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ABSTRACT 

Fracture stimulated enhanced geothermal systems (EGS) can be installed in both 

crystalline rocks and sedimentary basins. The Red River Formation (Ordovician), which lies 

between 3.6 and 4.2 km depth in the Williston Basin, is a viable site for installation of 

sedimentary EGS (SEGS). SEGS is possible there because temperatures in the formation 

surpass 140° Celsius and the permeability is 0.1-38 mD; fracture stimulation can be utilized 

to improve performance. The main objectives of this project were 1) to determine the spatial 

variation of the intrinsic properties of the Red River Formation across the study area, and 2) 

to understand the natural fracture orientation/location in the subsurface of the study area. 

Maps of the intrinsic properties of the Red River Formation-- including depth to the top of 

the formation, depth to the bottom of the formation, porosity, heat flow, geothermal gradient, 

and temperature-- were produced by the Kriging interpolation method in ArcGIS. A GIS and 

geostatistical analysis was completed to show that there is a satisfactory correlative 

relationship between the surface lineaments and the basement faults in the study area. 

Consequently, the orientations and locations of the surface lineaments and basement faults 

were combined in a shapefile to represent the area’s discrete fracture network. In the future, 

the results of these two analyses can be utilized to create a reservoir simulation model of an 

SEGS in the Red River Formation; the purpose of this model would be to ascertain the 

thermal response of the reservoir to fracture stimulation. 
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CHAPTER I 

INTRODUCTION TO THE RESEARCH PROBLEM 

Executive Summary 

Fracture stimulated enhanced geothermal systems (EGS) can be installed in both 

crystalline rocks and sedimentary basins. The Red River Formation (Ordovician), which lies 

between 3.6 and 4.2 km depth in the Williston Basin, is a viable site for installation of 

sedimentary EGS (SEGS). SEGS is possible there because temperatures in the formation 

surpass 140° Celsius and the permeability is 0.1-38 mD; fracture stimulation can be utilized 

to improve performance. The main objectives of this project were 1) to determine the spatial 

variation the Red River Formation intrinsic properties across the study area, and 2) to 

understand the natural fracture orientation/location in the subsurface of the study area. 

Background to Geothermal and SEGS 

The geothermal industry is currently struggling due to the high upfront financial cost 

of geothermal systems, which limits market viability. The high upfront cost comes from the 

high risk that is associated with exploration, production, and well drilling of geothermal 

systems. The high risk comes from a paucity of subsurface information. Consequently, 

geothermal industry leaders disagree on which techniques are the most economically viable, 

and therefore where to distribute funds. 

While some organizations-- for instance the U.S. Department of Energy-- advocate 

for fracture stimulated Enhanced Geothermal Systems (EGS) installation in crystalline rocks, 

other geothermal experts, such as David Blackwell, Paul Morgan, and Tom Anderson, 
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advocate for EGS in sedimentary basins (Blackwell et al., 2006; Morgan, 2013; Anderson, 

2013). Sedimentary reservoirs have an edge over crystalline reservoirs when it comes to EGS 

because even a small amount of the sedimentary basin's higher intrinsic permeability will 

increase the efficiency of heat extraction (Tester et al., 2006). Furthermore, SEGS is 

attractive because it utilizes existing oil field data; because of this, general knowledge of the 

formation properties is improved and the cost of drilling is accordingly lowered. 

In addition to having an edge over crystalline EGS, SEGS has an edge over 

conventional sedimentary geothermal systems in the deeper formations of the basin. This 

advantage is due to the fact that the rocks at the base of sedimentary basins (at depths greater 

than 3 km) are similar in permeability and porosity to those in the basement (Tester et al., 

2006), with porosity about 20% and permeability about 25 mD. Therefore, it is actually 

necessary to hydroshear the lower formations of sedimentary basins in order to improve the 

permeability there, such that geothermal heat extraction would be feasible. 

Moreover, many of the drawbacks that are associated with heat extraction from both 

crystalline EGS and conventional sedimentary geothermal systems are reduced in an SEGS. 

The main drawbacks of crystalline EGS include: 1) low permeability between the injection 

and production wells, 2) difficulty in extracting sufficiently hot temperatures near the Earth’s 

surface, i.e. requires deep drilling, and 3) limited lifespan of the system (Anderson, 2013). 

The main drawback of sedimentary geothermal systems is that only low temperatures can be 

extracted from the potential reservoirs (Anderson, 2013). In an SEGS, on the other hand, the 

rock units have a higher permeability between the injection and production wells, moderate 

temperatures (~150° C) can be extracted in the upper 4-5 km of the crust, and the system can 

potentially be sustainable. 
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There are few SEGS currently on-line. A successful low-to-intermediate-temperature 

binary unit project was previously successful in Maguarichic, Mexico (Blodgett, 2010) but is 

no longer functional. In Germany, there are three main SEGS installed: Unterhaching, 

Landau, and Horstberg. Unterhaching and Landau currently produce electricity with 

cascaded heat, and Landau and Horstberg have demonstrated success with use of hydraulic 

fracturing on low permeability sedimentary rocks (Morgan, 2013). 

In the United States, an SEGS went on-line in Desert Peak, Nevada, in 2013. The 

SEGS has already proven to be successful with its 175-fold increase in injectivity in the 

target formation, use of cost-effective techniques and technologies, and effective approach to 

multi-phase stimulation (Chabora and Zemach, 2013). The addition of fracture stimulation to 

the Desert Peak reservoir resulted in a 38% increase in productivity (“Geothermal energy Hot 

rocks,” 2014). 

Several other SEGS projects have been considered for development in the United 

States, but so far only Desert Peak has been implemented. Some of the sedimentary basins 

that are candidates for SEGS installation include the Anadarko, Bighorn, Denver, East Texas, 

Ft. Worth, Green River, Great Bain, Hannah, Delaware, Northern Louisiana, Powder River, 

Raton, Sacramento, San Joaquin, Uinta, Williston, and Wind River basins (Porro and 

Augustine, 2014; Blackwell et al., 2006). Because existing binary plants for moderate 

temperature (150° C) SEGS have already proven to be successful, SEGS in the Williston 

Basin within the Red River Formation, where temperatures are comparable, should be viable. 

Research Area 

As a result of its prominent geothermal potential and interconnectedness in a discrete 

fracture network, the Williston Basin was selected as a potential candidate for SEGS 
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installation. A 60.0 km by 14.7 km (882 km2) section of the basin beneath the Nesson 

Anticline in western North Dakota-- surrounding the junction of Divide, Burke, Williams, 

and Mountrail counties-- was designated as the specific study area for this project (Figure 1). 

In addition to having a large amount of thermal energy in place, the Williston Basin 

has good reservoir productivity. There is an estimated 3.4*1019 KJ of thermal energy in place 

in the Williston Basin, including both the rock and the pore fluids (Porro and Augustine, 

2014). In order for a reservoir to be classified as having “great” reservoir productivity, there 

should be high flow 

volumes, vertical 

permeability, strong 

hydrothermal 

recharge, and a well-

known thermal 

profile (Porro and 

Augustine, 2014). 

Because it meets 

most of these 

standards, the 

Williston Basin has 

been classified as 

ranging from “great to good” reservoir productivity (Porro and Augustine, 2014).  

The reservoir productivity is greatly improved by the presence of a discrete fracture 

network in the subsurface. The existing stress field in the Williston Basin is such that natural 

Figure 1: Nesson Anticline Area, Williston Basin (William Gosnold, Pers. Comm., 2013). 
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stress fractures form from overpressure and interconnect as a result of tight spacing (Freisatz, 

1995). This interconnectivity in the subsurface facilitates geothermal heat extraction because 

there is a medium of travel available for the injected SEGS fluids. 

Research Site 

 The Red River Formation (Ordovician) has been identified as a potential target for 

installation of SEGS in the Williston Basin as a result of its oil production history, intrinsic 

rock properties, and temperature. Because Red River Units B and C have been tapped for oil 

production, there is sufficient data and information available about the formation on the 

North Dakota Oil and Gas Division website (https://www.dmr.nd.gov/oilgas/) that can be 

utilized for analysis. 

Furthermore, the Red River Formation has porosity and permeability that are 

conducive for SEGS installation because the lithology consists mostly of limestones and 

dolostones (Tanguay and Friedman, 2001). The limestones are mainly composed of calcite 

and contain minor amounts of dolostone, anhydrite, quartz, and halite (Tanguay and 

Friedman, 2001). The dolostones are mainly composed of dolomite and calcite and contain 

traces of quartz, anhydrite, and halite (Tanguay and Friedman, 2001). While the porosity and 

permeability are “very low to low” in the limestones, porosity and permeability are “low to 

moderate” in the dolostones (porosity of 10-24% and permeability of <1-62.8 mD, 

respectively) (Tanguay and Friedman, 2001). Because the porosity and permeability are low 

to moderate, the Red River Formation is a candidate for SEGS installation. 

 The temperature of the Red River Formation was initially determined from bottom-

hole temperature (BHT) data from the North Dakota Oil and Gas Division Website. These 

BHT were measured from an instrument that recorded the temperature directly at the bottom 
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of the wellbore (Richard LeFever, Pers. Comm., 2015). Because BHTs are seldom measured 

when the wellbore is at thermal equilibrium with the surrounding rock mass, it is necessary to 

correct the temperatures to improve the accuracy of the measurements (Blackwell and 

Richards, 2004a; Crowell and Gosnold, 2011; Crowell et al., 2011). 

