

University of North Dakota UND Scholarly Commons

Theses and Dissertations

Theses, Dissertations, and Senior Projects

1979

Petroleum potential of the Tilston interval (Mississippian) of central North Dakota

John P. Himebaugh University of North Dakota

Follow this and additional works at: https://commons.und.edu/theses Part of the <u>Geology Commons</u>

Recommended Citation

Himebaugh, John P., "Petroleum potential of the Tilston interval (Mississippian) of central North Dakota" (1979). *Theses and Dissertations*. 137. https://commons.und.edu/theses/137

This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact zeinebyousif@library.und.edu.

PETROLEUM POTENTIAL OF THE TILSTON INTERVAL (MISSISSIPPIAN) OF CENTRAL NORTH DAKOTA

۲

۲

۲

۲

by John P. Himebaugh

Bachelor of Science, University of North Dakota, 1974

A Thesis

Submitted to the Graduate Faculty

of the

University of North Dakota

in partial fulfillment of the requirements

for the degree of

Master of Science

Grand Forks, North Dakota

May 1979

This thesis submitted by John P. Himebaugh in partial fulfillment of the requirements for the Degree of Master of Science from the University of North Dakota is hereby approved by the Faculty Advisory Committee under whom the work has been done.

Walter 2 Moon

beyt

This thesis meets the standards for appearance and conforms to the style and format requirements of the Graduate School of the University of North Dakota, and is hereby approved.

Graduate School Dean of the

Permission

PETROLEUM POTENTIAL OF THE TILSTON INTERVAL Title (MISSISSIPPIAN) OF CENTRAL NORTH DAKOTA

Department	Geology	
Degree	Master of Science	

In presenting this thesis in partial fulfillment of the requirements for a graduate degree from the University of North Dakota, I agree that the Library of this University shall make it freely available for inspection. I further agree that permission for extensive copying for scholarly purposes may be granted by the professor who supervised my thesis work or, in his absence, by the Chairman of the Department or the Dean of the Graduate School. It is understood that any copying or publication or other use of this thesis or part thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of North Dakota in any scholarly use which may be made of any material in my thesis.

Signature John Dimebaugh Date 4-26-29

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS .			• • •		• • •	• • •	• • •	vi
ACKNOWLEDGMENTS								viii
2 1 1 1 1 1 1								
ABSTRACT	• • •	• •	• • •	• • •	• • •	• • •	• • •	ix
INTRODUCTION	•••	••	•••	• • •	• • •		• • •	1
General Statement Purpose Area of Study Regional Setting Stratigraphy Methods Review of Nomenclaty	ıre							
								22
STRATIGRAPHY	• • •	• •	• • •	• • •	• • •	• • •	• • • •	22
Mechanical Log Chara Underlying Unit Tilston Interval Overlying Unit FACIES ANALYSIS General Statement Subtidal Facies		stics						25
Subtidal Facies Shoal Facies Tidal Flat Facies Supratidal Anhydrite Geographically Rest Lagoonal Facies Clastic Facies	e Faci cicted	es Faci	.es					
PALEOGEOGRAPHY		• •	• • •			•••		48
PETROLEUM POTENTIAL		• •				• • •		54
General Statement Migration Paleogeomorphic Tray Wedgeout-Type Trap a Structural Closure o Updip Facies Change Facies and Porosity	p at the With A	Unco nhydr	onform ite C	ity ap				

CONCLUSIONS	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	78
APPENDICES	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•		•	•			•				81
APPENDIX A.	1	Li	st	of	V	le]	lls	τ	Jse	d	in	. :	ſhi	ĺs	St	tu	dy		•	•	•	•	•	•	•		•	82
APPENDIX B.		Co	ra,	W	le]	11	Sa	mp	le		and	1	[h:	ín	Se	ect	tic	on	D	es	cr	ip	tic	on				130
REFERENCES O	CI	TE	D																									147

LIST OF ILLUSTRATIONS

Figur	e	
1.	"Shows" of Hydrocarbon from the Tilston Interval	2
2.	Location of Study Area	4
3.	Typical Gamma Ray, Spontaneous Potential and Resistivity Logs for the Madison Formation, Central North Dakota	6
4.	Isopachous Map of the Tilston Interval, Central North Dakota	8
5.	Isostructural Map of the Base of the Tilston Interval, Central North Dakota	10
6.	Age and Areal Extent of Mesozoic Rocks Overlying the Subcrop Portion of the Tilston Interval	12
7.	Stratigraphic Nomenclature Applied to the Madison Formation in North Dakota	13
8.	Typical Gamma Ray, Spontaneous Potential and Resistivity Logs for the Tilston Interval, Central North Dakota	16
9.	Index Map for Facies Cross-sections in Central North Dakota	27
10.	Facies Cross-section A-A' Through the Northern Portion of the Study Area	29
11.	Facies Cross-section B-B' Through the Central Portion of the Study Area	31
12.	Facies Cross-section C-C' Through the Southern Portion of the Study Area	33
13.	Core Slab of Argillaceous Wackestone Near the Base of the Tilston Interval	36
14.	Core Slab of Cyclical and Gradational Pattern from a Grainstone to a Mudstone	41
15.	Diagrammatic Illustration of the Gradual Regression During the Tilston Interval	51
	VIS VOCTOR VITOREN	

16.	The Areal Extent of the Bakken Formation in North Dakota and Interpreted Source-rock "Maturity"
17.	Lateral Hydrocarbon Migration Paths in Madison Rocks 59
18.	Diagrammatic Cross-section Where Hydrocarbons are Trapped in a Cuesta (Topographic High) Created by Differential Erosion at the Tilston Interval Subcrop
19.	Isopachous Map of the Tilston Interval and the Triassic Spearfish Formation in the Northern One-third of the Tilston Interval Subcrop 62
20.	Isopachous Map of the Tilston Interval and the Basal Jurassic Rocks in the Southern Two-thirds of the Tilston Interval Subcrop
21.	Diagrammatic Cross-section of Possible Hydrocarbon Entrapment in a Wedge-out Trap Formed by Pre- Mesozoic Uplift and Erosion Followed by Deposition of Mesozoic Sediments Creating an Angular Unconformity at the Tilston Interval Subcrop
22.	Index Map for the Mechanical Log Cross-sections Through Central North Dakota
23.	Mechanical Log Cross-section D-D' Through the Extreme Northern Portion of the Study Area
24.	Mechanical Log Cross-section A-A' Through the Northern Portion of the Study Area
25.	Mechanical Log Cross-section B-B' Through the Central Portion of the Study Area
26.	Mechanical Log Cross-section C-C' Through the Southern Portion of the Study Area
27.	Diagrammatic Cross-section of a Stratigraphic Trap Where a Facies Change May Result in Hydrocarbon Entrapment Due to an Updip Reduction or Loss of Porosity

vii

ACKNOWLEDGMENTS

I wish to thank Mr. Sidney Anderson for suggesting this study. I gratefully acknowledge the guidance, assistance and critical reviews of Dr. Walter Moore, Dr. Lee Gerhard, Mr. Sidney Anderson, and Dr. Odin Christensen. The North Dakota Geological Survey for making available the mechanical logs, core and well samples. I would also like to acknowledge the North Dakota Geological Survey for financial support, and industry support of the Carbonate Studies Laboratory, Department of Geology, University of North Dakota.

Special thanks are extended to my wife, Anita, for her unending encouragement and assistance.

Finally I thank Mr. Thomas Heck and Ms Nancy Perrin for helpful discussions during the course of this study, Ms Lorraine Rose for typing the thesis, and my parents for encouragement and support during my college career.

ABSTRACT

The Tilston interval sediments were deposited on the eastern flank of the Williston basin of North Dakota, Manitoba and Saskatchewan. The interval (Osagian) is composed of a basal carbonate and upper anhydrite in the predominantly carbonate Mississippian Madison Formation. The interval consists of four major facies (subtidal, shoal, tidal flat and supratidal anhydrite), and two geographically restricted facies (lagoonal and clastic) and represents a regressive sequence.

Tilston deposition began with the subtidal facies, deposited on a broad, shallow shelf. As the sea regressed this was followed by deposition of the shoal facies. Further regression resulted in the deposition of the tidal flat facies. The final regressive stage of the Tilston is marked by the deposition of the widespread supratidal anhydrites and a local clastic facies. The western extent of the regression occurs at approximately 102° west longitude. This area is also interpreted to be the position of the shelf break at the end of Tilston deposition.

Possibility for additional Tilston production outside of known producing areas is indicated by: (1) the Tilston production in Canada and from the North Souris field near the international border in Bottineau County, North Dakota, (2) the scattered shows throughout the study area, (3) the porous zones or facies in the interval, (4) the impermeable anhydrite cap, and (5) the association with an angular unconformity on the subcrop portion of the interval.

ix

The assessment of the petroleum potential of the Tilston interval revealed four potential types of hydrocarbon traps. The first two types, paleogeomorphic and wedge-out, are located at the subcrop portion of the Tilston interval. The third type of trap is due to a combination of a porous zone capped by anhydrite. The fourth type, a stratigraphic trap, is the result of updip porosity change.

INTRODUCTION

General Statement

The Tilston interval is composed of carbonates and evaporites within the predominantly carbonate Mississippian Madison Formation. Sando (1978) determined that the Tilston is of Osagian age. The Tilston interval is not exposed, and is known only in the subsurface of the eastern flank of the Williston basin. The Tilston has been identified and correlated through central North Dakota, Manitoba, and Saskatchewan, and has been postulated to occur in South Dakota (Porter, 1955; McCabe, 1949; Porter and Fuller, 1959; Ballard, 1963; Procter and Macauley, 1968).

Purpose

The first Madison oil recovered in North Dakota was from the Tilston interval of Morton County in 1951 (Scott, 1973). Since that time, there have been scattered shows from the Tilston throughout the eastern flank of the Williston basin in North Dakota, but production has been limited to the North Souris field in northern Bottineau County, North Dakota (Figure 1). The purpose of this study is to determine the depositional environment of the Tilston interval and to evaluate its petroleum potential.

Area of Study

1

The Tilston interval is found throughout the eastern margin of the Williston basin of Saskatchewan, Manitoba, North Dakota (Porter,

۲

Fig. 1. "Shows" of hydrocarbon from the Tilston interval. Point "A" is the location of the first hydrocarbons recovered from the Madison in North Dakota, from the Phillips Petroleum Co.-Phillips, Carter and Dakota well no. 1. Point "B" is the location of the North Dakota Souris Field.

N

1955; Fuller, 1956; McCabe, 1959; Ballard, 1963; Carlson and Anderson, 1966; and Kent, 1974), and possibly in northern South Dakota (Procter and Maccauley, 1968). However, for the purpose of this paper, discussion of the Tilston interval will be limited to its occurrence in North Dakota. The area of study comprises 21,000 square miles in the central portion of North Dakota (Figure 2). The study area is bordered on the north by Canada and on the south by South Dakota. The eastern boundary is the erosional subcrop of the Tilston interval (Figure 2). The western boundary is defined as the area in which the Tilston and overlying Frobisher-Alida interval (Figure 3) are not differentiable due to the loss of the anhydrite marker, the T-2 unit, of the Tilston. This occurs at approximately 102° west longitude.

Regional Setting

The Tilston interval is found in the subsurface along the eastern flank of the intracratonic Williston Basin. The maximum sediment thickness of the Williston Basin is located near Williston, North Dakota (Carlson and Anderson, 1966). The Tilston interval attains its maximum thickness of 300 feet in Bottineau County (Figure 4). Thomas (1954) has called this same area the depocenter for early Madison deposition.

Structural features over the pre-Tilston surface are very subtle. Isostructural contour mapping of the study primarily reflected only the bowl-shape of the eastern margin of the Williston Basin (Figure 5). Slightly compressed contour lines in the eastern portion of the study area may indicate a basin "hinge line" at the start of Tilston deposition.

0

۲

4

ø

Ø

0

0 20 40 60 80 miles

Fig. 2. Location of study area.

Fig. 3. Typical gamma ray, spontaneous potential and resistivity logs for the Madison Formation, central North Dakota. From the Sam G. Harris-J. H. Anderson et al. well no. 1, T157N, R85W, S21, SWSW, Ward County, NDGS Well no. 392. See, also, Figure 8. 6

8

Fig. 4. Isopachous map of the Tilston interval, central North Dakota.

Fig. 5. Isostructural map of the base of the Tilston interval, central North Dakota.

The Tilston interval generally is thickest in the northern portion of the study area. An exception is in northeastern Emmons County where an anomalous thickening occurs. In the northwestern part of Ward County the Tilston is anomalously thin and the Tilston interval thins slightly over the "Burleigh High," Burleigh County, described by Ballard (1963).

At the subcrop of the Tilston interval (Figure 6) pre-Mesozoic uplift and erosion created an erosional surface on which subsequent deposition of Mesozoic sediments created an angular unconformity. Erosion at that time also resulted in the formation of cuestas or "high" areas at the subcrop.

Stratigraphy

The Tilston interval rocks conformably overlie Bottineau interval rocks. The Tilston is conformably overlain by Frobisher-Alida rocks except in the eastern portion of the study area where erosion has removed the Frobisher-Alida interval and the Tilston is unconformably overlain by Mesozoic strata. Along this erosional edge Triassic sediment overlies the Tilston in the northern third of the subcrop, and Jurassic sediment overlies the Tilston in the southern two-thirds of the subcrop (Figure 6).

The term "Tilston" was first used by the Saskatchewan Geological Society (1956). Smith (1960) proposed the subdivision of the Madison into five intervals and two subintervals (Figure 7). This terminology has been informally accepted by the North Dakota Geological Survey. The writer has accepted the terminology proposed by Smith, and, in addition, has informally subdivided the Tilston

 $\overline{}$

۲

۲

9

TRIASSIC COVER

JURASSIC COVER

Fig. 6. Age and areal extent of Mesozoic rocks overlying the subcrop portion of the Tilston interval.

PEALE, 1893	COLLIER & CATHCART, 1922	SLOSS & MORITZ, 1951	THOMAS, 1954	SASKATCHEWAN GEOLOGICAL SOCIETY, 1956	SMITH, 1960	THIS REPORT					
				POPLAR BEDS	POPLAR INTERVAL	POPLAR INTERVAL					
		CHARLES	CHARLES FORMATION	RATCLIFFE BEDS	RATCLIFFE INTERVAL	RATCLIFFE INTERVAL					
				MIDALE BEDS	RIVAL SUBINTERVAL	RIVAL SUBINTERVAL					
200	MISSION Canyon Formation		MC-5 MC-4 MC-3	FROBISHER - ALIDA BEDS	FROBISHER-ALIDA	FROBISHER-ALIDA INTERVAL	VIION				
NO		CANYON FORMATION	MC-2 MC-1	TILSTON BEDS	TILSTON INTERVAL	TILSTON INTERVAL T-2					
MADISON FORMATIC	LODGEPOLE FORMATION	LODGEPOLE FORMATION	LODGEPOLE FORMATION	SOURIS VALLEY BEDS	BOTTINEAU INTERVAL	BOTTINEAU INTERVAL	MADISON				

€

Fig. 7. Stratigraphic nomenclature applied to the Madison Formation in North Dakota.

ŵ

interval into two units. These two informal units within the Tilston interval will be referred to throughout this paper as the basal (T-1) and the upper (T-2) units (Figure 8).

Methods

For the purpose of this paper, the author studied the Tilston interval by using mechanical logs on file at the North Dakota Geological Survey in Grand Forks, North Dakota. Core and sample wellcuttings from wells drilled in North Dakota, which are on file with the North Dakota Geological Survey and which were available in the North Dakota Geological Survey Core and Sample Library in Grand Forks, North Dakota, were also studied.

Cores were examined by using a hand lens, acetate peels, and petrographic thin sections. Cuttings studied were from the Tilston interval plus approximately forty to fifty feet of samples both above and below the Tilston. The samples were examined with reflected light binocular microscope. Some grain-mount thin sections were made from representative chips from occasional five-to-ten foot intervals. Alizarin Red Stain (Friedman, 1959) and ten percent hydrochloric acid were used to differentiate calcite from dolomite. Carbonates were described using Dunham's (1962) classification, which is based on fabric and grains of the carbonate rock.

Isopachous and isostructural maps were drawn from mechanical log data. The wells used and the author's unit boundary log picks are listed in the appendices. Mechanical log curves were used to project lithologies when core or samples either were not available or were not helpful. Mechanical logs were also used to assess the

Fig. 8. Typical gamma ray, spontaneous potential and resistivity logs for the Tilston interval, central North Dakota. From the Sam G. Harris-J. H. Anderson et al. well no. 1, T157N, R85W, S21, SWSW, Ward County, NDGS Well no. 392.

•

÷

the porosity or lack of porosity of the Tilston interval in the process of evaluating its petroleum potential.

Review of Nomenclature

The Madison Limestone was first named by Peale (1893) for Lower Carboniferous limestones exposed in the Madison Range of the Three Forks area in Montana (Figure 7). Peale divided the Madison into three units, which are, in ascending order: laminated limestone; massive limestone; and jaspery limestone. Weed (1899) extended Peale's terminolgoy to apply to rocks exposed in the Little Belt Mountains in Montana.

Collier and Cathcart (1922), working in the northern flank of the Little Rocky Mountains of north-central Montana, elevated the Madison to group status by naming two formations. These formations are the lower Lodgepole, which consists of 800 feet of thin-bedded limestone and shale, and the Mission Canyon, which consists of 500 feet of massive white limestone. Sloss and Hamblin (1942), supporting Collier and Cathcart's subdivision of the Madison Group, extended the distribution of the group to include all of Montana and northern Wyoming.

Seager (1942), working with subsurface sediments in eastern Montana, recognized a series of interbedded limestone, dolomite and anhydrite. To these rocks he applied the term "Charles member," referring to the sediments between the Madison Group and the Big Snowy Group (Figure 3). Seager concluded that the Charles Member should be considered a part of the Big Snowy Group based on the porosity development of the upper portion of the Madison Group. Sloss and Moritz (1951), however, recognized a similarity between Seager's Charles member and the sediments exposed in southwest Montana. Sloss and Moritz therefore suggested that the Charles member belonged in the Madison Group rather than the Big Snowy Group (Figure 1). Since Sloss and Moritz's publication, the Charles member has been included as the uppermost formation of the Madison group (Nordquist, 1953; Anderson, 1954).

Thomas (1954), working in the northeast portion of the Williston basin of Saskatchewan, Manitoba, and northern North Dakota, subdivided the Mission Canyon Formation into five informal units. These units are, in ascending order, the MC-1 through MC-5. The MC-1 and MC-2 correspond to the Tilston interval of later authors.

Porter (1955) discussed the facies problems of the Madison Group relating the western migration of the basin depocenter with the concurrent uplift of the eastern basin margins. This combination of tectonics resulted in continual deposition in the basin center, with gradual westward regression and subaerial exposure of Madison strata in the northeast. Superimposed on this gradual regression are minor epeirogenic fluctuations, creating the "cyclic deposition" of the Mission Canyon and older strata.

In his study of the Madison of Saskatchewan and Manitoba, Porter noted four vertical lithofacies. The lowermost lithofacies is the Lodgepole, which he describes as a "dark, bioclasticimpoverished, sulfide-discolored, in part slightly siliceous and slightly argillaceous limestone." Above the Lodgepole is the Mission Canyon facies, described by Porter as a "clean bioclastic, porous limestone." The third lithofacies is between the Mission Canyon and the Charles, described by Porter as a "light-colored,

pseudo-oolitic algal limestone." The uppermost lithofacies is the evaporitic lithofacies of the Charles.

Anderson and Nelson (1956) also subdivided the Mission Canyon as follows: Lower Mission Canyon; Middle Anhydride; and uppermost, Upper Mission Canyon. The lower Mission Canyon and the Middle Anhydrite are equivalent to Thomas' MC-1 and MC-2 respectively. The Lower Mission Canyon and Middle Anhydrite are also the Tilston T-1 and T-2 of this paper, respectively.

