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ABSTRACT 

Most methods of delineating capture zones for pump-and-treat remedial design 

and wellhead protection assume a two-dimensional, homogeneous aquifer. Aquifers, 

however, are three-dimensional and heterogeneous, thereby introducing uncertainty in 

capture zone analysis. This study used a Monte Carlo analysis of three sets of statistical 

parameters defining aquifer heterogeneity. Each set had a different variance for the mean 

natural log hydraulic conductivity, which varied among the sets by a factor of four. The 

ensemble means of the capture zones for each set were estimated from 10 randomly 

generated fields with 12 layers each which were superimposed on each other for a total of 

120 realizations. Realizations of the hydraulic conductivity fields were generated using 

the fast Fourier transforms method (Gutjahr et al., 1996) and incorporated into a 

confined, 128 m long by 64 m wide grid that included sufficient vertical layers to 

maintain the vertical correlation length. Constant head and no-flow boundaries were 

established on the short and long edges, respectively. The U.S. Geological Survey 

MODFLOW code (MacDonald and Harbaugh, 1988) coupled with MODPATH (Pollack, 

1989) were used to simulate the capture zones surrounding a pumping well within this 

simple flow system. Mapping the capture zones for many aquifer realizations with 

similar stochastic properties provided the data required to construct 1 %, 80%, and 99% 

quantile intervals. These figures begin to show how heterogeneity reduces the size of 

capture zones estimated for statistically homogeneous aquifers. 
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INTRODUCTION 

Capture zones are primarily used in wellhead protection and remediation designs. 

When ground water becomes contaminated due to a chemical spill or a leaking 

underground storage tank, remediation may be necessary. One common cleanup strategy 

is pump-and-treat. In a pump-and-treat design one or more pumping wells are placed in 

the vicinity of the contaminant plume and polluted water is pumped to the surf ace where 

it can be treated. Estimates made 10 years ago for the Superfund Program (Department 

of Energy, 1988) stated that the average cost of assessment, characterization, and 

remedial action design per site is close to $1.7 million (1988 dollars). The cost of the 

remedial action, usually pump-and-treat, averages $12.4 million ( 1988 dollars) (Lee and 

Kitanidis, 1991 ). 

The most significant factors in designing a pump-and-treat system are the 

placement of the pumping well and its pumping rate. Locating the well is typically 

accomplished by determining ground water flow direction and finding a position whereby 

the well can capture the contaminant plume. The well should be pumped at a rate that 

allows capture of all the polluted ground water. If the pumping rate is too low, 

contaminated water flows by the well, and if the rate is too high, too much clean water 

will be withdrawn. Either situation adds substantially to the cost of treatment. 

As the pumping rate increases so does the size of the capture zone. Maximum cost 

effectiveness is achieved when the pumping rate of the well generates the smallest . 
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possible capture zone that can successfully remediate the aquifer. To accomplish this, it 

is necessary to characterize the flow paths of ground water. 

Methods for determining the shape of the capture zone generally assume 

homogeneity of hydraulic conductivity (K) and porosity, although this always simplifies 

natural conditions. Natural variation in stratigraphy, lithology, and texture means that 

aquifers are best characterized as heterogeneous. Most methods of determining capture 

zones also assume two-dimensional and isotropic conditions. This could be reasonable in 

some instances, but in most cases, especially with strongly heterogeneous aquifers, it is 

not because K is typically anisotropic and a vertical component of flow is usually present. 

The method described in this thesis considers heterogeneity and anisotropy in 

estimating capture zones by using a three-dimensional random field generator in 

conjunction with a Monte Carlo analysis. Each hydraulic conductivity field created by 

the random field generator is used in a numerical simulation to determine the flow paths 

of the ground water. By statistically analyzing the resulting ground water flow paths of 

ten statistically equal but unique models, quantile capture zones can be determined. By 

increasing or decreasing the pumping rate, the size of quantile capture zones can be 

changed to meet the needs of a particular design. 

Three sets of hydraulic fields were randomly generated. In the first set variance 

of the K field was 0.29. In the second set the variance was doubled, and in the third, 

quadrupled. The three sets of K fields were placed in models and the resulting capture 

zones compared to each other. This application was performed to see the effects, if any, 

increasing heterogeneity had on capture zone size. 



OVERVIEW OF PREVIOUS WORK 

Deterministic Methods 

A deterministic model is one where a partial differential equation describing 

ground water flow is solved, either numerically or analytically, for a given set of aquifer 

parameters and boundary conditions. The result, hydraulic head, has a specific value at 

each location in the aquifer. Therefore, deterministic methods provide a fast and easy 

solution for finding capture zones. The method assumes the aquifer parameters are 

known, which may not be true due to the uncertainty associated with measuring some 

parameters, such as hydraulic conductivity. 

J avandel and Tsang ( 1986) developed equations to determine the capture zones 

for two-dimensional, confined aquifers that are homogeneous and isotropic. The 

resulting capture zones could be used to generate type curves for one or more wells. The 

equation for a one-well case is 

y = ± _g__ -(_g_ !tan -i 1-
2bu 21lhu J x 

(1) 

where b = aquifer thickness [L], Q= well discharge rate [L 3T1
], x and y are the 

coordinates of the system, and u = uniform Darcy regional flow velocity [LT1
]. Javandel 

and Tsang ( 1986) also developed equations for the 2-, 3-, and n-well cases. The resulting 

capture zones are assumed to be steady state and the x-axis parallel to the direction of 

flow. Javandel and Tsang's (1986) work was extended to unconfined aquifers and 

3 
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combined confined and unconfined aquifers by Grubb ( 1993), who generalized the 

equations by using discharge potential instead of hydraulic head and specific discharge in 

the development of the equations. Bakker and Strack ( 1996) also developed a four step 

approach for determining two-dimensional capture zones, but the method was not directly 

applicable to three-dimensional flow fields and the capture zones must be delineated one 

well at a time. 

Faybishenko et al. (1995) created a semianalytical method that described the 

capture zone in a homogeneous and confined aquifer with a partially penetrating well. 

The method was also applicable to isotropic, unconfined aquifers but was only of limited 

value in aquifers that exhibited significant anisotropy. 

Bair and Lahm ( 1996) and Schafer ( 1996) extended the work of Faybishenko et 

al. ( 1995) by developing partially penetrating well capture zone analysis methods that 

could account for anisotropy. Bair and Lahm ( 1996) asserted anisotropic aquifers with 

partially penetrating wells cause capture zones to be shallower and wider than in isotropic 

conditions. This assertion was similar to the conclusions of Zlotnik ( 1997) who applied 

dimensional analysis to find capture zone geometry in aquifers with partially penetrating 

wells. 

Many modem studies (e.g., Hoeksema and Kitanidis, 1985) have shown that there 

is no possibility of finding an absolutely homogeneous aquifer in nature (Domenico and 

Schwartz, 1998). Many deterministic methods of capture zone analysis treat the K field 

as homogeneous, which can lead to questionable results. Deterministic methods that do 

incorporate heterogeneity involve measuring hydraulic conductivity at a few locations 

that are used as the basis for estimating values at unmeasured locations (V arljen and 
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Shafer, 1991 ). This procedure again produces a solution with significant uncertainty. 

One way to reduce the uncertainty is to use a stochastic method. 

Stochastic Methods 

A stochastic approach recognizes the uncertainties involved in parameter 

estimation. The approach provides a range of possible outcomes rather than a specific 

value at each point in the aquifer. For example, K can vary by many orders of magnitude 

in an aquifer over a short distance. Because of this variability, hydraulic conductivity can 

strongly influence ground water flow paths. 

To quantify the uncertainty introduced into a model by spatially varying K, many 

stochastic approaches use a Monte Carlo simulation. In a Monte Carlo simulation, a 

deterministic problem is solved using different but statistically identical sets of randomly 

generated parameter values (i.e., K fields). Results of the simulations are tabulated and 

used to make statistical interpretations concerning capture zone characteristics (Bair et 

al., 1991). 

The literature has numerous examples of capture zone studies based on Monte 

Carlo analysis (e.g. Bair et al., 1991; Franzetti and Guadagnini, 1996; Cole and Silliman, 

1997). Although each of the studies took a slightly different approach in conducting a 

Monte Carlo analysis, none of the studies presented a method for producing capture 

zones in a three-dimensional, anisotropic, heterogeneous aquifer. 

Stochastic Representation of Heterogeneous Hydraulic Conductivity Fields 

If the vertical and horizontal correlation lengths and variance of the K field in a 

given aquifer have been estimated, they can be used to generate a random field. The 

correlation lengths can be thought of as the length of the heterogeneity in the vertical or 
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horizontal direction, respectively. The K values are usually assumed to be log nonnally 

distributed. By using the geostatistical parameters of the aquifer in the random field 

generator, a K field is produced which, although different, will be statistically identical to 

the actual K fie ld of the aquifer. Table 1 (modified from Gelhar, 1993 and Anderson, 

1997) presents data on aquifers whose three-dimensional geostatistical parameters have 

been estimated. 

