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ABSTRACT 

Sedimentary materials of the Sentinel Butte Formation have been 

petrogr-aphically examined using optical and scanning electron micro­

scope/microprobe techniques. The formation consists of fine-grained 

materials which generally are classified mineralogically as volcanic 

litharenites or feldspathic litharenites. Most rock units in the 

formation are siltstones and mudstones. Multiple source rock types, 

including volcanic, metamorphic, a~d sedimentary, are represented by 

mineralogic constituents, but volcanic rock fragments are most abundant. 

Petrographic distinctions between basal and uppermost sandstone units 

suggest that a change in sediment supply took place near the end of 

Sentinel Butte time. Authigenic cement development appears concentrated 

in more porous and permeable sandstone units. A general pattern of 

cement development is suggested; pore-lining montmorillonite precipi­

tation preceded pore-filling zeolite development, which was followed by 

calcite or dolomite growth. 

A widespread volcanic ash and bentonite unit in the formation indi­

cates that volcanism accompanied Paleocene sedimentation and that vol­

canic glass can be preserved for longer periods of geologic time than 

commonly thought possible. The manner of preservation of the bentonite/ 

ash unit makes it ideally suited for testing the usefulness of chemical­

correlation procedures for bentonites developed in terrestrial settings. 

Petrographic comparison of the Sentinel Butte bentonite/ash with other 

claystone units may yet reveal the presence of other bentonites in 

Paleocene strata. Chemical correlation of newly discovered bentonites 

may lead to an improved understanding of the time-stratigraphic 

framework·of the Fort Union Group. 

xi 



Sodium montmorillonite is the most abundant clay mineral in the 

formation. Other clay minerals, including kaolinite and illite, are 

minor. Detrital and authigenic montmorillonite appears to be 

distinguishable on the basis of discriminant analysis of major element 

composition. Comparisons of lignitic samples suggest that lignite 

precursor material representing various stages of coalification is 

present in the formation. Similar characterization studies of other 

Fort Union Group rocks eventually may lead to the determination of 

petrofacies and sediment dispersal patterns. 
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INTROQ1JCTI0N 

General Statement 

Paleocene sedimentary materials in th.e Williston Basin were derived 

from source regions uplifted and eroded during the Late Cretaceous to 

Early Eocene Laramide orogeny. Because rocks of Laramide structural 

highs have been greatly removed by processes of erosion, we must examine 

the sediments shed from those highs to reconstruct certain aspects of 

the orogeny itself. Distally deposited sediments, such as those 

occurring in the Sentinel Butte Formation, do not lend themselves to 

convenient petrologic examination and interpretation due to both a 

fineness of grain sizes a11d a tendency toward dispersal and admixture of 

sediment from several source terranes. Nonetheless, study of distal 

deposits such as those of the Sentinel Butte can provide useful 

information for the eventual reconstruction of Early Tertiary geologic 

events. 

Purpose 

This study is intended to improve our knowledge of the natural 

history of Sentinel Butte rocks through a specific examination of the 

materials comprising those rocks. Characterization of materials using 

optical, scanning electron microscope, and microprobe techniques is the 

primary purpose of this study. A major goal is to discover which 

descriptive procedures and techniques are most valuable for the eventual 

comparison of Early Tertiary sediments in the Western Interior. It is 

through such comparisons that sediment dispersal patterns, petrographic 

and geochemical "facies", and source terrane reconstructions might 

1 
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eventually be determined. 

More specific questions which might be answered through the use of 

descriptive data are also considered in this study. These include: 

1) What are the primary petrographic characteristics of 

Sentinel Butte rocks and sediments and what do these 

characteristics reveal about provenance? 

2) What are the secondary (diagenetic) characteristics of 

Sentinel Butte rocks? 

3) How significant was volcanic airfall activity in supplying 

material to the Sentinel Butte Formation? 

4) How can a distinction be made between detrital and 

authigenic clay minerals in the Sentinel Butte Formation? 

Geologic Setting and General Geology 

The Sentinel Butte Formation is exposed over much of the western 

third of North Dakota (Clayton et al., 1980). It is exposed at the 

surface along portions of stream valleys {e.g., the Knife River valley 

and Little Knife River valley), on buttes where mass wasting has removed 

a soil cover, and along the banks of Lake Sakakawea and westward along 

the Missouri River. The most abundant exposures are found within the 

broad expanse of badlands terrain on either side of the northward­

flowing Little Missouri River. Exposures of lower portions of the 

formation are abundant but upper portions of the formation have been 

widely removed by erosion and can be observed only at relatively few 

localities. 

The Sentinel Butte Formation occurs today within central portions 

of the Williston Basin; the stratigraphic position is shown in Figure 
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1. Its Late.Paleocene age is assigned primarily from paleobotanical 

evidence (Brown, 1948). Precise correlation of Sentinel Butte rocks 

with formations in eastern Montana and northeastern Wyoming is 

problematic. Color and outcrop weathering characteristics are of use in 

recognizing the Sentinel Butte Formation where exposures are fairly 

continuous (Jacob, 1975}, but these criteria alone become less useful 

where visual correlation is not possible. The Sentinel Butte Formation 

is informally recognized in eastern Montana near Sidney, and rocks 

equivalent to those of the Sentinel Butte Formation perhaps occur in the 

Powder River Basin of northeastern Wyoming (Ed Murphy, NDGS, personal 

communication, 1984). But other rocks, such as portions of the Tongue 

River in Montana, may be equivalent to the Sentinel Butte Formation in 

age, provenance, or both. A recognition of the temporal relations 

between Fort Union rock units can provide a framework within which to 

interpret sedimentologic data, decipher petrofacies patterns, and 

reconstruct the unroofing and erosion of Laramide structural highs. 

Sentinel Butte sediments were deposited under low-energy alluvial 

conditions characterized by broad lignite-forming swamps, lakes, and 

high-sinuosity stream and associated floodplain systems. Royse (1970, 

1972) interpreted the Sentinel Butte Formation to represent primarily 

fluvial channel, floodbasin, and backswamp environments. He suggested 

that there were two main pulses of Laramide tectonism leading to an 

influx of sand at the beginning and again near the end of Sentinel Butte 

time. He also suggested that the fluvial systems followed the path of 

the postulated retreating·Cannonball Sea, but did not specify deltaic or 

other depositional models. Jacob (1972, 1973, 1976) interpreted the 

Sentinel Butte Formation to represent the landward portions of a delta 
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Figure 1. Generalized geologic column of surface rocks in western 
North Dakota and eastern Montana. 
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plain, but proximal relations to a possibly regressing Cannonball Sea 

have not been clearly documented. Other earlier studies generally 

agreed with the environmental conclusions of Royse or Jacob. Winczewski 

(1982) suggested that environmental patterns (near-channel and 

backswamp) can be recognized and related to structurally controlled 

diversions of a Powder River Basin drainage system. Environmental 

reconstruction of Fort Union rocks continues to be a challenging concern 

for geologists. 

Previous Work 

Previous studies of petrologic aspects of Sentinel Butte rocks were 

conducted primarily using megascopic examination. and polarized light 

microscopy. Most previous workers did not have access to a scanning 

electron microscope or microprobe system. It is the availability of 

such equipment that has led to much of the new information that is 

presented in this study. The petrographic observations of previous 

workers are summarized below. 

Tisdale (1941) did not examine the Sentinel Butte Formation, but 

did conduct some of the earliest petrographic work on Fort Union strata 

in North Dakota. He provided descriptions of basal Fort Union light and 

heavy minerals and suggested multiple sources, perhaps multiple cycles, 

but probably dominantly metamorphic source terranes "not very far 

removed" from the depositional site. He cautioned that much more work 

would be required before provenance interpretations could be made with 

assurance. 

Sigsby (1966) examined samples from one section in the south unit 

of Theodore Roosevelt National Park, taken from 2-1/2 feet intervals 
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upward a distance of 44 feet from the top of the HT Butte lignite, which 

marks the boundary between Bullion Creek and Sentinel Butte strata. His 

petrographic examination of light minerals from sand size fractions 

showed quartz to be the dominant mineral, and plagioclase to be 

"surprisingly abundant". He found only minor potassic feldspar. He 

wrote that the freshness and angularity of most grains, particularly the 

feldspars, suggests a volcanic origin with either "limited or eolian 

transport". His examination of heavy minerals led him to agree with 

Tisdale (1941) that a metamorphic source was indicated. 

Crawford (1967) examined the sand fraction of Sentinel Butte 

samples and found quartz, both potassic and plagioclase feldspar, and 

biotite to be unaltered. He also examined heavy mineral assemblages of 

ten sandstones and suggested that the type and character of grains in 

both the light and heavy mineral fractions are indicative of a 

relatively close metamorphic source terrane perhaps with associated 

granites. Crawford felt his evidence for such a determination of source 

terrane to be inconclusive, however, and suggested the need for more 

detailed work. 

Royse (1967) evaluated the data of previous workers and concluded 

that the minor assemblage of metamorphic heavy minerals in Tongue River 

(now Bullion Creek in North Dakota) and Sentinel Butte samples is 

probably residual and should not be viewed as evidence in support of a 

primary metamorphic source for any portion of the Tongue River-Sentinel 

Butte sequence. He concluded that light minet'al suites qualitatively 

suggest that Sentinel Butte sediments are less mature than Tongue River 

sediments. 

Kulland (1975) examined 30 sand samples ft'om lignite mine sites and 
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determined that plagioclase is more abundant than potassic feldspar, and 

that rock fragments are dominantly sedimentary. He found that igneous 

rock fragments are nearly exclusively volcanic, and that metamorphic 

rock fragments are represented by subrounded grains of mica schist. 

Jacob (1975) examined Tongue River and Sentinel Butte samples in an 

attempt to find petrographic distinctions between the two formations. 

He determined that all sandstone samples are litharenites and that many 

sandstones of the Sentinel Butte Formation are volcanic arenites (after 

Folk, 1974). He interpreted the heavy mineral assemblages as suggesting 

removal of sedimentary cover from metamorphic source terrane between 

Tongue River and Sentinel Butte time. 

Steiner (1978) examined sandstones from both the Bullion Creek and 

Sentinel Butte Formations at 13 localities. He reported quartz and 

plagioclase to oe the dominant minerals present in the Sentinel Butte 

Formation. He noted the fresh, normally unaltered character of 

plagioclase. Lithia varieties, in order of decreasing abundance, were 

reported to include chert, plutonic and metamorphic, sedimentary, and 

volcanic. He reported an apparent inverse relationship between 

quartz/feldspar ratios and sand grain size. He agreed with Royse (1967) 

that the Sentinel Butte Formation appears less mature mineralogically 

than the underlying Bullion Creek Formation. 

Nesemeier (1981) examined several Sentinel Butte sandstones and 

found quartz to be the dominant constituent, with plagioclase much more 

common than potassic feldspar. He determined that chert is the dominant 

type of rock fragment and· that other varieties make up less than two 

percent. He found carbonate cement in all samples and suggested that 

all carbonate grains present are probably cement rather than detrital 

. . _,.. ~ 
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carbonate components. Hesemeier examined 15 clay samples by x-ray 

diffraction and concluded that only four clay minerals were present, 

including in decreasing order of abundance, aontmorillonite, mica, 

kaolinite, and chlorite. 

Jacob (1975) concluded that differences in clay mineralogy between 

Tongue River and Sentinel Butte samples can be seen on an x-ray 

diffractogram at a glance. Brekke (1979) tested Jacob's suggestion by 

examining 35 clay samples from three measured sections. He found that 

the same types and relative amounts of clay minerals occur in both 

formations. Brekke found that sodium montmorillonite, mica/illite, 

chlorite, and minor kaolinite comprise the <2 )JIii clay fraction, with 

mica-illite and chlorite appearing to vary inversely with the amount of 

montmorillonite detected. 

The question of the significance of volcanic airfall activity in 

supplying material to the Sentinel Butte Formation has led, in this 

study, to a special examination of a known bentonite unit in the 

formation. Previous workers have held various views regarding this 

claystone deposit and it is only recently that it has been shown to be a 

true bentonite. 

Early workers noted that many Sentinel Butte claystones present a 

rough weathered surface apparently formed by the wetting and drying of 

swelling clay minerals. A particularly noticeable claystone in and near 

the Horth Unit of Theodore Roosevelt National Park was noticed to cap 

wide benches and to often locally drape many feet over the edge of the 

bench, partially covering.the underlying strata (Fisher, 1953; Meldahl, 

1956). Such characteristics suggested to early workers that this 

claystone and others might be bentonites, formed through the alteration 

·,""" . '..i i:,~_ . 
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of volcanic ash (Fisher, 1953; Hanson, 1955). 

Subsequent workers have either accepted (Clark, 1966; Metzger, 

1969) or questioned (Meldahl, 1956; Hickey, 1977) a volcanic origin for 

the prominent bench forming claystone variously referred to as the Big 

Blue bed, the blue bed, or simply the bentonite. Meldahl (1956) was 

apparently the first to look for petrographic evidence of a volcanic 

origin for this claystone. He searched for, but found no shards of 

volcanic glass in the samples he examined. This led him to suggest that 

the origin of the "bentonite" might be somehow related to that of 

lignite, which he suggested usually occurs in close proximity to the 

claystone. Based on Meldahl's observations, Hickey (1977) suggested 

that the Sentinel Butte bentonite may have formed without the 

involvement of volcanic debris through a reaction between cations and 

colloids trapped together in poorly drained swamps. 

Clark (1966) reported the presence of glass shards in the prominent 

Sentinel Butte bentonite as well as throughout much of the Sentinel 

Butte sequence. However, his description of so-called glass shards and 

his comment regarding their abundance throughout the formation lead one 

102 to seriously question his identification of this material (see page}8'l. 

Forsman and Karner (1975) were the first to document the presence of 

glass shards in the Sentinel Butte bentonite. 

-,,-·;' 
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Methods 

Field Sampling 

A randomized sampling plan was implemented to eliminate bias in the 

selection of samples for this study. Sampling sites were chosen from a 

randomly generated list of township, range, and section numbers for 

western North Dakota. The first ten locations in which surface 

exposures of the Sentinel Butte Formation occur were selected for field 

sampling (Fig. 2). In the field, sampling sites were chosen as close to 

the center of geographic sections as practicable. A random number list 

with numbers between 5 and 15 was used in the field to determine the 

height of the first sample and subsequent vertical spacings between 

samples to be taken from measured sections. The choice of this footage 

bracket was based on an estimate of expected lithologic unit thicknesses 

and average section thickness. It was desired that approximately ten 

samples from each of ten sections comprise the core of this study. In 

so far as they could be determined, only single sedimentation units were 

sampled. Additional samples of many lignites, sandstones, and so-called 

- · ~marker beds, were chosen non-randomly and labeled accordingly. 

Altogether 192 samples, 81 random and 111 nonrandom, were collected for 

this study. Measured section descriptions were designed specifically to 

locate random samples and are provided in Appendix A. Information 

regarding field characteristics and locations of non-random samples is 

also provided in Appendix A. 

11 
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Figure 2. Map showing locations of sections measured and sampled 
in this study. Section abbreviations explained in 
Appendix A. 
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Laboratory Treatment 

Thin sections were prepared from all indurated samples, using epoxy 

impregnation in most cases. Oil was used in place of water in sandstone 

thin sections so that clays might be retained. Cover slips were not 

mounted so that thin sections could be examined by scanning electron 

microscopy (SEM) and electron microprobe analysis (EMA). Nearly all 

samples were easily disaggregated by simple soaking in water, enabling 

sand:silt:clay determinations to be made by pipette procedures. Sand 

(>63 µm), silt (10-63 µm), and <2 µm clay fractions were retained 

separately for each sample. The methods used in obtaining grain size 

data and separated size fractions are reported in Appendix B. Sand, 

silt, and clay percentage data for each sample are provided in Appendix 

C. Grain thin sections were prepared of sand-size grains from all 

samples found to have a >10 J sand content. Silt fractions were found 

to be too fine grained for useful optical microscope examinations. Both 

sand and silt grains were examined by SEM/EMA. Both untreated grains, 

brushed from their host rocks, and grains washed during the 

disaggregation and size fractionation process were observed by SEM. 

Undisturbed rock pieces were also examined by SEM but normally were 

found to provide less information than that gained from separated 

mineral grains. 

Analytical Procedures 

Scanning electron microscope and electron microprobe examinations 

were carried out using a JEOL 35C microscope equipped with a KEVEX 

energy dispersive detector and a Tracor Northern TN-2000 x-ray analyzer. 

Quantitative data obtained by microprobe analysis were adjusted for 

';···'-'""' ,.-,. 
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electronic drift and processed using a Tracor Northern XML fitting 

program and the matrix correction program of Bence and Albee (1968). 

Clay minerals were identified using standard x-ray diffraction 

(XRD) techniques using oriented clay mounts normally both air dried and 

subjected to ethylene glycol solvation. Heat treatment of x-ray samples 

was found to be unnecessary for Sentinel Butte clay mineral identific­

ations. Examinations by XRD were carried out using a Philips-Norelco 

diffractometer with Cu-K- radiation. 

Whole rock major element composition of selected .samples was 

determined by x-ray fluorescence (XRF), using pressed-powder pellets and 

a Rigaku S/MAX wavelength-dispersive system with CRISS fundamental alpha 

data-reduction programs. Trace element data were obtained by neutron 

activation analysis (NAA) contracted to the Nuclear Engineering 

Department of North Carolina State University (Weaver, 1978). 

Point-count data from sand and silt fractions were obtained using 

combined optical and SEM/EMA techniques (see pages 22 and 34). Other, 

special techniques used in the examination of Sentinel Butte materials 

are reported in the relevant sections that follow. 

----------~----.-ii..liil!!r•·_,_ _____________ .. 
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ROCK TYPES 

The Sentinel Butte Formation is composed predominantly of five rock 

types: sandstones, siltstones, mudstones, claystones, and lignites. 

Using standard sediment grain size classification schemes (Folk, 1974) 

and the sand:silt:clay percentage data given in Appendix C, the 

proportions of various rock types collected for the core of randomly 

selected samples are summarized in Table 1. Because of the random 

sampling, the rock type proportions shown in Table 1 are probably fairly 

representative of the formation as a whole. The values show the 

formation to be fine grained, with siltstones and mudstones most common. 

A generalized composite lithologic section, drawn using the data of 

Appendix A, is provided in Figure 3. Sentinel Butte rocks are commonly 

only slightly lithified. Relatively few Sentinel Butte rocks are well 

indurated, but some resistant sandstone bodies do occur. Because most 

Sentinel Butte materials have undergone and show effects of lithifying 

processes other than just simple compaction, use of the term "rocks" 

rather than "sediment" is suggested for most Sentinel Butte materials. 

Lithifying processes and effects are discussed further below, under 

"Authigenic Constituents" and "Diagenesis". 

Table 1. Rock Types Collected from the Sentinel Butte Formation 

Sandstones 

9(11%) 

Siltstones 

35(43%) 

Muds tones 

24(30%) 

Clays tones 

7 (9%) 

Lignites 

6(7%) 

.. P.l6J11ii1111iiii1 .... --. .... --------.-iiiio..;..,.lillliii,,•'"·,~. a ., .••. , '·"'"' • •. " , , ..• Q.· 
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Figure 3. Generalized composite lithologic section of the Sentinel 
Butte Formation. Drawn using data of Appendix A. 



18 

siltstone 
(lower yellow bed) 

upper sandstone 

silty mudatone, 
carbonaceou8 

,nanlte 

' 
(upper 

ailtatona 
yellow bad) 

' ' ' ' \ ' -------- \ 

'--z_q=~--;?'.-::.-::---::::. s:'nune:\ 
Butta \ 

bentonlta/ash 

basal 

' ' \ 

sandstone 

' ' ' \ 
' ' \ 

' ' \ 
' \ 

\ 
\ 

covered 

mudatone 

' \ \ 
' ' ' ' \ \ 

' ' \ \ 

----------

........ v-,...,.-. , ..... _.·':",.,.,.,. 