In 1956, Fuller proposed the original name, the "Madison Limestone" of Peale (1893). Fuller then subdivided it into an upper and lower Madison Limestone. The upper unit corresponds to the Mission Canyon and the Lower Madison Limestone corresponds to the Lodgepole. The Charles Formation was renamed the Charles Evaporite by Fuller. Porter also noted a facies relationship between the Upper Madison Limestone and the Charles Evaporite.

Fuller (1956) further proposed a subdivision of the Upper Madison Limestone based on Thomas' subdivisions, which, except for the MC-1 and MC-2 were derived from producing areas in Canada. They are, in ascending order: MC-1; MC-2; Forget-Nottingham Limestone; Hastings-Frobisher beds; Midale beds; and uppermost Ratcliffe beds. The uppermost Ratcliffe beds are overlain by the Charles Evaporite.

In an attempt to regionalize the Mississippian terminology, the Saskatchewan Geological Society appointed a Names and Correlation Committee (Saskatchewan Geological Society, 1956), which was to propose a system of nomenclature that could be applied to the Williston Basin of Saskatchewan, Manitoba, Montana and North Dakota. In their

publication, the committee recommended changes only for the Madison. The committee divided the Madison into six beds. The committee used the term "beds" so as not to confuse the units with formations. The beds were based on Fuller's (1956) mechanical log marker concept. The committee named the beds, in ascending order: Souris Valley; Tilston; Frobisher-Alida; Midale; Ratcliffe; and uppermost Poplar. This was the first use of the name "Tilston." The committee applied the name "Tilston" to sediments between 3,470 and 3,622 of the Gordon White number 1 well, Lsd. 5, Sec. 14, Twp.1, R.29W, first Mer., of the Tilston oilfield in Manitoba, Canada. These units, as proposed by the Names and Correlations Committee of the Saskatchewan Geological Society, were found to be useful in North Dakota and, for a time, were adopted by the North Dakota State Geological Survey.

As more wells were drilled in North Dakota, it became increasingly difficult to utilize the markers of the Saskatchewan Geological Society. In 1960, the North Dakota Geological Society established a committee, under the Chairmanship of M. H. Smith, to propose a nomenclature for the Madison of North Dakota. The committee subsequently published an abstract containing their recommendations (Smith, 1960). The committee proposed changing the Lodgepole, Mission Canyon and Charles Formations to facies, and further subdividing these facies into five intervals and two subintervals. The committee elected to use the term "interval," which is a marker-defined unit, rather than the term "bed," which is a para-time rock term. The nomenclature was based on marker units within the Midale and Ratcliffe beds, which, unfortunately, did not correlate with the markers used by the Saskatchewan Geological Society (Carlson and Anderson, 1966).

The intervals established by the committee of the North Dakota Geological Society are, in ascending order: Bottineau, Tilston, Frobisher-Alida (containing the Rival subinterval); Ratcliffe (containing the Midale subinterval); and uppermost Popular interval (Figure 3). The first illustration of these intervals, including the Canadian nomenclature, was published by Anderson and others (1960), Figure 3. In 1966, Carlson and Anderson returned the Madison to Formation status within North Dakota.

The North Dakota Geological Survey has informally adopted Smith's recommendations. This paper will also use Smith's nomenclature. The author has also informally subdivided the Tilston interval into two units, basal T-1 (Thomas' MC-1) and upper T-2 (Thomas' MC-2). T-1 and T-2 are used by the author to better conform with current usage (Figure 7).

STRATIGRAPHY

Mechanical Log Characteristics

Mechanical logs consisting of spontaneous potential, resistivity, gamma ray and neutron logs were used to determine thickness, lithology and correlation of the Tilston interval, and to assess petroleum potential (Figure 8). The base of the Tilston T-1 (top of the Bottineau interval) is marked by a decreasing resistivity, a negative-going self potential, and a decrease in the radioactivity of the gamma ray log. The top of the T-1 (the base of the T-2) is marked by an increasing resistivity and a positive-going self potential. The top of the Tilston T-2 (the base of the Frobisher-Alida) is marked by a decreasing resistivity and a negative-going self potential.

Throughout the Tilston T-l unit, the self potential is basically a "quiet" curve. The resistivity curve of the T-l was most useful in delineating the porosity of the lithology. The gamma ray log was useful primarily in Logan County, North Dakota, and in the western boundary of the study area where the shale or silt content increased and the anhydrites of the T-2 unit changed to a shale facies.

Underlying Unit

The Tilston interval conformably overlies the Flossie Lake subinterval of the Bottineau interval (Heck, 1978). Throughout the study area, the Flossie lake subinterval consists of interbedded

mudstone, packstone and grainstone deposited in an open shelf, shallow marine environment (Heck, 1979).

Tilston Interval

The Tilston interval is composed of carbonates and evaporites. For the purposes of this report, the Tilston has been subdivided into two informal units, or subintervals. This subdivision, first proposed by Thomas (1954), is based on mechanical log curves, and does not represent lithologically homogenous units.

The lower unit, T-1, is composed almost entirely of "clean" carbonates. However, the argillaceous content does increase near the contact with the underlying Bottineau interval. The limestones range from oolitic and skeletal grainstone, to mudstone. The T-1 unit varies in thickness from 0 feet on the erosional edge to 300 feet in Bottineau County, North Dakota.

The uppermost unit, T-2, is composed mainly of anhydrite, interbedded anhydrite-dolomitic mudstone, and dolomitic mudstone. The average thickness of the T-2 unit is thirty feet, but varies from 0 feet on the erosional edge to 50 feet in the western portion of the study area.

The Tilston interval may be subdivided into four laterally extensive major facies and two geographically restricted facies. The four major facies include a basal subtidal facies, shoal facies, tidal flat facies, and supratidal facies. The two geographically restricted facies consist of a lagoonal facies and a clastic facies. The latter two facies are found only in the southeastern corner of the study area in Logan County, North Dakota, and will be discussed in greater detail in a later section.

Overlying Unit

The Tilston interval normally is conformably overlain by the Frobisher-Alida interval, except where it has been removed by pre-Mesozoic erosion. At the subcrop, where the Frobisher-Alida has been removed, the Tilston is overlain by Mesozoic-age sediments. In the northern one-third of the subcrop, the Triassic Spearfish Formation overlies the Tilston, and sediments of Jurassic age overlie the remaining southern two-thirds of the subcrop area.

The Frobisher-Alida interval is composed predominantly of shallow marine carbonates (Gerhard et al., 1978). They have proposed that the diagenetic fabric of the carbonates of this interval indicate an intertidal to supratidal diagenetic environment.
FACIES ANALYSIS

General Statement

For the purposes of this report, the Tilston interval has been subdivided into six facies by the author. These facies subdivisions are based primarily on well cuttings, core analysis and electrical logs. A series of three west-east cross-sections (Figures 9, 10, 11, 12) illustrate the relationships of these facies.

The names applied to these facies are based on their characteristic lithology and interpreted environment of deposition. Dunham's (1962) classification of carbonate rocks was used to describe the fabric of the various lithologies of the facies of the Tilston interval. Appendix B lists the well cutting and core descriptions.

Subtidal Facies

Location

The basal facies of the Tilston interval is typically the subtidal facies. This facies overlies the Flossie Lake subinterval of the Bottineau interval (Heck, 1978). The subtidal facies has a thickness ranging from 0 to 277 feet and is best developed in the northern portion of the study area (Figure 4). Unfortunately, very few core samples are available from this facies.

Lithology and Fauna

The subtidal facies is composed predominantly of wackestone and packstone. Some mudstone and skeletal and oolitic grainstones Fig. 9. Index map for facies cross-sections in central North Dakota.

.

å

-

-

.

Fig. 10. Facies cross-section A-A' through the northern portion of the study area.

.

ø

ø

0

۰

÷

۲

-6

Fig. 11. Facies cross-section B-B' through the central portion of the study area.

-

Fig. 12. Facies cross-section C-C' through the southern portion of the study area.

6

ø

.

ŵ

ø

are found within the facies. The skeletal allochems consist of crinoid fragments, brachiopods, rugose coral and bryozoans. Micritized grains were also found within this facies. Crinoid fragments are the most abundant allochems. Some whole rugose corals and brachiopods are found within the facies, particularly in the lower portion. The skeletal allochems occasionally are abraded.

The matrix of the subtidal facies consists primarily of micrite. Subsequent diagenesis has partially dolomitized much of this micrite matrix. The argillaceous content of the facies increases near the contact with the underlying Bottineau interval (Figure 13).

Environmental Interpretation

Based on the whole rugose corals and brachiopods in a mud matrix, the subtidal facies is interpreted to have been deposited in a very shallow, low energy, open marine shelf environment. The presence of bioturbation, large amounts of crinoid, rugose coral and brachiopod debris indicates the shallow water depth. The predominate wackestone and packstone fabric also indicates shallow water deposition (Wilson, 1975, p. 65; Milner, 1976; Handford, 1978).

The presence of occasional grainstones, oolites and mudstones are the result of local variations in the environment. These variations may be the result of: water depth caused by bottom topography; biologic production or bioturbation; sedimentation rates; chemical changes caused by variation in water depth or bottom topography or both. The high clay concentration found only at the base of this facies is the result of a decrease in clasic input that had continued from Bottineau interval sedimentation (Heck, 1979) to early Tilston sedimentation.

Fig. 13. Core slab of argillaceous wackestone near the base of the Tilston interval. Width of core slab is 3.5 inches.

6

ŵ

.

Shoal Facies

Location

The shoal facies is stratigraphically above and interfingers with the subtidal facies. It ranges from 0 to 80 feet thick. The best developed shoal facies is found in the central portion of the study area, where the oolites and grainstones are thickest and most abundant (Figure 11). There are no core samples available from the shoal facies, and the lithologies were determined from well cuttings. Fuller (1956) and McCabe (1959) have described oolitic shoals at this same stratigraphic level in Manitoba and Saskatchewan.

Lithology and Fauna

The shoal facies is predominantly composed of grainstone, both skeletal and oolitic. Some mudstone, wackestone, and packstone are also present in this facies. In thin sections, the grains occasionally show evidence of banding or superficial coatings. A spherical grain grainstones with a clear dolomite cement and packstones with high spherical moldic porosity were considered to have been oolitic packstones.

The skeletal allochems in the skeletal grainstones are abraded and show evidence of rounding. Again, as with the oolitic grainstones, the grains are cemented with a clear primary dolomite cement. The predominate skeletal allochem is crinoidal. Lesser amounts of brachiopod and rugose coral allochems are present.

Environmental Interpretation

The shoal facies is interpreted to have been deposited in normal marine shallow water. Modern colites from Bahama have been found to be

forming in less than six feet of water (Purdy, 1963). Also Newell and others (1960) have concluded that optimum oolite growth occurs in a heated, shallow water turbulent environment that has normal marine water or current movement through the shoal. If this analog can be applied to the Tilston oolites, then they, too, indicate an agitated environment with a water depth of six feet or less.

The presence of grainstones and mudstones within the facies indicates fluctuations in water depth, sedimentation rates, or chemical environment.

The few mudstones which occur may be interpreted as a supratidal or tidal flat deposits caused by emergence due to a further drop in sea level or by sediment accumulation. Handford (1978) has found supratidal mudstones capping oolitic shoals in the Mississippian of the Cumberland Plateau. Alternately, the mudstones may represent an interfingering relationship of the tidal flat facies with the shoal facies. It is also possible that the mudstones may be a lagoonal deposit, such as those found landward of modern shoals (Wilson, 1975, Figure II-4).

Tidal Flat Facies

Location

The tidal flat facies is located stratigraphically above and shoreward of the shoal facies and ranges from 0 to 65 feet thick. The thickest and best developed sediment of the tidal flat facies is found in the southern portion of the study area (Figure 12).

Lithology and Fauna

The tidal flat facies is composed primarily of mudstone. Core samples from this facies reveal a high percentage of anhydrite, particularly near the upper portions. A few wackestones and packstones, and, rarely, grainstones are also found within the tidal flat facies. The mudstones are usually fine-grained and are commonly bioturbated. These mudstones also exhibit desiccation cracks, especially in the upper portions of the facies.

Core from NDGS Well No. 961, located in Bottineau County, North Dakota, from a depth of 3017 feet, shows a cyclical and gradational pattern from a grainstone to a mudstone (Figure 14). Later cycles, however, are not as well-defined. The sediments in this cyclic section show evidence of bioturbation as well as mechanically abraded skeletal allochems.

Anhydrite is found throughout the tidal flat facies. It is present as an infilling in desiccation cracks and solution porosity, and also as nodules. The anhydrite is abundant in the upper portions of the facies where it commonly appears as nodules and, occasionally, interbedded with dolomitic mudstone.

The tidal flat facies contains a few skeletal allochems consisting primarily of abraded crinoid fragments. Brachiopods are also found on bedding planes, and exhibit evidence of abrasion. Some broken fragments of rugose coral are also found within this facies. Ostracods are common in this portion of the Tilston interval.

Fig. 14. Core slab of cyclical and gradational pattern from a grainstone to a mudstone. Width of core slab is 3.5 inches.

Environmental Interpretation

This facies is interpreted as having been deposited in a tidal flat environment as based on the occurrence of fine-grained dolomitic mudstone, the presence of anhydrite, and the sparsity of skeletal allochems, and also on its stratigraphic position between the shoal facies and supratidal facies.

The cyclic pattern discussed in the previous section indicates the slightly fluctuating environment. The grainstones indicate an environment, such as a beach or bar, with sufficient energy to remove the fine-grained sediments (Gerhard, In Press). Fluctuations of sea level, or possibly bar migration, created conditions conducive to deposition of finer grained sediments. Biologic activity probably aided in the formation of the gradational cycles.

Alternately this cyclic pattern may also have been developed within a tidal pond. During periods of very high tides or storms the sediments were suspended, or the muds were winnowed out, resulting in a grainstone or packstone. As the water receded, tidal ponds were formed in depressed areas and later bioturbation, or settling rates or both resulted in the formation of the gradational texture. This latter interpretation, however, does not appear as likely since, during the length of time the tidal pond was in existence, the burrowing or browsing organisms should have caused the entire sequence to become homogenous.

The presence of anhydrite within this facies suggests some restriction of normal marine circulation. Wilson (1975, p. 68-69) has applied some of the characteristic features of this environment

to the restricted marine, protected environment, such as tidal ponds, pools, flats and channels. Laporte (1967) has also described the intertidal environment having calcarenites contained within mudstone. Roehl (1967) has described graded bedding from the Andros Island, Bahama, as follows: ". . . (T)he gradual reduction of shelf flow and current velocity results in the deposition of graded bedding." Butler (1969), working in the Arabian Trucial Coast, as well as Kahle and Floyd (1971), have also noted the dolomitic mudstone and anhydrite association in a tidal flat environment.

Supratidal Anhydrite Facies

Location

The supratidal anhydrite facies is located stratigraphically above and lateral to the tidal flat facies and is the uppermost facies of the Tilston interval. The T-2 unit consists primarily of this facies and the upper portion of the tidal flat facies. The supratidal anhydrite facies ranges in thickness from 0 to 40 feet thick.

Lithology and Fauna

This facies is composed primarily of anhydrite with increasing carbonate mudstone in the lower portions of the facies. The anhydrites occur in three main forms. The most abundant is "chicken wire" anhydrite. These anhydrites are almost pure, with the only carbonate being a fine-grained dolomitic mudstone, causing the chicken wire texture. The second most abundant form is anhydrite interbedded with fine-grained dolomitic mudstone. The third form of anhydrite occurs as infilling burrows, solution pores, and desiccation features. There appears to

be a gradation from the burrow and desiccation infilling to laminated anhydrites and carbonates to almost pure anhydrites.

Skeletal allochems are rare within the supratidal anhydrite facies, occurring only in the basal portion. The most common skeletal allochems are crinoidal debris and rare brachiopods. Occasionally ostracods are abundant, usually in areas of increased argillaceous content. The ostracods probably lived in tidal ponds or pools.

Environmental Interpretation

The supratidal anhydrite facies is interpreted to have been deposited in a sabhka-type environment. The presence of nodular anhydrite has been found to be a common occurrence in the modern sabhka environments of the Persian Gulf (DeGroot, 1973) and the Trucial Coast, Arabian Gulf (Butler, 1969). Roehl (1967) has interpreted the nodular anhydrite to have developed within a supratidal environment. Although the laminated anhydrite may indicate a subtidal origin (King, 1947) the association with nodular anhydrite, dolomitic mudstone, and desiccation features gives credence to origin in a supratidal environment. The sparsity of skeletal allochems and the small amount of carbonate found within these facies are also indicative of this environment (Wilson, 1975, p. 27).

Geographically Restricted Facies

The two geographically restricted facies, lagoonal and clastic facies, are restricted to the extreme southeastern portion of the study area. The anhydrites of the T-2 unit are not present in this area and the clastic facies overlies the lagoonal facies (Figure 12).

Lagoonal Facies

Location

The lagoonal facies is located laterally within the shoal facies in Logan County, North Dakota (Figure 12). This facies bisects the shoal facies in NDGS Well No. 590. In this well, the entire Tilston section below the clastic facies is composed of the lagoonal facies. To the east, the lagoonal facies is found to lie stratigraphically above the shoal facies and below the clastic facies.

Lithology and Fauna

The lagoonal facies is composed entirely of mudstone. Few skeletal allochems are found, and, when present, are mainly crinoidal allochems. If core becomes available, however, it may reveal a more varied lithology and more abundant skeletal allochems.

Environmental Interpretation

This facies is interpreted to have been deposited in a shallow, subtidal, protected lagoonal environment. It is associated with oolites both shoreward and seaward suggesting that this facies was deposited within an oolitic shoal area. The shoals provided the protection from wave or current energy, thus enabling the formation of a lagoon. The homogenous mudstone found within the lagoonal facies is indicative of a lower energy, protected environment (Wilson, 1975, p. 68; Purdy, 1963).

Clastic Facies

Location

The clastic facies is restricted to Logan County, North Dakota and appears to be stratigraphically equivalent to the supratidal anhydrite facies. The clastic facies overlies the lagoonal facies, and in turn is overlain by Frobisher-Alida rocks, except at the erosional subcrop (Figure 12).

Lithology and Fauna

The clastic facies is composed predominantly of iron-stained sand, silt and clay. A few carbonate chips were also found within this facies which are commonly stained red, pink, or maroon, and consist of mudstone or wackestone. Due to the lack of core, it could not be determined if these carbonate chips were from the Tilston or the Frobisher-Alida interval.

Environmental Interpretation

The clastic facies is interpreted to have been deposited nearshore in a fluvial or deltaic environment. The red bed type staining and lithology indicate a nearshore environment (Todd, 1976). If the carbonate chips are from this section, their presence may indicate an interfingering facies relationship between the clastics and the carbonates. At times of higher water level, the environment was conducive to carbonate deposition; during periods of lower sea level, the clastic sand, silt, and clay were deposited.

Because the clastic facies was found in adjacent wells, all of which were overlain by Frobisher-Alida sediments, the author is assuming that the clastics are of Tilston age. However, because the clastics occur at the top of the section, it is possible that they could be a basal facies of the Frobisher-Alida. McCabe (1959) has also noted a clastic facies of the supratidal facies in Manitoba.

In the extreme southeastern portion of the study area, at NDGS Well No. 1835, Logan County, there is documented evidence of karst development (Carlson, 1958; Ballard, 1963). The clastics from NDGS Well No. 1346 were initially thought to be caused by weathering and subsequent deposition of iron stained clastics, such as were found in Well No. 1835. However, the mechanical logs show normal curves both above and below the clastic facies in the Tilston and Frobisher-Alida intervals. The clastics can also be correlated through surrounding wells, both by mechanical logs and samples, and are found at the same stratigraphic level.

