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ABSTRACT 

Shoreline erosion is a major problem at Lake Sakakawea, North 

Dakota. Ins.:t;rumentation along the eastern shore was initiated in 1983 to 

measure shoreline recession and detennine the processes responsible, with 

the ultimate goal being the development of a relatively simple equation 

to predict the rate of recession which is better than the model currently 

used by the U.S. Army Corps of Engineers. 

For the twenty stations, the present rate of recession ranges from 

0.2 to 4.3 m/y. Approximately 78 percent of the yearly recession occurs 

during the wann months (May-October) due to wave erosion. Erosion over 

the cold months occurs as a result of thaw failure. 

The most important variables associated with shoreline recession 

include: bank height, effective fetch, offshore slope angle, beach width, 

mean grain size, percentage of coarse beach clasts, angle between the 

shoreline and dominant wind, and bank orientation with respect to the 

sun. These variables, along with the average monthly rate of recession, 

were submitted to regression analysis. 

Because the rates of recession are seasonally dependent a separate 

equation was developed for wann and cold season recession. The wann 

season recession equation, in cm/mo, is: 

la) Rs= 141.53 - [17.2f + 8.44~ + 25.0S~C + lD.4~] 

where A= angle between the dominant wind and the shoreline, B= bank 

height, C~ offshore slope angle, and D= beach width. This equation 

exceeds the 95 percent confidence level with an r2 of 59.3 percent. This 

equation is preferred to equation lb: 



lb) Rs=154. 9-[18.8 / + 25 .12 ~fa + 10.06 / + 6.91,ro + 5.03 / + 1._1 /J 
which includ.es effective fetch (El and percentage of coarse clasts {F). 

This equation exceeds the 75 percent confidence level only. Both equa­

tions, however, produce similar results. 

The cold season rate is: 

2) Rw = Rs [(2.05 (bank height)+ 0.043 (bank orientation) - 2)/100, 

where bank orientation is with respect to the sun. This analysis exceeds 

the 99 percent confidence level and produces an r2 of 46 percent. The 

yearly rate of recession (cm/yr) is the sum of the warm and cold season 

recession multiplied by their active months. 

3) Rt= 6(Rs) + 6(Rw) 

For future bank recession it was assumed that the rate of recession 

will decrease with time. Thus, an equation was developed that incorpor­

ated the present yearly recession rate and the formula for a parabola. 

Recession calculated from the equations predicts cumulative recession up 

to 495m over the 500-year life of the reservoir. 

Although these equations are a significant improvement over the 

template method in use by the U.S. Army Corps of Engineers, further 

testing is necessary to determine their applicability to other inland 

bodies of water. 
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INTRODUCTION 

In 1953 the Missouri River was dammed near Riverdale, North Dakota, 

creating Lake Sakakawea (Figure 1). The reservoir was constructed by the 

Corps of Engineers to help control floods, supply irrigation and potable 

water, generate power, conserve fish and wildlife, and improve downstream 

water quality. In 1969 the reservoir first achieved its maximum operat­

ing pool level of 564.3m msl. Since then, erosional processes have 

claimed a substantial amount of shoreline (Figure 2), and created other 

environmental problems such as diminished reservoir water quality and 

storage capacity. Earlier attempts to predict ultimate bank recession 

failed (Cordero, 1982). The assumption made for that model was that 

material eroded from steep banks would be deposited in the nearshore 

zone, thereby creating an offshore platfonn that would reduce wave 

energy. Consequently, the banks would eventually become stabilized at a 

reduced angle and recession would cease. 

Purpose 

The purpose of this study was to develop a better model than the one 

currently used by the U.S. Army Corps of Engineers to predict bank 

recession thou~h time. Development of the model was to be based on 

evaluation of the mechanics, causes, and magnitudes of erosion processes 

along the eastern shore of Lake Sakakawea, in Mercer and McLean Counties, 

North Dakota. The primary data were to be obtained from measurement 

stations installed along the lake (Figure 3). The results of these 

measurements were then to be analyzed statistically to determine the 
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Figure 2 - Erosion processes active in seasonally frozen environments 
{from Gatto and Doe, 1983). 
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magnitude of their effects on the rates of recession, and to develop a 

model to predict recession for any point along the shore. 

Location 

Garrison Dam and lake Sakakawea are on the Missouri River approxi­

mately 121 km upstream from Bismarck, North Dakota. Garrison Dam is one 

of the largest earthfill dams and the resulting Lake Sakakawea is one of 

the largest man-made lakes in the world. At maximum pool level, the lake 

reaches 286 km upstream to just beyond Williston, North Dakota, and has a 

surface area of approximately 946,000 hectares. Table 1 summarizes some 

of the physical characteristics of the reservoir. 

Climate 

The climate of the area is semi-arid and continental, with about 

400mm of annual precipitation (Table 2). Spring and Fall are coDD11only 

cool with variable precipitation. Su11111er is warm and genera1ly dry, even 

though it is the wettest season. Winter is typically cold and dry, with 

the frost first occurring in early to mid- October and continuing to late 

April or early May. Over the three-year period of this project, there 

have been between 77 and 100 days in which the temperature has fluctuated 

above and below the freezing point. Frost penetration has ranged from 

1.0 to 1,5 metres. Climatic data collected over the study period arc 

tabulated in Appendix A. 

Geology 

The banks along the eastern end of lake Sakakawea range in height 

from 2 to 25 metres and typically have near-vertical slopes. The banks 

consist of Tertiary and Quaternary sediments and sedimentary rocks. 

Figure 4 is a representative stratigraphic column for this area and Table 

3 summarizes the characteristics of the units. 
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TABLE 1 

Physical Characteristics of Lake Sakakawea, North Dakota, 
at Maximum Normal Pool Level, 564m {1850 ft.) msl. 

(from Gatto and Doe, 1983, and U.S. Army Corps of Engineers, 1983) 

Drainage area above dam 

Average width 

Length 

Shoreline length 

Surface area 

Maximum depth 

Mean depth 

Volum 

Hydraulic resfdence time 

Mean outlfow 

469,624 sq km (181,322 sq mi) 

4,82km (3 mi) 

286km (178 mi) 

2,155km (1,339 mi) 

131,414 hectares (507 sq mi) 

54.9m (180 ft) 

21.3m (70 ft) 

2.79 X 10lO m3 (98.7 X lOlO ft3) 

1.13 years 

774.3 m3/s (27,655 ft3/s) 
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TABLE 2 

Riverdale, North Dakota Weather SuJllllary 

Year Inches mm Average Maximum Minimum 

1980 14.04 356.6 40.4°F (4.7°C) 102°F (38.9°C) -35°F (-37.2°C) 
1981 16.30 414.0 43.1°c (6.2°c) 103°F (39.4°C) -22°F (-30°C) 
1982 19.36 491. 7 38.0°F (3.3°C) 95°F (35°C) -29°F (-33.9°C) 
1983 13.48 342.2 40.8°F (4.9°C) 99°F (37.2°C) -32°F (-35.5°C) 
1984 15.52 394.2 43.0°F (6.1°cJ 99°F (37.2°C) -33°F (-36.1°C) 
1985 15.10* 384.6* 43.8°F (6.5°C) 97°F (36.1 °C) -29°F (-33.9°C) 

* Through September 1985. 
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TABLE 3 

Stratigraphic Column and Dominant Lithology of Formations 
in Study Area (from Ulmer and Sackreiter, 1973) 

ACE 

RMsda Mtmlbtt 

l'!ck City Membw 

.4pa.......w .... 1w 

Mallard IslaDd M-
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Meclicine Hlll FmmalioA 
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Figure 4 - Geologic column for Lake Sakakawea area, 
ND (from Reid and others, 1986). 
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The glacial sediments (till and glaciofluvial deposits) are over 10m 

thick in places, but the overlying eolian silt is typically less than 

0.5m thick. Glacial sediments are the dominate lithology for 13 of the 

20 stations at Lake Sakakawea (Figure 5). Tertiary sediments typify two 

stations; six stations have mixed lithology. Meyer (1979) and Bluemle 

(1971) have published detailed su11111aries of the Tertiary and Quaternary 

geologic history of the area. 

Sentinel Butte Formation 

The oldest stratigraphic unit exposed in the study area is the 

Paleocene Sentinel Butte Fonnation (Ulmer and Sackreiter, 1973). This 

formation consists of interbedded sandstone, siltstone, mudstone, lig­

nite, and occasional clinker ("scoria"). Poorly consolidated mudstone is 

the most common lithology in the study area. Changes in color give the 

formation a banded appearance. Moisture content and density vary great­

ly. 

Textural analyses of 12 samples by Millsop (1985), yielded average 

sand-silt-clay percentages of 2.2, 47.4, and 50.4, respectively. The 

average median diameter is 7.7 phi {fine silt). Smectite is the dominant 

clay. 

The bedding of the mudstone is essentially ~orizontal throughout the 

area. Joints are well developed both along bedding planes and perp~ndic­

ular to them (Figure 6). There are also some n~rmal faults developed in 

the formation, most easily seen by displaced lignite beds. The contact 

with the overlying unit is always sharp and undulating (Mill sop, 1985). 

The Sentinel Butte Formation is present in the lower parts of most banks 

and occasionally forms the entire bank. More detailed descriptions of 

the formation are provided by Jacob (1976) and Crawford (1967). 
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Figure 5 - Stratigraphy of profile sites, Lake Sakakawea, 
North dakota (from Reid and others, 1986). 



Figure 6 - Highly fractured Sentinel Butte mudstone, 
Station 53 (from Reid and others, 1986). 



I 

I 
" 

f 

r 

• 

13 

Pleistocene Fonnations 

Overlying the Sentinel Butte Fonnation are glacial sediments of the 

- Pleistocene Coleharbor Group (Ulmer and Sackreiter, 1973). The group is 

divided into three fonnations: Medicine Hill, Horseshoe Valley, and Snow 

School (Ulmer and Sackreiter, 1973). Contacts with all the units are 

sharp and undulating (Millsop, 1985). 

Medicine Hill Formation: 

The lowennost Pleistocene unit is the Medicine Hill Formation, 

composed of two distinct members (Ulmer and Sackreiter, 1973). The lower 

member is not exposed in the study area, but consists of sand, pebbles, 

and cobbles, and is locally cemented to conglomerate. The upper member 

is a massive pebble loam (glacial till), and is exposed at numerous 

erosion stations. The average sand-silt-clay percentages from four 

samples are 24.7, 45.5, and 29.9, respectively (Table 4). The average 

median diameter is 5.9 phi (medium silt). The average density is 2.98 

gm/cc and the average moisture content is 7.5 percent (Figure 7). For 

details of the coarse sand composition and mineralogy of all the units 

see Millsap (1985) • 

Horseshoe Valley Formation: 

The Horseshoe Val 1 ey Formation also has two members (Ulmer and 

Sackreiter, 1973). The lower member is discontinuous and is exposed at 

only one site in the area, Station 51. There, the lower member consists 

of interbedded iron-stained conglomerate overlain by a cross-bedded sandy 

loam unit. Textural analysis of the sand loam yielded sand-silt-clay 

percentages of 68.4, 14.1, and 17.5, respectively (Table 4). The median 

grain diameter is 1.8 phi (medium sand). 
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TABLE 4 -
I Average Texture and Textural Parameters of Glacia1 Til1 Units, 

Lake Sakakawea, ND (modified from Millsop, 1985) 

l Number of % % % Median 

r 

Formation Samp1es Sand Si1t Clay Sorting Diameter 

Upper Snow 10 26.4 41.3 32.3 3.415 6.2 phi 

f 

School 

Upper Horseshoe 2 32.5 35.0 32.5 3.495 5. 7 phi -~ 

f 
Valley 

Upper Medicine 4 24.7 45.4 29.9 3.148 5.9 phi 
I Hill 

. ( 

• 
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Figure 7 - Density and moisture content of the Snow School, 
Horseshoe Valley, and Medicine Hill tills (from 
Reid and others, 1986). 
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The upper member of the Horseshoe Valley is a pebble loam (glacial 

till), exposed at only two stations, Stations 51 and 52. The member 

displays strong columnar jointing, which contributes greatly to its 

erodibility. The average sand-silt-clay percentages are 32.5, 35.0, and 

32.5, respectively (Table 4). The average median diameter is 5.7 phi 

(medium silt). The average density is 1.64 gm/cc and the average mois­

ture content is 0,5 percent (Figure 7). 

Snow School Formation: 

The Snow School Formation consists of three members (Ulmer and 

Sackreiter, 1973). The lowest member is exposed at Stations 4, 5, and 7. 

It is an iron-stained conglomerate overlain by a flat-bedded and occa­

sionally cross-bedded dirty sand unit. Textural analyses of five samples 

yielded percentages of sand-silt-clay of 69.1, 19.1, and 11.8, respec­

tively (Table 4). The sand has a median diameter of 2.7 phi (fine sand). 

The middle member of the Snow School Formation is not exposed at any 

erosion station, but has been found in the study area (Ulmer and Sack­

reiter, 1973). The sediment is classified as a reddish-brown sandy 

pebble loam (glacial till), and is considered an excellent marker bed 

(Ulmer and Sackreiter, 1973). 

The upper member is a very compact columnar jointed pebble loam 

(glacial till), and is exposed throughout the study area (Figure 8). 

Calcium carbonate precipitate is common along joint planes. This member 

and the Sentinel Butte Formation are the two most commonly exposed units 

along the eastern end of Lake Sakakawea. The average sand-silt-clay 

percentages for 10 samples are 26.4, 41.3, and 32.3, respectively (Table 

4). The average median diameter is 6.2 phi (fine silt). The average 

density is 2.94 gm/cc and average moisture content is 10.2 percent 

, .. ,' ~;:.;·,~- ·. " 



Figure 8 - Vertically jointed Upper Snow School till, 
Station 55 (from Reid and others, 1986). 
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(Figure 7). For additional data, such as grain mineralogy and matrix 

composition, see Millsap (1985). 

Oahe Formation· 

The Oahe Formation is the uppermost stratigraphic unit in the study 

area. It is interpreted to be wind-blown sediment (loess) (Bickley, 

1972). Textural analyses yielded average sand-silt-clay percentages of 

7.8, 71.8, and 20.4, respectively. The average median diameter is 6.0 

phi (fine silt). 

The loess is heavily root-bound which contributes to probably making 

it the most stable formation in the study area. The underlying tills 

often break away and leave the loess as an overhang (Figure 9). Thus, 

failures of this unit are as debris falls or earthfalls. 

Previous Work 

Earlier attempts to calculate ultimate bank recession at Lake 

Sakakawea were made by the Corps of Engineers (Corps) (Cordero, 1982). 

They used a conceptual model based on the conservation of volume (Figure 

10). This procedure assumes that the eroded bank material is deposited 

in the immediate offshore zone. When enough bank material is eroded to 

form a stable offshore platform that can effectively dissipate approach­

ing waves, bank recession ceases. The problem with this assumption is 

that the banks are predominantly composed of very 'firie-grained sediments 

(e.g., silt and clay) (Table 4) which are carried out into deeper water 

by wave and current action. Thus, a stable platform is not developed, as 

yeL Cordero found that within the first 13 years after the maximum poof 

level had .been reached, erosion had already exceeded the projected 

ultimate limit in 80 percent of the locations measured. Therefore, it 



Figure 9 - Overhanging Oahe loess overlying Upper Snow School 
till, Station 1 (from Reid and others, 1986). 
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Conventional procedure used by U.S. Anny Corps of 
Engineers to predict ultimate shoreline recession 
(from Cordero, 1982). 
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was concluded that both the conventio.nal technique and ultimate recession 

estimates needed to be re-evaluated. 

Another study related ·to this thesis was by Gatto and Doe (1983). 

They calculated bank recession rates during the periods 1958-1966 and 

1966-1976. They concluded, from air photo measurements, that bank 

recession rates for 1958-1966 averaged 4.3m/yr and for 1966-1976 averaged 

5.8m/yr. Because of the scale of the photographs these rates were 

considered approximations at best. They concluded that the primary cause 

of land loss during 1958-1966 was by reservoir inundation, and for 

1966-1976 it was inundation and ensuing wave erosion. They also tested 

for correlation between measured recession and other variables such as 

water level, and bank and reservoir characteristics. However, the 

results did not prove useful in evaluating the erosion processes and bank 

conditions that contribute to shoreline erosion; significant direct 

correlations were found with variables that were obviously not important 

(e.g., duration of ice cover). 

Finally, this thesis is the conclusion of a three-year study of bank 

erosion at Lake Sakakawea. Earlier work on this study was done by Reid 

and others (1986), Millsap (1985), and Reid and Millsap (1984). Mill­

sop's thesis discussed the establishment of erosion stations, collection 

of such data as bank recession measurements, and determination of the 

erosion processes responsible for bank recession. He also determined 

grain-size distribution and mineral composition of all the formations 

found along the eastern end of Lake Sakakawea. He concluded that the 

principal activating cause of bank recession at Lake Sakakawea is wave 

action. The most important variables responsible for wave erosion 

included: pool level; wind velocity, direction, and duration; bank 

'fJ 
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orientation; geo1ogy; geometry; natura1 rip-rap; offshore bathymetry; and 

the presence of nearshore is1ands. Resu1ts indicated that banks shorter 

than 5m and which face north and northeast, and are composed of we11-

jointed ti11 or mudstone, have the highest recession rates (Mi11sop, 

1985). 
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PROCEDURES 

Selection of Stations 

The first priority was to identify and establish measurement sta­

tions that were both relatively accessible and exhibited active erosion. 