Section: LX Ranch 

Section: Edge of a glacier 

vartlcat acale: 
1 inch = 40 feat 

(, 



' 

19 

Sentinel Butte carbonaceous rocks vary greatly in their resemblance 

to lignites. That is, a range of lignite physical qualities is seen 

between samples collected in this study. Some samples resemble non­

coalified compressed plant remains. The possibility exists that a 

complete range of pre-lignitic to lignite samples is available in the 

Sentinel Butte Formation. A further discussion of this possibility 

follows on pages 117 through 122. Most lignites encountered are only a 

few centimeters to a meter thick. Most contacts of lignites with 

underlying sediments are gradational, with carbonaceous matter 

increasing upward. However, lignites directly overlying clean sand 

units were also encountered. 

Several visually distinct units occur in the Sentinel Butte 

Formation and have been used by various workers as marker beds. These 

units are not present at all localities, and hence have only limited 

correlation value; however, they are very useful as reference horizons 

where they do occur. From the base upward, these beds include: 1) a 

basal sandstone, 2) the Sentinel Butte bentonite/ash {previously called 

the blue bed), 3) a lower yellow bed, 4) an upper yellow bed, and 5) an 

upper sandstone (Fig. 3). Brief descriptions of these units are given 

below. 

The basal sandstone unit was recognized and mapped as an indicator 

of the Bullion Creek-Sentinel Butte contact by Royse (1967). The unit 

is characterized by its gray color, rilled weathering patter·n, locally 

great thickness (up to 30 m), large-scale trough cross bedding and 

ripple bedding, ledge-like iron-stained or iron-cemented concretions, 

small concretionary nodules, and large spherical and log-shaped 

concretions. The unit is continuous over large areas at various 

', .. _, •,Cw: 
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localities, but mudstone deposits occur at this statigraphic level over 

perhaps equally large areas. It remains unclear what the actual 

geographic pattern of basal sand occurrence is and what type of 

depositional system it represents. The unit is deserving of individual 

study in that it probably represents renewed tectonism at the end of 

Bullion Creek time, a major change in fluvial drainage patterns, or 

both. 

The Sentinel Butte bentonite/ash is discussed in detail on pages 82 

through 97, It is probably an excellent true marker bed in a 

chronostratigraphic sense. It contains two distinctive bench-forming 

blue-gray to black clay units commonly easily visible from a large 

distance. The entire unit is normally 3.7 to 5,5 m thick. 

The lower yellow bed is a distinctive, yellow,fine siltstone unit 

additionally characterized by ripple bedding, root pathways, and a near 

total absence of clay. The unit is often divided into a lower friable 

portion and a higher weakly lithified portion. Its uppermost portion 

(1/3 m} is often white instead of yellow. The lower yellow bed seems to 

have a broader geographic range than the easily recognizable Sentinel 

Butte bentonite/ash. It often occurs approximately 4.5 m above the 

bentonite/ash deposit, but appears further above that same isochronous 

layer at other locations. 

The upper yellow bed appears similar in most respects to the lower 

yellow bed. It has been spared from removal by erosion at few 

localiti.es and has not been extensively examined. in this study. 

The upper sandstone is a well-indurated, medium-grained, brown 

sandstone which is only locally exposed where uppermost Sentinel Butte 

strata have been preserved from erosion. The precise stratigraphic 
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position of the upper sandstone is difficult to determine because it 

normally is the uppermost exposed unit where it occurs. Royse (1967) 

explained that, "Its proximity to the top of the Sentinel Butte section 

is assured north of Lost Bridge and near Grassy Butte where Eocene beds 

of the Golden Valley occur nearby." Royse briefly discussed the 

geologic significance of the upper sandstone and this report provides 

additional information that supports his evaluation. 

The remainder of the formation consists largely of poorly sorted 

mudstone, siltstone, claystone, and carbonaceous units. Close 

inspection of mudstone units shows that they normally are bedded on a 

varying scale of millimeters to meters, with indistinct, small-scale 

size grading throughout. Iron-oxide staining along sub-horizontal 

planes adds further visual complexity to these units. 



PETROGRAPHY AND CLASSIFICATION 

Detrital Constituents 

Petrographic examination by optical microscopy was carried out 

primarily using grain thin sections of sand grains. Standard whole-rock 

thin sections are often more informative, in that grain-to-grain 

relationships provide information regarding diagenesis. However, 

relatively few Sentinel Butte rocks are coarse grained enough to provide 

useful whole-rock thin sections. The basal sandstone, at some 

locations, consists largely of fine-sand-size grains, and the upper 

sandstone, where sampled, consists of medium-sand-size grains, but most 

sandstones consist primarily of very-fine-sand size grains. Additional 

examinations of both sand and silt grains were carried out by SEM/EMA. 

As mentioned above, only 9 of the randomly collected samples are 

classifiable as sandstones if a criterion of >50 % sand-size grains is 

used (Folk, 1974). Because thin sections of silt-size grains are 

difficult to interpret, sand grain thin sections of all samples 

containing >10 % sand size grains were prepared and used for point 

counting. Samples classified as siltstones (<50 % sand and >2:1 

silt:clay) were point counted using an SEM/EMA technique; grains 

sprinkled on tape were identified by chemical composition and counted as 

they crossed the center of the viewing screen during a unidirectional 

traverse across the mounting stub. Results of 200-grain point counts of 

detrital constituents of Sentinel Butte sands and silts are given in 

Table 2. Petrographic descriptions of individual constituents of 

Sentinel Butte samples are provided in the remainder of this section. 

The descriptions are summarized in Table 3. 

22 
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Table 2. Results of 200-Grain Point Counts of Sentinel Butte Sands and Silts 

Sample Q K-Feld Plag Bio Muse C/D VRF MRF-S MRF-PQ PQ-UNF: SRF PRF IJRF 

SAND-SIZE GRAINS data in percent 
EG-1 29 5 20 20 6 15 
EG-17 18 3 18 0 12 14 0 5 2 24 
SB-12 29 4 9 0 13 14 30 
SB-17 13 4 0 38 5 37 
SB-18 36 l 0 12 48 
SB-21 24 8 9 2 21 29 
SR-25 36 3 16 0 0 5 5 34 
7-1 26 4 2 0 15 6 40 
7•G 30 23 0 0 25 14 
LB-8 27 9 3 0 2 0 6 2 51 
Sl!B-3 30 8 12 0 0 10 13 27 
SHll-7 23 3 19 0 0 4 35 16 
Ll<-3 29 6 1 0 15 3 39 
LX-M 10 0 0 51 4 3 3 4 2 8 --.jG 

,\ 

' ' Kann-5 13 5 10 18 9 2 40 
Mann-7 20 6 lJ 0 0 11 11 2 36 
AC-6 21 4 7 0 23 5 3 35 
AC-9 42 3 0 0 11 2 35 
Mll-8 27 7 0 0 35 4 26 
SQB-A 33 6 0 5 5 2 40 
BR-A 34 6 l6 0 0 2 2 2 3 30 
SU-B 43 4 0 2 4 10 2 28 

SILT-SIZE GRAINS 

1•9 31 10 14 15 16 
LB-14 31 10 6 l3 17 l6 
SHB-l 4l 3 0 6 0 43 
KP-4 29 6 l2 lO lO l4 l9 
SHB-5 20 8 l9 4 l2 22 lS 
MB•5 39 l> 3 l3 0 23 
MS-2 37 lO l4 ll 3 l6 
Lll-7 30 7 9 l2 l2 l8 l2 
LX•9 30 10 6 ll 10 21 12 
LB .. 9 28 6 12 3 12 l8 2l 
LX-15 40 4 9 ' 24 14 
SMS-3 30 12 6 6 14 26 
7-7 24 4 12 l7 19 8 l6 
SH!!-9 20 4 4 4 6 25 37 
Mann-1 16 2 5 12 21 19 25 
Hann-:3 23 4 lJ 9 0 44 
KP-6 15 4 4 l3 36 21 
abbreviations: Q•quartz, K-feld=pocassic feldspar, Plag-plagioclase, Bio•biotite, MUsc-muscovite, MRF-s~ 

schistose metamorphic rock fragments; MRF-Pq,.polycrystalline quartz (metamorphic), PO-UNK•polycrystalline 
quartz (unknOWn derivacioc), SRF~sedimentary rock fragments, PRF•plutonic rock fragments, ORF-unknown 
rock fragments, ~-not determined, RF•rock fragments 

I 
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Table 3. Summary of Descriptive Characteristics of Constituents of 
Sentinel Butte Formation. 

Constituent 

Quartz 
10-43% 
avg: 27% 

K-Feldspar 
1-12% 
avg; 6% 

Plagioclase 
0-23% 
avg: 9% 

Biotite 
Muscovite 

0-36% 
avg: 5% 

Calcite 
Dolomite 

0-57% 
avg; 14% 

Rock Fragments 
7-60% 
avg: 34% 

Zeolites 

Montmorillonite 

Kaolinite 

Opal, Cristoba­
lite, Gypsum, 
Barite, Pyrite, 
Iron Oxides 

Occurrence, Characteristics 

Angular, normally with no abrasion-produced surface 
roughness. Some grains are second-cycle. 

Angular, normally unaltered, but some show evidence 
of incongruent dissolution. 

Angular, normally unaltered, but some show evidence 
of incongruent dissolution. Most intermediate 
(andesine-oligoclase), some more sodic. Calcic 
varieties not detected. 

Minor in some samples. Formation, as a whole, is 
fairly mica-rich. Muscovite and biotite subequal, 
but only muscovite detected in the upper sandstone. 
Grains commonly larger than other detrital minerals 
in given sample. 

Most, if not all, is probably secondary. Commonly 
occurs as pore-filling cement, but locally has 
replaced detrital grains. Both calcite and dolomite 
occur in some samples. 

Difficult to classify because of fine grain size. 
Volcanic types predominate. Metamorphic and sedi­
mentary fragments also present~ Some volcanic frag­
ments resemble sedimentary fragments. Metamorphic 
types increase in upper sandstone. 

Minor in formation as a whole, but locally abundant. 
Include members of heulandite group and analcime. 
Occur as pore-filling authigenic crystals postdating 
pore-lining montmorillonite development. 

Common as authigenic pore-lining cement in nearly 
all sandstones and many siltstones. 

Occurs.as booklets commonly altered from micas, 
feldspars, and rock fragments. Some may be detrital. 

Uncommon but locally present as authigenic species. 

: ....... 
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Rock Fragments 

Rock fragments, because of fine grain size or alteration, were 

normally difficult to classify. Volcanic rock fragments greatly 

dominate the identifiable types of rock fragments present in each 

sample, but the number of unidentifiable rock fragments in some samples 

is so large as to make even comparative estimates of volcanic versus 

nonvolcanic rock fragments meaningless. Only rock fragments in the 

coarsest sandstones were classified with any degree of confidence. Most 

sand fractions examined were too fine grained for adequate rock fragment 

classifications to be determined. Many volcanic rock fragments are 

altered, making distinctions between them and possible mudstone 

fragments and· some low rank metamorphic rock fragments questionable. 

A specialized examination of recognizable volcanic rock fragments 

was conducted to determine the composition of both phenocrysts and 

groundmass as a step toward interpreting the type of volcanic terrane(s) 

contributing to Sentinel Butte materials. Rock fragments from both the 

basal sandstone and upper sandstone were compared to detect possible 

differences in the provenance of these two units. Grains in thin 

section to be analyzed by the SEM/EMA system were first located and 

given cartesian coordinates using a petrographic microscope and 

mechanical stage. A reference mark was placed on the thin section using 

dry transfer lettering and the coordinates were referred to this mark by 

simply counting mechanical stage click stops accordingly. It was then a 

straightforward matter to convert mechanical stage click stops to 

degrees of X,Y stage control rotation on the scanning electron 

microscope. 

The results of microprobe analyses are provided in Appendix D. The 

-,-·-·, .. ·-· , ......... ," . ·, 



26 

composition of phenocrysts is summarized in Figure 4. The groundmass of 

individual rock fragments is commonly altered, making assessments of 

original chemical character difficult. Some apparently unaltered 

groundmasses revealed either intermediate (oligoclase-andesine) or more 

alkalic compositions. Albite is the dominant phenocryst in the examined 

volcanic rock fragments from the upper sandstone, while plagioclase 

phenocrysts from the examined basal sandstone rock fragments range in 

composition from Ab 39,5 to Ab 56.5 (labradorite to oligoclase). The 
a,-c1i'!,/ 

more calcic data,ts' consistent with intermediate to felsic volcanic 

source terrane(s). Although only a small number of phenocrysts were 

examined, it seems possible that source material available for eventual 

accumulation as the upper sandstone may have differed from that 

available for the basal sandstone. 

Figure 5 gives examples of Sentinel Butte rock fragment 

appearances. Volcanic rock fragments vary greatly in appearance, but 

are commonly recognized by the presence of feldspar laths or subequant 

phenocrysts in a more felsitic or altered groundmass (Fig; 5a,b). 

Metamorphic rock fragments are fairly minor constituents except in the 

uppermost Sentinel Butte sandstone. Metamorphic rock fragments present 

are generally slaty, phyllitic, or schistose (Fig. 5f), but sheared, 

composite quartz grains also occur (Fig. 5e). Polycrystalline quartz 

grains of metamorphic derivation were identified using criteria outlined 

by Blatt (1967). All polycrystalline quartz grains not determined to be 

metamorphic were counted as polycrystalline quartz rock fragments of 

unknown derivation. Sedimentary rock fragments in the Sentinel Butte 

samples are extremely difficult to distinguish from those of volcanic 

origin. Many altered volcanic rock fragments resemble siltstone or 

____ ...... ___________ ...,. _____ ......, ____ "" 
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Ternary composition of feldspar 
Butte volcanic rock fragments. 
o = basal sandstone. 
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phenocrysts in Sentinel 
+=upper sandstone, 
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Examples of rock fragments in Sentinel Butte sandstones: 
A, B, and C) volcanic rock fragments, A) plagioclase laths 
in a fine-grained groundmass, bar= 10 um, B) -microlites of 
feldspar in an altered, fine-grained (glassy?) groundmass, 
bar= 100 um, C) large, zoned labradorite phenocryst in a 
fine-grained groundmass, bar= 100 um, D) plutonic rock 
fragment with myrmekitic texture, bar= 100 um, E) 
metamorphic polycrystalline quartz grain (note elongate 
grains and sutured grain contacts), bar= 100 um, F) schist 
fragment, bar= 100 um. 
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mudstone fragments and many fragments initially counted as chert were 

determined by microprobe analysis to be volcanic rock fragments with a 

felsitic texture. 

Quartz 

Quartz occurs in Sentinel Butte samples as angular grains, normally 

lacking surface abrasion features. Most quartz grains examined reveal 

no useful indications of source rock types. However, in one sample 

(Mann. 7), 7 quartz grains bear unmistakable quartz overgrowths, 

suggesting their derivation from a pre-existing sedimentary terrane 

(Fig. 6); evidence of quartz cementation following final deposition has 

not been detected in any Sentinel Butte samples. Only monocrystalline 

grains were counted as quartz. 

Feldspar 

Potassic feldspar and plagioclase grains also appear angular and 

not significantly abraded by transport, although many samples contain 

slightly to deeply etched feldspar grains. Potassic feldspar and 

plagioclase seem to have been equally susceptible to chemical 

dissolution in many Sentinel Butte samples. Most plagioclase grains 

examined are intermediate in composition; grains approaching the 

composition of albite are minor, while calcic varieties are very rare in 

the samples examined. No clear relationship between feldspar 

compositions and chemical dissolution has been detected in any samples 

examined. 

A microprobe comparison of feldspar grains in the basal and upper 

sandstone units was conducted. Chemical data is provided in Appendix E, 
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Second-cycle detrital quartz grains bearing quartz 
overgrowths, bars= 10 µm. 

d,,.. 





,. 

34 

and results are summarized in Figure 7. No obvious difference in 

feldspar compositions of the two sandstone units is seen, but basal 

sandstone plagioclase compositions appear slightly more calcic than 

those of the upper sandstone. Whether this subtle difference, based on 

an examination of 20 grains from each unit, is meaningful awaits 

determination by a more thorough and specialized study of feldspars from 

these two units. A comparison of Figure 7 with Figure 4 suggests that 

many individual feldspar grains came from different source terranes than 

those represented by Sentinel Butte volcanic rock fragments. The 

intermediate alkali feldspar analyses are problematic in that they 

suggest volcanic phenocryst origin, but such grains were not found as 

phenocrysts in the rock fragments examined. It is possible that the 

spot analyses by microprobe were taken of intergrowths of two phases 

together, giving an average value; more potassic or sodic feldspar 

varieties would be suggestive of plutonic or metamorphic source 

terranes. 

Determination of Quartz and Feldspar 

Optical microscopy determinations of quartz, potassic feldspar, and 

plagioclase were found to be in significant error when checked by 

SEM/EMA observations. As a result, percentage figures for these 

minerals, given in Table 1, were determined using SEM/EMA point counts; 

total quartz+ K-feldspar + plagioclase values determined from the 

original, erroneous, optical point count data were subdivided according 

to the individual mineral proportions determined using the SEM/EMA 

point-counting technique described on page 22. 

The primary factor making optical distinctions between quartz, 

,_,. ,· -:, .... , ;-,, ' .,.; .. -~-
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Figure 7. Ternary composition of feldspar grains from the Sentinel 
Butte upper sandstone{+), and basal sandstone {e). 

: ' . ·- ,·-' l<i _,,: 

1 



36 

Or 

• + 

+ .. 
AnL ____ __..._ ___ L=-·~~~-·~·~·~-~~~~:.__,,__• __ L·--~Ab 



.{ 

' 

37 

potassic feldspar, and plagioclase difficult is fine grain size. Cracks 

propagated across small quartz grains may appear quite straight and be 

mistaken as feldspar cleavages. In the case of fine grains, what appear 

to be untwinned potassium feldspar grains may very often be individual 

plagioclase twins now detached from a once larger grain. Common mineral 

characteristics found by many authors to be of use in distinguishing 

quartz and feldspars include: 1) differences in first order 

interference colors, 2) relief, 3) presence and orientation of 

inclusions, and 4) indications of cleavage, twinning, and alteration 

products. The degree to which each or all of these traits is of use in 

mineral identification can be expected to vary between sandstones and 

between petrographers. Further, in using interference figures to 

distinguish quartz from feldspars, one should always be aware that the 

presence of a visible melatope is required for the certain determination 

of uniaxial versus biaxial character. Specialized techniques of quartz 

and feldspar identifications should perhaps routinely be employed in 

sedimentary petrography, particularly in the case of fine-grained 

sediments. Either staining or mioroprobe techniques can be effective in 

this regard. Errors in mineral percentage values are, in effect, 

greatly compounded where such data are used to determine mineral ratios 

which are, in turn, applied to plots of regional mineral distribution 

patterns and interpretations of provenance. 

calcite and Dolomite 

It is not known what fraction, if any, of the individual 

calcite/dolomite figures in Table 2 represents detrital grains. Most of 

the carbonate in the Sentinel Butte formation appears to be secondary. 

1---------------------------,lli·;,1• 'i-·'{f;l:-N"1iilillliiiiliilo. _____ ..._ ........ _.._.__.. "' 
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Evidence leading to that judgment is discussed in following sections. 

Micas 

Muscovite and biotite grains are abundant in some Sentinel Butte 

samples and common to minor in others. Muscovite and biotite are 

approximately equally common in most samples. Many of the flake-shaped 

grains observed by SEM/EMA have the composition of chlorite, which may 

have formed pseudomorphically after biotite (see page 40). 