In spite of this, BHT measurements are still fairly unreliable predictors of subsurface 

temperature after correction, Figures 2-4 (William Gosnold, Pers. Comm., 2015) show that 

even corrected BHTs do not follow the standard temperature/depth profile for the earth’s 

crust as predicted from the constant heat flow and depth of the stratigraphy for the NDGS 

wellbores (obtained from the North Dakota Oil and Gas Division website). Corrected 

temperatures still tend to underestimate the temperatures, particularly for depths greater than 

2.5 km. 

Because of the erratic nature of BHT measurements, a second method was 

subsequently utilized to refine the corrected BHTs of the Red River Formation to improve  

Figure 2: TSTRAT Plot for NDGS 5086 (William Gosnold, Pers. Comm., 2015). 
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Figure 3: TSTRAT Plot for NDGS 6840 (William Gosnold, Pers. Comm., 2015). 

Figure 4: TSTRAT Plot for NDGS 2984 (William Gosnold, Pers. Comm., 2015). 
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the accuracy of the measurements. This method for obtaining formation temperatures has 

been applied in previous regional and detailed assessments of geothermal resources in 

sedimentary basins (Gosnold, 1984; Gosnold, 1991; Gosnold, 1999; Gosnold et al., 2010; 

Crowell and Gosnold, 2011; Crowell et al., 2011; Gosnold et al., 2012) and in the 

Geothermal Map of North America (Blackwell and Richards, 2004b). The assumptions of 

this method are that 1) heat flow is conductive and constant, and 2) the geothermal gradient 

varies inversely with thermal conductivity according to Fourier’s Law: 

                                                𝑞 =  
𝑑𝑇

𝑑𝑧
𝜆        (1) 

 

where q is heat flow (mW/m2), 
𝑑𝑇

𝑑𝑧
 is the geothermal gradient (°C/m), and λ is thermal 

conductivity (W/mK). Using this method, Red River Formation BHTs were input as 

geothermal gradients into Equation 1 in order to obtain the heat flow. Once the heat flow had 

been obtained for each well, the results were then input into Equation 2 in order to calculate 

the subsurface temperature at each location: 

                             𝑇(𝑧) =  𝑇0 + ∑
𝑞𝑧𝑖

𝜆𝑖

𝑛

𝑖=1
                                                      (2)                                                            

where T(z) is temperature at depth z (°C), T0 is surface temperature (°C), q is heat flow 

(mW/m2), zi is formation thickness (m) and λi is the formation thermal conductivity (W/mK). 

Upon examining the Root Mean Square Error (RMSE) of the maps generated for both 

the corrected temperatures and the calculated temperatures, the RMSE is lower for the map 

of the calculated temperatures. Consequently, calculation is a more accurate method of 

temperature prediction than is BHT correction alone. As a result of this analysis, 

temperatures in the Red River Formation were found to surpass 140° C; therefore, the 

reservoir temperature is sufficiently high for heat extraction using SEGS. 
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Economics 

 It is currently difficult to compare the cost of geothermal heat extraction to the cost 

oil and gas extraction. Currently, few wells exist that are deeper than 2750 m (Tester et al., 

2006). To ameliorate this problem, the MIT Depth Dependent drilling index was developed 

and used to normalize the predicted and actual completed geothermal well costs prior to 

2004, such that they can be compared to oil and gas well costs (Tester et al., 2006). 

There are a few differences in well design between geothermal wells and oil and gas 

wells. Oil and gas wells typically use 6 3/4” or 6 1/4” bits; furthermore, they are lined with 4 

1/2” or 5” casing that is almost always cemented in place and then shot perforated. On the 

other hand, (vertical) geothermal wells are usually completed with 10 3/4” or 8 1/2” bits; 

they are lined with 9 5/8” or 7” casing that is generally slotted or perforated instead of 

cemented (Tester et al., 2006). Therefore, most (vertical) geothermal wells are two to five 

times more expensive than oil and gas wells due to the higher cost of larger completion 

diameters (Tester et al., 2006). According to Continental Resources, horizontal geothermal 

wells are typically cheaper than vertical geothermal wells because they are generally smaller, 

around 4 1/2” (www.contres.com); as a result of this, horizontal geothermal wells may have 

pricing that is comparable to oil and gas wells. 

While oil and gas drilling is generally cheaper than geothermal drilling, the 

economics within geothermal drilling are significantly better for EGS in sedimentary rocks 

than for EGS in crystalline rocks due to the differences in rock type and required drilling 

depth. The hard, abrasive crystalline rocks reduce the rate of drilling penetration as well as 

bit life, thereby increasing both the need for trips and the nonrotating drilling costs for the 

project (Tester et al., 2006). On the other hand, these problems are alleviated in softer 
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sedimentary rocks. Moreover, the depth to the heat source is less in sedimentary basins than 

it is in crystalline rocks, with the exceptions of the Basin and Range province, the Cascade 

Range, and the Pacific-North American plate boundary. Therefore, fewer resources are 

needed to reach the heat source in sedimentary rocks; thus the project completion time will 

be faster. Given this information, sedimentary EGS is considerably less expensive than 

crystalline EGS, with an estimated 20% cost savings (Tester et al., 2006) 

 Furthermore, the drilling cost is influenced by the number of required casing 

intervals, which increases with depth. For a geothermal well at 5 km depth, a 4-casing well 

costs $7.0 million to drill, whereas a 5-casing well costs $8.3 million to drill (Tester et al., 

2006). For a geothermal well at 4-5 km depth, four or five casing intervals are needed (Tester 

et al., 2006). Because the Red River Formation is relatively shallow, at 4.0 km depth, it is 

likely that four casing intervals would be sufficient, thereby reducing the cost. 

 To sum up, the cost of vertical geothermal drilling is two to five times more 

expensive than the cost of oil and gas drilling as a result of the larger completion diameters. 

On the other hand, horizontal geothermal drilling may be more cost comparable. Within 

geothermal drilling, heat extraction in sedimentary basins has significantly lower costs than 

heat extraction in crystalline EGS because 1) the softer rocks facilitate drilling, 2) the depth 

to the heat source is less, and 3) fewer casings are needed to complete the drilling. 

Hypothesis 

 The hypothesis for this research project was that SEGS is feasible in the Red River 

Formation of the Williston Basin. To test this hypothesis, subsurface temperatures were 

examined, as well as the mechanism for fluid flow in the subsurface. 
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Research Objectives 

The main objectives of this research project were 1) to determine the spatial variation 

of the intrinsic properties of the Red River Formation across the study area, and 2) to 

understand the natural fracture orientation and location in the subsurface of the study area. 

By completing these two objectives, a reservoir simulation model of the study area can be 

completed in order to investigate the potential of the Red River Formation as a site for SEGS 

installation. 

Research was completed in the University of North Dakota Geothermal Laboratory in 

Grand Forks, North Dakota. The advisory committee consisted of Dr. William Gosnold 

(geothermics, geophysics, and structural geology), Dr. Hadi Jabbari (reservoir engineering 

and hydraulic fracturing), and Dr. Richard LeFever (sedimentology and stratigraphy). 

Deliverables 

Maps of the intrinsic properties of the Red River Formation-- including depth to the 

top of the formation, depth to the bottom of the formation, porosity, heat flow, geothermal 

gradient, and temperature-- were produced by the Kriging interpolation method in ArcGIS. 

Furthermore, a GIS and geostatistical analysis was completed to show that there is a 

satisfactory correlative relationship between the surface lineaments and the basement faults 

in the study area. Consequently, the orientations and locations of the surface lineaments and 

basement faults were combined in a shapefile to represent the area’s discrete fracture 

network. In the future, the results of these two analyses can be utilized to create a reservoir 

simulation model of an SEGS in the Red River Formation; the purpose of this model would 

be to ascertain the thermal response of the reservoir to fracture stimulation.
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CHAPTER II 

RED RIVER FORMATION INTRINSIC PROPERTIES 

Research Question 

In order to determine the spatial variation of the intrinsic properties of the Red River 

Formation over the study area (Figure 5), interpolations were completed in ArcGIS using 

well data from the North Dakota Oil and Gas Division website. The following parameters 

were interpolated: depth to the top of the formation, depth to the bottom of the formation, 

permeability, porosity, heat flow, geothermal gradient, and temperature. 

 

Figure 5: Red River Formation of the Williston Basin. Nesson Anticline Area is shown in 
green in western North Dakota. 
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GIS Interpolations 

The majority of the interpolations for the Red River Formation were completed using 

the Kriging method, with the exception of the permeability; the Inverse Distance Weighted 

(IDW) method was used instead to interpolate the permeability because the data were scarce. 

The Kriging method of interpolation uses a semivariogram to determine the spatial 

autocorrelation between points. On the other hand, the IDW method of interpolation uses the 

inverse of the distance from the sample point to the target location to calculate the 

interpolated value at the sample point. Regardless of the method used, the interpolations with 

the lowest Root Mean Square Error (RMSE) were selected as the best models. 

For complete accuracy to be obtained using the Kriging method, there need to be 150 

or more data points. While there were only 81 total wells in this study area, the Kriging 

method was utilized anyway-- instead of the IDW method-- because the interpolations had 

much lower RMSE than they did with the IDW method. While the general error was reduced 

using the Kriging method, it should be noted that some artifacts were added incorrectly to the 

Kriging interpolations where there were no wells. 

