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ABSTRACT 
 

The Coso geothermal field is located approximately 220 kilometers north of Los 

Angeles, CA.  In 2002, a project began to develop the east flank of the Coso geothermal 

field into an enhanced geothermal system (EGS); in such a system water is injected via 

injection well(s) into hot dry basement rock through naturally occurring or stimulated 

fractures. The injected water gathers heat from the reservoir rock before being extracted 

for direct use or energy production.  To develop such a reservoir, adequate understanding 

of the reservoir geomechanics is necessary.  This thesis investigates the state of stress and 

rock fractures, the existing permeable fractures in the reservoir, and the effects of water 

injection into fractures at the Coso EGS. 

A lower bound estimate of the magnitude of the maximum horizontal in-situ 

stress (SHmax) was obtained using a fracture mechanics approach incorporating thermal 

effects on drilling induced fractures in well 38C-9.  The maximum principal stress was 

found to transition from horizontal (σ1 = SHmax) to vertical (σ1 = Sv).  A fracture 

propagation study was applied to compare the estimate presented herein with other 

published estimates that utilized frictional faulting and rock strength theory.  The results 

showed the lower bound estimate resulted in little or no fracture propagation away from 

the wellbore; published estimates predicted extensive fracture propagation away from the 

wellbore.       



 xvii 
 
 

The state of the jointed rock mass was characterized based on formation micro-

scanner (FMS) data as they applied to the joint network fractures with significant 

aperture (Rose et al, 2004).  The joint network supported the stress regime concluded 

from the state of stress estimation.  A linear and non-linear failure criterion was applied 

to investigate critically and non-critically stressed joints, also the pore pressure increase 

required to critically stress non-critically stressed joints was found. At the proposed 

injection depth, critically oriented joints with friction angles [ 25º were critically stressed. 

 A plane strain mathematical model was developed to investigate induced effects 

of water injection into a permeable deformable fracture.  Three fracture geometries were 

considered: (i) injection/extraction from a line fracture, (ii) injection into an infinite radial 

fracture, and (iii) injection into a joint.  Expressions for the induced pressure and 

temperature in the fracture and reservoir rock were developed and used to develop 

expressions for the induced thermoelastic, poroelastic, and combined thermo- and 

poroelastic fracture width changes, and the resulting induced fracture pressure.  Analytic 

solutions were derived utilizing constant injection and leak-off assumptions. 

It was found the poroelastic effects tend to close the fracture as a result of leak-

off, while the thermoelastic effects tend to open the fracture as a result of the cold water 

injection into hot rock.  For conditions in the Coso EGS, the thermoelastic effects are 

dominant.  At early times and high injection rates, the poroelastic effects cannot be 

ignored when considering the induced pressure even though the effects on the fracture 

width are relatively small.  The fluid/solid coupling incorporated into model (iii) can alter 

the fracture width and pressure.  
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CHAPTER I 
 

INTRODUCTION 
 

 In recent years, there has been an increasing interest in the development of 

renewable energy resources such as wind, solar, and geothermal energy.  Means of 

harvesting renewable energy sources, for example geothermal energy, have been around 

for some years. Energy production at the Geysers hydrothermal system, for example, in 

California began in 1960 producing 11 Mega Watts (MW) of electricity (http://www. 

eere.energy.gov/geothermal/history.html), and reached production peak in 1987 

providing power to 1.8 million people (http://www.eere.energy.gov/geothermal/ 

pdfs/egs.pdf).  Since 1987, production has been declining as a result of depletion in water 

resources (Atkinson, 1998).  Another notable example is the Coso geothermal system, 

which has been in operation since 1981 and currently generates roughly 270 MW of 

electricity (Monastero, 2002).   

Due to continual decline in the Geysers and Coso power output, and in general a 

growing interest in use of renewable energy, the US Department of Energy has set a goal 

of producing 20,000 MW by use of the enhanced geothermal system (EGS) concept 

(http://www.eere.energy.gov/geothermal/pdfs/egs.pdf).  The EGS concept involves two 

or more wells set up in an injection/extraction system (see Figure 1).  Injected water 

travels through natural or man made fractures where it gathers heat (energy) from the 



surrounding hot crystalline basement rock.  The heated water is then extracted for 

subsequent use. 

injection wellextraction well extraction well

fracturesHDR

 

Figure 1: HDR Concept of an EGS Reservoir Energy Extraction System. 

 The Hot Dry Rock (HDR) concept (see Figure 1) of an EGS has been around 

since the early 1970s when it was first introduced and patented by scientists at the Los 

Alamos National Laboratory (Potter et al., 1974) and called HDR (Abe et al., 1999).  The 

total amount of energy available in HDR has been estimated at 10 billion quads (a quad 

represents the energy equivalent of 180 million barrels of oil, and the US in 2001 used 90 

quads) (Duchane and Brown, 2002), which is 300 times greater than the current fossil 

fuel resource base (Tester et al., 1989).  However, early studies showed only a small 

fraction of this energy could be efficiently extracted.  For example, at the Fenton Hill 

HDR site only 10 MW of energy production was attained.  Reasons for this included 

equipment failure in the high temperature environment and high flow impedance.  

Impedance is defined as the ratio between the injection and extraction pressure difference 

to the extraction rate.  In general the flow impedance should be less than 1 MPa-s/L 

(Murphy et al., 1999). 
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Figure 2. Location of Coso Geothermal Field and Wells (from Rose et al., 2004) in East 
Flank. 

This thesis investigates the reservoir geomechanics of an EGS project at the east 

flank of the Coso geothermal field (see Figure 2). The investigation includes constraining 

the in-situ stress tensor, and utilizing it in the characterization of the existing fracture 

network to identify the critically stressed fractures which can serve as effective fluid 
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pathways for the injected fluid.  Furthermore the thesis seeks to understand the 

mechanical, hydraulic, thermal, and poroelastic effects of injecting water into fractures.  

Overview of Coso Geothermal Field 

History of Development 

The Coso geothermal field is located approximately 220 kilometers north of Los 

Angeles, California, in Inyo County (see Figure 2).  The field is owned by the US 

government and has been an area of growing interest since the 1960s when Dr. Carl F. 

Austin published a Navy report on the exploration for geothermal potential.  Preliminary 

tests of heat flow were performed in the mid 1960s and 1970s. By the early 1980s it was 

established that the reservoir would meet the energy needs of the Naval Weapons Center 

(NWC) located in the Coso area. By 1990 there were three geothermal plants with a 

production potential of 250 megawatts.  The energy is used by the NWC and the excess is 

sold to private utilities.  Production in the eastern part of the field began in 1993.  The 

eastern part of the Coso Geothermal field has the deepest production well, which is 

10,455 feet or 3187 meters.   

Geologic Setting 

According to Adams et al. (2000), the Coso Geothermal Field has been in 

existence for roughly 300,000 years.  There have been three occurrences of volcanic 

activity in the system’s history.  The first began roughly 307,000 year ago and produced 

low to moderate increases in temperature in the subsurface; little is known about this 

occurrence.  The second resulted from magmatic activity beneath the dome field resulting 

in a high-temperature geothermal system in the southern and eastern part of the present 



day field.  The third heated the east flank up in excess of 373º K, and reheated the 

southern part of the field.   

The field lies in the eastern part of a major volcanic center that has 38 rhyolite 

domes.  The dome field was subject to volcanic eruptions between 1.0 Ma and 40 ka.  

The youngest of the domes is Sugarloaf Mountain, which is located immediately to the 

west of the geothermal field.  A fresh phreatic explosion crater surrounds a dome located 

just north of the field.  It is hypothesized that the rhyolite and the geothermal field are 

related to the magma body located 5-20 km beneath the field.  The northern edge of the 

field follows a northeast trending belt of active and fossil fumaroles.  The east flank lies 

along a northerly trending fault zone (Adams et al., 2000). 

 History of EGS/HDR Development and Literature Review 

A detailed review of the Fenton Hill, Rosmanowes, and Soultz-sous-Forêts 

EGS/HDR projects can be found in Tenzer (2001).  Other reviews on the historical 

development of the HDR concept include Rummel et al. (1992), Jung et al. (1997), and 

Baumgartner and Jung (1998).   

The HDR version of the EGS concept was largely developed at the Los Alamos 

National Laboratory (LANL) through experimental tests run at the Fenton Hill site in 

New Mexico (Hooper and Duchane, 2002).  In the LANL HDR model, an injection/ 

extraction system was connected by a single fracture created using hydraulic fracturing.  

Hydraulic fracturing is a reservoir stimulation technique, which has been used by the 

petroleum industry since the 1950s.  It involves isolating a section of a borehole and 

pressurizing the section until a mode I (tensile) fracture propagates away from the 

borehole.  Proppants, such as sand grains or synthetic beads, are then pumped into the 

 5



 6

fracture to keep the fracture open thereby increasing the permeability of the formation.  

Tests at the Fenton Hill site showed proppants were not needed because the artificial 

fractures were rough and uneven in the crystalline basement rock.  The first test run at 

Fenton Hill involved an injection/extraction system of a 90 m fracture at a 3 km depth.  

The results were better than expected with low fluid losses and flow impedances 

observed.  An energy capacity of 3 MW was attained; enough to power several hundred 

houses.  The objective was then to deepen the wells to a 4.5 km depth, where the 

bottomhole temperature was 600º K, and connect the two deviated (approx. 30º from 

vertical) wells.   Problems were encountered when attempting to increase the distance 

between the injection and extraction wells and increase the depth. These included 

mechanical problems attributed to the extremely high temperatures and failure to attain a 

hydraulic connection.  Thus the deviated lower 1 km of the well was filled and the largest 

hydraulic stimulation operation in US history was conducted.  Using the successful 

experience of utilizing microseismics surveys during injection/extraction operations at 

the HDR project at the Rosmanowes England; a seismic cloud indicating shear movement 

on joints was observed in the stimulation process, but a hydraulic connection was not 

achieved.  Therefore the extraction well was deviated to intersect the seismic zone.  Once 

connection was made the system yielded a capacity of 10 MW.  

As already alluded to, the HDR project at the Rosmanowes Quarry in Cornwall, 

England used microseismics surveys during injection/extraction operations (subsequently 

used at the Fenton Hill site).  During injection tests, a seismic cloud around the injection 

points was noted.  This suggested a reservoir stimulation mechanism that differed from 

the early tests run at the Fenton Hill site.  It was concluded that reservoir stimulation was 
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a result of slip of existing joints rather than propagation of single hydraulically driven 

fracture.  There are two main reasons for this.  The first is that in most HDR, an existing 

joint network dominates the permeability because the matrix permeability is extremely 

low. The second is that sites favorable for HDR are tectonically active areas.  The result 

is shear loading on joints creating conditions favorable for joint slip.   Pine and Batchelor 

(1984) used the stress tensor of the Rosmanowes Quarry (a tectonically active area) and 

Mohr-Coulomb failure theory, and found slip can occur on critically oriented joints at 

pressures significantly below that required to hydraulically jack a joint.  The three well 

system at Rosmanowes was studied for over three years.  Circulation was ceased after it 

was recognized that heat was no longer being extracted along the flow path due to 

channeling of the flow. 

Although the Fenton Hill and Rosmanowes site are no longer operational, they 

provided a framework for future HDR work.  Notably the Fenton Hill site showed the 

HDR concept can be used to produce energy, and hydraulic fracturing in HDR 

environments may not require proppants.  The Rosmanowes site showed that in HDR 

type environments flow through natural fractures is the dominant flow mechanism.  Also, 

the Rosmanowes site showed slip of existing fractures can be a stimulation technique 

(rather than hydraulic fracturing), and can be monitored by use of microseismics. 

The most noteworthy current HDR/EGS site is the Soultz-sous-Forêts site in 

France.  This project began in 1987 with the drilling of a 2 km deep well.  The 

temperature of the reservoir at 1 km depth was 394º K and at 2 km depth was 414º K, 

which indicated much of the heat was not flowing from the basement rock.  It was 

concluded the heat was flowing from water circulation in the overburden sediment.  The 
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seismic data from hydraulic stimulation tests indicated an activated north-south trending 

fracture system.  Accordingly, from 1989-1991 a second well was drilled to intersect this 

activated fracture system.  During 1992 and 1993 the first main hole was deepened to a 

target depth of 3590 m, and the subsequent gathered data were used to deepen the second 

hole to 3890 m approximately 450 m south of the main hole.  After completion, large 

scale production tests yielded positive results producing 8 MW of power.  Recent work 

has been aimed at increasing the depth of the system to 5 km, and construction of an 

HDR power plant to hopefully generate 30 MW of power for commercial use.    

  Another recent project in the 1990s is the Dixie Valley EGS site in Nevada 

which expanded the results of Pine and Batchelor (1984) and showed these critically 

oriented fractures, when critically stressed, controlled permeability in areas of active 

tectonics (Barton et al., 1998).  This is a quality of the Coso geothermal system.  

Therefore, accurate characterization of the reservoir geomechanics including the in-situ 

stress, existing jointing network, and prediction of the pressures at which these fractures 

will slip, as well as propagate is necessary for optimum development of an EGS. 

Heat Extraction in EGS 

The goals of geothermal reservoir modeling are to quantify the amount of energy 

the injected fluid can withdraw from the reservoir rock and to estimate how long energy 

can be economically extracted from the reservoir. Realization of this goal can benefit 

from understanding those mechanisms that control fracture permeability. This is achieved 

in this thesis by considering a single fracture to isolate and identify the fundamental 

mechanisms.   



 9

The single fracture approach has also been used in studying heat extraction 

potential in a reservoir. Early analyses of a single fracture assumed one-dimensional heat 

flow to allow for analytical solutions in impermeable (Bodvarsson, 1969) or permeable 

(Cheng and Ghassemi, 2001) rock.  More complicated two- or three-dimensional semi-

analytical solutions of heat extraction have utilized the boundary element method (e.g. 

Cheng et al., 2001 or Ghassemi et al., 2003) or finite element method (e.g. Kolditz, 1995; 

Kohl, 1995; Bower, 1997; Kolditz and Clauser, 1998).  These studies have shown that the 

one-dimensional simplification can give erroneous results for large values of time.   

Influence of Cold Water Injection in EGS 

The behavior of fractures in response to injecting cold water has not been 

extensively studied with respect to EGS.  The effects are mechanical, hydraulic, thermal, 

poroelastic, and chemical.  These effects are typically coupled together and non-linear.  

Hydraulic effects (which have already been discussed) can be found in Pine and 

Batchelor (1984) or Hayashi and Ito (2003).  Recent investigations of the thermal effects 

include Mossop and Segall (in-press), and Ghassemi et al. (2005).   These works found 

the thermally induced stresses can dwarf the hydraulic effects of injection.  Their results 

showed the thermoelastic induced stresses can play a dominant role in slip of existing 

joints.  Ghassemi and Zhang (2004) studied the influence of poroelastic and thermoelastic 

processes on fracture width and pressure using a fully coupled model of a uniformly 

pressurized and cooled crack.  However, the resulting changes in the fracture width 

pressure resulting from injection/extraction have not been addressed and are studied in 

this thesis. 
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Objectives and Methodology 

 The objectives of this study are: 

1) Constrain the in-situ stress tensor in the east flank of the Coso EGS 

2) Characterize the fracture network in the east flank of the Coso EGS 

3) Identify critically stressed or least stable joint orientations in the east flank 

of the Coso EGS 

4) Develop a mathematical model to investigate the role of various 

mechanisms in slip of existing joints; and also to address changes in 

fracture width and pressure resulting from elastic, thermoelastic, and 

poroelastic effects associated with cold water injection into a fracture. 

These objectives are intrinsically related.  The fracture network cannot be 

characterized without knowledge of the in-situ stress tensor.  The critically stressed 

fractures cannot be identified without use of the in-situ stress tensor and the characterized 

fracture network.  Finally, the mathematical model must be based off the identified 

critically stressed fractures.    

Sign Convention and Units 

In this thesis, compressive stress will be assumed positive, and tension will be 

assumed negative.  This is done for continuity with conventional rock mechanics 

literature (e.g. Jaeger and Cook, 1976).  The in-situ stress tensor will be calculated in 

U.S. customary units.  This is for continuity in comparison with the other published in-

situ stress estimates.  However, SI units will be used for subsequent chapters of the thesis.  

For convenience the final summary of the estimated in-situ stress tensor is given in both 

SI and U.S. customary units. 