Heavy Minerals 

The content of heavy minerals in Sentinel Butte sandstones and 

.siltstones is very minor although this study has not provided any 

quantitative information. Apatite is the most common heavy mineral in 

the formation with epidote a distant second. Epidote grains are 

commonly chemically weathered, with deep, elongate dissolution features. 

The results of an attempt to estimate the heavy mineral contents of the 

basal and upper Sentinel Butte sandstones are summarized in Table 4. 

The upper sandstone seems to contain both a larger amount and variety of 

heavy. minerals than the basal sandstone. That the commonly more stable 

heavy minerals, such as zircon and tourmaline, are so rarely encountered 

in Sentinel Butte samples is probably a result of provenance or 

attrition during transport, rather than a result of diagenetic removal 

following deposition. 
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TABLE 4. HEAVY MINERALS IN BASAL AND UPPER SENTINEL BUTl'E SANDSTONES 

MINERAL BASAL SAND UPPER SAND 

Almandine A 
Epidote A A 
Kyanite R 
Cordierite R 
Andradite C 
Chloritoid R 
Clinozoisite C 
Grossular(?) C 
Sphene A 
Ilmenite A 
Apatite C 

Note: (Al = abundant, (C) = common, (R) = rare, (-) : not detected 

Clay Minerals 

Detrital clay in the Sentinel Butte .Formation is restricted 

primarily to mudstones and claystones. The clay in most sandstones is 

authigenic, as discussed on page 44. A very simple clay mineral suite 

occurs in the Sentinel Butte Formation. X-ray diffraction data indicate 

the presence of montmorillonite, mica/illite, chlorite, and kaolinite. 

No mixed-layer clay phases were detected. Montmorillonite is by far the 

dominant clay mineral in the Sentinel Butte Formation. It appears in 

nearly all cases to be Na-montmorillonite, as suggested both by a 

swelling of the (001) spacing from 12.5 A to 16.9 A following ethylene 

glycol salvation, and by microprobe analysis (Appendix I). Chlorite, 

kaolinite, and mica/illite. occur in the clay fractions of nearly all 

samples, but are almost always greatly subordinate, in amount present, 

to montmorillonite. The <2 µm clay mineralogy of each sample examined 

is reported in Appendix F. 
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Kaolinite is not as abundant as chlorite in the <2 µm fraction of 

Sentinel Butte samples. While chlorite was detected in 44 of the 46 

samples examined, kaolinite was detected in only 36. Kaolinite and 

chlorite each have a basal (001} spacing of 7 A, but are normally 

easily distinguished in Sentinel Butte samples where separate peaks are 

discernible at 3.53 A and 3.56 A, the (004} and (002} spacings of 

chlorite and kaolinite, respectively. 

It is possible that the clay mineral suite of the Sentinel Butte 

Formation is even simpler than that reported above. It is very 

difficult to distinguish illite from muscovite using XRD. It is 

possible that a peak present at 10 A in the samples examined usually 

represents a mica, either muscovite, biotite, or both, rather than 

illite. Chlorite, muscovite, and biotite flakes occur together in many 

Sentinel Butte sand and silt fractions as determined by SEM/EMA 

observations of grains loosely sprinkled onto tape. Much, if not all, 

of the chlorite present appears to be a pseudomorphic alteration product 

of biotite; microprobe analyses of mica grains reveal a range of 

compositions from biotite to chlorite. In oil immersion mounts, mica 

flakes, other than muscovite, reveal a range of interference colors from 

brown to green, further suggesting that some biotite has undergone 

varying degrees of alteration to chlorite. Brekke (1979) reported that 

mica group minerals and chlorite have similar XRD intensities and are 

directly proportional in Sentinel Butte samples. In this study, 

chlorite peaks have not been detected in the absence of mica group 

peaks. Perhaps all the chlorite present in the Sentinel Butte Formation 

is a pseudomorphic alteration product of mica • 
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Classification 

Disregarding authigenic constituents, Sentinel Butte sandstones are 

classified generally as volcanic arenites or feldspathic volcanic 

arenltes (after Folk,_ 1974) (Fig. 8). Volcanic rock fragments are 

abundant in most samples and feldspar content ranges from 2 to 28 % 

(avg. 14 %). Most siltstone samples examined are also lithic arenites 

or feldspathic lithic arenites. Primary matrix appears minor among the 

13 samples classified as sandstones because of a >50 % sand content. 

The matrix of some sandstones is difficult to distinguish from rock 

fragments that have been wedged or squeezed between other detrital 

grains. And in some samples, secondary calcite has displaced and 

partially replaced grains making matrix versus framework distinctions 

even more difficult. But in most samples, matrix is largely absent, and 

many pores are left open except for pore-lining authigenic clay. The 

minor matrix that is present is silt. It is probable that very little 

of the total clay present in any of the sandstone samples examined is 

detrital. Evidence that much, if not most, of the the clay present in 

the sandstones is authigenic is discussed below, under "Montmorillonite" 

and "Diagenesis". It appears that detrital clays were largely winnowed 

from stream channel environments and deposited on floodplains, leaving 

behind clean sand deposits. 

Authigenic Constituents 

·The Sentinel Butte Formation contains far more authigenic material 

than previously has been recognized. Most authigenic minerals occur 
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Figure 8. Classification of Sentinel Butte sandstones (samples 
with >10 % sand-size grains). Q = quartz, F = feldspar, 
R = rock fragments. 
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only in relatively small amounts, and in only some of the samples 

gathered. Others are abundant throughout the formation, while still 

others occur only locally but abundantly enough to cement their host 

sediments. 

Montmorillonite 

The most abundant and widespread authigenic mineral in the Sentinel 

Butte Formation is Na-montmorillonite. It occurs as a chemically 

precipitated pore-lining cement in nearly all sandstones and in some 

siltstones. It forms such thin coatings on detrital grains of some 

sandstones that it normally is noticeable in thin sections only in the 

way it accentuates, by slightly darkening, the edges of those detrital 

grains. In fact, it probably would not have been noticed in those 

sandstones were it not first detected by SEM. It is very conspicuous in 

thin sections of some sandstones, forming thick, birefringent grain 

coatings which sometimes fill small pores. 

Authigenic montmorillonite only weakly cements Sentinel Butte 

sediments, but does provide a cohesiveness such that hand-specimen-size 

rocks can be thin-sectioned if further cemented by an impregnating 

substance. Weakly cemented Sentinel Butte rocks become completely 

disaggregated by soaking in water for a few hours, as a result of 

swelling and sloughing of montmorillonite from detrital grain surfaces. 

Individual framework grains can be scraped or brushed from sandstone 

hand specimens and mounted for SEM viewing. Authigenic montmorillonite 

coats nearly all detrital grains regardless of host grain mineralogy. 

The morphology of authigenic montmorillonite is quite distinctive. Clay 
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particle edges that are oriented nearly perpendicular to host grain 

surfaces interconnect to form a crenulated pattern (Fig. 9). It is 

clear that pore-lining montmorillonite in Sentinel Butte rockS formed by 

precipitation from solution. The montmorillonite is easily rinsed away 

in water, exposing smooth, unaltered detrital grain surfaces. Some 

montmorillonite resists rinsing away in water and appears to lie upon 

irregular, perhaps partially dissolved, grain surfaces. Such 

montmorillonite may have formed by alteration of the host grain surface 

rather than by the precipitation process that has led to most of the 

montmorillonite found in Sentinel Butte sandstones. A description of 

authigenic montmorillonite interpreted as forming by reordering of host 

grain surface structure is given on pages 105 through 107. Regardless 

of specific mode of origin, authigenic Sentinel Butte montmorillonite 

produces sharp, symmetrical XRD peaks and a rational series of secondary 

basal reflections up to (006), reflecting a well-ordered structure. 

Kaolinite 

Stacked kaoli.nite platelets are seen in some grain thin sections 

(Fig. 10). Many appear to have originated by recrystallization or 

replacement of detrital grains as shown by microprobe analysis of 

various portions of kaolinite grains. Micas, feldspars, and volcanic 

rock fragments have acted as precursors for the kaolinite in these 

instances. It remains unknown whether the alteration to kaolinite 

occurred prior to or following final deposition. The kaolinite seems 

rounded in some cases, and it is possible, given the non-abraded 

character of most Sentinel Butte sand grains, that such kaolinite might 

have survived transport over some unknown distance from eroded upstream 
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Morphology of authigenic montmorillonite as observed by 
SEM. Bar= 101 µm. 





' 

•' ,, 
i 
' 

48 l 

Figure 10. Kaolinite grain as seen in thin-section (center of photo). 
Bar = 10 IJIII, 
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floodplain deposits. 

carbonates (calcite, dolomite, and rhodochrosite) 

Calcite and dolomite both occur as authigenic minerals in many of 

the samples examined. Both occur as pore-filling cements and definitely 

postdate the development of authigenic montmorillonite. Calcite occurs 

both as irregular masses or aggregates and as subhedral crystals which 

sometimes rim other, possibly detrital, carbonate grains. Calcite also 

occurs as large anhedral interlocking crystals that completely fill 

pores by both displacement and replacement of detrital grains. Dolomite 

is present both as irregular aggregates and euhedral rhombohedra, but 

only the latter are known to be authigenic. Several characteristics are 

useful in distinguishing the authigenic carbonates in thin sections. 

These include: 

1) size of carbonate grains noticeably different than other, 

detrital, grains; 

2) radiating calcite subhedra around a host grain; 

3) irregular grain outlines (in grain thin sections) due to previous 

attachment to detrital grains; 

4) aggregates cemented by carbonate; 

5) obvious occurrence as pore-filling cement. 

Figures 11 and 12 provide examples of Sentinel Butte authigenic 

calcite and dolomite appearances. It is more difficult to recognize 

detrital. carbonate grains. Evidence of modification of surface texture 

as a result of transport abrasion is rare among detrital grains of the 

Sentinel Butte Formation, so roundness has not proven to be a useful 

criterion in recognizing detrital calcite or dolomite. The large 
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Figure 11. Examples of characteristics of authigenic carbonates 
in Sentinel Butte S8lllples: A) calcite subhedra radiating 
outward from surface of calcite host, B) calcite grain with 
irregular outline due to previous attachment to detrital 
pore walls, Cl calcite-bound aggregate, D and E} pore­
filling and displacive calcite cementation (note calcite 
filling cracks in grains), F) replacement of detrital grains 
by calcite (lower right) and dolomite(?) (center) (rhomb­
shaped crystalS are probably dolomite). Bars= 100 )1111. 
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Figure 12, Authigenic carbonate as observed by SEM: A) dolomite 
rhombohedra as pore-filling cement, B) irregular pore­
filling calcite cement (quartz grain in center), C) 
irregular pore-filling calcite (bridging pore), Bars= 10 
um. 
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variations in carbonate content in Sentinel Butte samples (Table 2) 

supports the possibility that most carbonate presently in the Sentinel 

Butte Formation is authigenic.· 

Rhodochrosite (MnC03) was detected in one Sentinel Butte sample as 

a local pore-filling material. It has a bladed habit as seen in Figure 

13. Small gray-white pods or lenses of calcareous material are common 

but not abundant in the Sentinel Butte Formation. They are small 

(several centimeters to 2 m long) and normally occur together with 

others along the same bed. These masses have been interpreted as 

freshwater limestones (Royse, 1967). Optical and XRD examination of one 

such sample (LX-C) showed it to consist of normal detrital sand grains 

dispersed in a matrix of microcrystalline and locally recrystallized 

sparry calcite. 

Zeolites 

After montmorillonite, calcite, and dolomite, zeolites are the next 

most common authigenic minerals found in the collected samples. They 

are abundant enough in some samples to be easily located in thin 

section, but must be searched for in most samples. In other samples 

they were not found in thin sections, but were detected among the grains 

sprinkled on tape for SEM viewing. (Each SEM mount holds a few hundred 

to a few thousand grains depending on whether sand or silt grains are 

mounted.) In still other samples, zeolites were found only as cement in 

sand-size aggregates that survived the disaggregation procedure. 

Most of the zeolites occur as pore-filling subhedral to euhedral 

crystals and crystal clusters. Crystals range in size from <10 ,ulll to 

200 lllll in maximum dimension. Authigenic zeolite growth post-dated pore-
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Figure 13. SEM photograph of authigenic rhodochrosite. Bar= 1 JJJD. 
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lining montmorillonite development, as evidenced by the superposition of 

uncoated zeolites upon the pore-lining montmorillonite that coats 

detrital grains in unwashed samples. The pore-filling character of the 

zeolites indicates that they formed as chemical precipitates from pore 

fluids. 

Heulandite Group 

Many of the zeolite crystals examined are thought to be of the 

heulandite structural group (heulandite, clinoptilolite, stilbite, 

epistilbite), on the basis of crystal morphology and composition. This 

determination is based on comparisons with literature examples. 

Crystals thought to be of the heulandite group are not present in great 

enough numbers or large enough crystals in any sample to be effectively 

studied using XRD; Photographs of typical crystals are shown in Figure 

14. Chemical data obtained by microprobe analysis of these crystals and 

others are presented in Appendix G. 

Among individual heulandite group minerals there is considerable 

variation in Si:Al ratio and cation proportions (Deer et al., 1963). 

There is also considerable variation in possible crystal morphologies 

(Hay, 1966). It is somewhat difficult to identify confidently some 

zeolite minerals where XRD data is unavailable. The minerals chosen as 

best fitting the analyses of Appendix G and the photographs of Figure 14 

are based on comparisons with published examples in Deer et al. (1963), 

Hay (1966), Mumpton and Ormsby (1976), and Barrows (1980). The name 

clinoptilolite is used instead of heulandite where Na and K exceed Ca. 

Clinoptilolite is reported to be the most abundant zeolite in 

sedimentary rocks (Mumpton, 1978). The mineral of analyses no. 6 and 7 
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Figure 14. Sentinel Butte Formation zeolites: A, B, C, and E} scanning 
electron micrographs of clinoptilolite crystals and crystal 
clusters. Note, in A, C, and E, roughened surfaces where 
the zeolites were once attached to detrital framework 
grains; note indentations produced by electron beam at lower 
right portion of crystal in B, and leftmost crystal in A; D) 
mordenite(?) crystals, F) thin section view of 
clinoptilolite crystals projecting into open pore space 
(plane light). All specimens from sample EG-1. Bars= 10 
µm, except in F, where bar= 100 µm. 
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of Appendix G is labeled mordenite because of the lack of potassium. In 

other rocks, mordenite normally occurs as long hairlike fibers, but 

stubby crystals have been reported (Hay, 1966). 

Analcime 

Analcime has been found in four samples collected for this study. 

In two of these samples (SS-1 and SB-12), analcime was found by 

examining sandy aggregates to see what held them together. In a third 

sample (SB-1}, analcime was detected in thin section as the dominant 

cement of a fairly well indurated sandstone. This sandstone may be the 

lateral equivalent of an analcime-bearing layer sampled·on Sentinel 

Butte by Furman (1970}. In a fourth sample (SB-15}, analcime was found 

concentrated in multiple thin layers within a coal seam cleat. The 

sample obtained from this horizon.was thought to be a sandy lignite 

until examined in the laboratory, where it was determined to be a rock 

in which sand-size analcime crystals occur in intimate association with 

organic material. 

Analcime in the above samples is easily recognized by its 

trapezohedral habit and Na-rich composition (Fig. 15 and 16, and 

Appendix G}. A high enough concentration of analcime was available in 

each of the above four samples to also allow its recognition by standard 

powder XRD techniques. Photographs of the various analcime occurrences 

are provided in Figures 15 and 16. Analcime cementing the indurated 

sandstone (SB-1) occurs as somewhat colloform aggregates of many small 

(5 to 30 µm} crystals (Fig. 15a,d). These aggregates project toward 

pore centers and are cored by what appears in thin section as an 

irregularly lamellar, somewhat stacked arrangement of low-order 
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Figure 15. Analcime as pore-filling cement in sample SB-1. Each 
spheroidal mass is an aggregate of many small crystals. 
Trapezohedral crystal terminations are visible along outer 
surfaces of the spheroids (D), while interior views (A,B,C) 
reveal birefringent lamellar structures. Bars= 100 JlDI. 
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Figure 16. Appearance of analcime in sample SB-12 (A,B) and sample 
SB-15 (C,D): a) thin section view (plane light) of analcime 
cement (arrows) binding a sand fraction aggregate, bar= 100 
)JIil, B) SEM view of similar-occurring analcime, bar= 100 um, 
C) thin section view (crossed polars) of analcime 
trapezohedra. Note dark cores and lamellar twinning(?), D) 
SEM view of analcime trapezohedra, bar= 10 µm. 
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birefringent grains (Fig. 15b,c). Microprobe analysis suggests that 

these cores have the composition of analcime, even though literature 

examples of this type of occurrence have not been seen. The 

birefringent grains resemble sericite, except for their stacked 

arrangement. Furman (1910) reported authigenic sericite incorporated 

within analcime spherulites in the samples he examined. Analcime in the 

coal seam sample (SB-15) occurs as near-perfect trapezohedra, up to 200 

µmin size (Fig. 16d). In thin section, these trapezohedra have first 

order gray birefringence and what appears to be lamellar twinning on 

(110) (Figure 16c). The core of each trapezohedron is an opaque reddish 

brown spherical zone that might represent entrapped organic or clay 

precursor material. Microprobe analysis did not reveal a chemical 

difference between the cores and surrounding portions of the analcime 

crystals. Analcime in the remaining two samples occurs as subhedral 

crystals bearing trapezohedral faces. These pore-filling grains are 

firmly anchored to detrital grains, forming a very effective local 

cement (Fig. 16b). 

Barite 

Barite occurs as small marble-like nodules and as both large and 

microscopic prismatic masses. The nodules and some 1/2-m-diameter 

fractured stump-like masses locally occur on the surface of the Sentinel 

Butte bentonite (discussed in following sections). Microscopic prism­

like masses are present among organic-rich portions of the analcime­

bearing coal seam horizon mentioned above, and large prism-like masses 

have been seen in the field, within a.carbonaceous mudstone horizon. 

Little is known about the geochemical envirorunents involved in the 
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formation of barite cement in non-marine sandstones (Pettijohn et al., 

1973, p. 432). Specialized study of the restricted occurrences of 

barite in the Sentinel Butte Formation may provide some new data in this 

area. 

Pyrite 

Pyrite was detected in three samples of elastic material collected 

in this study. Other workers have found pyrite to be associated with 

Sentinel Butte lignites (Karner et al., 1979; Moran et al., 1978). 

Pyrite does not appear to be common throughout the Sentinel Butte 

Formation and may indeed have an origin closely related to the 

availability of organic material. Two of the three samples in which 

pyrite was found are from beds immediately·above lignites. The third 

sample bearing pyrite is from an alternating sand and silt interval in 

which the silty portions contain plant fragments. The pyrite occurs as 

individual cubes, clusters of cubes, interpenetrating cubes, framboids 

(raspberry-like spherical aggregates), and globular clusters of 

framboids (Fig. 17). 

Silica Minerals 

Authigenic quartz is primarily restricted to occurrences within the 

structure of petrified wood in the Sentinel Butte Formation, where it 

occurs in both microcrystalline and megacrystalline form. 