Data for the depth to the top of the formation (81 wells) and depth to the bottom of 

the formation (36 wells) were obtained from the North Dakota Oil and Gas Division website. 

The interpolation for the depth to the top of the formation is shown in Figure 6. Initially, the 

36 wells were interpolated for the depth to the bottom of the formation with the goal of 

obtaining the depths for the remaining 45 wells from that map. However, this method failed 

due to lack of data coverage on the top of the study area. Therefore, to calculate the depth to 

the bottom of the formation for the remaining 45 wells, the average unit thickness for the Red 

River Formation was calculated and added to the depth to the top of the formation. 
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Figure 7: Depth to Red River Formation Bottom. 
Interpolation was completed using the Ordinary Kriging 
method; RMSE = 0.03770293. 

Figure 6: Depth to Red River Formation Top. 
Interpolation was completed using the Ordinary Kriging 
method; RMSE = 0.03387275. 
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To obtain the average unit thickness for the Red River Formation, the maximum 

thickness of the Red River Formation (213 m) was acquired from the North Dakota 

Geological Survey (NDGS) North Dakota Stratigraphic Column (Murphy et al., 2009). Next, 

TSTRAT (Temperature based on Stratigraphy) for NDGS Well 5086 (similar to that in 

Gosnold et al., 2012) was utilized to calculate a correction factor for the NDGS maximum 

thickness of the Red River Formation because the sum of the maximum thicknesses for the 

Williston Basin formations (6545 m) (Murphy et al., 2009) was greater than the TSTRAT 

depth to the bottom of the basin (4740 m) (Table 1, Appendix A). NDGS Well 5086 was 

used for this correction because 1) the well had similar formation depth and thickness to the 

study area, and 2) the well extended to the bottom of the basin. 

It should be noted that all TSTRAT wells contain depth information from the North 

Dakota Oil and Gas Division website that has been extrapolated to reach the depth of the 

Precambrian Basement rocks based on the average unit thicknesses for each formation. For 

instance, NDGS Well 5086 only reaches the Red River Formation, but the depth of the 

stratigraphic column was projected to reach the Precambrian Basement by adding the 

maximum thicknesses of the Red River Formation and the Deadwood Formation (Murphy et 

al., 2009) to the depth to the top of the Red River Formation. 

The correction factor was calculated in Equation 3: 

Correction =
𝑧𝑏

∑ 𝑧𝑚𝑎𝑥
      (3) 

where zb is depth to the bottom of the basin (NDGS Well 5086 TSTRAT) and ∑ 𝑧𝑚𝑎𝑥 is the 

sum of the maximum thicknesses for the Williston Basin formations (Murphy et al., 2009). 

Correction =
4740 𝑚

6545 𝑚
 

Correction = 0.72 
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Subsequently, the maximum thickness of the Red River Formation (213 m) (Murphy et al., 

2009) was multiplied by the correction factor of 0.72, which resulted in an average unit 

thickness of 0.154 km for the Red River Formation in the study area. 

Consequently, 0.154 km was added to the depth to the top of the formation for each 

well in the study area to obtain an approximate depth to the bottom of the formation for the 

remaining 45 wells in the study area. The interpolation for depth to the bottom of the 

formation is shown in Figure 7. Along with the data for the depth to the top of the formation, 

the data for the depth to the bottom of the formation are listed in Table 2 in Appendix A. 

Permeability was obtained from core analyses in the well log files on the North 

Dakota Oil and Gas Division website. Out of 81 total Red River Formation wells in the study 

area, only three wells-- 4379, 6915, and 1385—contained permeability data for the Red River 

Formation as a whole. In addition to permeability for the formation as a whole, wells 6915 

and 4379 also contained permeability data specifically for Red River Formation Unit C. For 

the rest of the wells in the study area, only 8 had permeability data; those 8 measurements 

were all specifically for Red River Formation Unit C. Consequently, permeability of only 

Red River Unit C was interpolated (Figure 8); there were only 10 total measurements. 

Because the permeability was interpolated specifically for Unit C, porosity was also 

interpolated specifically for Unit C for consistency. Porosity data of Unit C were ascertained 

from the Compensated Neutron Density (CND) logs when available (North Dakota Oil and 

Gas Division). When there was no CND log, the Borehole Compensated Sonic (BCS) log 

was utilized (North Dakota Oil and Gas Division) to obtain ∆tlog, which was then input into 

Equation 4 to calculate the porosity: 

𝜑𝑠𝑜𝑛𝑖𝑐 =  
∆𝑡𝑙𝑜𝑔− ∆𝑡𝑚𝑎

∆𝑡𝑓− ∆𝑡𝑚𝑎
        (4)



 

 
 

17 
 

  

Figure 9: Porosity of the Red River Formation. 
Interpolation for Unit C was completed using the 
Ordinary Kriging method; RMSE = 0.05687078. 

Figure 8: Permeability of the Red River Formation. 
Interpolation for Unit C was completed using the 
Inverse Distance Weighted (IDW) method; RMSE = 
13.71893. 
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where 𝜑𝑠𝑜𝑛𝑖𝑐 is porosity, ∆𝑡𝑓 is 185 (typical value for salt), ∆𝑡𝑚𝑎 is 43.5 (typical value for a 

limestone/dolostone lithology), and ∆𝑡𝑙𝑜𝑔 is the result from the BCS log (Wyllie et al., 1958). 

There were 66 porosity measurements in total. It was assumed that 1) the reservoir 

had a normal porosity distribution and 2) the porosity measurements included porosity of 

both the natural fractures and rock pores. The interpolation for porosity is shown in Figure 9. 

Along with the permeability data, the porosity data are listed in Table 2 in Appendix A. 

Initially, heat flow was obtained from the National Geothermal Data System (NGDS) 

global heat flow spreadsheet. However, this dataset only provided 8 heat flow points that fell 

within the study area, which was not conducive to accurate interpolation. Furthermore, after 

the interpolation of surface heat flow was completed (Figure 10), a mistake in the data 

became apparent. Thus the NGDS dataset was not utilized for the remainder of the project. 

Instead, the heat flow was calculated as follows. Bottom hole temperatures (BHT) for 

50 of the 81 wells from the North Dakota Oil and Gas Division website were adjusted using 

the Harrison Correction (interpolation shown in Figure 11). Subsequently, the geothermal 

gradient was calculated for those 50 wells assuming a surface temperature of 6° C 

(interpolation shown in Figure 12). BHTs are listed in Table 4 in Appendix A. 

Once the geothermal gradient was calculated, the heat flow of each well (50 wells 

total) was calculated using Fourier’s Law (Equation 1). To use Fourier’s Law, the thermal 

conductivity of the basin first needed to be ascertained. To calculate the thermal conductivity 

of the basin, Equations 5 and 6 were applied to the TSTRAT for NDGS Well 6840 (similar 

method to Gosnold et al., 2012), using the data from Table 3 in Appendix A. NDGS Well 

6840 was used for this purpose because 1) the well had similar formation depth and thickness 

in comparison to the study area, and 2) the data was available for all formations in the basin. 
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Figure 11: Temperature of the Red River Formation 
(BHT). Bottom hole temperatures were adjusted using 
the Harrison Correction. Interpolation was completed 
using the Ordinary Kriging method; RMSE = 10.13062. 

Figure 10: Surface Heat Flow of North Dakota. Data 
points were obtained for the Nesson Anticline Area 
from the NGDS global heat flow spreadsheet. 
Interpolation was completed using the Ordinary 
Kriging method; RMSE = 0.908885. 
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First, the Harmonic Mean Conductivity (HMC) of each formation was obtained using 

Equation 5: 

             𝐻𝑀𝐶 =
𝑧

𝜆
       (5) 

 

where HMC is Harmonic Mean Conductivity of each formation (K/m), z is formation 

thickness (m), and λ is formation thermal conductivity (W/mK). Thermal conductivities of 

each formation were measured from core samples provided by the North Dakota Geological 

Survey (NDGS) with a divided bar apparatus, and the stratigraphic section was constructed 

from the North Dakota Oil and Gas Division website (William Gosnold, Pers. Comm., 2015).   

Subsequently, Equation 6 was utilized to calculate the thermal conductivity of the 

Williston Basin as a whole (λbasin): 

             𝜆𝑏𝑎𝑠𝑖𝑛 =
∑ 𝑧

∑ 𝐻𝑀𝐶
       (6)

             λ𝑏𝑎𝑠𝑖𝑛 = 1.667 W/mK 

where λbasin is thermal conductivity of the basin (W/mK), ∑ 𝑧 is the sum of all formation 

thicknesses (m), and ∑ 𝐻𝑀𝐶 is the sum of all formation HMC. Once the thermal 

conductivity of the basin had been computed, heat flow was then calculated using Equation 

1. The geothermal gradients used for this calculation are listed in Table 4 in Appendix A. 

Subsequently, the heat flow results were interpolated in Figure 13 (circles). 32 Red 

River Formation wells did not have bottom hole temperatures available; because of this, heat 

flow could not be calculated for those wells. To ameliorate this problem, heat flow for these 

32 wells was predicted from the well placement on Figure 13 (triangles). The heat flow 

measurements for all wells are listed in Table 4 in Appendix A. 