 11

CHAPTER II 

IN-SITU STRESS ESTIMATION 

Introduction  

In early HDR projects, such as the Rosmanowes site, in-situ stress measurements 

were conducted using traditional methods already used by the petroleum and mining 

industry.  The overburden stress (Sv) was measured using density logs, which is still the 

method used today.  The minimum horizontal stress (Shmin) was measured using hydraulic 

fracturing (see e.g. Pine et al., 1983), a method used in the petroleum industry since the 

late 1950s.  Background on the fundamentals and theory of hydraulic fracturing stress 

measurements can be found in Hubbert and Willis (1957), Haimson and Fairhurst (1967), 

or Haimson (1968).  The maximum horizontal stress (SHmax) was typically extrapolated 

via the Kirsch solution.  However, EGS can be highly fractured.  Therefore, use of the 

Kirsch solution in estimating SHmax seems unreasonable, because the Kirsch solution 

assumes linearly elastic, isotropic, homogeneous, impermeable rock.  Therefore fracture 

mechanics methods incorporating pre-existing fractures were developed to account for 

this (e.g. Zoback et al., 1977; Rummel, 1987; and Abou-Sayed et al., 1978). 

 Recent techniques involving borehole imaging of drilling-induced tensile 

fractures and borehole breakouts have lead to effective methods in constraining the 

orientation of the in-situ stress tensor (see e.g. Moos and Zoback, 1990; Barton and 

Zoback, 1994; Brudy and Zoback, 1999; and Sheridan et al., 2003).  A breakout



is compressional failure at the borehole wall, and drilling induced tensile fractures are 

tensile failure at the borehole wall (see Figure 3).  Both are functions of the material 

properties of the rock and the state of stress.  By the Kirsch solution a breakout will occur 

at the zone of maximum compressional stress, which is in the direction of Shmin.  While 

drilling-induced tensile fractures will initiate at the zone of minimum compressional 

stress in the direction of SHmax.   

 

tensile 
fracture
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Figure 3. A Borehole Breakout and Drilling-Induced Tensile Fracture. 

 
Previous Work at Coso Geothermal Field 

For the Coso geothermal reservoir, the in-situ stress orientation has been 

constrained by Hickman and Sheridan (2004).  The direction of Sv is assumed to be 

perpendicular to Earth’s surface.  The direction of the two horizontal principal stresses, 

SHmax and Shmin, are then found by considering the orientations of drilling-induced tensile 

fractures in well logs.  With the orientations of SHmax and Sv constrained, the orientation 

of Shmin is determined as it must be orthogonal to SHmax and Sv.  The Shmin direction can 

also be determined by considering breakouts in well logs.   



The magnitude of Sv can be estimated simply by using density well logs with the 

following equation: 

                (1)  gdzzS
z

v ∫=
0

)(ρ

where g is the acceleration due to gravity, z is the depth below the surface of the earth, 

and ρ(z) is the density which can be a function of depth.  In Coso, Sv was found to be 1.14 

psi/ft (Sheridan et al., 2003).  Shmin can be estimated with reasonable accuracy by analysis 

of micro- or mini-hydraulic fracturing (HF) tests. The analysis of HF testing in well 38C-

9 (see Figure 2) yielded a value of 0.66 psi/ft.  Unfortunately, it is not as straight-forward 

to determine SHmax.  

SHmax Estimation  

Determination of SHmax Using Kirsch Solution 

SHmax often is found indirectly by using the results of HF tests.  This is done by 

considering the Kirsch solution for a circular wellbore in elastic rock.  The result is the 

well known Hubbert and Willis (1957) equation: 

 obhH ppTSS −−+= minmax 3                                                           (2) 

where po is the pore pressure, T is the tensile strength of the rock, and pb is the breakdown 

pressure.  The benefits of this solution are that it is quick, easy, and, if conditions are 

right, can provide a fairly accurate measurement of SHmax.  On the other hand, (2) assumes 

linearly elastic, isotropic, homogeneous, and impermeable rock, which is not always the 

case.  Application of this equation to the HF test conducted at 3703 ft with values in 

Table 1 for well 38C-9 in Coso yields a value of 4941 psi at 3703 ft or 1.33 psi/ft 

assuming a linear stress gradient.   
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Table 1: Parameters Used for a Depth of 3703 ft. 

Parameter Value Reference or comments 

Shmin 2444 psi From HF test in well 38C-9 
SHmax SHmax (psi)  
pfrac 1234 or 1629 psi Assumed equal to pw or po

po 1234 psi Sheridan et al., 2003 
pw 1629 psi 0.44 psi/ft gradient assumed 
To 436 ºK Well 38C-9 static survey  
Tw 383 ºK Drilling report 
v 0.185 Rose et al, 2004 
E 9.43(106) psi Rose et al, 2004 
η 0.183 Calculated 
αΤ 8(10-6) 1/ºK Assumed for granite 
r 6.125 in 38C-9 well log 
kT 0.00147 in2/s Assumed for granite 
KIC 1820 psi-in1/2 Assumed for granite 
 pb 1334 psi HF test in well 38C-9 
T 177 psi HF test in well 38C-9 
 

The thermoelastic effects can be accounted for by applying the principle of 

superposition and adding the induced thermal stresses to the elastic stress concentration.  

At the borehole wall the induced thermal stress is (Ritchie and Sakakura, 1956): 

 
v
TTT

−
Ε∆

=∆

1
α

σθθ                                                                                                       (3) 

where αT is the linear expansion coefficient, v is Poisson’s ratio, ∆T is the temperature 

difference between the well and rock, and E is Young’s modulus.  Adding Eqn. (2) to (3) 

yields the Stephens and Voight (1982) thermoelastic solution for SHmax: 

 
v
TppTSS T

obhH −
Ε∆

+−−+=
1

3 minmax
α                                                                (4) 
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Eqn. (4) with the values in Table 1 yields a value of 35 psi at 3703 ft for SHmax.  This is 

not reasonable.  Adding poroelastic effects to (4) results in:   

 o
T

bhH p
v
T

pTSS η
α

η 2
1

E
)1(23 minmax −

−
∆

+−−+=            (5) 

Eqn. (5) yields -36 psi (in tension) at 3703 ft, which is also unreasonable.  Aside from the 

inherent limitations in elastic (or other constitutive models, i.e., thermoelastic, and/or 

poroelastic) stress analysis, this method is not reliable because it assumes that breakdown 

corresponds to tensile failure of the rock and fracture initiation.  Often times this is not 

the case and breakdown pressure represents propagation of a pre-existing crack.  A 

fracture mechanics approach considers a priori the existence of a critically oriented 

fracture at the wellbore wall, and views the breakdown as the beginning of unstable 

fracture propagation (Abou-Sayed et al., 1978; Detournay and Carbonell, 1994).  Due to 

the high degree of fracturing in EGS environments this approach is more applicable.   

Fracture mechanics principles provide a framework for analysis of drilling-induced 

cracks. 

Estimating SHmax from Drilling-Induced Fractures 

The existence of a drilling induced fracture at 7650 ft, as shown in Figure 4, 

allows for SHmax estimation using a fracture mechanics approach.   Drilling-induced 

cracks are mode I fractures that occur vertically in a fracture doublet 180º apart (Moos 

and Zoback, 1990; Sheridan et al., 2003).  Rummel (1987) established a fracture 

mechanics analysis of drilling-induced tensile fractures under isothermal conditions.  

This considered loadings on the fracture which included Shmin, SHmax, the wellbore 

pressure (pw), and the fluid pressure in the fracture (pfrac). The latter can be equal to the 
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wellbore pressure, the formation pore pressure, or some other distributed pressure. 

Thermally induced stresses from cooling of the formation by drilling mud can also be 

included (Brudy and Zoback, 1999).   

 

Tensile-induced 
drilling fractures 

Figure 4. The Drilling-Induced Tensile Fracture Noted at 7650 ft.  The Vertical Fracture 
Occurs in a Pair 180º Apart (from Sheridan and Hickman, 2004). 
 

In order to predict the conditions for propagation of the fracture, the mode I stress 

intensity factor (KI) is considered and compared to the rock’s fracture toughness (KIC).  KI 

is calculated by adding the contribution of various loads in Figure 5 based on the 

principle of superposition (Rummel, 1987; Brudy and Zoback, 1999).  This will result in 

the following equation for KI: 

ICIfracIwI

hIHIfracwhHI

KKpKpK

SKSKppSSK

++++

+=
∆Τ

∆Τ

)()()(

)()(),,,,( minmaxminmax

θθ

θθ

σ

σ
                        (6) 
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Figure 5. Problem Set up for SHmax Determination. 

 
KI defines the state of stress at the tip of a crack and is a function of the applied loading 

and geometry.  In considering different loadings in Figure 5, we assume the geometry in 

Figure 6 for which Paris and Sih (1965) derived the following expression for KI: 

 ∫
−
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xaxaK )0,(σπ                                                                            (7) 

where σy is the loading on the crack plane.  From (7) the expressions for the stress 

intensity factor caused by the different loadings (SHmax, Shmin, pw, pfrac, and ) can be 

established.  The Kirsch solution is used to calculate the loads due to S

∆Τ
θθσ

hmin and SHmax.  

Once the σy for each loading is established, it is substituted into Eqn. (7) and integrated 

resulting in the following expressions (Rummel, 1987): 
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where b = 1.0+(α/r) = a/r. 

y
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Figure 6. Geometry of Crack Considered by Paris and Sih (1965) for Calculation of 
Stress Intensity Factor. 
 

This approach has been expanded by Brudy and Zoback (1999) to include the 

influence of the tangential thermal stresses.  In this approach it is assumed the fracture 

never reaches the cooling front in the formation, because if the fracture goes beyond this 

point the tensile thermal stresses no longer act on the fracture.  In their work, Brudy and 

Zoback (1999) obtain: 
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where
2

*

r
Tk cT=τ , 

v
TTT

−
Ε∆

=∆

1
α

σθθ  in which ∆T now is the difference of the in-situ formation 

temperature and the formation temperature after cooling, τ* is the Froude number, B is 

the cooling front, Tc is the time of cooling, and kT is the thermal diffusivity.  Eqn. (12) is 

only valid if Tc > 20 hours (Stephens and Voight, 1982).  Eqns. (8)-(14) are substituted 

into (6) and solved for SHmax.  First, it is necessary to establish ∆T and Tc.  

Determination of ∆T and Cooling Time 

The temperature change is a key parameter in this analysis, and can be 

approximated based on the temperature record of the circulating mud.  The temperature 

of the mud is often recorded at the surface.  Tout is the temperature of the mud coming out 

of the well, and Tin is the temperature of the mud after returning to the annulus.  These 

can serve to establish the extent to which the rock has been cooled.  To do so, the 

following assumptions are made: 

1) Fluid loss is neglected i.e. qin=qout. 

2) Heat transfer from the formation to the mud is 100% efficient (Qmud=Qform) 

3) Convective heat generation from the circulating mud is negligible. 

4) The geothermal gradient is constant.  

5) Heat transfer behaves the same for the mud entering and leaving the well. 

These assumptions are illustrated in Figure 7.  Applying these assumptions, the change in 

the formation temperature based on drilling reports is found to be 29º K.  

 19



 20

 

Tout  qout

Due to incomplete data, Tc must also be estimated.  This is achieved by 

considering the problem of cooling the formation around the wellbore as a function of 

mud circulation.  A simple solution to this problem was presented by Edwardson et al. 

(1962).  It assumes an infinite and homogeneous formation and neglects the effects of a 

mud cake, convective heat generation, and rate of radial heat flow from the wellbore once 

mud circulation ceases.  Applying these assumptions Edwardson et al. (1962) solved the 

heat conduction equation given as: 
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where
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r
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r
DD ρ
== , Kr is the thermal conductivity of the formation, cmud is the 

heat capacity of the mud, and ρmud is the density of the mud.  The solution to (15) gives 

the temperature distribution as a function of radial distance and time (Edwardson et al., 

1962): 

 qin

Qmud=Qform Qmud=Qform

 qin  Tin

To 

  ∆T 

Tout  qout

7650 ft 

Figure 7. Idealized Mud Circulation in Well. 
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where ∆T(0) is the difference in temperature between the undisturbed formation and the 

drilling fluid, ∆T(rD,t) is the temperature difference between the circulating fluid and the 

formation after some time (t) of cooling at some distance, rD.  The functions q and P are 

known functions with values given in Edwardson et al. (1962). In our case, the radial 

distance is known (rD = 1), along with the ratio
K

K
T

trT D

º434
º29

)0(
),(
=

∆
∆ , which is found using a 

static well log and from assumptions given above.  The ∆T(0) value is obtained by taking 

the difference between the Tin of the mud and the undisturbed formation temperature.  

Therefore, the only unknown is the time (t) it takes to obtain the temperature disturbance 

of 29ºK / 434ºK. 

A simple method for determining this time is proposed by Edwardson et al. 

(1962).  The method requires knowledge of the total time since drilling past the depth of 

interest (7650 ft), and the well temperature at that depth at the end of that time period.  

This was determined using the static well log conducted after well completion.  If the 

static well log is assumed to be representative of the temperatures immediately after well 

completion; the time since drilling past 7650 ft is found to be approximately 11 days or 

264 hours (based on daily drilling reports).  Then, based on the average annular mud 

velocities, the amount of circulation time is found to be 148 hours.  The remaining time 

(116 hours) is assumed to correspond to the well being shut-in prior to measuring the 

equilibrium well temperatures. 

The value of Tc is estimated iteratively.  An initial guess for the cooling time is 

used to calculate the ratio [(t+Tc)-tcirc]/t where t is the total time and tcirc is the circulation 
 21
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time.  This ratio and the initial guess is read off graphs given in Edwardson et al. (1962) 

to yield a temperature disturbance, dT1.  Next, the ratio [(tcirc+Tc)-tcirc]/tcirc is calculated 

and the corresponding temperature disturbance, dT2 is read off the graph.  The average of 

dT1 and dT2 is then used as the final temperature disturbance, dTfinal.  When dTfinal equals 

the ∆T observed in the well, the corresponding time is assumed to be the time of cooling.  

Applying the aforementioned technique, the cooling time is found to be approximately 60 

hours.  It should be emphasized that this value is only a preliminary approximation that is 

based on a number of assumptions; however, as it turns out, this parameter does not have 

a significant impact in the estimation of SHmax (Brudy and Zoback, 1999). 

Estimation of SHmax in Well 38C-9 

With all the input parameters defined, (6) can be employed to estimate SHmax. The 

length of the drilling-induced fracture, L, and SHmax are unknowns.  Also there is 

uncertainty associated with the time of cooling. Thus, SHmax vs. fracture length graphs are 

generated for various cooling times (Figure 8).  The curves rapidly drop to a minimum 

value and then increase monotonically.  The minimum value represents the stress level 

below which the fracture cannot propagate and thus represents a lower bound for SHmax.  

For a larger SHmax value, the fracture would have propagated an additional increment 

away from the wellbore. The implication of choosing the minima of the curves for SHmax 

is there is no further fracture extension.  The fact no fluid loss or mud circulation 

problems were noted at this depth from well logs support this hypothesis.  The 

implication then is a stationary fracture or a fracture that did not propagate far into the 

formation. The minimum values for different cooling times are listed in Table 2.  All the 



values in Table 2 correspond to an initial fracture length of 0.09r or 0.55 inches (1.39 

cm).   
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Figure 8. SHmax vs. Normalized Fracture Length for Different Tc Values (in Hours).  The 
Minimum Values of the Curves Correspond to a Lower Bound Estimate of SHmax  

 
In calculating the curves in Figure 8 it was assumed pfrac = pw, which is an upper 

bound for pfrac.  The lower bound for pfrac should also be considered, which is po.  

Examination of (6) shows the pfrac lower bound will provide an upper value for the SHmax 

lower bound. The pfrac upper bound will provide a lower value for the SHmax lower bound. 

These values are reported in Table 2.  

Table 2. Minimum Values from SHmax Curves in Figure 8, and Mean and Standard 
Deviation of SHmax Estimates. 

 Tc, hr SHmax  (psi), po = pfrac SHmax  (psi), pw = pfrac
20 9613 7267 
40 9554 7209 
60 9523 7178 
80 9503 7157 
Mean SHmax 9548 7203 
St. Dev. of SHmax ± 48 ± 48 
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 This methodology for the drilling induced fracture at 7650 ft was repeated for all 

of the drilling induced tensile fractures reported in well 38C-9 when data were available.  

The results are shown in Figure 9.  The lines of best fit show reasonable accuracy.  Note 

that Figure 9 predicts non-zero horizontal stresses at the surface, which would not be 

unlikely in an active area of faulting such as Coso.   
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Figure 9.  SHmax Estimate from Drilling-Induced Tensile Fractures and the Resulting 
Lines of Best Fit.  
 