Opal and cristobalite have been found in three Sentinel Butte 

samples, (EG-A, Blue Bed 4, and BB-13), all of which were collected from 

beds immediately above the Sentinel Butte bentonite. Opal occurs as 

individual spheres together with coalesced or aggregated spheres (Fig. 
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Figure 17. Appearance of pyrite in Sentinel Butte samples: A) pyrite 
framboids and interpenetrating cubes (from sample SB-25), 
bar= 10 JJIII, B) a cluster of pyrite Framboids, bar= 100 µm, 
C) close-up of (B) showing individual cubes (from sample 
AC-1), bar= 10 )1111. 
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18). Some authigenic montmorillonite occurs locally among less clearly 

resolved spheres of opal, strongly suggesting a genetic relation between 

the opal and montmorillonite. Pollard and Weaver (1973) suggested that 

opal spheres form where much free silica exists relatively free from Al, 

Mg, Fe, etc. Where the latter cations are available, they may combine 

with silica to form an impure amorphous opal or, apparently, authigenic 

clay. 

Cristobalite occurs as neighboring spheroids which thickly line 

pore spaces. Each spheroid is an aggregate of many flat individual 

plates or blades with an edge-to-face arrangement (Fig. 19). Cross­

sectional views show these spheroids to be solidly intergrown or 

coalesced, forming authigenic pore walls with bladed spheroids remaining 

only on the open pore side. Where once attached to detrital grains, the 

pore-lining cristobalite walls are found to have a composition and a 

morphology similar to that of authigenic montmorillonite, suggesting 

either the presence of an earlier pore-lining clay or an intimate 

genetic relation between montmorillonite and the early silica phase 

(probably opal) now present as cristobalite. 

Gypsum 

Gypsum occurs as an apparently late authigenic mineral locally 

throughout much of the Sentinel Butte Formation. It was found in only 

two samples collected for this study. It normally occurs as selenite 

crystals. and masses a few centimeters in maximum dimension, which 

probably are still forming today under near-surface evaporation condi­

tions. It acts as a cement locally, on a very small scale, as shown in 

Figure 20, where it has strongly displaced detrital grains but bound 
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Figure 18. Opal spheres lining pore in sample BB-15. Bar= 10 µm • 
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Figure 19. Cristobalite "spheroids" lining pores in sample Bent-4. 
Note the cross sectional view of the new cristobalite pore 
walls and the underside view of these walls {upper left) 
where detrital grains have been re.moved. Note also that 
montmorillonite is locally present along exposed undersides 
of cristobalite walls.. Bar = 10 µm. 
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Figure 20~ Gypsum cement binding an aggregate in sample MB-8. 
Bar = 100 µm. 
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them into one aggregate. 

Iron Oxides 

Intrastratal dissolution of detrital grains observed in thin 

section has often led to an iron oxide precipitate which covers a local 

area far larger than the weathered grain. This points to the importance 

of intrastratal dissolution as a mechanism for the production of ferru­

ginous cements. Development of iron oxide has produced thin, well­

indurated bedding horizons in Sentinel Butte sandstones. Iron oxidation 

has also produced banding or staining of many Sentinel Butte bedding 

surfaces. Royse (1970) suggested that Sentinel Butte iron fixation 

"probably resulted from redox reaction involving anode decompositionof 

organic matter''. 
" 
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BULK ROCK CHEMICAL ANALYSES 

Major element chemistry data were obtained for a small number of 

samples in this initial study of the general composition of Sentinel 

Butte sandstones and siltstones, and as a preliminary test of the 

usefulness of major element composition in distinguishing sandstone 

units. ' Five samples of the widespread sand that occurs at the base of 

the Sentinel Butte Formation were analyzed and compared with one sample 

of the uppermost Sentinel Butte sand and two samples of intermediate 

sands. Six silt samples from what is commonly referred to as the lower 

yellow bed and one silt sample from the upper yellow bed were also 

analyzed and compared. 

Most samples were analyzed both before and after removal of 

authigenic montmorillonite and carbonate. Calcite and dolomite were 

removed by treating samples with warm dilute HCl, and <2 µm clays were 

removed by decantation. Each treated sample was then repeatedly 

centrifuged, decanted, and rinsed to remove ions suspended by the acid 

treatment. Results of all analyses are provided in Table 5. 

The data show little difference in major element composition 

between the eight sand samples. The fact that calcium is the only 

element that shows much variation between samples prior to acid 

treatment lends support to the interpretation that most Sentinel Butte 

carbonate grains (or at least those in the presumably equivalent basal 

sand samples) are authigenic. The similarity between samples is part­

icularly evident where authigenic (as well as detrital) clays, calcite, 

and dolomite have been removed. 

The two.acid-treated yellow bed silt samples also do not appear 

different from the sand samples except for higher potassium and lower 
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Table 5. X-ray Fluorescence Analyses of Sentinel Butte Saudstoues aad Siltstcnes 

Part I --SANDSTONES 

sample: la lb le ,. 2b 2e ,. Jb le 4a 4b 4e 
Si02 62.55 74.45 78.30 63.65 69.15 75.81 64.84 70.54 74. 73 63.09 70.10 75,24 
Alz03 16.27 12.10 12. 71 14.35 12. 82 14.05 14.82 13.50 14.30 14.93 10.95 11. 75 
FeO• 3.14 l.55 1.61 3.48 1.63 1. 79 3,32 2.29' 2.43 2.93 1.61 1. 72 
MgO 2.08 0.76 a.so 2.08 0.77 a.as 2.23 0.99 1.05 2.82 1.66 1.78 
CaO 1.67 1.00 1.05 3.15 1.73 1.90 3.47 1.77 l.87 5.72 2.80 3.01 
Nazo l. 92 2.17 2.28 l.99 2.17 2.38 2.50 2.32 2.46 1. 71 1.59 l. 71 
<,o 1. 91 2.64 2.75 2.15 2.50 2.74 2.08 2.42 2.56 2.11 2.32 2.49 
TiOz 0.69 0.44 0.46 0.51 0.39 0.43 0.78 0 • .50 0.53 0.62 0.43 0.46 
Pz05 0.16 0.02 0.02 0.14 0,03 0.03 0.18 0,03 0.04 0.15 0.11 0.12 
MnO 0.03 a.oz 0.02 0.07 0,02 0.02 0.05 0.03 0.03 2.93 1.61 1.72 
Total 90.42 95,15 .100.00 91.57 91.21 100.00 94.27 94.39 100.00 96,91 93.18 100.00 ,. Sb s, •• 6b 6e 7a "' 1e 8 ,,, s102 70.09 69.65 72.93 64.14 69.64 76.41 59.70 70.85 73,98 75.70 ,, 
Alz03 14.28 14.76 15.45 14. 7J 12.92 14.17 11.34 14.22 14,85 11.49 ',l 
FeO* 2.84 2.99 J.13 3.28 1. 41 1.55 3,08 3.67 3.83 1. 73 

',, 
1111JI ,, 

MgO 2.02 1. 53 l. 60 2.50 0.95 1.04 1.24 1. 35 1.40 1.09 11~1 
Cao 2.95 1.29 1.36 5.26 1.41 1. 55 11.39 0,95 0.99 0.57 

'Ulil Na20 2.08 1. 85 1.94 2.20 1.99 2.18 l.JS 1.65 1. 72 1.19 ,, 
KzO 2.24 2.72 2.84 l. 82 2.J.3 2.56 l.84 2.39 2.49 2.73 wlll 1 

TiOz 0.56 0.66 0.69 0.54 0.45 0.50 0.54 0.66 0.68 0.54 
Pz05 0.14 0.03 0.03 0.13 0.02 0.02 0.12 0,03 0.03 0,08 !Ill 

~.,\ll HnO 0.03 0.03 0.03 0.04 0.02 0.02 0.06 0.03 0.03 0.01 -.·,!l 
Total 97.23 95.51 100.00 94.64 91.14 100.00 90.66 95.80 100.00 95 .13 "' 

Part II --SILl'STONES .... 
•. ~I l 9a 9b ,, 10a !Ob 10, 11 12 " 14 15 :1111 SiOz 66.28 ! 76.09 75.32 58,82 72.59 77, 71 58.41 62,15 54.99 52.84 60.82 1 .. ,11 
HIii ~ Al203 12. 76 14.66 14.51 9,33 11. 71 12.53 10.11 12.81 9.87 8.75 13.29 

FeO* 3.50 2. 94 l. 91 2.59 2.59 2.77 2.62 4,09 2,31 B.75 13.29 
q,1111 ~ MgO 3.92 I. 77 1.75 3.30 1.42 1.52 3.48 3.91 3.52 4.26 3.57 J)/ll ~ 

6.23 0.18 ,ialt Cao 0.18 10, ll 0.20 0.21 9.06 7 ,60 11. 51 14.37 7.70 
.11li Na20 0.94 1.00 0.99 0.92 1.12 1.20 0.89 l.15 1.04 0.70 0.64 ,hi~ 
·111 ~ <20 3.21 3.73 3.69 2.46 3.14 3.36 2.63 3,21 2.l4 2.09 3.04 1111 Ti02 0.56 0.63 0.62 0.54 0.60 Q.64 Q,53 0.56 0.56 0.57 0.59 ,,dll 
,1,I P205 0.12 0.02 0.02 0,15 0.04 0.04 0,12 0.11 0.12 0.14 Q.14 

.I ·~ 
-11- • MnO 0.04 0.01 0.01 a.as 0.01 0.02 0.05 0,09 0.05 0.05 O.OB 

Total 97 .56 88.27 93.42 86.31 94.07 
,,, 101. 03 100.00 100.00 87.90 95,68 85.94 ,, 

*Total iron as FeO. 
Column a: Pre--tre.aonent element data in weight%, unnoTI11alized. 
ColWIID. b: Post-treatnLent (clays and carbonates retnoved) data. unnoTIIUU.ized. 
Column c:: Post-treatment data, noruialized to 100 %. 
Note: Analytical Unc!l.l'tJtiDty due it! part to preBence of carbon and oxygen in carbottates artd to scuccural 
H20, Ana.lytic.al precision 1 %. accuracy within S% (analyst: Robert Stevenson. UND Natural Materials Analytical Laboratory). 
Samples: 1) sandstone BR-A, 2) sandstone EG-1, 3) sandstone 7•G, 4) sandstone SQB-A, 5) sandstone SB-25, 6) sandstone EG-17, 1) sandstone SB-18, 8) sandstone LX-H, 9) siltstone LYB-1, 10) siltstone tYB-2, 11) siltstone Edge-3, 12) siltstone Long X-D, 13) siltstone r.:s-c, 14) siltstone SHli-9, 15) siltstone. LX-L, See Appendix A for sample locations. 
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calcium contents. Untreated yellow bed samples are different from the 

examined sand samples in calcium and magnesium content, reflecting the 

higher carbonate mineral content of the yellow beds. 
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BENTONITE 

Much of the literature concerning Paleocene rock units in western 

North Dakota refers to the presence of bentonitic beds. As historically 

developed in scientific usage, the term "bentonite" refers to a rock 

composed of clays that originated through the alteration of a glassy 

igneous rock, usually a volcanic tuff or ash (for a review of the 

development or phylogeny of the term bentonite, see Knight (1898), 

Hewitt (1917), Wherry (1917), Ross and Shannon (1926), and Schultz 

(1963)). The choice, by most previous workers, of the term bentonite 

for many clay layers in Fort Union Group rocks results from the physical 

weathering characteristics of those clay layers that suggest the 

presence of swelling clays, rather than from any independent evidence 

that some Fort Union·claystones were volcanically derived, However the 

author did succeed, in an earlier study, in providing evidence for the 

volcanic origin of one Sentinel Butte clay layer (Forsman and Karner, 

1975), As mentioned above, one of the specific questions within this 

investigation is how significant volcanic airfall activity was in 

supplying material to the Sentinel Butte Formation. A strong effort was 

made, during the course of field work for this study, to sample all clay 

layers that looked bentonitic. A detailed examination of the single 

known Sentinel Butte bentonite was conducted, providing examples of what 

field characteristics to look for in a search for other true bentonites. 

A large content of swelling clays determines the field expression of the 

known Sentinel Butte bentonite. These clays are blue-gray when dry and 

nearly black when wet. When dry, the bentonite surface is covered to a 

depth of several centimeters with pebble-size clay aggregates, the 

typical popcorn-weathering effect characteristic of many bentonites. 
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TIie bentonite commonly caps prominent benches and locally drapes 

underlying sediments. Other clay-rich layers with well-developed 

popcorn surfaces were sampled for later laboratory examinations which 

might determine whether or not they have volcanic origins. Laboratory 

efforts involved a careful characterization of the known Sentinel Butte 

bentonite and comparisons with a known bentonite in the Hell Creek 

Formation in southwestern North Dakota, followed by a search for similar 

characteristics in other Sentinel Butte claystones. 

The Sentinel Butte Bentonite/Ash 

The Sentinel Butte bentonite/ash is a deposit that has been 

referred to as the blue bed by previous workers. It had long been 

suspected of being a bentonite, but was not verified· as such until 

volcanic glass was found to be associated with the clay (Forsman and 

Karner, 1975). The deposit is known to occur over a large area within 

and north of the North Unit of Theodore Roosevelt National Park, in 

McKenzie County, North Dakota (Fig. 21). It can be traced visually as a 

nearly continuous deposit for many miles within the park, where it 

commonly caps prominent benches. North of the park, toward the town of 

Arnegard, it is found in shallow gullies and on small, resistant 

plateaus. Future mapping will probably extend the known range of this 

deposit, particularly toward the west. Upon close examination the 

deposit is found to consist of three distinct layers: a lower, 1.5 to 

3.1-m-th.ick bentonite; a middle, 0.6 to 1.5-m-thick gray-white silt; and 

an upper, 0.6 to 1.5-m-thick bentonite. The upper and lower bentonites 

commonly form separate popcorn-covered benches, with the sandwiched silt 

layer between (Fig. 22). Although Royse (1967) described this deposit 
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Figure 21. Presently known range of the Sentinel Butte bentonite/ 
ash deposit. This range can be extended by further 
mapping. 
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Figure 22. Field expression and grain size characteristics of the 
Sentinel Butte bentonite/ash. Dashed lines represent 
thin {few centimeters) contact zones between ash and 
sandwiching bentonites. 
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as having a "tri-partite" character, and Metzger (1967) wrote of' 

"alternating blue and light gray layers", apparently no close 

examination of' the sandwiched silt was conducted prior to this study. 

At all locations thus far examined, the silt is f'inely laminated. It is 

noticeably less gritty than other silts (easily determined by chewing a 

small sample). Microscopic examination shows it to be composed 

dominantly of silt-size pumice f'ragments and minute glass shards, 

verifying that it is a volcanic ash. A silica-enriched zone commonly 

occurs immediately below this three-layer deposit, in at least one case 

leading to the preservation of' a water-rippled surface on a mudstone. 

Petrographic, textural, and geochemical examinations have been 

carried out far all three layers of' this deposit. Grain size data for 

each of' the three layers and the thin (few centimeters) gradational 

contact zones between layers at one locality were obtained by standard 

pipette procedures. These data are provided in Appendix Hand are 

summarized in Figure 22. The vertical change in clay:silt ratio between 

the ash and its sandwiching bentonites is suggestive of a genetic 

relation between the bentonites and the ash; i.e., it might be better to 

regard the thin contacts between layers as transition zones rather than 

gradational contacts. The upper and lower bentonites may be derived 

from an originally thicker single ash accumulation. 

The silt fractions consist of 11 J, 75 J, and q.5 J glass fragments 

in the lower bentonite, ash, .and upper bentonite, respectively. Other 

components of the silt fractions include the minerals biotite, 

muscovite, dolomite, quartz, chlorite, plagioclase, calcite, apatite, 

cordierite, sphene, and zircon, in approximate order of abundance: 

Most pumice fragments or vesicular glass grains in this deposit 
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range from 30 to 60 µmin size, with glass shards commonly as small as a 

few microns. The majority of glass occurs as very fine silt-size 

grains. A variety of vesicle morphologies occur within, and control the 

shape of, the larger grains. Ovoid to ellipsoidal vesicles occur in 

irregularly shaped roughly equant grains, and wavy string-like vesicles 

to straight pipe vesicles occur in more elongate grains (Fig. 23a,b). 

The glass is isotropic and colorless, with birefringence usually absent 

except for a thin discont,l.nuous rim, or patchy birefringence, seen on 

relatively very few grains. This birefringence is the result of 

alteration of glass grains to montmorillonite (Fig. 23e,f). Strain 

birefringence, commonly reported for hydrated glass (Ross and Smith, 

1955), is not present in these grains even though the presence of 

"water"-filled enclosed vesicles indicates these grains are 

superhydrated (Steen-McIntyre, 1975). (An example of a superhydrated 

glass grain from the Marmarth Ash (discussed in the following section) 

is provided in Figure 23c,d). Using SEM, the glass grains, except where 

partially altered to montmorillonite, appear fresh and very angular, and 

show no evidence of transport abrasion. 

Major element composition of glass grains from the three layers of 

this deposit was determined by microprobe analysis of individual grains 

mounted on tape. The glass is rhyolitic in composition (Table 6). No 

obvious difference in the major element composition of glass grains was 

detected between the three layers of this deposit, again suggesting an 

origin from a single thick ash accumulation. 

The <2 µm clay fraction of all three layers consists of vir,tually 

pure montmorillonite; XRD patterns of glycolated samples provide sharp, 

symmetrical reflections of (001) and an integral series of secondary 
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Figure 23. Sentinel Butte bentonite/ash glass grains: A) glass grain 
with numerous ovoid vesicles, B) glass grain with elongate 
stringy to tubular vesicles, C,D) superhydrated glass grain 
with enclosed "water"-filled vesicles (arrows in C). Note 
slightly higher relief than open, caedex-filled vesicles. 
Direction of Becke line movement shown by arrows in (D) --

. away from glass grain into higher index mounting medium, and 
away from "water"-filled vesicles into higher index glass 
grain, E) glass grain with authigenic montmorillonite in 
elongate vesiclesf..B') close-up of authigenic montmorillonite 
on a glass grain. Note distinctive crenulated pattern. 
Bars = 10 ).1111, except in D, where bar : 100 ).1111, ,, ,' f ,t, . "'t"; 
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Table 6. Microprobe Analyses of Sentinel Butte Bentonite/Ash Glass 
Grains 

Lower Upper Average 
Layer: Bentonite Tuff Bentonite Rhyolite 

(12 analyses) (16 analyses) (8 analyses) 
SiOz 78.80(:tl.52) 78.41(±0.89) 78.84(±1.05) 74.00(±3 ,51) 

Alz03 13.98(:tl.05) 14. 50(±0. 68) 14,03(±0.57) 13.53(±1. 77) 
FeO* 1.36(:t0.30) 1.34(±0.25) 1.11 (:!:0.11) 2.63(±1.27) 

MgO 0.26(:!:0.24) 0.17 (±0.17) 0.23(:t0.12) 0.41 (±0.48) 

Cao 1.28(±0 .. 23) 1.11(:':0,14) 1.16(±0.12) 1.16(±0. 96) 

Na20 1. 73(±0.42) 2.16(:+:0.59) 2.14(±0.61) 3.62(±1.29) 

K20 2.22(±0.23) 2.13(±0. 25) 2.32(±0.22) 4.38(±1.69) 

Ti02 0.12(±0.10) 0.17(±0.18) 0.13(±0.13) 0.27(±0.25) 

Note: Calculated H20-free and normalized to 100 %. Values in weight 
percent. Standard deviation in parentheses. 
*Total iron as FeO. 
From LeMaitre (1976), average of 667 whole-rock samples. 
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basal reflections from (002) to (006). Very minor chlorite and mica 

basal reflections are also present in the diffraction patterns. The 

results of chemical analysis of the authigenic montmorillonite in this 

deposit are discussed on pages 105 through 116. 

