytical techniques used to dete~mine water composition: 

Furnace Atomic 
Absorption 
(2500°C) 

Arsenic (As) 
Silver (Ag) 
Cadmium (Cd) 
Chromium (Cr) 
Lead (Pb) 
Selenium (Se) 

Flame Atomic 
Absorption 

Chloride (Cl) 
Fluoride (F) 
Nitrate (N03 ) 

Sulfate ( so,) 

Inductively Coupled 
Argon Plasma 

Aluminum (Al) 
Barium (Ba) 
Boron (B) 
Manganese (Mn) 
Molybdenum (Mo) 
Silicon (Si) 
Vanadium (V) 

Mercury (Hg) : Cold Vapor Generation 
TDS: 

pH and 
conductivity: 

laboratory method (not calculated) 

Digital meter 

All Measurements are in mg/1 unless noted otherwisee 

Total 
Field Lab Conduc- Hard- Alkali-
Temp. pH tivity ness nity 
(•F) (mmhos) 

MW-1 44.0 6.90 1.83 999 542 
MW-2 45.0 6.80 1.65 961 559 
MW-4 45.0 6.85 1. 97 1253 456 
MW-6 44.0 7.51 1.98 732 803 
MW-7 44.0 6.94 2.98 1912 539 
MW-9 46.0 6.69 2.78 2168 497 
MW-11 46.0 • • 370 • 
MW-12 44.0 7 .21 1.58 892 434 
GP-1 34.0 7.95 1.89 1188 291 
GP-2 34.0 6. 71 2.28 1555 327 

Ca Fe Mg Mn K Si Na 

MW-1 227 4.1 105 0.48 13 7.8 99 
MW-2 215 2.0 103 0.23 11 7.7 105 
MW-4 276 5.9 137 0.79 13 9.9 68 
MW-6 158 1.5 82 0.4 12 5.0 300 
MW-7 426 5.5 206 1.4 16 10 135 
MW-9 512 6.2 216 2.9 14 12 60 
MW-11 81 0.3 41 0.09 2.6 6.8 22 
MW-12 204 1.1 93 1.3 13 9.6 96 
GP-1 220 <.2 155 0.023 19 3.3 55 
GP-2 362 0.7 158 2.2 12 12 73 

* no non-acidified samples 
(+) units are micrograms/1 

Ion 
Chranatograi;by 

Calcium (Ca) 
Iron (Fe) 
Magr>esium (Mo) 
Potassium (K) 
sodium (Na) 

Organic 
TDS Carbon 

1700 88.2 
1570 21.6 
2072 33.4 
1750 34.4 
3360 30.9 
3320 28.3 
• • 

1400 33.2 
2000 47.4 
2500 39.4 
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HC03 Cl F N03 so, Al As Ba B 
(+) (+) 

MW-1 542 2.4 1.0 0.33 859 4.30 8.50 0.05 0. 71 
MW-2 559 2.5 1.0 1.2 806 4.00 7.00 0.04 0.57 
MW-4 456 3.8 1.2 0.25 1066 4.80 26.00 0.13 0.93 
MW-6 803 2.4 1.3 0.79 757 2.70 <2 0.04 0.65 
MW-7 539 9.5 2.3 0.5 1963 5.90 <2 0.19 0.90 
MW-9 497 2.6 2.7 <.2 1919 7.60 17.00 0.06 1.20 
MW-11 * * • * * 2.30 <2 0.30 <0.5 
MW-12 434 2.0 1.0 0.6 804 4.20 <2 0.25 0.75 
GP-1 291 9.7 1.2 l. 7 1098 3.80 <2 0.08 <0.5 
GP-2 327 4.6 1.6 0.2 1333 5.30 <2 0.07 0.98 

Cd Cr Pb Hg Mo Se Ag V 
(+) (+) (+) ( +) 

MW-1 <.02 <.02 <10 <3 <.02 <2 <l 0.03 
MW-2 <.02 <.02 <10 <3 <.02 <2 <l 0.02 
MW-4 <.02 <.02 <10 <3 <.02 <2 <l 0.03 
MW-6 <.02 <.02 <10 <3 <.02 <2 <l 0.02 
MW-7 <.02 <.02 <10 <3 <.02 <2 <l 0.04 
MW-9 <.02 <.02 <10 <3 <.02 <2 <l 0.10 
MW-11 <.02 <.02 <10 <3 <.02 <2 <l 0.04 
MW-12 <.02 <.02 <10 <3 <.02 <2 <l 0.05 
GP-1 <.02 <.02 <10 <3 <.02 <2 <l 0.03 
GP-2 <.02 <.02 <10 <3 <.02 <2 <l 0.03 

* no non-acidified samples 
(+) unite are micrograma/1 

• 
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The following drilling information is applicable to all monitoring 
wells installed at the Wilton site for this study. 