Comparison with other SHmax Estimates 
 

A higher estimate of SHmax has been reported in Hickman & Sheridan (2004), 

ranging from roughly 1.33 psi/ft to 2.17 psi/ft.   It is worthwhile to consider these values 

of SHmax and study their effect on the propagation behavior and length of the induced 

fractures.  For this purpose, the stress intensity function (KI) is calculated for each 

estimate of the SHmax at the depth of 7650 ft.  It is assumed pfrac = pw allowing for KI to be 

plotted versus the normalized fracture length (see Figure 10).  For the KI values above the 

KIC (dashed line), the conditions are right for further fracture extension.  The lower 
 24



estimate (“inter”) from Sheridan and Hickman (2004) shows no fracture propagation 

while the upper estimate (“upper”) shows fracture propagation to 1.5r.  If thermal stresses 

are included, the fracture would propagate from 1.37r-2.15r (2.27-7.04 inches) for the 

lower and upper value of the upper bound estimate, respectively.  In considering our 

estimate it is found the lower value shows no fracture extension, while the upper value 

shows fracture propagation up to 1.3r (1.84 inches).  If pfrac = po is assumed, fracture 

extension to the end of the temperature perturbation (2.38r) is predicted except for the 

lower bound lower value.  This result supports the use of the lower value of the lower 

bound.   
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Figure 10: Stress Intensity Function for Various SHmax Estimates.  Values above the 
Dashed Line (KIC) Indicate Fracture Propagation (n.t. Implies no Thermal Stresses Used). 
 

Stress Tensor Summary 

The estimated stress tensor is summarized in Table 3.  The SHmax estimates are 

given as: 

4.1707742.0max += zSH             (17) 
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for z in ft, and SHmax in psi, and for SHmax in MPa and z in m: 

             (18) 78.1101678.0max += zSH

Table 3. Estimated In-Situ Stress Tensor for East Flank of Coso Geothermal Reservoir. 

 

 

Direction and depth Magnitude Magnitude  

(in SI units) 

Comments 

Sv ⊥  Earth surface 1.14 psi/ft 0.0258 Mpa/m density logs 

Shmin 88º ±3º 

(5811-9408 ft or 1792-3867 m)

0.66 psi/ft 0.0149 Mpa/m HF test  

SHmax 172º±7º 

(690-3726 ft or 210-1136 m) 

14º±16º 

(5811-9408 ft or 1792-3867 m)

Eqn. (17) Eqn. (18) frac mech. 

analysis 

po not applicable 0.33 psi/ft 0.00747 Mpa/m well data 
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CHAPTER III 

FRACTURE CHARACTERIZATION 

State of Fractures and Fractured Rock Mass 

To determine the response of the fractures in the vicinity of well 38C-9 under the 

current stress state; the recorded fracture strike, dip, and dip direction interpreted by a 

formation micro-scanner (FMS) are examined. Using FMS data from well 38C-9, 

Sheridan and Hickman (2004) have identified fractures with significant aperture within 

the total fracture population.  Because of their increased aperture, these fractures can 

control permeability around well 38C-9.     

There were two intervals of well 38C-9 recorded by the FMS: 690-3726 ft (210-

1136 m), and 5881-9408 ft (1792-3867 m).  The complete results of the FMS data are 

reported in Appendix A of Rose et al. (2003).  The first interval has two distinct fracture 

trends.  The first trend is in the interval 210-1136 m with dip directions in the NW and 

SE directions.  The second subgroup is present in the interval of 709-1136 m and has dip 

directions of N and S (Sheridan and Hickman, 2004); the overall trend of the dips range 

from 30º to 70º.  The lower interval has dip directions trending in the W-WNW and E-

ENE; the dips increase with most of the fractures having dip angles of 60º-80º (Sheridan 

and Hickman, 2004).  The differences observed in the upper portions of the fracture 

network and the lower portions of the fracture network indicate these fracture sets may 

have resulted from different stress regimes.   



In light of this, it is worthwhile to consider the type of joints that can be 

theoretically expected in different faulting/stress regimes.  First, consider the normal 

faulting regime shown in Figure 11a.  According to the normal faulting regime, fractures 

strike in the direction of SHmax, and dip in the directions of Shmin; the dips are comparable 

to the critical orientation (βcrit) shown in Figure 10a.  The expression for βcrit is derived in 

the next section. According to the strike-slip faulting regime shown in Figure 11b, the 

fractures will dip in the vertical direction and strikes and dip direction will generally 

bisect the SHmax and Shmin direction. 

 
(a) (b) 

Sv = σ2

 Shmin = σ3

SHmax = σ2
SHmax = σ1

   Shmin = σ3

42
' πφβ +=crit

βcrit

Sv = σ1

Figure 11. (a) Normal Faulting Regime Joints, and (b) Strike-Slip Faulting Regime 
Joints. 
 

Examining Table 3 and the characterization of the fractures with significant 

aperture, the stress regimes of certain intervals can be classified according to Figure 11.  

The most easily classified interval is 1792-3867 m in which the fractures show evidence 

of a normal faulting regime.  Indeed, most of the fractures strike in the SHmax direction.  

Also of interest is that the fractures are dipping roughly at the predicted critical 

orientations for the intact rock (roughly 60º, Rose et al., 2004).  In the top portion of the 
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upper interval the fracture strike directions mirror that of a strike slip-faulting regime.  If 

this is the case, the dips should be close to vertical, but the dips recorded were between 

30º-70º.  Even more surprising is the lower section of the upper interval where, in 

general, the fractures strike in the Shmin direction, with a dip of 30º-70º.  One explanation 

would be to consider the scenario when σ1 = Sv = SHmax; this would possibly result in 

propagation of the fractures in the Shmin direction because it would become, in a sense, σ2.  

In considering the previous statement, the strikes of the fractures with significant 

aperture show evidence of a strike-slip faulting regime with transition to a normal 

faulting regime with increasing depth.  The dips also suggest this situation is quite 

possible. Deviations from this trend occur at the top portion of the upper interval where 

vertical dips would be expected.  This can be due to the fact that vertical joints are not 

always observed in logged vertical boreholes, because they would not be intersected.  

Failure Criteria for Rock Fractures  

Linear Failure Criterion 
 

Slip along pre-existing discontinuities has been identified as mechanism for 

permeability enhancement in EGS.  Therefore, it is of interest to consider slip of pre-

existing joints in the east-flank of Coso.  In doing so, we use data from well 38C-9 and 

investigate conditions that are conducive to joint slip.  The fractures with significant 

aperture in the lower interval of well 38C-9 will be considered, because this is the depth 

where the injection has been proposed (approx. 7600-7700 ft or 2316-2347 m) (Sheridan 

and Hickman, 2004).  In using a linear failure criterion it is assumed failure is 

independent of the intermediate principal stress, and occurs in the plane of maximum 



shear.  Therefore, the Sv-Shmin plane is assumed as the plane of failure.  This interval can 

be modeled similarly to that seen in Figure 12.  

θ
β

Sv

Shmin

 
Figure 12. Idealized Model of Fractures with Significant Aperture in the Lower Interval 
of Well 38C-9. 
 

To predict fracture slip, a failure criterion is needed.  A linear failure criterion for 

the planes of weakness can be obtained by considering the normal and shear stresses 

acting on the plane of weakness: 

 ( )βσ 2cosoon SP +=                         (19) 

 ( )βτ 2sinoS=                                    (20) 

where 
2

31 σσ +
=oP  and 

2
31 σσ −

=oS  are the mean and deviatoric stress components 

respectively.  Eqns. (19) and (20) are then substituted into a failure criterion for the joints, 

which will be defined as: 

 '                                                                                                       (21) tan' φστ nf =

 where τf is the shear stress at failure, σ’
n is the effective normal stress (σn- po) and φ’  is 

the friction angle of the joint.  Substitution of (19) and (20) into (21) yields (Jaeger and 

Cook, 1979; p. 106): 

 ( ) ββφ
φσ

σσ
2sincot'tan1

'tan2 3
31 −

=−                                  (22) 
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φ’ is not known but can be found from lab tests. Since this has not been accomplished 

yet, a range of typical φ’ values from 35º-55º is assumed.  Differentiating (22) with 

respect to β and setting it equal to zero yields (Jaeger and Cook, 1979; p. 107): 

 

2
2'

'cot2tan

πβφ

φβ

−=

−=

crit

crit

or                                    (23) 

Eqn. (23) represents the least stable joint orientation for a given friction angle (see Figure 

10a).  Applying (23) to Figure 12 shows βcrit equals 62.5º-72.5º, which agrees with the 

observed dips of 60º-80º.  This implies the assumed values for the friction angle of the 

joints are reasonable.  

Non-linear Failure Criterion 

Much empirical evidence shows the failure envelope of rock is not linear, and 

tends to have parabolic or logarithmic behavior.  To account for this an envelope 

developed by Barton et al. (1976, 1977, 1980) for jointed rock is chosen: 
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where φb is the basic friction angle for a smooth surface, JRC is the joint roughness 

coefficient, and JCS is the joint wall compressive strength.  In the absence of data a range 

of likely values is chosen.  The JRC for granitic type rocks can be 5º (smooth and 

planar)-10º (smooth-undulating).  Note when JRC = 0º (24) becomes (21).  The JCS can 

have similar values to the uniaxial compressive strength (see for example Pine and 

Batchelor, 1984).  The rock in the lower interval of well 38C-9 is hornblende-biotite-

quartz diorite (HBQD), and has a uniaxial compressive strength of 193 MPa (Rose et al., 
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2004).  From the JRC range chosen (5º-10º), the basic friction angle will be in the range 

25º to 50º for continuity with the friction angles (35º-55º) chosen for the linear criterion.  

This empirical strength envelope takes into account the stress dependence the τ /σ’n ratio 

has due to crushing and scaling effects on the joint (Pine and Batchelor, 1984).  An 

example plot showing the deviations from linear are shown in Figure 13.  
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    φb =45º 
JRC = 10º φb =50º 

JRC = 5º

φ’ =55º  
    or 
φb =55º 
JRC = 0º

Figure 13. Failure Criteria for Slip of Joints. 
 

Limiting Stress Conditions 

Since the exact value of φ’ is not known, it is of interest to look at the limiting 

value of the critical stress, R, for a range of possible friction angles.  For the geometry of 

Figure 12, R is defined in Pine and Batchelor (1984); it also can be found by 

manipulation of (22): 

( )
( ) 1
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'
3
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θφθφ
θφθφ

σ
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The plots of R with respect to θ  for different friction angles is shown in Figure 14, which 

shows that as the friction angle increases the limiting value R also increases.  The R1,3  

value is also plotted, which is S’
v / S’

hmin.  As shown in Figure 14, for φ’ values less than 



25º critically stressed joints can exist. The S’
Hmax / S’

hmin value, from (18), will vary with 

depth and is given as: 

zS
SR

h

H 97.1576246.1'
min

'
max

3,2 +==                (26) 

Eqn. (26) shows that the limiting stress ratio is hyperbolically related to the depth.  The 

implication of this is that at very shallow depths all existing joints will be critically 

stressed, however as the depth is increased (26) approaches 1.246.  Therefore, it can be 

concluded from Figure 14 that joints at great depths will not be critically stressed.  The 

minima of each curve represent the least stable joint orientation which are 18º, 23º, 28º, 

and 33º for φ' = 55º, 45º, 35º, and 25º, respectively.   All of these values are within the 

observed jointing network in the lower interval of well 38C-9.   

Limiting Stress Gradient 

To better understand the implication of (26) on the behavior of joints with respect 

to depth, it is of interest to plot limiting stress gradients with respect to the existing in-situ 

stress gradients given in Table 3.  The limiting stress gradients represent R values as a 

function of depth for a given friction angle and its corresponding critical orientation, βcrit.  

Figure 15 shows two such limiting stress gradients along with the in-situ stress profiles.  

The φ’ = 20º curve represents a critically stressed joint in the Sv-Shmin plane, whereas the 

φ’ = 35º curves represent a joint that is stable in  the Sv-Shmin plane.  It is  readily seen  that 
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Figure 14. R Values for the Range of Friction Angles Chosen.  R1,3  Represents In-Situ 
Value. 

joints with the φ’ = 20º and φ’ = 35º are critically stressed in the SHmax-Shmin plane to a 

depth of 2010 m and 650 m, respectively.  Figure 15 also shows that the Sv curve and 

SHmax curve intersect at 1306 m.  Thus at depths above 1306 m, σ1 = SHmax, and below 

1306 m, σ1 = Sv.  There are two conclusions drawn from this.  The first is that the in-situ 

stress is transitioning from a strike-slip type stress regime to a normal type stress regime.  

This supports the earlier characterization of the fractures with significant aperture 

population, in which the jointing network theoretically supported a strike-slip type stress 

regime transitioning to a normal type stress regime with increasing depth (see Figure 11).  

The second is that when considering injection above 1306 m, the SHmax-Shmin plane is the 

failure plane whereas below this depth the Sv-Shmin plane is the failure plane.  Since the 

proposed injection depth is well below 1306 m, the Sv-Shmin plane is the failure plane. It 

should be noted that Shmin may not be zero at the surface, however, in the absence of data 

it is assumed zero at the surface. 
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Figure 15. Measured Stress Gradients and Limiting Stress Gradients.  

Critical Pore Pressure on Joints 

Since joints at the injection depth of 2316 m appear not to be in a critical state 

unless φ’ is less than 25º.  It is of interest to determine the amount of pressure needed for 

critically stressing the joints and inducing slip. Upon stimulation of a reservoir, a unit 

increase of fluid pressure on a fracture will decrease the effective stress by a unit 

according to Terzaghi’s definition of effective stress.  The critical pore pressures to 

initiate slip for intact rock and for a joint are shown in Figure 16. The Mohr-Coulomb 

diagrams show these values to be different, because for intact rock failure will occur at 

some critical orientation.  But, for a pre-existing joint, the failure is constrained to a given 

joint orientation.  
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Figure 16. (a) Shows Critical Pore Pressure for Intact Rock, and (b) Shows Critical Pore 
Pressure for Joints (Non-Linear and Linear). 

 To investigate the additional pore pressure needed to activate the existing fracture 

network the following equation is applied (Goodman, 1980; p. 165): 
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A plot of (27) is shown in Figure 17 for various friction angles.  All the curves decrease 

until a critical orientation is reached and then increase.  The critical pore pressure (pc
joint) 

and the additional pore pressure (po
+ = pc

joint -po) for the observed joint dip angles in the 

range of 60º-80º are reported in Table 4 for the linear failure criterion, and in Table 5 for 

the non-linear failure criterion.     The values for Table 5 are calculated at the injection 

depth of 2316 m where po = 17.3 MPa.  The non-linear criterion was iteratively solved, 

because σ’
n cannot be isolated in (24).  This was accomplished by first expressing (20) in 

terms of σ’
n; then calculating σ’

n and τ using (19) for a given θ.  Next, the pore pressure 

was increased/decreased until τ and σ’
n intersected (24) at a single point. This process 

was then repeated for a different θ.  Inspection of Table 4 and Table 5 shows their 
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differences are negligible except for when φb = 45º and JRC = 10º (see Figure 12), 

therefore, this non-linear criterion will only be considered.  The critical pore pressure for 

this case is also plotted in Figure 17. 
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Figure 17. Critical Pore Pressures Needed for Slip and Jacking on Various Joint 
Orientations and Friction Angles; the Non-Linear Envelope Corresponds to the Depth 
2316 m. 
 
 
 
Table 4. Critical Pore Pressure (pc

joint) and Additional Pore Pressure, in MPa/m Needed to 
Activate Joints for Different φ' and β Values. 
 β = 60º  β = 70º  β = 80º 
φ’ pc

joint  po
+  pc

joint  po
+  pc

joint  po
+  

35º 0.0109 0.00347 0.0112 0.00375 0.0126 0.00514 
45º 0.0129 0.00548 0.0127 0.00525 0.0134 0.00594 
55º 0.0144 0.00689 0.0138 0.00629 0.0140 0.00649 
 
 

 

 

 37



Table 5. Critical Pore Pressure and Additional Pore Pressure (in MPa) Needed to Initiate 
of Slip on Three Different Joint Orientations for Various φb and JRC Values. 