The random field generator used in this study produces hypothetical K fields with 

specified geostatistical values. An actual K field with the same geostatistical values can 

be thought of as one possible realization from the random field generator. The set of all 

possible K fields containing identical geostatistical parameters is called the ensemble 

field. This study assumes that ten 12-layer random fields (in effect, 120 realizations) can 

adequately estimate the ensemble field's distribution of hydraulic conductivity values. 

However, the geostatistical parameters originally used to generate the ensemble field 

were determined from only one realization (the actual K field). This is possible if 

ergodicity is assumed. 

Ergodicity states that averaging over the ensemble is equivalent to averaging over 

a realization (Bras and Rodriguez-Iturbe, 1985). However, the geostatistical parameters 

in question must assume stationarity. A stationary ensemble field has a covariance 

structure that does not vary spatially. The ensemble field is considered homogeneously 

heterogeneous. Assuming ergodicity facilitates the use of a random field generator. 

Realizations from a random field generator can be incorporated into a Monte Carlo 

analysis. Information about the random field generator used in this study is in Appendix 

A. 
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Table 1. Variance and correlation scale (natural logarithm) of three-dimensional 
hydraulic conductivity for several well characterized aquifers (modified from Gelhar, 
1993 and Anderson, 1997.) 

Source Medium 
Correlation Scale (m) 

Variance Horizontal Vertical 
Byers and Stephens (1983) fluvial sand 0.81 >3 0.1 
Goggins et al. ( 1988) eolian sandstone 0.16 0.4 0.8 

1Hess (1989) 

Huf schmied ( 1986) 

2Rehfeldt et al. ( 1989) 

outcrop 

glacial outwash 
sand 
sand and 
~avel aquifer 

fluvial sand and 
gravel aquifer 

0 .25 

3.61 

4.41 

Smith (1978); Smith (1981) glacial outwash sand 0.64 
and gravel outcrop 

3Sudicky ( 1986) glacial lacustrian 0.25 
sand aquifer 

Cape Cod site 
2Columbus site 
3Borden site 

0.5 5 

20 0.5 

13 1.5 

5 0.4 

2.8 0.12 



METHODS 

MODFLOW (McDonald and Harbaugh, 1988), a finite difference code, was used 

to determine hydraulic head fields for three sets of 10 randomly generated K fields, each 

with 12 individual layers. Before the 16-layer K fields were imported into MODFLOW, 

the bottom 4 layers were truncated. The resulting head fields were imported into 

MODPA TH (Pollock, 1989) models to generate the capture zone at each layer. The 

resulting capture zones for each set of realizations were superimposed onto a plane. For 

each data set, this entailed superimposing 120 individual layers (ten 12-layer 

realizations). These superimposed data represented an estimate of the ensemble capture 

zone distribution. The distribution was statistically analyzed to determine they quantiles 

of each x coordinate position. 

Models and Model Parameters 

Conceptually, the models simulated a simplified confined aquifer under steady 

state conditions and uniform flow. All model dimensions were 128 columns by 64 rows 

(Figure 1) by 12 layers for a total of 98,304 cells. Each cell was 1 m by I m wide and 0.1 

m thick. The upstream and downstream sides of the model, perpendicular to the direction 

of flow, had constant head boundaries of 10 m and the 11 m, respectively. The sides 

parallel to the direction of flow were no-flow boundaries (Figure 1). These parameters 

gave the models an overall horizontal hydraulic gradient of 0.0078 m/m. The porosity 

was 0.35 for all cells and all units were in m/day. 

8 
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Figure 1. The mesh discretization and boundary conditions used in this study. The top 
and bottom edges were no-flow boundaries and the left and right sides had a constant 

hydraulic head of 10 m and 11 m, respectively. 

The model coordinates were -24 m to 104 m along the x-axis and Om to -64 m 

along the y-axis (Figure l ). A pumping well was placed at coordinates (0,0) in each 

model. The well was fully penetrating and it was necessary to define the well at each 

layer as a boundary condition. The well discharge was 2 m3 /day and was distributed 

throughout the borehole proportional to the hydraulic conductivity at each layer. The 

position of the well allowed only half of the actual capture zone to be determined. The 

full capture zone was resolved by assuming it was symmetrical about the x-axis. 

Assuming symmetry about the x-axis in this study was also reasonable if one 

considers the stochastic analysis performed in this study was an estimation of the 

ensemble K field. The mean K value at each point in the ensemble field is equivalent to 
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the K value of the homogeneous field. This being the case, an estimated ensemble K 

field will produce capture zones symmetrical about the x-axis. 

Numerical Model Descriptions 

The capture zones in this study are from simulations run using MODFLOW and 

MODPA TH. MODFLOW can be used to determine the steady state head distribution for 

a given K field. MODPATH uses the head distribution to track the paths of particles at 

each layer as they are introduced into the system. By releasing 64 evenly spaced particles 

along the upstream end of the model perpendicular to the direction of flow, MODPA TH 

was used to determine the particle paths. The outermost particle tracks drawn into the 

pumping well delineated the margin of the capture zone for that layer. This procedure 

was repeated for each layer in all the models. 

The preconditioned conjugate gradient (PCG2) method was used (Hill, 1990) for 

the matrix solution in MODFLOW simulations. The PCG2 solver was chosen due to 

potential problems in using either the strongly implicit procedure (SIP) or the slice 

successive overrelaxation (SSOR) methods. The SIP and SSOR matrix solution methods 

can affect MODFLOW simulation results under some combinations of matrix solution 

parameters (Osiensky and Williams, 1997). Trial simulations using PCG2 in 

conjunction with a head change convergence criterion of lx 10-6 consistently produced a 

volumetric water budget discrepancy of less than 1 percent. 

Model Verification 

Generation of meaningful capture zones requires reasonable parameters and an 

independent verification of the model. With all of the basic parameters entered into the 

model, it was necessary to verify that the numerical model closely approximated an exact 
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Figure 2. Analytical versus homogeneous solutions for the model discretization. 

Testing the Hydraulic Conductivity Field Importation Process 

The preprocessor program (GW-VIST AS, Environmental Simulations, Inc., 1996) 

used to generate the input files for the MODFLOW models has a maximum of 9,999 

hydraulic conductivity values, making it necessary to create discrete hydraulic 

conductivity zones. The horizontal hydraulic conductivity zones ranged from 0.1 m/day 

to 999.9 m/day, increasing in 0.1 m/day increments. The vertical hydraulic conductivity 

zones ranged from 0.01 m/day to 99.9 m/day in 0.01 m/day increments. This procedure 

introduced an anisotropy of 10: 1 horizontal to vertical hydraulic conductivity. After 

truncation, the generated K fields are imported into the model and placed in the closest 

matching zone. 

Tests of the K fields were run to ensure that the process did not significantly alter 

the statistical properties of the field. Descriptive statistics were calculated before and 

after the values were imported into a one-layer model. The mesh was discretized using 
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the parameters described above, with the exception of the layer thickness. The layer 

thickness was changed from 0.1 m to 1.0 m. In MODFLOW all hydraulic conductivity 

values are multiplied by the thickness of the aquifer because MODFLOW makes 

calculations using transmissivity and not hydraulic conductivity. With a layer thickness 

of 1.0 m the values would not be altered before zonation. A table containing the 

summary of the statistics is presented in Table 2 . 

. The only significant statistical change that took place after importing the K fields 

into the models was the mode (Table 2). In statistics, the mode is defined as the value 

occurring most frequently in a given distribution. It was reasonable to expect zonation of 

the values (and truncating the values to one decimal place due to the zonation setup) 

would affect the mode. Because of the statistical similarities of the K field before and 

after the zonation process, it was concluded GW-VISTAS (GW-VISTAS, Environmental 

Simulations, Inc., 1996) functioned satisfactorily for this research. 

Table 2. Statistics of hydraulic conductivities (m/day) before and after being imported 
into MODFLOW. 

Sta tis tic 
GR F * MODFLOW 

Mean 10.320 10.320 
Standard Error 0 .0 6 4 0 .0 6 4 
M e d ia n 9 .0 4 0 9 .0 0 0 
M ode 8. 5 6 5 5. 6 0 0 
Standard D eviation 5. 7 7 6 5. 7 7 6 
S am p le V aria n c e 33.364 3 3 .3 6 1 
M in im um 1 .5 4 5 1 . 5 0 0 
Maximum 6 9 . 1 2 0 69.100 

* denotes generated random field 
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Random Field Generator Input Parameters 

The random field generator requires the user to enter the covariance type, 

correlation lengths, spatial step size in all three dimensions, and a mesh discretization. 

The random field generator code used in this study was incorporated into a program 

called CRUNCHER, which generated input files for the random field generator and 

converted the generated fields into a format usable in MODFLOW. The source code for 

CRUNCHER is in Appendix B. 

The vertical correlation length (A.z) in all three realization sets was 0.4 m. 