Once the heat flow had been ascertained for all 81 wells in the study area, the results 

were input into an Excel model of NDGS Well 2894 TSTRAT (method similar to Gosnold et 
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Figure 13: Heat Flow of the Red River Formation. 
Interpolation was completed using the Ordinary Kriging 
method; RMSE = 2.719738. 

Figure 12: Geothermal Gradient of the Red River 
Formation. A surface temperature of 6° C was used. 
Interpolation was completed using the Ordinary Kriging 
method; RMSE = 1.622047. 



 

 
 

22 
 

   

Figure 14: Temperature of the Red River Formation (Ordinary Kriging). Temperatures were calculated using thermal 
properties of rocks in the basin and heat flow. Interpolation was completed with the Ordinary Kriging method; 
RMSE = 4.987412. 
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al., 2012) to calculate the temperature of the Red River Formation for all wells using 

Equation 2. NDGS Well 2894 was used for this purpose because 1) the well had similar 

formation depth and thickness in comparison to the study area, and 2) the data was available 

for all formations in the basin. Before the depths to the Red River Formation in the study area 

were input into the Excel model, they were divided by 3989 m-- the depth to the top of the 

Red River Formation listed in NDGS Well 2894 TSTRAT-- to correct for the difference in 

depth between the model and the wells in the study area. The resulting temperatures are listed 

in Table 4 in Appendix A and the interpolation is shown in Figure 14. 

Once temperature had been calculated for all Red River Formation wells, a Moran’s I 

analysis was completed in order to confirm that the temperature data were clustered (Figure 

15). A Moran’s I analysis is a geostatistical method used in ArcGIS to calculate the spatial 

autocorrelation of a dataset in order to determine whether that dataset is random, dispersed, 

or clustered. It was predicted 

that the temperature data 

would show clustering 

because the depth to the top 

of the formation and the heat 

flow are both input 

parameters that influence the 

temperature in the subsurface, 

as shown by Equation 2. The 

fact that the temperature data 

showed clustering in the  
Figure 15: Moran's I Analysis of the Calculated Temperatures shows that the 
data are clustered and are thus not likely to be the result of random chance. 
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Figure 16: Depth to the Top of the Formation on 
Temperature (OLS). Temperature is 4% dependent on 
depth to the top of the formation. 

Figure 17: The Effect of Heat Flow on Temperature 
(OLS). Temperature is 75% dependent on heat flow. 
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Figure 18: Temperature of the Red River Formation (Co-Kriging). Temperatures were calculated using thermal 
properties of rocks in the basin and heat flow. Interpolation was completed with the Co-Kriging method utilizing heat 
flow; RMSE = 1.925584. 
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Moran’s I confirmed that the model was working correctly and that there were sufficient data 

points to complete the analysis.  

Subsequently, Ordinary Least Squares (OLS) regressions showed that the influence of 

heat flow on the formation temperatures was more than 18 times stronger than the influence 

of depth to the top of the formation on the formation temperatures. Figure 16 shows that 

depth to the top of the formation only influences the formation temperature by 4%, while 

Figure 17 shows that heat flow influences the formation temperatures by 75%. Consequently, 

heat flow is a far more significant control on the formation temperatures than depth. 

 Based on these results, a Co-Kriging interpolation of temperature was completed with 

heat flow and is shown in Figure 18. A Co-Kriging interpolation differs from an Ordinary 

Kriging interpolation in that the Co-Kriging method calculates the semivariance of two 

variables (one independent and one dependent), while the Ordinary Kriging interpolation 

only calculates the semivariance of one variable. In this case, temperature was the dependent 

variable and heat flow was the independent variable. The model calculated the formation 

temperatures by considering the effects of heat flow at each well location. 

Discussion 

Upon examining the surface heat flow interpolation in Figure 10, it is apparent that 

there is a faulty data point in the NGDS spreadsheet. A surface heat flow value of 72 mW/m2 

cannot logically be found so close to a surface heat flow value of 47 mW/m2. Because the 

surrounding heat flow values are much lower, the faulty point must be that with 72 mW/m2. 

Additionally, the presence of bull’s-eyes in Figure 10 indicates that 8 data points are 

too few to produce an accurate interpolation. The bull’s-eye problem is also apparent in the 
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permeability interpolation (Figure 8) (10 data points) and the corrected BHT interpolation 

(Figure 11) (50 data points). Consequently, these three interpolations should not be utilized. 

Furthermore, there is a hint of distortion (jagged edges) on the southeast and northeast 

corners of the Co-Kriging interpolation of the temperature with heat flow (Figure 18). In 

spite of this, there is not so much distortion present that the interpolation should be discarded. 

Because the Co-Kriging result (Figure 18) has the lowest RMSE out of the three 

temperature interpolations, it is a viable temperature prediction. The Ordinary Kriging of 

calculated temperatures (Figure 14) has no distortion and is therefore also a viable 

temperature prediction, despite having a higher RMSE by a factor of more than 2.5. 

Because the interpolation of the bottom hole temperatures (Figure 11) has an RMSE 

twice as high as the Ordinary Kriging interpolation, it is evident that calculation of 

subsurface temperatures based on heat flow and thermal properties is a more effective 

method than just simply correcting and interpolating BHTs. 

Conclusion 

GIS analysis has been completed to produce interpolations of depth to the top of the 

formation, depth to the bottom of the formation, permeability, porosity, geothermal gradient, 

heat flow, and temperature. The interpolations for depth to the top of the formation (Figure 

6), depth to the bottom of the formation (Figure 7), porosity (Figure 9), geothermal gradient 

(Figure 12), and heat flow (Figure 13) are all acceptable results for input into a reservoir 

simulation model. All that can be said for permeability is that it varies from 0.1-38 mD in the 

limestones; the interpolation was inadequate due to a scarcity of data. Both the interpolation 

of the calculated temperatures (Figure 14) and the interpolation of calculated temperatures 
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with the influence of heat flow (Figure 18) are acceptable predictions for the subsurface 

temperatures that can be utilized in a reservoir simulation model. 

Upon examining both Figures 14 and 18, it is apparent that the hottest section of the 

region is in the south-central part of the study area. According to Figure 14, temperatures of 

150-156° C are found in the southeastern corner of the study area (extending from the eastern 

edge of Williams County into western Mountrail County). This hot section extends 9.8 km 

horizontally and 8.0 km vertically. According to Figure 18, temperatures of 150-156° C are 

found in the southwestern and south-central part of the study area (contained within Williams 

County). This hot section extends 13.6 km horizontally and 9.9 km vertically. Regardless of 

which temperature map is utilized, the southeastern section of Williams County has the 

hottest temperatures, and is therefore the best place to install an SEGS in the study area. 

It should be noted that there may be some interference from glacial isostasy in the 

region; therefore, all temperatures shown in Figures 14 and 18 may be up to 15° too warm. 

Consequently, it can only be said with certainty that the hottest temperatures surpass 140° C.
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CHAPTER III 

RED RIVER FORMATION NATURAL FRACTURE ANALYSIS 

Natural Fracture Data 

 To understand the natural fracture orientation and location in the Red River 

Formation, existing data was first examined. Unfortunately, seismic data were unavailable 

for this study and therefore could not be utilized. Additionally, core images only existed for a 

mere four wells in the study area (North Dakota Oil and Gas Division). While the cores 

showed where the natural fractures intersected the wells, they were unoriented; as a result of 

this, it was impossible to ascertain the natural fracture orientation from the core images. 

As a result of this paucity of data, it was necessary to utilize literary analyses of the 

Williston Basin’s stress field orientation, known natural fracture orientations, and surface 

lineament orientations to deduce the natural fracture orientation of the study area. 

Stress Regime and Natural Fracture Orientation 

Natural fracture orientation can be inferred from the regional stress field. The stable 

interior of North America—including the central and eastern United States, most of Canada, 

and most of the western Atlantic—has been classified into the Midplate stress province 

(M.D. Zoback and M.L. Zoback, 1991). The Midplate stress province is characterized by a 

compressive stress regime of strike-slip and reverse faulting in which SHmax > SV > SHmin in 

the United States (primarily-strike slip faulting) and SHmax > SHmin > SV in Canada (primarily 

reverse faulting) (M.D. Zoback and M.L. Zoback, 1991; M.L. Zoback and M.D. Zoback, 

1989). The cause of this stress regime has been attributed the absolute plate motion of the 
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North American plate to the Southwest, as well as to the ridge-push motions from the Mid-

Atlantic ridge (Bell and Grasby, 2012; M.L. Zoback and M.D. Zoback, 1989). 

M.D. Zoback and M.L. Zoback, 1991 and Bell and Grasby, 2012 came to the above 

conclusions from analyzing well bore breakouts. Well bore breakouts are anisotropic cavities 

that occur on opposite sides of a borehole wall when the well is distorted as a result of stress 

(Bell and Grasby, 2012). The breakouts are oriented in the direction of SHmin, where the 

elastic compressive stress concentration is the greatest (Zoback et al., 1985). 