Some sites that exhibited little or no erosion were chosen as control 

sites. The purpose of the control sites was to isolate any one independ­

ent variable and determine the impact it had on shoreline recession. The 

eastern end of the Lake Sakakawea was chosen because it was closer to 

Grand Forks, North Dakota, and because relevant pool and weather data 

were available at Riverdale. Also, it was assumed that erosion at the 

eastern end of the lake would be highly active due to long westerly 

fetch. The stations selected are shown in Figure 3. 

Data Collection 

Bank Recession Pins 

Bank-top recession at each of the stations was measured by inserting 

a series of pins, 152mm long nails, perpendicular to the shoreline. The 

pins were set 1.5m and 3m back from the bank edge. Each station had a 

represe.1tative length of shoreline with an average of six sets of pins 

spaced at 3-metre intervals. Remeasurement of the pins revealed the 

amount of bank recession over a specific interval. Any extensional 

joints along the pin lines were also measured and recorded; the joint 

width was subtracted from the recorded recession measurement to arrive at 

a more accurate bank recession value. Sixty pins were inserted along 

north shore banks and seventy-two pins along south shore banks. The pins 

were measured each time the lake was visited. 
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Profi 1 es 

Beach and bank profiles were measured at each erosion station, using 

a Brunton compass and 0.8-metre board from the shoreline to the top of 

the bank. Profiles were measured as often as possible. 

Offshore profiles were also measured in conjunction with the onshore 

profiles during the summers of 1984 and 1985. The profiles were measured 

with a Raytheon sonar recorder from a boat. A stadia rod attached to the 

boat was read at about 15m intervals from a transit located onshore at 

the waterline. Thus, the depth and distance were known and the offshore 

slope and topography could be plotted. It was hoped that both the 

onshore and offshore profiles would provide comparative data on changes 

offshore as well as evidence as to where the eroded sediment was going. 

If a stable platform is being built, it will help dissipate wave energy 

before it reaches shore. 

Colluvium Volumes 

In late May, after spring thaw was complete, the volume of colluvium 

resulting from thaw failure was determined using three techniques. The 

most accurate method required excavation of a trench at representative 

colluvium sections. The co11uvium was removed by shovel and placed into 

a bucket of known volume. When the contacts with the undisturbed bank 

and beach were reached, the volume of the trench was calculated by 

multiplying the number of buckets removed by the bucket volume. Using 

this trench as a standard, the volume of colluvium for an entire section 

was estimated by pacing along shore. This estimated value was probably a 

minimum because some sediment that had fallen on the ice over the winter 

and early spring was lost when the ice melted. It must also be 
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understood that some colluvium is the result of processes other than thaw 

failure. 

The second technique utilized bank recession pins, bank heights, and 

station length measurements. The amount of bank recession, measured from 

the time of the first frost, was multiplied by both the average bank 

height and station length to yield a volume of eroded sediment for a 

particular site. 

The third technique employed trigonometric functions and was applied 

only to very large colluvium areas. Volumes were calculated by measuring 

the length of the colluvium apron and its slope angle, and the slope of 

the bank. From these measurements, the unit area could be determined. 

The area was then multiplied by the length of shoreline to determine the 

volume of eroded sediment. 

Finally, ·bank recession pins and bank profiles were also used to 

quantify erosion by frost-thaw processes. 

Pool Levels and Wind 

Pool level data for Lake Sakakawea were obtained directly from the 

power plant at Garrison Dam for the period of January 1980 to August 

1985. Wind data were obtained four times daily, except weekends and 

holidays, from the Riverdale weather static~. 

Precipitation 

Along with pool level and wind data, precipitation events were 

recorded and incorporated into the data base. Daily work-day meteorolog­

ical observations from the Riverdale weather station were provided by the 

Riverdale office of the Corps of Engineers. Because no observations are 

made over the weekends and holidays, the records were supplemented by 
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data from the volunteer weather observer at Garrison, Mrs. Albert Beierly 

(until January 1985), and Mr. Herbert Schwarz (since July 1985). 

In order to establish a data base to compare north-shore precipita­

tion with that at Riverdale, one additional rain gauge was installed at 

Fort Stevenson State Park. The park rangers, Tim Thiel and Paula Onu­

fray, kindly recorded each precipitation event there. 

Frost Tubes and Thermograph 

In order to measure frost depth and duration, frost tubes were 

installed at Riverdale and Fort Stevenson State Park. Frost depth was 

measured using a 15mm o.d. polyethlyene tube filled with methlyene 

blue-dyed water inserted into a PVC casing (35mm o.d.). To measure the 

frost depth, the tube was lifted up and the thickness of the frozen 

section was measured, the base being equivalent to the zero-degree 

isotherm. These tubes are similar to those used by Reid (1985) and 

Rickard and Brown (1972). 

A seven-day thennograph was installed at Fort Stevenson State Park; 

it was changed weekly by the rangers there. It recorded temperatures 

throughout the winter, enabling freeze-thaw cycles to be counted. 

Field Analyses 

The banks at each station were described, sketched, phot~graphed, 

and measured regularly throughout the project. In the fall of 1983, 

unweathered samples of the banks were collected for subsequent laboratory 

analyses of color, texture, coarse sand and clay lithology, and percent 

carbonate matrix. Joint orientations were also measured at this time •. 

In June 1984, additional samples were collected. for moisture content and 

dry density. The procedures and results of the analyses were discussed 

by Mi11 sop ( 1985) and Reid a.nd others ( 1986). 
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Along with bank sample collection, offshore samples were collected 

in July, 1985, to determine grain size distribution, The primary objec­

tive was to locate the possible existence of the offshore silt/clay 

boundary. An Eckman dredge was to used to collect the sediments at 

specific intervals from shore, directly offshore from the profile pin at 

the erosion station. Such sites were chosen because the distance from 

shore could be calculated from offshore profiles made in June 1985. 

Samples were collected from depths up to 29m and distances of up to 323m 

from shore. Each sediment sample was placed in a mason jar and labeled. 

Finally, the size distribution of beach sediment at each of the 

station was determined in August, 1985. It was surmised that an abund­

ance of coarse beach clasts forming a beach would effectively impede wave 

erosion. The distribution was determined by constructing a grid on a 

representative section of beach. The length of the grid incorporated the 

entire beach width. At one-metre intervals from the bank face to the 

water line, particle size was noted at every 10cm mark along a line 80cm 

wide, parallel to the water line. The data were converted to percentage 

of area covered by particles of each size class. This method was selec­

ted over bulk sampling because it is applicable to large particles and 

provides a better representative sample for the area in question (Wolman, 

1954). 

Laboratory Analyses 

Laboratory time involved analyzing sediments, calculating wave 

energy, and performing statistical analyses on possible parameters 

associated with bank recession. Offshore samples were analyzed for 

percentages of sand, silt, and clay. Wave energy calculations involved 

determining effective fetch, which is a parameter that can be used for 

.-UI 
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forecasting waves in in1and bodies of water. The procedure for statist­

ical analysis is discussed later. 

Offshore Grain-size Analysis 

Hydrometer analyses were performed using the standard ASTM (1980) 

procedures. SediGraph analyses were made on the same samples and com­

pared with hydrometer results. SediGraph sample preparation was as 

follows. About 15 grams of each sample were soaked in 50 ml of 4 percent 

Calgon solution (dispersant). After soaking for 24 hours the sample was 

wet-sieved through a 4-phi screen, using distilled water. Most of the 

silt and clay passed through the screen. The solution was allowed to 

settle and then inspected for signs of flocculation. If there was no 
" apparent flocculation the solution was ready to be analyzed. For Sedi-

Graph analysis to be valid the solution has to be sufficiently dense, 

approximately Sgro per 50ml of water. Therefore, water had to be decanted 

or added accordingly. The SediGraph analyzes the sample using x-rays and 

produces a cumulative curve for a desired range of phi sizes, in this 

case coarse silt to fine clay {4 to 12 phi). Both the SediGraph and 

hydrometer results were then combined to provide a plot for the total 

sediment range of fine sand to fine clay. 

Effective Fetch 

Effective fetch is a parameter developed by the Corps of Engineers 

to more accurately describe the types of wind-generated waves found in 

restricted bodies of water such as lakes or reservoirs. The procedure 

for determining effective fetch involves constructing radials at 5° 

increments up to an angle of 45° on each side of the central radial (the 

principal fetch) (Saville, 1954). These radials are extended until they 

intersect the shoreline (Figure 11). A line is then drawn from the point 
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of intersection, perpendicular to the central radial. The distance along 

the central radial from the origin to the line of intersection is meas­

ured. Next, the calculated distance is multiplied by the cosine of that 

particular angle. The resulting products for each radial (distance x 

cosine) are summed and then divided by the sum of all the cosine angles. 

Angles up to 45° from the central radial were used for each station at 

Lake Sakakawea except for Station 53, which required angles up to 90° on 

each side of the central radial; the station is located on a extended 

headland that is subjected to wave action from many directions. Effec­

tive fetches that are calculated over a 180° sector can lead to values 

that are too low. This may cause predicted wave parameters to be under­

estimated (Saville, 1954). 

Another consideration was choosing the principal wind direction for 

each station. This involved identifying the most dominate wind direction 

in relation to the longest fetch at each station. The station shown on 

Figure 11, for example, has its principal fetch to the southwest. Strong 

winds from the south, however, occur more frequently than from the 

southwest. But if a southern principal fetch were chosen, it would fail 

to account for the longer fetch to the west. Also, by selecting a 

principal wind from the south a small effective fetch value would result 

and cause wave parameters to be underestimdted. 

Once effective fetch is calculated, it can be applied to a wave 

forecasting curve that predicts such wave parameters as wave height and 

wave period. The parameters can then be used in a standard equation that 

calculates potential deep water wave energy. 
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RESULTS 

Bank Recession 

Sites and Measurements 

Erosion stations were visited every month from April to October, the 

most active period of changes in the shoreline geometry. From November 

to March the sites were visited occasionally to observe changes in 

shoreline geometry, and study the type of erosion processes active. 

Also, during this period, measurements of the pins were not always 

possible because of snow cover. Snow cover also denied road access to 

some of the stations. 

Finally, bank recession pin measurements have proven to be the most 

valuable technique in the documentation of erosion magnitudes. The 

cumulative average recession for a measurement interval was detennined 

for each station by summing the bank recession values for all the pins 

and dividing that by the number of pins measured. The average recession 

for the 20 stations on Lake Sakakawea is shown on Figure 12. This 

represents 16 measurements over 26 months of data collection. 

Rates: Ranges and Differences 

In 1985 bank recession rates were less than 1984, becau~e of the 

lower pool level (Figure 13). But for each year there is a strong 

correlation between pool level and the rate of recession. From this, a 

pool level of 563m msl was determined to be the critical pool level; 

surface water elevations above this level are high enough for waves to 

easily reach the banks, especially during storms with strong winds. In 
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Figure 12 - Cumulative average bank recession 1983-1985 
(from Reid and others, 1986). 
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1984, the pool level was above the critical elevation for a sustained 

period, while 1985 never reached the critical level. 

For the twenty stations, the average yearly rate of recession ranged 

from 0.34 to 4.34 m/yr. Table 5 lists the stations with their cumulative 

and yearly recession rates and seasonal percentage. Station 55 had the 

highest recession rate; Station 58 had the lowest. The average recession 

rate for all the stations was 1.59 m/yr. Bank recession measurements 

also show that rates of recession are seasonally dependent. Cumulative 

warm season recession accounted for approximately 78 percent of the 

total, a decrease from 87 percent for 1984 (Millsap, 1985). The remain­

ing 22 percent of bank recession occurred during the cold season (Table 

5), 

Monthly recession rates are high from late May to early October, 

when wave action is the dominant erosive force. Warm season recession 

rates, which are controlled by the pool level, peak in July when the 

highest pool level is attained. After July, downstream demand exceeds 

upstream input and pool level, and subsequently bank recession, begins to 

decline. Review of past pool level elevations show that yearly pool 

levels have alternating high and low years, but the critical pool level 

(563m msl) is exceeded SO percent of the time. 

Cold season recession accounts for 2 to 50 percent of the total 

yearly recession. Freeze-thaw, plus other factors, are the driving 

erosive forces. Recession in the winter does not occur at a continuous 

rate, but as sporadic events usually in the late winter and early spring 

when moisture content of the bank material is high. The cumulative 

recession for each station is presented in Appendix B. 
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I TABLE 5 
I 
I Cumulative Average Bank Recession at Each Station 

i Lake Sakakawea, June, 1983 through June, 1985 

r 
Cumulative Bank 

Average Bank Recession 
I Number Recession Warm Weather Cold Weather Rate 

l Station of Pins m Recession Recession m/y 

[ 
1 14 4.13 98.5% 1.5% 2.06 
2 8 2.77 76.2% 23.8% 1.39 
3 6 3.60 94.5% 5.5% 1.80 
4 4 2.71 93.7% 6.3% 1.36 
5 4 2.25 85.8% 14.2% 1.12 
6 3 2.35 76.6% 23.4% 1.18 
7 4 4.20 51.7% 48.3% 2.10 

50 5 1.03 53.4% 46.6% 0.52 
51 12 3.75 85.3% 14.7% 1.88 
52 7 3.07 75.6% 24.4% 1.54 
53 12 1.03 53.4% 46.6% 0.52 
54 5 5.15 87.0% 13.0% 2.58 
55 9 8.67 64.7% 35.3% 4.34 
56 8 6.02 66.2% 33.8% 3.01 
57 8 2.17 60.8% 39.2% 1.09 
58 7 0.67 91.0% 9.0% 0.34 

' 59 4 1.02 98.0% 2.0% 0.51 
I 60 1 0.37 91.9% 8.1% 0.19 

61 1 5.56 84.7% 15.3% 2.78 
62 6 3.01 76.1% 23.9% 1.51 

Average 3.18 78.2% 21. 7% 1.59 
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Besides seasonal differences, variations in rates were also corre­

lated to many other factors, ranging from the unique geometric character­

istics of the shoreline, such as bank height and orientation, to its 

offshore slope. The significance of these factors will be discussed 

later. 

Bank Failure Mechanisms 

A variety of mass movements occurs along the shoreline of Lake 

Sakakawea. Bank failures, in the forms of falls, topples, slides, and 

flows, result when stress exceeds strength (Varnes, 1978). Failures of 

all these classifications were observed at Lake Sakakawea, and are 

commonly associated with reservoirs (Erskine, 1973), These have been 

su111T1arized by Millsap (1985). 

Attempts to quantify bank.failure by these mechanisms were accom­

plished by recession pin measurements in the warm season and colluvium 

volume calculations in the spring for cold season recession. Using the 

methods described earlier, colluvium volumes per metre of shoreline were 

determined. Volumes ranged from 0.13 m3/m to 34.8 m3/m for 1985 (Table. 

6). The average volume for 1985 was 3.88 m3/m, whereas 1984 averaged 

only 0.68 m3/m. The difference is a reflection of the high warm season 

recession that occur~ed the preceding year as result of the unusually 

high pool level (Figure 13); at the end of 1984, banks along Lake Sakaka­

wea were generally ~teep and freshly exposed to the weather. In con­

trast, bank recession in 1983 was less than 1984. Therefore, colluvium 

from the preceding year remained and protected the underlying bank 

material from the effects of freeze-thaw and lateral expansion • 
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TABLE 6 

f 
Co1luvium Volumes Along Shorelines Near 

Bank Recession Stations for 1983-1985 

Shoreline Volume of Colluvium 
Station Length . 1983 1984 1985 

m m3/m m3/m m3/m 

1 132 0,58 0.68 0.36 
2 73 4.54 0.76 0.82 
3 64 9.05 0.18 0.19 
4 49 1.54 0.73 0.30 
5 33 2.77 0.75 0.13 
6 3.4 21.6 1.12 34.8 
7 37 7.6 0.58 10.5 

50 70 54.1 3.3 2.0 
51 159 12.9 0.39 0.36 
52 55 0.27 0.53 
53 567 0.96 V.79 9.27 
54 83 3.0 0.13 0.14 
55 64 0.72 6.1 
56 114 8.1 0.89 3.57 
57 109 9.73 0.48 5.8 
58 28 8.26 0.33 0.37 
59 109 7.57 0.28 1.46 
60 58 2.14 0.33 0.22 
61 65 3.77 0.59 0.43 
62 68 0.26 0.20 

Average: 0.68 3.88 
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Waves 

General 

A major factor in bank erosion is wind-generated wave action (Carter 

and Guy, 1983; Quigley and Gelinas, 1976). Previous studies have shown 

that wave action is the dominant factor in shoreline erosion for lakes 

(Sterrett, 1980; Mickelson and others, 1976) as well as reservoirs {Reid, 

1985; Reid and Millsap, 1984; Gatto and Doe, 1983; Savkin, 1975). For 

Lake Sakakawea, wave erosion accounted for approximately 78 percent of 

the total bank recession from June 1983 to August 1985 (Table 5). Be­

cause wave action is an important eroding agent, an attempt was made to 

quantify this factor and incorporate it into a bank recession equation. 

Wave Forecasting 

The standard method for forecasting waves is not va)id for lakes or 

inland reservoirs because the surface area for the standard equation is 

considered to be infinitely large. A different method, therefore, had to 

be developed for water bodies having a limited fetch width. T. Saville, 

Jr. (1954) first formulated the modification, taking into account the 

fact that waves are generated not only in the direction of the wind, but 

also at some considerable angle to it. His method resulted in an "effec­

tive" fetch. 