   β = 60º  β = 70º  β = 80º  
φb JRC pc

joint po
+ pc

joint po
+ pc

joint po
+

25º 10º 26.89 9.59 27.67 10.37 26.89 9.59 
30º 5º 25.48 8.18 26.37 9.07 29.67 12.37 
35º 10º 30.94 13.64 30.51 13.21 31.97 14.67 
40º 5º 30.38 13.08 29.90 12.60 31.44 14.14 
45º 10º 34.46 17.16 33.03 15.73 33.23 15.93 
50º 5º 33.76 16.46 32.37 15.07 32.71 15.41 
 

The hydraulic jacking pressure (pjack) is also plotted in Figure 17.  Hydraulic 

jacking occurs when the normal stress on the joint equals zero.  By setting (19) equal to 

zero the following expression is arrived at: 

 )2cos( θoojack SPp −=                                   (28) 

Eqn. (28) shows when θ = 0º or 90º, pjack = pc.  It is evident the joints orientated from θ 

=10º-30º (β = 60º-80º) are among the first to slip, and for shallower dipping orientations 

the required pore pressure increases vastly such that after a given orientation jacking can 

be initiated in near vertical joints first.  The joint orientation at which this occurs can 

readily be found by setting (28) equal to (27) and solving for θ.  When θ = 0 (pjack 

minimum), the following relation can be derived: 

                                      (29) θφ cottan2 =

Application of (29) for φ’ = 35º, 45º, 55º yields θ = 55º, 45º, and 35º, respectively.  This 

occurs at θ = 30º for the non-linear curve which varies from the orientation of the linear 

model by 14%.  This deviation shows that considerations of the non-linear envelope 

should not be ignored.  In noting the similarity between Figure 14 and Figure 17, it 
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follows that for a φ’ = 25º, the curve is tangent to the ambient pore pressure line at θ = 

34º. 

Growth and Direction of Shearing 

When non-horizontal joints slip, shear growth can occur upward or downward.  

This can be predicted by considering the difference in the pressure increase per unit depth 

required for slip above and below the injection point.  If the pressure increment 

difference is positive, downward shear growth is expected as slip propagates downward 

where less pressure is required.  This is a function of the variation of joint properties and 

in-situ stress with depth.  Indeed, a change in shear growth can occur at a critical depth if 

the stress gradient is non-linear.  The downward or upward shear growth can therefore, be 

expressed as (Pine and Batchelor, 1984): 
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where z is depth.  Upward growth is predicted for positive values of (30) and negative 

values predict downward growth.  The derivatives on the right hand side of (30) are the 

values given in Table 1 minus the pore pressure gradient.  Solving (30) for the ratio 

(dσ’
1/dσ’

3), it is found that upward growth, (30) is positive, is predicted when (Pine and 

Batchelor, 1984): 

 R
d
d

<'
3

'
1

σ
σ                          (31) 

Eqn. (31) and Figure 14 can therefore predict shear growth.  In general, for critically 

stressed fractures downward shear growth is expected, and for non-critically stressed 

fractures upward growth is expected.  Therefore, upward shear growth can be expected at 
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the injection depth of 2316 m for φ’ > 25º.  However, at depths above 1306 m (SHmax = 

σ1), Eqn. (31) predicts downward growth until the critical depth.  For example, the φ’ = 

35º curve in Figure 15 predicts downward growth till 650 m.   

The direction of shearing can also be addressed, and as shown in Pine and 

Batchelor (1984) negative or positive values of the following equation imply the direction 

of shearing: 
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Eqn. (32) is the derivative of the failure criterion (21) with respect to depth, and therefore 

describes the rate of change or direction of shearing (failure).  In a critically stressed area 

where τ > τf, (32) predicts downward shearing, i.e., po
+ needed to induce slip decreases 

with depth. On the other hand, if the po
+ needed to induce slip increases with depth (τ < 

τf) upward shearing will occur.  For the injection depth of 2316 m, φ’ values greater than 

25º result in upward shearing, and for φ’ values less than 25º downward shearing can 

occur on critically oriented joints.  Again note that at depths above 1306 m, the critical 

depth represents a change in the direction of shearing.  The direction of growth and the 

direction of shearing can therefore be extrapolated from Figure 14 thus showing the 

importance of the limiting stress ratio R in the prediction of not only failure, but also the 

direction of growth and shearing. 
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CHAPTER IV 

MATHEMATICAL MODEL FOR PREDICTING THE EFFECTS OF WATER 
INJECTION INTO A FRACTURE 

 
In this chapter the general equations governing fluid flow and heat transport in a 

deformable fracture are developed.   Special solutions are also presented for simple cases.   

These solutions will be used in subsequent chapters under various conditions to 

investigate the response of the fracture aperture and fluid pressure to injection.  Three 

problem geometries will be considered:  

I. Injection/extraction from a line fracture  

II. Injection into infinite radial fracture  

III. Injection into a joint  

In developing these models the following assumptions are applicable: 

(i) The reservoir is infinite in extent and behaves as linearly elastic, isotropic, 

homogenous rock. 

(ii) Heat conduction and water leak-off between the rock mass and fracture 

occur only in the direction perpendicular to the fracture. 

(iii) The aperture of the fracture is considerably smaller than its length. 

(iv) All thermal properties of the fluid and rock are constant. 

(v) Fluid flow is steady state and laminar. 
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(vi) Rock displacement resulting from thermoelastic and poroelastic loads is 

zero parallel to the fracture. 

(vii) Heat storage and dispersion in the fracture will be ignored (Cheng et al, 

2001). 

Other assumptions specific to the geometry will be stated in the mathematic 

formulation.  References to the above assumptions will be denoted by the corresponding 

Roman numeral in the text. 

Injection/Extraction from a Line Fracture 

Mathematic Model 

The geometry of interest is shown in Figure 18.  The reservoir is assumed to be of 

constant height and infinite horizontal extent. It is insulated at the top and the bottom. 

The fracture is a vertical plane penetrating the entire height of the reservoir. Hence, the 

solution geometry is two-dimensional, as shown in Figure 18b.  Actually, this is a quasi-

two-dimensional heat conduction model (Bodvarsson, 1969; Gringarten, 1975; Lowell, 

1976). This is similar to the plane strain approximation that will be used when 

considering the solid mechanics aspect of the problem.  For the injection/extraction 

problem, it is assumed the injection pressure is below or near the minimum in-situ stress 

so that fluid/solid coupling can be neglected.   
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Figure 18. Model for Injection/Extraction from a Line Fracture (a) Idealized View of 
Heat Extraction from an EGS, (b) Solution Domain of the Mathematical Problem. 
 
Fluid Flow in Line Fracture 

 We begin by considering Figure 19 which shows the mass balance of a 

representative elementary volume (REV) of a line fracture.  The REV utilizes assumption 

(v).  By conservation of mass, the continuity equation becomes: 

[ ] 0),(2),(),(),(),(),(),( =−
∂

∂
−− txq

x
txvtxwtxwtxvtxwtxv L         (33) 

where v(x,t) is the average fluid velocity, w(x,t) is the fracture aperture, qL(x,t) is the leak-

off velocity.  The discharge per unit height of fracture is given as: 

              (34) ),(),(),( txvtxwtxq =

Eqn. (33) and (34) can be combined to yield the fluid continuity equation: 
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Figure 19. REV of Mass Balance in Line Fracture. 
  

The second equation needed to describe fluid flow is the momentum equation, 

which relates the velocity to the pressure gradient.  By assumption (iii) and (v) the 

momentum equation is: 
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txwx
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−=
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∂             (36) 

where p(x,0,t) is the pressure on the fracture surface, and µf is the dynamic fluid viscosity.  

Eqn. (36) is known as the cubic law and is derived in Appendix A.  In reality viscosity is 

a function of pressure and temperature; however these effects will be ignored.   

Fluid Flow in Reservoir Rock 

In this section, the coupling effect between the flow in the reservoir rock and 

elastic deformation is assumed small and negligible. Utilizing this assumption and Figure 

20, the pore pressure in the rock is governed by the diffusion equation: 
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where cD is the consolidation coefficient, and 
2

2

2

2
2

yx ∂
∂

+
∂
∂

=∇  is the Laplacian operator.  

Utilizing assumption (ii) reduces Eqn. (37): 
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Figure 20. REV of Mass Balance in Reservoir Rock. 

 
The boundary and initial conditions for the system (fracture and reservoir) are: 

               (39) 0)0,,(* =yxp

               (40) 0),0,(* =tLp

where  is the pore pressure changed by injection.  As will be 

shown, Eqns. (39) and (40) can be applied to the diffusion equation (38) and the flow 

equation (36) to form the solution system; Eqn. (36) is solved first and the result used in 

(38). 

),0,(),,(* tLptyxpp −≡

Heat Transport in Line Fracture 

 Considering the heat balance over a fracture segment as shown in Figure 21, and 

neglecting the heat storage and dispersion in the fracture (assumption vii) yields the heat 

transport equation: 
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where ρf is the fluid density, cf is the specific heat of the fluid, and Kr is the rock thermal 

conductivity.  Substituting the fluid continuity equation (35) into (41) results in the 

following for the heat transport equation: 
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Figure 21. REV of Heat Balance in Line Fracture. 

 
Heat Transport in Reservoir Rock 
  

The REV of heat transport in the rock is shown in Figure 22.  Applying the 

conservation of energy and assumption (ii) results in the heat conduction equation in the 

reservoir rock: 

 
t

tyxT
K

c
y

tyxT

r

rr

∂
∂

=
∂

∂ ),,(),,(
2

2 ρ                                  (43) 

 46



where ρr is the rock density and cr is the specific heat of the rock. Combining (43) with 

the fluid mass balance (35) gives: 
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The initial and boundary conditions of the system are: 

roTyxT =)0,,(               (45) 

foTtT =),0,0(               (46) 

where Tro is the initial rock temperature and Tfo is the prescribed temperature of the fluid 

at the injection point.  As will be shown, Eqns. (45) and (46) can be applied to heat 

transport equations (44) and (42) to form the solution system; Eqn. (44) is solved first and 

the result used in (42). 
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Figure 22. REV of Heat Balance in Reservoir Rock. 

 
The equations derived above allow for calculating the temperature and pressure in 

the fracture and the reservoir rock.  These temperature and pressure fields will result in 

body forces acting on the fracture and the rock.  These induced body forces, by 

equilibrium conditions will induce displacements on the system.  These displacements as 
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they relate to the fracture width, and resulting pressure distribution in the fracture are 

addressed in the next section.  

Fracture Aperture Changes from Thermoelastic and Poroelastic Effects 

Elastic deformation of the fracture aperture can occur due to pressurization of the 

fracture.  For the time being, this effect is ignored to focus on the deformation associated 

with heat extraction and fluid diffusion into or out of the rock.  Fluid diffusion into the 

rock will cause the rock to dilate resulting in a reduction of the fracture aperture.  

Thermoelastic deformation can occur as a result of temperature differences between the 

fluid and the rock.  Cold water injection into hot rock will cause the rock to contract thus 

increasing the fracture aperture.  The pressure and temperature effects are related to 

deformation by a Navier type equation (McTigue, 1986; Palciauskas and Domenico, 

1982): 

 [ ] ),,(),,(3),,(
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GtyxG T ∇+∇=⋅∇∇
−

+∇ ααuu vv       (47) 

where G is the shear modulus, ),,( tyxuv is the displacement vector, K is the drained bulk 

modulus, αT is the linear expansion coefficient, α is the Biot’s effective stress coefficient, 

yx
y

∂

∂
+

∂
∂

=∇⋅
uux

vv
 is the divergence operator, and 

yx ∂
∂

+
∂
∂

=∇  is the gradient operator.  A 

complete derivation of (47) can be found in Appendix B.  Once the pressure and 

temperature is known, the induced width changes can be found once the displacement is 

found by: 

              (48) ),0,(2),( txtxw uv=
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Simplified plane strain model.  In order to investigate the influence of poroelastic 

and thermoelastic processes on the fracture geometry, a plane strain model can be used to 

reduce the problem complexity (e.g., Ghassemi and Cheng, 2005).  Utilizing assumption 

(vi), Eqn. (47) becomes: 

y
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where
v

vT

−
+

=
1

)1(α
χ .  Eqn. (49) is integrated from y to ∞ utilizing the assumption that uy = 

0 at ∞: 
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At this point it is noted (50) is the expression for strain (eyy), which is also assumed zero 

at ∞.  Eqn. (50) can be integrated again from y to ∞  yielding: 

∫∫
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∆+∆=−
00
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where: 

 ),,(),,(),,( tyxTtxTtyxT ∆=∞−            (52) 

 ),,(),,(),,( tyxptxptyxp ∆=∞−            (53) 

Differentiating (51) with respect to time yields: 
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Assuming one dimensional heat conduction and fluid diffusion, solutions of (38) and (44) 

can be substituted into (54) to obtain a solution. But, first performing the integration and 

applying (48) results in:  
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Eqn. (55) can be integrated when the temperature and pressure solutions are known, to 

calculate the variation of fracture width.  The initial condition required to complete the 

solution system is: 

               (56) owxw =)0,(

where wo is the initial fracture aperture.   

Constant Leak-Off Solution 

Poroelastic Effects 

 For constant leak-off, qLo, and constant injection rate, qo, the flow equation (35) 

becomes: 

xqqxq Loo 2)( −=              (57) 

with 
L

mq
q o

Lo 2
=  where a fluid loss coefficient, m, can be expressed as the ratio between the 

extraction and injection rate (Cheng and Ghassemi, 2001).  When m = 0 the qo = qext, and 

when m = 1, qext = 0.    Substituting (57) into (36) and applying the boundary condition in 

(40) gives: 
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where 
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w
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= .  To determine the pressure in the reservoir, the 

Laplace transform is applied to the diffusion equation (38) resulting in: 

 50



),,(~),,(~
2

2

syxp
c
s

y
syxp

D

∂=
∂

∂             (59) 

 
where s is the Laplace transform parameter.  The solution to (59), applying the inherent 

boundary condition of a bounded solution, is: 
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Inverting (60) to the time domain results in: 
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 and applying (58) yields: 
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Ignoring the temperature effects for the time being; substitution of (62) into (55) will give 

the following simple integral equation to solve: 
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where  is the pressure that induces poroelastic width changes, and the p 

subscript implies poroelastic width changes. Completing the integration and applying 

(56) results in: 
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One can now apply the assumption that no fluid is lost and the poroelastic stress effect is 

negligible.  Therefore, when qLo = 0, Eqn. (64) becomes: 
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op wtxw =),(               (65)  

In hydraulic fracturing literature leak-off is often considered in the mass balance without 

addressing the poroelastic stresses. This manner of considering leak-off (when qLo ≠ 0: 

permeable without poroelasticity) results in a lower pressure in the fracture. With 

poroelasticity the reduction in pressure is not as large.  In this case, the amount of 

pressure reduction is found by subtracting the pressure change obtained for the 

impermeable case from the pressure change for the permeable poroelastic case.  Utilizing 

(58) this is found to be: 
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Eqn. (66) thus represents the change in pressure caused by leak-off and its associated 

poroelastic width changes.  Substitution of (66) into (64) results in: 
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where ωp(x,t) = wp(x,t)/wo is the normalized poroelastic net fracture width.  The pressure 

distribution can be found by substituting (67) into momentum equation (36) to yield: 
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Eqn. (68) cannot readily be integrated, therefore numerical integration is applied using 

Simpson’s 3/8 rule is given as: 
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where n is the total number of intervals (i), and wi are weighting factors, which are: 
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Thermoelastic Effects 

 For convenience, the dimensionless temperature deficit is introduced: 

foro

ro
D TT

tyxTT
tyxT

−
−

=
),,(

),,(               (71) 

Applying (71) to the heat transport equations (42) and (44) and applying the Laplace 

transform yields: 
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The boundary condition is also transformed into Laplace space: 

 
s

sTD
1),0,0(~ =               (74) 

The solution of ordinary differential equation (ODE) (73) applying the inherent boundary 

condition of a bounded solution is (i.e. the temperature should be bounded and cannot go 

to infinity): 
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λ +−= .  Eqn. (75) is substituted into (72) resulting in: 
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Eqn. (76) utilizes (74) and was first derived by Cheng and Ghassemi (2001) as a special 

case for their general solution of heat extraction with spatially variable leak-off.   

In order to find the induced width change we first note the following relationship 

between (71) and (52): 

            (77) ),,(),,( tyxTtyxTT D ∆=×− ∆

where T∆ = Tro – Tfo.  Applying (77) to (55) and transforming into the Laplace domain 

results in: 
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where the t subscript represents thermoelastic width changes.  Substitution of (75) into 

(78) gives: 
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Simplifying (79) and utilizing (76) for ),0,(~ sxTD  yields: 
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Eqn. (80) must be numerically inverted, which is done using the Stehfast (1970) method.   

The combined poroelastic and thermoelastic width changes can be found by 

adding the numerically inverted (80) to (67). The resulting pressure distribution is found 
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by substitution of the width into (36) and numerically integrated using Simpson’s 3/8 

rule.  

Impermeable Solution 

 The impermeable case does not involve any leak-off and thus no poroelastic 

effects are expected (see Eqn. 65). The water temperature and extent of rock cooling are 

however different.   When qL(x,t) = 0, the heat transport equations (72) and (73) become: 
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The solution to (82) is: 
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Substitution into (81), solving the resulting ODE, and applying (74) yields: 
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Eqn. (84) can be analytically inverted to the time domain: 
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Eqn. (85) was first derived by Bodvarrson (1969).   