PALEOGEOGRAPHY

The sediments of the Tilston interval have a two-fold distribution pattern. The sediments thin and environmentally shallow from west to east, and also from north to south. The west to east shallowing is evident from the facies distribution. During early Tilston deposition, the western portion of the study area was a shallow subtidal environment, with a shoal environment to the east. Near the shoreline was the tidal flat environment, and the sabhka environment was to the east of the tidal flat environment.

The second, less obvious, shallowing was from north to south. In the northern portion of the subtidal facies, the thickest and deepest water facies of the Tilston interval is found. The subtidal facies thins to the south. The shoal facies is best developed in the central portion of the study area and the tidal flat facies is thickest in the southern portion. The clastic facies is also found in the southern portion of the study area. Fuller (1956) and McCabe (1959) have also noted this thinning and shallowing in the Canadian portions of the Williston basin.

The north to south shallowing is interpreted to be the result of the fact that the Tilston depocenter was located in Bottineau County, North Dakota. The deepest area, penetrated by the Blanche Thompson NDGS Well No. 38 in Bottineau County, was proposed to have been the result of salt solution (Anderson, 1958; Anderson and Hunt, 1964; Carlson and Anderson, 1966). This greater water depth was too deep

to allow major shoal development and resulted in the deposition of thicker subtidal sediments.

The Tilston rocks are thickest throughout the northern portion and thin to the south and to the east (Figure 4). This thickening near the international border has also been noted by Porter (1955) in Saskatchewan, where the sediments thin to the north. This same series of facies has been described by Thomas (1954), Fuller (1956), McCabe (1959) and Thames (1959) for the MC-1 (T-2 of this report) and MC-2 (T-2) beds of Saskatchewan and Manitoba. Kent (1974) noted the same facies distribution in western Saskatchewan, except the supratidal anhydrite facies was not deposited.

In the central portion of the study area, the water became shallow enough to provide the thicker oolite shoals and grainstones. The shoal facies is best developed here.

Further south, the water was too shallow, or the physical or chemical conditions were not conducive to thick subtidal or shoal facies development. This is also indicated by the thicker tidal flat facies and the occurrence of the red bed clastic facies and lagoonal facies located in this portion of the study area.

These facies distributions and lithologies are a result of regression during deposition of the Tilston interval (Figure 15). This has also been reported by previous authors (Fuller, 1956; McCabe, 1959; Carlson and Anderson, 1966).

The basal sediments were deposited on a broad, shallow open marine shelf. Shaw (1964, p. 5), Irwin (1965) and Wilson (1975) have interpreted the ancient shelves and platforms to have been broad, Fig. 15. Diagrammatic illustration of the gradual regression during the Tilston interval.

-

ø

0-

•

shallow, low slopes, a few tens of meters deep and hundreds of miles wide, with low wave and current energy. This conclusion seems reasonable when one realizes how a slight change in the physical, chemical, or biological environment can effect large areas.

Wilson (1975, p. 42) has described a general regressive sequence model for epeiric seas to be a succession from lime muds to grainstones, overlain by mud which is capped by evaporites. The predominant lithology, packstone and wackestone, indicates deposition in a low energy, open marine environment. However, the oolites and grainstones indicate the existence of areas of shallower depth, with higher energy. The transition from a lower energy to a higher energy environment implies an increase in wave or current energy caused by a decrease in water depth due to a drop in sea level or progradation or both. Shaw (1964) postulates that winds may have created local high energy environments.

The predominant lithology above the shoal facies is a mudstone which, in places, contains secondary anhydrite infilling. This facies indicates a continual decrease in water depth or progradation, coupled with restricted circulation which would allow precipitation of the evaporites. It is possible that the shoals provided the barrier which would allow an increase in salinity. However, it is also possible that the low slopes of the epeiric seas may have caused the high salinity (Shaw, 1964). These factors, taken in conjunction with the transition from subtidal to shoal deposits, give credence to the regressive nature of the Tilston seas on the eastern margin of the Williston basin.

The deposition of supratidal anhydrites marks the final stage of Tilston regression. The westernmost extent of the anhydrites is

interpreted to indicate the position of the shelf break. Beyond this point, the deeper water precluded the precipitation of anhydrite because normal marine circulation did not permit the increased salinity necessary for the precipitation of anhydrites.

A probable sequence of events is as follows:

 Regression from the northeast (Porter, 1955; McCabe, 1959; Carlson and Anderson, 1966) began during Bottineau interval sedimentation (Heck, 1979).

2. Tilston interval sedimentation began in a shallow, low energy, open marine environment, with initial sediments having a higher clastic content.

3. With continual regression, sea level had dropped, permitting areas to be developed into colitic shoals and permitting deposition of grainstones, and, possibly, still permitting normal marine deposition landward in lagoonal areas.

4. With further regression, possibly aided by progradation of sediments, a tidal flat environment was created.

5. With continued regression or progradation or both, restricted marine circulation resulted in the increased salinity indicated by the presence of the evaporites found within the upper portions of the tidal flat facies.

6. Tilston deposition ended during a final regressive phase, permitting the deposition of supratidal sabhka sediments over much of the eastern flank of the Williston basin of North Dakota and Canada.

 A transgression permitted the deposition of the sediments of the overlying Frobisher-Alida interval.

PETROLEUM POTENTIAL

General Statement

As of January 1, 1979, the Tilston interval has produced 710,090 barrels of oil from the North Souris Field in Bottineau County, North Dakota (North Dakota Geological Survey, 1979). In Manitoba, 416,742 barrels have been produced from the Tilston as of June 1, 1978 (McCabe, written communication) and as of January 1, 1978, 19,180,891 barrels have been produced in Saskatchewan from the interval (Gillard, written communication). Also in Saskatchewan as of January 1, 1978, the Alida-Tilston undifferentiated has produced 3,099,194 barrels and 16,379,721 barrels from the Tilston-Souris Valley undifferentiated (Gillard, written communication). Although there have been a few shows from the Tilston scattered throughout the study area, the shows have generally been poor (Scott, 1963) (Figure 1).

Fuller (1956) has described four characteristics of Tilston petroleum occurrence in Saskatchewan: (1) oil is trapped in a southwestnortheast direction, structurally high, but stratigraphically low within the section; (2) pools are found in oolitic facies below anhydrite; (3) pools are trapped by updip porosity barriers due to secondary alternations, and (4) gravity of oil declines in a northeast-southwest direction (to the southwest). Christopher, Kent and Simpson (1971) state that updip porosity change and updip anhydrite infilling are characteristics within the Mississippian sediments which are conducive to petroleum

entrapment. Anderson (1958) has also discussed characteristics of Mississippian strata which indicate its potential for petroleum occurrences. They are: (1) updip facies change from porous limestone to anhydrite, or porous limestone to dense limestone, (2) porous horizons associated with structure, (3) wedge-out of Mississippian sediments at the unconformity. In addition McCabe (1959) states that in the eastern flank of the Williston basin a topographic high with greater than twenty five feet per mile of updip closure would constitute a potential trap.

The Tilston interval has many of the characteristics described above which are associated with petroleum occurrence. The anhydrites of the T-2 unit may act as an impermeable barrier to vertical migration, also creating a channeling effect on petroleum migration. If any hydrocarbons are introduced into the Tilston in the west they must migrate under the anhydrites of the T-2 unit. There are facies changes from porous to dense limestones as well as porosity changes caused by the deposition of secondary anhydrite. There are colitic shoals and grainstones within the Tilston interval and these types of rocks have produced reservoir strata elsewhere (Choquette and Traut, 1963; Cussey and Friedman, 1977). The subcrop area of the Tilston interval has been exposed to secondary alteration, causing both fresh water diagenetic changes as well as deposition of a secondary anhydrite seal over the sediments at the unconformity. Cussey and Friedman (1977) and Gerhard and others (1978) have noted that phreatic fresh water diagenesis yields good preserved porosity.

To assess the petroleum potential of the Tilston interval in North Dakota, the author looked for four possible types of hydrocarbon entrapment. They are: (1) paleogeomorphic trap, (2) wedge-out at the unconformity, (3) structural closure with an anhydrite cap, (4) updip facies change. There is also the possibility that combinations of the above-mentioned types of traps exist within the interval. In determining the petroleum potential of the Tilston, the author constructed cross-sections of mechanical logs from the study area, and looked for areas where porosity zones or areas might be conducive to hydrocarbon entrapment. McCabe (1959) states that the low argillaceous content of the carbonates makes the resistivity curve an important tool for the exploration of petroleum in the Mississippian rocks in that it may be used as an indicator of porosity.

Migration

Meissner (1978), Dow (1974) and Williams (1974) describe the Bakken Formation as the source rock for Madison oil. In their studies, these authors have illustrated the areas in which the Bakken has been subjected to sufficient heat and pressure to expel the hydrocarbons (Figure 16). Dow (1974) describes the migration path of the Bakken oil within the Williston Basin. Meissner and Dow both postulate that the oil migrated vertically through fractures from the Bakken to the Poplar evaporites. When the hydrocarbons reached this impermeable barrier, they migrated laterally beneath the evaporite seal. The petroleum was trapped in areas of structural close or at the unconformity.

The question which arises is whether hydrocarbons were ever introduced into the presently non-producing areas of the Tilston. According to Dow (1974), only the northern portion of the study area received hydrocarbons (Figure 17). If Dow is correct, no hydrocarbon reservoirs may be expected outside of this area. However, although there is no established production outside Dow's area, there have been scattered shows throughout the study area. Furthermore, some oil has been recovered from southeastern Morton County, North Dakota, which is east and south of Dow's projected limit of hydrocarbon migration (Figure 1).

If the scattered shows in the study area can be taken as an indication that there has been more extensive hydrocarbon migration into other portions of the study area, then there remains the possibility of the discovery of petroleum reservoirs, albeit the likelihood of discovering a large field within the study area is small. In the following portions of this report, the author will optimistically assume, for purposes of discussion, that hydrocarbons may be found within the study area.

Paleogeomorphic Trap

The importance of the paleogeomorphic type of entrapment is evident when one considers the fact that the existing Tilston production in North Dakota, Manitoba and Saskatchewan is from this type of trap. Miller (1972) offers a good review of the methods of exploration for the paleogeomorphic type of trap. The most convenient tool for exploration for this type of trap is the isopachous map.

- "IMMATURE" BAKKEN FORMATION
 - TILSTON INTERVAL OCCURRENCE

Fig. 16. The areal extent of the Bakken Formation in North Dakota and interpreted source-rock "maturity" (after Meissner, 1978).

LATERAL MIGRATION IN MADISON ROCKS

Fig. 17. Lateral hydrocarbon migration paths in Madison rocks (after Dow, 1974).

The paleogeomorphic type of trap is formed by erosion of the Tilston sediments by fluvial or terrestrial processes. This erosion creates a high, or cuesta, adjacent to erosional channels. Subsequent deposition of overlying impervious Mesozoic sediments creates the capping mechanism for the trap (Figure 18). Given the presence of a carbonate with sufficient porosity, a hydrocarbon reservoir is then formed, capped by the Mesozoic strata. Miller (1972) notes that weathering of the exposed zone has also enhanced the porosity of the potential reservoir rocks. This enhancement of porosity by subaerial diagenesis is also supported by research by Gerhard and others (1978) and Cussey and Friedman (1977).

To assess the possibility of the existence of a paleogeomorphic trap within the study area, the author overlaid an isopachous map of the overlying Mesozoic sediments on an isopachous map of the Tilston interval (Figures 19, 20). The areas of interest are where thick Tilston rocks are overlain by thin Mesozoic rocks.

In the northern one-third of the subcrop, the Tilston is overlain by Triassic rocks, and in the southern two-thirds the Tilston is overlain by rocks of Jurassic age. The Triassic Spearfish Formation was used for the Triassic isopachous map. The values expressed by the Jurassic contour lines are based on a marker that could be correlated throughout that portion of the subcrop.

Isopachous mapping of the Tilston interval subcrop and the Triassic Spearfish Formation reveals two potential areas for hydrocarbon entrapment by a paleogeomorphic type of trap (Figure 19). The first area is in northern Bottineau County, North Dakota, which

曲

Ð

Fig. 18. Diagrammatic cross-section where hydrocarbons are trapped in a cuesta (topographic high) created by differential erosion at the Tilston interval subcrop.

Fig. 19. Isopachous map of the Tilston interval and the Traissic Spearfish Formation in the northern one-third of the Tilston interval subcrop.

٢

è

Fig. 20. Isopachous map of the Tilston interval and the basal Jurassic rocks in the southern two-thirds of the Tilston interval subcrop.

is the area of the North Souris Field. As can be observed from the map, the contour lines indicate thick Tilston rocks and thin Spearfish rocks. The second area is in southeastern Bottineau County, where a bending of the contour lines indicates a thick Tilston and thin Spearfish.

In the southern portion there are again two areas of possible interest (Figure 20). The first area is in southwestern Benson County, North Dakota, and the second area is in southern Foster County, North Dakota, and southern Wells County, North Dakota. There is a possibility of a third area in southern Stutsman County, North Dakota; however, the control for the Jurassic and Tilston contour maps is poor, particularly in the southern portions of the subcrop.

Wedgeout-Type Trap at the Unconformity

The wedgeout trap is formed by pre-Mesozoic erosion, truncating the Tilston and other Mississippian strata, on the eastern portion of the Williston basin (Figure 21). The subsequent deposition of impervious Mesozoic sediments forms the capping mechanism for this type of a trap. Secondary anhydrite deposition may also aid in the formation of the cap in this type of trap. The shale content near the Tilston and at the base of the interval may preclude petroleum migration to the east, out of the Tilston interval, and into the underlying Bottineau interval.

The cross-sections (Figures 22, 23, 24, 25, 26) show that the anhydrites of the T-2 unit form an effective barrier for vertical migration. If migration continued to the subcrop, as is the case in the producing areas, there is potential for hydrocarbon accumulation in the Tilston interval at the subcrop, trapped by a wedgeout type of trap. The mechanical logs indicate that there are some porosity zones in the

WEDGE-OUT AT THE TILSTON SUBCROP WITH IMPERVIOUS MESOZOIC CAP

6

.

6

۲

42

600

Fig. 21. Diagrammatic cross-section of possible hydrocarbon entrapment in a wedge-out trap formed by pre-Mesozoic uplift and erosion followed by deposition of Mesozoic sediments creating an angular unconformity at the Tilston interval subcrop.

Fig. 22. Index map for the mechanical log cross-sections through central North Dakota.

.

.

1

.

4

.

۲

-

6

.

.

1

÷

Fig. 23. Mechanical log cross-section D-D' through the extreme northern portion of the study area.

Q

.

9

-

-

N

M

T_V

W

AMAN

carbonates at the subcrop, and this porosity may be sufficient to form a potential reservoir. The fresh water diagenesis mentioned earlier may also aid in the formation of the reservoir porosity.

An example of the wedgeout type of trap can be observed on the eastern portion of cross-section A-A' (Figure 24). At NDGS Well No. 544 and No. 83, the effect of pre-Mesozoic erosion is apparent. As indicated by the resistivity curve, there may be sufficient porosity to act as a reservoir. In Well No. 83, the resistivity curve indicates a decrease in porosity in the upper portion of the Tilston interval, which may act as the seal for a reservoir.

Structural Closure with Anhydrite Cap

Isostructural mapping of the study area illustrates the bowlshape nature of the eastern flank of the Williston basin (Figure 5). There is not enough control to determine the amount or extent of small structural closure within the Tilston interval. This does not, however, preclude the possibility of hydrocarbon entrapment by this mechanism.

The mechanical log cross-sections (Figures 23, 24, 25, 26) indicate that there may be sufficient porosity in the carbonates to act as a reservoir. The cap is provided by the anhydrites of the T-2 unit. As noted earlier, if there were any hydrocarbons introduced into the eastern flank of the Williston basin within the Tilston interval, the anhydrite would have a channeling effect on hydrocarbon migration. Assuming the possibility of structural closure, there exists a potential for entrapment within the Tilston interval by this mechanism.

Cross-section D-D' (Figure 23), across the northern portion of the study area, illustrates the possibility of sufficient porosity for a reservoir, particular in NDGS Well No. 940 and NDGS Well No. 960, below the T-2 unit anhydrites. If there is sufficient porosity, the existence of structural closure in this area may form a hydrocarbon trap.

On cross-section B-B' (Figure 25), there are some areas of interest. In NDGS Well No. 1516, the resistivity curve indicates a porosity zone at 6150 feet. In NDGS Well Nos. 693, 735, and 207, there is a porosity zone directly below the T-2 unit. If these curves do indicate sufficient porosity, then any structural closure in these areas may provide a hydrocarbon trap. McCabe (1959) states that only 25 feet per mile of counter regional dip is required to form a reservoir.

In the southern portion of the study area (Cross-section C-C', Figure 26), there may also be sufficient porosity to provide a reservoir. NDGS Wells Nos. 133 and 26 indicate porosity zones directly below the anhydrites. It may be noted at this point that the first Madison recovery in North Dakota was from Well No. 26. It is conceivable that the petroleum recovered from that test may have been trapped by this type of mechanism.

Updip Facies Change

The updip facies change is created by a change in porosity from a porous carbonate downdip to a tight carbonate updip (Figure 27). This may be the result of a change caused by facies migration or by secondary porosity infilling by anhydrite or dolomite.

õ

ä

40

.

The mechanical log cross-sections (Figures 24, 25, 26) reveal that a few areas within the study area have the potential for trapping hydrocarbons in this manner. As can be observed in the cross-sections, there are areas in which there is a porosity change from west to east. The porosity zones not only become less porous, but also thin to the east. It is through these porosity "wedgeouts," or "fingers," that the potential for hydrocarbon entrapment by this type of mechanism exists.

In NDGS Well No. 1516 (Cross-section B-B', Figure 25), the porosity zone at 6150 feet becomes less porous to the east. In general, there is an increase in resistivity (decrease in porosity) throughout the entire interval covered on the cross-section. In the area of NDGS Well No. 1211, there appears to be insufficient porosity to allow hydrocarbon migration further to the east. Assuming the existence of lateral closure, there exists a potential for hydrocarbon entrapment by this mechanism.

On cross-section C-C' (Figure 26), the resistivity curve from the well on the extreme western end of the section indicates a large interval which exhibits some porosity. Toward the east, the resistivity again increases, indicating a decreasing porosity. As mentioned previously, Well No. 26 was the first Madison recovery in the state. As can be observed by cross-section C-C', there is an increase in resistivity from the porosity zone in NDGS Well No. 26 to Well No. 756. It is possible that an updip porosity change could be responsible for the hydrocarbons recovered from Well No. 26.

Facies and Porosity Development

The subtidal facies, as determined by well samples and thin sections, reveals very little porosity. There are areas, on the mechanical logs from this facies, however, that indicate some porosity development. This is particularly evident in the western portion of the study area, as can be observed on cross-section C-C' (Figure 26).

In general, the grainstones of the shoal facies correspond to more porous zones on mechanical logs. Thin sections of well cuttings indicate the opposite. The grainstones appear to be tightly cemented by a clear dolomite cement. This discrepancy between the mechanical logs and the thin sections may be the result of the size of the well cuttings studied. Alternately, the mechanical logs may be responding to fractures or some other type of porosity which is not represented in well cuttings. There are areas, as evidenced in well cuttings, where oolites, or other spherical grains, have been dissolved, resulting in very high moldic porosity.

The tidal flat facies usually exhibits some moldic or solution porosity. This porosity is developed throughout the facies. However, only in the lower portions has the porosity been preserved. In the upper portions, secondary cementation, usually composed of anhydrite, has substantially reduced the porosity.

The supratidal facies and the lagoonal facies, as can be observed on mechanical logs or in core or samples, has almost no porosity. It is unlikely that within the supratidal facies any other type of porosity exists. The lagoonal facies, however, may, in areas adjacent to the clastic facies, have some porosity

development as the result of fresh water diagenesis.

The clastic facies, as evidenced by the mechanical logs, is generally a porous zone. However, because of the silt and clay content, the permeability may be inadequate for petroleum migration or accumulation.