Most silt fraction mineral grains are <30 µmin size, making their 

examination by optical microscopy difficult. Minerals present were 

identified using SEM/EMA examinations. It is difficult to determine 

which minerals are phenocrysts of the original ash. The assemblage of 

minerals present suggests detrital admixture has occurred as well as 

possible authigenic mineral growth. Muscovite is not a likely 

phenocryst in rhyolitic eruptions, arid the presence of both biotite and 

muscovite also seems unlikely. A range of compositions from biotite to 

chlorite exists among many of the sheet silicates present, suggesting a 

pseudomorphic alteration of biotite to chlorite. Chlorite may be 

entirely secondary in origin. Some but not necessarily all of the 

quartz in this deposit is detrital. Some quartz grains seen show 

evidence of the high temperature ,Bquartz form (Fig. 24c). Cordierite 
. 

has been found in non-bentonitic Sentinel Butte rocks, and is a rare 

mineral in rhyolitic eruptions. It perhaps is not a phenocryst in this 

deposit. Plagioclase occurs in this deposit as apparently unaltered, 

euhedral, 20 to 30 µm, tabular, elongated, and (less commonly) equant 

rhomb-shaped crystals (Fig. 24a). Many grains are broken and a few 

reveal incipient fractures •. Qne grain was found partially enclosed in 

glass (Fig. 24b). Similar plagioclase crystals have not been found in 

other Sentinel Butte samples. The range of compositions determined for 

plagioclase grains from the three layers of this deposit are shown in 

Figure 25. The range of compositions observed (An 25 to An 84) appears 

,, 
,, 
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Figure 24. Phenocrysts(?) of Sentinel Butte bentonite/ash.; 
A) plagioclase crystal, bar= 10 )1111, B) broken, tabular 
plagioclase crystal partly enclosed !n glass, bar= 10 µm, 
C) quartz crystal possibly of {J-form, bar :: 1 JJIII. 
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Figure 25. Ternary diagram showing range in composition of possible 
plagioclase phenocrysts from the Sentinel Butte 
bentonite/ash. +=ash layer, o = lower bentonite, • = 
upper bentonlte. 
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quite broad for these grains to all be phenocrysts from a single 

deposit. However, because only grain surfaces and not grain cores were 

analyzed by microprobe, chemical zoning within crystals may account for 

the observed compositional variability. 

Calcite and dolomite in this deposit clearly are either detrital or 

authigenic; these minerals do not occur as phenocrysts in rhyolites. 

Although sphene and zircon are likely rhyolite phenocrysts,_ they also 

occur in minor amounts in much of the Sentinel Butte sedimentary 

section. Slender, euhedral apatite crystals that occur in this deposit 

are also likely rhyolite phenocrysts, but such crystals are also fairly 

common in the Sentinel Butte Formation. 

It is recommended that usage of the informal name "blue bed" be 

abandoned, and that the informal names "Sentinel Butte ash", "Sentinel 

Butte bentonite", and "Sentinel Butte bentonite/ash" be adopted in all 

references to the corresponding portions of this deposit. Many Fort 

Union clay layers are blue-gray when dry. It is probably in large part 

the emphasis on color in the name "blue bed" that has led to the 

probable misidentification, by earlier workers, of different blue clay 

layers as the single "blue bed" marker unit (see e.g., Brekke, 1979; 

Nesemeier, 1981). More appropriate field, petrographic, and chemical 

criteria are continuing to be developed to aid in the recognition and 

distinction of this deposit. 

The Marmarth Bentonite/Ash 

An additional occurrence of ash/bentonite has been examined in an 

effort to further determine the characteristics of bentonites. Although 

this deposit does not occur in the Sentinel Butte Formation, its 
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examination and comparison with the Sentinel Butte bentonite/ash might 

benefit the search for other bentonites by revealing what 

characteristics certain bentonites might be expected to have in common. 

The deposit is well-exposed in badlands terrain in Sections 4 and 5, T. 

133 N., R. 105 W., Slope County, North Dakota, approximately seven km 

northeast of the town of Marmarth. Frye (1969) reported this deposit to 
Tu\\oek (~) 

be in the~s Formation, but the most recent stratigraphic 

evaluation of rocks in the region shows it to occur a few meters below 

the top of the Upper Cretaceous Hell Creek Formation (E. Murphy, ND 

Geol. Survey, personal communication). It is locally similar in field 

expression to the Sentinel Butte bentonite/ash, consisting of an ash 

sandwiched between two bench-forming, popcorn-weathered bentonites. The 

original ash was at least locally water-laid and reworked as evidenced 

by ripple cross-lamination throughout a 4.6-m-thick section (Fig. 26). 

The Marmarth deposit differs from the Sentinel Butte deposit in the 

nature of the contacts between the ash and enclosing bentonites. A thin 

non-volcanic sandy parting occurs between the ash and the underlying 

bentonite in the Marmarth deposit, suggesting either two original ash 

accumulations or at least an interruption to an otherwise continuous 

ash-accumulation event. The sandy zone becomes less sandy and more 

clayey downward, over a 1/3 m distance, grading into the lower 

bentonite. The contact between the ash and the upper bentonite is 

gradational (perhaps transitional) over only a few centimeters 

thickness, but bifurcating root pathways are seen locally, extending 

into the upper portion of the ash from the overlying bentonite; the 

origin of the upper bentonite may have involved pedogenic processes. 

The upper bentonite seems sand-free for a thickness of only 45 to 60 cm, 
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Figure 26. Exposure of Marmarth bentonite/ash. The white ash layer 
is 4.6 m thick at this location. Note bentonite above 
and below ash. 
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above which it becomes increasingly sandy until a lignitic interval is 

reached. 

A sample of ash from the middle of the 4.6-m-thick section 

mentioned above was determined by pipette analysis and optical 

microscopy to consist of 86 % glass grains, 9 % "phenocrysts", and 

5 % clay. X-ray diffraction analysis of the <2 )llll clay fraction 

revealed it to consist of virtually pure montmorillonite. The clay is 

authigenic, and formed through the alteration of glass grains. The 

glass grains of this deposit are coarser than those of the Sentinel 

Butte bentonite/ash with-90 % distributed between the medium silt and 

fine sand size ranges {Appendix H), Vesicle morphologies and g;'a:in 

shape relations are similar 

bentonite/ash glass grains. 

to those described for Sentinel Bu~e 

The glass grains are superhydrated (Fig .. 

23c,d), but not devitrified, except along those margins that have 

altered to clay. 

A sample from the middle third of the lower bentonite consists of 

77 % clay, 22 J silt, and 1 % sand. An optical microscope point count 

of a grain mount of the silt fraction of this bentonite showed it to 

consist of about 20 % glass grains. 

Bentonite Petrographic Characteristics 

As a result of the examination of the Sentinel Butte and Marmarth 

bentonites, other clay layers suspected to be bentonites were evaluated 

on the basis of overall clay mineralogy, clay chemistry, and the 

presence or absence of volcanic glass. There is no reason that some 

glass grains must survive alteration to clay in bentonites, but glass 

grains are preserved in the very well developed bentonite layers of both 

•••lllllli•••·------------...... ------..... ·~·······~·:'w':-~-,:,~i...;.,.....,...,. .......................... ......,~ 
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the Marmarth and Sentinel Butte deposits, suggesting that at least some 

glass perhaps normally does survive. By definition, bentonites do not 

have to be composed of the clay mineral montmorillonite. However, the 

Marmarth and Sentinel Butte bentonites are composed of montmorillonite, 

so it is reasonable to expect that other ashes deposited in the same 

geologic setting, and subjected to roughly the same geochemfeal 
i 

environments, also alter to montmorillonite (if they alter at ;;ill). 

Because of the high silica content of the rhyolitic glass gra\ns, the 

secondary clay also has a high silica content. The overall major 

element chemical composition of clay derived from glass grains appears 

to be a very useful criterion in identifying potential bentonites in the 

region of this study. This possibility is discussed further in the 

section which follows. Table 7 summarizes the descriptive laboratory 

characteristics of the known bentonites and of all the samples collected 

as possible bentonites (Appendix A). Consistent laboratory procedures 

were utilized for each sample to insure that similar size fractions were 

compared. The characteristics of the known bentonite samples include a 

very high total <2 µm clay percentage, a nearly monomineralic <2 µm clay 

composition, a high-silica clay chemical composition, and the presence 

of preserved glass grains in silt fractions. As mentioned above, clay 

from the bentonite samples also produces sharp, symmetrical XRD peaks 

characteristic of well ordered structures. 

Contrary to the report of Clark (1966), that, "Microscopic studies 

reveal the presence of glass shards throughout much of the Sentinel 

Butte member", glass 0th.er than that associated with the Sentinel Butte 

bentonite/ash was not found in any samples examined. In view of Clark's 

description of glass shards:. "These shards range from acicular fibrous 

··,· ._,,.,,~,·,- _, 

" I • • 
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Table 7. Characteristics of Bentonites (b) and Potential Bentonite 
Samples· 

GLASS <2JJDJ CLAY CLAY 
SAMPLE PRESENT(?) J CLAY MINERALS J Si 

EG-11 (b) yes 80 M*,7A(tr) 66. 1 
EG-13 (b) yes 78 M*,7A(tr> 63.2 
BB-3 (b) yes 73 M*,7j(tr) 67.4 
BB-9 (b) yes 71 M*,7A(tr) 68.7 
Marmarth (b) yes 86 M* 68.6 
BENT-1 (b) yes 66 M*,7A(tr) 66.8 
BENT-3 (b) yes 8Jj M*,7A(tr) 68.4 
LX-A NO 86 M,MICA 63.4 
LX-E NO 70 M(m) ,C,IC 63.8 
LX-J NO 97 M(m) ,C,IC 65,9 
LX-"C" . NO 70 M*,C,MICA(tr) 64.1 
sbk-10 NO 66 M,C,K,MICA 60.6 
LX-11 NO 67 M,C 60.0 
BB-5 NO 88 M*,C,MICA 69,5 
BB-7 NO 41 M,C,MICA 68.9 
BB-17 NO 54 M*,C(tr) 64.o 
BADLANDS 3 NO 86 M,C,MICA 56,5 
SB-C NO 81 M,C1MICA 57,3 
SHB-1 NO 70 M,7A,MICA 59.8 
SHB-6 NO 83 M,C,MICA 63.4 
ICP-B NO 99 M,C1MICA 59.9 
7= 15 NO 61 M,7A,MICA 59,9 
LX-IC NO 100 M(11) ,C,IC 58,3 

* (well-ordered, giving sharp, symmetrical peaks and a rational 
series of basal reflections) 
abbreviations: (b) = known bentonite, M = montmorillonite, 
C = chlorite, IC= kaolinite, 11 = minor, (tr)= trace 
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shapes to splinters, are .25 to 100 µm long, and colorless, greenish, 

brown and black.", it seems likely that he actually Saff plant fragments. 

Plant fragments are abundant throughout much of the Sentinel ijutte 

Formation, and are present in sand fractions as variably colored grains, 

having undergone varying degrees of carbonification or coalification, 

and fit ffell the shape and size characteristics given by Clark for so­

called glass shards. 
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CLAY MINERAL ORIGINS AND CHEMICAL COMPARISONS 

It is clear that the pore-lining montmorillonite in Sentinel Butte 

sandstones formed by chemical precipitation from pore fluids. The clay 

lines pores and only fills them where it has extensively developed. It 

coats all detrital grains regardless of their composition. The clay is 

easily dislodged by washing, leaving smooth detrital grain surfaces 

showing no evidence of alteration to clay. The clay attached to 

volcanic glass grains did not precipitate from pore fluids, but formed 

in situ as an alteration product of the glass itself. Crystallization 

of glass grain surfaces to clay was accompanied by addition of some ions 

from pore solution. But the clay does not seem to have formed through 

any large-scale dissolution/re-precipitation process. This judgment is 

based on visual evidence gathered from examination of clay/host-grain 

relationships (Fig. 27). In contrast to the visual evidence that 

authigenic montmorillonite in Sentinel Butte sandstones is lying upon 

host detrital grains (Fig. 27c,e,f), the clay associated with glass 

grains appears to be a part of the glass grain surface. Crenulated 

montmorillonite.appears to derive from the glass surface itself (Fig. 

27a,b,d). Furthermore, the glass-derived clay, unlike the pore-lining 

clay, is not dislodged from the host grain surface during the 

disaggregation or wet-sieving process. 

A comparison of the major element chemical composition of Sentinel 

Butte montmorillonites has been conducted in an effort to determine 

whether glass-derived montmorillonites are chemically distinct from 

those of other origins. A slurry of the <2 µm clay fraction of each 

sample examined was allowed to dry on a clean glass slide which was then 

carbon coated for microprobe analysis. This technique does not produce 
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Figure 27. Authigenic clay/host-grain relationships in Sentinel Butte 
samples; A) authigenic montmorillonite derived from glass 
grain surface, bar= 10 µm, B,D) close-ups of crenulated 
montmorillonite derived in situ from glass grain surfaces, 
bars= 1 µm, C) montmorillonite formed by precipitation onto 
detrital quartz grain, bar= 10 µm, E) close-up of 
precipitated authigenic montmorillonite, note smooth, 
unaltered surface of host grain, bar= 1 µm, F) precipitated 
authigenic montmorillonite superposed by clinoptilolite 
crystals, bar= 10 µm. 
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a smooth, flat surface best for microprobe analysis, but is adequate for 

the simple comparison of sample compositions. Analyses of each sample. 

were calculated using the matrix correction pro8l'<IJII of Bence and Albee 
'· 

(1968). Twenty four samples were analyzed, including six known detrital 

montmorillonites (from claystones), four precipitated authigenic 

montmorillonites (from sandstones), ten glass-derived montmorillonites 

(from bentonites and ashes), and four samples of unknown origin. Sample 

names and major element chemical data are provided in Appendix I. A 

second oriented clay mount, identical to that used for microprobe 

analysis, was prepared for each sample for XRD analysis. Results 

indicate that all samples are nearly pure montmorillonite, with a minor 

amount of chlorite and mica occurring in a few samples, particularly 

those of detrital origin. The small amount of additional clay minerals 

is not thought to have affected adversely the intended comparison of 

montmorillonite composition in the samples examined. Averaged major 

element values of samples from each of the four genetic groups examined 

are presented in Table 8. There are apparent chemical differences 

between some groups, particularly in the values of silicon and 

potassium. 

Table 8. Averaged Chemical Composition of Compared Clay Groups 

Clay Groups; glass-
derived 

detrital precipitate unknown 

Si02 67.25 57.45 58.73 61. 74 

Alzo3 18.79 18.97 21.07 22.06 
FeO 4.33 5.90 5.54 5.92 
MgO 3.30 2.62 2.41 2.25 
Cao 1.48 2.22 1.14 o. 77 

NazO 3.43 7.33 8.30 2.44 

KzO 0.47 2.21 o. 39 2.75 

........... ____________________________ :oi~·"4•""""--------.... --. -~, 
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The chemical data for all samples were subjected to both cluster 

and discriminant analysis in an effort to determine whether groupings of 

chemically similar samples correspond to groupings based on known 

origins, and to determine if clays of known origin are sufficiently 

distinct to suggest that clay samples of unknown origin may be allocated 

to one of the known groups using statistical techniques. Results of 

the cluster analysis and the discriminant analysis are summarized in 

Figures 28, 29, and 30. Discriminant scores are provided in Appendix J. 

Only the glass-derived clays form a distinct group in cluster analysis. 

The remaining clays do not cluster into groups corresponding to their 

origins. This suggests that glass-derived clays may be effectively 

distinguished from other clays by chemical composition, but that clays 

of other origins may be less effectively distinguished from one another 

by major element"compos!tion. Discriminant analysis revealed that the 

clay samples of unknown origin are closest in composition to the 

grouping of detr!tal clays. However, plotting discriminant scores of 

the four individual unknowns on the line with glass-derived clay values 

reveals one of the unknowns (LX-"C") to plot near the glass-derived clay 

scores (Fig. 29). This potential bentonite sample is discussed further 

below. In general, using major element variables, glass-derived clays 

appear distinct from Sentinel Butte clays of other origins. Silicon 

values account for most of the major element chemistry difference 

between glass-derived clays and both detrital and authigenic 

precipitated clays (Table 9). 



llO 

Figure 28. Cluster dendrogram of chemical analyses of Sentinel 
Butte claystones. Four claystone groups are compared: 
D = detrital, P = precipitated, G = glass-derived, 
U = unknown origin. 
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Figure 29, Projection of samples from Appendix J onto discriminant 
function lines. D = Mahalonobis' distance, C.L. = 
confidence limit. 
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Table 9. Percent Contribution of Element-s Toward Discriminant 
Distances 

% contribution 
group: D/GD D/P D/U GD/P GD/U P/U 

SiOz 61 2 46 82 15 13 
Alz03 -1 13 31 -19 -15 2 
Feo 12 1 -1 13 5 -2 
MgO 14 -1 -2. 30 25 -1 
Cao -1 -3 12 0 4 2 
Na20 -3 0 -4 -8 1 -3 
K20 19 89 16 l 66 88 

abbreviations: D = detrital, p = precipitated, u = unknown, GD= 
glass-derived 

Although not clearly distinguished as groups by cluster analysis, 

the detrital and precipitated authigenic montmorillonite samples were 

treated as separate groups in the discriminant analysis because of their 

differing origins. A meaningful, at the so J confidence level, 

discriminant function distance was obtained between these two groups. 

Calculation of the percent contribution from each variable (each 

chemical element) to the discriminant function reveals that potassium 

content contributes most to the chemical distinction between detrital 

and precipitated authigenic Sentinel Butte clays (Table 9). 

The results of the chemical comparison of Sentinel Butte 

montmorillonites can be summarized as follows. Based on the examination 

of ten glass-derived, four pore-lining (precipitated), six detrital, and 

four other {of unknown-origin), <2 JJ11 clay samples, clays from Sentinel 

Butte bentonites (and ashes) appear chemically distinct from other 

Sentinel Butte clays. Authigenic precipitated and detrital clay groups 

appear distinct from one another, particularly in potassium content; 

higher potassium values were detected in detrital clays. Silicon 
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content alone may, in some cases, serve to distinguish Sentinel Butte 

bentonites from other claystones. 

_Following the determination that known bentonites are discriminated 

from other Sentinel Butte claystones by major element composition, each 

of the samples listed in Table 7 were evaluated, on the basis of the 

discriminant function between detrital and glass-derived clays, as to 

whether they should be allocated to the group of known bentonites. 

Figure 30 shows that four of the potential bentonite unknowns plot on 

the glass-derived authigenic or bentonite side of the discriminant line. 

Three of the samples (BB-5, BB-17, and LX-"C") are from stratigraphic 

positions just above the Sentinel Butte bentonite/ash deposit. These 

samples may have been silica enriched as a result of their proximity to 

the known bentonite. The remaining sample (SHB-1) may represent the 

Sentinel Butte bentonite from a location where the tripartite character 

is absent. 

-22 _,, 
O = D&trltal 

ri= 3-4.08 

11 22 
o, Glass-Derlv&d u = Table 7 Unknowns 

Figure 30. Projection of samples from Table 7 onto the discriminant 
function line between known detrital and known glass­
derived authigenic clays. 

A determination of clay mineral origin by alteration of ash 

requires further· supportive evidence than that afforded by clay 

mineralogy and major element composition alone. Glass grains are common 

in the known bentonites examined, but glass grains have not been 

identified in the four samples that do, nonetheless, group with glass--
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derived clays in discriminant analysis. Further study of clay samples 

pre-selected by XRD and discriminant analysis may yet provide more 

conclusive answers regarding clay mineral origins. Particularly, the 

study of trace element composition and structural ordering of pre­

selected clay samples may be of value in the search for bentonites or 

authigenic clays in general. 
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LIGNITE 

Lignite is an important rock type in the Sentinel Butte Formation, 

as an indicator of depositional enviro11111ents, as a potentially useful 

tool for interpretations of sedimentation and subsidence rates, and as 

an energy source and source of energy-related materials for a 

technological society. Laboratory examinations of lignites require 

specialized techniques that are dependent on the type of information 

sought. In this study, geochemical data from lignitic samples have been 

compared with visual rankings of those samples in an effort to obtain 

information concerning the histories of Sentinel Butte lignites. 