DRILLING SUMMARY: 

DRILLER: Mohl Drilling, Beulah North, Dakota 

DRILLING METHOD: air rotary, with mist as needed 

DIAMETER OF BOREHOLES: 5 5/8 inches 

SAMPLE COLLECTION: cuttings at 5-foot intervals unless 
otherwise specified 

~ DESIGN: 

CASING: 2", schedule 40, flush-joint, threaded PVC 

SCREEN: 2", 0.010 (#10) continuous slot PVC, 
threaded bottom plug 

FILTER PACK: 12/30 commercial grade silica sand 

SCREEN SEAL: commercial bentonite pellets 

WELL SEAL: portland cement with 61 bentonite grout 

WELL CAP: locking well cap (with exception of MW-4, 
which has PVC cap) 
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Well Number: MW-1 Date installed: 11114188 
El t' D th f eva 1.on ep rom -
(MSL) Surface 
2176.4 ft 0.0 ft Riser height: 3.41 ft 

II II 

II II 

II II 
Portland cement with 
6% bentonite grout 

2103.4 73.4 II II 
--------------------------- L-- L--

2102.4 74.4 ** * Bentonite 
--------------------------- '--- '--- pellet cap 
2101.4 75.4 . . 
--------------------------- . L-- . 

--. . 
. -- Filter pack . -- . 

--. . . - SCREEN: . -- . Length: 10.0 ft 
--. . 
--. . 
--. . 

. -- . • 2091.0 85.4 . -- . 
---------------------------
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Well Number: MW-2 Date installed: 11114188 
El t' D th f eva ion ep rom -
(MSL) Surface 
2201. 6 ft o.o ft Riser height: 3.34 ft 

II II 

II II 

II II 
Portland cement with 
6% bentonite grout 

2103.9 97.9 II II 
--------------------------- - -
2102.9 98.9 ** * Bentonite 

--------------------------- - - pellet cap 
2101.9 99.9 . . 
--------------------------- . - . . -- Filter pack 

--. . 
--. . 
--. . . - SCREEN: 

. -- . Length: 10,0 ft 
--. . --. • --. • --. . • 2091.9 109.9 . -- . 

---------------------------



148 • Well Number: MW-3 Date installed: 11115188 
Elevation Depth from ~ 

(MSL) surface 
2201.8 ft 0.0 ft Riser height: 1.54 ft 

II II 

II II 

II II 
Portland cement with 
6% bentonite grout 

2115.8 86.1 II II 
--------------------------- - -
2114.8 87.1 ** * Bentonite 
--------------------------- I-- I-- pellet cap 
2113.8 88.1 . . 
--------------------------- . - . . -- Filter pack 

--. . --. . 
. -- . . SCREEN: 
. -- . Length: 10.0 ft 

--. . 
. -- . 

--. . 
--. . • 2103.7 98.1 . -- . 

---------------------------
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Well Number: MW-4 Date installed: 811189 
El t' D th f eva ion ep rom -
(MSL) surface 
2186.6 ft 0.0 ft Riser height: 2.92 ft 

II II 

II II 

II II 
Portland cement with 
6% bentonite grout 

2116.6 69.9 II II 
--------------------------- - -
2115.6 70.9 ** * Bentonite 
---------------------------- - pellet cap 
2114.6 71.9 . . 
--------------------------- . - . . -- Filter pack 

--. . 
--. . 
--. . 

. - SCREEN: 
--. . Length: 10.0 ft 
--. . . -- . 
--. . . -- . • 2104.7 81.9 . -- . 

---------------------------



150 • Well Number: MW-5 Date installed: 811189 
El t' D th f eva ion ep rom -
(MSL) Surface 
2182.5 ft 0.0 ft Riser height: 2.60 ft 

II II 

II II 

II II 

Portland cement with 
6% bentonite grout 

2128.0 54.5 II II 
--------------------------- '--- '---

2127.0 55.5 ** * Bentonite 
----------~----------------~ - pellet cap 
2126.0 56.5 . . 
--------------------------- . '--- . 

. -- Filter pack 
--. . 
--. . --. . 

. SCREEN: 
. -- . Length: 10.0 ft 

--. . 
--. . --. . 
--. . • 2116. 0 66.5 . -- . 

---------------------------
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Well Number: MW-6 Date installed: 7131189 
Depth from -
surface 

Elevation 
(MSL) 
2152.3 ft o. o ft Riser height: 2. 45 ft 

II 

II 

II 

2159.3 64.1 II --------------------------- -
2158.3 65.1 ** --------------------------- -
2157.3 66.1 
---------------------------. ~ -­. 

II 

II 

II 

Continuous core 
split spoon samples 
collected from O.O' 
to 18.0' and from 
42.0' to 52.0'; 
Otherwise, cuttings 
at 5-foot intervals. 

-+-Portland cement with 
6% bentonite grout 

II -
* Bentonite - pellet cap 
. 

. 
Filter pack 

. . 

. 
--1--+-,SCREEN: 

• -- . Length: 5.0 ft 
--. . --. . 