Appendix C contains a sensitivity analysis examining the role vertical correlation length 

has with respect to grid spacing. A horizontal correlation length of 2.8 m was used for 

the all three sets in both the x and y directions. An exponential covariance type was 

chosen for the data sets because the geostatistical parameters of the K fields used in this 

study are similar to those of the Borden aquifer whose K field exhibited an exponential 

covariance function (Sudicky, 1986; Woodbury and Sudicky, 1991). Appendix D gives 

an evaluation of how well the random field generator can produce a field that exhibits 

exponential covariance. 

A variance of 0.25 was used in the first set of generated fields. However, the 

second and third sets of random fields involve doubling the variance and then doubling 

the variance again (designated lcr, 2cr, and 4cr, respectively). The changes in variance in 

the 2cr and 4cr random fields were incorporated to see how sensitive the resulting capture 

zones were to changes in variance in K, or in effect, the heterogeneity of the K field. 
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In addition to the parameters described above, a seed number was also needed to 

generate each random field. The purpose of a seed number is to give the random field 

generator a place to begin. A unique seed number yields a unique realization (Dodak, 

1996). The seed numbers used in this study were created by using a random function in a 

spreadsheet. 

The random field generator produced natural log K fields whose mean was 

approximately zero and approximately the desired variance. The mean was then shifted 

to -9.2 (Kin m/day), which was the natural log of the mean hydraulic conductivity value 

used in this study. The desired variances were 0.29, 0.58, and 1.16 for the la, 2a, and 4a 

random field sets, respectively. The tabulated results of the Ia (Table 3), 2a (Table 

4), and 4a (Table 5) random field sets show the random field generator produced an 

average variance of 85.4, 84.0, and 84.8 percent of the desired variance, respectively. It 

is not known why the variances produced were consistently below the desired values. 

Table 3. Seed numbers, mean, and variance for the 10' set of realizations. 

Realization Seed Mean V ariance 

1 547976 2.82E-02 2.47E-01 
2 8 2 I 5 7 2 9.88E-03 2.46E-0I 
3 870878 4.12E-02 2 . 54E-01 
4 I O 6 3 5 6 3.99E-03 2.49E-0I 
5 7 3 1 0 4 7 -4.46E-02 2.46E-Ol 
6 8 2 1 2 8 I -l.52E-02 2.42E-01 
7 1 5 3 7 6 2.82E-02 2.43E-01 
8 216423 -1.44E-02 2.53E-0I 
9 699034 -8.07E-03 2.48E-0I 

1 0 427805 6.97E-03 2.50E-01 

A verage n a* 0.003617 0.247651 

* denotes not applicable 
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Table 4. Seed numbers, mean, and variance for the 2a set of realizations. 

Realization Seed Mean V ar iance 
1 3 2 6 8 1 3 -3 . 64E-02 4.88E-Ol 
2 2 7 1 2 9 0 6 . 37E-05 5 .l lE-01 
3 5 8 6 6 1 l -8 . 94E-02 5.05E-Ol 
4 906076 -3 . 13E - 02 4.73E-0I 
5 7 6 7 9 5 2 . 64E-02 4 . 69E-01 
6 530390 4.21E-02 4.93E - Ol 
7 925073 -l.99E-02 5 . 00E - 01 
8 790725 3.55E-02 5.0lE-01 
9 9 5 6 5 1 6 -l.22E-02 4.71E-Ol 

1 0 9 4 1 7 7 5 9 . 62E-03 4.62E-Ol 

Average n a* -0.007547 0.487421 

* denotes not applicable 

Table 5. Seed numbers, mean, and variance for the 40' set of realizations. 

R ea li z at io n Seed Mean Variance 

1 50007 3.64E-03 9.71E-01 
2 554768 l.77E-02 9.30E-Ol 
3 320914 -3 .11 E-02 9.26E-0I 
4 781679 -4 . 92E-02 1.0IE+OO 
5 413432 -5.81E-02 l.OIE+OO 
6 167775 -2.95E-02 l.OIE+OO 
7 352773 l . 57E-02 9.93E-01 
8 921774 -1.96E-02 l.OOE+OO 
9 150466 l.46E-02 l . 02E+OO 

1 0 380757 7.79E-02 9.67E-Ol 

Average n a* -0.005796 0.983708 

* denotes not applicable 

Determining the Appropriate Number of Realizations 

A Monte Carlo analysis usually entails using multiple realizations to obtain a 

representative distribution of the parameter under consideration. In this study, the 

parameter under consideration was the ensemble K field, which was used to produce the 
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capture zone distribution. The number of realizations used in a Monte Carlo analysis is 

important; too many realizations will add time and effort to a project while producing 

little new information, while too few realizations could yield misleading results. The 

capture zones in this study consisted of the connected given quantile values calculated at 

each transect. 

A sensitivity analysis was performed to determine how the stochastic mean along 

a transect varied as a function of the number of realizations used in its calculation. The 

sensitivity analysis used the results of 50 MODFLOW simulations that had been 

discarded from the study because of a parameter change. Each of the 50 MODFLOW 

simulations had 12 layers (600 realizations). Three transects were examined where x 

equaled 4, 26, and 76. The stochastic mean value was calculated at each transect for 10, 

20, 30, 40, and 50 random fields; therefore, for 12 layers the stochastic means have at 

least 120, 240,360,480, and 600 realizations included in their calculations, respectively. 

The resulting means were plotted against the number of realizations included in the 

calculation of the stochastic mean for the la (Figure 3), 2cr (Figure 4), and 4cr (Figure 5) 

data sets. 

The resulting plots revealed that there was no significant change ( < 0.1 % ) in the 

stochastic mean at a transect when it is calculated with 120-600 realizations. It is 

possible that even fewer realizations could produce a similar stochastic mean. However, 

10 random fields ( 120 realizations) were used in each of the data sets to ensure a 

representative distribution. 
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Figure 3. Results of a sensitivity analysis to determine how the stochastic mean changes 
as a function of the number of realizations used in its calculation at x = 4. 
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Figure 4. Results of a sensitivity analysis to determine how the stochastic mean changes 
as a function of the number of realizations used in its calculation at x = 26. 
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Figure 5. Results of a sensitivity analysis to determine how the stochastic mean changes 
as a function of the number of realizations used in its calculation at x = 76. 

An alternative method to determining the number of realizations needed was 

presented by Chan (1993). In Chan's (1993) study the reliability level of a Monte Carlo 

simulation was calculated by comparing it to a linear program that determined the 

optimal pumping strategy. This is similar to this study' s goal of developing optimal 

capture zones. Chan ( 1993) stated that in previous work using multiple realizations 

(Gorelick, 1987; Wagner and Gorelick, 1989) the number of stacked realizations was 

chosen arbitrarily. The reliability level of the realizations had to be tested a posteriori 

using a Monte Carlo simulation but no prespecification of reliability could be made. 

Chan's (1993) proposed method used Bayesian analysis and order statistics to develop 

two predicted reliability estimators: (N+l)/(N+2) and N/(N+l), where N represented the 

number of realizations in both estimator formulas. Chan ( 1993) used conditional 

simulation in the development of the estimators and so they may not be applicable to this 

work. However, in future site specific applications of the method presented in this study, 

Chan's ( 1993) estimators may be an excellent way to determine the number of 
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realizations required. Other applications that use Monte Carlo simulations could also 

benefit from Chan's (1993) estimators. 

Calculating the Quantiles 

After the capture zone boundaries for each realization were extracted from 

MOD PA TH and superimposed onto a plane, the quantiles for the capture zones were 

calculated. The method used to calculate the quantiles depended on the statistical 

distribution of the data. The data were originally assumed normally distributed, but a 

Kolmogorov-Smimov (K-S) test was perfonned at three transects on the plane to confirm 

this assumption. The transects tested were located where x equaled 4, 26, and 76. At all 

three points, the K-S test failed to verify the data were nonnally distributed. It was 

decided to consider the capture zone data distribution as unknown and to use a non

parametric procedure in calculating the quantile capture zones (Gilbert, 1987). The 

procedure involved ranking the data from smallest to largest before beginning 

calculations. The quantiles at each transect were determined with the formula 

P (n + 1) = ranked position of desired quantile 

(2) 

where P equals desired percentile, and n equals the total number of ranked data. This 

procedure was repeated at each integer x-coordinate along the capture zone distribution. 

The particles defining the capture zone in this study moved through the models 

because of an imposed head gradient. The particles flowed past the well until the 

influence of the well drew them into the borehole and out of the system. Different 

particles moved back toward the borehole at different positions ( due to the different K 



RESULTS AND DISCUSSION 

The stochastic mean and the 1 %, 80%, and 99% quantiles for each data set were 

calculated for the flow field using the superimposed capture zones. The aggregate of 

each calculated quantile was assumed to approximate the corresponding confidence limit 

of the ensemble capture zone. For example, the aggregate 99% quantile of the ensemble 

capture zone distribution delineated a capture zone that is smaller than 99% of all 

possible capture zones. In other words, if the capture zones for 100 realizations were 

determined, then on the average only one of them will be smaller than the aggregate 99% 

quantile capture zone. 