Effective fetch is used for width-limited water surfaces, because it 

was observed that wind velocities over shorter fetches, at angles of 30 

to 45 degrees to the longer fetches, produced waves higher than expected. 

The concept of effective fetch is based on two assumptions (Saville, 

1954): 

1. The transfer of energy from wind to water surface varies with 

the cosine of the angle of the wind direction, and 
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2. waves that impinge on the shoreline are completely absorbed. 

Effective fetches for all stations except 3, 4, 5, 60, and 61 are 

given in Table 7, along with their principal wind direction; the five 

stations were not included because they are in protected locations, such 

as bays; these stations, therefore, are affected only when the wind 

direction is perpendicular to the shoreline. The effective fetch method 

was applied to the Fort Peck Reservoir, Montana, and Denison Reservoir in 

Texas and Oklahoma (U.S. Anny Corps of Engineers, 1962). Prediction 

curves were constructed for significant wave height and significant wave 

period. Significant wave height represents the average height, in feet, 

of the highest one-third of the waves present, while, the significant 

wave period is for the highest order, in seconds. The values from the 

forecasting curves are dependent on the effective fetch and wind velo­

city. Thus, the effective fetch had to be determined for each site that 

was evaluated at Lake Sakakawea. 

Once the effective fetch is known, values for the significant wave 

height and period, for a given wind velocity, can be obtained from the 

forecasting curves. Also, the minimum time duration is given on the 

curves. Wind velocities of 25, 35, and 45 mph (40, 56, and 72 km/h) were 

chosen. Winds less than 25 mph will generate small and ineffective waves; 

wJnds greater than 45 mph occur infrequently. 

Wave Energy 

For this study, deep water wave energy was calculated for specified 

locations where bank recession data were available. The energy of waves 

determines the potential of work performed on a shoreline, but not 

whether the work is constructive or destructive; that will depend on wave 

steepness (H/L) (King, 1972, p.45). The energy in a deep water wave, 
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Station 

1 
2 
6-7 
50 
51-52 
53 
54-55 
56-57 
58-59 
61 

--- -----------------
40 

TABLE 7 

Effective Fetch and Principal Wind 
Direction for Lake Sakakawea Stations 

Effective Fetch 

7.58 km 
8.21 km 
4.03 km 
7.19 km 
9.11 km 
6.96 km 
8.85 km 
9.15 km 
7.39 km 
6.13 km 

Wind 
Direction 

NE 
NE 
N 
NW 
WNW 
SW 
WSW 
WSW 
s 
SE 
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where the depth is greater than half the wavelength, is half potential 

and half kinetic. The displacement of the wave surface from the stilled 

water condition gives the wave form a potential energy. At the same 

time, the orbital motion of the water under the wave constitutes the 

kinetic energy for the wave (Komar, 1976, p.45). The total energy (E), 

both potential and kinetic, is calculated according to the equation: 

E=l/8(w L H2), 

where w is the weight of one cubic foot of water, Lis the wavelength, 

and His the wave height. Energy is given in foot-pounds per foot of 

wave crest per wavelength, and is dependent on the wavelength and the 

square of the wave height. Because the wavelength is not determined from 

the forecasting curves, the relationship between wave period and wave-
' 

length is: 

L = 5.12 T2 

Once the values of wavelength and wave height are defined, ·wave energy 

can be calculated. 

Wave energies, along with their respective wind velocities and 

minimum time durations, are shown in Table 8. These values represent 

deep water wave energy, and represent the maximum possible wave energy 

available to do work on the shoreline. These calculations show that for 

every 10 mph increlse in wind velocity the wave energy will increase by a 

factor of 2 to 3. Also, the time necessary to generate the predicted 

waves decreases. Small effective fetches limit the amount wave energy 

generated and indicate that wind/ wave influences are diminished, espec­

ially for effective fetches less than 5 km (Hakanson and Jansson, 1983, 

p.191). 
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'~ TABLE 8 

Wave Characteristics for Various Wind 
' Velocities for Lake Sakakawea Stations <;, 

Wind td Hs T Ls Steepness Wave Energy 
Station Velocity (min) (m) (sec) (m) (Hs/Ls) Velocity (Joules) 

1 40 km/h 71 0.67 3.15 15.5 .043 4.9 m/s 2,667 
56 62 0.94 3.6 20.2 .046 5.61 6.910 

I 
72 56 1.2 4.1 26.2 .048 6.4 15,679 

2 40 km/h 75 0.70 3.2 16.0 .043 5.0 m/s 2,877 -;', 

56 65 0.98 3.7 21.4 .046 5.8 7,785 
72 59 1.31 4.1 26.2 .05 6.4 17,246 

6-7 40 km/h 45 0.49 2.6 10.5 .046 4.1 m/s 961 
56 39 0.70 3.0 14.1 .05 4.7 2,644 
72 35 0.91 3.4 18.0 .051 5.3 5,778 

'.cc 50 40 km/h 68 0.64 3.1 15.0 .043 4.9 m/s 2,354 
56 58 0.91 3.5 19.1 .48 5.5 6,120 
72 52 1.22 4.0 25.0 .049 6.3 14,230 

51 40 km/h 80 0.73 3.3 . 17 .o .043 5.2 m/s 3,509 
56 68 1.04 3.8 22.6 .046 5.9 9,277 
72 61 1.34 4.3 28.1 .048 6.6 19,402 

53 40 km/h 57 0.64 3.1 15.0 .043 4.9 m/s 2,354 
56 58 0.91 3.5 19.1 .048 5.5 6,120 
72 52 1.22 4.0 25.0 .049 6.3 14,230 

54-55 40 km/h 79 0.70 3.3 16.5 .043 5.1 m/s 3,103 
56 67 1.01 3.8 22.6 .045 5.5 8,741 
72 60 1.31 4.2 27.5 .048 6.6 18,109 

56-57 40 km/h 80 0.73 3.3 17.0 .043 5.1 m/s 3,480 
56 68 1.04 3.8 22.6 .046 5,9 9,277 
72 61 1.34 4.3 28.1 .048 6.6 19,422 

',;'! 

58-59 40 km/h 69 0.64 3.1 15.0 .043 4.9 m/s 2.354 
; 

' ' 56 61 0.91 3.5 19.1 .048 5.5 6,120 ~;, 

72 55 1.22 4.0 25.0 .049 6.3 14,230 

61 40 km/h 60 0.58 3.0 14.1 .041 4.7 m/s 1,805 
56 52 0.85 3.4 18.0 .047 5.3 5,016 
72 48 1.13 3.8 22.6 .050 5.9 10,987 

td = minimum time duration Hs = significant wave height 
T = wave period Ls= significant wavelength 
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Freeze-Thaw Effects 

General 

Studies by Millsop (1985), Reid (1985), Sterrett (1980), and Mickel­

son and others (1977) have concluded that freeze-thaw effects are import­

ant contributors to reservoir and lake bank failure in cool temperate 

climates. 

During the winter, the banks are frozen and relatively stable. Any 

winter failure that does occur is the result of sublimation of interstit­

ial and lens ice within the frozen sediments. Individual aggregates 

several millimetres in diameter accumulate at the base of the bank where 

they remain until acted upon by wave and current action in late spring 

and summer. When temperatures begin to rise to the freezing point, and 

ice and snow begin to thaw, massive bank failure begins. Failure occurs 

as debris flows, mudflows, and planar and rotational slides. 

Several factors affect the rate and depth of freezing and thawing of 

the sediment: soil composition, structure, density, porosi'ty, moisture 

content, degree of saturation, and temperature (Lawson, 1985). At Lake 

Sakakawea, frost penetration was measured at Riverdale and Fort Stevenson 

State Park. Frost penetration ranged from 80 to 100 cm for 1983-84 and 

was 140 cm for 1984-85. Frost penetration was greater in 1984-85 because 

of less snow cover on the ground. 

The thawing of frozen sediment, which releases meltwater from pore 

and lens ice, can greatly reduce internal friction and cohesion, thereby 

decreasing the shearing resistance of bank material (Nixon and Hana, 

1979). Excess pore pressures can develop at the ice/sediment interface 

which reduce or eliminate the shearing resistance of the sediment (Mc­

Roberts and Morgenstern, 1974; Nixon, 1973). The frozen horizon prevents 
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free drainage of the water through the soil and the upper horizon, 

therefore, has a high degree of saturation; this facilitates downslope 

movement. Gravitational slip or flow failures on slopes as low as 1° to 

10° may result (Sterrett, 1980). 

Freeze-Thaw Cycles 

The depth of freezing is not the most important factor in thaw 

failure. Instead, the number of fluctuations above and below the freez­

ing point is a more significant factor (Reid, 1985; Trudgill, 1983, 

p.47). Each fluctuation results in further weakening of the sediment 

structure (Bryan, 1971). The number of cycles over the past several 

years at Riverdale is summarized in Figure 14. The numbers. represent the 

daily maximum and minimum air temperatures, not the temperatures at or 

below the ground surface. Presumably, the latter would be less. 

Freeze-thaw cycles, most common in the spring and fall, affect soil 

properties such as structure, permeability (Chamberlain and Gow, 1979), 

degree of consolidation, moisture content, density (Johnson and others, 

1979), and strength (Brems and Yao, 1964). Broms and Yao (1964), for 

example, found that cyclic freezing and thawing of clay-rich sediments 

reduced unfrozen shear strength up to 95 percent, with the largest 

reduction occurring in sediments that had the highest ~oisture content 

before freezing. The repeated freezing and thawing of sediments contain­

ing ice lenses will modify soil structure by cracking, dissagregating, 

separating, and reorienting soil particles and aggregates (Van Vliet­

Lance and others, 1984). 

Frost Heave 

Frost heave results from the segregation of ice in the fonns of 

1 ens es and crysta 1 s. The degree of heave is dependent on the di rec ti on 
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and dimension of ice growth, and the compressibility of the sediment 

(Chamberlain and Gow, 1979; Chamberlain and Blouin, 1978; Penner, 1963). 

The direction of heave is usually in a direction orthogonal to the land 

surface (Lawson, 1985). 

The mechanics of ice segregation and frost heave is not clearly 

understood although three theories are considered primary ones: capil­

lary, secondary heave, and adsorption force (Chamberlain, 1981). Factors 

that determine the susceptibility of sediments to frost heave are tex­

ture, pore size, moisture content, rate of heat Toss, temperature gradi­

ent, overburden stress, and the number and duration of freeze-thaw cycles 

(Chamberlain, 1981). Grain size is typically used as an indicator for 

frost-susceptible soils and is considered the most important character­

istic in identifying the soil's frost susceptibility (Penner, 1976). 

Soils are classified frost-susceptible if the soil has less than 20 

percent clay and greater than 60 percent silt- and sand-size particles 

(Chamberlain, 1981). 

At Lake Sakakawea the sediments are generally considered to be 

frost- susceptible due to their silty-clayey ;exture (Millsap, 1985, 

p.161). However, frost susceptibility will vary from site to site due to 

the inherent variability of sediment properties and conditions along the 

reservoir. 

Bank Characteristics 

General 

The banks at the eastern end of Lake Sakakawea are typically of 

mixed lithology (Figure 5). The banks have near-vertical slopes, primar­

ily because of the large silt-clay composition and high degree of compac­

tion. Various characteristics were studied for their effects on bank 
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recession, especially the bank profi 1 es, geo 1 ogy, structure, and geo­

metry. 

Bank profiles were measured as often as possible. From computer­

generated profiles, any changes in the bank and beach slope could be 

observed (Figure 15). Such changes would reflect the degree of stability 

of the profile. Stabilizing banks, for example, would show a decreasing 

slope angle. Analysis of the profiles measured over the project period 

show none of these changes occurring presently. What the profiles do 

indicate, however, are the effects that lithology and stratigraphy have 

on shoreline recession. 

Bank Geology 

Bank geology refers to the geological units and their stratigraphic 

position. Most of the units have large percentages of silt and clay 

(Table 4). B·ecause most units are cohesive, their erodibility is primar­

ily a function of the structures present, which better define the mass 

strength of the lithologic units (Koo, 1982), Of all the lithologic 

units the massive Medicine Hill Formation is the most resistant to wave 

erosion, but some of the less fractured mudstones are also resistant to 

erosion, such as at Station 61. In contrast, Station 58 has an uncon­

solidated sand exposed at the wave base, yet it experiences little 

recession (Figure 12). Therefore, an observable correlation between 

recession rates and dominant bank lithology was not found, despite the 

fact that lithology does affect erosion rates. It is concluded that 

insufficient data are available to make such a statistically valid 

correlation. 

Stratigraphic position of the formations is another important factor 

affecting the rate of reces.sion. Presence of erodible sand units near 
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Figure 15 - Sequence of bank profile changes, 1983-1985, 
Station 51 ( from Reid and others, 1986). 
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the wave base, for example, allows for rapid undercutting of banks such 

as at Station 51. Removal of sand by wave action oversteepens the bank 

and increases the shear stress in the overlying jointed glacial till 

(Figure 15). 

Bank Structure 

Bank structures, such as joints and faults, were also studied for 

relationships to rates of recession. As stated earlier, the Sentinel 

Butte, Upper Horseshoe Valley, and Upper Snow School Fonnations exhibit 

ubiquitous jointing. Therefore most of the stations have jointed units 

in the bank. 

The Sentinel Butte Formation has a blocky fracture probably to a 

large extent because of the repeated loading and unloading of glaciers 

(Figure 6) (Grisak and Cherry, 1~75). The blocks are usually only a few 

centimetres iri length. Normal faults are also found at various locations 

along the lake, as at Station 55. Such faulting also decreases the mass 

strength of the bank material. 

Glacial till units of the Upper Horseshoe Valley and Upper Snow 

School Formations exhibit columnar jointing. These tills are rarely 

found near the wave base zone, but can be weakened greatly by wave 

undercutting. The joints, which 1re planes of weakness, detach from the 

oversteepened bank by gravitational forces combined ~ith lateral expan­

sion or frost heave. Attempts tu quantify bank structure, such as joint 

spacing and frequency, and joint strength, were not done for this pro­

ject, but would be recofllllended as a future study. 

Bank Geometry 

Bank slope angle, length, bank height, and orientation also affect 

recession rates. Steeper slopes are more unstable than gentler slopes. 
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At Lake Sakakawea the banks are typically vertical. This greatly in­

creases the probability of both undercutting by wave action, and 

subsequent mass wasting. Stable slopes rarely occur except in sheltered 

areas or during years of successively low pool levels . 

Bank Height: Achievement of slope stability for banks generally 

requires more time for high banks than for low banks (Buckler and Win­

ters, 1983). At Lake Sakakawea, the taller banks (>9m) recede at a 

steady rate throughout the year as opposed to the shorter banks (<Sm) 

(Figure 16). But the yearly recession rates for high and low banks are 

similar (Table 5). This was also found to be true for long-term bank 

recession rates at Lake Michigan (Buckler and Winters, 1983). The banks 

in the study area range from 2 to 25 metres in height. Figure 17 shows 

the relationship between wave-induced bank recession and bank height for 

Lake Sakakawea; banks less than 5m high were eroded slightly less than 

banks greater than 9m high. Intermediate banks were found to be eroded 

the least. 

In contrast to this variable relationship, cold season recession is 

directly related to bank height (Figure 18). Cold season recession, 

expressed as colluvium, is the greatest for high banks, which, in turn, 

had ten times more colluvium than banks less than 1.Sm high. This should 

be expected due to the larger surface area of the taller banks. 

Bank Slope: Intuitively, the steeper the slope the greater the 

subsequent erosion. At Lake Sakakawea, most of the banks are nearly 

vertical and undergoing active erosion. Some slopes less than 25° are 

stable and vegetated. The stable banks exist because they are located in 

bays, protected from direct and even indirect wave attack, or have a wide 

beach. 
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Bank Orientation: Bank orientation is important because banks 

exposed to ·wind-driven waves are the ones most susceptible to wave 

erosion. Buckler and Winters (1983) found that bluff retreat rates at 

Lake Michigan are highest for bluffs oriented into the dominant high wind 

direction. This relationship is especially true during high pool levels 

(Reid, 1984; Savkin, 1975). 

Figures 19 and 20 show the relationship between cumulative average 

bank recession due to wave erosion according to the various bank orienta­

tions. Wann season recession ranged from 2.2m for southwest-facing banks 

to 0.2m for east-facing banks. North-facing banks showed the second 

greatest recession but northwest-facing banks showed as much recession as 

northeast-facing banks and almost as much as west-facing banks. This 

indicates that wave refraction is important, further justifying the use 

of effective fetches instead of normal fetches. 

Cold season recession is dependent on the orientation of the bank 

with respect to solar exposure (Figure 21). Recession ranged from 3.2m 

for southeast-facing banks to only O.D5m east-facing banks. All the 

northerly-facing banks had equal amounts of recession (0.6m). Finally, 

west- and south-facing banks are most prone to desiccation-induced 

jointing beca•ise of greater so 1 ar exposure during winter. 

Offshore Characteristics 

Offshore Pror'ile 

The composition and geometry of the offshore areas were also evalu­

ated for clues about the present and future stability of the shores. 