There is also porosity developed within the Tilston interval that has no relation to the facies. As noted previously, the subcrop portion of the study area has been subaerially exposed. This exposure has resulted in enhanced porosity development, probably by fresh water diagenesis.

Also, the Tilston interval, as well as the entire Madison Formation, has areas or zones where fractures have increased the porosity of the rocks. This fracturing may be important when considering the large portion of the study area in which very few wells have been drilled.

Although there is not sufficient core to determine the extent of dolomitization of the Tilston rocks, this does not mean that porosity development by this mechanism is not important. Thin sections from the Tilston reveal some dolomitization throughout the interval. Usually, however, the dolomitization has effected only the matrix of the rock. It is possible that some areas of the Tilston have undergone extensive dolomitization and that this may have resulted in enhancement of the porosity, which may enable the migration and accumulation of petroleum in certain areas.

CONCLUSIONS

The sediments of the Tilston interval were deposited on a broad, shallow, open marine shelf, and have a two-fold distribution pattern. The rocks thin and environmentally shallow from west to east, and also from north to south. Vertically (from bottom to top), and laterally (from west to east) the facies are: subtidal, shoal, tidal flat, and supratidal anhydrite facies. There are two geographically restricted facies, the lagoonal and clastic facies found only in the southeastern portion of the study area.

The basal facies, the subtidal facies, is composed predominantly of a crinoidal, brachiopod, rugose coral wackestone. Overlying the subtidal facies is the shoal facies, characterized by grainstone, both oolitic and skeletal. The tidal flat facies is located above the shoal facies and consists primarily of mudstone with rare grainstones, packstones and wackestones. The supratidal anhydrite facies is typically the uppermost facies of the Tilston interval. An exception to this is in the southeastern portion of the study area (Logan County) where the clastic facies is the uppermost unit deposited. This facies consists of iron-stained clay, silt and sand.

The facies of the Tilston interval represent a regressive sequence for the eastern flank of the Williston basin. The subtidal facies was deposited in a normal marine environment. The shoal facies was deposited in normal marine very shallow water environment. With further regression, or progradation, or both, a restricted tidal flat

environment developed which allowed deposition of mudstone. The final regressive stage is marked by the deposition of the supratidal anhydrites over most of the eastern flank of the Williston basin. The westernmost extent of the Tilston interval is interpreted to be the area in which the Tilston interval is not differentiable from the overlying Frobisher-Alida interval due to the loss of the supratidal anhydrites. This occurs at approximately 102° west longitude. This area is also interpreted to be the location of the shelf break where, because of deeper water, the area had sufficient circulation to prohibit the salinity buildup required for the deposition of evaporitic sediments.

The Tilston interval currently produces petroleum in Manitoba, Saskatchewan and from the North Souris field in Bottineau County, North Dakota. In addition to known production the interval has other characteristics that indicate the possibility for additional production. They are: (1) the interval has scattered shows throughout the study area, (2) the interval contains porous zones or facies, (3) the interval is capped by an impermeable anhydrite, and (4) the interval is associated with an angular unconformity at the subcrop portion of the interval.

Four types of hydrocarbon traps indicate the potential for further production outside the established producing areas. Two types of traps, paleogeomorphic and wedge-out, occur on the subcrop portion of the Tilston interval. These are the result of pre-Mesozoic uplift and erosion followed by deposition of impermeable Mesozoic sediments. This series of events created an angular

unconformity and formed the wedge-out type trap. In addition to the formation of an unconformity, erosion at the subcrop resulted in the development of cuestas (topographic highs) adjacent to erosional channels. The subsequent deposition of impervious sediments created the capping strata of the paleogeomorphic type of trap. The third type of trap is due to porous zones or facies capped by impervious anhydrites associated with structure. The fourth type of trap is the result of updip porosity occlusions. The Tilston contains porous zones or facies that pinch out updip. This porosity pinch out is caused by either facies migration or by secondary porosity cementation by either dolomite or anhydrite.

APPENDICES

APPENDIX A

LIST OF WELLS USED IN THIS STUDY

LIST OF WELLS USED IN THIS STUDY

Explanation

The wells used in this study are arranged alphabetically by county and then numerically based on the standard Land Office Grid System. The tops of the units are given as depth in feet from the kelly bushing. The thickness is also given in feet.

BENSON COUNTY

T151N, R69W, S21, NESE, Shell Oil Co. - Christianson Hvinden No. 1
 N.D.G.S. No. 561

	К.В.	1510					
	T-2	2327					
	T-1	2340					
	Bottineau	2393			Thi	ckness	66
T151N	I, R70W, S10, N.D.G.S. No.	CNENW, 663	Shell	011	Co	Rudolph	Gigstad
	К.В.	1560					

A C 0 40 0	als of the st		
T-1	2502		
Bottineau	2604	Thickness	102

T151N, R71W, S26, SESE, D. D. Bills - Ruben Olson No. 1 N.D.G.S. No. 4108

К.В.	1574		
T-2	2700		
T-1	2720		
Bottineau	2818	Thickness	118

T152N, R69W, S8, NWMW, I. J. Wilhite - Engstrom No. 1
 N.D.G.S. No. 5082

К.В.	1613	
r-1	2465	
Bottineau	2492	

.

۲

Thickness 27

No. 1

T152N, R69W, S21, CSENE, Shell Oil Co. - Eilert Spidahl No. 1 N.D.G.S. No. 654

К.В.	1589		
T-1	2385		
Bottineau	2420	Thickness	35

T163N, R81W, S1, CSESW, Cardinal Drilling Co. - U.C.L.L. No. 1
N.D.G.S. No. 874

К.В.	1508		
T-2	3683		
T-1	3710		
Bottineau	3853	Thickness	170

T164N, R76W, S31, NESE, Leach Oil Co. & Cardinal Drilling Co. - Forsberg No. 1

N.D.G.S. No. 1411

۲

1

9

۲

К.В.	1846		
T-2	3177		
T-1	3187		
Bottineau	3300	Thickness	123

T164N, R77W, S33, NWNE, Lion Oil Co. - Skarphol No. 2 N.D.G.S. No. 961

К.В.	1605		
T-2	2964		
T-1	2980		
Bottineau	3080	Thickness	116

T164N, R77W, S33, NESW, Monsanto Chemical Co. - Berstein No. 1 N.D.G.S. No. 1011

К.В.	1579
T-2	2959
T-1	2986
Bottineau	3068

Thickness 109

T164N, R78W, S32, CNWNE, Lion Oil Co. - Hilmer Erickson No. 1 N.D.G.S. No. 286

К.В.	1539
T-2	3060
T-1	3097
Bottineau	3240

Thickness 180

T164N, R78W, S34, NWSW, Calvert Exploration Co. - Anderson No. 1
 N.D.G.S. No. 457

К.В.	1539		
r-2	3105		
Γ-1	3140		
Bottineau	3295	Thickness	190

T153N, R69W, S22, NWNE, Shell Oil Co. - Lars A. Togstad No. 1
 N.D.G.S. No. 678

К.В.	1673		
T-1	2474		
Bottineau	2505	Thickness	31

T153N, R71W, S25, SENW, The Superior Oil Co. - Vetter No. 1 N.D.G.S. No. 5204

К.В.	1627
T-2	2690
T-1	2712
T.D.	2760

.

1

9

۲

T154N, R70W, S31, CNWSE, Calvert Drilling Co. - John Stadum No. 1
 N.D.G.S. No. 632

К.В.	1637		
T-1	2594		
Bottineau	2666	Thickness	72

BOTTINEAU COUNTY

T159N, R74W, S18, NWNW, Superior Oil Co. - Feuerhelm No. 1
 N.D.G.S. No. 5503

К.В.	1476
T-2	2872
T-1	2897
T.D.	2932

T159N, R81W, S20, CSESE, Union Oil Co. - Steen No. 1
 N.D.G.S. No. 4790

К.В.	1517
T-2	4509
T-1	4522
Bottineau	4700

Thickness 191

T159N, R82W, S1, NWNW, Cardinal Drilling Co. - B. M. Keeler No. 1
N.D.G.S. 1069

К.В.	1536		
T-2	4440		
T-1	4455		
Bottineau	4650	Thickness	210

T160N, R75W, S6, SWSW, Champlin Petroleum Co. - Campbell No. 1 N.D.G.S. No. 4863

K.B. T-2	1477 2940	
T-1 Bottineau	3082	Thickness 142
T160N, R75W, S9 N.D.G.S. No	, SWSW, I. J. Wil o. 4645	hite & Glen Burton - Fraser No. 1
K.B. T-2 T-1	1509 2915 2950	
Bottineau	3062	Thickness 147
T160N, R75W, S2 N.D.G.S. N	3, SWNW, H. L. Hu o. 1577	nt - Albright No. 1
K.B. T-2 T-1 Bottineau	1487 2865 2890 2990	Thickness 125
T160N, R75N, S2 N.D.G.S. N	8, CSWNE, Monsant o. 1053	o Chemical Co Hagen No. 1
K.B. T-2 T-1 T.D.	1466 2898 2917 3023	
T160N, R76W, S2 N.D.G.S. N	4, NWNW, I. J. Wi o. 4644	lhite & Glen Burton - Roy Henes No. 1
K.B. T-2 T-1	1469 3010 3047	
Bottineau	3170	Thickness 160
T160N, R77W, S1 N.D.G.S. N	, CSESE, Davis 0: 5. 1481	ll Co Vikan No. l

К.В.	1467		
T-2	3133		
T-1	3177		
Bottineau	3295	Thickness	162

T160, R77W, S29, CNENW, Northwest Drilling Co. - Henry Schmidt No. 1 N.D.G.S. No. 362 1454 К.В. 3316 T-2 3352 T-1 Thickness 179 3495 Bottineau T160N, R78W, S10, SESE, Superior Oil Co. - Brandt #1 N.D.G.S. No. 3119 1462 K.B. 3420 T-2 T.D. 3438 T160N, R80W, S5, SWNE, Amerada Petroleum Corporation - Loddington No. 1 N.D.G.S. No. 962 1503 K.B. T-2 4021 4040 T-1Bottineau 4196 Thickness 176 T160N, R80W, S19, SENW, Phillips Petroleum Co. - Brandt No. 1 N.D.G.S. No. 2596 К.В. 1511 T-2 4212 T-1 4250 4396 Bottineau Thickness 184 T160N, R80W, S23, CNESE, Winona Oil Co. - Anderson No. 1 N.D.G.S. No. 1183 K.B. 1507 T-2 3988 T-1 4010 Bottineau 4185 Thickness 197 T160N, R81W, S5, NESW, Continental Oil Co. - Thompson No. 1 N.D.G.S. No. 4192 К.В. 1516 T-24245 4265 T-1 Bottineau 4440 195 Thickness T160N, R81W, S11, SENW, Chevron Oil Co. - Jack R. Rogers No. 1 N.D.G.S. No. 4362 К.В. 1508 T-2 4166 T-1 4187 Bottineau 4344 Thickness 178

۲

۲

٠

K.B. 1526 4370 T-2 4393 T-1 4670 Thickness 300 Bottineau T160N, R83W, S8, SESE, Cardinal Petroleum Co. & Gay Co. - W. Selk and U.S.A. No. 1 N.D.G.S. No. 3067 К.В. 1609 T-24753 4780 T-1 4854 T.D. T161N, R74W, S2, CSWNE, Cardinal Drilling Co. - Joseph Andrieux No. 1 N.D.G.S. No. 1102 1664 K.B. 2795 T-1 2821 Thickness 26 Bottineau T161N, R74W, S21, SWSW, Placid Oil Co. - P. B. Peterson No. 1 N.D.G.S. No. 1102 K.B. 1589 T-1 2878 Bottineau 2928 Thickness 50 T161N, R75W, S8, SWSW, Lion Oil Co. - Duraas No. 1 N.D.G.S. No. 1579 K.B. 1560 T-2 2938 T-1 2981 Bottineau 3102 Thickness 164 T161N, R75W, S12, CSWSW, Cardinal Drilling Co. - Bennison et al. No. 1 N.D.G.S. No. 348 K.B. 1603 T-2 2923 T-1 2930 Bottineau 2995 Thickness 72 T161N, R75W, S29, NWNW, Placid Oil Co. - Beyer No. 1 N.D.G.S. 1523 К.В. 1534 T-2 2946 T-1 2987 Bottineau 3108 Thickness 162

T160N, R81W, S31, SWSWSE, California Co. - Blanche Thompson No. 1

N.D.G.S. No. 38

۲

.

۲

۲

۲

T161N, R75W, S33, CNENE, Russel D. Garner - John Kippen No. 1 N.D.G.S. No. 1054 K.B. 1545 2928 T-22958 T-1 152 3080 Thickness Bottineau T161N, R76W, S1, SWNW, Placid Oil Co. - Stewart 1-6 N.D.G.S. No. 5507 K.B. 1581 2976 T-2 T-1 3030 171 3145 Thickness Bottineau T161N, R76W, S8, NWNW, I. J. Wilhite & Glen Burton - Wilhelm No. 1 N.D.G.S. No. 4646 1508 K.B. T-2 3076 T-1 3108 3250 Thickness 174 Bottineau T161N, R76W, S22, NENW, J. P. Owen - Waters No. 1 N.D.G.S. No. 544 1505 К.В. T-2 3040 T-1 3074 170 3210 Thickness Bottineau T161N, R77W, S22, CNESE, Calvert Exploration Co. - Herman Bollinger No. 1 N.D.G.S. No. 327 1481 K.B. T-2 3252 3284 T-1 3426 Thickness 174 Bottineau T161N, R77W, S24, NENE, Hunt Oil Co. - Norman Glin No. 1 N.D.G.S. No. 1527 1487 K.B. T-2 3156 T-1 3183 Bottineau 3318 162 Thickness

۲

.

۲

۲

.

T161N, R78W, S5, NWNE, Cardinal et al. - Hubert Thompson No. 1 N.D.G.S. No. 930 1493 К.В. T-23455 T-1 3482 173 3628 Thickness Bottineau T161N, R78W, S26, SENE, Cardinal Drilling Co. - Gilmore No. 1 N.D.G.S. No. 1667 К.В. 1479 3403 T-2 T-1 3433 Thickness 175 3578 Bottineau T161N, R79W, S21, SESW, Amerada Petroleum Corporation - Beauchamp No. 1 N.D.G.S. No. 893 1473 K.B. 3824 T-23852 T-1 Thickness 171 Bottineau 3995 T161N, R80W, S17, SWNW, Winona Oil Co. - Mina Gagnon No. 1 N.D.G.S. No. 1155 1510 K.B. 4025 T-2 T-1 4043 Bottineau 4198 Thickness 173 T161N, R81W, S2, CNENE, Union Oil Co. - Huber No. 1-A-2 N.D.G.S. No. 4924 К.В. 1514 4070 T-24080 T-1 4248 Thickness 178 Bottineau T161N, R81W, S15, NESW, General American Oil Co. of Texas - Sausker No. 1-15 N.D.G.S. No. 4844 K.B. 1511 T-2 4145 T-1 4164 171 Bottineau 4316 Thickness

۲

-

۲

١

9

T161N, R81W, S19, CSENW, Dakota Drilling Co. - Ole Anderson No. 1 N.D.G.S. No. 524 K.B. 1522 4224 T-2T-1 4250 186 4410 Thickness Bottineau T161N, R82W, S33, NWSW, Marathon Oil Co. - George Adams No. 1 N.D.G.S. No. 4918 K.B. 1561 4523 T-2 T-1 4540 Bottineau 4707 Thickness 184 T162N, R74W, S28, CNWNW, Calvert Exploration Co. - Carbonneau No. 1 N.D.G.S. No. 328 1895 K.B. T-1 3070 3100 Bottineau Thickness 30 T162N, R75W, S28, NENW, Placid Oil Co. - F. Kofoid No. 1 N.D.G.S. No. 1585 1705 K.B. T-2 3028 T-1 3040 Bottineau 3108 Thickness 80 T162N, R75W, S12, NWNW, Clinton Oil Co. - Thorson No. 1 N.D.G.S. No. 5764 K.B. 2240 T-1 3482 Bottineau 3525 Thickness 43 T162N, R76W, S9, NWNE, Placid Oil Co. - Jena Hansen No. 1 N.D.G.S. No. 1524 К.В. 1674 T-2 3066 T-1 3100 Bottineau 3225 Thickness 159 T162N, R76W, S14, NWNW, Lion Oil Co. - Wallace No. 1 N.D.G.S. No. 895 K.B. 1683 T-2 3050 T-1 3060 Bottineau 3176 Thickness 126

T162N, R76W, S35, CSWSW, Placid Oil Co. - Marvin Wolfe & Bank of N. D. No. 1 N.D.G.S. No. 1583 1627 K.B. 3023 T-2 T-1 3062 Thickness 174 Bottineau 3197 T162N, R77W, S9, CSENW, Hunt Oil Co. - Dunbar No. 1 N.D.G.S. No. 1584 1518 К.В. 3060 T-2 3083 T-1 Thickness 175 3235 Bottineau T162N, R77W, S14, SENE, Champlin Petroleum Co. - Champlin & Bridger & Dunbar No. 1 N.D.G.S. No. 5184 К.В. 1552 3098 T-2T-1 3118 174 Thickness Bottineau 3272 T162N, R78W, S12, SWSE, Phillips Petroleum Co. - Brandvold No. 1 N.D.G.S. No. 2638 1495 K.B. T-2 3108 T-1 3135 Bottineau 3285 Thickness 177 T162N, R78W, S2O, SESE, Amerada Petroleum Co. & Arex Corporation - Lila Stark No. 1 N.D.G.S. No. 3827 1502 K.B. T-2 3400 T-1 3430 Bottineau 3574 Thickness 174 T162N, R78W, S25, SWNW, Calvert et al. - M. McMillan No. 1 N.D.G.S. No. 2058 K.B. 1491 T-2 3290 T-1 3314 3418 T.D.