Sentinel Butte organic-rich samples can be visually ranked in an 

order from least lignitic to most lignitic. In so doing, the samples 

may actually be arranged in a pre-lignitic to lignitic to lignite order; 

that is, some samples might be lignite precursor material with the 

visual ordering of the samples then representing an increasing degree of 

coalification between samples. Such an hypothesis ·is difficult to test 

without employing specialized and detailed studies of the materials 

comprising each sample. Preliminary characterization of the samples has 

been conducted, and the data examined for the presence of any chemical 

trends corresponding to sample ranks that might add credence to the 

lignite-precursor hypothesis. 

Standard proximate, ultimate,and heating value analyses were 

obtained for all 20 lignitic samples at the University of North Dakota 

Energy Research Center (UNDERC). Proximate analysis determines the 

percentage of volatile matter, fixed carbon, moisture, and ash. 

Ultimate analysis determines carbon, hydrogen, sulfur, nitrogen, ash, 

and the oxygen content by.difference. As-determined values can be re-

117 
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calculated to. as-received, dry, and dry-and-ash-free bases (ASTM, 1980). 

Heating value analysis determines calorific value expressed in British 

Thermal Units (BTU) per pound of coal. The results of these various 

analyses are provided in Appendix K. 

One of the ways of expressing compositional relationships between 

coals and coal precursors or products is through the use of a graph of 

atomic H/C versus atomic 0/C (Pitt and Millward, 1979). On such a graph 

nearly all coals lie within a narrow curved band, representing, as 

coalification and coal rank increase, a tendency first toward decreasing 

values of 0/C and then toward decreasing values of H/C (Fig, 31). Lines 

representing various chemical reactions involved in the development of 

coals, such as decarboxylation, dehydration, and demethanation, are 

commonly drawn on such diagrams. These lines can be used to infer 

reaction pathways between two substances plotted on the same graph. The 

plotting of H/C and 0/C values for each of the organic-rich Sentinel 

Butte samples reveals most samples to have 0/C values consistent with 

lignites, but to be low in hydrogen. No compositional trends 

corresponding to the subjective visual ranking of the samples are 

evident in Figure 31. 

An attempt was made to rank visually the samples in a possibly more 

objective way by using color designations. With the assistance of three 

volunteers, independent gray-scale values were assigned to each sample. 

An average color value was then obtained for each sample. 

The results of tests of correlation between rank and all determined 

chemical variables, are provided in Appendix L. The visual ranking and 

carbon content of each sample are presented in Table 10. The original 

visually determined rank of each sample correlates well with both as 
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Twenty Sentinel Butte lignitic samples plotted on a 
graph of atomic H/C versus atomic 0/C, Positions of 
samples are indicated by numbers that represent a 
visually determined rank of lignitic character from 
·1 for least llgnitic to 11 for most lignitic. (A) 
represents wood, (Bl cellulose, (C) lignin, (D) peat, 

· (E) lignite, (F) low-rank coal, (G) medium-rank coal, 
(H) high-rank coal, (I) semi-anthracite, (J) anthracite. 
(Modified from Pitt and Millward, 1979, after van Krevelen, 
1950). 
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Table 10. Visual Ranks and Carbon Content of Sentinel Butte Lignitic 
Samples 

Visual Gray-Scale 
Sample Rank Rank Carbon%* 

LB-2 8 1.6 38.64 
MB-7 7 1.6 23.15 
SBK-3 11 1.6 39.19 
KP-7 5 1.3 15.65 
Mann-2 8 2.2 51.48 
7=C 10 1.9 51.24 
AC-8 8 1.3 39.42 
LX-F 8 1.3 48. 78 
EG-8 11 1.3 51.49 
AC-2 10 1.6 44.40 
7=B 11 2.2 52.46 
SB~9 11 1.6 30.38 
SB-16 l 7.35 
LX-21 6 1.3 34.51 
SB-19 3 1.6 27.53 
EG-3 4 1.3 44.85 
AC-B 10 1.9 42. 77 
LX-B 11 2.2 50.37 
SBK-9 11 1. 6 51. 75 
EG-16 2 5.26 

*as-determined values listed. 
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determined and moistW'e-and-ash-free carbon content (correlation 

coefficients of .767 and .731, respectively). Gray-scale color values 

do not reveal a strong correlation with any determined chemical 

variables. 

If carbon content can be regarded as an indication of degree of 

coalification, the correlation between carbon content and visual 

appearance of Sentinel Butte lignitic samples suggests that lignite 

precursor material in various degrees of coalification presently exists 

in that formation. Further specialized study of such samples may 

provide new information regarding coal petrogenesis • 
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DISCUSSION 

Introductory Statement 

This study has attempted to characterize Sentinel Butte sediments 

and to determine which types of petrographic examination are most useful 

for determination of provenance and reconstruction of Early Tertiary 

geologic history. Materials shed from a source terrane are modified in 

several ways in the course of becoming a sedimentary rock. During 

transportation, differential abrasion and attrition of minerals and rock 

fragments of different mechanical durabilities acts to regulate the 

final primary mineralogy and mineral/grain size relations of a 

sedimentary deposit, Sorting of minerals into different deposits or 

into different grain size classes of the same deposit occurs in response 

to the interaction of a moving fluid with grains of different size, 

density, and shape. During, and even after lithification, minerals may 

be lost partially or completely or added to a deposit by the effects of 

dissolution, alteration, and precipitation. 

Understanding the history and particularly the provenance of some 

sedimentary rocks is a difficult task, Significant, especially for 

distal sedimentary deposits, are the effects of mixing and dilution of 

minerals during transport, which commonly all but eliminate the chances 

of deciphering provenance. In such cases, an understanding of 

provenance is normally gained only through an integrated effort 

involving detailed studies within the fields of both sedimentology and 

stratigraphy. Such is the case with rocks of the Sentinel Butte 

Formation and other units comprising the Fort Union Group in and near 

the Williston Basin region of the Western Interior. An understanding of 

123 
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the provenance of these rocks and, more significantly, an understanding 

of the nature and timing of Laramide activities leading to the 

development of these rocks, is a long-term objective that can only be 

gained through an integration of many studies. 

Detrital Constituents 

Rock fragments and feldspar grains comprise a large portion of 

Sentinel Butte sediments. The sandstones examined can be classified as 

either litharenites or feldspathic litharenites. The sand fractions of 

most Sentinel Butte samples examined are very fine grained, causing 

great difficulty in identifying individual rock fragment types. It is 

unfortunate that more detailed rock fragment information is not a 

product of this study, as rock fragments are commonly invaluable as 

indicators of specific source terranes or source terrane types. Most 

Sentinel Butte rock fragments are volcanic. It is true that, in point 

counting, the majority of rock fragments w'1'e unclassifiable. But of 

the four basic rock fragment types, plutonic, volcanic, metamorphic, and 

sedimentary, most recognizable Sentinel Butte rock fragments are 

volcanic. In that glassy volcanic rock fragments are likely to be the 

most labile constituents of sandstones, and that grain alteration, in 

part, hindered rock fragment identifications in Sentinel Butte samples, 

it is probable that the majority of unclassified Sentinel Butte rock 

fragments~ volcanic. Few sedimentary rock fragments were clearly 

identified in the samples examined. Many volcanic rock fragments 

resemble siltstone fragments, but are shown by .microprobe analyses to 

have highly feldspathic compositions. Many grains initially identified 

as chert were determined to be fine-grained volcanic rock fragments when 

... .,,, •.:, .. ,-.i. 
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examined by SEM/EMA. Although some sedimentary roek fragments in the 

form of chert are present, a detailed, specialized study of rock 

fragments would be required to provide quantitative data. Metamorphic 

rock fragments are fairly minor in most Sentinel Butte samples but are 

abundant in the upper sandstone. They are easily recognized especially 

where schistose or sheared polycrystalline quartz textures are present. 

From the rock fragment data gathered in this study, it appears that 

Sentinel Butte sediments were derived from intermediate to falsie 

volcanic, sedimentary, metamorphic, and perhaps plutonic terranes, but 

apparently primarily from volcanic terranes. The presence of quartz 

overgrowths on detrital.grains in one sample suggests a previous 

erosional cycle for at least some of the grains derived from sedimentary 

terranes. The presence of volcanic rock fragments in Sentinel Butte 

samples does not reveal whether sediments were derived from older 

volcanic terranes or from contemporaneous volcanic activity. However, 

the presence of bentonite and volcanic ash in the Sentinel Butte 

Formation indicates that volcanic activity did take place during 

Sentinel Butte time. Moreover, the dominance of volcanic rock fragments 

in Sentinel Butte saiuples is strongly suggestive of the relative amount 

of volcanic terrane exposed in the source area(s} of Sentinel Butte 

sediments. Differential attrition of rock fragments as a result of 

differences in weathering at source areas and differences in physical 

and chemical durabilities of various rock fragment types are important 

considerations in studies of provenance. The effects of differential 

attrition on Sentinel Butte materials might become mor~evident and more 

easily interpretable if data can eventually be integrated among studies 

of both distal and proximal Fort Union Group sediments. 
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Quartz and feldspar content varies between the samples examined 

(Table 2). Polycrystalline quartz varieties are only a minor component 

of most samples examined, and normally reveal no clear indications of 

source. Quantitative determinations of feldspar types have been 

presented above for one sample each of the basal and upper sandstones. 

Alkali and plagioclase feldspar varieties are approximately subequal in 

Sentinel Butte samples considered as a whole, and intermediate 

plagioclase varieties dominate over sodic varieties with only minor 

calcic plagioclase present. Average feldspar content of the samples 

examined, presuming all carbonate grains are authigenic, and counting 

only detrital components, is 17 J. Even assU111ing all carbonate grains 

to be detrital leads to an average feldspar value of 14 J. Such values 

seem high in comparison to other estimates of feldspar percentages in 

continental interior deposits (Pettijohn et al., 1973, p. 36). This may 

be an artifact of insufficient published data on feldspar occurrences in 

Laramide and post-Laramide continental interior deposits, but might also 

be a result.of the preservation of feldspar grains in fine sand and silt 

size classes due to reduced mechanical abrasion and breakage gf such 

small grains in fluvial environments; it has been common practice in 

many petrographic studies of sedimentary rocks to investigate only sand 

size grains. Cheiuical dissolution of feldspar grains has occurred in 

many portions of the sentinel Butte Formation, but probably has not had 

a great effect on the overall.abundance of feldspar in the formation. 

Except for an increase in metamorphic rock fragment content in the 

uppermost Sentinel Butte sand, and an apparent difference in heavy 

mineral amounts and types present (Table 4), and a slight difference in 

feldspar compositions in the basal and upper Sentinel Butte sandstones 
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(Fig. 7), there appear to be no major differences in any other 

determined mineralogic variables within the rest of the formation (Table 

11 and Fig. 32). 

The reader is urged to consider the data used in preparing Figure 

32 before drawing any conclusions regarding real or suggested 

mineralogic differences between measured section locations. The drawing 

is provided only as a visual aid to the data presented in Tables 2 and 

11. Conclusions regarding dispersal trends or patterns were not made 

for several reasons: 1) A single sample of a sandstone from a section 

site is not necessarily representative of that sandstone; 2) The total 

thickness of exposed section and the number of sandstones available for 

sampling at a given section site varies between section locations; 3) 

Temporal relations between the sands at different section sites 

generally are not known. Future studies designed to compare materials 

from different section sites must consider these factors. 

Lateral differences in mineral proportions are not normally 

expected in distal sedimentary deposits where the effects of mixing are 

most pronounced. Such differences may occur where multiple drainage 

systems bring sediments from different source terranes. The paleo­

drainage pattern for the Early Tertiary in the region of this study is 

not well understood. Royse (1970), based on a comparison of cross-bed 

measurements between the Tongue River (now Bullion Creek) and Sentinel 

Butte Formations, suggested·a· variable paleoslope with shifting river 

courses and changing or multiple areas of sediment supply for Sentinel 

Butte time. Winczewski (1982) suggested that Sentinel Butte sediments 

were derived from diversions of the Powder River Basin fluvial system 

around the north end of the Cedar Creek anticline. It may well be that 
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Table 11. Ratio Values Between some Mineralogic. Variables of Sentinel 
Butte Sandstones* 

Sample RF% s RF:S Q:K+P K:P RF:K+P RF:K RF:P 
EG-1 43 54 0.8 1.2 0.2 1.7 8.6 2.1 
EG-17 47 39 1.2 0.9 0.2 2.2 15.7 2.6 
SB-12 44 42 1.0 2.2 0.4 3.4 11.0 4.9 
SB-17 42 18 2.3 2.6 4.0 8.4 10.5 42.0 
SB-18 60 38 1.6 0.5 1.0 30.0 60.0 60.0 
SB-21 29 39 0.7 1.6 1.1 1.9 3.6 4.1 
SB-25 40 55 0.7 2.0 0.2 2.1 13. 3 2.5 
7=1 46 36 1.2 2.3 o;6 4.1 11.2 6.4 
7=G 41 58 0.7 1.1 0.2 1.5 8.2 1. 8 
LB-8 59 39 1.5 2.2 3.0 4.9 6.5 19.7 
SHB-3 40 so 0.8 1.5 o. 7 2.0 5.0 3.3 
SHB-7 51 45 1.1 1.0 0.2 2.3 17.0 2.7 
LX-3 42 42 1.0 2.2 b.9 3.2 7.0 6.0 
LX-M 25 18 1.4 1.2 0.1 3.1 25.0 3.6 
Mann-5 52 28 1.9 0.9 0.5 3.5 10.4 5.2 
Mann-7 so 39 1.3 1.1 0.5 2.6 8.3 3.8 
AC-6 44 32 1.4 1.9 0.6 4.0 11. 0 6.3 
AC-9 37 52 0.7 4.2 2.3 3.7 5.3 12.3 
MB-8 30 34 0.9 3.9 4.3 4.3 
SQB-A 48 46 1.0 2.8 0.9 3.7 8.0 6.9 
BR-A 42 56 0.7 1.5 0.4 1.9 7.0 2.6 
SU-B 40 54 0.7 3.9 1. 7 3.6 5.7 10.0 
*samples with greater than 10 % sand-size grains 
abbreviations: RF=rock fragments1 S=(Q+K+P)%, Q=quartz, K=potassic 
feldspar, P=plagioclase 

----------------------.......... ---.,-, 
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Figure 32, Relative proportions or rock rragments (RF), quartz (Q); 
·K-f'eldspar (Kl, and plagioclase (P), in Sentinel Butte 
sandstones f'rom various measured section locations. 
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a clear understanding of paleo-drainage patterns and directions of 

source terranes will come only after more regional rock characterization 

studies lead to a determination of petrographic facies and sediment 

dispersal patterns. 

Vertical differences in mineralogic variables are more likely in 

distal sediments due to progressive changes in tectonism, unroofing, and 

erosion in source areas. However, it is impossible to interpret 

vertical differences unless relative ages of samples are known. 

Previous workers have relied heavily on marker beds to determine their 

relative position from outcrop to outcrop in the Sentinel Butte 

Formation. These marker beds, the basal sand, the Sentinel Butte 

bentonite/ash, the lower yellow bed, the upper yellow bed, and the upper 

sand, are of limited use over a large sampling area such as that of this 

study. In this study, the Sentinel Butte bentonite/ash is present at 

only one, and the lower yellow bed has been confidently identified at 

only three, of the ten randomly chosen measured section sites. The 

upper yellow bed and upper sand occur only where upper Sentinel Butte 

sediments have not been lost to erosion. Because of the scarcity of 

marker beds at the widely spaced section sites of this study, 

determinations of the relative ages of samples from different sites 

normally could not be made. 

Although only one sample of the upper sand has been collected and 

examined, its high content of metamorphic rock fragments suggests a 

provenance different from that of older Sentinel Butte sediments. The 

upper sand is also coarser grained than sandstones lower in the Sentinel 

Butte section. Royse (1970) observed that the upper sand, "is cleaner 

and coarser than any sediment previously introduced into the basin and 
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appears to represent a significant rejuvenation to the west." Whether 

mineralogic characteristics of the upper sandstone reflect an abrupt 

provenance change during upper Sentinel Butte time or a gradual change 

from lower to upper Sentinel Butte time is not apparent from the results 

of this study. But the sudden appearance of such a sandstone at the top 

of the Sentinel Butte sequence strongly suggests a significant event of 

some kind near the end of Sentinel Butte time. 

Diagenesis 

An assessment of post-depositional modifications of a sedimentary 

unit is important in studies directed toward an understanding of 

provenance. A determination of diagenetic effects must be made in order 

for geologists to see through those effects to the original character of 

the sediment. Diagenesis in the Sentinel Butte Formation has led to an 

assemblage of authigenic mineral phases and to the dissolution or 

alteration of certain detrital phases. Secondary carbonate minerals and 

montmorillonite are abundant in the formation, while kaolinite, 

zeolites, barite, pyrite, quartz, opal, cristobalite, gypsum, and iron 

oxides occur less commonly and more locally. A general pattern of 

cement development seems to occur in Sentinel Butte sandstones. Pore­

lining montmorillonite precedes zeolite development where both minerals 

occur together. Calcite or dolomite are the final cementing agents in 

Sentinel Butte sandstones, and where they have not developed, much open 

pore space remains. 

The addition of new minerals to a sediment is commonly easier to 

detect than the loss or alteration of detrital minerals by dissolution 

or replacement processes. Although the effects of partial dissolution 
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of feldspar and epidote grains, alteration of volcanic rook fragments, 

local intrastratal dissolution, and kaolinite replacement of detrital 

grains are evident, the loss of detrital constituents in the Sentinel 

Butte Formation as a whole does not appear to have been very 

significant. Although there is an abundance of unstable and altered 

volcanic rock fragments in the Sentinel Butte Formation, it should not 

yet be assumed that it is their alteration that has provided the 

necessary dissolved reactants for the development of pore-lining 

montmorillonite. Authigenic clay is a prominent constituent of many 

quartz sandstones that lack any trace of possible precursor detrital 

grains (Wilson and Pittman, 1977). 

It is difficult to make specific deductions about the chemical 

conditions attending development of the pore-lining cements in Sentinel 

Butte sandstones. Because of the pore-lining and pore-filling character 

of authigenic montmorillonite, calcite, dolomite, and zeolites, it is 

clear that they formed as precipitates from solutions. Pore fluid 

chemistry initially favored montmorillonite precipitation. 

Montmorillonite is a widespread pore-lining cement in nearly all 

initially porous and permeable Sentinel Butte sandstones; channel­

filling sandstones normslly contain abundant pore-lining montmorillonite 

cement. Authigenic montmorillonite also occurs in many Sent~nel Butte 

siltstones, especially those that appear to lack appreciable detrital 

clay (detrital and authigenic montmorillonite is distinguished on the 

basis.of morphology and evidence of pore-lining character). Original 

porosity and permeability of sediments probably has greatly affected the 

present distribution of authigenic pore-lining clay in the Sentinel 

Butte Formation. 
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It is difficult to distinguish detrital and authigenic carbonate 

materials, but both direct and indirect evidence (discussed on pages 50 

through 55 and on page 78) suggests that most Sentinel Butte carbonate 

is authigenic. Authigenic pore-filling calcite and dolomite are 

abundant in Sentinel Butte sandstones, but this study has not determined 

the extent of authigenic carbonate development in finer-grained samples. 

Carbonate cementation has occurred to varying degrees in the samples 

examined; some samples contain only minor carbonate cement, and only one 

sample (LX-M) is well-cemented by carbonate. 

Zeolites are apparently minor in the formation as a whole, but do 

occur as pore-filling grains scattered throughout sandstone samples. 