. -- . --. . 
2152.3 71.1 . -- . 
---------------------------



152 • Well Number: MW-7 Date installed: 7/31/89 
El t' D th f eva ion ep rom -
(MSL) surface 
2152.3 ft o.o ft Riser height: 2.25 ft 

II II 

II II 

II II 

Portland cement with 
6% bentonite grout 

2112.4 39.9 II II 
--------------------------- '-- '--

2111.4 40.9 ** * Bentonite 
--------------------------- '-- ,___ pellet cap 
2110.4 41.9 . . 
--------------------------- . ,___ . . -- Filter pack 

. -- . 
--. . 

. -- . 
• - SCREEN: . -- . Length: 10.0 ft 

--. . --. . 
--. . 
--. . • 2100.4 51.9 . -- . 

---------------------------
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Well Number: MW-8 Date installed: 7131189 
El t' D th f eva ion ep rom -
(MSL) Surface 
2152.2 ft 0.0 ft Riser height: 2.09 ft 

II II 

II II 

II II 

Portland cement with 
6% bentonite grout 

2139.0 18.2 II II 
--------------------------- L-- L....-

2138. 0 19.2 ** *-'---Bentonite 
--------------------------- ,__ ,__ pellet cap 
2137.0 20.2 . . 
--------------------------- . '-- . . -- Filter pack 

. -- . 
--. . 
--. . . - SCREEN: 

. -- . Length: 5.0 ft 
--. . 
--. . 

. -- . 
--. . • 2127.0 25.2 . -- . 

---------------------------



• Well Number: MW-9 

154 

Date installed: 7131190 
El t' D th f eva ion ep rom -
(MSL) Surface 
2159.2 ft 0.0 ft Riser height: 2.24 ft 

II II 

II II 

II II 

Portland cement with 
6% bentonite grout 

2103.9 55.3 II II 
--------------------------- '---- '----

2102.9 56.3 ** * Bentonite 
--------------------------- '---- '---- pellet cap 
2101. 9 57.3 . . 
--------------------------- . '---- . . -- Filter pack 

• -- • --. . 
• -- • . - SCREEN: . -- . Length: 10.0 ft 

--. . 
--. . --. . --. . • 2091.9 67.3 . -- . 

---------------------------



• 
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Well Number: 
Elevation 
(MSL) 
2195.2 ft 

2102.2 

155 

MW-10 Date installed: 811189 
Depth from ~ 
surface 
o.o ft Riser height: 2.50 ft 

II 

II 

II 

94.0 II 

II 

II 

II 

-+-Portland cement with 
6% bentonite grout 

II ---------------------------~ -
2101. 7 94.5 ** --------------------------- -

* Bentonite 
- pellet cap 

2100.2 95.0 
--------------------------- . - . 

2090.2 105.0 

-­. -+-Filter pack 

-,-1---1--SCREEN: 
--. . Length: 10.0 ft 

--. . ___________________________ .____.__.___, 



156 • Well Number: MW-11 Date installed: 811189 
El t' D th f eva ion ep rom -
(MSL) Surface 
2133.1 ft o.o ft Riser height: 2.32 ft 

II II 

II II 

II II 

Portland cement with 
6% bentonite grout 

2117.1 15.5 II II 
---------------------------~ ~ 
2116.6 16.0 ** * Bentonite 
--------------------------- '-- '-- pellet cap 
2116.1 16.5 . . 
--------------------------- . ~ . 

. -- Filter pack 
--. . 
--. . 
--. . . - SCREEN: 

. -- . Length: 10.0 ft 
--. . 
--. . 
--. . 
--. . • 2106.6 26.5 . -- . 

---------------------------
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Well Number: MW-12 
Elevation Depth from 
(MSL) Surface 
2180.4 ft 0.0 ft 

II 

II 

II 

2107.2 72.2 II 

Date installed: 7131189 

Riser height: 2,03 ft 

II 

II 

II 

Continuous core 
split spoon samples 
from 10.0' to 12.0' 
and from 20.0' to 
22.0 1 ; Otherwise, 
cuttings at 5-foot 
intervals. 

-+-Portland cement with 
6% bentonite grout 

II 
---------------------------f----- -2106.2 73.2 ** 
------------------------------

*'-+-Bentoni te 
pellet cap -

2105.7 74.7 
---------------------------. -- . 

2095,7 84.7 

-­. -+-Filter pack 

-+--+-:SCREEN: 
Length: 10.0 ft 

--. . 

--. . 
---------------------------~ ....... -~~ 



158 • Well Number: MW-13 
Elevation Depth from 

Date installed: 811189 
~ 

(MSL) Surface 
2230.1 ft o.o ft Riser height: 2.54 ft 

II II 

II II 

II II 

Portland cement with 
6% bentonite grout 

2125.1 105.0 II II 
--------------------------- t-- 1---

2124.1 106.0 ** * Bentonite 
--------------------------- ,-- 1--- pellet cap 
2123.6 106.5 . . 
--------------------------- . t-- . . -- Filter pack 

--. . 
. -- . . -- . . SCREEN: . -- . Length: 10.0 ft 
. -- . --. . . -- . 