Plots were made for the stochastic mean, and the 1 %, 80%, and 99% quantiles for 

the l cr (Figure 6), 2cr (Figure 7), and 4cr (Figure 8) data sets. The plots show that as the 

quantile percentages get larger, the capture zones they represent become smaller. For 

example, the 99% quantiles are consistently smaller than the 80% quantiles in the plots. 

The application portion of this study examined how heterogeneity influences the 

size of capture zones. Plots were generated that compared the stochastic means (Figure 

9), 80% (Figure 10), and 99% (Figure 11) quantiles of the lcr, 2cr, and 4cr data sets. The 

plots show the various quantiles of the 1 cr and 2cr data sets track each closely while the 

4cr quantiles are consistently smaller. The behavior of the 1 cr and 2cr data sets seem to 

contradict the study's underlying hypothesis of increasing heterogeneity decreasing the 

size of the capture zone. A possible explanation for this behavior could be that the 

22 
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ensemble fields of the 1 O' and 2o data sets are not different enough to affect the size of 

the quantile capture zones. However, the quantile capture zones of the 40' data set, the 

most heterogeneous data set in the study, are consistently smaller than the other two data 

sets. This implies that heterogeneity does play a role in capture zone size. 

Further evidence that heterogeneity plays a role in capture zone size can be seen 

in a comparison of 99% quantiles for the three data sets (Figure 11) and the 

corresponding homogeneous and analytical solutions (Figure 2). In all three cases, the 

99% quantiles are smaller than the analytical and homogeneous solutions. 
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Figure 9. The stochastic means for the la, 2a, and 4a sets of realizations. 
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Figure 11. The 99% quantiles for the 1 a, 20', and 4a sets of realizations. 

The method presented in this study generates capture zones based on 

heterogeneous, anisotropic, and three-dimensional K fields. The heterogeneous K fields 

used in this study were produced with a random field generator. Application of the 

random field generator assumed the geologic media was spatially periodic and the K field 

log normally distributed. However, this assumption has been questioned, and researchers 

have proposed alternative models for describing heterogeneity (Anderson, 1997). These 

alternative conceptual models include fractal models (e.g. Neuman, 1990, 1994, 1995; 

Neuman et al., 1990; Desbarats and Bachu, 1994), geologic facies models (e.g. Miall, 

1985; Young et al., 1990), and indicator statistics (e.g. Davis, et al., 1993; Johnson, 

1995). More information on alternative conceptual models is available in a review by 

Koltermann and Gorelick ( 1996). Regardless of the conceptual model used to produce 

the K fields, the method in this study is still viable. 
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Random field generators can produce K fields that are geologically unreasonable 

at a given site. A Monte Carlo analysis employing conditional simulation removes these 

realizations from the data set. Conditional simulations are constrained to retain field

measured values of parameters at appropriate positions in the generated field (Anderson, 

1997). A conditional simulation introduces a statistical bias into the distribution of the K 

fields and, consequently, c~ not produce a true ensemble field. Conditional simulation 

was not used in this study. Ins~ the generated K fields are hypothetical, although 

similar to the parameters of the Borden aquifer. Consequently, there are no field

measured parameters to use in a conditional simulation. However, site specific 

applications of the method described here, when combined with field-measured 

parameters, will produce results that are more meaningful if conditional simulation is 

used. 

The results of this study disagree with some of the results of a study performed by 

Chan (1993). Part of the Chan ( 1993) study compared how changing the variance from 

0.4 to 0.01 would influence the reliability level of the Monte Carlo simulation. 

Chan ( 1993) concluded that the reliability level of the Monte Carlo simulation was 

relatively insensitive to this change in variance. 

One possible reason for the differences could be that Chan's ( 1993) study used 

conditional simulation while this study did not. However, Chan (1993) also used two

dimensional, isotropic K fields with no vertical component of flow. This study uses a 

three-dimensional, anisotropic K field with vertical flow. The difference in how the K 

fields were represented could also explain why the results are not consistent. A more 
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meaningful comparison could be made if the method presented here also used a 

conditioned realization. This is an area for possible future research. 



I 

SUMMARY AND CONCLUSIONS 

The determination of the capture zone is a critical part of a pump-and-treat design. 

Overestimation of the capture zone size will result in extracting too much 

uncontaminated water while underestimation will allow part of the contaminant plume to 

flow past the influence of the well. 

The method presented in this study was used to identify differences between 

capture zones of a heterogeneous, anisotropic, and three-dimensional K field and a 

homogeneous, isotropic, and two-dimensional K field with similar parameters. The 

primary hypothesis of the study was heterogeneity affects the size of a capture zone; as 

heterogeneity increases, the size of the capture zone decreases for a given Q. In an 

application of the method, the variance in three data sets was changed to determine if 

heterogeneity affected the capture zone size. 

Three data sets with different variances (lcr, 2cr, and 4cr) were analyzed to test the 

hypothesis. The lcr and 2cr data sets produced similarly sized capture zones while the 40" 

capture zones were smaller. A possible explanation for this behavior is that the 

difference in the variance between the 1 cr and 2cr was not great enough to generate any 

significant change in the size of the capture zone. However, the 4a data set results do 

suggest that increasing heterogeneity decreased the size of the capture zones for a given 

Q. 
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Several methods have been developed to generate random fields, including 

turning bands (Journel and Huijbregts, 1978; Mantoglou and Wilson, 1982), matrix 

decomposition (Davis, 1987), nearest neighbor (Smith and Freeze, l 979a,b ), and spectral 

(Borgman et al ., 1984; Gutjahr, 1989; Gutjahr et al. , 1992; Gutjahr et al ., 1993; Gutjahr et 

al., 1994; Weber et al., 1991; Pardo-lguzquiza and Chica-Olmo, 1993; and Robins et al., 

1993). The turning bands method can produce erroneous streaks in both the fields and 

the covariance (McKay et al., 1988; Thompson et al., 1989). The matrix decomposition 

method creates immense matrices that are possibly sensitive to numerical error. The 

nearest neighbor method is quite fast, but can only handle a limited class of covariances 

(Gutjahr et al., 1996). A comparison of different types random field generators, as well 

as a discussion of their individual benefits and drawbacks, is presented by Zimmerman et 

al. (1998). 

The random field generator chosen for this work uses a spectral method based on 

the spectral representation theorem. The method differs from other spectral methods 

because it incorporates a folded fast Fourier transform algorithm. The algorithm is quick 

and adaptable for generating large fields in both two and three dimensions for any 

spectral or cross spectral density (Gutjahr, 1996). 

The random field generator creates fields with the approximate geostatistical 

characteristics provided by the user and a mean of about zero. Because the random field 

generator uses a fast Fourier transform algorithm, the field dimensions of the mesh are 

constrained to powers of two. However, if it becomes desirable to strip off unnecessary 

layers from the mesh (as was the case in this project), the remaining layers retain the 

geostatistical properties of the entire field (Gutjahr, personal communication, 1998). 
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The code for the random field generator was incorporated into a FORTRAN 

program called CRUNCHER, which generated input files for the random field generator 

and converted the generated fields into a fonnat usable in MODFLOW. CRUNCHER 

also shifted the In K means (the K values were assumed to be natural log normally 

distributed) of the fields from zero to -9.2 mis. CRUNCHER then switched the hydraulic 

conductivity values from ln K back to K, and changed the units from mis tom/day. A 

typical realization for the 1 a and 4o data sets produced by CRUNCHER demonstrated 

how changes in variance affected the resulting K fields (Figure 12). 
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Figure 12. Example of original variance (top) and quadrupled variance (bottom) 
realizations. 
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Program Cruncher 

* 
*********************************************************************** 
* 

* 
* 
* 

* 

This program creates the input file sf3d.in for 
Dr. Gutjahrs 3-D random field generator (RFG), runs the 
generator (subroutine sf3d), and converts the output into a 
form that can be inputted into GW-VIST AS as hydraulic 
conductivity fields for MODFLOW. 

*********************************************************************** 
* 
*********************************************************************** 
* 
* 

* 

Note: To increase the maximum allowed grid size in the R.F.G. 
you must increase the value of maxn throughout this entire 
program. Maxn can only be a power of 2 (2, 16, 512, etc.). 

*********************************************************************** 
* 

P ARAMETER(maxn=256,ndvice=22) 
REAL f(maxn,maxn,maxn) 
CHARACTER *30,name 1 
COMMON/xyzpar/nx,ny,nz,mx,my,mz,dx,dy,dz 
COMMON/seed/nseedO,nseed 
COMMON/cons/pi,pi2,itype 
COMMON/cVclx,cly,clz,sigsq 
COMMON/simu/f,fmean,fvar 
COMMON/name/namel 

*********************************************************************** 
* ***Define constants. 

pi=3.141592654 
pi2=2*pi 

* 
* *****Create random field input file (sf3d.in) 

CALL create 

* 
* *****Generate random field 

CALL sf3d 
* 
* *****Convert output from a matrix into individual data layers 

CALL convert 
* 

* 
STOP 

END 
* 
*********************************************************************** 
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SUBROUTINE create 
*********************************************************************** 
* 
* 
* 

This subroutine queries the user for the data needed to create 
the file sf3d.in which is needed to run Gutjahr's random field 
generator. 