The zeolites definitely postdate the origin of pore-lining 

montmorillonite and probably formed as precipitates from pore solutions 

in most samples. 

Most literature discussions of zeolite genesis propose that 

zeolites form by the reaction of pore water with pre-existing solid 

materials. Although exact mechanisms are still not understood, 

dissolution-reprecipitation reactions are coD111only favored by most 

authors (Mumpton, 1973). 

Convenient precursor materials are present at many zeolite 

localities reported in the literature. Most zeolites detected in this 

study occur as pore-filling crystals or crystal aggregates, and reveal 

no clear indications of having formed by the alteration of some solid 

precursor material. Instead, most Sentinel Butte zeolites probably 

formed as precipitates from pore solutions only locally chemically 

suited for zeolite precipitation, perhaps without the involvement of 

progenitor solid reactants. The abundant analcime in samples SB-1 and 
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SB-15 may have formed through the reaction of solid materials with a 

more pervasive pore-solution chemical situation; this is a subject for 

future study. 

Although the necessary chemical constituents for montmorillonite, 

calcite, dolomite, and zeolite formation are clearly available among the 

detrital components of the volcanic-rock-fragment-rich Sentinel Butte 

Formation, further collection and evaluation of data are needed to 

provide a clearer understanding of the chemistry of authigenic cement 

development. A comparison of the major and trace element composition of 

detrital and authigenic clays together with reliable analyses of 

present-day subsurface water in various portions of the formation may 

prove valuable. It is an easy matter to extract and concentrate 

authigenic montmorillonite from many Sentinel Butte sandstones; careful 

dating of this clay might clarify particular precipitation processes. A 

careful petrographic and geochemical comparison of channel sandstones 

and more silty or muddy materials from channel-marginal facies might 

also prove valuable for the recognition and interpretation of authigenic 

cement development. 

Chemical Analysis of Sedimentary Rocks 

Bulk rock chemical analyses of sedimentary rocks are not as easily 

interpreted as those of igneous and metamorphic rocks, largely because 

sedimentary rocks normally have undergone complex mixing, dilution, and 

diagenetic processes. Sedimentary rocks are best distinguished and 

classified using mineralogic composition, and attempts to substitute 

bulk rock analysis for classification purposes normally lead to 

ambiguous or only generalized rock name determinations often 
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inconsistent with mineralogies observed. Bulk rock chemical data of 

sedimentary rocks are nevertheless worth obtaining for purposes of 

comparison. For example, as mentioned above (page 78), differences in 

calcium content between otherwise nearly identical Sentinel Butte 

samples lend support to the interpretation that most Sentinel Butte 

calcite and dolomite is of secondary origin. Alternative explanations 

for carbonate grain differences between samples involve provenance, 

differential attrition during transport, or post-depositional. 

dissolution. Such explanations seem unlikely considering the observed 

difference in carbonate content between presumably equivalent (in a 

provenance sense) basal sand and, even more convincingly, closely spaced 

lower yellow bed samples. Similar comparative chemical evaluations of 

sedimentary rocks, when allied with petrographic observations, may lead 

to interpretations of groundwater/rock interactions, explanations of 

rock colorations, and perhaps in certain cases the establishment of 

geochemical facies patterns. 

.. ~- .~ ',• ·- : .. ..:·.:. ', ; .. -.. 



BENTONITE 

The search for demonstrable bentonites in the Sentinel Butte 

Formation has yielded no examples beyond the single known bentonite 

described above. However, certain criteria have been developed that 

may yet lead to the discovery of new bentonites in the Fort Union Group. 

It is commonly thought that volcanic glasses cannot survive long 

without altering to more thermodynamically stable phases. The majority 

of reported natural glasses are of Cenozoic age, normally Miocene or 

younger (Simons, 1962; Marshal, 1961). The ezisting literature, 

however, does contain many reports of much older natural glasses. The 

presence and characteristics of glass grains in the Sentinel Butte 

bentonite/ash validates other workers' (e.g., Marshal, 1961) suggestions 

that natural glasses are stable for long periods of geologic time 

(Forsman, 1984). A search for glass grains in Sentinel Butte claystones 

is a useful tool in the search for bentonites. 

The geochemical transformation of glass to clay in the Sentinel 

Butte bentonite/ash has followed the same pattern of chemical change 

commonly reported for the origin of bentonites (Ross and Hendricks, 

1945; Blatt et al., 1972; Pettijohn et al., 1973). Results of 

microprobe analysis of glass grains and their attached alteration 

products (montmorillonite) are given in Table 12. Silicon, sodium, and 

potassium were removed in the reactions while iron and magnesium were 

added. The high silicon content of the resulting montmorillonite 

appears to be a useful criterion in the search for additional Sentinel 

Butte (and probably other Fort Union) bentonites of rhyolitic 

derivation. The overall process of bentonite formation is commonly 

thought to involve incongruent d~ssolution of glass grains, with removal 
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and addition of cations while a disordered silica-alumina framework is 

reconstituted to clay and excess silica is released in solution. 

Apparently magnesium and perhaps some iron are required for this 

transformation to lead to smectite. A rough comparison of the whole 

rock major and trace element composition of the three layers and the 

transition zones between those layers (Fig. 33 and Table 13) reveals the 

same general pattern of chemical change as that reported for the 

transformation of individual glass grains to olay. 

Table 12. Microprobe Analyses of Glass Grains and their Alteration Products (Montmorillonite) 

Clay 
Glass Clay Recalcul8-ted Loss/Gain 

S102 78.86(77.38-80.25) 72.24(67.96-75.26) 59.53(48.25-71.23) -19.35(-32.00 to -6.S7)(s.d,•8.21) 

Alz03 14. [7{13.65-15.19) 17.41(14.29-19.60) 14.17(13.65-15.19) held constant 

FeO* 1.30(1.IS-l.Sl) 3.89(2.34-6.48) 3.19(2.28-5.38) +1.88(+4.0l t'o +o.83)(s.d.:O. 98) 

MgO o. 23(0. 00-0,46) 2.03(1. 31-3. 00) l. 64(1.10-2 .26) +l.41 (+1.80 to +o.88) (s.d.=0.31) 

c,o 1.19(0.92-1.39) 0. 90(0.47-l.80) 0.84(0.34-1.75) -0.34(-0.71 to +0.36)(s.d.z0.36) 

NazO 1.94(0.68-2.81) 1,90(0.64-4.60) I .58(0.53-'4 .48) -0 • .36(-2.07 to +t.67)(s.d ... J.IO) 

K20 2, 10(1. 78-2.60~ I. 22(0. 5]-1. 96) 1.02(0.39-1.74) -1.08(-2.05 to -0.16)(s.d.=O.S6) 

TiOz o. 05(0.Q0-0. 20) 0.16(0.00-0.41) 0.13(0.00-0.J2) +o.08(+o.32 to -O.lO)(s.d.s0.13) 

Note: Mean values given for lU glass/clay associations. Ranges in parentheses. Calculated HzO-free. 
~Total iron as FeO. 
Al\ffllinum held constant, 

Available evidence, including similarity in major element 

composition of glass grains (Table 6), and trends between layers in both 

litholog!c (Fig, 22) and geochemical (Fig, 33) characteristics suggests 

that the Sentinel Butte bentonite/ash was at one time a single, fairly 

homogeneous, ash accumulation. This deposit is perhaps unique in that a 

well-preserved, old (>53 Ma.), ash layer remains, sandwiched between two 

well-developed bentonites. 
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Figure 33. Variation in whole-rock major element composition within 
vertically sampled bentonite-ash-bentonite section. 
Data from Table 13. 
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Both the original Sentinel Butte and Marmarth ashes were probably 

deposited in water. The Marmarth ash is at least locally crossbedded 

and the Sentinel Butte bentonite/ash locally overlies a ripple-marked 

unit. A lacustrine environment of deposition is suggested for the 

Sentinel Butte bentonite/ash and might explain the great thickness (up 

to 4.5 m) of this deposit over such a large area (Fig. 21). The often 

cited passage from Grim (1953) that, "In order for bentonite to form, it 

is probably necessary for the ash to fall in water", and, "that the 

alteration to ash takes place soon after accumulation or possibly almost 

contemporaneously with accumulation", should not be interpreted as 

meaning that ashes landing in water must alter or that they necessarily 

alter quickly. It is clear from the presence of well-preserved glass 

grains in the Sentinel Butte and Marmarth bentonite/ash deposits that 

volcanic ashes do not necessarily alter to crystalline phases without 

significant influences other than the passage of time or deposition in 
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Table 13. Chemical Analyses of Whole-Rock Samples from 5 Levels of the Sentinel 
Butte Bentonite/Ash 

Lowe.r Transition Transition Upper Bentonite Zone --·--· Ash Zone Bentonite 
(values in percent) · 

Sio2 71.07(±0.34) 69.10(±0.74) 70, 74 (±0.59) 68.09(±0.32) 67.41(±0.69) 

Al203 16. 57 (t O. OS) 17.93(<0.37) 16 .16 (± 0. 39) 18.49(±0,07) lB.32(±0.52) 
FeO* 3.94(t0.l2) 4.10(±0,33) 3.33(±0.ll) 4.36(±0.14) 4.50(±0.25) 
Mgo 3.07 (±0.61) 2. 75 (±0.67) 2,05(±0.63) 3.01(±0.63) 3.39(±0.57) 
eao l.56(•0.33) l. 91 <• 0.36) 2.55(±0.38) 2.09C±.0.60) 2.04(±0.51) 

Na20 2.49(±0.13) 2.85 (±0.54) 2.98(<0.36) 2.59(±0.31) 2.36(:::t0.27} 
K2o 0.92(.'D.14) l.21(±0.17) l.92 (" J,23) l.07(±0.02) l.61 (± 0.21) 
Ti02 0.37 (± 0.05) 0.18(±0.03) 0.29(•0.16) 0.30(t0.14) o.37 c•o.lol 

(values in parts per million) 
Ba 393. 92 (t4') 490.49 (<3\) 665. 70 (±4%) 529.05 (±1\) 237.57(±4\) Ti 910.24(±10\) 1125.52 (HO%) 1223.43('10%) 1072.04 (<5%) 1078, 44 (HO\) Mn 121 .19 c,o. 5\J 252.26(t0,l\) 298.49/t0.5%) 235.57(±0.1') 152.18(<0,5%) V 22.81(±0.5%) 22. 65 (tl\) 22. 37 (t0.5%) 27.ll(±0.5%) 24. 69 (±0. 5\) Sm 0.91(±1') 0. 98 (±1\) 0. 99 (±1%) 0.99(tl%) 0.77(±1') Ce 53.88(±5%) 52 ,03 l±lO\) 50. OS (tS\) 59.89/HO%) 48.42 (±5%) u l.37(t5%) 1.89(±1%) 2.07(±5\) l.86(±5%) l.10(<5%) Th 9.9l(t0.5%) l2.l3(t0.5\) 10.58 (±0.5%) 12.55(±1\) 10.50(±0.5%) Cr 23.63(±7%) 17.99(±10%] 18.61/±7') 18.83 (>10%) 24.11(<7%) La 11.04(;0.5%) 10 .45 (±1%) 10.61(•0.5%] 10.63(±1%) B .17 (tO. 5\) As l.14(±.5%) 3 .20 (±1%) 3. 34 (tl%] 2.15(±1%] 0.59(±5%) Sc s.os /±1%) 5.39(H%) 4.83(±1'] 6.00(tll] 5.59(±1%) Rb 24. 7l (tl5%) 84. 01 (±10%] 104.84(±10%) 76.86(±10\) 26.55 ( 15%) Zn 75.0 75.o 75,0 75.0 75.0 Co 2.51(:tlt) 2. 71 (±1%) 2.63 (±Vii) 2.95 (±0.5%) 2. 90 (zh) Eu o. 72 (±5%] 0.69(t5%) 0. 64 (t5\) 0.56(±5%] 0.47 (<Si) Cs 2. 71 (tl%) 3.83 (±1%) 4.66 ('1%) 3.64(±11) 2.24 (±1%) Ni 41.57 (±lSi) l3.69(t25%) 15.37(t20%) 8. 54 (<25%] 21.14 (t25%) Yb 1.33 (±1%) 1.74(±1%) 1.55 (tl%) 1.68('1%) 1.50(±1%) 

Note: Major elements: --analysis by microprobe. Calculated H20-free. Data in 
weight percent, Standard deviation in parentheses. Trace elements: --analysis 
by NAA (Weaver, 1978). Data in parts per million. 
*Total iron as FeO, 
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water. 

But what might explain the partial alteration to bentonite of the 

Sentinel Butte deposit and the preservation of its ash layer in a 

sandwiched manner? Iron and magnesium content in the glass-derived 

montmorillonite is greater than that available from the progenitor glass 

grains alone. These elements must have been contributed by mobile 

groundwater from outside the ash. It seems apparent that either the 

preserved ash layer was never exposed to sufficient quantities of mobile 

groundwater or that the chemistry of groundwater to which the ash was 

exposed was inappropriate for glass alteration to occur. The former 

hypothesis seems difficult to support, considering that this Paleocene 

deposit was probably below the groundwater table for most of its history 

and that water might pass through even "impermeable" clay beds given 

sufficient time.· A possible explanation for the partial alteration 

involves a selective ion exclusion process. Element-enriched 

groundwater entering the original ash deposit from neighboring sediments 

may have caused glass alteration to proceed initially at the contact 

between the ash and those sediments. A resulting clay layer then may 

have acted as an element filter (perhaps a semipermeable membrane), 

allowing some water to pass through the clay, but excluding or limiting 

the passage of certain crucial ions into or out of the enclosed ash, 

thereby preventing further alteration of the deposit. This explanation 

is speculative at this point, but does seem somewhat attractive in that 

it doesn't require the ash layer to remain dry in order to be preserved. 

An ion-filtering mechanism is not formally proposed here, but 

possibilities include simple cation exchange reactions or perhaps 

semipermeable membrane processes. Previous literature suggests that 

·.(t:'--'i -, .. 
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semipermeable membrane processes occur only under deep (~1000 m) burial 

conditions or perhaps at shallower depths where solutions are very 

dilute (Drever, 1982, p. 81-82). 

Modeling ancient groundwater flow is difficult, but an explanation 

involving some form of ion exclusion seelll,S compatible with a simple 

model of a slowly rising groundwater table. As groundwater table rise 

continued above the now altered lower ash, crucial elements (e.g., Mg) 

may have been restricted from also rising. The groundwater might then 

have become replenished in these elements only when it contacted the 

sediments above the ash. Diffusion of these elements downward then may 

have led to development of the upper bentonite. The upper bentonite is 

consistently thinner than the lower bentonite, often much thinner, 

perhaps reflecting the relative energies of downward element diffusion 

an~ upward groundwater movement. 

Any explanations offered for the sandwiching effect must account 

for the aPJ)arently uniform occurrence of this effect over the entire 

range of the Sentinel Butte ash; the ash is everywhere sandwiched by 

bentonite. Further study of this interesting deposit may provide 

evidence in support of various water driving and ion-filtering 

mechanisms. 

The examination of the Sentinel Butte bentonite/ash is potentially 

the most valuable aspect of this study toward the realization of the 

earlier stated goal of determining which procedures are most useful for 

the comparison of Lower Tertiary rocks. Temporal relations between the 

various geographically separated formations of the Fort Union Group are 

not well understood, For example, it is not known whether rocks 

equivalent in age to the Sentinel Butte Formation occur either in the 

._ ... _. ·•,:,-.s .. --· 
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Paleocene strata of the Powder River Basin or within the Tongue River 

Member of eastern Montana. A time-stratigraphic framework is needed to 

provide a common context within which to view the results obtained by 

various studies of the widespread Fort Union Group. Bentonites and 

ashes are extremely valuable in correlating and establishing the age­

equivalence of sedimentary strata. They are also potentially datable by 

radiometric methods, and so may be of use in determining absolute ages 

and sedimentation rates. 

There seems to be a common suggestion or at least inference in much 

existing literature that the Paleocene epoch was a time of volcanic 

inactivity in the Western Interior .of North America. Robinson (1972), 

in referring to the Windy Gap Volcanics Member of the Middle Park 

Formation of north-central Wyoming, wrote: "If some of these volcanics 

are of Paleocene age they represent a rare lithology for the epoch." 

Armstrong (1978) wrote: "Except for volcanoes in the Adel Mountains and 

near the Black Hills, the first 10 m.y. of the Cenozoic was a time of 

igneous quiescence." Many authors do not explicitly suggest a lack of 

volcanism during the Paleocene epoch, but instead ignore the Paleocene, 

mentioning only the well-reported volcanism of the Cretaceous and post­

Paleocene. A search of existing literature has generated a partial list 

of Western Interior igneous centers with possibly active Paleocene 

volcanism (Table 14). This list should not be construed as a 

contradiction to the statement that the literature negates Paleocene 

volcanism; most of the references of Table 14 do not mention Paleocene 

volcanism even though they give age ranges which include the Paleocene. 

The literature suggestions of volcanic inactivity exist in spite of what 

might be considered evidence to the contrary. Also, the list is meant 
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Table 14. Western Interior Igneous Centers with Possibly Active 
Volcanism During the Paleocene Epoch 

Igneous/Volcanic Center 

Elkhorn Mountain Volcanic 
field, Montana 

Boulder batholith, Montana 

Idaho batholith, Idaho 

NE-trending igneous belt 
through Colorado 

NW-trending belt from Black 
Hills of South Dakota to 
Sweetgrass Hills of Montana 

Devils Tower and Missouri 
Buttes, Wyoming 

Judith Mountains, Montana 

Little Rocky Mountains, 
Montana 

Adel Mountains, 
Montana 

Age Range 

Late Cretaceous -
Early Tertiary 

Late Cretaceous -
Early Tertiary 

Late Cretaceous -
Eocene 

Upper Cretaceous 
and Paleocene 

Late Paleocene 

Paleocene -
Eocene 

Late Cretaceous -
Eocene 

Late Cretaceous -
Paleocene 

Late Cretaceous -
Paleocene 

Reference 
(for age range) 

Steven et al. (1972) 

Steven et al. (1972) 
Tilling et al. (1968) 

McGookey et al. (1972) 

Steven et al. (1972) 

Fountain ( 1981) 

Hill et al. (1975) 

Marvin et al. ( 1980) 

Marvin et al. (1980) 

Chadwick (1972) 
Armstrong ( 1978) 

..... ____________________ .,'.,.,;~ ........ ___ .... _____________ .. 
• '& 
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only as a suggestion of where Paleocene volcanoes may once have been. 

The occurrence of volcanically derived deposits in the Fort Union 

Group and equivalent strata indicates active volcanism during the 

Paleocene epoch. At least two other Paleocene pyroclastic deposits in 

the Western Interior are known besides the Sentinel Butte bentonite/ash. 

Shafiqulah et al. (1964) have assigned a Paleocene age to bentonites 

that occur in the Brazeau and Paskapoo Formations of central and 

southern Alberta. Tuff stringers occur throughout the Big Dirty coal 

seam in the Lebo Formation of the Fort Union Formation in south~central 

Montana (C. Connor, USGS, personal conununication, 1982). An apparently 

stream-reworked ash deposit occurs in Paleocene strata on the west flank 

of the Powder River Basin (R. Harris, Wyoming Geological Survey, written 

communication, 1983). Other Paleocene ash and bentonite deposits 

probably remain undiscovered in the rugged badlands terrain in which 

much of the Fort Union is exposed. The location and study of such 

deposits can do much for the correlation of Paleocene strata and the 

reconstruction of Laramide geologic history. 
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CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK 

SUJlllal'y of Conclusions 

1. Volcanic rock fragments dominate the lithic constituents of 

Sentinel Butte sandstones. A minor proportion of plutonic, 

sedimentary, and metamorphic rock fragments occurs throughout the 

formation with a significant increase in metamorphic rock fragment 

proportion in the uppermost Sentinel Butte Formation. Thus, mixed 

source rock types and/or regions supplied material for Sentinel 

Butte deposition, but the dominant available source material was 

volcanic. 