--. . • 2113.6 116.5 . -- . 
---------------------------



i. 

• 

APPENDIX VII 

LITHOLOGIC LOGS OF BOREHOLES 

159 



• 

• 

160 

All measurements on the lithologic logs are in feet. Included 
with the logs are the top-of-casing (TOC) elevations. 

The abbreviations under the column labeled ASTM are after the 
American Society for Standards and Testing Standard Test Method for the 
Classification of Soils for Engineering Purposes (1983). Listed below 
is an abbreviated legend of terms used in the lithologic log 
descriptions. 

SC: Clayey sands, sand-clay mixtures 

ML: Inorganic silts, very fine sands, rock flour, silty or clayey 
fine sands 

CH: Inorganic clays of high plasticity, fat clays 

CL: Inorganic clays of low to medium plasticity, gravelly clays, 
sandy clays, silty clays, lean clays 

OL: Organic silts and organic silty clays of low plasticity 
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Log of Well No.: MW-1 
Logged by: MMS 

161 

Surface Elev.: 2176.4 
Well Depth: 85.4 

TOC Elev.: 2179.8 
Riser ht.: 3.41 

MSL 
Elev. 

Depth from AS 
surface TM 

Description of Material 
(all measurements in feet) 

2176.4 --0 

2171. 4 -- 5 

2166.4 --10 

2161.4 --15 

2156.4 --20 

2151.4 --25 

2146.4 --30 

2141.4 --35 

2136.4 --40 

2131. 4 --45 

2126. 4 --so 

CL (0-26.0) till; coarse sand, silt, clay, 
pebbles, gravel, brown, calcareous, some 
iron staining, calcareous, low plasticity 

CL same as above 

CL same as above 

CL same as above 

CL same as above 

CL 
SC (26.0-27.0) sand, clayey, silty, medium­

grained 
(27.0-29.0) coal 

CL (29.0-45.0) clay, silty; brown, blocky, 
medium plasticity 

CL same as above 

CL same as above 

(45.0-46.0) coal 
CL (46.0-74.0) clay, silty; gray, 

blocky, medium plasticity 

CL same as above 
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MSL Depth from AS Description of Material 
Elev. surface TM (all measurements in feet) 

2121.4 --55 CL same as above -
---

2116.4 --60 CL same as above 
----

2111.4 --65 CL same as above 
----

2106.4 --70 CL same as above 
---- (74.0-75.0) coal 

2101.4 --75 CL (75.0-77.0) clay, silty; brown, carbonaceous, 
- low plasticity 
- < 77. o-as. o > coal 
--

2196.4 --80 
--
--

2191.4 --as CL (85.0-85.4) clay 
- ------------------------------------------------ end of boring 
--
--90 
--
--
--95 
----
--100 
---
-
--105 
-
--
-
--110 • 
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Log of Well No.: MW-2 
Logged by: MMS 

163 

Surf. Elev.: 2201.9 TOC Elev.: 2179.4 
Well Depth: 109.7 Riser ht.: 3.4 

MSL 
Elev. 

Depth from AS 
surface TM 

Description of Material 
(all measurements in feet) 

2201. 9 --0 

2196.9 -- s 

2191. 9 --10 

2186.9 --15 

2181. 9 --20 

2176.9 --25 

2171.9 --30 

2166.9 --35 

2161.9 --40 

2156.9 --45 

2151. 9 --so 

CL (0-10.0) clay, silty; mottled, brown/gray, 
calcareous, low plasticity 

CL same as above 

OL (10.0-13.0) clay, carbonaceous; brown, low 
plasticity 

CL (13.0-29.0) clay, silty; brown, blocky, some 
iron-staining, medium plasticity 

CL same as above 

CL same as above 

(29.0-30.0) limestone 
CL (30.0-49.0) clay, silty, some sand, gray, 

blocky 

CL same as above 

CL same as above 

CL same as above 

(49.0-51.0) coal 

CL (Sl.0-99.0) clay, silty, some sand; gray, 
blocky, medium plasticity 



164 • MSL Depth from AS Description of Material 
Elev. surface TM (all measurements in feet) 

2146.9 --55 CL same as above 
--
--

2141.9 --60 CL same as above 
----

2136.9 --65 CL same as above 
-
--
-

2131. 9 --70 CL same as above 
--
--

2126.9 --75 CL same as above 
--
--

2121.9 --80 CL same as above 
-
---

2116. 9 --85 CL same as above 
----

2111.9 --90 CL same as above 
-
---

2106.9 --95 CL same as above 
---
- (99.0-109.0) coal 

2101.9 --100 
----

2096.9 --105 same 
-
--- -----------------------------------------------

2091. 9 --110 end of boring • 
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Log of Well No.: MW-3 
Logged by: MMS 

165 

Surface Elev.: 2201.8 
Well Depth: 98.1 

TOC Elev.: 2203.3 
Riser ht.: 1. 5 

MSL 
Elev. 