Offshore profiles were determined through continuous fathometric measure­

ments from 9lm· offshore to the waterline. The profiles were made several 

times during the summers of 1984 and 1985 so that changes could be 
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s 

Figure 20 - Average bank recession for given orientations, 
Lake Sakakawea, ND ( from Reid and others, 1986). 
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detected. The results are graphed in Appendix C. An example is shown on 

Figure 22. From this, and other figures in the Appendix, it can be seen 

that between July of 1984 and one year later, considerable offshore 

sediment was eroded, presumably carried into deeper water offshore. This 

erosion is assumed to have occurred shortly after the July profile was 

made, as the pool level was still rising then (Figure 13) and several 

stonns struck the area during this time. 

If this is any indication of what has occurred over the past 16 

years since the reservoir attained its maximum operating pool level, it 

must be concluded that a stable platfonn has not yet been constructed. 

Offshore Sediment 

During the surrmer of 1985, samples were collected at varying dis­

tances and depths along selected offshore profile lines. The purpose was 

to find a possible silt-clay boundary and possible relationships between 

bank erosion and offshore sediment sizes. Table 9 lists the results of 

that survey. The assumption was that if a stable platfonn is being built 

it should be reflected in the grain size changes. Specifically, there 

should be a depth and distance from shore where the sediment is domin­

antly clay. 

Examination of the data reveals that the sediment is mostly silt­

size, except at Station 50, which has a substantial percentage of sand 

nearshore. It must be noted that samples were collected at only 9 

locations. Thus, the results must be interpreted as approximations of 

the conditions along the eastern end of Lake Sakakawea where the samples 

were collected. Clay-size particles are a minor part of the offshore 

sediment, even out to depths of 32.6m and as far as 297m from shore. 

This is the result of two facts: the percentage of clay-size particles in 
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TABLE 9 

Grain-size Distribution Of Offshore Sediment at 
Selected Sites Along Lake Sakakawea 

Distance 
from shore Depth Size Distribution (%) 

Station (m) (m) Slope sand silt clay 

1 73.2 5.85 4.5° 24 57 19 
91.5 9.15 5.7° 17 59 24 

106.7 11.3 6.0° 24 48 28 

2 53.4 J.7 3.9° 18 62 20 
106.7 8.8 4.7° 4 69 27 
167.7 - 12.8 4.4° 5 68 27 

3 106,7 12.8 6.8° 12 61 27 

7 167 .7 15.9 5.4° 21 51 28 

50 134.0 5.5 2.3° 89 10 1 
289.6 16.5 3.2° 36 42 18 
304.9 18.3 3.4° O+ 74 26 
323.2 19.5 3.5° 14 66 20 

53 167.7 10.4 3.5° 13 69 18 
243.9 14.6 3.4° 2 63 35 
274.4 15.5 3.2° 3 68 29 

58 45.7 10.4 10.2° 76 18 6 
70.1 11.6 9.4° 12 72 16 
91.5 14.6 9.1° 26 58 16 

152.4 16.2 6.1° 2 71 27 
228.7 19.5 4.9° 17 63 20 
335.4 22.9 3.9° 15 57 28 

61-6? 198.2 21.0 6.1° 12 70 18 
297.3 32.6 6.3° 12 63 25 

E of 60 152.4 19.5 0.0° 45 45 10 
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the primary materials (tills and mudstone) is less than 35 percent (Table 

4) (Millsap, 1985), and secondly, the wave and offshore energy must be 

high enough to prevent significant accumulation of fine-grain particles 

nearshore. It would be informative if deep water samples were analyzed. 

Beach Characteristics 

Beach Width 

Another assumption was that wide beaches ought to indicate more 

stable banks. For this reason, the widths of all the beaches at the 

erosion stations were measured. Beach width is the distance from the 

waterline to the bank or colluvium apron. Because beach width is depen­

dent on the pool level, comparable widths were measured from the bank 

profiles by determining the width above the same elevation. The results 

are shown in Table 10. Beach widths for 1984 ranged from 4.0m to 85.3m; 

the same beaches in 1985 were 3.9m and 3.2m, respectively. There was an 

average of more than 30 percent reduction in beach width in a year's 

time. Again, this is the result of mas.sive wave erosion during the high 

pool level of 1984. Adding these observations to those of the offshore 

platform changes, it is concluded that the profile of the shores where 

active erosion has been occurring is far from reaching stability. 

Beach Composition 

Particle sizes of beach sediment adjacent to the erosion stations 

were also measured. Tne clast size distribution was defined as the areal 

percentage of all particle sizes, ranging from boulders to silt/clay. 

The results of this analysis are in Appendix 0. The classes used were 

silt/clay, sand, pebble, cobble, boulder, and primary material (bedrock 

or til1). Figure 23 shows one station (53) where over 60 percent of the 

beach is covered by cobbles and boulders. The average annual bank 



TABLE 10 

Changes in Beach Widths Between 1984 and 1985 

June 1984 July 1985 Percent 
Station (m) (m) Change 

1 16.4 15.3 -6.7% 
2 17.5 17.3 -1.0% 
3 7.6 12.4 +63.4% 
7 31.4 1.0 -96.8% 

50 20.7 8,8 -57.4% 
51 48.0 15. 5 -67.7% 
52 59.0 27.0 -54.2% 
53 27.0 21.8 -19.3% 
55 7.0 6.7 -4.3% 
56 6.5 2.9 -96.2% 
57 20.5 3.5 -82.9% 
58 14.2 15.0 +5.6% 
59 11.0 11.8 +7.2% 
60 15.8 8.2 -48.1% 
62 4.0 3.5 -12.2% 

Ave. = -31.4% 



Figure 23 - Lag concentration of glacial erratics, 
Station 53 (from Reid and others, 1986). 
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recession for that station is only 0.58 m. The boulders were deposited 

on the beach by erosion of the banks. But, except for a small percent­

age, most of the boulders were not derived directly from the bank sedi­

ment; most were originally a glacial lag deposit resting on the surface 

of the land. 

Glacial erratics are not the only source of beach boulders. Large 

concretions, for example, provide much protection from wave impact at 

Station 50 and channel sandstones masses are also important at the same 

station {Figure 24). In addition, petrified logs and stumps are common 

at other sites. All these serve to absorb or dissipate the wave energy 

and ought to be reflected in lower bank recession rates. 



Figure 24 - Channel sandstones protecting Station 50 from 
wave erosion (from Reid and others, 1986). 
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DISCUSSION 

General 

Before discussing the individual factors of bank recession, it is 

appropriate to sununarize seasonal variations of the major erosion pro­

cesses. From bank recession measurements, it was shown that the rate of 

bank recession is not continuous throughout the year, with more recession 

occurring in the summer than the winter. However, substantial cold 

season recession can occur (Table 5) if certain conditions are met, such 

as a favorable bank height and orientation with respect to the sun. 

The cycle of bank recession at Lake Sakakawea begins during the 

winter months. The ground freezes to a depth that depends primarily on 

the air temperature and snow depth. During the three years of this study 

the frost penetrated between 76 and 155 cm. During the winter of 1984-85 

frost penetration was greater than in 1983-84 even though the temperature 

was slightly warmer; the reason was less snow cover in 1984-85. 

More important than frost penetration is the number of freeze-thaw 

cycles. The actual numbers of such cycles was never satisfactorily 

determined, Instead, the total number of days the temperature fluctuated 

above and below the fr·eezing point was recorded. Over the past three 

winters the number of days of such daily fluctuations ranged from 71 to 

121. These fluctuations especially affect bank sediment having a high 

moisture content; these sediments are more susceptible to the effects of 

thenna 1 expansion and contraction. 

Along the shore, shorter banks may be protected by snow drifts 

(Figure 25). The high banks .(>Sm), though, are exposed to the winter 
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Figure 25 - Low bank at Station 3 protected by Snow 
drift (from Reid and others, 1986). 
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cold. As winter progresses, discrete. aggregates of failed bank material 

accumulate·at the base of the bank, forming an apron. The amount of 

material that accumulates is dependent on the bank height and orientation 

with respect to the sµn; tall banks facing northward have the greatest 

accumulations. 

Concurrent with bank failure is development of cracks along the top 

of the bank (Figure 26). The cracks, which develop sub-parallel to the 

bank, are associated with the vertically jointed till units. Although 

some of the cracks are caused by thermal cold contraction of the ground, 

most are caused by lateral expansion created by the existence of near­

vertical banks developed by wave erosion from the previous summer. 

Towards the end of the cold season, as the daylight hours increase, 

the snow begins to melt. Meltwater will infiltrate into the ground, but 

the amount depends on the antecedent moisture content, permeability of 

the topsoil, and the depth to the zero-degree isotherm (Granger and 

others, 1984). The addition of meltwater will increase the total weight 

of the bank material, which increases the shear stress applied along the 

vertical joints. 

Once temperatures begin to stay above freezing, thaw failure becomes 

~ore evident. Masses of sediment and rock fall, slide, and flow to the 

base of the banks. Northerly-facing banks are more susceptible to thaw 

failure than banks with other orientations because of the higher moisture 

content retained over the winter (Figure 21). 

By the time thaw-failure has ceased, the pool level usually begins 

to rise in response to snowmelt from the surrounding plains, and then 

from the mountains to the west. In a normal year, the pool level reaches 

a peak height in July, approximately two metres above low pool level in 



Figure 26 - Tension joint developed parallel to shore 
at Station 2, Lake Sakakawea State Park, 
North Dakota (from Reid and others, 1986). 



70 

March. About every other year, the pool level exceeds the.563-metre 

elevation, an apparently critical level; years in which the level exceeds 

this elevation are characterized by extensive bank recession. 

Erosion by waves in years of relatively low pool level is restricted 

to beach material and colluvium aprons. The sediment is moved offshore 

and moved downcurrent by longshore transport. During high pool level, 

erosion of colluvium, which accumulated along the base of the bank, is 

removed first, followed by the erosion of primary bank sediment. If the 

pool level remains ·high for an extended period, undercutting of the bank 
: 

occurs, followed by eventual failure. Recession of the bank increases 

during this period and continues even as the pool level begins to drop 

(Figure 13). By late fall bank recession essentially ceases, as the pool 

level drops below the critical level and the ground begins to freeze. 

Pool Level 

Of all the factors responsible for bank recession on Lake Sakakawea, 

the height of the pool is the prime one (Millsap, 1985). Typically, the 

pool level reaches the maximum level in mid-July, after which it declines 

at a steady rate, and reaches its lowest level in March or April (Figure 

13). The height of the pool level determines how close the waves can 

approach the bank. An increase in the nearshore depth will allow waves 

to travel closer before breaking. For example, a one-metre increase in 

the pool level will decrease the beach width by 11.5 metres for a beach 

with a 5° slope. 

Pool-level changes also affect the water table profile and pore 

water pressure in the bank. Any increase in the pool level will subse­

quently increase the pore pressure (Costa and Baker, 1981, p.266). The 

addition of pore water increases the total weight of the bank, and 
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further decreases the bank's stability. When bank material becomes 

saturated, effective stress, rather than total stress, is the critical 

factor in failure (Holtz and Kovacs, 1981, p.215; Terzaghi, 1923). 

Effective stress is the portion of the total stress not borne by the 

fluid; it is the stress that is actually applied to the grains of the 

medium. Rearrangement of the sediment grains is caused by changes in the 

effective stress, not by changes in the total stress (Freeze and Cherry, 

1979, p.53). These two stresses are related by the simple equation: 

oT = oe + p, 

where oT is the total stress, oe is the effective stress, and pis the 

pore pressure. The weight of the rock and water remains essentially 

constant through time, such that doT=O and, therefore, doe= - dp. Under 

these conditions, if the pore pressure increases, the effective stress 

decreases by an equal amount. An increase in pore pressure decreases the 

area of contact between the grains as the grains become supported by pore 

water. -

Another factor is the drawdown rate of the pool level. If the 

drawdown rate is fast, the water table profile will assume a steep 

gradient as it slowly adjusts to the change in pool level. The differ­

ence in ~ead between the water table and pool level may produce a high 

pore pressure along a poten~ial slip line. Also, the water flowing back 

into the reservoir may become concentrated at some point where water 

exerts a seepage pressure that weakens the toe of the slope and further 

decreases bank stability (Costa and Baker, 1981, p.267). 



72 

Waves 

Wave Generation 

At Lake Sakakawea wave action is the dominant driving force for bank 

recession. Most waves are generated by strong winds blowing across a 

large surface of water (Ritter, 1978, p.513; Bascom, 1964, p.42). The 

actual process by which winds transfer energy to water is poorly under­

stood (Komar, 1976, p.78). What studies have determined is that the size 

of the waves are dependent on the wind-speed and duration, fetch, and 

surface area (Sverdrup and Munk, 1946). Originally, energy was consi­

dered to be transferred to waves by two processes: 1) differences in 

normal pressure on the windward and leeward side of the wavecrest, and 2) 

tangential stress; which exerts a drag force and increases particle 

motion at the windward side of the wavecrest. 

Since then, other studies have suggested different mechanisms for 

energy transfer, such as air shear flow, where the rate of energy input 

is proportional to the curvature of the wind velocity profile (Miles, 

1957, 1959). Another study considered the role of pressure fluctuations 

associated with turbulent velocity eddies, or gusts, within the airstream 

(Phillips, 1957). Although the degree in which the mechanisms are 

operative is not known, it can be assumed that the initiation and early 

evolution are a result of pressure fluctuatio:is upon the surface. 

Afterwards, shear flow be~omes an important mechanism for future growth 

of the wave (Komar, 1976, p.80). 

Shallow .Water Waves 

In reservoirs that have rapidly deepening waters near the shoreline, 

plunging and spilling breakers may be expected {Lawson, 1985). Plunging 

breakers have wave crests that curl over the shoreward face of the waves 
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and strike the surface as a intact mass of water. These breakers are 

re 1 ated to steep beaches with intermediate wave steepness. For spil 1 ing 

breakers the wave crest becomes unstable and cascades down the wave front 

as an irregular foam; these waves are associated with low angle beaches 

and steep waves (Galvin, 1968; Wiegel, 1964; Patrick and Wiegel, 1955). 

The effect of waves on vertical cliffs is related to the depth of the 

water at the base of the cliff. If the depth of the water is suffici­

ently shallow to allow the breaking wave to trap a pocket of air between 

the cliff and the breaking water, shock pressures are likely to occur and 

to cause erosion of the cliff (King, 1972, p.96). 

Longshore Currents 

As waves enter shallow water, they undergo variations in velocity 

along their wave crests, causing the waves tu bend toward alignment with 

the depth contours. This bending effect, refraction, depends on the 

relationship of water depth to wavelength (Komar, 1976, p.110). 

Wave refraction has a direct effect on wave energy. For example, 

refraction combined with shoa 1 i ng determ_i ne such wave parameters as 

wave height, wavelength, wave period, and direction of movement at a 

particular water depth for certain deepwater conditions. Therefore, 

refraction will influence the wave height and the distribution of wave 

energy along the coast (U.S. Army Coastal Engineering Research Center, 

1984). The change in wave.direction results in a convergence or diver­

gence of wave energy and.determines the amount of force exerted by the 

waves against structures or cliffs (Komar, 1976, p.110). 

Refraction also contributes to changes in the offshore bathymetry 

and may be another factor in shoreline erosion (Munk and Traylor, 1947). 

This is especially important in reservoirs within irregular bottom 
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topography. Waves refract and flowlines diverge over deeper waters, as 

in canyons or submerged river channels; they converge over shallow water, 

near headlands or ridges. Wave energy is greater in areas of convergence 

due to an increase in wave height and diminishes in areas of divergence 

where the wave height is reduced. Therefore, areas of erosion most likely 

will be correlated with areas of wave convergence. It must also be 

remembered that shoreline topography is partially controlled by the 

offshore topography (Fico, 1978). 

In reservoirs, where deep water is close to the shoreline, waves are 

likely to impinge on the beach at an angle to the shoreline. This is 

important, because wave-induced longshore currents, which transport 

sediment, are produced by such an oblique wave approach (Komar and Inman, 

1970). The velocity of longshore currents depends on the breaker wave 

height, wave period, beach slope, and angle between the breaking crests 

and the beach (Putman and ·others, 1949). Waves in lakes usually have 

short periods and wavelengths. They, therefore, tend to be steep and not 

strongly refracted near the shore (Davis, 1976). Subsequently, they can 

develop strong longshore currents and with them significant sediment 

transport (Lawson, 1985). An excellent example of longshore transport 

was observed along the western shore of Fort Stevenson State Park (Sta­

tions 53-57). During days with strong northwesterly winds, sediment 

migrated parallel to the shoreline, downshore towards station 53. At 

station 53, which is a headland, sediment was either deposited on the 

extended point of land or carried by refracted waves into the bay. 

Offshore Factors 

Relationships between waves and the rate of bank recession have been 

studied by others. Quigley and Gelinas (1976), for example, discovered a 
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linear relationship between historical cliff recession at Lake Erie, over 

a 150-year period, and the breaking wave energy. From a study along the 

coast of Japan, Sunamura (1982) concluded that average rate of cliff 

erosion had a linear relationship with the frequency of waves greater 

than a "critical" wave height. For Lake Sakakawea, it was determined 

that no definite relationship exists between the wave energy and the rate 

of recession. This is especially evident at Station 7, which has an 

effective fetch of 4.0 km, the smallest fetch calculated, and a cumula­

tive bank recession of 14.6m; at the same time, Station 58, with an 

effective fetch of 7.4 km, had a cumulative recession of only 2.2m. This 

further supports the conclusion that no single parameter can completely 

account for the erosion of a bluff or bank (Lawson, 1985). Other factors 

involved include bank height, lithology, and orientation, to name a few. 

Those factors; plus others, determine whether the amount of wave energy 

reaching the shoreline is increased or diminished. 