*********************************************************************** 
* 

OPEN (UNIT=25, FILE='sf3d.in', STATUS=UNKNOWN) 
* 
*********************************************************************** 
* Keyboard input for srf g.in 
*********************************************************************** 

WRITE(*,*)Model type (1, 2 or 3)?' 
READ (*, *)itype 

10 WRITE(*,*)1nput the X,Y & Z (integer) dimensions of the model.' 
WRITE(*,*)'All three must be powers of 2 (ex:32,16,4).' 
READ (*, *)nx,ny ,nz 

************************************************************************ 
* Assuring a power of 2 value for nx,ny, and nz 
************************************************************************ 

xnx=nx 
yny=ny 
znz=nz 

xvar=LOG(xnx) 
yvar=LOG(yny) 
zvar=LOG(znz) 
two=LOG(2.0) 

If((AMOD(xvar,two)).eq.0.0) Then 
goto 20 

else 
goto 10 

End If 
20 If((AMOD(yvar,two)).eq.0.0) Then 

goto 30 
else 

goto 10 
End If 

30 If((AMOD(zvar,two)).eq.0.0) Then 
goto 40 

else 
goto 10 

End If 
*********************************************************************** 
* 
40 WRITE(*, *)1nput the (real) X,Y & Z spatial step size' 
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WRITE(*,*)'( ex: 10.0, 10.0, 1.0).' 
READ(*, *)dx,dy ,dz 
WRITE(*, *)'Input the desired (real) variance (ex:0.28).' 
READ(*,*) sigsq 
WRITE(*, *)1nput the (real) scale lengths (ex:5.1,4.6 ,0.28).' 
READ(*,*)clx,cly,clz 
WRITE(*, *)'Input a (integer) seed number (ex: 123456).' 
ltEAD(*,*)nseed 

*********************************************************************** 
* The input file srf g.in has seven lines and contains the 
* information needed to produce a three dimensional grid 
* with user specified geostatistical properties. The input 
* fields are explained below: 
*********************************************************************** 
* itype spectral model 
* nx,ny,nz x,y,z field size 
* dx,dy ,dz x,y ,and z spatial discretization 
* sigsq desired variance for the field 
* clx,cly,clz x,y, and z scale length 
* nseed random number generator seed 
* FIELD. TXT output file name for the field 
* created by Gutjahr's R.F.G. 
*********************************************************************** 

WRITE (25,200)itype 
200 FORMAT (11) 
* 

WRITE(25,2 l O)nx,ny ,nz 
210 FORMAT (13,',13,',13) 
* 

WRITE (25,220)dx,dy ,dz 
220 FORMAT (F5.2, ',F5.2,',F5.2) 
* 

WRITE(25,230)sigsq 
230 FORMAT (F5.2) 
* 

WRITE (25 ,220)clx,cl y ,clz 
* 

WRITE (25,240)nseed 
240 FORMAT (16) 
* 

WRITE (25,250) 
250 FORMAT ("'FIELD.TXT"') 
* 

CLOSE (UNIT=25) 

* 



* 
RETURN 

END 
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* 
*********************************************************************** 
* THE BEGINNING OF THE R.F.G. SUBROlffINES 
*********************************************************************** 
*********************************************************************** 
* sf3d is Dr. Gutjahr's 3 dimensional random field generator 
* It produces a matrix of values with user supplied geostatistical 
* properties and matrix dimensions. The mean of the field is 
* approximately rero and the variance is input by the user 
*********************************************************************** 

* 

* 
* 
* 
* 
* 

* 

SUBROUTINEsf3d 

To compile: f77 sf3d.f -o sf3d 

This program generates single 3D random fields. 
New folded version using FFf, January 1994 

P ARAMETER(maxn=256,ndvice=22) 
REAL f(maxn,maxn,maxn) 
CHARACTER *30,name 1 
COMMON/xyzpar/nx,ny,nz,mx,my,mz,dx,dy,dz 
COMMON/seed/nseedO,nseed 
COMMON/cons/pi,pi2,itype 
COMMON/cl/clx,cly,clz,sigsq 
COMMON/simu/f,fmean,fvar 
COMMON/name/name I 

* *****Define constants. 
pi=3.141592654 
pi2=2*pi 

* 

* 

* 

* 
* 

* 

*****Input data from sf3d.in. 
CALL input 

*****Call the random generating subroutine. 
CALL fieldgen 

*****Calculate the mean and variance of the field. 
CALL meanvar 

*****Output the results. 
CALL output 
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* 
END 

* 
************************************************************* 
************************************************************* 
* 

* 

* 

* 

* 
* 
* 

* 
* 

* 
* 

* 
* 

* 

SUBROUTINE input 

P ARAMETER(maxn=256,ndvice=22) 
REAL f(maxn,maxn,maxn) 
CHARACfER *30,name 1 
COMMON/xyzpar/nx,ny,nz,mx,my,mz,dx,dy,dz 
COMMON/seed/nseedO,nseed 
COMMON/cons/pi,pi2,itype 
COMMON/cl/clx,cly,clz,sigsq 
COMMON/simu/f ,fmean,fvar 
COMMON/name/name! 

*****Set up input data file sf3d.in. 
OPEN(UNIT=25,FILE='sf3d.in ') 

*****Types of spectral covariance pairs. 
***** For Bell-shaped, input itype=l. 
***** For Exponential, input itype=2. 
***** For Spherical, input itype=3. 

READ(25, *)itype 

*****Field size 'nx,ny,nz' are power of 2 <=64. 
READ(25,*) nx,ny,nz 

*****Enter the x, y, z spatial step size (dx ,dy,dz). 
READ(25,*) dx,dy,dz 

* *****Enter the desired variance of the random field. 

* 
* 

* 

READ(25, *) sigsq 

*****Enter the x-scale, y-scale, and z-scale. 
READ(25,*) clx,cly,clz 

* *****Enter the random number generator seed. 
READ(25, *) nseed 
nseedO=nseed 
IF (nseed.ge.O) nseed=-nseed 

* 
* *****Enter the name of the field. 



* 
READ(25,*) namel 

RETURN 
END 
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* 
************************************************************** 
************************************************************** 

* 

* 
* 

* 
* 

* 

* 

* 

* 

* 

SUBROUTINE fieldgen 

Subroutine 'fieldgen' will generate the random field 
f(ij) with SRT and FFf methods. In this subroutine 
we generate f(i,j)with mean 'zero' and veriance 'sigsq '. 

PARAMETER( maxn=256,ndvice=22) 
REAL xx(2*maxn*maxn*maxn) 
INTEGER nn(3) 
COMPLEX im,zx,zz 1,yf{maxn,maxn,maxn) 
REAL f(maxn,maxn,maxn) 
CHARACTER*30,namel 
COMMON/xyzpar/nx,ny,nz,mx,my,mz,dx,dy,dz 
COMMON/seed/nseedO,nseed 
COMMON/cons/pi,pi2,itype 
COMMON/cVclx,cly ,clz,sigsq 
COMMON/simu/f,fmean,fvar 
COMMON/name/name 1 

im=(O.O, 1.0) 
sq5=sqrt(0.5) 

*****Determine x,y,z steps in the frequency domain. 

mx=nx/2 
my=ny/2 
mz=nz/2 
dfxu=l./(nx*dx) 
dfyu= 1./(ny*dy) 
dfzu= 1./(nz*dz) 
duxyz=dfxu*dfyu*dfzu 

* *****Load the complex array for transformation. 