۲

6

T162N, R78W, S31, SESW, Amerada Petroleum Corporation - Lillestrand No. 1 N.D.G.S. No. 4655

К.В.	1486		
T-2	3355		
T-1	3386		
Bottineau	3532	Thickness	177

T162N, R79W, S3, CNESE, National Associated Petroleum Co. - Sarah G. Newhouse No. 1

N.D.G.S. No. 288

K.B.	1498
T-2	3517
T-1	3555
T.D.	3600

T162N, R79W, S14, CSENE, Calvert Drilling Inc. - Siercks No. 1
N.D.G.S. No. 839

К.В.	1500
T-2	3408
T-1	3447
Bottineau	3590

Thickness 182

T162N, R80W, S6, CSWNE, Signal Drilling and Exploration Inc. & Gulf Oil
Co. - Ole Haugen No. 1
N.D.G.S. No. 1670

K.B. 1511.6 T-2 3868 T-1 3900 T.D. 3947

T162N, R80W, S12, SWNW, Cardinal et al. - Jena Jenson No. 1
 N.D.G.S. No. 1899

К.В.	1493		
T-2	3680		
T-1	3703		
Bottineau	3860	Thickness	180

К.В.	1505
T-2	3943
T-1	3960
T.D.	4020

T162N, R81W, S31, NENE, Carter Oil Co. & Phillips Petroleum Co. - Oscar Fossum No. 1 N.D.G.S. No. 1431 1523 К.В. 4114 T-2 4130 T-1 186 Thickness 4300 Bottineau T162N, R82W, S34, NESE, Daves Oil Co. - Sterart No. 1 N.D.G.S. No. 1637 К.В. 1533 T-2 4173 4185 T-1 4245 T.D. T162N, R83W, S , NWNW, Lowell J. Williamson Inc. - Thorpe No. 1 N.D.G.S. No. 1439 1568 К.В. 4380 T-2 T-1 ? 180 Thickness Bottineau 4560 T163N, R75W, S27, CNESW, Calvert Exploration Co. - Christensen No. 1 N.D.G.S. No. 503 K.B. 2136 3400 T-1 Thickness 15 3415 Bottineau T163N, R76W, S18, CSESE, Calvert Williamson - Hagboe No. 1 N.D.G.S. No. 1302 1723 K.B. 3094 T-2 T-1 3124 Bottineau 3248 Thickness 154 T163N, R76W, S21, SENW, Placid Oil Co. - E. H. Paulson No. 1 N.D.G.S. No. 1524 К.В. 1835 T-2 3178 T-1 3190 122 3300 Thickness Bottineau

94

۲

T163N, R77W, S2, SESW, Lion Oil Co. - Magnussen No. 1 N.D.G.S. No. 170

К.В.	1669		
T-2	3062		
T-1	3090		
Bottineau	3230	Thickness	168

T163N, R77W, S3, NWSW, Champlin Petroleum Co. - Pederson No. 1
 N.D.G.S. No. 4625

K.B.	1632
T-2	3020
T-1	3026
T.D.	3030

T163N, R77W, S3, NENW, Cardinal Drilling Co. & Lonbert Oil Co. -R. Olson No. 1

N.D.G.S. No. 1953

К.В.	1638
T-2	3023
T-1	3045
T.D.	3085

T163N, R77W, S4, NESE, Hunt Oil Co. - Karolyn Nesteboe No. 1
 N.D.G.S. No. 1627

	1612
•	3005
1.0.1	3025
tineau	3123
tineau	3

1

۲

Thickness 118

180

T163N, R77W, S27, SENW, Lion Oil Co. - Einar No. 1 N.D.G.S. No. 939

К.В.	1563	
T-2	3048	
T-1	3094	
Bottineau	3228	Thickness

T163N, R78W, S9, NESW, Cardinal et al. - Ekrehagen Estate No. 1-A N.D.G.S. No. 4347

К.В.	1532		
T-2	3120		
T-1	3160		
Bottineau	3295	Thickness	175

T163N, R78W, S26, NWSE, Hunt Oil Co. - Nels Nelson No. 1 N.D.G.S. No. 1702 1508 K.B. 3184 T-23214 T-1 Thickness 176 3360 Bottineau T163N, R78W, S30, SWSW, Calvert et al. - L. T. Hanson No. 1 N.D.G.S. No. 1968 K.B. 1513 3268 T-2 T-1 3295 Thickness 172 3440 Bottineau T163N, R78W, S30, SWSE, Great American Exploration Co. - Nordmark No. 1 N.D.G.S. No. 1788 К.В. 1510 3186 T-2 T-1 3218 3360 Thickness 174 Bottineau T163N, R79W, S11, CNWSE, Cardinal Drilling Co. - Oscar Brenden No. 1 N.D.G.S. No. 240 К.В. 1509 T-2 3352 3387 T-1 3520 T.D. T163N, R79W, S29, NENE, Northwest Oil Drilling Co. - Dahl & State No. 1 N.D.G.S. No. 921 K.B. 1472 T-2 3488 3518 T-1 180 Bottineau 3668 Thickness T163N, R80W, S5, SESW, Cardinal Drilling Co. - U.C.L.I. & Zahn No. 1 N.D.G.S. No. 1207 K.B. 1502 3657 T-2 T.D. 3688 T163N, R80W, S11, CNWNE, Zach Brooks Drilling Co. - H. Haugen No. 1 N.D.G.S. No. 426 К.В. 1501 T-2 3504 T-1 3550 Bottineau 3684 Thickness 180

۲

1

۲

۲

8
97

N.D.G.S. No. 395 K.B. 1488 T-2 3424 T-1 3460 Bottineau 3596 Thickness 172

T164N, R80W, S36, NESENW, Ward & Williston Drilling Co. - State No. 2-A

BURKE COUNTY

T162N, R90W, S25, SWSE, Anschutz Corporation Inc. - Ormiston No. 1 N.D.G.S. No. 4599

К.В.	1957		
T-2	6273		
T-1	?		
Bottineau	6460	Thickness	187

T163N, R88W, S31, CSESE, Northern Pump Co. - Bauer No. 1 N.D.G.S. No. 1490

K.B.	1895
T-2	5838
T-1	?
T.D.	5940

-

۲

.

T163N, R92W, S12, CNENE, Mar-Win Development Co. - R. M. Hanson No. 3-D N.D.G.S. No. 3154

К.В.	1952		
т-2	6360		
T-1	?		
Bottineau	6547	Thickness	187

BURLEIGH COUNTY

T137N, R76W, S32, NWNWNW, Continental Oil Co. - McCay No. 1 N.D.G.S. No. 145

К.В.	1869		
T-2	3800		
T-1	3840		
Bottineau	3920	Thickness	120

T137N, R77W, S32, SESE, Caroling Hunt Trust Estate - Robert Nicholson No. 1
 N.D.G.S. No. 756

1891	
4012	
4048	
4130	Thickness
	1891 4012 4048 4130

T139N, R76W, S20, SESE, Chevron Oil Co. - Lang No. 1 N.D.G.S. No. 4208 К.В. 1938 T-23964 T-1 4003 T.D. 4141 T139N, R76W, S36, NENE, Caroline Hunt Trust Estate - Schlaback No. 1 N.D.G.S. No. 723 К.В. 1878 T-2 3753 T-1 3792 3877 Thickness 124 Bottineau T140N, R76W, S36, NWNE, Chevron Oil Co. - N. D. State No. 1 N.D.G.S. No. 4201 1875 К.В. 3808 T-2 T-1 3848 T.D. 3898 T140N, R77W, S3, CNWNW, Continental Oil Co. - Duemeland No. 1 N.D.G.S. No. 174 1981 K.B. T-2 4257 T-1 4300 Bottineau 4397 Thickness 140 T140N, R77W, S6, SWSWSW, Continental Oil Co. - Strat Test G-18 N.D.G.S. No. 19 К.В. 1909 T-24292 T-1 4340 145 Bottineau 4437 Thickness T140N, R77W, S11, CNWSE, Calvert Drilling Inc. & Leach Oil Corporation -Patterson Land Co. No. 1 N.D.G.S. No. 1409 К.В. 2019 T-24220 T-1 4256 Bottineau 4355 Thickness 135

98

T140N, R79W, S23, CNWNW, Caroline Hunt Trust Estate - Paul Ryberg No. 1 N.D.G.S. No. 772

K.B. T-2 T-1	2007 4694 4730	
Bottineau	4830	Thickness 136
T140N, R80W, S18, N.D.G.S. No.	CSWSW, 151	Hunt Oil Co Emma Kleven No. 1
K.B.	1922	
T-2	5043	
T-1 Dettine and	50/0	Thiskness 142
Bottineau	2182	INICKNESS 142
T140N, R80W, S19, N.D.G.S. No.	SWSW, 4685	E. C. Johnston Jr Edward No. 1
К.В.	1865	
T-2	4980	
T-1	5013	
Bottineau	5118	Thickness 138
T141N, R75W, S15, Co. No. 1	SESW,	Continental & Pure Oil Co Patterson Land
N.D.G.S. No.	1375	
К.В.	2073	
T-2	3987	
T-1	4024	
Bottineau	4120	Thickness 133
T141N, R80W, S33,	SWNE.	Tom Vessels & Perry Bass - Helen Bourgois No. 1
N.D.G.S. No.	4389	
К.В.	2126	
т-2	5268	
T-1	5298	
Bottineau	5407	Thickness 139
T142N, R76W, S31, Co. No. 1	CSWSW,	Caroline Hunt Trust Estate - Soder Investment
N.D.G.S. No.	765	
К.В.	2027	
T-2	4315	
T-1	4353	
Bottineau	4450	Thickness 135

10-

T143N, R75W, S30, CSESW, Continental & Pure Oil Co. - J. F. Miller No. 1 N.D.G.S. No. 1371

К.В.	2051		
T-2	4133		
T-1	4171		
Bottineau	4270	Thickness	137

T144N, R75W, S36, CNENE, Caroline Hunt Trust Estate - Board of University School Lands No. 1

N.D.G.S. No. 701

К.В.	2023		
r-2	3927		
r-1	· 3960		
Bottineau	4055	Thickness	128

T144N, R77W, S14, CSESE, Caroline Hunt Trust Estate - Anton Novy No. 1
N.D.G.S. No. 763

К.В.	1947		
T-2	4342		
T-1	4370		
Bottineau	4486	Thickness	144

EDDY COUNTY

27

23

T148N, R67W, S35, SWNW, Calvert Drilling Inc. - Dorothy Elliot No. 1
N.D.G.S. No. 1197

К.В.	1557	
T-1	2110	
Bottineau	2137	Thickness

T149N, R67W, S33, NESE, Calvert Drilling Inc. - Thomas Irmen No. 1
 N.D.G.S. No. 1198

К.В.	1559	
T-1	2160	
Bottineau	2183	Thickness

T150N, R67W, S16, CNWNW, Calvert Exploration Co. - State No. 1
 N.D.G.S. No. 437

К.В.	1478		
T-1	2028		
Bottineau	2053	Thickness	25

EMMONS COUNTY

T132N, R78W, S8, N.D.G.S. No.	CNESE, Peak Drilling Co Ohlhauser No. 1 43
K.B.	1820
T-2	3663
T_1	3700
Bottineau	3790 Thickness 127
T133N, R75W, S35, Investment No. 1	CNWSW, Northern Ordnance Corporation - Franklin
N.D.G.S. No.	16
К.В.	2027
T-1	3375
Bottineau	3445 Thickness 70
T133N, R76W, S35, N.D.G.S. No.	NENESE, Roeser & Pendleton Inc J. J. Weber No. 1 23
К.В.	2012
T-2	3500
T-1	3512
Bottineau	3570 Thickness 70
T134N, R75W, S30,	CSENW, Mobile Production Co Kruse F-22-30P
N.D.G.S. No.	742
К.В.	2044
T-2	3536
T-1	3550
Bottineau	3700 Thickness 164
T136N, R76W, S17,	SESE, Chevron Oil Co Engleman No. 2-1
N.D.G.S. No.	4212
К.В.	1890
T-2	3678
T-1	3716
T.D.	3768
	FOSTED COINTY
	FORTER COUNTY
T145N, R67W, S20, N.D.G.S. No.	CS ¹ ₂ ,SW, S. D. Johnson - Joseph Taylor No. 1 652
	1//0

к.в.	1000		
T-1	2291		
Bottineau	2371	Thickness	80

T146N, R67W, S10, CNWNW, Cardinal Drilling Inc. - James M. Anderson No. 1 N.D.G.S. No. 1126

К.В.	1589		
T-1	2160		
Bottineau	2220	Thickness	60

T147N, R67W, S28, NENE, Calvert Drilling Inc. - George S. Garland No. 1 N.D.G.S. No. 1205

к.в.	1588		
T-1	2166		
Bottineau	2212	Thickness	46

GRANT COUNTY

T133N, R83W, S26, CSWSW, Youngblood & Youngblood - Kelstrom No. 1 N.D.G.S. No. 232

К.В.	1997	
T-2	4880	
T-1	?	
Bottineau	5000	Thickness

T133N, R90W, S1, SWNE, Cardinal Petroleum et al. - Beirwagen No. 1 N.D.G.S. No. 3636

К.В.	2350		
T-2	6670		
T-1	?		
Bottineau	6794	Thickness	124

KIDDER COUNTY

T141N, R73W, S36, SENE, Magnolia Petroleum Corporation - N. D. State No. A-1

N.D.G.S. Nc. 24

K.B.	1968	
T-2	3368	
T-1	3412	
Bottineau	3490	Thickness

T142N, R74W, S32, CNWNE, Caroline Hunt Trust Estate - E. B. Sauter Estate No. 1 N.D.G.S. No. 748

К.В.	1848	
T-2	3660	
T-1	3692	
Bottineau	3782	

Thickness 122

120

T143N, R71W, S16, CNESE, Carter Oil Co. - State No. 1 N.D.G.S. No. 230

К.В.	1889		
T-2	3042		
T-1	?		
Bottineau	3166	Thickness	124

LOGAN COUNTY

T133N, R71W, S21, NWSW, Calvert et al. - A. Lang No. 1 N.D.G.S. No. 1377

K.B.	2054		
T-2	2797		
T-1	2816		
Bottineau	2912	Thickness	115

T133N, R72W, S20, CNENW, Herman Hanson Oil Syndicate - Welder No. 1 N.D.G.S. No. 1835

К.В.	2004	
T-2	2930	
T-1	?	
Bottineau	3046	

4

.

T134N, R69W, S26, CNENE, Calvert et al. - Albert Roesler No. 1 N.D.G.S. No. 1376

K.B. 1954 T-1 2460 Bottineau 2502

Thickness 42

Thickness

116

T134N, R71W, S6, CNESW, Calvert et al. - Knute Jensen No. 1 N.D.G.S. No. 1349

K.B.	2111	
T-2	2955	
T-1	2980	
Bottineau	3074	

Thickness 119

T134N, R71W, S22, SESE, Calvert et al. - Leroy Burnstad No. 1 N.D.G.S. No. 1390

K.B.	2013		
T-2	2764		
T-1	2786		
Bottineau	2872	Thickness	108

T134N, R71W, S33, NWSW, Calvert et al. - Edmore Will No. 1 N.D.G.S. No. 1378 K.B. 2031 T-2 2790 T-1 2807 110 Bottineau 2900 Thickness T136N, R71W, S8, CNWSW, Calvert et al. - C. A. Zimmerman N.D.G.S. No. 1346 K.B. 2022 T-2 2910 T-1 2940 3046 Thickness 136 Bottineau T136N, R71W, S25, CNWNW, Calvert et al. - Ray Craig No. 1 N.D.G.S. No. 1347 К.В. 1917 T-2 2710 T-1 2740 2833 Bottineau Thickness 123 T136N, R71W, S28, CNWSE, Calvert et al. - Alfred Bakken No. 1 N.D.G.S. No. 1348 K.B. 2005 T-2 2930 T-1 2863 Bottineau 2964 Thickness 134 T136N, R73W, S6, CSWSE, Caroline Hunt Trust Estate - F. M. Fuller No. 1 N.D.G.S. No. 590 К.В. 2011 T-2 3254 T-1 3287 Bottineau 3416 Thickness 162 MCHENRY COUNTY T153N, R75W, S27, CSENW, Owen Drilling - Bromley No. 1 N.D.G.S. No. 583

К.В.	1548		
T-2	3470		
T-1	3500		
Bottineau	3612	Thickness	142

۲

12

9

T153N, R76W, S4, SESW, Triton Oil Co. - Gange No. 1 N.D.G.S. No. 1697 K.B. 1551 T-2 3702 T-1 3732 Bottineau 3848 Thickness 146 T153N, R77W, S17, NWSE, Hunt Oil Co. - Peter Lenertz No. 1 N.D.G.S. No. 61 К.В. 1570 T-24022 T-1 4060 Bottineau 4172 Thickness 150 T154N, R76W, S23, CNWSW, Calvert Exploration & Don Traders Inc. - J. Bachmeier (Zeigler) No. 1 N.D.G.S. No. 360 К.В. 1554 T-23609 T-1 3630 Bottineau 3747 Thickness 138 T154N, R77W, S30, NENE, Hunt Oil Co. - Frank Boehm No. 1 N.D.G.S. No. 1720 K.B. 1557 T-2 3965 T-1 3997 Bottineau 4122 Thickness 157 T155N, R77W, S19, NESE, General Crude Oil Co. - Lloyd Moen No. 1 N.D.G.S. No. 1631 К.В. 1559 T-2 3879 T-1 3900 Bottineau 4032 Thickness 153 T155N, R78W, S8, SWNE, Triton Oil Co. - Freeman No. 1 N.D.G.S. No. 1668 К.В. 1521 T-2 4080 T-1 4110 Bottineau 4248 Thickness 168

105

۲

۲

۲

9

T156N, R75W, S11, CSENE, Calvert Exploration Co. - Fylken No. 1 N.D.G.S. No. 387 K.B. 1502 T-2 3076 3114 T-1 Thickness 148 3224 Bottineau T156N, R76W, S34, SENE, Calvert Exploration Co. & Don Traders Inc. -A. Payne No. 1 N.D.G.S. No. 358 K.B. 1502 3420 T-2 T-1 3445 Bottineau 3562 Thickness 142 T156N, R77W, S19, CSWSW, Tenneco Oil Co. - Elizabeth Kuhnhenn No. 2-A N.D.G.S. No. 3270 K.B. 1526 T-2 3772 T.D. 3803 T156N, R77W, S26, CNWNW, Lion Oil Co. (Div. of Monsanto Chem. Co.) -Ed No. 1 N.D.G.S. No. 1354 K.B. 1489 T-2 3575 T-1 3606 Bottineau 3726 Thickness 151 T156N, R80W, S8, NWSE, Kewanee Oil Co. - Torg No. 1 N.D.G.S. No. 4112 K.B. 1526.2 T-24526 T-1 4553 T.D. 4650 T157N, R75W, S1. Lot 2, NWNE, Amerada Petroleum Corporation - N. D. "L." No. 1 N.D.G.S. No. 2567 К.В. 1490 T-2 3006 T-1 3040 Bottineau 3154 Thickness 148

106

٩

-

۲

12

9

6

T157N, R75W, S10, CSWNE, Amerada Petroleum Co. - A. Dugan No. 1
N.D.G.S. No. 2610

	K.B.	1490	
	1-2	21092	
	T-1	3128	
	Bottineau	3243	Thickness 151
T157	N, R75W, S28,	CNENW	, David Oil Co Tagstad No. 1
	N.D.G.S. No.	1471	
	К.В.	1477	
	T-2	3183	
	T-1	3220	
	Bottineau	3343	Thickness 160
Г157 1 No	N, R76W, S3, 1 . 1	NWSW, A	Amerada Petroleum Corporation - Carl Miller
	N.D.G.S. No.	2312	
	К.В.	1480	
	T-2	3346	
	T-1	3390	
	T.D.	3422	
T157	N, R76W, S34,	NESW,	McMoRan Exploration Co State No. 1
	N.D.G.S. No.	5279	
	К.В.	1476	
	T-2	3411	
	T-1	3450	
	Bottineau	3580	Thickness 169
T157	N, R77W, S34,	NWSW,	General Crude Oil Co Loren Hanson No. 1
	N.D.G.S. No.	1674	
	К.В.	1506	
	T-2	3670	
	T-1	3713	
	Bottineau	3835	Thickness 165
T157	N, R78W, S3, X N.D.G.S. No.	NNESW, 39	Hunt Oil Co Shoemaker No. 1
	К.В.	1480	
	T-2	3837	
	T-1	3870	
	Bottineau	4010	Thickness 173

r.

18-53

T157N, R78W, S23, SESW, Amerada Petroleum Corporation - C. Brummond No. 1 N.D.G.S. No. 1986 K.B. 1513 3874 T-2T-1 3898 T.D. 3916 T157N, R78W, S29, CSENE, Dow et al. - R. E. Carty N.D.G.S. No. 3229 1492 К.В. T-2 3840 T-1 3860 3989 T.D. T157N, R79W, S10, CNWSW, British American - Nicolaisen No. 1 N.D.G.S. No. 2402 K.B. 1492 T-24083 T-1 4115 4133 T.D. T157N, R80W, S21, NENW, Farmers Union Central Exchange - Wiltse No. 1 N.D.G.S. No. 883 К.В. 1533 T-2 4525 T-1 4554 4717 192 Bottineau Thickness T157N, R80W, S24, SWNE, Triton Oil Co. - Fredrickson No. 1 N.D.G.S. No. 1632 K.B. 1509 T-2 4362 T-1 4380 Bottineau 4530 Thickness 168 T158N, R75W, S5, CSWSE, Davis Oil Co. - Prellwitz No. 1 N.D.G.S. No. 1462 K.B. 1490 T-2 3094 T-1 3130 Bottineau 3247 153 Thickness

۲

-

۲

۲

۲

T158N, R75W, S16, SWSW, McMoRan Exploration Co. - State No. 2 N.D.G.S. No. 5281 К.В. 1470 3098 T-2 3132 T-1 Thickness 152 3250 Bottineau T158N, R77W, S34, NENE, McMoRan Exploration Co. - Fairbrother No. 1 N.D.G.S. No. 5283 K.B. 1477 T-2 3542 3595 T-1 3704 Thickness 162 Bottineau T158N, R78W, S12, CSENE, Davis Oil Co. - Torr No. 1 N.D.G.S. No. 1463 K.B. 1471 T-2 3640 T-1 3660 3796 156 Bottineau Thickness T158N, R78W, S30, NWNW, Hunt Oil Co. - W. M. Harrington No. 1 N.D.G.S. No. 1635 K.B. 1468 T-2 3938 T-1 3990 Bottineau 4123 Thickness 185 T159N, R76W, S2, NWNW, Placid Oil Co. - Charles Erdman No. 1 N.D.G.S. No. 1626 1460 K.B. T-2 3080 T-1 3115 Bottineau 3242 Thickness 162 T159N, R76W, S15, CNENE, Davis Oil Co. - W. S. Klebe No. 1 N.D.G.S. No. 146-K.B. 1474 T-2 3140 T-1 3178 Bottineau 3298 Thickness 158

109

۲

.....