M.D. Zoback and M.L. Zoback, 1991 analyzed the well bore breakouts with an 

ultrasonic borehole televiewer. A televiewer is a well-logging tool that contains a 

magnetically orientated rotating piezoelectric transducer that emits and receives an ultrasonic 

(~1 MHz) acoustic pulse that is reflected from the borehole wall at 600 times per revolution 

(Zoback et al., 1985). The televiewer shows the fractures that intersect the well bores as a 

function of azimuth and depth, based on the reflectivity of the well bore; the reflected pulse 

is shown as brightness on a three-axis oscilloscope and yields an “unwrapped” image of the 

well bore surface (Zoback et al., 1985). One well was analyzed near Auburn, New York and 

showed a 6.5-m long zone of breakouts in the well bore centered at a depth of 1476.3 m in a 

Paleozoic sandstone (Zoback et al., 1985). Another well was analyzed near Monticello, South 

Carolina and showed a 7.5-m long zone of breakouts in the well bore centered at a depth of 

794.5 m in a granite (Zoback et al., 1985). Other break outs were similarly analyzed in the 

southeastern corner of Saskatchewan (M.L. Zoback and M.D. Zoback, 1989), which is ~100 

kilometers away from the current study area in western North Dakota. 

Bell and Grasby, 2012 analyzed the well bore breakouts with a 4-arm dipmeter 

imagery log for Mesozoic and Paleozoic shales, limestones, and dolostones. A dipmeter is an 
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instrument that documents the cavities on opposite sides of the well bore in order to ensure 

that the lateral elongation of the borehole was caused by stress caving (Bell and Grasby, 

2012). A dipmeter works by recording the extensions of opposing pairs of pads, in addition 

to the compass orientation of one of the pads (Bell and Grasby, 2012). One well analyzed 

was in northern Alberta and showed twenty-three ~254.8-m thick breakout intervals in the 

well bore that were centered at a depth of 3496.35 m (Bell and Grasby, 2012). Only ten 

measurements total were available in western Canada (Bell and Grasby, 2012). 

The results of both of the above well bore breakout analyses showed a maximum 

horizontal stress (compression) (SHmax) oriented in the east/northeast direction and a 

minimum horizontal stress (compression) (SHmin) oriented in the north/northwest direction 

(M.D. Zoback and M.L. Zoback, 1991; Bell and Grasby, 2012). Because SHmax is oriented 

northeast/southwest, the natural fracture orientation can be inferred to also be oriented 

northeast/southwest. 

In other studies, there is an opposing viewpoint that local stresses, rather than tectonic 

movements, are responsible for the stress regime in the Williston Basin. These studies 

propose that the Nesson Anticline was formed along reactivated basement block boundaries 

in response to varying tectonic stresses and crustal flexure that occurred intermittently 

throughout the Phanerozoic (LeFever et al., 1987; Freisatz, 1995; Laird and Folsom, 1956). 

In essence, these studies suggest that the stress regime of the Williston Basin is extensional, 

rather than compressional. 

LeFever et al., 1987 examined structural relief plots and split the area of the Nesson 

Anticline into nine distinct areas, each of which having its own independent structural 

history. Episodes of alternating uplift and subsidence occurred in each of these blocks in 
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different intervals over the Phanerozoic (LeFever et al., 1987). Most of these areas 

experienced the largest amount of uplift in the Devonian or in the Early Mississippian, while 

a few of these areas did not experience the largest amount of uplift until the Pennsylvanian 

(LeFever et al., 1987). These results agree with the ideas of Laird and Folsom, 1956, who 

believe that the Nesson Anticline formed sometime in the late Ordovician and became more 

active at the end of the Paleozoic. 

 Other studies have been completed in the Canadian Williston Basin in Saskatchewan 

and Manitoba to determine the natural fracture orientation in the subsurface of the Williston 

Basin. In the Torquay-Rocanville trend near the Weyburn oil field in southeast 

Saskatchewan, the flow of oil has been determined to be in a preferential northeast-southwest 

orientation (Chen et al., 2009). As a result, it is suggested that natural fractures in the area 

have a dominant northeast-southwest orientation (Chen et al., 2009). Furthermore, a 

carbonate aquifer in southern Manitoba (middle Ordovician to Devonian) shows two 

dominant fracture orientations observed in bedrock exposures: northeast-southwest (020°-

040°), and northwest-southeast (110°-130°) (Chen et al., 2011) or the equivalent (290°-310°). 

The northwest trending group (perpendicular to SHmax and parallel to SHmin) has a higher 

fracture density, but consists of mostly healed or closed fractures (Chen et al., 2011). The 

northeast trending group (parallel to SHmax) has a significantly higher permeability and is the 

preferential fluid-flow pathway (Chen et al., 2011; Wegelin, 1987). 

Fluid in the subsurface should theoretically flow preferentially in the direction of 

maximum stress, regardless of whether that stress is horizontal or vertical. Because Chen et 

al., 2011 and Wegelin, 1987 observed the subsurface fluid to flow in a preferential northeast 

direction, it can be assumed that the direction of maximum stress in the subsurface is oriented 
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to the Northeast (a horizontal stress). As a result of this information, it can be deduced that 

the direction of maximum horizontal stress (SHmax) is oriented to the Northeast and that SHmax 

is greater than the vertical overburden stress (SV). These findings suggests that the stress of 

the region is SHmax > SHmin > SV, a compressive regime, which is consistent with the results of 

Bell and Grasby, 2012 and M.D. Zoback and M.L. Zoback, 1991. If the stress regime were 

extensional, on the other hand, then SV > SHmax > SHmin (Zoback, 1989). Thus the stress field 

of the United States craton is a compressive regime that is caused by the northeastern 

movements of the North American plate and the spreading of the Mid-Atlantic ridge. 

To sum up, the consistent findings of Chen et al. 2011, Wegelin, 1987, Bell and 

Grasby, 2012, and M.D. Zoback and M.L. Zoback, 1991 show that the natural fractures in the 

subsurface of the Williston Basin are oriented northeast and northwest and that the northeast 

trending group is the conduit for fluid flow. This information is applicable to the natural 

fracture orientation in the Nesson Anticline area of the basin in North Dakota. 

Surface Lineament Orientation 

 In addition to the two directions of natural fractures obtained from the Canadian 

studies, there are also two distinct surface lineament (joint) zones in the area that are 

coincidentally also trending northeast and northwest. Northeast and northwest trending 

lineaments have been observed across Winnipeg (Chen et al., 2011) as well as in the Nesson 

Anticline area and Mountrail County, North Dakota (Anderson, 2011; Gerhard et al., 1987). 

It has been argued that surface lineament orientation can reflect the orientation of the 

basement faults in the subsurface, and therefore by extension can reflect the specific 

orientations and locations of the natural fractures in the formation (Bell and Grasby, 2012; 

Anderson, 2011; Penner, 2006; Freisatz, 1995; Freisatz, 1991; Gerhard et al., 1987). The 
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assumptions are 1) that the basement faults cut through the subsurface formation in question, 

2) that the trends of the natural fractures in the subsurface are parallel to the trends of the 

basement faults, and 3) that the surface lineaments are formed either a) by the motion of the 

basement faults, or b) by the same source that formed the basement faults. It has also been 

proposed that the surface lineaments are vertically connected to the basement faults as fault 

traces (Anderson, 2011; Chen et al., 2011; Freisatz, 1995). 

 In spite of the similarities in trend between the basement faults and the surface 

lineaments, advances and retreats of Pleistocene glacial till show “ridge and swale” 

topography that is also nearly coincident with the inferred direction of preferred fracture 

orientations (Chen et al., 2011; Gerhard et al., 1990). Furthermore, Cenozoic detrital 

sedimentary rocks can mask the geologic expression of the basin (Gerhard et al., 1990). 

Because of this, lineaments may not be able to adequately predict the orientations of the 

subsurface features (Chen et al., 2011; Gerhard et al., 1990; Gerhard et al., 1987). 

Research Question 

A paucity of natural fracture orientation data in the subsurface impedes immediate 

understanding of the natural fracture orientation of the study area in western North Dakota. 

While there are many known surface lineaments in the area and some known basement 

faults, it is disputed that the surface lineaments are, in actuality, caused by the basement 

faults. Thus it is uncertain whether or not it can be said with confidence that the surface 

lineaments reflect the orientations and locations of the natural fractures in the subsurface. 

As a result of this uncertainty, it was necessary to conduct a GIS and geostatistical 

analysis comparing the trends of the surface lineaments to the trends of the basement faults in 

order to determine whether or not they are sufficiently correlated. In the event that a strong 
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spatial autocorrelation were found to exist between the trends of the surface lineaments and 

the trends of the basement faults, the approximation of the specific natural fracture 

orientations and locations in the Red River Formation would be greatly facilitated. 

GIS and Geostatistical Analysis 

To begin the GIS and geostatistical analysis, two distinct shapefiles were needed: one 

containing the spatial distribution of the surface lineaments and the other containing the 

spatial distribution of the subsurface basement faults. The first shapefile was spatially 

referenced and digitized by Fred Anderson and Elroy Kadrmas, 2011; it contained the spatial 

distributions of all historic surface lineaments in the Williston 250k from Cooley, 1983 and 

other sources. Lineaments in this file were derived from four distinct sources: 1) previous 

studies, 2) digital shaded relief data, 3) aerial imagery, and 4) LANDSAT data/imagery 

(Anderson, 2008). The second shapefile was a diagram of basement faults in Mountrail 

County, North Dakota (Anderson, 2011) that was georeferenced to a shapefile of Mountrail 

County (United States Census, 2014) and digitized into a separate layer. The basement faults 

have been identified from seismic data (Anderson, 2011). 

 Once the two distinct shapefiles were obtained and created, respectively, the linear 

directional mean tool and the directional distribution tool were run on both layers in ArcGIS 

(Figure 19). The surface lineaments trend in two distinct directions (northwest and 

northeast); therefore, the results of the linear directional mean and the directional distribution 

were not included on the map because they did not reflect both directional trends. 