* 

DO ka=l,mx 
ux=(ka-0.5)*dfxu 

DOkb=l,my 
uy=(kb-0.S)*dfyu 



* 

DO kc=l,mz 
uz=(kc-0.5)*dfzu 
sqtdz=spectral(ux,uy ,uz) 
sqtdz=sqrt( sqtdz *dux yz) 
CALL normO I (sq5,rtemp,nseed) 
yreaJ=rtemp*sqtdz 
CALL normO 1 (sq5,rtemp,nseed) 
yimage=rtemp*sqtdz 

43 

yf (ka,kb,kc )=cmplx(yreal,yimage) 
ENDDO 
DO kc=l,mz 

uz=-(kc-0.5)*dfzu 
sqtdz=spectral(ux,uy,uz) 
sqtdz=sqrt(sqtdz*duxyz) 
CALL norm01(sq5,rtemp,nseed) 
yreal=rtemp*sqtdz 
CALL norm01(sq5,rtemp,nseed) 
yimage=rtemp* sqtdz 
yf(ka,kb,nz+ 1-kc )=cmplx(yreal,yimage) 

ENDDO 
ENDDO 

DO kb=l,my 
uy=-(kb-0.5)*dfyu 
DOkc=l,mz 

uz=(kc-0.5)*dfzu 
sqtdz=spectral( ux,uy ,uz) 
sqtdz=sqrt(sqtdz*duxyz) 
CALL norm01(sq5,rtemp,nseed) 
yreal=rtemp*sqtdz 
CALL normOl (sq5,rtemp,nseed) 
yimage=rtemp*sqtdz 
yf(ka,ny+ 1-kb,kc)=cmplx(yreal,yimage) 

ENDDO 
DO kc=l,mz 

uz=-(kc-0.5)*dfzu 
sqtdz=spectral(ux,uy ,uz) 
sqtdz=sqrt( sqtdz *dux yz) 
CALL norm01(sq5,rtemp,nseed) 
yreal=rtemp*sqtdz 
CALL norm01(sq5,rtemp,nseed) 
yimage=rtemp*sqtdz 
yf(ka,ny+ 1-kb,nz+ 1-kc )=cmplx(yreal,yimage) 

ENDDO 
ENDDO 



* 
* 

* 
* 
* 

* 

* 
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ENDDO 

*****Pack the array with indices bigger than mx with 0. 
DO la=l,mx 

DO lb=l,my 
DO lc=l,mz 

yf(mx +la,lb,lc )=(0.0,0.0) 
yf (mx +la,my+lb,lc )=(0.0,0.0) 
yf(mx+la,lb,mz+lc)=(0.0,0.0) 
yf(mx +la,my+lb,mz+lc )=(0.0,0.0) 

ENDDO 
ENDDO 

ENDDO 

*****Convert 30 array to lD for FFT transform. 
***** Get values of nn(3) array for FFf transform. 

nn(l)=nx 
nn(2)=ny 
nn(3)=nz 

num=l 
DOk=l,nz 

DO j=l,ny 
DO i=l,nx 

xx( num)=REAL(yf ( i,j ,k)) 
xx(num+ 1 )=AIMAG(yf(ij~)) 
num=num+2 

ENDDO 
ENDDO 

ENDDO 

* *****Perform the transformation. 

* 

* 

* 

CALL fourn(xx,nn,3, 1) 

*****Convert lD array back to 3D. 
num=l 
DO k=l,nz 

DO j=l,ny 
DO i=l,nx 

yf(ij,k)=cmplx(xx(num),xx(num+ 1 )) 
num=num+2 

ENDDO 
ENDDO 

ENDDO 



* 

* 

* 

* 
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*****Extract the f field from the complex array. 
***** Multiply Y by W to get the finaJ results. 
D0ja=l,mx 

j l=ja-1 
j 11 =j 1 +mx + 1 
DO jb=l,my 

j2=jb-1 
j22=j2+my+ 1 
DOjc=l,mz 

j3=jc-1 
j33=j3+mz+l 
zx=im*pi*(j l/float(nx)+j2/float(ny)+j3/float(nz)) 
zz 1 =2. *cexp(zx)*yf(ja,jb,jc) 
f(j 11 j22j33)=real(zzl) 

ENDDO 
DO jc=mz+ l ,nz 

j3=jc-1-nz 
j33=j3+mz+l 
zx=im*pi*(j l/float(nx)+j2/float(ny)+j3/float(nz)) 
zz 1 =2. *cexp(zx)*yf(ja,jb,jc) 
f(j 11 j22j33)=real(zz 1) 

ENDDO 
ENDDO 

DO jb=my+l,ny 
j2=jb-1-ny 
j22=j2+my+ 1 
DOjc=l,mz 

j3=jc-1 
j33=j3+mz+ 1 
zx=im*pi*(j 1/float(nx)+j2/float(ny)+j3/float(nz)) 
zz 1=2. *cexp(zx)*yf(ja,jbjc) 
f(j 11,j22j33)=real(zz 1) 

ENDDO 
DO jc=mz+ 1,nz 

j3=jc-1-nz 
j33=j3+mz+ 1 
zx=im*pi*(j l/tloat(nx)+j2/float(ny)+j3/float(nz)) 
zz 1 =2. *cexp(zx)*yf(ja,jb,jc) 
f(j l l ,j22j33)=real(zzl) 

ENDDO 
ENDDO 

ENDDO 

DO ja=mx+ 1,nx 



* 
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jl=ja-1-nx 
j 11 =j 1 +mx + 1 
DOjb=l ,my 

j2=jb-1 
j22=j2+my+ 1 
DO jc=l ,mz 

j3=jc- l 
j33=j3+mz+ 1 
zx=im*pi *(j l/float(nx)+j2/float(ny)+j3/float(nz)) 
zz 1=2. *cexp(zx)*yf(ja,jb,jc) 
f(j 11 j22,j33)=real(zz 1) 

ENDDO 
DO jc=mz+ 1,nz 

j3=jc-1-nz 
j33=j3+mz+ 1 
zx=im*pi*(j 1/float(nx)+j2/float(ny)+j3/float(nz)) 
zz 1 =2. *cexp(zx)*yf (jajb,jc) 
f(j 11 j22j33)=real(zzl) 

ENDOO 
ENDDO 

DO jb=my+ 1,ny 
j2=jb-l-ny 
j22=j2+my+ 1 
DOjc=l,mz 

j3=jc-1 
j33=j3+mz+ 1 
zx=im*pi*(j 1/float(nx)+j2/float(ny)+j3/float(nz)) 
zz 1=2. *cexp(zx)*yf(ja,jb,jc) 
f(j l l ,j22,j33)=real(zz 1) 

ENDDO 
DO jc=mz+ l ,nz 

j3=jc-1-nz 
j33=j3+mz+ 1 
zx=im*pi*(j 1/float(nx)+j2/float(ny)+j3/float(nz)) 
zz 1 =2. *cexp(zx)*yf(ja,jb,jc) 
f(j l l ,j22,j33)=real(zz 1) 

ENDDO 
ENDDO 

ENDDO 
* 

RETURN 
END 

* 
*************************************************************** 
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*************************************************************** 
* 

SUBROUTINE meanvar 
* 
* *****Subroutine meanvar will caculate the mean and variance 
* ***** of the simulated random field 
* 

* 

* 

PARAMETER( maxn=256,ndvice=22) 
REAL f(maxn,maxn,maxn) 
CHARACTER *30,name 1 
COMMON/xyzpar/nx,ny ,nz,mx,my ,mz,dx,dy ,dz 
COMMON/seed/nseedO,nseed 
COMMON/cons/pi,pi2,itype 
COMMON/cVclx,cly,clz,sigsq 
COMMON/simu/f,fmean,fvar 
COMMON/name/name 1 

sum=O.O 
suml=O.O 

DO i=l,nx 
DO j=l,ny 

DO k=l,nz 
sum=sum+f(ij,k) 

ENDDO 
ENDDO 

ENDDO 
* 

* 

* 

nxyz=nx*ny*nz 
fmean=sum/nxyz 
DO i=l,nx 

D0j=l,ny 
00 k=l,nz 

suml=suml+(f(i,j,k)-fmean)**2 
ENDDO 

ENDDO 
ENDDO 

fvar=sum 1/(nxyz-1) 

RETURN 
END 

* 
************************************************************** 
************************************************************** 



* 

* 

* 

* 

* 

SUBROUTINE output 

PARAMETER( maxn=256,ndvice=22) 
REAL f(maxn,maxn,maxn) 
CHARACTER *30,name 1 
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CO MM ON/x yzpar/nx,ny ,nz,mx,my ,mz,dx ,dy ,dz 
COMMON/seed/nseedO,nseed 
COMMON/cons/pi,pi2,itype 
COMMON/cVclx,cly ,clz,sigsq 
COMMON/simu/f,fmean,fvar 
COMMON/name/namel 

PRINT * ,fmean,fvar 

*****Output parameters to field.dat. 
OPEN(UNIT=ndvice,FILE='field.dat, 
WRITE(ndvice,*)'Size of the Random Field:',nx,' x',ny,' x',nz 
WRITE(ndvice,*)'Seed for the R.N.G. Used: ',nseedO 
WRITE(ndvice, *)Covariance-Spectral Type: ',itype 
WRITE(ndvice, *)'Scale of Random Field: x-scale=',clx 
WRITE(ndvice, *)' y-scale=',cly 
WRITE(ndvice, *)' z-scale= ',clz 
WRITE(ndvice,*)'Spacing of the random field: ',dx,' x',dy,' x' 

b ,dz 
WRITE(ndvice, *) 1nput Variance of the Field: ',sigsq 
WRITE(ndvice,*)Mean off field= ',fmean 
WRITE(ndvice, *)Variance off field= ',fvar 
CLOSE(ndvice) 

* 
OPEN(UNIT=ndvice,FILE=name 1) 

DO i=l,nx 
DO j=l,ny 

WRITE(ndvice, 11 )(f(i,j,k),k= 1,nz) 
11 FORMAT(2X,64(F8.4,2X)) 

* 

ENDDO 
ENDDO 
CLOSE(ndvice) 

RETURN 
END 

* 
********************************************************************* 
********************************************************************* 
* 



* 
* 
* 
* 

* 

* 
* 

* 

* 

* 
* 

* 

* 
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FUNCTION spectral(ux,uy ,uz) 

This function will generate the spectral function values for 
the specified spectral-covariance pairs. 