6

T159N, R77W, S12, NENW, Hunt Oil Co. - W. S. Klebe No. 1 N.D.G.S. No. 1652

К.В.	1481	
T-2	3300	
T-1	3348	
Bottineau	3464	Thickness 164

T159N, R79W, S3, NWNW, Cardinal Drilling Co. - Arthur Krenz No. 1 N.D.G.S. No. 1538

K.B.	1461		
T-2	3770		
T-1	3800		
Bottineau	3950	Thickness	180

T159N, R79W, S17, SESE, Hunt Oil Co. - B. Rosenau No. 1 N.D.G.S. No. 1651

К.В.	1473		
T-2	3866		
T-1	3887		
Bottineau	4050	Thickness	184

.....

T159N, R79W, S34, CNWNW, Amerada Petroleum Corporation - Ted Pfau No. 1
N.D.G.S. No. 2675

186

К.В.	1478	
T-2	3854	
T-1	3895	
Bottineau	4040	Thickness

T159N, R80W, S28, CNWNE, Winona Oil Co. - Walstad No. 1
N.D.G.S. No. 1187

К.В.	1492		
T-2	4268		
T-1	4280		
Bottineau	4460	Thickness	192

MCINTOSH COUNTY

T131N, R73W, S15, NENE, General Atlas Carbon Co. - A. Ketterling No. 1
 N.D.G.S. No. 89

К.В.	2176		
T-2	3106		
T-1	3125		
Bottineau	3170	. Thickness	64

MCLEAN COUNTY

T146N, R81W, S10, N.D.G.S. No.	NE, Samedan Oil Corporation - Vaughn & Hanson No. 1 22
К.В.	1995
T-2	5610
T-1	5640
Bottineau	5770 Thickness 160
T146N, R82W, S32,	SESW, Herman Hanson Oil Syndicate - Samuelson No. 1
N.D.G.S. No.	1516
К.В.	2022
T-2	6068
T-1	6100
Bottineau	6240 Thickness 172
T150N, R79W, S14, N.D.G.S. No.	CSENW, I. J. Wilhite - Arnold No. 1 3076
к.в.	2089
T-2	5080
T-1	5115
T.D.	5153
T150N, R80W, S14, N.D.G.S. No.	NWNW, Cardinal Petroleum Co. et al Carl Ecklund No. 1 3089
К.В.	2006
T-2	5288
T.D.	5300
T150N, R80W, S28, N.D.G.S. No.	CSWSW, Stanolind Oil and Gas Co McLean County No. 1 49
KB	2100
T-2	5480
T_1	5512
Bottineau	5667 Thickness 187
	MERCER COUNTY
T142N, R89W, S28, N.D.G.S. No.	CNWNE, F. F. Kellu - E. Leutz No. 1 21
К.В.	2285
T-2	7993
T-1	?
Bottineau	8211 Thickness 218

MORTON COUNTY

T135N, R82W, S11, N.D.G.S. No.	NWNW, Deep Rock Corporation - Gangl A-1 464
νp	2134
K.D.	5120
1-2	5150
I-I Dettefreeu	5242 Thickness 123
Bottineau	5245 Interness 125
T135N, R83W, S34. N.D.G.S. No.	SENE, Amerada Petroleum Corporation - James Meyer No. 1 3859
К.В.	2125
T-2	5260
T-1	5286
Bottineau	5380 Thickness 120
T136N, R81W, S20, N.D.G.S. No.	CNWNE, National Bulk Carriers - Miller No. 1 491
К.В.	1925
T-2	4841
T-1	4867
Bottineau	4962 Thickness 121
T136N, R81W, S29, Dakota No. 1	CNENW, Phillips Petroleum Co Phillips & Carter
N.D.G.S. No.	26
K B.	2005
T-2	4800
T-1	4917
Bottineau	5014 Thickness 124
T137N, R83W, S34, 6524 No. 1	SENW, Austral Oil Co. Inc John J. Leingang Unit
N.D.G.S. No.	3978
к.в.	2281.1
T-2	5704
T-1	5733
Bottineau	5833 Thickness 129
T138N, R83W, S5, N.D.G.S. No.	CNWNE, Campbell and Partners - Picha No. 1 5379
ם ע	1090
K.D.	1700
1-2	5005
I-I Patting	5000 m1 / 1 m2 / 0
Bottineau	Thickness 140

T139N, R82W, S11, SWNE, Fletcher Oil and Gas Co. et al. - Boehm No. 1 N.D.G.S. No. 2185

К.В.	1861
T-2	5290
T-1	5320
T.D.	5350

T139N, R86W, S30, CSWSW, Deep Rock Oil Co. - Hilda Johnson "A" No. 1 N.D.G.S. No. 133

К.В.	2204		
T-2	6760		
T-1	6790		
Bottineau	6907	Thickness	147

T139N, R90W, S27, NESW, Pan American Petroleum Corporation - Raymond Vetter No. 1

N.D.G.S. No. 1620

2426		
7740		
7762		
7892	Thickness	152
	2426 7740 7762 7892	2426 7740 7762 7892 Thickness

MOUNTRAIL COUNTY

T156N, R88W, S27, CSWSE, Texota Oil Co. - W. F. Bauer No. 1
 N.D.G.S. No. 1223

К.В.	2180		
T-2	7385		
T-1	?		
Bottineau	7580	Thickness	195

OLIVER COUNTY

T141N, R81W, S3, SESW, Youngblood & Youngblood - Wachter No. 1
N.D.G.S. No. 95

1	К.В.		1924								
	r-2		5360								
5	r-1		5400								
1	Bottine	au	5508			Th	ickne	SS	148		
T141N	, R81W,	S18,	CSESE,	Carter	0i1	Co.	- E.	L.	Semling	No.]
1	N.D.G.S	. No.	15								
I	К.В.		2037								
	r-2		5575								
100	r-1		5617								
]	Bottine	au	5727			Th	ickne	ss	152		

T141N, R85W, S34, NWNW, Fletcher Oil and Gas Co. et al. - Buelinger No. 1 N.D.G.S. No. 2183

К.В.	2173		
T-2	6687		
T-1	6720		
Bottineau	6842	Thickness	155

PIERCE COUNTY

T151N, R74W, S15, SENW, The Oil Capitol Corporation - Hager F. L. B. No. 1 N.D.G.S. No. 3877

K.B.	1577
T-2	3323
T-1	?
T.D.	3334

62

T152N, R72W, S33, SENE, Cardinal & Great American - Bessel No. 1
N.D.G.S. No. 2209

К.В.	1624			
T-2	2933			
T-1	2973			
Bottineau	3076	Thickness	143	

T152N, R73W, S34, SWSW, Getty Oil Co. - Ludwig Vetter No. 1
N.D.G.S. No. 5576

К.В.	1579
T-2	3110
T-1	3150
Bottineau	3257

T152N, R73W, S36, SWNE, D. D. Bills - State of N. D. No. 1 N.D.G.S. No. 4099

K.B.	1593
T-2	3028
T-1	3068
Bottineau	3173

Thickness 145

Thickness

147

T152N, R72W, S23, SESE, A. J. Hodges Industries - Martin No. 1
N.D.G.S. No. 3920

Thickness	140
	Thickness

T154N, R72W, S17, CNESE, Calvert Exploration - Ranberg No. 1 N.D.G.S. No. 538 K.B. 1566 2833 T-2 T-1 2852 112 2945 Thickness Bottineau T154N, R73W, S11, NWNW, Hyde and Associates - Schaan No. 1 N.D.G.S. No. 557 К.В. 1555 T-2 2916 2939 T-1 3040 Thickness 124 Bottineau T154N, R73W, S33, SWSW, Cardinal Petroleum Co. - Klein No. 1 N.D.G.S. No. 4567 K.B. 1503 T-2 2995 T.D. 3035 T154N, R74W, S22, CSWNW, Calvert Exploration Co. & Don Traders Inc. -Martin A. Voeller No. 1 N.D.G.S. No. 361 1545 K.B. T-23180 T-1 3210 3320 Bottineau Thickness 140 T151N, R73W, S17, SENW, Amerada Petroleum Co. - Charles Bischoff No. 1 N.D.G.S. No. 2530 1559 K.B. T-2 2940 T-1 2972 3082 Bottineau Thickness 142 T155N, R74W, S25, NWSW, Clinton Oil Co. - Vetsch No. 1 N.D.G.S. No. 5765 K.B. 1553 T-2 3047 T-1 3078 Bottineau 3180 Thickness 133

9

4

T156N, R73W, S18, CSWNW, Hyde and Associates - Hyde Associates & Tjon No. 1 N.D.G.S. No. 560 1528 K.B. 2896 T-2 2910 T-1 118 Thickness 3014 Bottineau T156N, R74W, S5, SWNE, Tom Jorden - Hagboe No. 1 N.D.G.S. No. 2827 K.B. 1509 2970 T-2 T-1 3000 3035 T.D. T157N, R73W, S3, NWSW, Earl F. Wakefield - Christianson No. 1 N.D.G.S. No. 780 K.B. 1486 T-1 2714 2804 90 Bottineau Thickness T157N, R74W, S22, NENW, Apache Oil Corporation - B. Olson No. 1 N.D.G.S. No. 2728 1480 K.B. T-2 2912 T-1 2940 Bottineau 3053 Thickness 141 T157N, R74W, S26, SENW, Cardinal Drilling Co. - M. T. Thompson No. 1 N.D.G.S. No. 1457 K.B. 1488 T-2 2899 T-1 2930 Bottineau 3027 Thickness 128 T157N, R74W, S30, SENW, I. J. Wilhite & Simcox N.D.G.S. No. 5081 K.B. 1489 T-2 3023 T-1 3065 3182 Bottineau Thickness 159

T158N, R72W, S8, SWNW, Mobile Producing Co. - Fleck No. 1
N.D.G.S. No. 712

К.В.	1642		
T-1	2707		
Bottineau	2732	Thickness	
	A CONTRACTOR OF THE OWNER OF THE		

T158N, R74W, S19, CNWSE, Phillips Petroleum Co. & Carter Oil Co. - Oliva Saude No. 1

N.D.G.S. No. 274

К.В.	1487		
T-2	2934		
T-1	2964		
Bottineau	3073	Thickness	139

RENVILLE COUNTY

T158N, R81W, S7, NENW, Anschutz Drilling Co. - Einar Christianson No. 1
N.D.G.S. No. 1689

К.В.	1532		
T-2	4652		
T-1	4680		
Bottineau	4820	Thickness	168
T-1 Bottineau	4680 4820	Thickness	1

T158N, R81W, S34, CSESW, Sohio Petroleum Co. - J. Nelson No. 1
N.D.G.S. No. 369

K.B.	1541
T-2	4640
T-1	4663
Bottineau	4868

T158N, R83W, S26, SWSW, Cardinal Petroleum Co. & Rex Baker - Sanders & Armstrong No. 14-26

Thickness

N.D.G.S. No. 4006

К.В.	1634
т-2	5070
T-1	?
T.D.	5177

T158N, R84W, S10, SWNW, Tiger Oil Co. - Bloms No. 1
 N.D.G.S. No. 4277

К.В.	1721
T-2	5239
T-1	5260
T.D.	5293

25

T158N, R84W, S35, NWNE, Cardinal Petroleum Co. & Rex Baker - Anna Nett No. 31-35 N.D.G.S. No. 4007 K.B. 1724 T-2 5445 T-1 5480 5520 T.D. T158N, R86W, S16, SENW, Great Western Drilling Co. & Warren J. Hancock -Erickson No. 1 N.D.G.S. No. 5063 К.В. 1907 T-2 6023 6044 T-1 T.D. 6069 T161N, R84W, S23, CSENW, H. Mack Cox - Southam No. 1 N.D.G.S. No. 1136 K.B. 1651 T-2 4873 4900 T-1 Bottineau 5064 Thickness 191 T161N, R84W, S32, SESW, Gulf Oil Corporation & Signal Drilling and Exploration Co. - Roy Hoke No. 1 N.D.G.S. No. 1727 K.B. 1705 T-2 5130 T-1 ? Bottineau 5320 Thickness 190 T161N, R85W, S13, CSWNW, Calvert Drilling Co. - Oscar W. Johnson No. 1 N.D.G.S. No. 815 К.В. 1707 T-2 5136 T-1 ? Bottineau 5317 Thickness 181 T162N, R84W, S9, CSENW, Lowell Williamson, Inc. - Noramark No. 1 N.D.G.S. No. 1450 К.В. 1634 T-2 4655 T-1 ? Bottineau 4847 Thickness 192

T162N, R84W, S27, CNWSW, Winona Oil Co. - George Krause No. 1 N.D.G.S. No. 1201

К.В.	1640		
T-2	4755		
T-1	?		
Bottineau	4955	Thickness	200

T162N, R85W, S5, CNESE, Anschutz Oil Co. Inc. - Knutson No. 1
N.D.G.S. No. 2059

К.В.	1723
T-2	4962
T-1	4976
T.D.	5065

T162N, R86W, S29, CNESW, Calvert Drilling Inc. - Stangelane No. 1
N.D.G.S. No. 867

К.В.	1768
T-2	5510
T-1	?
T.D.	5555

T163N, R84W, S30, SENE, Sohio Petroleum Co. - Magnuson No. 1
N.D.G.S. No. 960

К.В.	1631
T-2	4593
T-1	4627
Bottineau	4785

Thickness 192

T163N, R86W, S12, SENE, Sohio Petroleum Co. - Walsh No. 1
 N.D.G.S. No. 1059

К.В.	1733	
T-2	4788	
T-1	?	
Bottineau	4975	

Thickness 187

T163N, R86W, S23, SENE, Sohio Petroleum Co. - Harold Ritter No. 1
N.D.G.S. No. 940

K.B.	1757		
T-2	4886		
T-1	?		
Bottineau	5075	Thickness	189

T163N, R87W, S9, SWSW, Sohio Petroleum Co. - Hanson A No. 1 N.D.G.S. No. 1178

К.В.	1814		
T-2	5337		
T-1	5373		
Bottineau	5510	Thickness	173

T164N, R87W, S36, SWSW, Calvert Exploration Co. & Leonard Wood - State A No. 1

N.D.G.S. No. 599

К.В.	1807		
T-2	5100		
T-1	?		
Bottineau	5276	Thickness	176

ROLETTE COUNTY

Thickness

Thickness 37

16

39

T160N, R73W, S8, CSENE, Cardinal Drilling Co. - Alex Swanson No. 1
 N.D.G.S. No. 582

К.В.	1565
T-1	2686
Bottineau	2702

T161N, R73W, S21, NWSE, Tom Jordon - Smith No. 1 N.D.G.S. No. 2862

K.B.	1607	
T-1	2662	
Bottineau	2701	Thickness

T161N, R73W, S23, SENW, Lion Oil Co. - Sebelius No. 1
 N.D.G.S. No. 83

К.В.	1627
T-1	2651
Bottineau	2688

T161N, R73W, S27, CSWSW, Cardinal Drilling Co. - LaMont No. 1
 N.D.G.S. No. 571

К.В.	1594		
T-1	2660		
Bottineau	2690	Thickness	30

SHERIDAN COUNTY

T145N, R75W, S18, N.D.G.S. No.	CNENW, 1605	General Crude Oil Co McElvain No. 1
КВ	2011	
т-2	4186	
T-1	4210	
Bottineau	4328	Thickness 142
T146N, R74W, S16,	CSWSW,	Caroline Hunt Trust Estate - C. A. Pfeiffer No. 1
N.D.G.S. NO.	155	
К.В.	1994	
T-2	3885	
T-1	3920	
Bottineau	4020	Thickness 135
T146N, R76W, S19, No. 1	CSWSW,	Caroline Hunt Trust Estate - Walter E. Bauer
N.D.G.S. No.	693	
К.В.	1984	
T-2	4420	
T-1	4455	
Bottineau	4565	Thickness 145
T146N, R77W, S27,	NENE.	Continental & Pure Oil Co Albrecht No. 1
N.D.G.S. No.	1392	
KB	1954	
T-2	4482	
T-2 T-1	4402	
I-I Pettinger	4313	m1 / 1 1 / 0
Bottineau	4623	Inickness 143
T147N, R75W, S1, N.D.G.S. No.	CNENE, 684	Caroline Hunt Trust Estate - Julius R. Matz No. 1
к.в.	1849	
T-2	3805	
T-1	3841	
Bottineau	3948	Thickness 143
T148N 874W 522	CNECE	Wilcon et al. Tas Balla No. 1
N.D.G.S. No.	337	"TIGON EC AL LEO FALLON NO. I
К.В.	1891	선생님입니다. 그렇게 엄청 아이들이 그 그 말을 썼다.
T-2	3673	
T-1	3708	
Bottineau	3818	Thickness 145
	2010	INICALESS 140

T148N, R76W, S15, NENE, Caroline Hunt Trust Estate - John Waltz No. 1 N.D.G.S. No. 665 1792 K.B. T-24047 4080 T-1 Bottineau 4189 Thickness 142 T150N, R74W, S1, NENW, Wilhite & Simcox - Thingvold No. 1 N.D.G.S. No. 5083 1740 К.В. T-2 3440 T-1 3480 3532 T.D. T150N, R74W, S36, NWNE, General Crude Oil Co. - 150-74 State No. 1 N.D.G.S. No. 1581 1624 K.B. T-2 3336 T-1 3380 3493 Thickness 157 Bottineau SIOUX COUNTY T131N, R80W, S29, CNESW, The Ohio Oil Co. - Standing Rock Sioux Tribal No. 1 N.D.G.S. No. 631 K.B. 1731 3850 T-2T-1 ? Bottineau 3972 Thickness 122 STUTSMAN COUNTY T139N, R67W, S12, CNWNW, Calvert Exploration Co. - Vincet Wahzek No. 1

N.D.G.S. No. 672

۲

-

9

۲

۲

۲

-

۲

4

К.В.	1867		
T-1	2296		
Bottineau	2343	Thickness	47

T139N, R67W, S24, CSESW, Calvert Exploration Co. - Wood No. 1
N.D.G.S. No. 670

К.В.	1874		
T-1	2305		
Bottineau	2325	Thickness	20

T139N, R68W, S5, SESE, Gordon B. Butterfield - Rudolph Trautman No. 1 N.D.G.S. No. 644 K.B. 1945 T-1 2597 2633 Thickness 36 Bottineau T139N, R68W, S35, CSESW, Calvert Exploration Co. - Christ Rau No. 1 N.D.G.S. No. 669 K.B. 1880 2436 T-1 2506 70 Thickness Bottineau T141N, R67W, S11, NWNW, Barnett Drilling Co. - Gaier Brothers No. 1 N.D.G.S. No. 40 К.В. 1864 T-1 2424 2450 26 Bottineau Thickness T141N, R69W, S14, CNWSE, Mobile Producing Co. - Gross No. 1 N.D.G.S. No. 750 K.B. 1893 T-1 2735 2825 90 Bottineau Thickness T143N, R69W, S4, NWNW, S. D. Johnson - John Johnson No. 1 N.D.G.S. No. 602 K.B. 1947 T-1 2878 Bottineau 2940 Thickness 62 WARD COUNTY T152N, R82W, S33, CSWSE, W. H. Hunt - F. C. Newman No. 1 N.D.G.S. No. 588 K.B. 2087 T-2 5950 T-1 5960 Bottineau 61,22 Thickness 172 T152N, R86W, S28, NWNW, General Crude Oil Co. - Jerome Jenson No. 1 N.D.G.S. No. 5105 К.В. 2120 T-2 7186 T-1 7218 Bottineau 7396 Thickness 210

٠

۲

9

T153N, R84W, S30, CSWSW, Calvert Drilling Co. - Gilbert Jacobson No. 1 N.D.G.S. No. 1061 2112 K.B. 6647 T-2 T-1 6660 6820 Thickness 173 Bottineau T153N, R85W, S2, CSWNE, Stanolind Oil and Gas Co. - W. Waswick No. 1 N.D.G.S. No. 105 2155 К.В. 6695 T-26750 T-1 6875 Thickness 180 Bottineau T153N, R85W, S13, NENW, Union Oil Co. of California - Hanson No. 1-C-13 N.D.G.S. No. 5158 K.B. 2117 T-2 6675 T-1 ? 6857 182 Bottineau Thickness T154N, R81W, S19, NENW, I. J. Wilhite - Vern Waldref No. 1 N.D.G.S. No. 3237 K.B. 1566 T-2 5212 5232 T-1 T.D. 5282 T155N, R81W, S23, SESW, Herbert Hunt Trust Estate - Wald No. 1 N.D.G.S. No. 47 K.B. 1596 4900 T-2 T-1 4915 Bottineau 5070 Thickness 170 T155N, R82W, S13, CNENE, W. H. Hunt - Guy Almy No. 1 N.D.G.S. No. 656 K.B. 1632 T-2 5196 T-1 5203 Bottineau 5376 Thickness 180

۲

.