 When there is no leak-off the solution Eqn. (85) can be substituted into the 

expression for the derivative of width with respect to time, Eqn. (55).  Completing the 

integration and applying (56) results in: 
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Injection into an Infinite Radial Fracture 

Mathematical Model 

 The geometry of interest is shown in Figure 23.  Axisymmetry will be assumed, 

allowing for the θ direction to be ignored.  The fracture is flat and infinite in extent.  

Other applicable assumptions were postulated in the previous section.  The derivations 

for fluid flow, heat transport, and deformation are similar to those derived in the previous 

section.  Therefore REV analysis will not be shown, and derivations will be brief as 

because the techniques are similar to those applied in the previous section. 

injection well

fracture

geothermal reservoir

r

fracture

z

 
Figure 23. Mathematical Model for Injection into Infinite Radial Fracture. 

 
Fluid Flow in Infinite Radial Fracture and Reservoir Rock 
 

The only notable difference is that the flow rate per unit height is now a function 

of r: 
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where Q(r,t) is the injection rate.  Utilizing (87) the momentum equation (36) now 

becomes: 
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and the diffusion equation becomes: 
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The boundary and initial conditions for this solution system become: 
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Note that (91) is a no flow boundary condition, which accommodates the infinite domain; 

Eqns. (88)-(91) form the solution system. 

Heat Transport in Infinite Radial Fracture and Reservoir Rock 

Similarly to (42), the heat transport in the fracture becomes: 
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and similarly to (44) the heat transport in the reservoir rock becomes: 
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The initial and boundary conditions of the system are: 

0)0,,( =zrTD               (94) 
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Eqns. (92)-(95) are the solution system for the temperature. 

Fracture Aperture Changes from Thermoelastic and Poroelastic Effects 

 The time dependent width equation is: 
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Eqn. (96) is identical to (55) because the differences in the model geometry have been 

incorporated into the temperature and pressure solution systems.  Note that the expression 

for the displacements would be different in the cylindrical coordinate system; however, 

the axisymmetric assumptions lead to an equation that is identical to the case of one-

dimensional line fracture problem. 

Impermeable Solution 

As the flow varies in the radial direction, it can be expected that leak-off should 

also be radially varying.  But, using a radially variable leak-off creates difficulty in 

obtaining a simple solution.  Therefore, the leak-off is modeled using the Carter leak-off 

model given as: 
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where  is the leak-off coefficient that is obtained experimentally in the lab or in the 

field.  However this will not yield a useful solution as will now be shown. Utilizing (97) 

the fluid velocity becomes: 

lC
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Expressing in flow rate per unit height: 
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Ignoring the fluid-solid coupling, (99) can be substituted into the momentum equation 

(88) and integrated: 
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= , and R is a reference fracture radius which must be 
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tRp .  The solution to (89) is similar to the line 

fracture solution (61): 
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Ignoring thermal effects (101) can be substituted into (96): 
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Integrating both sides with respect to time and applying the boundary condition ωp(R,0) = 

1 results in: 
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Using input values from Table 6 (pg. 69) and typical values of  (in the range of 8.05E-

5 m/s

lC

1/2 to 4.02E-4 m/s1/2 see e.g. www.calfrac.com; Jeffrey and van As, 2003) in Eqn. 

(103) does not yield a substantial difference in the width, as shown in Figure 24.  As a 

result, the constant leak-off solution will not provide reasonable results.  Therefore, only 

an impermeable solution will be considered.  Eqn. (103) differs from (67) in the 

logarithmic, rather than square root, relationship between width change and time.  This is 

a result of the t  (see Eqn. 100) incorporated into the leak-off.   The reason that a 

constant leak-off solution used for the line fracture does not work for an infinite radial 

fracture is the radial varying flow.  In this case, not only is the flow rate per unit lateral 

extent (height in the rectangular case) no longer constant, but the area exposed to leak-off 

is continually increasing with radial distance.  Therefore, the assumption of a constant 

leak-off is not suitable, and thus leads to unreasonable results.   
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Figure 24. Dimensionless Width at r = 1 for Various Values of  after 5 years of 
Injection. 
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When there is no leak-off the heat transport equations become: 
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Applying (94) and (95) and following similar steps shown in (81)-(85) the solution is: 
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Eqn. (106) is given in Ghassemi et al. (2003).  Substitution of (106) into (96) and 

integrating the resulting expression with the initial condition ωt(r,0) = 1 yields the 

following solution: 
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The above analyses provide a framework for estimating the width and pressure 

variation associated with fluid injection/extraction into fracture and injection into infinite 

fracture. But, it is often of interest to assess the impact of poroelastic and thermoelastic 

effects when only injecting water into a system of joints. This can benefit from the study 

of the impact of water injection into a joint. 

Injection into a Joint 

In the previous sections the fluid/solid coupling was ignored, because it was 

assumed the injection pressure was near the Shmin, and the fluid extracted was assumed to 

equal that of injection plus leak-off volume.  However, when only injecting into a joint 

the pressure will build up in the fracture.  This will induce changes in the pressure and in 
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turn in the fracture width.  The result is fluid-solid coupling which must be incorporated 

into this model.   The geometry of interest is shown in Figure 24, which shows injection 

into the center of a symmetric joint of length 2L.  From this problem assumptions (i)-(vii) 

are applicable. The joint is subject to a far field principal compressive stress, σn.   

Furthermore, it will be assumed the fracture has a finite width at its tip and the fluid 

pressure at the tip is constant and equal to the reservoir pressure; and there is no fracture 

propagation.  An impermeable solution to this problem is reported in Savitski (2001).  An 

elastic solution to this problem incorporating fracture propagation is given in Adachi 

(2002).  A fully coupled pressure dependent, non isothermal treatment of this problem is 

given in Ghassemi and Zhang (2004) for a uniformly pressurized crack.   For our 

purposes, the poroelastic and thermoelastic effects will be modeled using a partially-

coupled approach used in the injection/extraction problem.  Finally, effects caused from 

shear slip of a joint (e.g., joint dilation and stress redistribution) are not accounted for. 

w(x,t)

wo

q(x,t)

L

x

y

σn

σn

p(x,y,t)
T(x,y,t)

qL(x,t)

reservoir rock

T(x,0,t)p(x,0,t)

Figure 25. Mathematical Model for Injection into a Joint. 
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Mathematic Model 

Fluid Flow in a Joint 

The fluid flow in the joint will be assumed to obey the cubic law equation, which 

is derived in Appendix A. The expression is similar to Eqn. (35), except that the temporal 

changes in the width need to be incorporated into the mass balance.  Combining mass 

balance and the momentum equation results in:  
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Fluid-Solid Deformation 

Utilizing our plane strain condition, the pressure is related to the fracture width by 

(Sneddon, 1969): 
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where E’ is the plane strain Young’s modulus given as E/(1-v2), and s’ is given as a 

reference point on the fracture.  Eqn. (109) is a Hadamard finite-part integral 

(Hadamard, 1923).  The inverse form of (109) can be found utilizing the properties of 

Hadamard finite-part integrals given in Hadamard (1923). 

Boundary and Initial Conditions 

Eqn. (108) and (109) form a coupled set.  The boundary and initial conditions 

applicable to these equations are: 
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The first two boundary conditions assume that because of pressure loss associated 

with viscous effects, the fluid never actually reaches the tip of the joint, and thus pressure 

remain unchanged implying the width does not change at the end of the fracture.  The 

third condition assumes both halves of the joint receive the same amount of fluid 

resulting from constant injection.  The last assumption indicates the initial pressure in the 

joint required for the joint to have an initial aperture.  

Steady State Solution 

Although, the fracture width is assumed to change with time due to thermal and 

poroelastic effects, the variation can be ignored in the mass balance by assuming they 

proceed very slowly. Utilizing (57) to account for a constant leak-off allows (108) to 

become: 
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The solution system of (109) and (111) subject to (110) is coupled and non-linear 

implying a numerical solution.  In light of this it is convenient to transform (109)-(111) 

into dimensionless parameters.  Therefore we now define:  
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Substitution of (112) into (109) and (111) simplify the system to: 
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Eqn. (110) becomes: 
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Two numerical techniques will be utilized to obtain the pressure and crack 

opening.  Eqn. (113) will be addressed first.  This equation lends itself to the 

displacement discontinuity (DD) method (e.g. Crouch and Starfield, 1983).  In the DD 

method, the fracture trace only is considered turning the problem into a one dimensional 

problem rather than a two dimensional problem.  Figure 26 shows this discretization of 

the fracture trace.  The first step is to divide the fracture trace in Figure 26 into N number 

of odd elements.  This is done to permit placing the nodes at the center of each element, 

and to allow the center of the middle element to be the injection point.  By symmetry of 

the problem (Figures 25 and 26) only the right side of the joint will be considered.  

Therefore, the number of elements used in the simulation is odd and equals n = (N + 1)/2.  

From Figure 26 the distance between the centers of neighboring elements and 

dimensionless nodal coordinate can readily be found: 
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Figure 26. Discretization of Fracture Trace. 
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 The integral in (113) must be discretized according to Figure 26.  The result will 

be an influence coefficient matrix Aij which sums the effects of each element (principle of 

superposition).  This will create a set of n linear equations relating the width opening to 

the corresponding pressure at each node in Figure 26, and can be written in condensed 

form as: 
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The subscript i represents the influenced element (spatial coordinate), and j represents the 

displacement discontinuity at the influencing node.  A more complete explanation of 

(118) is shown in Appendix C.  Also, Eqn. (117) and (118) are derived in Crouch and 

Starfield (1983).  Note in (118) that when j ≥ 2 another term is added.  This is a result of 

symmetry about the x-axis.  If this second term was not included then the displacements 

on the top (1st quadrant in Figure 25) would only be calculated. 

The flow equation (114) is also discretized using a forward difference 

approximation between each of the nodes: 
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 The index range of i is 1 to n-1.  Eqns. (117) and (120) can then be iteratively 

solved to give a solution for the pressure and width.  This is accomplished by assuming 

an initial normalized width (e.g. ωi = 1).  The initial width array can be substituted into 

(120), which will give a pressure array of nodal pressures (since initially nP = netP ).  This 

pressure array is then substituted into (117) where the width array is solved for.  The new 

width array is substituted back into (120) to yield a new pressure array.  This is continued 

in an iterative process till the new and old pressure and width arrays are equal.  Note that 

for the first iteration, the pressure at the last node nP  equals netP , however, this is not the 

case for subsequent iterations (i.e. the pressure at the last node nP  is not equal to netP  after 

the first iteration, see Figure 26). This is because the last node is not at the fracture tip but 

is a distance 2/ξ∆  away from the fracture tip.  Therefore, at the nth node the pressure is 

set equal to a forward difference approximation with the fracture tip (where netPP = ): 
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Eqn. (121) was arrived at utilizing similar steps to (119) and (120).  

Poroelastic Effects 

The normalized poroelastic width change, ωp(x,t), is found by utilizing the 

derived line fracture width solution (67) and adding it to the permeable elastic solutions 

(elastic solution with leak-off). The corresponding pressure is then numerically 
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integrated.  Note that 
)(

12
)( 31 xw

q
xK Lofd µ

=  is now used in (67) because of the fluid/solid 

coupling. 

Thermoelastic Effects   

The thermoelastic induced width change, ωt(x,t), is incorporated by adding the 

numerically inverted result of (80) to the calculated width in the numerical solution.  This 

is illustrated in Figure 26. Note that the time must be small enough such that the 

boundary condition (115b) is still satisfied (i.e. ωt(x,t) at x = L must be 1).  The point will 

be explored further in Chapter VII.   

Parameter Values 

 The presented mathematical models and solutions had many associated 

parameters.  Typical values for hornblende biotite quartz diorite and water are given in 

Table 6.   

Table 6. Parameters Used for Mathematical Model Calculations. 
Parameter Value Units Reference 

wo 0.001 m Assumed 
v 0.185 - Rose et al. (2004) 
αT 0.000008 1/ºK Assumed 
T∆ 80 ºK Ghassemi et al. (2003) 
Kr 2.88 W/m-ºK Assumed 
ρr, ρf 2820, 1000 kg/m3 Rose et al. (2004) 
cr, cf 1170, 4200 J/kg-ºK Assumed 
µf 0.001 N-s/m2 Assumed 
G 27500 MPa Rose et al. (2004) 
cD 0.000022 m2/s Assumed 
η 0.183 - calculated from Rose et al. (2004) 
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Write initial ωi

Calculate initial P i by (120)

numerically inverted 
thermoelastic width change poroelastic width change 

Solve (117) and add (67) and (80) to give ωj
k  
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and (121)

Figure 27. Flowchart for Fluid-Solid Coupling with Thermoelastic and Poroelastic 
Effects for each k Step. Note (67) is Poroelastic Width Change, and (80) is 
Thermoelastic Width Change. 
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CHAPTER V 
 

MECHANICAL EFFECTS OF WATER INJECTION/EXTRACTION INTO A LINE 
FRACTURE 

  
In this chapter the expressions derived in Chapter IV for thermoelastic and 

poroelastic effects of injection/extraction into a line fracture (Model I) are applied to 

fractures of the type found in Coso.  It is of interest to investigate these effects on fracture 

permeability. As implied in such works as Pine and Batchelor (1984) and Barton et al. 

(1998) these critically stressed fractures can control permeability. Thus, the fracture 

permeability enhancement is considered by estimating the injection rate required to 

critically stress a fracture using the injection/extraction model for a line fracture.  The 

magnitude of slip and fracture dilation, and stress redistribution is not considered at this 

time.  We will then include the poroelastic effects, thermoelastic effects, and combined 

poroelastic and thermoelastic effects to investigate their effect on fracture permeability. 

The Onset of Joint Slip in an Injection/Extraction Operation 

In Chapter III the pressure needed to critically stress a fracture in the Coso EGS 

was quantified.  It is now of interest to estimate the minimum injection rate needed to 

critically stress a fracture to possibly enhance its permeability in an injection/extraction 

system (see Figure 18).  To investigate this, the simple model of a line fracture is used 

that assumes:  

i) The system is isothermal  

ii) Fluid/Solid coupling is negligible 



iii) The rock is impermeable 

iv) Constant injection rate, q(x,t) = qo 

All other relevant assumptions are given in Chapter IV.  Note that assumptions (iii) and 

(i) allow the poroelastic and thermoelastic effects to be ignored, respectively.  Utilizing 

all of the assumptions, the momentum equation (36) becomes: 
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where p*(x,t) = p*(x,0,t) is the pressure change or the induced pressure in the fracture.  

The boundary condition for (122) is: 

+= optp ),0(*             (123) 

where po
+ is the pressure increase required to critically stress the fracture at the injection 

point (x = 0) (see Figure 16, 17, and 28).  Completing the integration in (122) and 

applying (123) gives: 
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Eqn. (124) is geometrically illustrated in Figure 28; it allows us to find the minimum 

injection rate necessary to critically stress the fracture.  By similar triangles in Figure 28, 

(122) is set equal to - po
+ / L (mathematically a negative slope); solving the resulting 

expression for the injection rate yields: 
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Figure 28 also shows if the pressure at x = 0 would be greater than po
+ , then it can be 

expressed in terms of po
+ using a weighting factor, n.  This is done to account for the 
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variation of po
+ with respect to different joint orientations (see Figure 17) and will be 

elaborated on later in the section. 

x

p*(x,t)

L

po
+
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12

o

of

w
qµ−

npo
+

injection
point

extraction
point

 
Figure 28. Induced Pressure Distribution to Critically Stress a Fracture. 

It is readily observed from (125) that the injection rate is inversely related to the 

fracture length.  In light of this, a long fracture of length 1000 m is chosen in an effort to 

obtain realistic injection rates.  The other parameters in (125) are specified in Table 6.  

The results for the observed joint orientations at the injection depth of 2316 m are given 

in Table 7 and also Figure 29 for all joint orientations.  For most joint orientations, the 

calculated values are high considering typical injection values are 5E-7 to 2E-4 m2/s (e.g. 

Cheng et al., 2001).  These injection rates will critically stress joints in the range of 

θ = 21º-44º for a friction angle of 25º. 

Table 7. Injection Rates (in m2/s) Needed to Critically Stress a Joint for Various 
Orientations. 

 β = 60º β = 70º β = 80º 

φ’ qo  qo qo

35º 0.001029 0.001112 0.001524 
45º 0.001625 0.001556 0.001761 
55º 0.002043 0.001865 0.001924 
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Figure 29. Injection Rates Required to Critically Stress and Jack a Fracture. 

 
Figure 29 also shows the injection rate required for jacking, qo

jack, can readily be 

found by substitution of (pjack -po) into (125) for po
+.  Using the ratio of the injection rate 

needed for injection pressures of (n+1)po
+ and po

jack , along with the expression for pc
joint , 

Eqn. (27), and pc
jack , Eqn. (28); the following expression is obtained:  
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'
3

'
1

'
3

'
1

σσ
σσ

−
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=A is the ratio of the mean effective stress to the deviatoric stress.  Eqn. 