Subsequently, Moran’s I analyses (Figures 20-21) were run on the lineaments and the 

faults. From the clustered results, it is unlikely that either the lineaments or the faults were 

formed by random chance. 
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Next, the trends for each distinct surface lineament and each distinct basement fault 

were obtained for the geostatistical analysis with the linear directional mean tool. Compass 

plots were created in MATLAB to analyze the relationships between the basement fault 

trends and the surface lineament trends (Figures 22-25). Finally, the results were compared to 

determine whether the spatial autocorrelation was strong enough to argue common causality. 

Figure 19: Basement Faults and Surface Lineaments. Shows features for 
Mountrail County, North Dakota, 2011. 
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Figure 20: Moran's I Analysis of the Basement Faults shows that the 
data are clustered; therefore it is unlikely that they are the result of 
random chance. 

Figure 21: Moran's I Analysis of the Surface Lineaments shows that the 
data are clustered; therefore it is unlikely that they are the result of 
random chance. 
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Figure 23: Compass Plot of the Surface Lineament Trends shows two distinctive trends: 320° (NW) 
and 043° (NE). Lineament density is greater in the northwest direction. 

Figure 22: Compass Plot of the Basement Fault Trends shows an average ENE trend. The fault density 
is greatest at 042°, which is coincident with the directional distribution calculated in Figure 19.  The 
linear directional mean calculated in Figure 19 (green stars) is pictured at 073°. 

042° 

320° 043° 

073° 
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Figure 24: Compass Plot of the Basement Fault Trends and the Surface Lineament Trends. The large 
magnitude of lineaments and the small magnitude of faults makes comparison difficult. 

Figure 25: Figure 24, Zoomed In. The closer view facilitates comparison. 
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Discussion 

The average azimuthal direction of all subsurface faults, 073° (Figures 19 and 22), is 

exactly coincident with the direction parallel to the regional stress field, SHmax, which is 

oriented ENE in this area. The clustering shown in the Moran’s I analysis for the faults 

(Figure 20) is thus explained because the regional stress field likely caused the faults to form. 

The compass plot of the surface lineaments in Figure 23 shows two distinct directions 

of trend: 320° (NW) and 043° (NE). The lineaments thus formed in the directions parallel 

both to SHmin and SHmax of the regional stress field, respectively. Furthermore, the azimuthal 

direction of lineaments trending northeast (043°) (Figure 23) is almost exactly coincident 

with the azimuthal direction of most subsurface faults (042°) (Figure 22). Therefore, the 

clustering shown in the Moran’s I analysis for the lineaments (Figure 21) is thus explained 

because the regional stress field likely caused the faults to form, and then the faults likely 

caused the lineaments to form. 

Conclusion 

A dearth of available seismic data in western North Dakota and a lack of oriented 

cores hindered the immediate understanding of the natural fracture network present in the 

Red River Formation. As a result of this, studies in the Williston Basin of the regional stress 

field, natural fracture orientation, and surface lineament trends provided guidance in 

deducing the orientation and location of the natural fractures in the subsurface of the Red 

River Formation. The GIS and geostatistical analysis of the surface lineaments and the 

basement faults in Mountrail County, North Dakota, showed that there is sufficient spatial 

autocorrelation between the surface lineaments and the basement faults. It can thus be argued 

that the regional stress field caused the faults to form, and that the fault movements 

subsequently caused both the natural fractures and the surface lineaments to form. Because 
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the stress field is consistent over the study area, it can be assumed that the same relationships 

apply to the lineaments and faults in the adjacent Burke, Divide, and Williams counties. 

As a result of this correlative relationship between the surface lineaments, basement 

faults, and natural fractures, it can be assumed that the surface lineaments mimic the 

underlying orientations and locations of both the basement faults and the natural fractures in 

the subsurface. According to Anderson, 2011, there are four different types of relationships 

between surface lineaments and basement faults: coincident, adjacent, bridging, and 

extending; furthermore, the basement faults are assumed to be subvertical (+/- 6 degrees from 

vertical) (William Gosnold, Richard LeFever, Fred Anderson, and Stephan Nordeng, Pers. 

Comm., 2014). The geometry of these relationships is summarized in Figure 26. 

In all four relationships shown in Figure 26, the lineament trends are coincident with 

the fault trends. Therefore, due to lack of more exact information regarding the specific 

natural fracture orientation and location in the subsurface, it can be assumed that the surface 

lineaments and natural fractures are coincident in terms of orientation and location. 

Consequently, the natural fractures in the study area will be assumed to trend in the same 

directions as the surface lineaments: 320° (NW) and 043° (NE), on average.  

In agreement with the ideas of Chen et al., 2011 and Wegelin, 1987, the natural 

fracture density is significantly greater in the northwest direction (SHmin) than in the northeast 

direction (Figure 23). On the other hand, the natural fractures trending to the Northeast 

(SHmax) are fewer in number but will be the conduits for flow. Because of this, it was 

suggested that the northeast trending fractures are more likely to remain open with the 

addition of fracture stimulation (Chen et al., 2011). Therefore, the hydroshearing dilation axis 

would be parallel to SHmax in the northeast direction (Bell and Grasby, 2012). Furthermore,  
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Figure 26: Lineaments as Fault Traces. Shows a coincident relationship, an adjacent relationship, a bridging relationship, 
and an extending relationship. 
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production wells for the SEGS should be placed northeast of the injection wells in order to 

maximize fluid flow. 

DFN for Reservoir Simulation Modeling 

  More maps were made to show the locations of the basement faults and surface 

lineaments in the whole research area. Figure 27 shows the locations of known basement 

faults in the study area. Faults labeled “certain” have been identified based on both 

stratigraphic and seismic data, while faults labeled “probable” have only been identified from 

seismic data. Figure 28 shows the locations of all known surface lineaments in the study area 

and can be utilized, due to lack of better knowledge, as a proxy for the natural fractures in the 

subsurface. Figure 29 combines Figures 27 and 28 to show all known basement faults and all 

known surface lineaments in the study area; consequently, the shapefile displayed in Figure 

29 can be utilized to represent the discrete fracture network (DFN) of the study area in a 

reservoir simulation model. 

Furthermore, it has been shown that higher overall production rates correlate to areas 

of greater lineament density (Anderson, 2011). The greatest lineament density occurs in the 

northeastern corner of Williams County, which has 25 lineaments per 84.9 km2 (0.94 

lineaments/km2) (Figure 30). Because the lineament density is greatest in the northeastern 

corner of Williams County, this part of the study area would be an ideal spot to test in a 

reservoir simulation model for placement of the SEGS.  
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Figure 27: Basement Faults showcases known faults in 
or around the study area. “Certain” faults have been 
identified based on both stratigraphic and seismic 
data. “Probable” faults have only been identified 
based on seismic data. 

Figure 28: Surface Lineaments showcases known 
lineaments in the study area. 
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Figure 29: Basement Faults and Surface Lineaments in the study area. Because the surface lineaments and 
basement faults are spatially autocorrelated, it can be assumed that the surface lineaments mimic the trends of 
the natural fracture network in the subsurface. Therefore, the shapefile shown in this map can be utilized in 
reservoir simulation modeling to represent the discrete fracture network of the study area. 



 

 
 

46 
 

Figure 30: Areas of SEGS Interest are shown based on lineament density. Blue rectangles that are 9.016 km by 9.417 
km (84.9 km2) highlight a section of northeastern Williams County with 25 lineaments and a section of southeastern 
Williams County with 22 lineaments. 
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CHAPTER IV 

FUTURE RESEARCH 

Reservoir Simulation Modeling Objectives 

A reservoir simulation model will be completed in the future to continue this 

research. Chad Augustine and his team at NREL have begun the process of modeling the 

reservoir using Computer Modelling Group (CMG) STARS Advanced Processes Thermal 

Reservoir Simulator. The objectives of the reservoir simulation modeling will be 1) to 

describe the process of hydroshearing design, 2) to emphasize critical design factors that 

determine design effectiveness, and 3) to investigate the optimal treatment selection for an 

SEGS in the Red River Formation. Moreover, an economic analysis of the SEGS system will 

be conducted in order to evaluate the financial performance of different treatment scenarios. 

Location of SEGS 

The results of the GIS analyses can be input into a reservoir simulation model in 

order to ascertain the response of the Red River Formation to SEGS and fracture stimulation. 

The ideal location for an SEGS would be 1) where the temperature in the subsurface is the 

hottest, and 2) where there is high natural fracture density. Ideally, the hottest temperatures in 

the formation would need a medium of transport (natural fractures) to be conducive to good 

fluid flow and system mechanics. One location to test for the SEGS placement should be the 

south-central part of the study area (the southeastern part of Williams County) in order to tap 

the hottest temperatures in the Red River Formation within the research area (Figures 14 and 

18). A second location to test for the SEGS placement would be the central part of the study 
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area (the northeastern corner of Williams County) in order to obtain the best production 

results from the greatest amount of lineaments (natural fractures) (Figure 30). While the 

southeastern part of Williams County has 22 lineaments (natural fractures) per 84.9 km2 

(0.259 lineaments/km2), the northeastern corner of Williams County has 25 lineaments 

(natural fractures) per 84.9 km2 (0.294 lineaments/km2) (Figure 30). On the other hand, the 

northeastern corner of Williams County has temperatures ten degrees colder than the 

southeastern part of Williams County (Figures 14 and 18). Because the southeastern part of 

Williams County has the hottest temperatures in the study area in addition to a high natural 

fracture density, and because the northeastern corner of Williams County has the highest 

natural fracture density in addition to the second hottest temperatures in the study area, both 

areas should be investigated in the reservoir simulation model as potential sites for SEGS 

installation. 