COMMON/cons/pi,pi2,itype 
COMMON/cUclx,cly ,clz,sigsq 

picube=pi2**3 
x=ux*pi2 
y=uy*pi2 
z=uz*pi2 
xyz=(clx*x)**2+(cly*y)**2+(clz*z)**2 
c=clx *cly*clz 

*****Gaussian(Bell-SHaped) 
IF(itype.EQ.1 )g=SQRT(pi**3)*c*EXP(-xyz/4.) 

*****Exponential 
IF(itype.EQ.2)g=8. *pi*c/((1.+xyz)**2) 

*****Spherical 
IF(itype.EQ.3) THEN 

xyzl=SQRT(2*pi*xyz) 
cl=c*xyzl 
xk1=(3*xyzl *xyzl *c*c+ 12)/(c**3*xyzl **5) 
xk2=12*cl *SIN(c1)+(12-3*cl *cl)*COS(cl) 
g=picube*(xk 1-xk2/(c**3*xyz 1 **5))*2./xyz 1 

ENDIF 

spectral=g* sigsq 

RETURN 
END 

* 
************************************************************* 
************************************************************* 
* 

* 
* 

* 

SUB ROUTINE fourn( data,nn,ndim,isign) 

*****Numerical Recipes in Fortran, 2nd ed., p.518. 

INTEGER isign,ndim,nn( ndim) 
REAL data(*) 
INTEGER i 1,i2,i2rev ,i3,i3rev ,ibit,idim,ifp l ,ifp2,ip 1,ip2, 



* 

* 

* 

b ip3 ,k 1,k2,n,nprev ,nrem,ntot 
REAL tempi,tempr 
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DOUBLE PRECISION thet~wi,wpi,wpr,wr,wtemp 

ntot=l 
DO idim= l ,ndim 

ntot=ntot*nn(idim) 
ENDDO 

nprev=l 

DO idim= 1,ndim 
n=nn(idim) 
nrem=ntot/( n *nprev) 
ip 1 =2 *nprev 
ip2=ipl *n 
ip3=ip2*nrem 
i2rev=l 
DO i2= 1,ip2,ip 1 

IF(i2.LT .i2rev)THEN 
DO i l=i2,i2+ip 1-2,2 

DO i3=i l ,ip3,ip2 
i3rev=i2rev+i3-i2 
tempr=data(i3) 
tempi=data(i3+ 1) 
data(i3)=data(i3rev) 
data(i3+ 1 )=data(i3rev+ 1) 
data(i3rev)=tempr 
data(i3rev+ 1 )=tempi 

ENDDO 
ENDDO 

ENDIF 
ibit=ip2/2 

135 IF((ibit.GE.ipl).AND.(i2rev.GT.ibit))THEN 
i2rev=i2rev-ibit 
ibit=ibit/2 
GOTO 135 

ENDIF 
i2rev=i2rev+ibit 

ENDDO 
ifpl=ipl 

145 IF(ifpl.LT.ip2)THEN 
ifp2=2*ifp 1 
theta=isign*6.28318530717959d0/(ifp2/ip 1) 
wpr=-2.0DO*DSIN(0.5DO*theta)**2 



* 
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wpi=DSIN(theta) 
wr=l.ODO 
wi=O.ODO 
DO i3= 1,ifp 1,ip 1 

DO i l=i3,i3+ip 1-2,2 
DO i2=i 1,ip3,ifp2 

kl=i2 
k2=kl+ifpl 
tempr=sngl(wr)*data(k2)-sngl(wi)*data(k2+ 1) 
tempi=sngl(wr)*data(k2+ 1 )+sngl(wi)*data(k2) 
data(k2)=data(k 1 )-tempr 
data(k2+ 1 )=data(k 1 + 1 )-tempi 
data(k 1 )=data(k 1 )+tempr 
data(k 1 + 1 )=data(k 1 + 1 )+tempi 

ENDDO 
ENDDO 
wtemp=wr 
wr=wr*wpr-wi *wpi+wr 
wi=wi *wpr+wtemp*wpi+wi 

ENDDO 
ifpl=ifp2 
GOTO 145 

ENDIF 
nprev=n*nprev 

ENDDO 

RETURN 
END 

******************************************************************* 
******************************************************************* 

* 

* 
* 
* 
* 

* 

* 

FUNCTION munOl(idum) 

Numerical Recipes in Fortran, 2nd ed., p.272. 
Generate uniform random number between O and 1. 

PARAMETER (im1=2147483563, im2=2147483399,am=lliml , imml=iml-1, 
b ia1=40014,ia2=40692,iql=53668,iq2=52774,irl=l2211, 
c ir2=3791, ntab=32,ndiv=l+imml/ntab,eps=l .2e-7,rnmx=l.-eps) 
INTEGER iv(ntab) 
REALrnunOl 

SA VE iv,iy,idum2 
DATA idum2/1 23456789/, iv/ntab*O/, iy/0/ 



* 

IF(idum.LE.0.)THEN 
idum=max(-idum, 1) 
idum2=idum 
DO j=ntab+8, 1,-1 

k=idum/iql 
idum=ial *(idum-k*iq 1 )-k*irl 
IF(idum.L T .O)idum=idum+im I 
IF(j .LE.ntab )i v(j )=idum 

ENDDO 
iy=iv(l) 

END IF 
k=idum/iql 
idum=ial *(idum-k*iql)-k*irl 
IF(idum.L T .0. )idum=idum+irn 1 
k=idum2/iq2 
idum2=ia2*(idum2-k*iq2)-k*ir2 
IF(idum2.LT .O)idum2=idum2+im2 
j= 1 +iy/ndiv 
iy=iv(j)-idum2 
iv(j)=idum 
IF(iy.LT. l)iy=iy+imml 
munOl=MIN(am*iy,mmx) 

RETURN 
END 
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* 
*************************************************************** 
*************************************************************** 
* 

* 
* 
* 
* 
* 

* 

* 

SUBROUTINE normOl (sigma,rtemp,nseed) 

Subroutine for generating normal distributed randome numbers 
with mean zero and variance 0.5 using the central limit 

theorem. 

rtemp=O.O 
DO j=l,12 

rtemp=rtemp+munO 1 (nseed) 
ENDDO 
rtemp=rtemp-6.0 
rtemp=sigma *rtemp 

RETURN 
END 
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*********************************************************************** 
* END OF THE R.F.G. SUBROUTINES 
*********************************************************************** 
* 

SUBROUTINE convert 
* 
*********************************************************************** 
* 
* 

* 

Convert the R.F.G. output into a form usable in GW-VIST AS by 
decomposing the matrix into individual layers with X-Y 
coordinates. 

*********************************************************************** 
* 
*********************************************************************** 

OUT is an array used to hold the values from the R.F.G. 
XU and YU are arravs used to determine model coordinates. 
SURF is an array that reads the data from OUT and converts it 
into the fonn needed in GW-VIST AS for the MODFLOW models 
This subroutine is designed to handle grids up to 64 layers 
thick. 

*********************************************************************** 
* 

DWENSION OUT(70000,64),XIJ(70000),YU(70000),GWVISTA(70000) 
CHARACTER*lO rnflow(64) 

* 
*********************************************************************** 

PARAMETER( maxn=256,ndvice=22) 
REAL f(maxn,maxn,maxn) 
CHARACTER *30,name 1 
COMMON/xyzpar/nx,ny,nz,mx,my,mz,dx,dy,dz 
COMMON/seed/nseedO,nseed 
COMMON/cons/pi,pi2,itype 
COMMON/cl/clx,cly,clz,sigsq 
COMMON/simu/f,fmean,fvar 
COMMON/name/name I 

* 
*********************************************************************** 
* Field.txt is the output from the R.F.G. The * .dat files 
* are the repositories of the converted data contained in 
* the OUT array. Each * .dat file will have information 
* pertaining to only that layer. 
*********************************************************************** 
* 