Depth from AS 
surface TM 

Description of Material 
(all measurements in feet} 

2201.8 --0 

2196.8 -- 5 

2191.8 --10 

2186.8 --15 

2181.8 --20 

2176.8 --25 

2171.8 --30 

2166.8 --35 

2161.8 --40 

2156.8 --45 

2151. 8 --so 

CL (0-20.0) till, clay to coarse sand, pebbles 
to to gravel, with some boulders; brown, un­
SC bedded; calcareous 

CL 
to same as above 
SC 

same as above 

(20.0-21.0) sandstone; brown, medium-grained 
CL (21.0-33.0} clay, silty; gray, blocky, medium 

plasticity 

CL same as above 

CL same as above 

OL (33.0-37.0) carbonaceous clay and lignite 

CL (37.0-86.0} clay, silty, some sand; gray, 
blocky, medium plasticity 

CL same as above 

CL same as above 
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MSL Depth from AS Description of Material 
Elev. surface TM (all measurements in feet) 

2146.8 --55 CL same as above 
-
-
--

2141. 8 --60 CL same as above 
--
--

2136.8 --65 CL same as above 
---
-

2131.8 --70 CL same as above 
----

2126.8 --75 CL same as above 
-
--
-

2121. 8 --so CL same as above 
----

2116.8 --85 CL 
- (86.0-97.0) coal 
-
--

2111.8 --90 same as above ----
2106.8 --95 

-- CL (97.0-98.l) clay; gray, thick, medium 
- --plasticity-----------------------------------
- end of boring 

2101.8 --100 
----
--105 
-
---
--110 • 
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Log of Well No.: MW-4 
Logged by: MMS 

167 

Surface Elev.: 2186.6 
Well Depth: 81.9 

TOC Elev.: 2189.4 
Riser ht.: 2.85 

MSL 
Elev. 

Depth from AS 
surface TM 

Description of Material 
(all measurements in feet) 

2186.8 --0 

2181.8 -- 5 

2176.8 --10 

2171. 8 --15 

2166.8 --20 

2161.8 --25 

2156.8 --30 

2151.8 --35 

2146.8 --40 

2141.8 --45 

2136.8 --so 

CL (0-35.0) till, clay to coarse sand, with some 
to pebbles through gravel; brown, calcareous, 
SC iron-stained, low plasticity 

CL 
to same as above 
SC 

same as above 

CL 
to same as above 
SC 

same as above 

CL 
to same as above 
SC 

CL (35.0-42.0) clay, silty; dark brown, blocky, 
iron-stained, medium plasticity 

CL 

CL (42.0-45.0) clay, silty; gray, blocky, medium 
plasticity 

OL (45.0-46.0) carbonaceous clay-lignite stringer 
CL (46.0-73.0) clay, silty, some sand; gray, 

medium plasticity 

CL 



168 • MSL Depth from AS Description of Material 
Elev. surface TM (all measurements in feet) 

2131.8 --55 CL same as above 
-
--
-

2126. 8 --60 CL same as above 
-
-
--

2121.8 --65 CL same as above 
--
--

2116. 8 --70 CL 
-
-- OL ( 73. 0-81. 0) coal 
-

2111. 8 --75 
----

2106.8 --80 
- CL ( 81. 0-81. 9) clayi gray 
- ------------------------------------------------ end of boring 
-
--85 
---
-
--90 
--
--
--95 
---
-
--100 
--
--
--105 
-
--
-
--110 • 
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Log of Well No.: MW-5 
Logged by: MMS 

169 

Surface Elev.: 2182.5 
Well Depth: 66.5 

TOC Elev.: 2185.1 
Riser ht.: 2. 60 

MSL 
Elev. 

Depth from AS 
surface TM 

Description of Material 
(all measurements in feet) 

2182. 5 --0 

2177.5 -- 5 

2172. 5 --10 

2167.5 --15 

2162. 5 --20 

2157.5 --25 

2152.5 --30 

2147.5 --35 

2142.5 --40 

2137.5 --45 

2132.5 --50 

CL (0-6.0) till; clay to coarse sand; pebbles, 
to brown, iron-stained, calcareous, low 
SC plasticity 

CL (6.0-9.0) clay; dark brown, iron-stained, 
calcareous, medium plasticity 

SC (9.0-18.0) sand, clayey; light brown, medium­
grained, calcareous 

SC same as above 

(18.0-19.0) limestone 

SC (19.0-26.0) sand, clayey; light brown, medium­
grained 

CL (26.0-30.0) clay; brown, blocky, iron-stained, 
calcareous, medium plasticity 

(30.0-30.5) coal stringer 
CL (30.5-35.0) clay; gray, medium plasticity 

OL (35.0-36.0) carbonaceous clay and lignite 
CL (36.0-48.0) clay, silty; gray, medium plas­

ticity 

CL same as above 

OL (48.0-56.0) clay; brown to carbonaceous 



• 

• 

MSL 
Elev. 