Modeling Deliverable 

Ultimately, the reservoir simulation modeling will have the deliverables of a thermal 

recovery assessment of the sedimentary geothermal reservoir to be installed in the Red River 

Formation utilizing hydroshearing. The thermal recovery assessment will be complete with 

analysis of the fluid injection rate, amount, and pressure. Furthermore, the amount of spacing 

between the injection and production wells will be determined. A financial analysis of the 

thermal recovery assessment will be completed in order to determine whether an SEGS 

would be beneficial to install in the Red River Formation. It is predicted that the cost of the 

SEGS installation will be offset by high productivity from the reservoir.
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CHAPTER V 

CONCLUSION 

Potential Obstacles 

There are three potential obstacles to the realization of this project: 1) contamination 

of potable drinking water, 2) formation of gypsum scale, and 3) accumulation of sufficient 

water for SEGS operation. These problems are 

addressed below. 

Whenever fluids are injected into the 

ground, a question is presented as to whether 

or not the project will result in the 

contamination of potable water. Currently, 

potable drinking water in the Williston Basin is 

pumped from the Fox Hills Formation in the 

Upper Aquifer (Whitehead, 1996). The Red 

River Formation, on the other hand, is located 

much deeper, in the basal aquifer (Figure 31). 

As a result of this, the Red River Formation is 

too deep to be utilized for drinking water. 

Furthermore, the Red River Formation water 

consists of saline brine with a total dissolved 

solid (TDS) concentration greater than 100,000 
Figure 31: Hydrostratigraphy of the Williston Basin 
(Faye Ricker, Pers. Comm., 2015). 
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milligrams per liter (Whitehead, 1996). Therefore, even if water were to be extracted from 

Red River Formation, the water extracted from it would not be potable. Finally, SEGS fluids 

that would be injected into the Red River Formation could not contaminate the overlying 

aquifers because the Red River Formation is directly overlain by the basal aquitard (Figure 

31). 

The next potential problem of this project is that anhydrite (CaSO₄) traces are found 

in the Red River Formation limestones and dolostones. As a result of this, gypsum 

(CaSO*2H2O) scale will accumulate and clog the formation when water is injected into the 

reservoir in the SEGS. Because there are only traces of anhydrite in the formation, it is 

unlikely that gypsum formation would be ubiquitous. Moreover, the gypsum formation 

process could be impeded by periodically diluting the reservoir with fresh water (Crabtree, 

1999). In the event that gypsum scale were to accumulate in spite of periodic dilution, the 

scale could be removed with an acid treatment that contains a chelating agent, for instance 

ethylenediamenetetra-acetic acid (EDTA). The chelating agent is necessary because the 

sulfate scale is difficult to remove as a result of its low solubility in acid (Crabtree, 1999).  

The final potential problem of this project is that many gallons of water are needed to 

continuously operate an SEGS. The reason for this is that 1) water needs to be injected 

continuously into the reservoir to extract heat, and 2) water needs to be injected periodically 

into the reservoir to complete the hydroshearing process. Consequently, the SEGS would 

need to be located near an abundant source of water. One possible water source is the 

Missouri River, which flows along the southern boundaries of Williams and Mountrail 

counties. Fortuitously, the southeastern part of Williams County, where temperatures in the 

study area are hottest, is only 1.3 miles away from the Missouri River. Given this 
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information, the SEGS site should be located in the southeastern part of Williams County, 

rather than in the northeastern corner of Williams County. 

Revisiting the Hypothesis 

Thus far, SEGS is feasible in the Red River Formation of the Williston Basin in 

western North Dakota. In the proposed SEGS site in the southeastern part of Williams 

County, temperature is sufficiently high (140° C) and porosity and permeability are high 

enough (17% and 0.1-38 mD, respectively) to yield a large volume of fluid. The presence of 

a DFN in the subsurface further facilitates flow. 

Currently, there are no major problems that would impede the completion of a 

successful project. However, once the results of the reservoir simulation modeling are 

obtained, the hypothesis can either be fully supported or fully refuted with certainty. 

Overall Project Benefits 

 This project will result in an overall improved knowledge of SEGS and of the existing 

geothermal potential in the Red River Formation of the Williston Basin in western North 

Dakota. This improved knowledge will consequently lower the drilling risk for the area. As a 

result of the reduced drilling risk, there will be lower drilling and completions costs. As a 

result of the lowered costs, the geothermal industry will flourish.
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APPENDIX A 

List of Tables 

 
Table 1.  North Dakota Stratigraphic Column Maximum Thicknesses and NDGS Well 5086 TSTRAT 

Formation Maximum Thickness* (m) Well 5086 Depth to Formation Top** (m) 

Brule 61 
382.5 

Chadron 43 

Golden Valley 122 438.75 

Tongue R. 396 

487.5 
Slope Fm. 82 

Cannonball Fm. 78 

Ludlow 91 

Hell Creek 101 937.5 

Fox Hills 122 1087.5 

Pierre 701 1177.5 

Niobrara 76 1702.5 

Carlisle 122 1758.75 

Greenhorn 46 1848.75 

Belle Fourche 107 1882.5 

Mowry 91 1961.25 

Newcastle 46 2002.5 

Skull Creek 43 2036.25 

Inyan Kara 191 2066.25 

Swift 221 2227.5 

Rierdon 30 2340 

Piper 191 2362.5 

Spearfish 229 2505 

Minnekahta 21 2673.75 

Opeche 152 2682.5 

Broom Creek 114 2772.75 

Amsden 137 2847.75 

Tyler 82 2874 

Otter 61 2934 

Kibbey 76 2979 

Charles 225 

3035.25 Mission Canyon 303 

Lodgepole 225 

Bakken 49 3845.25 

Three Forks 82 3511.5 

Bird Bear 46 3567.75 

Duperow 163 3597.75 

Souris R. 114 3702.75 
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Table 1.  cont. 

Dawson Bay 58 3781.5 

Prairie 198 3822.75 

Winnepegosis 67 3972.75 

Interlake 390 4062.75 

Stonewall 37 4314 

Stony Mountain 76 4340.25 

Red River 213 4385.25 

Winnipeg 161 4546.5 

Deadwood 305 4640.25 

PreCambrian -- 4740 

Sum of Maximum 

Thicknesses: 
6545 -- 

*Murphy et al., 2009 

**NDGS Well 5086 TSTRAT 

 

Table 2.  Red River Formation Depth, Thickness, Permeability, and Porosity 

Well Depth to the 

Top of the 

Formation 

(km) 

Depth to the 

Bottom of the 

Formation 

(km) 

Thickness* 

(km) 

Permeability** 

(mD) 

∆tlog** Porosity** 

(%) 

32 3.91 4.09 0.180    

235 3.84 4.00 0.154   11 

355 3.83 4.01 0.184    

1231 3.86 4.04 0.176    

1385 4.00 4.20 0.197 6.2   

1636 3.96 4.15 0.191    

2009 3.84 3.99 0.154    

3844 3.94 4.14 0.198  55 5 

4321 3.88 4.06 0.184   4 

4323 3.84 4.02 0.182   10 

4340 4.07 4.22 0.154  50 2 

4379 3.85 3.92 0.067 9.3 54 5 

4390 3.85 4.00 0.154   25 

4420 3.88 4.03 0.154  58 10 

4434 3.88 4.03 0.154  55 5 

4514 3.90 4.05 0.154    

4665 3.81 3.97 0.154  53 7 

4716 3.88 4.07 0.189  54 5 

5069 3.92 4.12 0.192   5 

5192 3.64 3.79 0.154   8 

5197 3.87 4.02 0.154   9 

5545 3.86 4.02 0.154    
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Table 2.  cont. 

5577 3.83 4.02 0.182   18 

5612 3.86 4.02 0.154   19 

5648 3.85 4.00 0.154   15 

5656 3.87 4.02 0.154 0.5  15 

5658 3.86 4.01 0.154    

5725 3.87 4.06 0.189   19 

5726 3.85 4.00 0.154   18 

5912 3.90 4.09 0.192   25 

5937 3.87 4.06 0.188   20 

6029 3.89 4.04 0.154   21 

6087 3.91 4.06 0.154   18 

6098 4.05 4.26 0.208   18 

6108 3.86 4.01 0.154   18 

6111 3.88 4.04 0.154   21 

6362 3.92 4.08 0.154   17 

6545 3.81 3.91 0.101    

6569 4.02 4.17 0.154   19 

6915 4.12 4.21 0.090 0.1  11 

7005 3.94 4.15 0.204   12 

7557 3.87 4.03 0.154   20 

7595 3.87 4.02 0.154   20 

7856 3.80 3.96 0.154    

8645 3.98 4.02 0.046   20 

8689 3.95 4.05 0.104   11 

8722 3.83 3.91 0.076   13 

9207 3.82 3.97 0.154   13 

9361 3.85 4.00 0.154   14 

9642 3.85 3.99 0.142   19 

9801 3.86 4.01 0.154   15 

10073 3.84 4.00 0.154   22 

10328 3.84 4.00 0.154   13 

11089 3.89 4.04 0.154 0.535  13 

11126 3.86 4.01 0.154   11 

11164 3.85 4.00 0.154   10 

11405 3.84 4.00 0.154   15 

11760 4.13 4.18 0.054    

12024 3.88 4.07 0.190   17 

12035 3.76 3.92 0.154   16 

12109 3.77 3.92 0.154   27 

12119 3.83 4.00 0.173 1.08  10 
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Table 2.  cont. 