Factors that can reduce the amount of wave energy reaching the banks 

are: bottom friction, permeability of the lake bed, offshore bathymetry, 

and rip-rap. Bottom friction and permeable lake bed effects are minimal 

to negligible; the effect of frictional drag on energy dissipation is 

significant only for waves with a long periods (near twelve seconds) and 

gentle offshore slopes (less than or equal to one degree) (Putnam and 

Johnson, 1949). This is also true for energy loss due to orbital cur­

rents induced into a permeable lake bed (Putnam, 1949). At Lake Sakaka­

wea, such conditions do not exist. 

Another factor is the offshore bathymetry. For example, sand bars 

can effectively reduce wave energy by 78 percent to 99 percent for 

bar-breaking waves (Carter and Balsillie, 1983). The actual amount of 
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wave reduction is dependent on the bar width and water depth at the bar 

site. Refonned waves may regain some energy, however, but rarely more 

than 20 percent of the original amount. The portion of energy transmitted 

from the incident to reformed wave is dependent on the ratio of wave 

velocity to the width of the surf zone. No offshore sand bars have been 

detected at Lake Sakakawea; but submerged river channels, semi-parallel 

to the shoreline, have been observed and may influence waves similar to 

that for sand bars. 

In contrast to those factors which can decrease offshore wave 

energy, there are those which cause waves to travel closer to the banks, 

such as pool-level rises and strong wind effects. The effect of pool­

level rise on shoreline recession is well documented (Millsap, 1985; 

Reid, 1985; Reid and Millsap, 1984). This effect can be confinned by 

comparing.the amount of bank recession in 1984 and 1985. In 1984, when 

the pool level was high between late spring and early fall, waves were 

able to attack the shoreline bluffs directly. In 1985, however, the pool 

level was 1 to 3 m lower than in 1984, and the effect of wave action was 

minimal. 

When strong winds blow over the water surface they exert a shear 

stress that drives the water in the direction of the wind. For lakes and 

reservoirs, this results in water piling up at the windward end of the 

lake. The change in elevation can be calculated by: 

S = v2 F/1400 D, 

where Sis the difference in elevation (in feet) above the still water 

leve1, Vis the wind velocity (mph), Fis the fetch distance (in miles), 

and Dis the depth (in feet}. For the eastern end of Lake Sakakawea, the 
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change in elevation under extreme conditions (winds greater than 45 mph) 

would be less than 0.15m (0.5 feet). 

To summarize, wave action is a dominant factor in shoreline erosion 

at Lake Sakakawea. The erosion of the shoreline by wind-generated waves 

depends primarily on the wind velocity and duration, effective fetch, 

nearshore and offshore bathymetry, shoreline morphology, and pool level. 

Because these factors vary along the shoreline, the rate of the resulting 

recession also varies. Effective fetches, which account for waves 

generated by winds at an angle to the principal wind direction, were used 

with forecasting curves, developed by the Corps, to predict significant 

wave heights and wave periods at different wind velocities. Wave energy 

was calculated by the formula: 

E" 1/8 w L H2• 

Factors which have an affect on the amount of energy reaching the 

shoreline are: offshore topography (such as sand bars), pool fluctua­

tions, wind tides, and wave refraction. 

Beach Factors 

General 

Beach material ranges from clay particles to boulders. The material 

comes 7rom the cliffs behind the beach and the platfonn beneath, from the 

land via rivers, and to a lesser degree by wind (King, 1972, p.224). 

At Lake Sakakawea, much of the beach material is derived from poorly 

consolidated cliffs. Longshore transport, however, was found to be an 

important agent in carrying beach material, as was observed at Fort 

Stevenson State Park. Along the western shore of the park, silt, sand 

and pebble-size clasts of "clinker" (baked mudstone) were transported 

downshore to Station 53. At that point, the sediment was either deposi-



78 

ted into the nearby bay or onto the eastern shore by refracted waves. 

Hence, at Station 53 the western shore was devoid of sand- or pebble-size 

material except for large glacial erratic boulders, while the eastern 

shore had well-developed berms of sand- and pebble-size clasts. This was 

observed at other locations, too, such as near Station 2. 

Beach Composition 

Beaches with abundant coarse material, pebble-size and larger, 

impede beach and bank erosion by attenuating wave energy. The waves are 

dissipated as water percolates into the permeable beach. The rate of 

percolation is controlled by the degree of sorting and the grain-size 

distribution (Komar, 1976, p.304); water percolates faster into a gravel 

beach than a fine sand beach. Beaches composed of sediment with a high 

clay content, and thinly veneered with coarse beach sediment, are highly 

impermeable and erodible (Rosen, 1980). At the eastern end of Lake 

Sakakawea, most of the beaches are impermeable. 

Impermeable beaches are highly erodible because of their low swash 

infiltration, thereby increasing the force of the backwash (Bagnold, 

1940). Impermeable beaches may also elevate the water-table, such that a 

perched water-table may develop in the overlying sand veneer. A perched 

water-table makes the beJch more susceptible to wave erosion (Grant, 

1948; Emery and Foster, 1948). A study by ~osen (1980) on the beach 

erosion susceptibility uf Chesapeake Bay, found that 64 percent of the 

impermeable beaches sampled had perched water-tables. Rosen defined 

impermeable beaches as beaches with a sand veneer, 1 to 30cm thick, 

overlying pre-Holocene sediment with a high clay content. 

Lake Sakakawea does have some beaches with abundant coarse beach 

material. The larger beach clasts include lag deposits of glacial 
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erratics, mudstone concretions, channel sandstones, and petrified logs 

and stumps. If numerous clasts are present, they can effectively breakup 

waves as they move upshore. For beach locations which have more than 35 

percent cobbles and boulders (Stations 50, 58, and 59) (Appendix D), bank 

recession is less than 1.0 m/y (Table 5). However, not all stations with 

greater than 35 percent cobbles and boulders will experience minimal 

recession because other factors such as beach width and gradient are also 

important. Station 6, which has 42 percent cobbles and boulders {Appendix 

D), recedes at a .rate of 1.2 m/yr, three times faster than Station 58 

(Table 5). 

From statistical analysis it was found that the areal percentage of 

boulders and cobbles is weakly correlated to the rate of recession. 

Therefore, there are either insufficient data to properly correlate this 

factor or other variables, such as beach width, are more important. 

Also, the correlation between coarse beach material and the rate of 

recession may increase with time. 

Beach Profile 

Beach profile refers to the gradient and length of a beach. The 

beach profile buffers waves as they move onto shore by dissipating their 

energy. The beach slope in the wave swash :one is governed by the inten­

sity of the swash, onshore-offshore transport (Komar, 1976, p.303), sand 

size, and wave steepness (Bascom, 1951). 

Several studies indicate that the beach slope increases with in­

creasing coarse particle size distribution (Rosen, 1980; Dubois, 1972; 

Wiegel, 1964; Bascom, 1951). Thus, coarse particle beaches should have 

steeper slopes than fine particle beaches. At Lake Sakakawea, beaches 

with steep slopes are usually found in protected areas such as bays. At 
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Station 53, the western beach has a lower gradient than the protected 

eastern beach. Besides grain size, sorting also controls the beach 

gradient; well-sorted coarse sand beaches have steeper slopes than 

poorly-sorted coarse sand beaches (Krumbein and Graybill, 1965, pp.351-

53). 

Beach Width: At Lake Sakakawea, the beach width is a function of 

the pool level and beach slope. If the pool level increases 1 metre, for 

example, the beach width decreases 11.5m for a beach with a 5° slope, and 

19m for a beach with a 3° slope: A small beach width is unable to buffer 

incoming waves. Because Lake Sakakawea has a seasonally fluctuating 

pool level (Figure 13), the beach width changes frequently. An increase 

in the pool level will also cause erosion of both the shoreline and 

beach. An eroding beach develops a flatter gradient. The eroded material 

is carried offshore into deeper water, or it is transported downshore by 

longshore currents. 

Bank Factors 

Geology 

Bank geology also affects the rate of recession. For Lake Sakaka­

wea, however, significant variation in the rate of recession due to 

different lithologies was not observed, probably because insJfficient 

data were collected. In another study at Lake Sharpe, South Dakota, 

again no statistical differences were found between erosion rates and 

shorelines of different lithologies over a IO-year period (Koopersmith, 

1981). A strong correlation, however, was found between lithology and 

variation in recession along the eastern shore of Lake Michigan (Wilker­

son and Gray, 1978). High recession rates occurred at locations with 

outwash sand and sandy till; low rates were associated with exposure of 
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bouldery till. In those areas, shoreline recession was diminished as the 

boulders attenuated wave energy and were responsible for the development 

of a wave-cut bench. 

At Lake Sakakawea, the Upper Snow School till is the most erodible 

unit exposed along the lake, whereas the Upper Medicine Hill is the least 

erodible. The Sentinel Butte siltstone and mudstone are as erodible as 

the Lower Snow School, and the Lower Horseshoe Valley is moderately 

erodible (Millsop, 1985). 

Erosional differences between the units are based on more than 

lithology alone. For example, the Lower Snow School is exposed at only 

one location, Station 5, which is in a sheltered bay. The stratigraphic 

position of the unit is also important. For example, although the Lower 

Horseshoe Valley member at Station 51 is moderately erodible, it is 

relatively unaffected by wave action unless the pool level is near the 

maximum elevation (Figure 15). Another factor is the degree of consoli­

dation. The Sentinel Butte Formation, for example, has lenses of well­

indurated siltstone and sandstone. If the lenses are located at or 

slightly above the wave base zone, they will reduce the rate of reces­

sion. Station 57 has such massive lenses of siltstone (concretions) at 

the wave impact zone. Hence, Station 57 recedes at a slower rate than 

Station 56 even though they each have nearly identical bank characterist­

ics. Finally, the erodibility is governed more by structure than tex­

ture. 

Structure (i.e., jointing and faulting) is an important variable 

.affecting recession. Jointing is ubiquitous along the eastern end of 

Lake Sakakawea. The Upper Snow School and Horseshoe Valley members 

exhibit characteristic columnar jointing, probably due to crustal expan-
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sion upon deglaciation (Sterrett, 1980; Grisak and Cherry, 1975), Other 

joints are caused by desiccation which causes shrinkage and compression 

of the clay particles (Chamberlain and Gow, 1979). The Sentinel Butte 

Formation, therefore, has a complex structure of horizontal and vertical 

jointing (Figure 6). Joints are important because they are avenues for 

wave exploitation in the summer and for moisture accumulation in the 

winter. Small caves, for example, often develop in zones of closely­

spaced vertical joints. 

Faults also exist at Lake Sakakawea, but they are uncommon, and are 

restricted to the Sentinel Butte Formation. At the fault zone, the bank 

sediment is typically highly fractured. They are therefore readily 

exploited by waves. 

So, lithology, jointing, and faulting are important variables that 

affect the rate of recession. However, these variables are difficult to 

quantify in such a way that they could be used in a statistical analysis. 

Engineering Properties: The engineering properties of the bank 

material also affect bank recession at Lake Sakakawea. The only data 

available concerning the engineering properties were from the Garrison 

Dam Embankment Criteria and Performance Report (U.S. Army Corps of 

Engineers, 1981). Undisturbed samples of glacial tills were analyzed, 

usins the direct shear and the unconsolidated undrained triaxial tests. 

The report did not specify which till formations were analyzed. Results 

from the direct shear tests are: dry density, 1.23 to 1.69 g/cm3, cohe­

sion, 4.78 to 143.64 kPa, and the angle of internal friction, 8° to 34°. 

The wide range of values given is the result of textural, mineralogical, 

and structural heterogeneities within the tills. Undisturbed samples of 

the Sentinel Butte Formation were tested for shear strength, compressive 
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strength, and Atterberg limits. The Atterberg Limits defined a wide 

range of textural classes, from fine sand to fat clays; the predominant 

textural class, however, was lean clay. Liquid Limits ranged from 19 to 

108; Plasticity Indices ranged from nonplastic to 70. The unconfined 

compressive strength values were defined by the intrinsic cohesion of the 

sediment, which is a shear strength parameter. The compressive strength 

ranged from 191 to 574.6 kPa. The design shear strength, expressed as 

cohesion, equaled 67 kPa. The angle of internal friction was 20°. 

Banks {1972) studied the engineering characteristics of clay-shale 

slopes in the Fort Uni on Group., of which the Sentinel Butte is one of the 

formations. The study included both laboratory analyses and physical 

measurements of failed and unfailed slopes. The Sentinel Butte Formation 

was found to have unfailed slopes angles ranging from 18° to 45°. One 

unfailed slope of that formation, overlain by till, had an angle of 17°. 

Failed slopes, with or without the overlying till, had considerably lower 

angles of 7° to 10°. 

Factors that affect the slope stability and the mass strength of the 

bank material include the presence of joints and cyclic freezing and 

thawing. The presence of joints in both the tills and the Sentinel Butte 

Fon;;ation has already been discussed. Because jointed clays behave more 

like jointed rocks thar, massive sediment, their behavior depends on the 

resistance to sliding along the joints (Esu, 1966). Also, in such cases, 

traditional slope stability analyses are not applicable because the 

fissured material is not allowed to reach its peak strength (Skempton, 

1964). The strength distribution is dependent on the spacing and orienta­

tion of the joints, with the intact strength as the upper limit, and 

joint strength as the lower limit {Koo, 1982). 
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Engineering properties are also affected by the internal distribu-

-tion of ice in the soil. Structures such as cavities occur under repeat­

ed freezing and thawing conditions, as result of ice lensing and frost­

heave (Van Vliet-Lanae and others, 1984). Soil volume increases under 

ice expansion thereby decreasing the density and the shear strength of 

the material. Simultaneously, the lateral earth pressure increases and 

additional joint expansion can result (Broms and Yao, 1964). 

At Lake Sakakawea, the engineering properties indicate that the bulk 

strength of the sediment is explained by its cohesive strength. The 

cohesive strength is best demonstrated by the existence of nearly verti­

cal slopes. 

For the Sentinel Butte Formation and tills, the average angle of 

internal friction was reported as 20° (U.S. Army Corps of Engineers, 

1981). However, presumably stable slope angles of 45° were reported for 

the Sentinel Butte Formation (Banks, 1972). But, any clay-shale slope 

angles greater than 35° probably represent slopes that are not fully 

stabilized; stable slopes tend to be covered with vegetation. Therefore, 

the steeper barren slopes are considered unstable, and will likely fail 

further. The actual shear strength values calculated by the Corps may be 

overestimated. Strengt~ tests were perfonned only on intact masses of 

sediment without joints. Joints decrease the total strength of the 

sediment. The measur~d strength along joints is considered to be equiva­

lent to the residual shear strength of the sediment. The presence of 

joints decreases the mass strength and wave erosion becomes more effec­

tive. At station 51, the differences in strengths of the massive and the 

jointed till are especially obvious. The massive Upper Medicine Hill 

till, which is the lowermost unit, forms a resistant protrusion in front 
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of the bank (Figure 15). The vertically jointed Upper Horseshoe Valley 

till, however, recedes at a substantial rate. 

Finally, freeze-thaw cycles affect the moisture that accumulates in 

joints. The joints are weakened by repeated freezing and thawing to the 

point that the blocks eventually separate from the bank and fail by 

sliding, falling, and toppling. 

Bank Geometry 

The bank slope, height, and orientation each affect the rate of 

recession. Banks with steep slopes, of course, are more unstable than 

banks with gentle slopes. At Lake Sakakawea, the banks are nearly 

vertical. Steep banks are quickly affected by wave undercutting, fol­

lowed by mass wasting. Bank slopes will eventually evolve to a gentler 

slope angle. For cohesive sediments, the final slope angle is dependent 

on several parameters such as bank height, effective angle of internal 

friction, effective cohesion intercept, and bulk density (Edil and 

Vallejo, 1980). Other factors that can influence slope stability, and 

not considered in a standard slope-stability analysis, are: clay prop­

erties, structure, and freeze-thaw effects (Costa and Baker, 1981, 

p.266). As the slope angle decreases, vegetation will develop on the 

slope; this stabilizes the slope and red•tces slope erosion from sheet­

wash. At Lake Sakakawea, the measured stable slopes had angles less than 

25°. 

Bank Height: Bank height affects both warm and cold season reces­

s1on. At Lake Sakakawea the banks vary in height from 2 to 25m. Bank 

recession due to wave action affects all the banks, with banks less than 

Sm eroding the most, followed by banks greater than 15m, and intermediate 

banks eroding the least. This evidence supports the conclusions of 
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Buckler and Winters (1983) for bluff recession at Lake Michigan. Their 

study determined that long-term recession rates were unrelated to bank 

height. But on a short-term basis, high banks (>25m) will show more or 

less crest recession than low banks. They cite an example of a 50m bluff 

that experienced several metres of toe erosion since 1968. Yet, the 

crest has not receded as of 1983. But, in 1982, at an adjacent area of 

the shoreline, a massive failure occurred that was 60m wide and 15m deep. 