2127.5 

2122.5 

2117. 5 

Depth from AS 
surface TM 

-- :;5 

--60 

--65 

170 

Description of Material 
(all measurements in feet) 

(56.0-65.5) coal 

same as above 

CL (66.0-66.5) clay 

end of boring 

--70 

--75 

--so 

--85 

--90 

--95 

--100 

--105 

--110 
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Log of Well No.: MW-6 
Logged by: MMS 

171 

Surface Elev.: 2152.2 
Well Depth: 71.1 

TOC Elev.: 2154.7 
Riser ht.: 2.45 

MSL 
Elev. 

Depth from AS 
surface TM 

Description of Material 
(all measurements in feet) 

2152. 2 --0 

2147.2 -- 5 

2142. 2 --10 

2137.2 --15 

2132. 2 --20 

2127. 2 --25 

2122.2 --30 

2117. 2 --35 

2112. 2 --40 

2107.2 --45 

2102.2 --so 

CL (0-6.0) till, clay to coarse sand; pebbles, 
to light brown, calcareous, iron-stained 
SC 

CL (6.0-7.5) clay; mottled brown and gray, 
extensive iron-staining, manganese oxide, 
medium plasticity 

OL (7.5-11.5) carbonaceous clay interbedded with 
brown clay, iron-stained 

CL (11.5-13.S) clay, silty; brown, iron-stained, 
medium plasticity 

OL (13.5-14.5) carbonaceous clay 

CL (14.5-23.S) clay; brown, blocky, iron-stained 
medium plasticity 

CL (23.5-28.5) clay,silty; brown with interbedded 
to carbonaceous clay 
OL 

CL (28.5-35.0) clay, silty; gray, blocky, medium 
plasticity 

OL (35.0-42.0) carbonaceous clay, low plasticity 

OL same as above 

(42.0-52.0) coal 

same as above 

CL (52.0-59.0) clay, silty; gray, thick, medium 
plasticity 



172 • MSL Depth from AS Description of Material 
Elev. surface TM (all measurements in feet) 

2097.2 --55 CL same as above 
---- CL (59.0-64.0) clay; gray, thick, medium to high 

2092.2 --60 to plasticity 
- CH 
--- CL (64.0-69.0) clay, silty; gray, medium plas-

2087.2 --65 ticity 
--
-
- CL (69.0-71.l) clay,. sandy; gray, low to medium 

2082.2 --70 plasticity 
- ------------------------------------------------ end of boring 
--
--75 
----
--80 
---
-
--as ---
-
--90 
--
--
--95 
---
-
--100 
-
---
--105 
----
--110 • 
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Log of Well No.: MW-7 
Logged by: MMS 

173 

Surface Elev.: 2152.2 
Well Depth: 51.9 

TOC Elev.: 2154.5 
Riser ht. : 2 • 2 5 

MSL 
Elev. 

Depth from AS 
surface TM 

Description of Material 
(all measurements in feet) 

2152.2 --o 

2147.2 -- 5 

2142.2 --10 

2137.2 --15 

2132.2 --20 

2127.2 --25 

2122.2 --30 

2117.2 --35 

2112. 2 --40 

2107.2 --45 

2102.2 --so 

CL (0-6.0) till, clay to coarse sand; pebbles, 
to light brown, calcareous, iron-stained 
SC 

CL (6.0-7.5) clay; mottled brown and gray, 
extensive iron-staining, manganese oxide, 
medium plasticity 

OL (7.5-11.5) carbonaceous clay interbedded with 
brown clay, iron-stained 

CL (11.5-13.5) clay, silty; brown, iron-stained, 
medium plasticity 

OL (13.5-14.5) carbonaceous clay 

CL (14.5-23.5) clay; brown, blocky, iron-stained 
medium plasticity 

CL (23.5-28.5) clay,silty; brown with interbedded 
to carbonaceous clay 
OL 

CL (28.5-35.0) clay, silty; gray, blocky, medium 
plasticity 

OL (35.0-42.0) carbonaceous clay, low plasticity 

OL same as above 

(42.9-51.9) coal 

same as above 

CL-----------------------------------------------
end of boring 
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Log of Well No.: MW-8 
Logged by: MMS 

174 

Surface Elev.: 2152.2 
Well Depth: 25.1 

TOC Elev.: 2154.3 
Riser ht. : 2. 09 

MSL 
Elev. 