(126) is plotted in Figure 30 and can be employed to determine the joints most conducive 

to slip before jacking.  The results for the case of n = 1 can be illustrated in Figure 30.  It 

is observed that jacking would occur except for the case of φ’ = 35º where jacking would 

not occur for joints orientated at θ =15º-55º.  Note also Figure 30 shows at a critical 

orientation, an upper bound friction angle allows injection to critically stress the entire 



joint (n = 1) without jacking.  To investigate this, the inflection point of (126) is found by 

applying the following expression: 
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Inspection of (127) shows θ  cannot be determined analytically; therefore it must 

be solved for iteratively, which yields a θq(max) of 32.5º or  33º.  Letting A approach ∞, 

θq(max) approaches 45º.  The curve in Figure 30 also approaches the line qo
jack / qo

joint = 1.  

This shows that as the loading approaches hydrostatic conditions, all orientations become 

equal to θq(max).  As A approaches 1 (uniaxial loading), θq(max) approaches 0º which is the 

orientation when qo
joint = qo

jack.  Indeed, at A = 1, jacking will occur for all orientations 

since σ’
3 = 0.  Also note that as A decreases, the qo

jack / qo
joint value increases greatly at 

θq(max).  This will continue to occur until the confining pressure is so low that jacking will 

prevail at pressurization.  Since the in-situ stress is not uniaxial, the stress conditions will 

be conducive to critically stress joint orientations near or at θq(max).

The upper bound of the friction angle for critically stressing a joint at an injection 

rate of (n+1)qo
joint can now be found for θq(max).  By setting Eq. (127) equal to n+1, 

substituting θq(max) for θ, and solving for φ’ we obtain: 
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Applying Eq. (128) with n=1, yields a φ’
max of 42.88º or 43º (see Figure 30); this 

implies injection rates that correspond to a 2po
+ injection pressure will not jack the joint 

for φ’ values greater than 43º.   
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Figure 30. qo
jack / qo

joint for Various Friction Angles. 

Finally, Figure 30 also shows a curve for a non-linear failure model, which 

deviated up to 7.88% from the corresponding linear failure envelope. This shows non-

linear joint failure envelopes cannot always be ignored in considering the critical 

injection rates.   

The above analysis did not take into account fluid loss into the reservoir rock. 

Thus, it is of interest to investigate how the pressure distribution and fracture aperture 

will change when fluid loss is considered. This is accomplished next by using the 

constant leak-off solutions derived in Chapter IV for injection/extraction into a line 

fracture.   
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Influence of Fluid Leak-off on Fracture Width and Pressure 

The problem considered is the same as in the previous section except now the 

rock is permeable (L = 1000 m and see Table 6 for other parameters). A high and low 

injection rate of 1E-4 m2/s and 1E-5 m2/s, respectively, will be used. The fluid flow and 

fracture deformation (fluid/solid coupling) is ignored in this problem as it will be 

considered in Chapter VII. 

Before presentation of the induced effects associated with fluid loss note the 

following definitions: 

• : is induced pressure change from the i case minus induced 
pressure change from the j case.   

),(* txp ji−∆

 
• ),( txji−∆ω : is the induced width change from the i case minus induced 

width change from j case. 
 

o where i and j can be: e = elastic case, p = poroelastic case, t = 
thermoelastic case, tp = combined thermoelastic and poroelastic 
case, imp = impermeable case, perm = permeable case 

 
Isothermal Poroelastic Effects 

 Figure 31 shows the temporal variation of the normalized net fracture width 

(ωp(x,t) = wp(x,t)/wo) resulting from poroelastic effects at the inlet for different leak-off 

values and injection rates.  It is observed that the rate of aperture increase resulting from 

rock expansion is initially large and decreases with time. This can be explained by 

inspecting Eqn. (67) which indicates the fracture opening is related to the t .  It is also 

noted that a smaller injection rate results in a smaller width change. This is because the 

pressure difference responsible for the width change is smaller (see Eqn. 67).  The 

steady-state poroelastic effects considered herein is proportional to the difference in 
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pressure between the fracture and the rock.  Hence a higher injection pressure means a 

higher poroelastic effect.  
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Figure 31. Normalized Net Fracture Width at the Inlet from Poroelasticity for Different 
Injection Rates. 
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  Next, the normalized net fracture width along the fracture trace resulting from 

poroelastic deformation is plotted in Figure 32 for different values of m and injection 

rates after 6 months of injection.  The contraction of the fracture is relatively small.  This 

can be attributed to the high value of G and low value of cD.  The maximum reduction of 

width occurs at the injection point, because this is where the poroelastic induced pressure 

 is the highest.  In other words, as fluid in the fracture is lost to the reservoir 

rock, the pressure difference between the fracture and the reservoir rock also decreases 

along its length (by the momentum equation and pressure balance) thus decreasing the 

induced poroelastic width changes along the crack.  It is also observed that as the 

injection rate is increased, the differences between the width changes for different m 

values become more pronounced.   This was also observed in Figure 31 and is a result of 

larger variations between the induced pressure and reservoir pressure. 
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Figure 32.  Normalized Net Fracture Width Showing the Influence of Poroelasticity after 
6 Months of Injection. 

The corresponding pressure distribution in the fracture for the elastic case (Eqn. 

58) and the poroelastic case (Eqn. 68 numerically integrated) normalized with respect to 

the isothermal impermeable injection pressure (p*
imp(0,t) = 1.2 MPa for qo = 1E-4 m2/s 

and p*
imp(0,t) = 0.12 MPa for qo = 1E-5 m2/s) is plotted in Figure 33.  The elastic case 

appears as solid lines, and the poroelastic case appears as symbols.  The results show an 

increase in pressure as a result of the reduction in the width.  However, although the 

width contracts due to the poroelastic effects, the contraction is not pronounced enough 

for the pressure to increase above the impermeable elastic case.  Indeed, increasing the 

injection rate could increase the pressure for the poroelastic case above the impermeable 

elastic case as will be shown in Chapter VII.  For the injection rate of qo = 1E-5 m2/s the 

differences are nearly negligible.  This is because of the small width contraction observed 

in Figure 32.  Also, note that as the leak-off increases, the pressure profile becomes more 

parabolic.  This is due to mass balance (under constant leak-off conditions) because 

increasing the leak-off decreases the amount of fluid in the fracture thus resulting in a 



decreased pressure gradient in the momentum equation (36). For severe cases of leak-off 

(m = 1) Figure 33 shows almost no pressure gradient because at x = L, q(L,t) = 0 

 To further illustrate the differences between induced pressure in the fracture for 

the elastic case (with leak-off) and poroelastic case, the differences between the curves 

for the impermeable case and permeable cases from Figure 33 are plotted in Figure 34.  

Indeed the pressure profiles for the elastic case (solid lines) show the maximum 

difference in pressure is at the injection point and decreases towards the extraction point.  

For the poroelastic case, the pressure profiles show the difference in pressure increases to 

a point and then decreases to the extraction point.  Figure 34 shows this effect is 

enhanced by increasing the injection rate and the degree of leak-off.  The reason for this 

effect is that the width contraction at the injection point will increase the pressure.  

However as fluid is lost to the formation and the width contraction is reduced, the 

pressure difference in Figure 34 will cease to increase and will decrease in a similar 

manner to the elastic case.  This is a result of the poroelastic effects becoming negligible 

near the extraction point.  That is the induced poroelastic pressure  is 

reduced to zero because the pressure in the fracture and reservoir approach the same 

value at x = L.  Figure 34 therefore illustrates the need to incorporate the poroelastic 

effects when fluid loss is present and injection rates are high.   

),0,(* txp poro∆
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Figure 33. Normalized Induced Pressure in Fracture for no Leak-Off (m = 0), and Various 
Degrees of Leak-Off and Injection Rates after 6 months of Injection. Symbols: 
Poroelastic; Solid Curves: Elastic.  
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Figure 34.  Difference between the Impermeable Normalized Induced Pressure and the 
Permeable Normalized Induced Pressure with and without Poroelastic Effects.  Symbols: 
Poroelastic; Solid Line: Elastic. 

Thermoelastic Effects 

The isothermal assumption is now relaxed in the previous example.  All other 

parameters and assumptions from the previous section are applicable (L = 1000 m and see 

Table 6).  Figure 35 shows the temporal variation of normalized net fracture width 



(ωt(x,t) = wt(x,t)/wo) resulting from thermoelastic effects at the inlet for different leak-off 

values.  The injection rate in Figure 35 is 1E-4 m2/s.  Inspection of (86) shows the 

normalized net fracture width is independent of the injection rate for the impermeable 

case at x = 0.  However, as illustrated in Figure 36 (ωimp(0,t) denotes net fracture width at 

inlet for impermeable case) the opening for permeable cases will increase with injection 

rate due to the enhanced thermoelastic effect as a result of the increased heat flux from 

leak-off.  Figure 36 is after 1 month of injection.  We note that Figure 35 has a similar 

shape to Figure 31; however its sign is the opposite.  The contraction of the rock related 

to cooling leads to large displacements. Also, by comparison of Figure 35 with Figure 31 

it appears the thermoelastic effects dominate, which would be expected for mechanically 

hard rock in the presence of a large temperature perturbation.  This indicates that indeed 

fracture permeability enhancement in EGS type environments are largely controlled by 

the thermoelastic effects and not the hydraulic effects.   
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Figure 35. Normalized Net Fracture Width at the Inlet Resulting from Thermoelasticity. 
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Figure 36. Variation of Net Fracture Width at Inlet Normalized with Respect to 
Impermeable Case for Various Injection Rates and Leak-Off Values after 1 Month. 
 

Although for m = 0 the injection rate is independent of the opening at the injection 

point, Figure 37 shows there is a spatial relationship between the injection rate and width 

change.  Figure 37 is after 3 months of injection.  Indeed, the spatial extent of the induced 

width change increases with greater injection rates.  This is due to the increase in the 

advective heat transport in the fracture.   
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Figure 37. Normalized Net Width for Various Injection Rates after 3 Months of Injection. 
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The pressure distributions corresponding to the net fracture widths in Figure 37 

are plotted in Figure 38.  These pressures have been normalized with their respective 

isothermal impermeable injection pressures.  It is readily observed the normalized 

pressure has decreased more for the higher injection rates.  This is a result of the width 

increase extending further along the fracture trace for higher injection rates.  As expected, 

beyond the zone influenced by thermoelastic width changes, the pressure profile follows 

the isothermal elastic case.  
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Figure 38. Thermoelastic Induced Normalized Pressure in Fracture for Various Injection 
Rates (in m2/s) after 3 Months of Injection. 
 

It is now of interest to investigate the temporal effects of the normalized 

thermoelastic net fracture width and the corresponding pressure for various degrees of 

leak-off.  To do so a constant injection rate of 1E-4 m2/s will be applied, all other 

parameters will be the same.  The normalized net fracture width is shown in Figure 39 

and the corresponding pressure distribution normalized with respect to the isothermal 

impermeable injection pressure is plotted in Figure 41.  At early times it is evident the 

effect of leak-off on changes in the fracture width is negligible.  This notion is readily 
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observed in Figure 40 where the differences in the permeable and impermeable width 

opening from Figure 39 are plotted.  Near the injection point the aperture increases more 

for the permeable case; however near the extraction point the aperture increases more for 

the impermeable case.  The effect is enhanced with increasing time.  This result is due to 

a longer residence time of the fluid in the fracture for the permeable case, and also a 

result of the added heat transport component in the rock, advection (from the leak-off 

velocity).  This causes more heat flux into the rock so the thermoelastic effect is 

enhanced (near the injection point).  As the fluid is lost into the formation, the fluid 

velocity decreases and the thermoelastic effect is reduced (near the extraction point).  It is 

worth noting that although more heat can be extracted in the permeable cases the amount 

of total energy extracted is still greater for the impermeable case, because more water is 

extracted (Ghassemi and Cheng, 2001).   

1

3

5

7

0 0.2 0.4 0.6 0.8 1x/L

ω
t(x

,t)

m=0 m=1 m=0
m=1 m=0 m=1

 

t = 3 months 

t = 1 month 

t =2 weeks 

Figure 39. Thermoelastic Induced Normalized Net Width for Various Times and Degrees 
of Leak-Off. Solid: Impermeable; Symbols: Permeable. 
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Figure 40 Difference between the Thermoelastic Induced Normalized Width for 
Permeable (m = 1) and Impermeable (m = 0) Cases at Various Times. 
 

Figure 41 clearly indicates a difference in the resulting pressure distributions.  

This is further illustrated in Figure 42 where the permeable case has been subtracted from 

the impermeable case.  The pressure gradients near the injection point have been greatly 

reduced because the same amount of fluid is passing through a larger conduit.  Near the 

extraction point where the thermoelastic effects are not evident, the plot mirrors Figure 

33.  As a result of these effects at the injection and extraction point, the greatest pressure 

gradient is at the central section of the fracture trace for the permeable case.  This is not 

the case for the impermeable case where there are no leak-off induced effects.  As a result 

the greatest pressure gradient is near the extraction point. 
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Figure 41. Normalized Induced Pressure in Fracture from Thermoelastic Effects for 
Different Times and Degrees of Leak-Off. Lines: Impermeable; Symbols: Permeable. 
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Figure 42. Difference between Normalized Induced Pressures for Thermoelastic 
Impermeable and Permeable Cases at Various Times. 

Combined Thermoelastic and Poroelastic Effects 

 As already alluded to in Chapter IV, the principle of superposition may be applied 

to further investigate the combined effects of the thermo- and poroelastic loads on 

fracture aperture variation, and the resulting pressure distribution.  The same parameters 

(L = 1000 m and Table 6) will be applied, except that an injection rate of 1E-4 m2/s is 
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used to enhance the poroelastic effects (see Figure 32 and 34).  In doing this it is assumed 

the pressure and temperature fields in the rock are not coupled.   

 Figures 43 and 44 are obtained by adding the poroelastic effects to Figures 39 and 

41, respectively. Note “t” implies only thermoelastic effects (m = 1 in this example), 

where as “tp” implies combined thermo- and poroelastic effects (m = 1 also).  When only 

Figure 43 is considered, one could conclude that the poroelastic effects have a negligible 

effect because the width has only contracted a small amount relative to the thermoelastic 

induced width opening.  However, Figure 44 shows that is not the case, and the pressure 

has been increased relative to the thermoelastic induced pressure by roughly 11% after 

two weeks, 16% after 1 month, and 24% after 3 months as a result of the rock expansion 

and poroelastic aperture reduction.  The implication of this is that almost negligible 

changes in the fracture aperture can still result in non-negligible changes in the pressure 

at the inlet.  This is even more apparent in Figure 45 where the differences between the 

normalized pressure for combined thermoelastic and poroelastic case and thermoelastic 

case are plotted.  At early times the difference is only observed near the inlet.  However 

as time increases the differences are observed at greater distances from the inlet, because 

of the thermoelastic effect perturbs the width further along the fracture trace.  Also 

observed is that the largest deviation occurs at 1 month and not 3 months.  The reason for 

this is that poroelastic effects have a more significant effect earlier and thermoelastic 

effects evolve slowly.  Indeed, with increased time the thermoelastic effects will 

dominate as already illustrated by comparing Figures 31 and 35. 
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Figure 43. Combined Thermo- and Poroelastic and Thermoelastic Normalized Net Width 
at Various Times for m = 1. Lines: Thermoelastic; Symbols: Thermo- and Poroelastic. 
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Figure 44. Normalized Induced Pressure in Fracture from Combined Thermo- and 
Poroelastic Effects and Thermoelastic Effects at Various Times for m = 1. Lines: 
Thermoelastic; Symbols: Thermo- and Poroelastic. 
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Figure 45. Difference between Normalized Induced Pressure for Combined Thermo- and 
Poroelastic Case and Thermoelastic Case at Various Times for m = 1. 
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CHAPTER VI 
 

MECHANICAL EFFECTS OF WATER INJECTION INTO AN INFINITE RADIAL 
FRACTURE 

 
In this chapter the derived expressions from Chapter IV for the induced effects of 

injection into an infinite radial fracture are applied.  As already shown in Chapter IV only 

the impermeable case will be addressed as because it was found a constant leak-off 

solution created negligible changes.  Furthermore hydraulic pressures needed to induced 

slip on a joint will not be considered, because as shown in Chapter V the thermoelastic 

induced effects dominate EGS permeability enhancement. 

Thermoelastic Effects 

 First, it is of interest to investigate the time dependent opening at the injection 

point.  This is illustrated in Figure 46 and uses the parameters from Table 6.  The curve is 

same as the m = 0 curve in Figure 35.  Comparison of (86) and (107) predicts this at the 

inlet.  Initially the fracture width increase with respect to time is initially large, and 

decreases with increasing time.   