Because high banks have a greater horizontal distance from crest to base, 

more time is necessary for the initiation of crest retreat, but when 

failures occur they tend to be large. These two relationships, then, 

account for the similarity of long-term recession rates for both high and 

low banks (Buckler and Winters, 1983). In a study by Edil and Vallejo 

(1980), higher banks became unstable faster than low banks. In that 

situation, however, the instability was due to groundwater seepage from a 

high groundwater table or from a perched aquifer. Groundwater decreases 

the effective stress, which weakens the sediment, causing failure. At 

Lake Sakakawea, groundwater seepage is a factor only near the dam spill­

way by Riverdale, where several rotational slumps have occurred. The 

lignites, which are interbedded with mudstones in the Sentinel Butte 

Formation, form perched aquifers. Groundwater discharge fl'om the lignite 

beds weakens the toe of the slope and facilitates failure. But the cause 

of the seepage is not due to pool level fluctuations, or major precipi­

tation events; it is likely caused by excessive recharge from Riverdale 

(Reid and others, 1986). Similar failures have not been observed any­

where else along the lake; the watertable is too low. 

For cold season recession, there is a definite correlation with bank 

height (Figure 18). Taller banks have a larger surface area and are more 
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exposed to climatic factors that cause cold season recession. The 

smaller banks are often protected by snow drifts (Figure 25). From 

regression analysis, bank height was found to be the most important 

variable for explaining cold season recession. 

Bank Orientation: The relationship between bank orientation and 

recession was considered for both warm and cold season recession. For 

warm season recession, bank orientation with respect to the dominant wind 

direction was found to be significant. For cold season recession, bank 

orientation with respect to the solar exposure, was found to be most 

significant. 

Banks facing into the strongest winds are the ones most susceptible 

to wave erosion along lakes (Buckler and Winters, 1983) and reservoirs 

(Reid, 1984; Savkin, 1975). It was detennined that southwest-facing 

banks experience the highest recession, followed by north-facing banks, 

while northeast-, northwest-, and west-facing banks experienced similar 

amounts of recession (Figures 19 and 20); this indicates that wave 

refraction is important, as explained by the use of effective fetch. 

For cold season recession, north-facing banks experienced the 

greatest amount of recession (Figure 21). Also, these same banks, 

Stations 6 and 7, are some of the tallest banks in the study area, which 

influence the amount of recession, too. South- and west-facing banks 

also are affected, because of their exposure to the winter sun; the west­

and south-facing banks are more prone to desiccation-induced jointing. 

Shore Zone Development and Evolution 

The purpose of this section is to summarize previously discussed 

material, and present an evolutionary sequence of changes for the active 

shore zone. Other studies will also be discussed that have evaluated 
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shore erosion quantitatively, together with some of the problems associ­

ated with the resulting models. 

Models 

Most studies that have quantitatively analyzed beach and bluff 

erosion have related the amount and rate of recession to the dissipation 

of wave energy and longshore currents (e.g., Sunamura, 1982; Kachugin, 

1980; Black, 1980; Quigley and Gelinas, 1976; Kondratjev, 1966). How­

ever, the relationship between wave energy and bluff recession has not 

yet been positively determined (Edil and Vallejo, 1980). 

The model by Kondratjev (1966) proposed a "stable shelf" concept. 

The concept is similar to Bruun's (1962), which assumes that the eroded 

bank sediment is deposited in the nearshore zone, developing a protective 

shoal. Bank erosion is expected to cease after the shelf reaches a 

calculated width over which all available wave energy is dissipated. 

Kondratjev's model was applied by van Everdingen (1969) to a river valley 

reservoir in Canada. He determined the shoreline profile changes for a 

headland cliff and a gulley. The calculated stable shelf width ranged up 

to 215m, with a slope of 3°. Also, the most significant changes associ­

ated with the shore zone were predicted to occur within 5 to 10 years of 

the analysis. Unfortunately, it is not known if a post-audit was done to 

co;npa re the model 's accuracy. 

The method used by Cordero (1982) is also similar to Kondratjev's 

model, because they both assume that the most of the eroded bank material 

will be deposited in the nearshore zone. Both methods, however, ignored 

other erosional processes, such as freeze-thaw. 
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Nea rshore Zone 

Cliff shorelines along lakes and oceans typically have poorly 

developed beaches (Ritter, 1979, p. 534). As the cliff retreats it 

leaves behind a beveled surface called a wave-cut platform. The platform 

can be formed by many processes such as water-layer weathering, solution 

benching, ramp abrasion, and wave quarrying (Wentworth, 1938). Of these 

processes, ramp abrasion at the base of the bank is probably most respon­

sible for platform development (Ritter, 1979, p.534). 

Corrasion of the cliff by sand particles forms a low gradient 

platform, with a slope usually near 1°. Platform width largely depends 

on the depth it can be cut; this depth is less than the depth the sedi­

ment can be moved. Bradley (1958) suggested a depth of 10m; his esti­

mated value was based on the degree of abraded pyroxene grains from 

platforms alo.ng the California coast. The length of the platform is also 

determined by the rate of cliff retreat, which is a function of many 

factors, which have already been discussed. 

Along the eastern shore of Ireland, a study was done on cliff 

erosion of glacial sediments (McGreal, 1979). That shore is considered a 

low energy coastline, with a recession rate of 0.3 to 0.4 m/y. Wave-cut 

p:atforms were developed in the till. The platforms width ranged up to 

100m, with a slope o-f 1.0° to 1.5°. The active beach zone had an average 

width of 30m, a slope of 9°, and was composed of pebbles to medium-size 

sand. 

At Lake Sakakawea, it appears that a low angle platform is being 

developed at some stations (e.g., Station 51) (Appendix C). However, the 

average offshore slope angle is over 4°. Hence, further leveling of the 

offshore zone will probably occur. 
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Besides erosional offshore features, depositional features may also 

be produced. Depositional features are best developed in areas where 

waves have a low wave steepness (King, 1972, p.419). At the eastern'end 

of Lake Sakakawea few such depositional landfonns have been observed. 

This is in part due to the existing wave conditions and pool-level 

fluctuations. 

Depositional features, such as offshore bars, develop best in 

essentially tideless areas, such as the Great Lakes (King, 1972, p.335). 

At Lake Sakakawea, the tides are replaced by pool-level fluctuations, 

which can range up to 3m (Figure 13). Thus, any bars developed at high 

pool level are subsequently destroyed when the pool level is lowered. 

Also a large a supply of sand in the nearshore area is necessary to 

develop offshore bars. In Lake Sakakawea very little sand is found 

offshore (Table 9). 

Shore Zone 

The final stable slope will be composed of a combination of the 

primary bank sediment and remolded colluvium. The final slope angle will 

be a function of the residual strength of the remolded debris material 

(Sterrett, 1980). Sterrett (1980) compared the bank height and slope 

angle for stable slnpes along Lake Michigan. Stable slopes were defined 

as being well-vegetated and lacking ev~dence of recent slope movement. 

Results indicated .hat the taller stable banks (>30m) have lower slope 

angles, ranging from 15° to 32°. For banks less than 18m, stable slopes 

were established up to 43°. 

Stable slopes comprised of the Sentinel Butte Formation and til 1 

were reported to have angles of 17° to 20° (Banks, 1972). Previously 

failed slopes had angles of only about 10°. For this study, it was 
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assumed the stable slope angle will be near 20°, the calculated angle of 

internal friction (U.S. Army Corps of Engineers, 1981). 

To summarize, the active shore zone will evolve through time. For 

most locations, the cliffs will continue to retreat, with a wave-cut 

platform forming offshore. The width of the platform is dependent on the 

wave energy, plus other factors. For some locations, a stable platform 

width of 100m is possible. In sheltered areas, depositional platforms 

can develop, provided enough sediment is available. Banks located in 

depositional areas should become stable quicker than banks behind wave­

cut platforms, assuming that depositional platforms will develop quicker 

than wave-cut platforms. 

The beaches will become enriched with sand- and pebble-size clasts 

as the finer bank sediment is transported into the lake. The addition of 

coarse beach material will help stabilize the beach and dissipate in­

coming waves. 

Finally, bank recession will continue until wave erosion becomes 

ineffective. Afterwards, the bank recession will continue as the slope 

slowly evolves to a more stable angle similar to the angle of internal 

friction. Typically, the stable bank will be composed of primary bank 

material and remolded colluvium and will become vegetated. 



REGRESSION ANALYSIS 

Purpose 

The primary objective of this study was to develop a fundamental and 

relatively simple equation that could relate the present rate of bank 

recession to other variables representing shoreline types, offshore 

processes, and other parameters that describe shoreline conditions. One 

possible method is to use statistical modeling of bank erosion rates. 

Such statistical analyses have been applied elsewhere to modeling pro­

cesses responsible for erosion and transport of shoreline sediments 

(Spoeri and others, 1985; Fox and Davis, 1973; Sonu and James, 1973). 

Regression analysis of bank erosion factors at Lake Sakakawea has 

previously been attempted by Gatto and Doe (1983) and Millsap (1985). 

Gatto and Doe applied multiple regression analyses to variables associ­

ated with historical bank recession, as determined from aerial photo­

graphs. Millsap performed stepwise regression analysis to further test 

his observations and results from field work. 

Millsop's stepwise regression analysis was applied to twenty sta­

tions over nine-measurement intervals. In addition, the stations were 

tested as a group using one variable value per station, the average 

cumulative bank recession from 1983 to 1984. Results trom the analyses 

showed that the most important variables associated with bank recession 

at Lake Sakakawea are, in order of importance: mean pool level, maximum 

pool level, rainfall, windspeed, and wind direction (Millsap, 1985, 

p.175). 
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Millsop was unable to generate any significant models using all the 

stations. However, regression analysis of individual stations revealed 

strong correlations with certain variables for Stations 5, 7, 58, and 62. 

All the stations selected had similar recession curves in which most of 

the bank recession occurred during the warm season with very little 

recession occurring over the winter. 

Finally, investigations by both Gatto and Doe (1983) and Millsop 

(1985) failed to define any strong relationships between bank recession 

and the chosen variables which were applicable to all sites on the lake. 

In fact, one of the analyses suggested relationships between variables 

that were highly unlikely, such as a strong direct correlation between 

the duration of ice cover and bank recession (Gatto and Doe, 1983). 

Methodology 

Statistical testing was done to assess the possibility that the rate 

of ·recession is related to specific physical parameters associated with a 

given shoreline. The initial step of statistical testing was to formu­

late an appropriate null hypothesis.· Once an hypothesis was selected a 

decision had to be made to accept or reject it on the basis of the 

statistical test. If the null hypothesis is rejected when in fact it is 

true, a type I error has been committed. In contrast, if an incorrect 

hypothesis has been accepted a type II error has been committed. The 

probability of committing a type I error is called the level of signifi­

cance; an acceptable level of significance is usually specified before 

running the test. In order to minimize the possibility of committing a 

type II error, which is undefined, the null hypothesis is written so that 

it will be rejected. For this analysis, the null hypothesis states that 
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the rates of bank recession are random and are not controlled by the 

independent variables. 

Multiple regression analysis, the statistical approach used in this 

study, can be represented in a model equation: 

Y •Bo+ B1x1 + B2X2 + ••• + BnXn + e, 

where Y is the dependent variable, Bis the regression coefficient, Xis 

the independent variable, and e is the random error. The model states 

that the dependent variable (Y) is equal to a constant term (Bo), plus 

the sum of the independent variables (Xi)' multiplied by its respective 

weighting coefficient (B;), plus a random error. For more detailed 

discussion of the theoretical and computational essentials of multiple 

regression see Davis (1973). 

Variable Selection and Preparation 

Because it has been determined that bank recession is seasonally 

dependent, two dependent variables were selected for regression analyses: 

the average monthly warm season recession rate and the yearly percentage 

of cold season bank recession. The warm season recession data repre­

sented the average monthly recession, in centimetres per month, by 

station, between May and October, from 1983 to 1985 (Table 5). Cold 

season recession was defined as the percentage of total bank recession 

occurring between November and April. Originally, it was intended to use 

a rate measurement as the dependent variable for cold season recession, 

but monthly measurements were not collected over the winter. Also, cold 

season recession is much more irregular than warm season recession; a 

monthly rate would be misleading. 

Independent variables selected for multiple regression were based on 

the following criteria: 
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1. The variables had to support field observations as being 

important factors that influence bank recession. 

2. The variables had to be easily quantified by either field 

measurements or by calculations from maps or air photos. 

The independent variables finally selected for regression analyses were: 

1. 

2. 

3. 

4, 

5. 

6. 

Effective fetch (km). 

Offshore slope angle (degrees). 

Beach width (m). 

Areal percentage of coarse beach material. 

Bank orientation, with respect to the sun. 

Sine of the angle between the dominant wind direction and 

orientation of the shoreline. 

7. Bank height (m). 

8. Mean grain size of lithology at the wave base {phi). 

The effective fetch was determined from topographic maps, using the 

procedure outlined by Saville (1954) and discussed in this report. 

The offshore slope angle was determined from offshore profiles, with 

the profile extending at least 90 m from shore. The slope angle deter­

mines how close the waves can approach the shore before breaking. On 

shore, beach width was measured with respect to a standardized pool 

elevation; for th~s study, the elevation chosen was 3 m below the maximum 

pool level. This presented a problem in some instances where the pool 

level was above the standard elevation chosen, and the beach width had to 

be extrapolated from offshore profiles. 

The composition of the beach can be determined several ways, but a 

statistically valid, and relatively quick, method was to construct a grid 

system, as illustrated in this report. The percentage of the area 
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covered with clasts pebble-size and larger constitutes the value needed 

for the analyses. Sand-size particles are not included, even though they 

help identify a stable beach. Larger particles help protect the beach 

from wave action. 

The sine of the angle between the dominant wind direction and 

shoreline orientation was used to define the station's susceptibility to 

direct wave attack. For this report, the dominant wind direction was the 

same principal wind direction used in the effective fetch calculations. 

For cold season recession, bank orientation was considered with respect 

to the sun. Values were given on a scale of Oto 180, with O being for 

banks oriented southeast (the direction of least cold season recession) 

and 180 being for northwest-facing banks. Banks oriented between the two 

directions were given values based on the number of degrees on either 

side of the southeast direction. For example, banks oriented northeast 

or southwest were given similar values of 90. Grain size was detennined 

from textural analyses of the lithologies located at the wave impact 

zone. The variables used in the regression analysis are listed in Table 

11. 

The following regression analyses were tested: 

1. (Averaoe rate of recession) 112 vs. independent variable value. 

2. Average rate of recession vs. (independent variable value) 112. 

3. Avera!,e rate of recession vs. independent variable value. 

After each test was completed the calculated F-value was compared with 

the standard F-value to detennine its level of significance. For these 

analyses, the accepted level of significance had to exceed the 90 percent 

level. This level was chosen because acceptance of a lower level increa­

ses the probability of random error affecting the analysis. The goodness 
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TABLE 11 

Variables Selected For Regression Analysis 

y Xl X2 ic3'. X4. XS X6 X7 
(cm/mo) (km) (m} (m) (%) (phi) (o) 

29.75 7.58 0.36 3.7 15.3 0.0 6.5 5.3 
17.70 8.21 0.05 7.0 17.3 0.0 7.3 4.4 
26.9 4.03 0.74 18.0 3.0 42.0 5.5 6.0 
23.4 4.03 0.09 14.5 1.0 31.0 5.5 6.1 
4.2 7 .19 0.29 20.9 8,8 37.0 6.8 6.3 

_ 24.2 ,9.11 0.31 12.4 15.5 20.0 1.8 1.5 
15.2 9.11 o.oo 7.0 27.0 15.0 5.9 2.6 
7.9 6,96 0.92 9.0 21.8 12.0 5.5 3.4 

55.7 8.85 0.00 6.2 10.0 17.0 8,0 3.5 
48.0 8.85 0.00 10.5 6.7 13.0 8,0 3.9 
29.2 9.15 0.39 11.8 2.9 13.0 8.3 4.7 
11.9 9.15 0.39 11.2 3.5 20.0 8.5 5.3 
5.1 7.39 0.00 9.1 15.0 45.0 6.5 6.4 

11.1 7.39 0.39 8.2 11.8 56.0 6.5 6.2 
0.4 6.13 0.67 6.5 7.1 20.0 6.7 6.4 

Xl = effective fetch X2 = sine of angie of dominant wind 
X3 = bank height X4 = beach width 
XS= percentage of coarse beach clasts X6 = mean grain size 
X7 = offshore slope angle 
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of fit (r2) was also noted in order to determine what percentage of the 

variance was explained by the analysis. If the tested F-value did not 

equal or exceed the 90 percent confidence level, the independent variable 

with the lowest regression coefficient was removed and the analysis was 

rerun. This process was continued until the F-value exceeded the 90 

percent confidence level, or until the F-value was lower than the previ­

ously tested value. 

Results 

Because it was determined that the rates of recession are seasonally 

dependent, mu7tiple regression was performed to generate models differ­

entiating both warm and cold season recession. The difference between 

these analyses and earlier ones (Millsap, 1985; Gatto and Doe, 1983) are: 

the selection of the dependent and independent variables, the separation 

of the yearly recession into warm and cold season recession, and, in the 

case of Millsop's, the addition·of another year of data. Another major 

difference·was the assumption of non-linearity of the data. Non­

linearity means that the relationship between the rate of recession and 

the independent variables can be assessed more accurately by introducing 

exponential functions of the variables into the regression model. This 

method has been ~sed with other models involving such coastal processes 

as littoral drift (Komar, 1976, p.196). 

Results indicate that the monthly rate of warm ~eason recession is 

best defined using the square root of the independent variables. The 

final accepted model used all independent variables except effective 

fetch, mean grain size, and areal percentage of coarse beach material. 