T156N, R81W, S5, NWNE, Union Oil Co. of California - Olson No. 1-B-5 N.D.G.S. No. 4923

	K.B. T-2	1573 4812					
	T-1	4820					
	Bottineau	4990		Thickness	s 178		
T156	N, R81W, S12,	CNWNE	, Tenneco	0il Co W.	J. Bortzfiel	d No. 1	
	N.D.G.S. No.	2946					
	К.В.	1556					
	T-2	4642					
	T-1	4652					
	Bottineau	4822		Thickness	s 180		
T156	N, R82W, S2,	CNESE,	Union Oi	1 Co. of Calif	fornia - Haro	ld Anderson	
No.	1-1-2						
	N.D.G.S. No.	4992					
	К.В.	1618					
	T-2	4917					
	T-1	4940					
	Bottineau	5100		Thickness	s 183		
T156	N, R82W, S19,	CNWSW	, H. Mack	Cox - Kotasek	No. 1		
	N.D.G.S. No.	1138					
	К.В.	1636					
	T-2	5246					
	T-1	?					
	Bottineau	5432		Thickness	s 186		
F156	N, R83W, S33,	SWSE,	Quintana	Production Co	o Chris W.	Linnertz No. 1	
	N.D.G.S. No.	126					
	К.В.	1772					
	T-2	5506					
	T-1	5540					
	Bottineau	5720		Thickness	s 214		
F156	N, R84W, S22,	NWNW.	Anschutz	Corp. et al.	- Musch No.	1	
	N.D.G.S. No.	4990				2	
	К.В.	1788					
	T-2	5692					
	T-1	5702					
	Bottineau	5932		Thickness	3 240		
				the second se			

T156N, R85W, S4, CNWSW, The Arex Corporation - Clouse No. 1 N.D.G.S. No. 3812 К.В. 1828 T-2 6035 6080 T-1 6252 T.D. T156N, R85W, S24, NENE, Wanete Oil Co. - M. O. Lee No. 1 N.D.G.S. No. 52 1839 K.B. T-25855 T-1 ? 245 6100 Thickness Bottineau T156N, R86W, S6, CNWSW, Lowell J. Williamson Inc. - Pederson No. 1 N.D.G.S. No. 1438 2104 К.В. 6732 T-2 ? T-1 6935 Thickness 203 Bottineau T156N, R86W, S11, SWNE, Calvert et al. - Troxel No. 1 N.D.G.S. No. 3125 К.В. 1990 T-2 6335 T-1 6352 6562 227 Bottineau Thickness T157N, R85W, S16, SE, Pierce Drilling Co. - Kline No. 1 N.D.G.S. No. 18 1679 К.В. T-2 6080 T-1 ? 6296 Thickness 216 Bottineau T157N, R85W, S21, CSWSW, Sam G. Harrison - Anderson No. 1 N.D.G.S. No. 392 K.B. 1875 T-2 6098 T-1 6114 Bottineau 228 6326 Thickness

.

0

-

.

T158N, R87W, S8, SWSE, Hanlon Drilling & Lowell J. Williamson Inc. -Enget No. 1 N.D.G.S. No. 1340 2027 К.В. 7602 T-2 T-1 ? 168 Bottineau 6870 Thickness T159N, R87W, S3, CNENW, The Texas Co. - B. T. James No. 1 N.D.G.S. No. 2134 K.B. 1921 5962 T-2 T-1 ? 6117 Thickness 155 Bottineau T160N, R88W, S5, CSESE, Northern Pump Co. - C. J. Johnson No. 1 N.D.G.S. No. 1410 К.В. 1942 T-2 6103 T-1 6127 142 6245 Thickness Bottineau WELLS COUNTY T145N, R68W, S30, CNENE, S. D. Johnson - Hagel No. 1 N.D.G.S. No. 635 K.B. 1783 T-2 2520 T-1 2553 Bottineau 2648 Thickness 128 T145N, R71W, S13, CNWNE, Wilson et al. - George Seibel No. 1 N.D.G.S. No. 384 K.B. 1891 T-2 3034 T-1 3064 Bottineau 3163 Thickness 129 T145N, R72W, S26, CSESE, Cardinal Drilling Co. - Gerhart Bohmiller No. 1 N.D.G.S. No. 385 K.B. 1914.5 T-2 3280 T-1 3300 Bottineau 3404 Thickness 124

6

÷.

-

T145N, R73W, S28, SWNE, Chevron Oil Co. - Grimm No. 1 N.D.G.S. No. 4252 1998 К.В. T-2 3664 3702 T-1 3798 T.D. T146N, R68W, S8, NENE, Calvert Drilling Inc. - Zwinger No. 1 N.D.G.S. No. 1211 К.В. 1608 T-1 2357 68 Thickness Bottineau 2425 T146N, R73W, S27, NENE, Continental Oil Co. - Lueth No. 1 N.D.G.S. No. 207 К.В. 1933 T-2 3553 3573 T-1 3676 Thickness 123 Bottineau T147N, R71W, S31, CNENE, Caroline Hunt Trust Estate - Morris Thormodsgard No. 1 N.D.G.S. No. 689 1702 К.В. 2975 T-2 T-1 3010 Bottineau 3100 Thickness 125 T147N, R73W, S16, SWSW, Continental & Pure Oil Co. - Board of University and School Lands No. 1 N.D.G.S. No. 1384 1941 К.В. T-2 3600 T-1 3639 3727 Bottineau Thickness 127 T148N, R73W, S10, NESE, D. D. Bills - Hove No. 1 N.D.G.S. No. 4096 K.B. 1640 T-2 3215 T-1 3259 Bottineau 3360 Thickness 145

128

۲

4

.....

۲

-

0

-

-

T148N, R73W, S13, SENW, Wilson et al. - Fauls No. 1 N.D.G.S. No. 336 К.В. 1639 T-2 3150 T-1 3190 Thickness 145 Bottineau 3295 T148N, R73W, S30, NENE, Apco Oil Corporation - Martin No. 1 N.D.G.S. No. 3728 K.B. 1827 T-23523 T-1 3547 121 Bottineau 3644 Thickness T148N, R73W, S34, SWNE, Apco Oil Corporation - Mathison No. 1 N.D.G.S. No. 3754 K.B. 1673 T-23290 T-1 3314 Bottineau 3408 Thickness 118 T149N, R73W, S22, CNWNE, Cardinal Petroleum Co. - A. Patzer No. 1 N.D.G.S. No. 3296 K.B. 1622 T-23210 T-1 3252 T.D. 3298 T150N, R70W, S32, NWNE, Caroline Hunt Trust Estate - Obed Larson No. 1 N.D.G.S. No. 642 K.B. 1599 T-2 2672 T-1 2703 Bottineau 2775 Thickness 103 T150N, R71W, S34, NENE, Gulf Oil Co. (U.S.) - G. A. Brauer No. 1 N.D.G.S. No. 5092 К.В. 1615 T-2 2812 T-1 2844 Bottineau 2910 Thickness 98

.

4

-

-

۲

APPENDIX B

CORE, WELL SAMPLE AND THIN SECTION DESCRIPTION

CORE, WELL SAMPLE AND THIN SECTION DESCRIPTION

Wells are listed alphabetically by county and then numerically based on the Standard Land Office Grid System. Thin sections (T.S.) are listed by depth, from stratigraphically highest to lowest.

BOTTINEAU COUNTY

T160N, R81W, S31, SWSWSE, N.D.G.S. no. 38

T.S. Description depth 4399-4400 light brown wackestone (intraclastic, clay laminations in part) with intergranular and solution porosity 4399 crinoidal micritized grain wackestone with high solution porosity 4400-4401 light gray to medium gray mudstone (anhydritic) desiccation cracks 4400 anhydritic mudstone 4401-4402 buff wackestone (intraclastic) with intergranular and solution porosity 4401 intraclastic crinoidal skeletal hash micritized grain foraminifera packstone with some solution porosity 4402-4417 light gray grainstone (laminated near base) with intergranular and solution porosity 4402 crinoidal micritized grain grainstone 4404 same as above 4417 same as above 4417-4420 core missing 4420-4447 light gray to dark gray wackestone with shaley laminae (bioturbated, anhydrite infilling some solution porosity) 4423 slightly laminated crinoidal bryozoan wackestone 4428.5 same as above 4438.5 same as above 4447 laminated crinoidal ostracodal brachiopod wackestone

depth	T.S.	Description
4447-4451		medium gray wackestone with high solution porosity (anhydritic, dolomitic)
	4450.5	crinoidal sparse wackestone
4451-5567		light brown to light gray mudstone to sparse wackestone with solution porosity
	4452	crinoidal brachiopod sparse wackestone with high solution porosity
	4457	mudstone with interbeds of well sorted crinoidal grainstone with high solution porosity
	4459	crinoidal brachiopod sparse wackestone with high solution porosity
	4463	mudstone with solution porosity with some porosity infilled with anhydrite
	4466	same as above
4466-4500		light brown mudstone to wackestone (fractured, anhydritic) with shaley laminations in part
	4468	mudstone with high solution porosity
	4476	whispy shale laminated crinoidal wackestone
	4477	same as shows
	4487	same as above
	4488	crinoidal brachiopod wackestone with some solution porosity
	4492A	same as above
	4492B	shale laminated crinoidal brachiopod wackestone
	4493	same as above
	4496	same as above
8 //	4497	same as above
4500-4522		light gray to medium gray mudstone wackestone (fractured, whole rugose coral and brachiopods) with intergranular porosity
	4500	skeletal hash wackestone
	4505	crinoidal brachianad machanna
depth	T.S.	Description
-------------	--------	---
	4509	mudstone with solution porosity
	4512A	anhydritic dolomitic mudstone
	4512B	mudstone with solution porosity
	4515	same as above
	4519.5	argillaceous crinoidal brachiopod coral packstone
	4520	crinoidal brachiopod mudstone with high solution porosity
4522-4523		light brown packstone to grainstone (intraclastic)
	4523	crinoidal coral brachiopod packstone
4523-4546		medium gray wackestone to packstone (shaley laminations, whole rugose corals and brachiopods)
	4523	crinoidal brachiopod packstone
	4525A	same as above
	4525B	same as above
	4532	same as above
	4534	crinoidal brachiopod wackestone to packstone
	4539	crinoidal brachiopod packstone
	4539.5	crinoidal mudstone overlying crinoidal brachiopod wackestone
	4940	crinoidal brachiopod packstone
	4544	crinoidal brachiopod wackestone with high solution porosity
4546-4555		core missing
4555-4555.5		anhydrite
4555.5-4561		light gray packstone to grainstone (intraclastic) with some solution porosity
	4557.5	coarse grained crinoidal, brachiopod packstone to grainstone
	4559	coral crinoidal brachiopod wackestone to packstone

-

depth	<u>T.S.</u>	Description
	4561	coarse-grained crinoidal coral, intraclastic grainstone with intergranular porosity
4561-4577		light gray wackestone (large whole rugose corals and brachiopods, burrowed)
	4562	crinoidal wackestone
	4567 4569A 4569B	same as above same as above same as above
	4572	crinoidal skeletal hash sparse wackestone with high solution porosity
	4576	crinoidal skeletal hash sparse wackestone
	4577	crinoidal brachiopod coral packstone
4577-4582		light gray to light brown grainstone (coarse- grained) with intergranular porosity
	4577.5	crinoidal brachiopod micritized grain grain- stone
	4578	coarse-grained crinoidal brachiopod coral wackestone
	4582	crinoidal coral brachiopod intraclastic grain- stone with good intergranular porosity
4582-4606		buff wackestone
	4588	crinoidal brachiopod packstone
	4589	crinoidal brachiopod coral wackestone
	4591	crinoidal micritized grain wackestone
	4592	crinoidal brachiopod micritized grain wackestone
	wit	with some solution porosity
	4597	crinoidal, brachiopod micritized grain grainstone with fair intergranular porosity
	4602	crinoidal brachiopod coral wackestone
	4604	same as above
	4606	same as above

depth	<u>T.S.</u>	Description
4606-4608		light brown packstone to grainstone (intraclastic)
	4607	crinoidal coral intraclastic grainstone
	4607.5A	same as above
	4607.5B	coral crinoidal, brachiopod intraclastic pack- stone to grainstone
5608-4613		buff wackestone (few interbeds of mudstone)
	4611	mudstone
	4613	crinoidal skeletal hash wackestone
4613-4625		light gray grainstone (few interbeds of wacke- stone and packstone, burrowed) with solution porosity
	4614	crinoidal intraclastic brachiopod micritized grain grainstone
	4615 4619 4621A	same as above same as above same as above
	4621B	crinoidal intraclast brachiopod micritized grain packstone with some solution porosity
	4624A	crinoidal skeletal hash wackestone with some solution porosity
	4624B	same as above
	4625	crinoidal intraclast coral brachiopod packstone to grainstone
T161N, R76W,	S22, NENW	, N.D.G.S. No. 544
3050-3075		anhydritic; dolomitic mudstone
3075-3085		oolitic grainstone; wackestone to packstone
3085-3115		packstone; mudstone; anhydrite; oolitic grainstone
3115-3185		wackestone; oolitic grainstone; skeletal grain-

T161N, R77W, S22, NESE, N.D.G.S. No. 327

lepth	<u>T.S.</u>	Description
3250-3265		anhydrite; anhydritic wackestone
3265-3280		wackestone
3280-3290		dolomitic mudstone
3290-3295		grainstone
3295-3300		micritized oolitic grainstone with some inter- granular porosity
3300-3315		oolitic grainstone
3315-3320		wackestone
3320-3335		packstone
3335-3350		wackestone
3350-3430		wackestone to packstone; grainstone; mudstone
T161N, R79W,	S21, SESW	, N.D.G.S. No. 893
3820-3860		anhydrite; dolomitic mudstone; wackestone
3860-3895		oolitic grainstone with high solution moldic porosity
3895-3900		dolomitic mudstone; crinoidal wackestone
3900-3940		wackestone, with some solution and inter- granular porosity
3940-4000		packstone
r161N, R81W,	S15, NESW	, N.D.G.S. No. 4844
4145-4220		no samples
4220-4316		packstone; wackestone; mudstone
T163N, R75W,	S23, NESW	, N.D.G.S. No. 503
3400-3405		core chips crinoidal, micritized grain wackestone; crinoidal micritized grain grainstone; brachiopod mudstone
3405-3410		crinoidal brachiopod micritized grain grainstone; argillaceous crinoidal brachiopod packstone (evi- dence of subaerial diagenesis)

T162N, R76W, S18, SESE, N.D.G.S. No. 1302

depth T.S. Description

3102-3125 buff to light brown mudstone (dolomitic, desiccation cracks, shaley laminated in parts, bioturbated, anhydritic) with some solution porosity

- 3102 anhydritic mudstone
- 3103.3 anhydritic mudstone with desiccation crack
- 3103.5 laminated mudstone
- 3103.8 anhydritic gastropod mudstone with anhydrite infilling moldic porosity
- 3105 laminated mudstone
- 3109 mudstone with high spherical solution porosity
- 3111.5 mudstone with fenestral and moldic porosity, some of which is infilled with anhydrite
- 3112.5 anhydrite mudstone
- 3114 anhydritic mudstone
- 3115 mudstone
- 3116 mudstone
- 3118 anhydrite
- 3121 mudstone
- 3123 fine-grained anhydritic mudstone

T163N, R77W, S2, SESW, N.D.G.S. No. 170

3067-3070

anhydrite interbedded with light gray mudstone (dolomitic) and anhydrite and interbedded with laminated mudstone

3073

3073-3083 anhydrite ("chicken wire) with interbeds of light gray mudstone (desiccation cracks and soft sediment deformation)

3083-3110 light gray to buff mudstone to wackestone with few interbeds of grainstone with solution and fracture porosity

depth	<u>T.S.</u>	Description
	3086	mudstone
	3087	burrowed micritized grain mudstone
	3089A	micritized grain crinoidal foraminifera coral grainstone with anhydrite infilling porosity
	3089B 3090	same as above same as above
	3091	mudstone with solution porosity
	3099	burrowed mudstone
	3105	micritized grainstone mudstone with high spherical moldic porosity
	3108	mudstone with high spherical moldic porosity
3110-3115		buff oolitic packstone to grainstone with some fracture porosity
	3110	oolitic grainstone
	3113	oolitic packstone
	3114	oolitic grainstone with good interparticle porosity
	3115	micritized grain grainstone overlain by oolitic grainstone
3115-3119		light gray mudstone to wackestone (burrowed)
	3117	fine-grained dolomitic mudstone
3119-3131		buff wackestone to packstone with few interbeds of grainstone
	3120	burrowed crinoidal foraminifera brachiopod packstone
	3121	micritized grain crinoidal brachiopod packstone
	3128	burrowed micritized grain brachiopod crinoidal wackestone
	3130	burrowed micritized grain brachiopod crinoidal wackestone with solution and interparticle porosity

depth	T.S.	Description sample chips
3131-3140		dolomitized mudstone
3140-3170		packstone to grainstone
3170-3190		grainstone with few mudstone chips
3190-3230		crinoidal coral, brachiopod wackestone to packstone
T164N, R77W,	S33, NWNE	, N.D.G.S. No. 961
2976-2993		buff mudstone (dolomitic) with few interbeds of packstone (anhydrite infilling solution porosity) and anhydrite
	2976	bioturbated mudstone
	2992	anhydrite mudstone with desiccation cracks
2993-2998		buff to dark brown wackestone to packstone (oil stained) with solution porosity
	2996	dolomitic wackestone
2998-3003		brown dolomitic mudstone (slightly anhydritic) with solution porosity
	3000	dolomitic mudstone with secondary anhydrite infilling solution porosity
	3001	same as above
	3002A	anhydritic dolomitic mudstone
	3002B	same as above
3003-3025		brown grainstone (cycles of gradation from grainstone to mudstone, bioturbated oil stained from 3018.5-3025)
	3007A	bioturbated dolomitic mudstone
	3007B	crinoidal brachiopod coral micritized grain wackestone overlain by mudstone
	3011	burrowed dolomitic mudstone with solution porosity
	3018A	dolomitic crinoidal brachiopod micritized grain intraclast wackestone with high solution porosity
	3018B	same as above