12261 3.74 3.90 0.154   14 

12270 3.83 4.00 0.175 3  9 

12290 3.80 3.95 0.154   14 

12305 3.97 4.15 0.183   17 

12329 3.75 3.90 0.154   15 

12363 3.87 4.06 0.186   14 

12366 3.78 3.93 0.154   14 

12432 3.87 4.05 0.181   9 

12556 3.93 4.08 0.154   22 

12592 3.94 4.12 0.181   15 

12597 3.91 4.10 0.191   14 

12790 3.87 4.02 0.154 38   

12906 3.65 3.80 0.154    

12917 3.89 4.04 0.154   8 

12971 4.00 4.20 0.197 19.9  23 

13395 3.87 4.06 0.186 22.8  24 

13682 3.91 4.09 0.184   12 

15089 3.90 4.05 0.154   15 

18680 3.93 4.14 0.204    

*Thickness of 0.154 km refers to the average unit thickness value for the Red River Formation as calculated 

from the maximum thickness of the Red River Formation from the NDGS North Dakota Stratigraphic Column 

(Murphy et al., 2009) correlated to NDGS Well 5086 (in essence, the value from Murphy et al., 2009 corrected 

by a factor of 0.72). The thickness of 0.154 km was utilized to calculate the depth to the bottom of the formation 

for wells in which that depth was unavailable from the North Dakota Oil and Gas Division website. 

**Measurements were obtained only for Red River Unit C. 

 

Table 3.  NDGS Well 6840: Temperature, Thermal Conductivity, Depth, Thickness, and HMC 

Formation Temperature 

(°C) 

λ (W/mK) Depth (m) Thickness 

(m) 

Harmonic Mean 

Conductivity (K/W) 

Brule 6 1.2 49 49.41 41.18 

Chadron 6 1 84 34.83 34.83 

Golden Valley 6 1.4 183 98.82 70.59 

Tongue R. 14.8 1.3 433 250 192.3 

Slope 17.3 1.3 499 66.42 51.09 

Hell Creek 20.3 1.3 581 81.81 62.93 

Fox Hills 24.1 1.2 680 98.82 82.35 

Pierre 47.2 1.2 1248 567.81 473.2 

Niobrara 49.8 1.1 1309 61.56 55.96 

Carlisle 54.2 1.2 1408 98.82 82.35 

Greenhorn 54.8 1.1 1423 14.7 13.36 

Belle Fourche 57.5 1.1 1484 61 55.45 

Mowry 60.6 1.1 1555 71 64.55 

Newcastle 62.6 1.5 1599 44 29.33 
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Table 3.  cont. 

 

 

Table 4.  Red River Formation BHTs, Geothermal Gradient, Heat Flow, and Predicted Temperatures 

Well BHT 

(°C) 

Harrison 

Correction 

(°C) 

Corrected 

BHT (°C) 

Geothermal 

Gradient* 

(°C/km) 

λbasin 

(W/mK) 

Heat 

Flow** 

(mW/m2) 

Predicted 

Temperature 

(°C) 

32      55.00 144 

235 110 19 129 32.08 1.667 53.47 138 

355      55.00 142 

1231      55.00 143 

 

Skull Creek 63.6 1.3 1630 31 23.85 

Inyan Kara 65.3 1.6 1676 46 28.75 

Swift 69.6 1.2 1816 140 116.7 

Rierdon 75.6 1.6 1963 147 91.88 

Piper 77.2 1.6 2015 52 32.5 

Spearfish 81.3 1.6 2149 134 83.75 

Minnekahta 85.5 2.5 2285 136 54.4 

Opeche 85.7 1.2 2294 9 7.5 

Broom Creek 88.5 2.2 2363 69 31.36 

Amsden 90.0 4.0 2432 69 17.25 

Tyler 90.3 1.2 2455 23 19.17 

Otter 92.7 1.2 2514 59 49.17 

Kibbey 94.3 2.7 2553 39 14.44 

Charles 95.4 2.5 2614 61 24.5 

Mission Canyon 97.2 2.5 2705 91 36.55 

Lodgepole 100.9 2.5 2892 187 75.1 

Bakken 104.5 1.1 3073 181 164.5 

Three Forks 105.6 3.1 3098 25 8.065 

Bird Bear 106.4 3.1 3152 54 17.25 

Duperow 106.9 3.2 3181 29 9.091 

Souris R. 108.4 2.9 3282 101 34.59 

Dawson Bay 109.7 2.8 3358 76 27.64 

Prairie 110.4 4.0 3397 39 9.75 

Winnepegosis 112.2 3.0 3542 145 48.49 

Interlake 113.5 3.8 3621 79 20.95 

Stonewall 116.6 3.9 3863 242 62.21 

Stony Mountain 116.9 3.8 3888 25 6.596 

Red River 117.5 3.3 3932 44 13.41 

Winnipeg 119.8 4.1 4087 155 38.08 

Deadwood 120.9 3.5 4177 90 26.01 

PreCambrian 61.7 2.6 4482 217 -- 
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Table 4.  cont. 

1385      55.00 148 

1636      55.00 146 

2009      57.00 147 

3844      55.00 145 

4321      55.00 143 

4323      55.00 142 

4340 130 19 149 35.19 1.667 58.67 149 

4379      55.00 142 

4390 113 19 132 32.74 1.667 54.58 141 

4420 118 19 137 33.81 1.667 56.36 146 

4434 117 19 136 33.50 1.667 55.85 145 

4514 116 19 135 33.19 1.667 55.32 145 

4665 122 19 141 35.54 1.667 59.25 151 

4716      55.00 143 

5069      55.00 145 

5192 110 19 129 33.81 1.667 56.37 138 

5197 110 19 129 31.88 1.667 53.14 138 

5545      55.00 143 

5577      55.00 142 

5612 126 19 145 35.95 1.667 59.92 155 

5648 113 19 132 32.76 1.667 54.61 141 

5656 113 19 133 32.74 1.667 54.58 142 

5658      55.00 143 

5725      55.00 143 

5726 112 19 131 32.61 1.667 54.35 141 

5912      55.00 144 

5937      55.00 143 

6029 110 19 129 31.72 1.667 52.88 138 

6087 109 19 128 31.27 1.667 52.13 137 

6098      57.00 154 

6108 113 19 133 32.80 1.667 54.68 142 

6111 119 19 139 34.17 1.667 56.96 148 

6362 119 19 139 33.81 1.667 56.37 148 

6545      57.00 146 

6569 104 19 124 29.30 1.667 48.85 133 

6915 118 19 137 31.90 1.667 53.18 147 

7005      57.00 150 

7557 121 19 140 34.56 1.667 57.61 149 

7595 113 19 132 32.57 1.667 54.29 141 

7856      57.00 145 
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Table 4.  cont. 

8645 106 19 125 29.87 1.667 49.79 134 

8689 111 19 130 31.50 1.667 52.51 140 

8722 121 19 140 35.08 1.667 58.48 150 

9207 117 19 136 34.03 1.667 56.73 145 

9361 112 19 131 32.45 1.667 54.10 140 

9642 124 19 144 35.76 1.667 59.61 153 

9801 112 19 131 32.51 1.667 54.19 141 

10073 124 19 144 35.83 1.667 59.73 153 

10328 109 19 128 31.78 1.667 52.98 137 

11089 127 19 146 36.14 1.667 60.24 156 

11126 109 19 128 31.64 1.667 52.74 137 

11164 105 19 124 30.76 1.667 51.27 133 

11405 128 19 147 36.69 1.667 61.15 157 

11760 132 19 151 35.24 1.667 58.74 161 

12024      55.00 144 

12035 118 19 138 34.97 1.667 58.29 147 

12109 118 19 137 34.78 1.667 57.98 146 

12119      57.00 146 

12261 114 19 134 34.12 1.667 56.87 143 

12270 125 19 144 36.11 1.667 60.20 154 

12290 118 19 137 34.49 1.667 57.49 146 

12305 121 19 140 33.88 1.667 56.47 143 

12329 112 19 131 33.47 1.667 55.79 141 

12363      55.00 143 

12366 114 19 134 33.81 1.667 56.36 143 

12432      55.00 143 

12556 116 19 135 32.80 1.667 54.68 144 

12592      55.00 145 

12597 127 19 146 35.77 1.667 59.62 156 

12790 117 19 136 33.59 1.667 56.00 145 

12906 114 19 133 34.80 1.667 58.02 142 

12917 118 19 137 33.72 1.667 56.21 146 

12971      55.00 148 

13395      55.00 143 

13682      55.00 144 

15089 118 19 138 33.74 1.667 56.25 147 

18680      55.00 145 

*Geothermal gradient was calculated by subtracting a surface temperature of 6° C from the corrected BHT    

and dividing that value by the depth to the top of the formation in km listed in Table 1. 

**Heat flow for wells without BHT measurements was predicted from well placement in Figure 13.
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