The resulting analyses produced a goodness of fit (r2) value of 0.59; 

this value represents the amount of variation in recession rates ex-
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plained by the independent variables. The value would be 1.0 for a 

perfect fit of all the data with the predictive equation. The F-value, 

which represents the level of significance or confidence in the analysis, 

is 3.64 and exceeds the 95 percent confidence level. The regression 

coefficients for each of the variables and the slope intercept (Bo) are: 

1. Offshore slope angle= -25.1 

2. Sine of the angle between the dominant wind and the shoreline= 

-17 .2 

3. Beach width= -10.4 

4. Bank height= -8.4 

5. Slope intercept {Bo)= 141.5 

For winter recession, the best model found used a linear relation­

ship involving only the bank height and orientation variables. Bank 

orientation for this analysis was the orientation with respect to the 

sun. The resulting r 2 value was 0.46, with a F-value of 7.23, exceeding 

the 99 percent confidence level. The regression coefficients for the 

independent variables of cold season recession, along with the slope 

intercept (Bo), are: 

1. Bank height= 2.05 

2. Bank orientation with respect to the sun~ 0.043 

3. Slope intercept (Bo)= -2.0 

Tests were conducted using other dependent variables, such as the 

cumulative cold season recession and yearly cold season recession, but 

none of these tests was able to generate any models that exceeded the 90 

percent confidence level. 

Subsequently, stepwise regression analyses were done. Stepwise 

regression is a search procedure that considers all possible combinations 
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of independent variables. Therefore, a dependent variable was tested 

against each independent variable and with every possible combination of 

two variables, three variables, and so forth, until every possible 

combination of independent variables had been considered. 

Discussion 

Selection of the accepted equations was based on their statistical 

validity (i.e., exceeding the 90 percent confidence level). For cold 

season recession, this presented less of a problem, since the accepted 

equation was the only model generated that surpassed the 90 percent 

confidence level. A rate measurement would have been preferred instead 

of using the cold season percentage of yearly recession. It is not 

inappropriate, however, to use a percentage value as the dependent 

variable. Bank height, which had the highest correlation, explains the 

affects that the exposed surface area has upon cold season recession, 

where a taller bank experiences greater recession (Figure 18). Bank 

orientation with respect to the sun had a weaker correlation with the 

dependent variable, as shown by its regression coefficient. 

The only drawback to this model was that the goodness of fit value 

(r2} is less than 50 percent. This implies that over half of the vari­

ance in the data was not explained by this model. But the probabili:y of 

reproducing these values by random error is less than one percent. The 

high confidence level was possible because of the few degrees of fr~edom. 

As more independent variables are added to the analysis the number of 

degrees of freedom also increases, and therefore, the amount of variance 

that has to be explained by the regression analysis increases, too. 

The warm season recession model was accepted only on the basis of 

having the highest level of significance. Another model, which included 
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the effective fetch and percentage of coarse beach material, generated a 

higher goodness of fit value (0.61) than the accepted model (0.59). The 

F-value, however, was 2.1 and exceeded only the 75 percent confidence 

level. The deletion of the two variables increased the confidence level, 

because the degrees of freedom, which determined the standardized F­

value, were lowered. Yet the goodness of fit value was not significantly 

changed; this implies that the two additional variables are not strongly 

correlated with the rate of recession. 

This presents a problem, as the effective fetch and percentage of 

coarse beach material should, intuitively, be important variables that 

control bank recession. For Lake Sakakawea, however, strong correlation 

between effective fetch and cumulative bank recession was not indicated 

(Table 12). Therefore, the susceptibility of bank recession by wave 

action was more accurately described by the offshore slope angle and the 

angle of orientation between the dominant wind direction and shoreline 

orientation. The percentage of coarse beach material may be implicitly 

reflected in the beach width, where a wider beach will have a greater 

possibility of having a higher percentage of coarse beach material. 

Other independent variables that should be considered for future 

analysis might include beach height, and coarse beach material cobble­

size or larger. Also, a variable that quantitatively describes joint 

structure should be attempted in future study. If the model is applied 

to other reservoirs an attempt should be made to separate lithologies by 

their engineering properties. 

To summarize, the independent variables that best describe bank 

recession at Lake Sakakawea are: offshore slope, sine of the angle 

between the dominant wind direction and shoreline orientation, bank 
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TABLE 12 

Effective Fetch and Associated 
Bank Recession for Lake Sakakawea Stations 

Cumulative 
Effective Fetch Bank Recession 

Station {km) (metres) 

1 7.58 4.1 
2 8.21 2.8 
7 4.03 4.5 
50 7.19 1.2 
51 9.11 4.0 
53 6.96 1.0 
54 8.85 5.5 
55 8.85 8.7 
56 9.15 6.2 
57 9.15 2.2 
58 7.39 0.7 
59 7.39 1.1 
61 6.13 5.6 
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height, beach width, and bank orientation with respect to the sun. The 

dependent variables defined were the average monthly recession (cm/mo) 

for the warm season and percentage of yearly recession during the cold 

season. 

Two separate models were generated that explain both wann and cold 

season recession. The accepted wann season recession model used all the 

independent variables, except effective fetch, percentage of coarse beach 

material, and bank orientation with the respect to the sun. The gener­

ated model exceeded the 95 percent confidence level and had a goodness of 

fit value (r2) of 0.59. Another model was generated that included 

effective fetch and coarse beach material, but was rejected because it 

did not exceed the 90 percent confidence level, although its goodness of 

fit value was larger (0.61). 

Cold season recession used bank height and bank orientation with 

respect to the sun as its independent variables. The model generated a 

goodness of fit value of 0.46, and a F-value that exceeded the 99 percent 

confidence level. 

Finally, statistical tests can demonstrate with specified probabil­

ities only what things are not and not what they are. In other words, 

statistical ,na1ysis can determine only what relationships do not exist 

between two or more variables. It must be understood, though, that the 

predictive uccuracy of a statistical model does not represent its primary 

role. "Instead, it provides a method to quantitatively assess and assure 

consistency within and between concepts of the governing processes and. 

data describing the relative coefficients" (Konikow, 1986, p.183). 

Therefore, this model should help to improve our understanding of factors 

controlling bank recession. 



ULTIMATE BANK RECESSION 

General 

In order to detennine the most probable bank recession, it is first 

appropriate to set boundaries to the system. For this reason, a minimum 

and a maximum recession distance, along with a probable ultimate reces­

sion distance, have been defined. 

Minimum Ultimate Recession 

The minimum ultimate recession is the most conservative prediction, 

and is based on four assumptions: 

1. Wave action immediately becomes an ineffective eroding agent. 

2. The stable slope angle is equivalent to the angle of internal 

friction. 

3. The bank height remains constant. 

4. The existing bank slope is 90 degrees. 

For wave action to become ineffective, the pool level would have to 

remain below the critical pool elevation of 563m; below this elevation, 

wave erosion of the colluvium and the primary bank material is minimal, 

as it was in 1982, and 1985. ~y elimination of the wave erosion factor, 

bank erosion would be restricted to thaw and creep failure and overland 

erosion. 

The stable slope angle selected was 20 degrees. This is the average 

angle of internal friction calculated for the Sentinel Butte Fonnation 

and the overlying tills units (Banks, 1972). The angle also represents 

the probable slope angle for a stabilized slope which has a high 

104 
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percentage of silt- and clay-size sediment (Holtz and Kovacs, 1981, 

p.543). The bank height selected is the maximum height at each statio 

The equation used to derive the minimum recession used basic tri­

gonometric functions. The method considers the bank as part of a righ 

triangle in which the existing bank slope is 90°. At Lake Sakakawea, 

most banks fulfill this requirement. The resulting minimum bank reces 

s i o·n, then, is the di stance the top would have to retreat, without toe 

erosion, before the bank face reached a 20° slope. This is the produc 

of the bank height, multiplied by the cotangent of 20°. 

distances using this procedure are listed in Table 13. 

from 10 m for Station 1 and 57 m for Station 7. Station 1 has the l st 

bank, and Station 7 the highest. Thus, the minimum recession in 

this calculation is a function of the bank height, only. 

Once the minimum recession distance was calculated for each station, 

the time required for each bank to reach this stable position was det r­

mined by dividing the distance by the present average yearly rate of ank 

recession for that station. The range was from 5.2 years for Station 1, 

to 112.9 years for Station 50, which also has a tall bank, but a lowe 

recession rate (Table 5). 

This method differs from the template used ty Cordero (1982) (Fi ure 

10) in that the co11uvium accumulation is ignored; it is assumed thilt the 

sediment eroded from the banks is transported out to the deep water. In 

either case, both methods produce ficticious results. It would presu p­

tuous and incorrect to assume that this minimum ultimate recession va ue 

will not·be exceeded. The primary reason for this is that the pool 1 vel 

is expected to exceed the cri ti ca 1 1 eve 1 an avera·ge of every other ye r 

at Lake Sakakawea (Figure 13). The resulting wave action affects the 
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TABLE 13 

Minimum Ultimate Recession Along the Eastern End of Lake Sakakawea 

Minimum Ultimate Present Rate 
Bank Height Recession Distance of Recession Year to Mini um 

Station (m) (m) (m/yr) Ultimate Reces ion 

1 3.7 10.2 1.95 5.2 yr 
2 7.0 14.3 1.39 13.9 
3 3.8 10.5 1.85 5.6 
4 4.5 12.4 1.28 9.7 
5 5.0 13.7 1.05 13.1 
6 18.0 44.4 1.24 39.8 
7 14.5 39.9 1.99 20.0 

50 20.9 54.4 0.51 112.9 
51 12.4 34.1 1. 75 19.4 
52 7.0 19.3 1.47 13.1 
53 9 .. 0 24.7 0.48 51.6 
54 6.2 17 .0 2.30 7.4 
55 10.5 28.8 3.99 5.9 
56 11.8 32.4 3.09 10.5 
57 11.2 30.7 1.04 29.6 
58 9.1 25.0 0.31 74.5 
59 8.2 22.5 0.51 44.2 
60' 7.9 21.7 0.33 65.9 
61 6.5 17.8 2.65 6.7 
62 12.1 33.3 1.46 22.8 
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bank profile. Also, it is assumed that the bank recession rate will 

decrease with time, with the development of a stable offshore platfonn. 

Maximum Ultimate Recession 

Maximum ultimate recession is the other end member for ultimate 

shoreline recession. The calculated value is basically a function of the 

geographic location of the shoreline. For maximum ultimate recession, it 

is assumed that most of the eroded sediment will continue to be carried 

offshore, and a stable .depositional platform will not be developed. The 

remaining sediment would be transported by longshore currents into 

sheltered areas such as bays. This is analogous to oceans, such that 

given enough time the shoreline will become straight. For Lake Sakaka­

wea, which is infinitely smaller, the reservoir will begin to fill with 

sediment. As more sediment is introduced, a stable platform will cer­

tainly be constructed and bank recession rates will decrease. 

Determination of the maximum recession also assumed that the great­

est bank recession will continue to occur at the eastern end of the lake, 

due to the long westerly fetch. Erosion at the eastern end will be 

characterized by headland erosion, such as at Fort Stevenson State Park, 

with some deposition by longshore transport into adjacent bays. Yet, 

even within a certain area there will be different rates of recession, 

depending on geographic factors such as position with respect to offshore 

islands and the maximum fetch. 

The maximum recession values were calculated from standard 7.5-

minute U.S. Geological Survey topographic maps. The maximum recession 

value determined from the maps was approximately 1km, with an average 

maximum recession of 245m. The calculated recession value of 245m is an 
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average; headlands, for example, will more likely recede a greater 

distance. 

Obviously, this attempt at predicting ultimate recession is conjec­

ture, and certainly not statistically valid. The most probable ultimate 

recession value should lie somewhere between the minimum and maximum 

values. Consequently, any valid prediction of bank recession must 

consider all the variables affecting erosion. This method has been used 

for the determination of the probable ultimate recession. 

Probable Ultimate Recession 

The probable ultimate recession represents the best estimation of 

bank recession for the lifetime of the reservoir, 500 years. Two differ­

ent methods were used to estimate probable ultimate recession, trend 

analysis and statistical analysis. Trend analysis used only historical 

data available from the Corps sediment rangeline surveys. Statistical 

analysis, in contrast, used physicar parameters that were found to be 

statistically significant to shoreline erosion. Both methods assumed 

that the rate of recession will decrease with time. 

Trend Analysis 

Trend analysis is an attempt to predict ultimate bank recession 

using historical data from the Corps sediment rangeline surveys. These 

rangelines are located all along the shoreline (Figure 27). The purpose 

of the rangelines is to determine the changes in the configuration of the 

reservoir. Five of the rangelines coincided with erosion stations 

(Stations 2, 50, 51, 53, and 58) so that both current and historic 

recession could be examined. From the surveys, it was possible to 

measure the cumulative recession from 1969 to 1979. In 1969, the reser­

voir attained its operating·level; land lost prior to 1969 was primarily 
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by inundation and not by wave erosion. Estimation of cumulative reces­

sion from 1979 to 1984 was done by assuming that the present average 

yearly rate of recession has remained constant·since 1979. The average 

yearly rate was multiplied by 5 years and added to the 1979 cumulative 

recession. These two cumulative recession values, therefore, are two 

known points on a recession curve. 

For trend analysis, it was assumed that the rate of recession would 

decrease with time, such that the recession curve would have the shape of 

a parabola on its side. The equation for a parabola on its side that 

passes through the origin is y = ax2 + bx, where y is the cumulative bank 

recession, xis the time projected into the future, and a and bare 

constants calculated from the historical data, the cumulative recession 

for 1979 and 1984. 

The trend analysis curve was extended to 500 years into the future, 

the expected lifetime of the reservoir. The projected results are given 

in Table 14. These results show that Stations 53 and 58 will experience 

little recession, while Station 51 is expected to have a 500-year cumula­

tive recession of 585 m. These predicted trends are approximations, 

only. Another method was needed, however, by which these trends could be 

further evaluated, and by wrich all the stations could be included. For 

this, statistical correlation was done using the past 2 1/2 years of data 

from erosion stations at tl,e eastern end of Lake Sakakawea. 

Statistical Analysis 

One of the original intentions of this study was to develop a bank 

recession equation that does not require any historical data, so that the 

equation could be applied to other reservoirs which have not been studied 

before. As discussed earlier, regression analyses were done with all the 

J:~ :,· .. ~ 
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TABLE 14 

Ultimate Recession: From Historical and Current Rates (metres) 

Station 1969 1979 1984 2069 2169 2469AO 
'?· 

2 0 14.3 21.3 121.6 215.0 426.0 
50 0 17.7 20.7 46.0 63.4 98.2 
51 0 54.9 64.9 151.2 210.3 327.4 
53 0 26.2 28.6 34.1 47.9 75.0 
58 0 0.4 2.1 4.1 5.5 8.2 
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stations, except Stations 3, 4, 5, 60, and 62; these stations are located 

in such protected areas as bays. The purpose of the regression analyses 

was to detennine what independent variables are best related to both wann 

and cold season monthly recession. From regression analysis, the follow­

ing independent variables were detennined to be statistically relevant 

for warm season recession: sine of the angle between the wind and shore­

.line, bank height, offshore slope angle, and beach width. For cold 

season recession, bank height and bank orientation with respect to the 

sun were selected. 

The wann season recession equation uses the respective regression 

coefficients of the independent variables and the slope intercept calcu­

lated from the accepted analysis. The wann season equation is: 

1) Rs= 141.53 - [17.2..JA + 8.4y+ 25.0s.f+ 10.y'J, 

where Rs is the monthly wann season recession rate (cm/mo), A= angle 

between the wind and shoreline, B = bank height, C = offshore slope 

angle, and D = beach width. This equation exceeds the 95 percent confi­

dence level with a goodness of fit value (r2) of 59.28. 

The cold season recession rate is: 

2) Rw = Rs [(2.05 (bank height)+0.043 (bank orientation)-2)/100], 

where the orientation is the value between 0° to 180°, with 0° ·being the 

direction of the lowest cold season bank recession, in this case, south­

east. Again, the values 2.05 and 0.043 are the regression coefficients 

calculated from regression analyses, and 2 is the slope intercept. The 

analysis produced an r2 value of 0.46. The F-value exceeded the 9g% 

confidence level. The rate is in cm/month. 

The total value, bank height and orientation, is divided by 100. 

This gives a decimal value which is then multiplied by the wann season 
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recession rate (Rs). Having the cold season rate dependent on the wann 

season rate is appropriate; if a station has a high warm season recession 

rate the banks will become oversteepened and allow for the cold season 

driving forces to be more effective. Also, this was the only relation­

ship generated from regression analyses that was statistically valid 

(i.e., surpassed the 90 percent confidence level}. 

These two equations were combined to produce a yearly rate of 

recession, the sum of the warm and cold season rates multiplied by their 

active months is: 

3) Rt= 6(Rs) + 6(Rw) 

For Lake Sakakawea, six months is applicable because wave action is 

the dominant force from May through October and freeze-thaw is active 

from November through April. The resulting value will be in cm/year, or 

in/year, depending on the units used. Yearly results predicted from the 

above equations are compared with the observed year-ly rates in Table 15. 

The predicted and observed recession rates were next subjected to regres­

sion analysis to determine their correlation. The two rates compare 

favorably, with an r2 of 0.54. 