OPEN (UNIT=8,FILE=FIELD.TXT',ST A TUS=UNKNOWN7) 
* 
*********************************************************************** 
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* Initialize and fill the character array 'mflow'. This is an 
* ugly way to do it but I know of no way of using a DO loop 
* that can sequence character-integer file names. 
*********************************************************************** 
* 

mflow( 1 )=inflow l .dat' 
mflow(2 )= 'mflow2.dat' 
mflow(3 )= inflow3 .dat' 
mflow( 4 )= inflow4.dat' 
mflow(5)= inflow5.dat' 
mflow(6)='mflow6.dat' 
mflow(7)= 'mflow7 .dat' 
mflow(8)='mflow8.dat' 
mflow(9)='mflow9.dat' 
mflow( 1 O)='mflw 1 O.dat' 
mflow(l l)='mflwl l.dat' 
mflow( 12)='mflw 12.dat' 
mflow( 13)='mflw 13.dat' 
mflow( 14 )='mflw 14.dat' 
mflow( 15)= 'mflw 15 .dat' 
mflow(l 6)='mflw 16.dat' 
mflow( 17)='mflw 17 .dat' 
mflow( 18)='mflw 18.dat' 
mflow( 19)='mflw 19.dat' 
mflow(20)= 'mflw20.dat' 
mflow(21 )=inflw2 l .dat' 
mflow(22)='mflw22.dat' 
mflow(23)='mflw23.dat' 
mflow(24 )= 'mflw24.dat' 
mflow(25)=inflw25.dat' 
mflow(26)= 'mfl w26.dat' 
rnflow(27)= 'mfl w27 .dat' 
mflow(28)=inflw28.dat' 
mflow(29)='mflw29.dat' 
mflow(30)= 'mfl w30.dat' 
mflow(3 l)=inflw3 l .dat' 
mflow(3 2 )= 'mflw3 2.dat' 
mflow(33)='mflw33.dat' 
mflow(34)='mflw34.dat' 
mflow(35)='mflw35.dat' 
mflow(36)= 'mfl w36.dat' 
mflow(37)='mflw37 .dat' 
mflow(38)=inflw38 .dat' 
mflow(39)= 'mfl w39 .dat' 
mflow( 40)= 'mfl w40.dat' 



mflow( 41 )= 'mflw41.dat' 
mflow( 42)= 'mflw42.dat' 
mflow( 43 )= 'mfl w43 .dat' 
mflow( 44 )= 'mfl w44.dat' 
mflow( 45)='mflw45.dat' 
mflow( 46)='mflw46.dat' 
mflow( 4 7)= 'mflw4 7 .dat' 
mflow( 48)='mflw48.dat' 
mflow( 49)='mflw49.dat' 
mflow( 50)= 'mflw50.dat' 
mflow(51 )='mflw5 l .dat' 
mflow(52)='mflw52.dat' 
mflow(53)='mflw53.dat' 
mflow(54)='mflw54.dat' 
mflow( 55)= 'mflw55 .dat' 
mflow( 56)= 'mflw56.dat' 
mflow( 57)= 'mflw57 .dat' 
mflow( 58)= 'mflw58.dat' 
mflow( 59)= 'mflw59 .dat' 
mflow( 60)= 'mfl w60.dat' 
mflow( 61 )= 'mflw6 l .dat' 
mflow(62)='mflw62.dat' 
mflow(63)='mflw63.dat' 
mflow(64)='mflw64.dat' 
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*********************************************************************** 
* 
*********************************************************************** 
* Opens the *.dat files for the individual R.F.G. layers 
*********************************************************************** 
* 
*********************************************************************** 
* Read the data from the field.txt file into the OUT array. 
*********************************************************************** 

DO 300 K=l,nx*ny,l 
READ (8,290) (OUT(K,L),L= l ,nz) 

290 FORMAT (2X,128(F8.4,2X)) 
300 CONTINUE 
* 
*********************************************************************** 
* Calculate the X and Y coordinates of each K value in the mesh, 
* and convert the field.txt data matrix into a form that can be 
* used in SURFER and OW-VISTAS. 
*********************************************************************** 
* 

DO 320 L=l,nz,1 
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L2=L+29 
OPEN (UNIT=(L2),FILE=MFLOW(L),ST A TUS=UNKNOWN) 
DO 330 I= l ,nx, 1 
DO 340 J=l,ny, 1 

* 
*********************************************************************** 
* 
* 
* 
* 
* 
* 
* 
* 
* 

Surf(k) is calculated in such a matter that the 0.0 mean 
produced in the R.F.G. is shifted down by 9.20. The value 
9 .20 was chosen because the mean In K is .000097 5 mis for 
the Borden aquifer and .0001 mis for the Columbus aquifer. 
By shifting the R.F.G. values down and then taking thee" 
values, a field containing representative hydraulic 
conductivities is produced. All of the values are then 
multiplied by 86,400 to convert the conductivities from 
mis to m/day for use in the GW-Vistas input file. 

*********************************************************************** 
* 

GWVIST A(K)=(EXP((OUT(( (1-1 )*ny+J),L)-9 .2) )*86400) 
XIJ (K)=(I-0.5) 
YD (K)=(J-0.5) 
M=L+29 
WRITE (M,350)XD(K),YU(K),GWVISTA(K) 

350 FORMAT (Fl6.8,F16.8,Fl6.8) 
340 CONTINUE 
330 CONTINUE 

CLOSE (L2) 
320 CONTINUE 

* 

* 

* 

CLOSE (8) 

RETURN 

END 
* 
*********************************************************************** 
*********************************************************************** 
* 



APPENDIXC 

A SENSITIVITY ANALYSIS OF HOW VERTICAL DISCRETIZATION 
INFLUENCES VERTICAL CORRELATION LENGTH 
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A vertical mesh thickness set equal to Ai cannot replicate the spatial variance of 

hydraulic conductivity with respect to the vertical direction. A model that divides each A-z 

into layers incorporates more infonnation about the vertical conductivity field into the 

model. However, as the number of layers increases so does the amount of computational 

time needed to run the model. A sensitivity analysis was performed to determine how the 

modeled variance varied as a function of the number of correlation lengths in each layer. 

The analysis also determined if increasing the number of layers in the generated field 

affected the resulting variance. The goal of the test was to find an optimal configuration 

that generated a desirable variance while minimizing computational effort. 

Four different sets of random fields were generated with each set containing five 

realizations. Each realization had eight layers with either 1, 0.5, 0.25, or 0.125 A-z present 

per layer. The average variance was calculated for each set and plotted against the 

number of A-z per layer for an 8-layer model (Figure 13). The procedure was repeated for 

both 16 (Figure 14) and 32 (Figure 15) layer realizations. The random fields were 

generated using the parameters of an aquifer whose desired variance was 4.5. The plots 

indicated that obtaining a variance close to the desired variance was best achieved by 

adding more layers to the randomly generated field. It was also apparent from the plots 

there was a relationship between the number of correlation lengths per layer and resulting 

variance. Based on this sensitivity analysis, a 16-layer random field that had 0.25 Az per 

layer was used. 
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Figure 13. Plot of an eight-layer model of average variance over five runs versus number 
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Figure 14. Plot of a 16-layer model of average variance over five runs versus number of 
correlation lengths per layer. 
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A test was perf onned to determine if the exponential covariance model option in 

the random field generator was producing exponentially shaped variograms. A 

variogram behaving exponentially will trend exponentially upward towards an 

asymptotic limit. A variogram behaving spherically will trend upward to the asymptote 

and then flatten out along the asymptote. The source code of the program VARIO 

(LeFever, 1997) was modified to handle the 8192 cells represented in each layer of the 

mesh. A 16-layer random field was generated and each layer was analyzed by VARIO. 

The input parameters for VARIO are given in Table 6. 

The resulting gamma versus lag spacing plots (Figures 16-31) exhibited 

reasonably exponential behavior where gamma represents the variogram function and the 

lag spacing is the distance between variogram function calculations. Figures 21, 25, 26, 

29, and 31 appear to be exhibiting spherical behavior. Some of this spherical behaviour 

could be accounted by the random variation that would be inherent in using a random 

field generator. 

Table 6. Input parameters for the program VARIO. 

Parameter Value 
Number of directions to calculate variograms 1 

Length of basic lag 1 
Maximum number of lags 

I 

30 
Minimum value for variable (y or n) n 

Width of distance class 0.5 
Width of angle class in degrees 180 

Direction to use in degrees counterclockwise 0 
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Figure 16. Gamma versus lag spacing for layer 1. 
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Figure 17. Gamma versus lag spacing for layer 2. 
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Figure 18. Gamma versus lag spacing for layer 3. 
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Figure 19. Gamma versus lag spacing for layer 4. 
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Figure 20. Gamma versus lag spacing for layer 5. 
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Figure 21. Gamma versus lag spacing for layer 6. 
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Figure 22. Gamma versus lag spacing for layer 7. 
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Figure 23. Gamma versus lag spacing for layer 8. 
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Figure 24. Gamma versus lag spacing for layer 9. 

lCXXXX> 
900X) 

8CXXX) 

7CXXX) 
~ (,(ID) E 
E 5<XXX) 
~ 

c:, 40:XX) 

3<XXX) 

2c:XXX) 

HXXX> 
0 

0 5 10 15 20 25 30 35 

Lag Spacing 

Figure 25. Gamma versus lag spacing for layer 10. 
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Figure 27. Gamma versus lag spacing for layer 12. 
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Figure 28. Gamma versus lag spacing for layer 13. 
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Figure 29. Gamma versus lag spacing for layer 14. 
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Figure 30. Gamma versus lag spacing for layer 15. 
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Figure 31. Gamma versus lag spacing for layer 16. 
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