T164N, R77W, S33, NESW, N.D.G.S. No. 1011

depth	T.S.	Description
2962-2984		light gray mudstone (dolomitic, bioturbated) with interbeds of anhydrite with fracture porosity (oil stained from 2973-2975)
		porobity (orr brained internet)
	2964	interbedded mudstone and anhydrite
	2965	anhydritic mudstone
	2970	same as above
	2973	same as above
	2974	anhydrite crinoidal wackestone
	2979	anhydritic mudstone with some solution porosity
	2981	same as above
	2984	same as above
	2985	same as above
2984-2991		light gray to buff wackestone to packstone
	2986	crinoidal brachiopod foraminifera micritized grain packstone
	2987	crinoidal brachiopod foraminifera wackestone to packstone
	2988 2990	
2991-3070		well cuttings crinoidal brachiopod wackestone to packstone with a few chips of mudstone and grainstone
		BURLEIGH COUNTY
T137N, R77W,	, S32, SE	ESE, N.D.G.S. No. 756
4010-4070		anhydrite; dolomitic quartz silt mudstone
4070-4090		dolomitic mudstone; crinoidal brachiopod wackestone to packstone
4090-4100		packstone to grainstone; wackestone
4100-4120		packstone; wackestone
4120-4130		waskestone to packstone

LOGAN COUNTY

T136N R71W, S8, CNWSW, N.D.G.S. No. 1346

T.S. Description

depth

2910-2930	clastic red siltstone with carbonate cement
2930-2940	quartz silt wackestone
2940-2950	clastic silt
2950-2980	mudstone
2980-2990	no samples
2990-3000	packstone with high spherical solution porosity
3000-3010	packstone
3010-3030	oolitic grainstone
T136N, R73W, S6, SWSE,	N.D.G.S. No. 590
3250-3270	no samples
3270-3310	dolomitic mudstone
3310-3320	packstone
3320-3340	dolomitic mudstone
3340-3350	mudstone with some solution porosity; packstone
3350-3370	mudstone
3370-3380	mudstone; packstone
3380-3390	wackestone
3390-3400	mudstone
3400-3410	no samples
3410-3415	dolomitized mudstone
	MCLEAN COUNTY
T146N, R81W, S10, NE, 1	N.D.G.S. No. 22
5605-5630	anhydritic wackestone to packstone
5630-5640	wackestone to packstone oolite grainstone; anhydrite

۲

6

1

۲

depth	<u>T.S.</u>	Description
5640-5660		bioturbated wackestone; packstone
5660-5670		oolitic grainstone; wackestone
5670-5690		packstone; oolitic grainstone
5690-5700		argillaceous mudstone
5700-5720		oolitic grainstone
5720-5730		wackestone to packstone
5730-5740		oolitic grainstone
5740-5770		wackestone; mudstone
T146N, R82W,	S32, SESW,	, N.D.G.S. No. 1516
6210-6219		buff wackestone with thin interbeds of shale
	6212.5	crinoidal brachiopod micritized grain wackestone
	6213	come ac above
	6218	same as above
	6219	same as above
6219-6234		light gray to dark gray mudstone to wackestone (burrowed) interbedded with shale
	6225A	burrowed dolomitic mudstone with pinpoint
		solution porosity
	6225B 6225C	same as above
	6228	mudstone with good solution porosity
6234-6243		light gray to dark gray wackestone with inter- beds of shale
	6237	crinoidal coral micritized grain packstone
6243		contact with Bottineau interval
		MORTON COUNTY
T136N, R81W,	S29, CNENW	V, N.D.G.S. No. 26
4890-4900		anhydritic dolomitic mudstone with high solution

depth	T.S.	Description
4900-4910		no samples
4910-4942		dolomitic mudstone, wackestone all chips have high solution porosity, some of which is infilled with anhydrite
4942-4960		oolitic grainstone with dolomite cement
4960-4970		oolitic grainstones; wackestone
4970-4980		no samples
4980-4990		grainstone
4990-5010		grainstone
5010-5020		grainstone
T139N, R86W,	s30, swsw	, N.D.G.S. No. 133
6760-6790		anhydrite; wackestone; packstone
6790-6820		no samples
6820-6840		wackestone
6840-6870		no samples
6870-6880		wackestone; oolitic grainstone
6880-6910		wackestone to packstone
T139N, R90W,	S27, NESW	, N.D.G.S. No. 1620
7740-7760		anhydrite; dolomitic mudstone; wackestone
7760-7805		wackestone
7805-7840		oolitic grainstone
7840-7850		packstone
7850-7892		packstone; oolitic grainstone
		PIERCE COUNTY
T152N, R74W,	S23, SESE	, N.D.G.S. No. 3920
3223-3238.5		anhydrite ("chicken wire") interbedded with dolomitic mudetone (iron stained)

depth	T.S.	Description
	3222	fine-grained dolomitic mudstone with high solution porosity
	3228.3	dolomitic mudstone with interbeds of anhydrite
	3230.5	anhydrite
	3233	anhydrite
	3234	laminated mudstone and anhydrite
	3234.5	quartz silt laminated mudstone
	3234.7	mudstone with anhydrite laminations
	3234.9	quartz silt laminated mudstone
	3738	anhydritic dolomitic mudstone
3238.5-3240		light gray mudstone (laminated, dolomitic)
	3240	dolomitic mudstone
3240-3240.5		light gray mudstone (dolomitic) with interbeds of anhydritic mudstone
T157N, R73W,	S3, NWSW,	N.D.G.S. No. 780
2652-2671		core chips from samples anhydrite ("chicken wire")
2671-2675		mudstone to wackestone (fine-grained, iron stained, anhydritic)
2675-2686		mudstone (burrowed, iron stained)
		RENVILLE COUNTY
T161N, R55W,	S13, SWNW	, N.D.G.S. No. 815
5130-5163		mudstone
5163-5176		oolitic grainstone; wackestone to packstone; mudstone
5176-5195		wackestone
5195-5206		sparse wackestone
5206-5225		oolitic grainstone; mudstone to wackestone

depth	<u>T.S.</u>	Description
5225-5235		oolitic grainstone; wackestone
5235-5240		oolitic grainstone
5240-5280		wackestone; mudstone
5280-5285		wackestone to packstone
5285-5290		mudstone
5290-5325		wackestone to packstone; mudstone
		SHERIDAN COUNTY
T146N, R74W,	S16, SWSW	, N.D.G.S. No. 735
3880-3920		anhydrite; dolomitic mudstone; wackestone to packstone
3920-3930		dolomitic mudstone
3930-3940		oolitic grainstone; skeletal grainstone; packstone
3940-3970		dolomitic mudstone; packstone; oolitic grainstone
3970-3980		grainstone
3980-4020		packstone
T147N, R 7 5W,	S1, NENE,	N.D.G.S. No. 684
3805-3860		anhydrite; dolomitic mudstone
3860-3870		wackestone
3870-3880		mudstone
3880-3910		wackestone to packstone; anhydrite
3910-3920		wackestone to packstone
3920-3950		dolomitized mudstone; wackestone
		SIOUX COUNTY
T148N, R76W,	S15, NENE	, N.D.G.S. No. 665
4040-4100		anhydrite; dolomitic mudstone; wackestone
4100-4130		mudstone; packstone

depth	<u>T.S.</u>	Description
4130-4160		wackestone to packstone
416004170		wackestone to packstone; mudstone
4170-4190		packstone
		WELLS COUNTY
T146N, R68W,	S8, NENE,	N.D.G.S. No. 1211
2350-2400		anhydrite; mudstone with high solution porosity
2400-2410		wackestone
2410-2420		oolitic grainstone with good porosity
2420-2430		wackestone
T146N, R73W,	S27, NENE	, N.D.G.S. No. 207
3603-3615		oolitic grainstone; mudstone; wackestone
3615-3625		grainstone with dolomitic cement; packstone wackestone; mudstone
3625-3630		oolitic grainstone
3630-3680		wackestone to packstone
T147N, R73W,	S16, SWSW	, N.D.G.S. No. 1384
3600-3616.5		core chips anhydrite; packstone
1616.5-3650		well sample mudstone (bioturbated)
3650-3660		wackestone
3660-3670		wackestone (anhydrite infilling some solution porosity)
3670-3680		no samples
3860-3690		mudstone with high porosity; wackestone
3690-3700		grainstone; mudstone
3700-3710		no samples
3710-3730		grainstone; mudstone; wackestone; packstone

REFERENCES CITED

REFERENCES CITED

- Anderson, S. B., 1954, Stratigraphic sections of the Mississippian system in North Dakota: North Dakota Geological Survey Report of Investigation no. 16, 2 sheets.
- Anderson, S. B., 1958, Mississippian possibilities: North Dakota Geological Survey Report of Investigation no. 31, 10p.
- Anderson, S. B., Hansen, D. E., and Eastwood, W. P., 1960, Subsurface studies, <u>in</u> Oil Fields of the Burke County Area, North Dakota: North Dakota Geological Survey Report of Investigation no. 36, p. 2-25.
- Anderson, S. B., and Hunt, J. B., 1964, Devonian salt solution in north central North Dakota: Saskatchewan Geologic Society, 3rd. International Williston Basin Symposium, p. 93-104.
- Anderson, S. B., and Nelson, L. B., 1956, Mississippian stratigraphic studies, Bottineau County, North Dakota: North Dakota Geological Survey Report of Investigation no. 24, 2 sheets.
- Ballard, F. V., 1963, Structural and stratigraphic relationships in the Paleozoic rocks of eastern North Dakota: North Dakota Geological Survey Bulletin 40, 42p.
- Butler, G. P., 1969, Modern evaporite deposition and geochemistry of coexisting brines, the Sabkha, Trucial Coast, Arabian Gulf: Journal of Sedimentary Petrology, v. 39, no. 1, p. 70-89.
- Carlson, C. G., 1958, Summary of the Herman Hanson Oil Syndicate-Barbara, Ann and Theresa Welder no. 1: North Dakota Geological Survey Circular no. 211, 8p.
- Carlson, C. G., and Anderson, S. B., 1966, Sedimentary and tectonic history of North Dakota part of Williston basin: American Association of Petroleum Geologists Bulletin, v. 49, no. 11, p. 1833-1846.
- Choquette, P. W., and Traut, J. D., 1963, Pennsylvanian carbonate reservoirs, Ismay Field Utah and Colorado, <u>in</u> Bass, R. O., and Sharp, S. L., eds., A Symposium-Shelf Carbonates of the Paradox Basin: Four Corners Geological Society, 14th Annual Field Conference, p. 157-184.
- Christopher, J. E., Kent, D. M., and Simpson, F., 1971, Hydrocarbon potential of Saskatchewan: Saskatchewan Department of Mineral Resources, Geological Sciences Branch, Report no. 157, 47p.

- Collier, A. J., and Cathcart, S. H., 1922, Possibility of finding oil in laccolithic domes south of the Little Rocky Mountains, Montana: U. S. Geological Survey Bulletin 736, p. 171-178.
- Cussey, R., and Friedman, G. M., 1977, Patterns of porosity and cement in ooid reservoirs in Dogger (Middle Jurassic) of France: American Association of Petroleum Geologists Bulletin, v. 61, no. 4, p. 511-518.
- de Groot, K., 1973, Geochemistry of tidal flat brines at Umm Said, SE Qatar, Persian Gulf, <u>in</u> Purser, B. H., ed., The Persian Gulf: New York, Springer-Verlag, p. 377-394.
- Dow, W. G., 1974, Application of oil-correlation and source-rock data to exploration in Williston basin: American Association of Petroleum Geologists Bulletin, v. 58, no. 7, p. 1253-1262.
- Dunham, R. J., 1962, Classification of carbonate rocks according to depositional texture, <u>in</u> Ham, W. E., ed., Classification of Carbonate Rocks: American Association of Petroleum Geologists Memoir 1, p. 108-121.
- Friedman, G. M., 1959, Identification of carbonate minerals by staining methods: Journal of Sedimentary Petrology, v. 29. no. 1, p. 87-97.
- Fuller, J. C. G. M., 1956, Mississippian rocks and oilfields in southeastern Saskatchewan: Saskatchewan Department of Mineral Resources, Petroleum and Natural Gas Branch, Report no. 19, 72p.
- Gerhard, L. C., Origin and Evolution of the Candleligh Reef-Sand Cay system: Atoll Research Bulletin (In Press).
- Gerhard, L. C., Anderson, S. B., and Berg, J., 1978, Mission Canyon porosity development, Glenburn Field, North Dakota Williston basin, <u>in</u> Montana Geological Society: Williston Basin Symposium, 24 Annual Conference, p. 177-188.
- Gillard, D. R., August 17, 1978, Written communication: Saskatchewan Mineral Resources, Petroleum and Natural Gas Branch, Toronto Dominion Bank Building, 1914 Hamilton Street, Regina, Canada, S4P 4V4.
- Handford, R. C., 1978, Monteagle Limestone (Upper Mississippian)-oolitic tidal-bar sedimentation in southern Cumberland Plateau: American Association of Petroleum Geologists Bulletin, v. 62, no. 4, p. 644-656.
- Heck, Thomas, 1978, Depositional environments of the Bottineau interval (Lodgepole) in North Dakota, <u>in</u> Montana Geological Society: Williston Basin Symposium, 24th Annual Conference, Billings, Montana, p. 191-202.

- Heck, Thomas, 1979, Depositional environments and diagenesis of the Mississippian Bottineau interval (Lodgepole) in North Dakota: University of North Dakota, Grand Forks, Master of Science thesis, 227p.
- Irwin, M. L., 1965, General theory of clear water sedimentation: American Association of Petroleum Geologists Bulletin, v. 49, no. 4, p. 455-459.
- Kahle, C. F., and Floyd, J. C., 1971, Stratigraphic and environmental significance of sedimentary structures in Cayugan (Silurian) tidal flat carbonates, northwestern Ohio: Geological Society of America Bulletin, v. 82, no. 8, p. 207-2098.
- Kent, D. M., 1974, A stratigraphic and sedimentologic analysis of the Mississippian Madison Formation in southwestern Saskatchewan: Saskatchewan Geological Survey, Department of Mineral Resources, Report no. 141, 85p.
- King, R. H., 1947, Sedimentation in Permian Castile sea: American Association of Petroleum Geologists Bulletin, v. 31, no. 3, p. 470-477.
- Laporte, L. F., 1967, Carbonate deposition near mean sea-level and resultant facies mosiac: Manlius Formation (Lower Devonian) of New York State: American Association of Petroleum Geologists Bulletin, v. 51, no. 1, p. 73-101.
- McCabe, H. R., 1959, Mississippian stratigraphy of Manitoba: Manitoba Department of Mines and Natural Resources, Mines Branch, Publication 58-1, 99p.
- McCabe, H. R., August 9, 1978, Written communication: Manitoba Department of Mines, Resources and Environmental Management, Mineral Resources Division, Geological Services Branch, 993 Century Street, Winnipeg, Manitoba R3H 0W4.
- Meissner, F. F., 1978, Petroleum geology of the Bakken Formation, Williston basin, North Dakota and Montana, <u>in</u> Montana Geological Society: Williston Basin Symposium, 24th Annual Conference, Billings, Montana, p. 207-230.
- Miller, E. G., 1972, Parkman Field, Williston Basin, Saskatchewan, in King, R. E., ed., Stratigraphic Oil and Gas Fields-Classification, Exploration Methods, and Case Histories: American Association of Petroleum Geologists Memoir 16, p. 502-510.
- Milner, Sam, 1976, Carbonate petrology and syndepositional facies of the Lower San Andres Formation (Middle Permian), Lincoln County, New Mexico: Journal of Sedimentary Petrology, v. 46, no. 3, p. 463-482.

Newell, N. D., Purdy, E. G., and Imbrie, J., 1960, Bahamian oolitic sand: Journal of Geology, v. 68, no. 4, p. 481-497.

- Nordquist, J. W., 1953, Mississippian stratigraphy of northern Montana, <u>in</u> Billings Geological Society: 4th Annual Field Conference Guidebook, p. 68-82.
- North Dakota Geological Survey, 1979, Production statistics and engineering data oil in North Dakota: North Dakota Geological Survey, Grand Forks, North Dakota.
- Peale, A. C., 1893, The Paleozoic section in the vicinity of Three Forks, Montana: U. S. Geological Survey Bulletin 110, 56p.
- Porter, J. W., 1955, Madison complex in southeastern Saskatchewan and southwestern Manitoba: Alberta Society of Petroleum Geologists Journal, v. 3, no. 8, p. 126-130.
- Porter, J. W., and Fuller, J. C. G. M., 1959, Lower Paleozoic rocks of northern Williston basin and adjacent areas: American Association of Petroleum Geologists Bulletin, v. 43, no. 1, p. 124-189.
- Purdy, E. G., 1963, Recent calcium carbonate facies of the Great Bahama Bank. 2. Sedimentary facies: Journal of Geology, v. 71, no. 4, p. 472-497.
- Roehl, P. O., 1967, Stony Mountain (Ordovician) and Interlake (Silurian) facies analogs of recent low-energy marine and subaerial carbonates, Bahamas: American Association of Petroleum Geologists Bulletin, v. 51, no. 10, p. 1979-2032.
- Sando, W. J., 1978, Coral zones and problems of Mississippian stratigraphy in the Williston basin, in Montana Geological Society: Williston Basin Symposium, 24th Annual Conference, Billings, Montana, p. 231-238.
- Saskatchewan Geological Society, 1956, Report of the Mississippian Names and Correlation Committee: Saskatchewan Geological Society, Regina, Saskatchewan, 4p.
- Scott, M. W., 1973, "Near hits???"; a catalog of shows of oil from drill stem tests of plugged and abandoned wells outside current producing areas in North Dakota: North Dakota Geological Survey, Grand Forks, North Dakota.
- Seager, O. A., 1942, A test on the Cedar Creek Anticline, southeastern Montana: American Association of Petroleum Geologists Bulletin, v. 26, no. 5, p. 861-864.

Shaw, A. B., 1964, Time in stratigraphy: New York, McGraw-Hill, 365p.

Sloss, L. L., and Hamblin, R. H., 1942, Stratigraphy and insoluble residues of the Madison Group (Mississippian) of Montana: American Association of Petroleum Geologists Bulletin, v. 26, no. 3, p. 305-335.

- Sloss, L. L., and Moritz, C. A., 1951, Paleozoic stratigraphy of southwestern Montana: American Association of Petroleum Geologists Bulletin, v. 35, no. 10, p. 2135-2169.
- Smith, M. H., 1960, Revised nomenclature for Williston basin [abs.]: American Association of Petroleum Geologists Bulletin, v. 44, no. 6, p. 959.
- Thames, C. B., Jr., 1959, Facies relationships in the Mississippian of the Williston basin and their effects upon fluid migration: American Association of Petroleum Geologists, Rocky Mountain Section, Geological Record, p. 83-86.
- Thomas, G. E., 1954, The Mississippian of the northeastern Williston basin: Transactions of the Canadian Institute of Mines and Metalurgy Bulletin 503, p. 136-142.
- Todd, R. G., 1976, Oolitic-bar progradation, San Andres Formation, Midland basin, Texas: American Association of Petroleum Geologists Bulletin, v. 60, no. 6, p. 907-925.
- Weed, W. H., 1899, Geology of the Little Belt Mountains, Montana: U. S. Geological Survey Annual Report, Part 3, p. 257-461.
- Williams, J. A., 1974, Characterization of oil types in Williston basin: American Association of Petroleum Geologists Bulletin, v. 58, no. 7, p. 1243-1252.
- Wilson, J. L., 1975, Carbonate facies in geologic history: New York, Springer-Verlag, 471p.