Originally, the following equation (lb) was developed that included 

all pertinent variables, including effective fetch and percentage of 

coarse beach material: 

lb) Rs=l54. 9-[18.81 ..jA+25.12 ..Jif+ 10. 06 -JC+6. 91-.j0+5. 03 .jE+l.1-Jf] 

where A= sine of the angle between bank orientation and the dominant 

wind direction, B = offshore slope angle, C = beach width, D = bank 

height, E = effective fetch, and F = areal percentage of coarse beach 

material. The effective fetch must be detennined from available map or 

air photographic coverage, using the procedure outlined by Saville 
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TABLE 15 

Comparison Between Observed and Predicted Yearly Recession Rates 

Station 

1 
2 
6 
7 

50 
51 
52 
53 
54 
55 
56 
57 
:i8 
59 
61 

Observed 
Yearly rate 

(m/yr) 

2.06 
1.39 
1.18 
2.10 
0.52 
1.80 
1.54 
0.52 
2.58 
4.34 
3.01 
1.09 
0.34 
0.59 
2.78 

* Using equations la, 2, and 3 

Predicted* 
Yearly Rate 

(m/yr} 

1.10 
1.35 
1.00 
2.58 
0.03 
2.34 
1. 75 
0.36 
2.80 
2.81 
2.32 
1.95 
0.88 
0.52 
1.00 
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(1954) and illustrated in this report. The composition of the beach can 

be determined several ways, but the easiest way was to lay out a section 

of known width, e.g., 10 m, extended from the base of the bank to the 

waterline, and count the number of points intersected on the grid by the 

clasts of the various sizes. This provides an area percentage, a more 

relevant unit than volume percentage. The percentage of the area covered 

with the clasts of pebble-size or larger constitutes the value needed for 

the equation. Sand-size particles are not included, despite the fact 

that they frequently help identify a stable beach. The numbers associ­

ated with the variables are regression coefficients and 154.9 is the 

slope intercept. The r2 value is 0.61. The F-value exceeds the 75 

percent confidence level. 

This equation (lb) was rejected, because it did not exceed the 90 

percent confidence level. Despite this, the predicted results from this 

equation are comparable to the accepted equation, which ignores effective 

fetch and coarse beach material. Comparison between the observed and 

predicted yearly rates using equation (lb), with all the variables, is 

shown in Table 16. These rates were also subjected to regression analy­

sis and produced an r2 value of 0.55. Therefore, although this equation 

is comparable to the equation usi~g only four variables, the confidence 

level is below the accepted 90 percent level. The c3nfidence level is 

lowered because of the addition vf two more independent variables. These 

additional variables change the degrees of freedom, which help determine 

the confidence level. By adding more variables to the equation the 

probability for error to occur increases (i.e., the confidence level is 

decreased). If statistical validity is secondary, this equation, lb, can 

be used in place of equation la, as it predicts almost as accurately and 
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TABLE 16 

Comparison Between Predicted and Observed Yearly 
Recession Rates using Equations la and lb 

Ob.served Predicted* 
Yearly Rate Yearly Rate 

Station (m/yr) (m/yr) 

1 2.06 1.26 
2 1.39 1.63 
6 1.18 1.12 
7 2.10 2.79 

50 0.52 0.04 
51 1.80 2.28 
52 1.54 1.74 
53 0.52 0.42 
54 2.58 2. 71 
55 4.34 2.82 
56 3.01 2.20 
57 1.09 1. 78 
58 0.34 0.88 
59 0.59 0.30 
61 2.78 0.96 

* using equations la, 2, and 3 
** using equations lb. 2, and 3 

Predicted** 
Yearly Rate 

(m/yr) 

1.10 
1.35 
1.00 
2.58 
0.03 
2.34 
1. 75 
0.36 
2.80 
2.81 
2.32 
1.95 
0,88 
0.52 
1.00 
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uses the intuitively important parameters of effective fetch and beach 

clast percentage. These two variables may become more significant 

through time, but this can be proven only by the collection of additional 

bank recession data. 

For projection into the future the most important assumption is that 

recession will decrease with time, such that if the cumulative recession 

were plotted on a graph with respect to time the graph would have the 

shape of a parabola on its side. As in the case of the trend projection, 

the equation for a parabola must be incorporated into the future reces­

sion equation. The parabola equation selected is: 

y2 = ax, 

where y is the cumulative recession, xis the number of years, and a is 
. 

the constant that must be detennined. Because one of the initial 

assumptions for the equation is that historical data are not available, 

the present yearly rate must be determined. This rate, which is a 

segment of the parabola, is the difference in cumulative recession over a 

one-year period, or y2-y1• Because "a" must first be defined, the 

equation is rearranged to a= y2/x, or a= y2
2tx2, and y1

2tx1
1 By 

defining y2 in terms of y1 and Rt, the constant a is now equal to y1
2tx1 

2 2 
~ (y1 + Rt) /x2• By cross-multiplying and setting the equation equal to 

zero, a quadratic equation is developed such that: 
2 2 y 1 x1 + 2y1Rtx1 + Rt2x1 - y 1 x2 = O. 

Now yl can be solved using the quadratic formula, where the constants a, 

b, and care (x1 - x2), 2Rtx1, and Rt2x1, respectively. Once y1 is 

detennined, the constant a can be solved and future recession can be 

determined. Application of these equations to the control bank recession 

stations reveals an ultimate recession ranging from only 5.3m (Sta. 50) 
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to 495m (Sta. 55) (Table 17). For Station 50 the predicted ultimate 

recession is obviously incorrect because the predicted yearly rate is too 

low. The yearly rate is a function of the numerical values of the 

independent variables and their respective coefficients. Anomalous 

values for predicted rates can be explained only by variance in the 

analysis. Thus, for Station 50 the ultimate recession value from trend 

analysis should be used instead. For sites without historical data, 

minimum ultimate recession values should replace predicted ultimate 

values if the predicted ultimate values are lower than the minimum 

values. 

Comparison between the statistical and trend analysis show that 

Station 51 has a predicted ultimate recession of 412m and 585m, respec­

tively, whereas, Station 2 has a predicted recession of 76m from statist­

ical and 238m from trend analysis. It was hoped that both analyses would 

produce comparable results. Unfortunately, due to the many possible 

errors and assumptions made for both methods similar results were not 

possible. However, additional data might reduce the differences. 

In conclusion, the equation that best relates bank recession rates 

to the causative variables for Lake Sakakawea involves exponential 

relationships. Whether or not the equations are applicable to other 

reservoirs needs to be tested. Regardless, either equation should 

provide a predictive method for determining bank recession that is many 

times more accurate than the template presently in use. 
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TABLE 17 

Predicted Cumulative Bank Recession 
For Stations at Lake Sakakawea 

Rt 100 Years 200 Years 500 Years 
Station m/yr (m) (m) (m) 

1 1.10 87 123 194 
2 1.35 107 151 238 
6 1.00 79 111 176 
7 2.58 203 287 454 
50 0.03 2.4 3.3 5.3 
51 2.34 184 260 412 
52 1. 75 136 195 308 
53 0.36 57 80 127 
54 2.80 220 312 493 
55 2.81 221 313 495 
56 2.32 183 258 408 
57 1.95 154 217 343 
58 0.88 69 98 155 
59 0.52 41 58 92 
61 1.00 79 111 176 

* Using equations la, 2, and 3 
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RECOMMENDATIONS FOR FURTHER STUDY 

From this study has come an appreciation of the importance of 

further research. Although two and a ha1f years of data have been 

co1lected it would be presumptuous to believe that all the necessary 

infonnation has been accumulated. Furthermore, it would be naive to 

state that the collected data are statistically representative of the 

long-term rates of recession; further data are obviously needed. There­

fore, it is recommended that five years of data be collected to provide a 

stronger foundation for statistical analysis. Further collection of data 

could continue with minimal cost and time. Also, with continued data 

co1lection variables such as effective fetch and percentage of coarse 

beach c1asts might become more significant. 

Additional field work might be useful both to this study and to the 

Corps. Deep water sediment samples, for example, cou1d be collected 

during the winter with a piston core sampler. Analysis of the samples 

shou1d reveal the sedimentation rate for Lake Sakakawea. Also, testing 

the different litho1ogies, especial1y the ti11 formations, for engineer­

ing properti~s such as cohesion, residual shear strength, and compressive 

strength would provide other va~iables that could be tested. 

The reJulting equations need further testing. Other variables 

should also be measured and tested, such as beach height, joint strength, 

sediment cohesion, and longshore current velocity. Then, the equations 

should be applied to other locations along the lake, such as the sediment 

range lines; the results should be compared with the measured historical 
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recession. The equations should also be tested at other reservoirs such 

as Oahe. 



CONCLUSIONS 

In 1983 a detailed study began to determine which parameters define 

bank recession at Lake Sakakawea, North Dakota, and from the resulting 

data to develop a relatively simple equation that can predict present 

bank recession rates, and project them into the future. 

Previous work involved the establishment of erosion stations, 

textural analysis of bank sediment, and description of the erosional 

processes. The collected bank recession data represent 26 measurements 

over a two and a half year period at 20 sites along the eastern end of 

Lake Sakakawea. The parameters analyzed included basin-wide factors, such 

as climate and pool-level fluctuations; offshore factors, such as slope, 

composition, and wave energy; beach factors, such as composition and 

width; and bank factors, such as geometry, lithology, stratigraphy, and 

geographic location. 

At present, bank recession rates range from 0.2 to 4.3m/y, averaging 

l.6m/y. Approximately 78 percent of the total bank recession occurs 

during the warm months (May - October); wave action is the principal 

erosion agent. During the cold months (November . April), recession is 

caused directly or indirectly by freeze-thaw processes. 

Fifteen stations were statistically analyz~d using variables that 

are associated with the rate of recession. The remaining five stations 

were ignored because they are located in sheltered areas such as bays. 

Separate analyses were done for both warm and cold season recession. 

The variables selected for analyses were: effective fetch, bank 

height, beach width, areal percentage of coarse beach clasts, offshore 
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slope, mean grain size, sine of the angle between the shoreline and 

dominant wind, and bank orientation with respect to the sun. 

1. Effective fetch, a parameter used in wave forecasting for lakes 

and reservoirs, has a direct relationship to wave energy_. 

2. Bank height was found to be an important factor for both warm 

and cold season recession; shorter banks experienced faster 

recession in the warm months as a result of wave action. In 

the cold months the same short banks were usually protected by 

snow drifts. The tall banks (>9m), however, were exposed to 

the processes related to freeze-thaw. 

3. Beach width represents the distance the broken wave must travel 

to reach the bank. 

4. The areal percentage of coarse beach clasts defines the effec­

tiveness of cobble- and boulder-size material in breaking up 

approaching waves. 

5, Offshore slope, which had the highest correlation with warm 

season recession, defines how close the waves can approach the 

shore before breaking. 

6. The angle between the wind and shoreline accounts for the 

changes in wave energy due to wave refraction. 

7. Bank orientation with respect to the sun was used only in the 

cold season analysis. North-facing banks experienced greater 

cold season recession as a result of the high antecedent 

moisture content. 

Based on these results, two sets of seasonal recession equations 

were developed. The warm season recession rate, in cm/month, is: 
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la) Rs= 141.53 - [17.2-vA + 25.08~ + 10.43..Jf + 8.37\fD], 

where A= sine of the angle between bank orientation and dominant wind 

direction, B= offshore slope angle, C= bank height, and D= beach width. 

The numbers associated with each of the independent variables are 

regression coefficients and 141.53 is the slope intercept. This equation 

was accepted in preference to another equation (lb): 

lb) Rs=l54.9-[18.8~ + 25.12..JB + 10.06..jc + 6,91..JD + 5.03..jE + 1.1-Jf] 

which included the variables effective fetch (E) and areal percentage of 

coarse beach clasts (F). Equation la exceeded the 90 percent confidence 

level and had an r 2 value of 0.59, whereas equation lb exceeded the 75 

percent confidence level only. Both equations (la and lb) produced 

similar results, though. 

Cold season recession is explained by: 

2) Rw = Rs [(2.0S(bank height)+ 0.043(bank orientation) - 2)/100]. 

Again, 2.05 and 0.043 are regression coefficients and 2 is the slope 

intercept. Bank orientation ·is with respect to the sun, with a higher 

value given for north-facing banks. The cold season recession equation 

exceeded the 99 percent confidence level and had an r2 value of 0.46. 

The two seasonal rates are then multiplied by the respective months their 

erosional processes are active to give the resulting yearly rate (cm/yr): 

3) Rt= 6(Rs) + 6(Rw). 

For calculating future recession, it was assumed that the bank 

recession rates will decrease with time, such that the recession curve 

will have the shape of a parabola. Therefore, that equation uses the 

formu1a y2
= ax, where y is the cumulative recession, xis the years 

projected into the future, and a is a constant calculated from the 

quadratic equation. 
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These equations are the first to be developed that are statistically 

valid. In addition, they can be used to estimate the present yearly rate 

of recession in areas without current or historic recession data. Once 

the present yearly recession rate is calculated, it can be projected into 

the future to predict the total bank recession which can be anticipated 

in the absence of extensive field work. It is a significant improvement 

over the template method used by the U.S. Army Corps of Engineers. 

However, further testing is necessary to determine its applicability to 

other reservoirs. 
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APPENDIX A 

METEORLOGICAL DATA FOR LAKE SAKAKAWEA AREA 
(from Reid and others, 1986) 
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Figure 31 - Frost penetration at Riverdale, ND, 1984-85. 



2 

30 

40 

80 

90 

IOO 

DEC. 
1983 

JAN. 
1984 

FEB. 

t· 1 · fa·:>; ~'F'i?•';"'h 

:;:·':":1;:;:"':[t;~\. 
··_ .. ,·--

.. ';?:.'.;:\ 
.. 

. . . . ;·· 
. ' . :i 

· ,t;;@!,'.,;J'' 1}:)\ 

MAR. APR. 

... <d z·tr\tf@~~~:J;ii 

0 

10 

20 

(in) 

30 

40 

Figure 32 - Frost penetration at Fort Stevenson State Park, ND, 1983-84. 

,_. 
w 
"' 



. • , ', I.· ",,.:,:-,;;.',t :·,;_-,, ' 

_..;........._....._. - . v,·,.•w••· . ·t ·:w lroY •. :,.d\!'(&iMtltnPTI. 

0 , ..... 
~ ... ~···~. 0 

20 

40 

60 

(cm) 

BO 

100 

120 

140 

::. 
\ 
. \ 
' .·j 

.. :f 

. i 
' l 
/ 

20 

(in) 

40 

I NOV ! DEC ! JAN ! FEB ! MAR ! APR I 60 

1984 1985 

Figure 33 - Frost penetration at Fort Stevenson State Park, ND, 1984-85. 

,_.. 
w 
w 



I~~~- --

APPENDIX B 

CUMULATIVE BANK RECESSION FOR LAKE SAKAKAWEA 
(from Reid and others, 1986) 
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· Figure 34 - Cumulative bank recession, Station 1. 
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Figure 36 - Cumulative bank recession, Station 3. 
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Figure 37 - Cumulative bank recession, Station 4. 



1"' 
' 

900~ [350 

800 
I I 

300 
I I 

700 
I 

Station No. 5 ~250 
600 

(cm) 5001 ~200(inche 

...... 
4001 I w 

<.O 
150 

1 I 
300 

I I 
100 

I I 
200 

1001 
( r50 

JUNE I SEPT.30 

1983 1984 1985 

Figure 38 - Cumulative bank recession, Station 5. 
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Figure 39 - Cumulative bank recession, Station 6. 
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Figure 40 - Cumulative bank recession, Station 7. 
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.Figure 41 - Cumulative bank recession, Station 50. 
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Figure 43 - Cumulative bank recession, Station 52. 
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Figure 44 - Cumulative bank recession, Station 53. 
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Figure 46 - Cumulative bank recession, Station 55. 
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Figure 47 - Cumulative bank recession, Station 56. 
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Figure 48 - Cumulative bank recession, Station 57. 
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Figure 49 - Cumulative bank recession, Station 58. 
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Figure 50 - Cumulative bank recession, Station 59. 
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Figure 52 - Cumulative bank recession, Station 61. 
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Figure 53 - Cumulative bank recession, Station 62. 
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APPENDIX C 

BANK PROFILES OF LAKE SAKAKAWEA STATIONS 
(from Reid and others, 1986) 
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Figure 54 - Offshore and bank profile, Station 1. 
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Figure 55 - Offshore and bank profile, Station 2. 
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Figure 56 - Offshore and bank profile, Station 3. 
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Fi~ure 57 - Offshore and bank profile, Station 4. 
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Fig;.,'e 58 - Offshore and bank profile, Station 7. 
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Fi~ure 59 - Offshore and bank profi1e, Station 50. 
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OFFSHORE AND BANK PROFILE 
STATION 51 
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Figure 60 - Offshore and bank profile, Station 51. 
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Figure 61 - Offshore and bank profile, Station 52. 
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OFFSHORE AND BANK PROFILE 
STATION 53 
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Figure 62 - Offshore and bank profile, Station 53. 
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OFFSHORE AND BANK PROFILE 
STATION 55 
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FigurP 63 - Offshore and bank profile, Station 55. 
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Figure 64 - Offshore and bank profile, Station 56. 
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Figure 65 - Offshore and bank profile, Station 57. 
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Fi~ure 66 - Offshore and bank profile, Station 58. 
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Figure 67 - Offshore and bank profile, Station 59. 
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OFFSHORE AND BANK PROFILE 
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Figure 68 - Offshore and bank profile, Station 60. 
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Figure 69 - Offshore and bank profile, Station 61. 
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APPENDIX D 

BEAC~ CLAST PERCENTAGE AT LAKE SAKAKAWEA EROSION STATIONS 
(from Reid and others, 1986) 
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Figure 77 - Beach clast percentage, 
Station 7. 
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Station 50. 
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