Depth from AS 
surface TM 

Description of Material 
(all measurements in feet) 

2152.2 --0 

2147.2 -- 5 

2142.2 --10 

2137.2 --15 

2132. 2 --20 

2127.2 --25 

2122 .2 --30 

--35 

--40 

--45 

--so 

CL (0-6.0) till, clay to coarse sand; pebbles, 
to light brown, calcareous, iron-stained 
SC 

CL (6.0-7.5) clay; mottled brown and gray, 
extensive iron-staining, manganese oxide, 
medium plasticity 

OL (7.5-11.5) carbonaceous clay interbedded with 
brown clay, iron-stained 

CL (11.5-13.5) clay, silty; brown, iron-stained, 
medium plasticity 

OL (13.5-14.5) carbonaceous clay 

CL (14.5-23.5) clay; brawn, blocky, iron-stained 
medium plasticity 

CL (23.S-25.1) clay,silty; brawn with interbedded 
to carbonaceous clay 
OL 
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Log of Well No.; MW-9 
Logged by; MMS 

175 

Surface Elev.; 2159.2 
Well Depth; 67,3 

TOC Elev.; 2161.4 
Riser ht.: 2.24 

MSL 
Elev. 

Depth from AS 
surface TM 

Description of Material 
{all measurements in feet) 

2161. 4 --0 

2156.4 -- 5 

2151. 4 --10 

2146.4 --15 

2141.4 --20 

2136.4 --25 

2131.4 --30 

2126.4 --35 

2121.4 --40 

2116.4 --45 

2111.4 --50 

CL (0-15.5) till;clay to coarse sand, pebbles, 
to iron-stained, calcareous 
SC 

same as above 

CL 
to same as above 
SC 

SC (15.5-21.0) sand, clayey, silty; brown 

CL (21.0-24.0) clay, sandy; brown, low plasticity 

CL (24.0-31.0) clay; mottled brown and gray, 
iron-stained, low to medium plasticity 

CL (31.0-52.0) clay, silty; gray, medium plas­
ticity 

CL same as above 

CL same as above 

CL same as above 

CL same as above 

OL (52.0-56.0) carbonaceous clay 



176 • MSL Depth from AS Description of Material 
Elev. surface TM (all measurements in feet) 

2106.4 --55 
- (56.0-66.0) coal 
-
--

2101.4 --60 same as above 
----

2096.4 --65 
- CL (66.0-67.3) clay; gray, medium plasticity 
- ------------------------------------------------ end of boring 
-
--70 
-
-
--
--75 
---
-
--80 
-
-
--
--85 
--
-
-
--90 
-
---
--95 
-
---
--100 
--
--
--105 
----
--110 • 
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Log of Well No.: MW-10 
Logged by: MMS 

Surface Elev.: 2195.7 
Well Depth: 105.0 

TOC Elev.: 2197.7 
Riser ht.: 2.03 

MSL 
Elev. 

2195.7 

2190.7 

2185.7 

2180.7 

2175.7 

2170.7 

2165.7 

2160.7 

2155.7 

2150.7 

2145.7 

Depth from AS 
surface TM 

Description of Material 
(all measurements in feet) 

--o 

-- 5 

--10 

--15 

--20 

--25 

--30 

--35 

--40 

--45 

--so 

SC (0-5.0) sand, clayey, silty; brown fine to 
medium grained 

(5.0-8.0) sandstone; fine-grained 

SC (8.0-22.0) sand, silty, clayey; brown, fine­
grained 

SC same as above 

CL (22.0-24.0) clay, silty; brown, low to medium 
plasticity 

(24.0-25.0) limestone 
CL (25.0-26.5) clay; gray, medium plasticity 

CL (26.5-36.0) clay, silty; brown, medium plas­
ticity 

CL (36.0-37.0) clay; gray, medium plasticity 
(37.0-38.0) coal 

OL (38.0-41.0) carbonaceous clay 

CL (41.0-46.0) clay; gray, medium plasticity 

CL (46.0-52.0) clay, sandy; gray, medium plas­
ticity 

CL (52.0-55.0) clay; gray, medium plasticity 
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MSL Depth from AS Description of Material 
Elev. surface TM (all measurements in feet) 

2140.7 --55 (55.0-55.5) coal 
- CL (55.5-85.0) clay; gray, medium plasticity 
-
--

2135.7 --60 CL same as above 
----

2130.7 --65 CL same as above 
---
-

2125.7 --70 CL same as above 
-
---

2120.7 --75 CL same as above 
-
-
-
-

2115. 7 --80 CL same as above 
----

2110. 7 --85 OL (85.0-94.0) carbonaceous clay 
--
--

2105.7 --90 OL same as above 
-
--
- (94.0-104.5) coal 

2100.7 --95 
----

2095.7 --100 same as above 
-
--
- (104.5-105.0) clay; gray 

2090.7 --105 ------------------------------------------------ end of boring 
--
-

• --110 
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Log of Well No.: MW-11 
Logged by: MMS 

Surface Elev.:2133.0 
Well Depth: 27.2 

TOC Elev.: 2135.4 
Riser ht. : 2. 32 

MSL 
Elev. 