 The effects of injection rate on the thermoelastic fracture width are shown in 

Figure 47 after one month of injection.  For this example, a large fracture radius of 500 m 

was chosen in order to satisfy the no flow boundary condition (91).  The curves are 

different from Figure 37.  In that near the injection point the induced width changes do 

not drop as steeply as in Figure 37.  This is a direct result of radial varied flow equation 

(87).  Near the injection point the fluid velocity is extremely high, and therefore the 



advective heat transport in the fracture is also high.  However, as the radial distance 

increases the fluid velocity drops rapidly.  The result is the induced thermoelastic width 

changes also rapidly decreases.  This was also observed in the permeable cases of the line 

fracture, where the induced width changes dropped more rapidly than the impermeable 

cases as a result of leak-off and decreased fluid velocity. 
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Figure 46. Time Dependent Thermoelastic Induced Normalized Net Width at Inlet. 
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Figure 47.  Thermoelastic Induced Normalized Net Fracture Width for Various Injection 
Rates after 1 month of Injection. 
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 To examine the thermoelastic effects on the width change and pressure 

distribution with respect to time we will again assume a large fracture width of 500 m, 

and use a typical injection rate of 0.01 m3/s (see e.g. Mossop and Segall, in-press) along 

with the appropriate parameters from Table 6.  The normalized induced thermoelastic 

width changes are shown in Figure 48.  The results are similar to Figure 39.  However, 

the influence of the radial dropping flow rate is apparent.  At points near the injection 

point the induced width change does not drop extensively with respect to distance as a 

result of the high fluid velocity.  Away from the injection point this is not the case and 

the induced width changes drop rapidly due to decreased fluid velocity. 
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Figure 48. Thermoelastic Induced Normalized Net Fracture Width Change for Various 
Times. 

 In Figure 49 the corresponding normalized pressure distribution to Figure 48 has 

been plotted.  It has been normalized to the isothermal injection pressure at r = 1 meter 

(p*
imp(1,t) = 0.11 MPa), because at r = 0 the injection rate is ∞ (see Eqn. 87 and 88).  

First, it is readily observed that the pressure distribution is logarithmic as predicted by 

(100).  We also realized that the induced fracture width changes have significantly altered 
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the pressure distribution around the injection point.  Beyond the temperature perturbation 

the pressure is the isothermal induced pressure.  In Figure 50 we have focused just on the 

areas where the induced pressure has been changed as a result of the thermoelastic 

effects.  Near the injection point at early times there is still is small sign of a logarithmic 

pressure drop, which is a result of the radial varied flow.  However this is not the case 

with increased time.  The “3 months” curve in Figure 50 shows there is nearly no pressure 

gradient because of the large width increase.  These results are similar to Figure 41.  To 

further investigate the pressure decrease resulting from the fracture width opening, the 

normalized differences between the isothermal pressure distribution and the thermoelastic 

induced pressure distribution is plotted in Figure 51.  It is observed the induced pressure 

difference as a result of the width increase drops with increasing radial distance.  This is 

due to the decrease in the flow rate.  It can therefore be concluded that as a result of the 

radial varied flow the thermoelastic effects on the fracture width and induced pressure are 

centralized to around the injection point.  
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Figure 49. Normalized Induced Pressure in Fracture from Thermoelastic Effects for 
Various Times. 
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Figure 50.  Zone of the Induced Normalized Pressure Changes Resulting from 
Thermoelastic Effects. 
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Figure 51. Normalized Induced Pressure Difference in Fracture between Isothermal and 
Thermoelastic Case for Various Times. 
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CHAPTER VII 

MECHANICAL EFFECTS OF WATER INJECTION INTO A JOINT 

In this chapter the model for injection into a joint derived in Chapter IV is applied 

to investigate the effects of fluid/solid coupling which was ignored in Chapters V and VI.  

The model is verified using an analytic solution and a sensitivity analysis is conducted on 

relevant variables.  Then, the model is applied to examples including high and low 

injection rates including the induced elastic, poroelastic, and thermoelastic effects.  

Model Validation and Sensitivity Analysis 

To verify the model it will be compared to the analytic solution of a uniformly 

pressurized crack (qo = 0), which was derived by Sneddon (1946) and given as: 

2141)( ξξω −+= netP           (129) 

Comparison of the model with (129) showed a % error of 0.1-0.6, and will be further 

elucidated on in the model results. 

Before applying the model to the east flank of the Coso EGS it is of interest to 

investigate how the input parameters effect the model; namely qo, L, and pnet.  This is 

shown in Figures 52 and 53.  Figure 52 is a plot of (129) for various pnet values.  The 

normalized joint width is at the injection point (x = 0).  We see as pnet in the joint is 

increased along with the joint length the aperture significantly increases at the center of 

the joint.  This is expected since increasing the pressure will induce more displacement.  

This is further justified by Figure 53 where the effect of the injection rate on the relative 
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width opening at the injection point (ω’ is opening when qo = 0) for various pnet values is 

shown.  It is readily observed the greater the injection rate and the less the pnet value, the 

effects of injection are more pronounced.  Conversely, when a high pnet exists and the 

injection rate is low, then the effects of injection are almost negligible.  For our purposes 

it is of interest to investigate the effects of injection. Therefore a higher injection rate 

should be applied to a low pnet value.   Finally, it should also be mentioned that extremely 

long joint lengths and high injection rates result in a non convergent solution because of 

the resulting large differences between γ and netP (see Eqn. 112).  That is why extremely 

high injection rates and long joint lengths will not be applied in this chapter.   
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Figure 53. Influence of qo on Relative Width Opening at Injection Point for Various pnet 
Values (in MPa). 

 
Influence of Fluid Leak-Off On Joint Width and Pressure 

Isothermal Poroelastic Effects 

 First, it is of interest to investigate the how the opening at the injection point is 

effected by the injection rate for conditions of leak-off.  In light of the previous section, a 

small pnet value of 0.01 MPa is chosen, along with a shorter joint length of L = 200 m.  

Figure 54 shows the relationship between the opening and the injection rate for various 

degrees of leak-off.  First, we realize the general trend is the same as the time dependent 

opening of the line fracture at the injection point (see Figure 31 or 35).  It is expected that 

the opening will decrease with more leak-off because less pressure is exerted on the joint 

surface.  Also, at low injection rates the differences in the joint width for various degrees 

of leak-off is not as noticeable as for higher injection rates.  To illustrate this consider qo 

= 0.0001 m2/s in Figure 54.  When m = 1 the same opening is attained for the m = 0 case 

with qo = 0.000036 m2/s, and with m = 0.5 the same opening is attained with qo = 0.00005 
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m2/s.  Finally, it should be noted when qo = 0 the opening is 1.1197, which is extremely 

close to the opening obtained by the analytic solution (129) of 1.1185.   
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Figure 54. Relationship between the Normalized Joint Opening at the Injection Point and 
Injection Rate. 
 

Now the spatial relationship under various degrees of leak-off will be looked at.  

We will consider L = 200 m, pnet = 0.01 MPa, a high injection rate of qo = 0.0002 m2/s, 

and the relevant parameters from Table 6.  This high injection rate is used to exaggerate 

the poroelastic effects, and the fluid/solid coupling.  The normalized net joint width is 

plotted in Figure 55 for the elastic case and poroelastic case with various degrees of leak-

off after 3 months of injection.  Indeed the poroelastic induced width changes have 

contracted the joint.  However we note an interesting effect as a result of the fluid/solid 

coupling.  In that the greatest width differences between the elastic and poroelastic cases 

occur near the central section of the joint.  This effect is caused by the fluid/solid 

coupling, and is why this effect was not observed for the injection/extraction model into a 

line fracture in Chapter V.  At the inlet,  is reduced as a result of the ),0,(* txpporo∆
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fluid/solid coupling increasing the joint width (this will become more apparent when the 

pressure in the joint is considered).  However, as a result of leak-off the fluid/solid 

coupling effect is decreased away from the inlet (less fluid in joint to exert pressure on 

the joint surface).  As a result, increases and the poroelastic induced width 

contraction is enhanced.  We note as a result of the unchanging width boundary condition 

at x = L, the curves converge to ω

),0,(* txpporo∆

p(L) = 1.  

To illustrate the effect observed in Figure 56 for different times, the poroelastic 

induced joint width has been subtracted from the elastic joint width (elastic curves in 

Figure 55) for various times and degrees of leak-off.  It is readily observed that the 

increased contraction near the central section of the joint is enhanced with time.  This 

would be expected because the elastic induced joint width is steady state; while the 

poroelastic induced joint width contraction will increase with time (see Eqn. 67). 
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Figure 55. Elastic and Poroelastic Induced Joint Width for Various Degrees of Leak-Off 
after 3 Months of Injection.  Elastic: Lines; Poroelastic: Symbols.  
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Figure 56. Differences between Elastic and Poroelastic Joint Widths for Various Times. 

 
Now it is of interest to investigate the influence of poroelastic effects on the 

pressure distribution in the joint.  Figure 57 shows the resulting pressure distribution 

normalized with respect to the isothermal impermeable injection pressure (p*
imp(0,t) = 7.1 

MPa) from Figure 55 for the elastic case and the poroelastic case after 3 months of 

injection.  The reason for the high p*
 imp(0,t) value is a result of no fluid extraction, which 

allows for the pressure in the joint to increase till equilibrium is reached (similarly to 

blowing up a balloon).   

Figure 57 illustrates as a result of the poroelastic effects contracting the width; the 

pressure at the inlet has increased the pressure in the joint.  The reasons for the significant 

increases for the m = 1 case is a result of the high injection rate contracting the width (see 

Figure 55).  Near the joint tip the pressure distributions are nearly identical because the 

difference between the reservoir and the joint pressure is small resulting in little 

poroelastic induced effects.  Furthermore, it is observed the elastic case of m = 0.5 is 

nearly linear (similar to impermeable line fracture solution). The combined effect of fluid 
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loss and fluid/solid coupling cause this because the fluid/solid coupling increases the 

pressure gradient near the joint tip, while the fluid loss decreases the pressure gradient.  

The result is a near linear distribution 
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Figure 57. Normalized Induced Pressure Distribution for Elastic and Poroelastic Case 
after 3 Months of Injection. 
 

To further illustrate the differences in the pressure caused by leak-off consider 

Figure 58.  In Figure 58 the permeable elastic and poroelastic normalized pressures are 

subtracted from the impermeable normalized pressure.  It is observed the greatest 

difference in pressure for the elastic case is at the central section of the joint, which 

readily shows why the greatest width changes were observed in the central section of the 

joint when including poroelastic effects (see Eqn. 66 and 67).  The reason for this 

behavior is a result of the fluid/solid coupling reducing the poroelastic induced 

pressure  at the inlet.  That is why this was not observed in Figure 34 for the 

elastic case.  We realize that the poroelastic pressure distribution in the joint has 

significantly increased as a result of the fracture width contraction observed in Figure 55.  

),0,(* txpporo∆
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Finally it is noted that similarly to Figure 34, near the joint tip the poroelastic and elastic 

curves are nearly the same as a result of the poroelastic induced effect becoming 

negligible.  
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Figure 58. Difference between Impermeable and Permeable Normalized Pressures for 
Various Degrees of Leak-Off after 3 Months of Injection.  Lines: Elastic; Symbols: 
Poroelastic. 

Thermoelastic Effects 

To include the thermoelastic effects the injection rate will be greatly reduced to 

allow for a longer time.  This is done to satisfy the boundary condition ω(L) = 1.  Using 

the injection rate from the previous example results in a simulation time of only 10 days, 

because at 10 days ω(L) ≠ 1 for the m = 0 case.  We will use L = 200 m, pnet = 0.01 MPa, 

an injection rate of 0.00005 m2/s and the parameters in Table 6.  First the elastic effects 

will be considered.  The elastic width profile is plotted in Figure 59 for various degrees of 

leak-off.  Also included is the case for a uniformly pressurized crack. The “DD” plot 

represents the DD model, and the “Sneddon” plot denotes the analytic solution.  The 
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match is quite good; there is a small (0.1-0.6%) overestimation, which is a result of the 

constant displacement assumption for each node (Crouch and Starfield, 1983). 
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Figure 59. Normalized Elastic Width Opening for Various Degrees of Leak-Off. 

 
Figures 60-63 illustrate the effect of leak-off and the thermoelastic effects of 

injection into a joint.  These figures correspond to Figures 39-42 in Chapter V for the 

injection/extraction from a line fracture model.  First let us consider Figure 60 which 

shows the normalized thermoelastic width for injection into a joint.  It is readily observed 

near the inlet the differences between the permeable (m = 1) and impermeable case are 

negligible.  However near the end of the respective temperature perturbations the 

differences are not negligible.  This is illustrated in Figure 61 where the differences 

between the impermeable and permeable joint widths have been plotted.  It can be 

observed that at early times the joint width for the impermeable case is larger (not 

observed in the line fracture model) at the inlet.  This is due to the slow effects of the 

thermoelastic effects, and immediate effects of the fluid/solid coupling.  With increased 

time, the permeable case will have a greater joint width at the inlet, because of the 
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enhanced thermoelastic effect caused by leak-off.  Furthermore it is noted the greatest 

difference between the curves occurs at some distance away from the inlet.  This distance 

increases with time.  The reason for this is that the thermoelastic effect perturbs further 

along the joint trace for the impermeable case because the fluid velocity is not retarded 

by leak-off.  Figures 60 and 61 also show that near the end of the joint (x = L) there are 

no thermoelastic induced effects; this satisfies the boundary condition of ω(L) = 1.  The 

simulation time can be expanded by either reducing the injection rate, increasing the joint 

length, or a combination of both.  However, it is should be stressed again that increases in 

the joint length can result in a non-convergent solution. 
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Figure 60. Thermoelastic Induced Normalized Joint Width for Various Times and 
Degrees of Leak-Off.  Solid: Impermeable; Symbols: Permeable. 
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Figure 61. Difference between the Thermoelastic Induced Normalized Joint Width for 
Impermeable and Permeable (m = 1) Case at Various Times. 

The pressure distribution corresponding to Figure 60 is plotted in Figure 62 (m = 

0.5 case is now also included), which show as a result of leak-off the pressure distribution 

has significantly changed.  Indeed, the pressure has been reduced at the inlet in response 

to increased aperture caused by the thermoelastic effects shown in Figure 60.  

Furthermore, it is observed that the suite of permeable (m ≠ 0) curves become identical 

closer to the inlet than the suite of m = 0 curves.  This is a result of temperature 

perturbation extending further into the joint, because for the m = 0 case the advective heat 

transport is not retarded as it is for the m ≠ 0 cases due to fluid leak-off.   
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Figure 62. Normalized Induced Pressure in Joint from Thermoelastic Effects for Different 
Times and Degrees Leak-Off.  Lines: Impermeable; Symbols: Permeable. 

The amount of pressure reduction in the joint as a result of leak-off is illustrated 

in Figure 63 where the difference between the normalized impermeable and permeable 

thermoelastic pressure distributions is plotted.  Indeed, the suites of curves for various 

leak-off values are similar.  This is because the thermoelastic effects are similar in the 

impermeable and permeable cases (see Figure 60 and 61).  Note that the differences in 

pressure between the impermeable and permeable cases slowly decrease with time.  This 

is a result of the thermoelastic effects dominating that associated with leak-off with 

increasing time. 
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Figure 63. Difference between Impermeable Thermoelastic Pressure and Permeable 
Thermoelastic Pressure in Joint for Various Times and Degrees of Leak-Off. 

 
Combined Thermoelastic and Poroelastic Effects 

 
 It is now of interest to include the poroelastic effects into the example from the 

Thermoelastic Effects section of this chapter.  The appropriate parameters are L = 200 m, 

pnet = 0.01 MPa, an injection rate of 0.00005 m2/s and the values in Table 6.  Figure 64 

illustrates a plot for the case of m = 1 comparing the induced joint width for the combined 

thermo- and poroelastic effects, and thermoelastic effects for various times.  At early 

times the differences in the width are negligible, and as time increases we see only a 

small decrease in the width profile as a result of the poroelastic effects contracting the 

width, which was also observed in Figure 43.  As shown in Figure 65 though, the 

normalized pressure profiles are indeed different.  At the injection point the induced 

combined thermo- and poroelastic pressure has increased relative to the thermoelastic 

induced pressure by a 9%, 22%, and 37% after 2 days, 2 weeks, and 1 month 

respectively.  This increase was also observed in Figure 44, and is a result of the 
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poroelastic effects contracting the joint, and the thermoelastic effects expanding the joint. 