2133.0 

2128.0 

2123.0 

2118.0 

2113.0 

2108.0 

2103.0 

Depth from AS Description of Material 
surface TM (all measurements in feet) 

--o 
----
-- 5 
-
---
--10 
-
-
-
-
--15 
-

--20 

--25 

--30 

--35 

--40 

--45 

--so 

CL (0-5.0) clay, sandy; brown, low plasticity 

CL (5.0-11.0) clay, silty; brown, medium plas­
ticity 

CL (11.0-17.0) clay, sandy; brown, low plasticity 

CL same as above 

(17.0-27.0) coal 

same as above 

same as above 

CL (27.0-27.5) clay; gray 

end of boring 
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Log of Well No.: MW-12 
Logged by: MMS 

Surface Elev.: 2180.4 
Well Depth: 84.6 

TOC Elev.: 2182.4 
Riser ht.: 2.03 

MSL 
Elev. 

2180.4 

2175.4 

2170.4 

2165.4 

2160.4 

2155.4 

2150.4 

2145.4 

2140.4 

2135.4 

2130.4 

Depth from AS 
surface TM 

Description of Material 
(all measurements in feet) 

--0 

-- 5 

--10 

--15 

--20 

--25 

--30 

--35 

--40 

--45 

--so. 

CL (0-12.0) clay; brown, iron-stained, cal­
careous, 

CL same as above 

CL same as above 

(12.0-13.0) limestone 
CL (13.0-15.0) clay; brown, calcareous, medium 

plasticity 
(15.0-15.5) coal 

CL (15.5-28.0) clay, silty; brown, iron-stained, 
calcareous, medium plasticity 

CL same as above 

same as above 

CL (28.0-29.0) clay; gray, medium plasticity 
(29.0-32.0) coal 

CL (32.0-49.0) clay; gray, medium plasticity 

CL same as above 

CL same as above 

(49.0-50.0) coal 
CL (50.0-68.0) clay; gray, blocky, medium plas­

ticity 
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MSL Depth from AS Description of Material 
Elev. surface TM (all measurements in feet) 

2125.4 --55 CL same as above 
-
-
-
-

2120.4 --60 CL same as above 
---
-

2115. 4 --65 CL same as above 
-
-- OL (68.0-73.0) carbonaceous clay 
-

2110. 4 --70 
--
- (73.0-84.0) coal 
-

2105.4 --75 
---
-

2100.4 --80 same as above 
-
--- CL (84.0-84.6) clay; gray 

2095.4 --85 ------------------------------------------------ end of boring 
-
-
-
--90 
--
-
-
--95 
----
--100 
--
--
--105 
--
--
--110 • 
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Log of Well No.: MW-13 
Logged by: MMS 

Surface Elev.: 2230.1 
Well Depth: 116.5 

TOC Elev.: 2232.6 
Riser ht.: 2.54 

MSL 
Elev. 

2230.1 

2225.1 

2220.1 

2215.1 

2210.1 

2205.1 

2200.1 

2195.1 

2190 .1 

2185.1 

2180.1 

Depth from AS 
surface TM 

Description of Material 
(all measurements in feet) 

--0 

-- 5 

--10 

--15 

--20 

--25 

--30 

--35 

--40 

--45 

--so 

CL (0-10.0) clay; mottled brown and gray, iron 
stained, calcareous, low plasticity 

CL same as above 

CL (10.0-18.5) clay; gray, blocky, iron-stained, 
calcareous, low plasticity 

CL same as above 

(18.5-20.0) claystone, calcareous 

CL (20.0-50.0) clay, silty; gray, blocky, some 
iron staining, medium plasticity 

CL same as above 

CL same as above 

CL same as above 

CL same as above 

CL same as above 

OL (50.0-52.0) carbonaceous clay 
CL (52.0-55.0) clay; gray, medium plasticity 



163 • MSL Depth from AS Description of Material 
Elev. surface TM (all measurements in feet) 

2175.1 --55 SC (55.0-62.0) sand, clayey, silty; gray 
-
--
-

2170.1 --60 SC same as above 
-- CL (62.0-66.0) clay; gray, blocky, medium plas-
- ticity 
-

2165.l --6S 
- (66.0-67.0) coal 
- CL (67.0-104.0) clay; gray, medium plasticity 
--

2160. l --70 
---
-

2155.1 --7S CL same as above 
---
-

2150.l --BO CL same as above 
----

2145.l --BS CL same as above 
-
-
--

2140. l --90 CL same as above 
---
-

2135.1 --95 CL Same as above 
--
-
-

2130.l --100 CL same as above 
---- (104.4-116.0) coal 

2125.l --105 
-
--
-

2120.1 --110 same as above • 



184 • MSL Depth from AS Description of Material 
Elev. surface TM (all measurements in feet) 

2115.1 --115 coal 
- CL (116.0-116.5) clay; gray 
- ------------------------------------------------ end of boring 
-

2110 .1 --120 
-
-
--
--125 
--
-
-
--130 
--
-
-
--135 
-
-
-
-
--140 
----
--145 
-
---
--150 
----
--155 
----
--160 
---
-
--165 
---
-
--170 • 
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