However, as shown in Figure 66, the total differences in the normalized pressure is 

decreasing with increasing time as a result of the thermoelastic effects becoming 

dominant, and reducing the pressure in the joint.  Finally, it is realized near the tip of the 

joint the curves are similar to the elastic curves, because the induced thermo- and 

poroelastic effects are small.          
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Figure 64.  Combined Thermo- and Poroelastic and Thermoelastic Normalized Joint 
Width for Various Times when m = 1.  Lines: Thermoelastic; Symbols: Thermo- and 
Poroelastic. 
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Figure 65. Normalized Induced Pressure in Joint from Combined Thermo- and 
Poroelastic Effects and Thermoelastic Effects for Various Times when m = 1.  Lines: 
Thermoelastic; Symbols: Thermo- and Poroelastic. 
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Figure 66. Difference between Normalized Induced Pressure in Joint for Combined 
Thermo- and Poroelastic Case and Thermoelastic Case at Various Times when m = 1. 

At this point we will revisit the example from the Isothermal Poroelastic Effects 

section of this chapter, which had a high injection rate.  The applicable parameters are L 

= 200 m, pnet = 0.01 MPa, qo = 0.0002 m2/s, and the values in Table 6.  Figure 67 is a plot 

showing the time evolution of the joint width for the thermoelastic and combined 



thermoelastic and poroelastic effects for m = 1.  Indeed as a result of the increased 

injection rate the width has increased more when compared to Figure 64.  This is due to 

the fluid/solid coupling, and also the longer time enhancing the thermoelastic effects.  We 

note the boundary condition of ω(L) = 1 is still satisfied because at x = L the injection rate 

is 0 (see Eqn. 57).  In this example there is noticeable reduction in joint width from the 

poroelastic effects.  As time increases the difference between the thermoelastic (t) and 

combined thermo and poroelastic (tp) curves becomes more pronounced.  This is a result 

of the large poroelastic effects from the high injection rate.  Although Figure 67 shows 

that the overall joint width is increasing showing the thermoelastic effects are in fact 

dominant.  

 

1

3

5

7

9

0 0.2 0.4 0.6 0.8 1x/L

ω
(x

,t)

t t t
tp tp tp

 

t = 1 montht = 2 weeks t = 3 months 

Figure 67. Combined Thermo- and Poroelastic and Thermoelastic Normalized Joint 
Width for Various Times when m = 1.  Lines: Thermoelastic; Symbols: Thermo- and 
Poroelastic. 

 The corresponding normalized pressure distribution in the joint for the joint 

widths in Figure 67 is shown in Figure 68.  It is evident that including the poroelastic 

effects significantly changes the pressure distribution in the joint.  The increase in 
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pressure for the combined thermo- and poroelastic effects relative to the thermoelastic 

effects is 54%, 67%, and 42% for 2 weeks, 1 month, and 3 months respectively.  In 

Figure 68, the difference in the 3 months curves is not strongly evident because the 

pressure in the joint has been significantly reduced as a result of the increased width.  The 

reason for the initial increase and the subsequent decrease between the thermoelastic case 

and combined poroelastic and thermoelastic case is the poroelastic contribution to the 

pressure distribution.  This was not observed in the previous example of this section 

because the poroelastic effects were small as a result of the low injection rate and also 

smaller simulation time.  Initially, at small times, the poroelastic pressure increases are 

more pronounced.  Therefore, at early times the poroelastic effects increase the deviation 

between the thermoelastic case and combined poroelastic and thermoelastic case (from 

54 to 67%), because of the slow response of the rock to the thermoelastic effects. 

Eventually, the thermoelastic effect will become dominant and result in the deviations 

between the thermoelastic case and combined poroelastic and thermoelastic case 

becoming smaller (hence the decrease from 67 to 42%).  In light of these apparent 

deviations, the difference between the combined thermo- and poroelastic effects and 

thermoelastic pressure distributions are plotted in Figure 69.  It is readily observed that 

the overall difference decreases to zero with increasing time, because at later times the 

thermoelastic effects will dominate the resulting pressure profile in the joint.  
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Figure 68. Normalized Induced Pressure in Joint from Combined Thermo- and 
Poroelastic Effects and Thermoelastic Effects for Various Times when m = 1.  Lines: 
Thermoelastic; Symbols Thermo- and Poroelastic. 
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Figure 69.  Difference between Normalized Induced Pressure in Joint for the Combined 
Thermo- and Poroelastic Case and the Thermoelastic Case at Various Times. 
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CHAPTER VIII 

 
SUMMARY, CONCLUSIONS, AND FUTURE WORK 

 
 Certain reservoir geomechanics issues in the east flank of the Coso EGS have 

been addressed.  First, a lower bound estimate of the SHmax was found utilizing a fracture 

mechanics analysis of drilling induced tensile fractures observed in well 38C-9 

incorporating the influence of thermal stresses.  The SHmax estimate was further 

constrained by comparison with other published values of SHmax, and a fracture 

propagation study.  Only the lower range lower bound estimate resulted in no extensive 

fracture propagation.  Based on this estimate, the stress regime at the east flank transition 

from σ1 = SHmax to σ1 = Sv with increasing depth.  This characterization is consistent with 

the network of fractures with significant aperture (Sheridan and Hickman, 2004) in well 

38C-9.  The stress regime at the proposed injection depth corresponds to a normal 

faulting regime (σ1 = Sv).   

 A linear and non-linear failure criterion was used to conduct a critical stress 

analysis on the network of fractures with significant apertures.  In general, it was found 

that critically oriented (β = βcrit) joints having a friction angle less than 25º can be 

critically stressed at any depth. Joints with friction angles greater than 25º were found to 

be critically stressed in the SHmax-Shmin plane only to a critical depth that is well above the 

proposed injection interval. This is because 0
0max ≠

=zHS  which results in the limiting 
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stress ratio, R, in the SHmax-Shmin plane becoming hyperbolically related to depth (see Eqn. 

26 in Chapter III).  

  For joints with friction angles greater than 25º the pressure increase needed to 

induce slip (po
+) was found by using Terzaghi’s definition of effective stress. Also, the 

corresponding injection rate needed to induce slip was calculated using a simplified 

injection/extraction model.  The estimated injection rates appear to be high for most joint 

orientations.  The orientation of joints most conducive to slip prior to jacking (θq(max)) 

was found to be a function only of the loading.  In deviatoric loaded environments, like 

Coso, joints oriented near θq(max) will readily slip relative to jacking.  

Constraining whether 0
0min ≠

=zhS can readily allow the above critical stress 

analysis to become more accurate.  This will further constrain the stresses acting on the 

joint network.  To accomplish this hydraulic fracturing tests or over-coring tests can be 

conducted at different depths allowing for best fit curves of Shmin to be constructed (see 

e.g. Pine, 1983).  

 A simplified plane strain model was developed and used to assess the poroelastic 

and thermoelastic effects associated with water injection into a permeable deformable 

fracture.  Three sub-models were applied: (i) injection/extraction into a line fracture, (ii) 

injection into an infinite radial fracture, (iii) injection into a finite joint.  The sub-models 

(i) and (iii) were developed by considering the case of constant injection rate, constant 

leak-off, and obtaining analytical solutions for the fracture width based on one-

dimensional heat transfer and fluid loss in the rock. Both poroelastic and thermoelastic 

effects were accounted for in the sub-model (i), and (iii).  Sub-model (ii) represents an 
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alternative geometry and was solved for the case of impermeable rock to allow analytical 

treatment.  

The thermoelastic effects in all sub-models (i-iii) were found to increase the 

fracture or joint width at the inlet with increased time and leak-off (for sub-model i and 

iii) due to the increased heat flux.  Increasing the injection rate extended the spatial extent 

the of the thermoelastic effects.  The spatial extent of the perturbation was retarded by the 

effects of fluid loss reducing the fluid velocity.  The thermoelastic effects were found to 

decrease the pressure in the fracture as a result of the increased fracture width providing a 

larger flow conduit.  This effect was enhanced with increased time. 

The poroelastic effects in models i and iii were found to decrease the fracture 

width at the inlet.  This effect was enhanced with increased leak-off, time, and injection 

rate because the pressure difference between the reservoir and fracture was increased.  As 

a result of the decrease in fracture width the pressure in the fracture increased.  It was 

found even small contractions in the fracture width could result in non-negligible changes 

in the pressure at the inlet.  However, with increased distance along the fracture or joint 

trace the poroelastic effects became negligible, because the pressure in the reservoir and 

fracture were approaching the same value.  

The combined thermoelastic and poroelastic effects in models i and iii were 

compared with the thermoelastic effects to further investigate the relative importance of 

the poroelastic effects.  It was found that at early times under high injection rates the 

poroelastic effects resulted in non-negligible changes in fracture and joint geometries and 

the resulting pressure distributions.  Overall it was found with increased time the 

thermoelastic effects were dominant, which showed the thermoelastic effect is the key 
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component to fracture permeability enhancement.  However, poroelastic effects are also 

important and contribute to evolution of fracture geometry and the resulting pressure in 

the fracture or joint. 

Sub-model (ii) showed the impermeable solution of the induced fracture width 

behaved similarly to the permeable sub-model (i) results, because in both cases the fluid 

velocity decreased with increased distance along the fracture.  This effect was more 

pronounced in sub-model (ii) because of the hyperbolic reduction (i.e. 1/r) in fluid 

velocity rather than the linear reduction in fluid velocity for the permeable case of sub-

model (i).  The results for sub-model (ii) showed the induced thermoelastic effects were 

centralized near the injection point.  As a result of the thermoelastic effects around the 

inlet, the pressure distribution dropped in response to the increased aperture around the 

injection point. 

The incorporation of fluid/solid coupling in sub-model (iii) increased the joint 

aperture resulting in a decrease in the pressure in the joint.  This effect was enhanced for 

joints under a small net pressure (pnet) subject to high injection rates.  It was also 

observed the poroelastic effects were more pronounced because of the increased pressure 

difference between the reservoir and the joint.  As a result, a significant increase in the 

pressure distribution of the joint was observed.  However including the thermoelastic 

effects showed overall the joint aperture will increase, which indicated the thermoelastic 

effects were dominant.   

 This simplified model can be improved by utilizing a pressure dependent leak-off 

formulation (e.g. Ghassemi and Zhang, 2005), which could allow for leak-off to be 

realistically and rigorously incorporated into sub-model (ii). Also, the coupling between 
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temperature and pressure can be considered. Sub-model (i) can be further enhanced by 

incorporation of a two dimensional heat extraction solution (e.g. Cheng et al., 2001), and 

sub-model (ii) can be further enhanced by incorporation of a three dimensional heat 

extraction solution (e.g. Ghassemi et al., 2003).  It is also realized that use of two or three 

dimensional elasticity in the formulation of the induced width changes can yield more 

accurate results which can preserve certain conclusions, and reveal other aspects of 

thermo-poroelastic phenomena. For example, ahead of the tensile stresses exists an area 

of compressional stresses (Ghassemi et al. 2005).  This is due to the strain compatibility 

condition.  Since in a one dimensional formulation it is assumed ux = 0 and exx = 0, the 

zone of compression can not be taken into account. 

   

 



APPENDIX A 
Derivation of Cubic Law 

 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 



 
 
 
 

 
The geometry for this problem is seen in Figure 70.  The constant aperture of the 

fracture is wo, the length of the fracture is L, and the height of the fracture is h. The 

fracture walls are treated as smooth impermeable parallel plates.   
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Figure 70.  Geometry and Problem Set up for Cubic Law Derivation. 

It will be assumed the injection fluid, water, behaves as a Newtonian fluid, and 

the flow is laminar.  These assumptions allow for the fluid flow to be governed by the 

Navier-Stokes Equation: 
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where  is the divergence operator, ⋅∇ ∇ is the gradient operator, is the Laplacian 

operator, u, v, and w are components of the velocity vector 

2∇

vv  in the x, y, and z directions 

respectively, is the body force vector, and λ is the second viscosity coefficient.  Since F
r
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water is relatively incompressible, changes in the density can be ignored.  This implies no 

change in the velocity components with respect to their spatial directions.  Therefore the 

last term in (A.1) on the left hand side is zero.  Furthermore it will be assumed the walls 

are impermeable, this implies at the fracture surface the velocity is zero.  Although there 

is a three dimensional velocity distribution we can ignore the velocity distribution in the z 

direction since the L>>wo (w = 0 → ∂p/∂z = 0).  Finally assuming body forces, F
v

= 0, (ie 

gravity, heat, electromagnetic) are negligible (A.1) can be written in a two dimensional 

form as: 
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The next assumption will be steady state flow, which will imply the time derivatives in 

(A.2) will go to zero.  This assumption also results in negligible changes for velocity in 

the direction of flow.  This then implies 0=
∂
∂
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∂
∂
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∂
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x
u .  However the velocity 

changes in the direction of flow are not negligible, thus (A.2) now becomes: 
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Eqn. (A.3) is the solution system requiring two boundary conditions given as: 
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Eqn. (A.4) is a result of a symmetry assumption which occurs at the center of the flow 

regime.  Eqn. (A.5) is a result of the zero velocity condition at the fracture walls.   

 To solve (A.3) each are integrated to give expressions for the velocity in terms of 

the pressure gradient: 
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Applying (A.4) result in C2 and C4 being zero, and (A.5) result in C1 and C3 being zero.  

Now using the fact z is defined over the interval from 0 to wo/2, (A.6) can be written as: 
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Eqn. (A.7) shows the velocity profile is parabolic, which is a laminar flow velocity.  

Since (A.7) has velocity components that change across the fracture aperture, it is of 

interest to find the average velocity, which is accomplished by integrating the velocity 

components over the entire fracture, and dividing by the fracture aperture: 
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Multiplication of (A.8) by the cross sectional area and expressing as a flow rate per unit 

height yields the cubic law: 
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APPENDIX B 
Derivation of Thermoporoelastic Displacement Equation 
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First, we will introduce of static equilibrium condition which is a result of the 

displacement and stress conditions satisfying Newton’s 2nd Law: 
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where σ is stress.  Let us also define strain (e) in terms of displacements (u ): v
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Eqns. (B.2) are compatibility equations which state that continuity exists in the strain 

field.  A complete derivation of Eqns. (B.1) and (B.2) can be found in Boresi et al.  

(1993), and are not developed here because of the length involved in there derivations.  In 

order to relate (B.1) and (B.2) a constitutive relation must be used.  Hooke’s Law for 

thermoporoelasticity is: 
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where G is the shear modulus, v is Poisson’s ratio, αT is the linear expansion coefficient, 

T is the temperature ,p is pressure, α is Biot’s effective stress coefficient and δij is the 

Kronecker delta.  Note the shear stresses are functions of elasticity only. 

 Since it is of interest to relate the displacement caused by the loading for the 

above conditions in (A.1), (A.2), and (A.3) let us substitute (A.2) into (A.3): 
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We now apply the static equilibrium conditions to (A.4) by (A.1):  
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Note that in (B.5) T = T(x,y) and p = p(x,y).  We now sum all the equations in (B.5) 

setting them equal to zero and dividing by 2G: 
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Eqn. (B.6) needs algebraic manipulation.  First we note the last two expressions in (B.6) 

must be equal by symmetry of the strain tensor, therefore each of the components are 

equal to each other.  Taking this into consideration we write: 
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Since we are dealing with a vector uv  it is noteworthy to introduce the vector 

operators.  First we define the divergence of the vector uv : 
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and applying the gradient operator to result in: 
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The Laplacian of a vector field is: 
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Thus substitution of (B.9) and (B.10), multiplying by G and noting  

K = 2G(1+v) / [3(1-2v)] yields: 
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APPENDIX C 
Explanation of Influence Coefficient Aij

 
 To better illustrate the influence coefficient, we will consider a 4 x 4 matrix of 

Eqn. (117):   
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From (C.1) we can write the following relationships: 

 )1()1()1()1( 4413312211111 −+−+−+−= ωωωω AAAAP        (C.2) 

 )1()1()1()1( 4423322221122 −+−+−+−= ωωωω AAAAP       (C.3) 

 )1()1()1()1( 4433332231133 −+−+−+−= ωωωω AAAAP       (C.4) 

 )1()1()1()1( 4443342241144 −+−+−+−= ωωωω AAAAP       (C.5) 

It follows that (C.2)-(C.5) are four equations with four unknowns (ω1 through ω4), 

because the influence matrix A is known from the discretization and problem geometry 

and P  is known from the discretized flow equation (Eqn. 120 and 121).  Indeed 

substitution of n in place of 4 in (C.1) would result in (117) and (118).  More importantly 

it illustrates that the DD method utilizes the superposition of all the individual 

displacement discontinuities to determine the overall displacement at each node.  It is 

also realized that the superposition principle in reality becomes the discretized form of 

the integral in Eqn. (113). 
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