2. Sentinel Butte sediments are fine grained and are comprised of a 

mineralogically immature assemblage of components leading to a 

general classification of feldspathic lithic arenite for 

sandstones. That sandstones can be classified as arenites reflects 

the winnowing influences of streamflow processes rather than any 

overall textural maturity for Sentinel Butte sediments. The 

dominant rock type5 present in the formation _j.,s mud,st;one. , 
,;:J_I"{" :,:f';f;;,f,£J Q,,,;f 

3. Diagenesis of Sentinel Butte sediments has led to the authigenic 

growth of various minerals. Montmorillonite occurs as a pore­

lining cement in most Sentinel Butte sandstones and many 

siltstones. Zeolites occur as a pore-filling material in several 

sandstones. Calcite and dolomite are the final cementing agents in 

Sentinel Butte sandstones, but are present in widely varying 

· amounts in the samples examined. Most Sentinel Butte carbonate 

minerals appear to be authigenic. 

146 



147 

q_ The detrital clay mineral assemblage of the Sentinel Butte 

Formation is dominantly composed of sodium montmorillonite. 

Kaolinite is minor and chlorite and illite/mica may more 

appropriately be regarded as clay-size detrital flakes rather than 

as clay mineral material viewed as forming through alteration or 

weathering of preexisting material or authigenic growth. 

5. The Sentinel Butte Formation contains a thick and widespread 

bentonite in which is preserved a layer of the original volcanic 

ash accumulation. This bentonite, together with others known in 

the Fort Union Group, has led to improved understanding of 

Paleocene volcanism, glass grain durability, and bentonite 

formation. It is probable that continued research, utilizing 

bentonites as chronostratigraphic units, will lead to an improved 

understanding of the time-stratigraphic relationships of Fort Union 

Group strata. 

6. An overall understanding of the geologic history recorded in 

Paleocene strata will require an integration of the results of many 

petrologic studies of both distal and proximal Fort Union Group 

sediments. 

Concluding Statement and Suggestions for Further Work 

In this study, the petrology of the Sentinel Butte Formation has 

been .examined in a broad way. A particular aim of this study is to 

reveal new information about the formation that would point to specific 

areas of research worthy of more concentrated or specialized 

examination. Only through a cooperative integration of results of many 
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studies will an eventual well-supported understanding of the geologic 

past recorded in Fort Union strata be gained. Much contributive work 

toward this end has been done (e.g., Stow, _1946; Brown, 1952; Courdin 

and Hubert, 1969; Royse, 1970), but much also remains to be done. For 

example, this study has provided petrographic evidence that suggests a 

difference in the provenance of basal and upper Sentinel Butte 

sandstones; however, detailed comparisons of the petrology of these 

sandstones can still be conducted. Specific comparisons of rock 

fragments, types and structural states of feldspars, and heavy mineral 

assemblages may yet reveal much about the history of these sandstones. 

This study is the first to point to the presence of certain authigenic 

minerals in the Sentinel Butte Formation. A comparison of the effects 

of diagenesis in different Lower Cenozoic formations may lead to models 

of past groundwater/rock interactions, may lead to explanations of color 

differences between formations, and may eventually lead to geochemical 

facies models and environmental reconstructions. This study is the 

first to examine the characteristics of volcanic ash and bentonite in 

the Paleocene strata of North Dakota in a search for other bentonites in 

these and neighboring strata. 

Bentonites and ashes are potentially of great value in determining 

the time-stratigraphic relations between Fort Union strata. The search 

for and study of such deposits should continue •. Further study of the 

Sentinel Butte bentonite/ash can provide information regarding the best 

way to make use of such deposits for correlation purposes. Long­

distance correlation of ashes is best done through geochemical and 

statistical means (e.g., Sarna-Wojick! et al., 1979; Hahn et al., 1979). 

Although Huff (1983) has successfully geochemically-correlated a 
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bentonite formed under marine conditions, a test of the suitability of 

this procedure for bentonites formed in terrestrial settings has not 

been conducted. The Sentinel Butte bentonite/ash provides an excellent 

opportunity to assess the effects of variable diagenesis (common in 

terrestrial sediments) on the chemical signature of a terrestrial 

bentonite. The regional chemical variability of the unaltered 

sandwiched ash can be compared with both the regional and local chemical 

composition of the bentonites that have been derived from the originally 

thicker ash. Nonuniformity of the lateral differences in chemical 

composition of parent glass (from the ash) and authigenic clay (from the 

bentonites) can then be ascribed to differences in diagenesis along the 

course of the deposit. The Sentinel Butte bentonite/ash perhaps 

provides a unique opportunity for this type of evaluation, in that the 

remnant ash is preserved not just locally but occurs with the associated 

bentonites over an extensive area. 

Although not directly suggested by results of this study, the 

possibility exists that a detailed examination of selected rock layers 

of the Sentinel Butte Formation might reveal diagenetic features 

compatible with an origin by soil-forming processes. Paleosols, 

incipient paleosols, or perhaps just diagenetic features similar to what 

may occur in soils might be detected through an appropriate study. 

Differences in calcite and dolomite contents and differences in etching 

of feldspars between samples ·examined in the present study as well as 

the outcrop occurrence of color banding and iron-o·xide-cemented zones 

might have an explanation in pedogenic or related processes. 

Sentinel Butte organic-rich and lignitic samples could be further 

studied in many ways. Extraction and detailed examination of organic 
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materials variously preserved in Sentinel Butte 8alllples may eventually 

lead to an understanding of the coal-forming process or processes which 

have led to North Dakota's lignites. Combined organic- and geochemical 

examination of a vertically closely spaced series of samples taken from 

a lignite seam and its over- and underlying sediments might reveal 

information regarding the chemical interaction between those layers 

during and after coal formation (!Carner et al., 198ij). 

Further detailed study of Sentinel Butte clays might reveal 

additional differences between authigenic and detrital phases. Special 

techniques applicable to the examination of clay structure might reveal 

valuable information regarding formative mechanisms of authigenic clays 

and the durability of original stucture in redeposited (detrital) clays. 

In addition to the specific studies mentioned above which pertain 

to the Sentinel Butte Formation, it is hoped that similar examinations 

of other Lower Cenozoic rock units in North Dakota, South Dakota, 

Montana, and Wyoming will be conducted so that information concerning 

different units can be compared and integrated to bring about an 

eventual well-documented understanding of the geologic history recorded 

in those units. 
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Section: Sheep Butte (SHB) 
Location: NE 1/ij, NE 1/ij, NE 1/ij, 

McKenzie County, ND 
Base of Section: Base of butte 

Unit 
Interval 

117-125' 

109-117' 

102-109' 

87.5-102' 

83-87.5' 

76-83' 

68-76' 

65.5-68 1 

20-65.5' 

Sample 

SHB-9 

SHB-8 

SHB-7 

SHB-6 

SHB-5 
SHB-ij 
SHB-3 
SHB-2 

Sample 
Position 

120.0 1 

90.0 1 

67.0' 

53.0' 
q3.9• 
32.0' 
23.8• 

Date: 10 July, 1981 
Sec. 15, T. 1ij8 N., R. 103 W., 

Unit Description 

Silt, unconsolidated, light­
yellow-gray. Lower yellow bed? 

Shale, silty, gray to brown. 
Mostly covered. 

Claystone, silty, gray to brown. 
Semi popcorn-weathered. Becomes 
silty and iron-stained upward to 
dirt-like slope. 

Shale, silty, light-blue-gray. 
More resistant than underlying 
unit. Faintly orange color­
banded. A cherty concretionary 
zone (1'-thick) at 95'. 

Claystone, sandy. Blue-gray. 
Popcorn-weathered. Forms bench. 
Sentinel Butte bentonite? 
Sample BB#8. 

Sand, medium, light gray-brown. 
Uncemented. Weathers light gray 
and forms ledge. Upper contact 
not horizontal. 

Shale, silty, faintly orange 
color-banded. Thin iron-cemented 
band near top. 

Claystone, blue-gray, popcorn­
weathered. Forms bench. Contains 
white, irregular sandy masses 
(Sample Sheep Butte A). 
Sentinel Butte bentonite? 

Alternating fine sand, silty 
shale, shaley silt. Gray to 
light-yellow. Orange color­
banded. Disintegrated con­
cretion-like zone at 2q• (1'­
thick) forms a small bench. 
qo to 50' interval is more 
shaley. 



Unit 
Interval 

15-20 I 

12.5-15' 

10.5-12.5' 

9.5-10.5• 

4-9.5' 

0-4' 

5ample 

SHB-10 
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5ample 
Poi,ition 

10.0' 

Unit Description 

Shale, silty, gray, orange color­
banded. Becomes more silty up­
ward resulting in less rei,ii,tance 
to erosion and a rather dirt-like 
i,lope. 

Shale, silty, gray. Abundant 
.loosely iron-cemented slabs and 
chips offering some resii,tance to 
erosion. 

Shale, silty, gray. Popcorny. 
Becomes brown upward. Upper 
1 ' is very fisi,ile "woody" 
organic-rich, brown to gray, silty 

.shale. 

Silt, very white. Forms a ledge. 
Capped by a very thin blue-gray 
clayi,tone. 

Shale, silty, gray. Popcorny. 
Becomes more silty and brown 
upward, then again more clayey. 

Slope wash up to lignite overlain 
by shale, gray-brown, organic­
rich. 
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Section: LX Ranch (LX) Date: 8 July, 1981 
Location: NW 1/4, NW 1/4, NE 1/4, Sec. 36 and SW 1/4, SE 1/4, Sec. 25, 

T. 148 N., R. 99 W., McKenzie County, ND 
Base of Section: Section measured upward from a 1-1/2 foot lignite 

Unit 
Sample 

400-410' 

341-400 1 

340-341' 

324-340' 

296-324' 

291-296 

280-291' 

276-280' 

245-276' 

233-245' 

232-233' 

199-232' 

195-199' 

184-195' 

180-184' 

163,5-180' 

Sample 

LX-H 

LX-L 

LX-K 

LX-22 

LX-21 

LX-J 

LX-19 
LX-18 

Sample 
Position 

203.1 • 

195.2' 

178.9' 
170,5' 

Unit Description 

Sandstone, well lithified,yellow­
gold to brown. Gruss at base. 

Hostly covered. Some seemingly 
in-place silty shale. Yellow­
brown at base. 

Lignite upward to shale. 

Covered. 

Sand, fine, unconsolidated. 
Upper yellow bed. 

Lignitic upward to lignitic shale. 

Covered. 

Clay, blue-gray, popcorn-wea­
thered. Appears indistinguishable 
from Sentinel Butte bentonite. 

Covered. 

Sand, medium, light gray. Clayey 
(popcorny) bands and light orange 
bands. 

Lignite. 

Clay, silty, sandy. Forms dirt­
like slope. 

Shale, lignitic. Covered, must 
be dug for or found in gulleys. 
Base not seen. 

Covered. 

Clay, silty, blue-gray. Popcorn­
weathered. 

Sand, medium, white. Yellow-gray 
clayey (popcorny) bands, orange­
yellow iron-stained bands and 
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Unit 
Interval 

157-163.5' 

130-157' 

125-130' 

119-125' 

117-119' 

116-117' 

111-116' 

108.3-111 1 

Sample 

LX-17 
LX-16 
LX-I 

LX-15 
LX-14 
LX-13 
LX-H 
LX-C 

LX-F 

LX-E 
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Sample 
Position 

162.4' 
157.9' 

148.1' 
141.9' 
136.7• 

Unit Description 

segregated white lensoid sandy 
masses and iron-cemented nodules. 

Shale and silty shale, banded 
(yellow-orange-gray-brown). 
Lower six inches is light blue 
popcorny shale. 

Siltstone, fine, mostly unlithi­
fied (sample LX-C). 
A seemingly continuous 
indurated zone 1-1/2-foot-thick 
occurs in the middle of this 
unit, often with large slabs 
bearing rippled surfaces broken 
free (sample LX-H). 
Mollusc fossil seen. 
Capped by 1-1/2 1 white, 
organic-rich silty shale, in turn 
capped by 3 to 5-inch-thick black 
lignitic shale.Lower yellow bed. 

Lignite. Overlain by few inches 
of silty shale. 

Shale, silty, yellow brown to 
somber gray. Subdued orange­
banded. Forms dirt-like slope. 

Shale (-1'), gray, fissile. 
Above is darker gray iron-stained 
shale which contains indurated 
iron-cemented horizons. A bench 
is formed on an iron-cemented 
horizon at 119' • 

Shale, very white. Forms ledge. 
Very slight silt content detected 
by chewing. 

Clay (Sentinel Butte bentonite?), 
blue-gray, popcorn-weathered. 
Material separating this unit from 
blue clay below is sand, not ash. 
Virtually all clay, no silt detec­
ted. Contains organic (Plant) 
remains. 

sand, medium, white. Popcorny 
bands. Contains organic (plant) 
remains. Fines upward to silty or 



Unit 
Interval 

105.5-108.3• 

104.5-105.5' 

99-104.5' 

97.5-99' 

86-97.5' 

82-86 1 

81-82 1 

79-81 1 

58-79' 

Sample 

LX-11 

LX-D 

LX-10 

LX-9 

LX-8 
LX-7 

157 

Sample 
Position 

107.5• 

94.2' 

85.0 1 

76.4 1 

68,5' 

Unit Description 

sandy shale capped by 3-4" of 
carbonaceous, brown to pink, 
lignitic, silty shale. 

Clay, blue-gray. Very popcorny. 
Much organic (plant) remains. 
Lower Sentinel Butte bentonite? 

Shale, blue-gray, sandy, silty. 

Sand, white, medium. Iron­
cemented bands near base. 
Contains very white, segregated, 
lensoid, sandy masses, up to 
several feet in maximum dimension 
(sample LX-C). Contains iron­
bearing concretions. Becomes 
popcorny and darker gray in two 
or three thin zones just above 
the 100' mark. These zones 
contain some organic (plant) 
remains but it is not clear Hhat 
causes the popcorn character. 
Perhaps are some authigenic clays. 
Orange iron-bands above 101'. 

Lignite. Capped by few inches of 
very light gray shale with a small 
silt component. 

Sand, medium, light gray to white. 
Orange iron-banded. Contains 
large log-like concretions. 
Top 5' lacks iron staining and 
contains leaf imprints. Fines 
upward and becomes very fine sand 
to silt (apparently lacking much 
clay) near top (as base for over­
lying lignite) • 

Shale, silty, brown. 

Shale, silty, popcorn-weathered, 
iron-banded. Forms small bench 
at 82'. 

Shale, silty, light blue, popcorn 
weathered. 

Lignite. Overlain by shale, 
brown, organic-rich. A purple-
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Unit 
Interval 

55-58' 

50-55' 

ll5'-50' 

39-115' 

34-39' 

33-311 I 

25.5-33' 

25-25.5' 

18-25' 

12-18 1 

5-12' 

5ample 

LX-6 

LX-B 

LX-l! 

LX-3 

LX-A 

LX-1 
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Sample 
Position 

61 .2 1 

117 • 8 I 

112.4 I 

13.5• 

Unit Description 

brown, two-inch, silty shale lies 
2' above the lignite. Less 
organic and more silty upward. 
Subdued banding, buff brown to 
somber gray. Swelled, dried, 
semi-popcorny surface. 

Lignite. Base not seen, but is at 
least 3' thick. 

Covered. 

sand. 

sand, fine to medium, rilled. 
Less resistant to hillslope 
weathering than underlying sand. 

sand, fine to medium, rilled, iron 
stained in bands. Not indurated. 

Shale, sandy. 
Weathers into 
chips. 

Bench-forming. 
centimeter-size 

Shale, slightly silty, orange­
yellow-gray-banded. Coarsens 
upward. Very sandy for upper 
l!-5'. Short bench at 33'. 

Silt, carbonaceous. Grades upward 
to carbonaceous silty shale. 

Shale, sil~y, light-gray. Over­
lain by darker gray popcorn-wea­
thered clay. 

Shale, light-gray, plant fossil­
rich. Overlain by several feet of 
silty shale which is color-banded 
by iron-staining or perhaps by 
lithologic changes. Contains iron 
nodules and thin iron-cemented 
layers. 

Shale, (2"), light-gray 
plant-fossil rich. Grades upward 
to sandy shale, alternating gray 
and light yellow brown. Light 
shale again near top, abruptly 
overlain by 11' of friable, fine 

-------------------------'"' 
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Unit 
lnterval 

0-5' 

Sample 

159 

Sample 
Position Unit Description 

to medium sand. Lignite 
(5") caps the sand. Entire 
interval is color-banded. 

Shale, light-gray, plant-fossil 
rich. Grading upward to silty, 
fine-sandy shale, then again 
plant-fossil rich shale capped 
by 2" of purple brown car­
bonaceous shale. 

.. -·-,:·:,.-.,..,,.,_- ,:,: 
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Section: 
Location: 

160 

Kinley Plateau (KP) Date: 9 June, 1981 
SE 1/4, SW 1/4, NE 1/4, Sec. 25, t. 138 n., R. 102 W., 
Billings County, ND 

Base of Section: Top of vegetated zone containing in-place petrified 
tree stumps approximately midway up from base of butte. 

Unit 
Interval 

105-106.5' 

103.5-105' 

101-103.5' 

92-101' 

91-92' 

84-91' 

82-84' 

80-82 1 

69.5-80' 

66-69.5' 

Sample 

KP-9 

KP-8 

Sample 
Position 

98.6• 

86.9 1 

Unit Description 

Sandstone, medium, brown to 
gray. Resistant ledge-former. 
Caps this butte. Appears darker 
in color from a distance. 

Sandstone, very fine, yellow­
brown. Non-resistant. 

Sandstone, medium, orange-brown 
to gray. Well indurated, resis­
tant. Ledge-former. Appears 
darker brown from a distance. 

Sandstone, very fine, gray. Less 
resistant than underlying unit. 
Contains yellow-orange iron­
cemented beds 1 to 1-1/2" 
thick. Ripples preserved. 

Sandstone, fine to medium, 
orange-gray to brown, indurated, 
cross-bedded. Incompletely 
cemented but forms a resistant 
ledge. Appear darker brown from 
a distance. 

Shale, silty, yellow-gray to 
orange color-banded. Grades 
upward to shaley silt to fine 
sand at top of interval. 

Shale, silty, yellow-brown to 
gray. Popcorn-weathered. 

Shale, carbonaceous, brown to 
gray. 

Shale, silty, to silt, shaley. 
Orange, yellow-brown, and gray 
color-banded. 

Clay, yellow-brown to gray. 
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Unit 
Interval 

64-66• 

51-64 1 

49-51 I 

24-49' 

12-24 1 

6-12' 

0-6 1 

Sample 

KP-7 

KP-6 
KP-5 
KP-4 

KP-3 

KP-2 

KP-1 

additional samples: 
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Sample 
Position 

65. 1 I 

44.5' 
35-7' 
27.2' 

19.3• 

12.0' 

5.4' 

Unit Description 

Shale, lignitic. Base probably 
within covered interval. 

Covered. 

Clay, Brownish-gray. Popcorn­
weathered. 

Shale, silty to silt, shaley. 
Light gray to yellow-brown color­
banded. More resistant than unit 
below and rilled on surface. 

Shale, gray. Contains abundant 
fossil plant fragments. 

Shale, carbonaceous, brown to 
gray. 

Covered. 

Kinley A -- very white, sandy material underlying a bentonite­
appearing, bluish-gray claystone below base of section. 

Kinley B -- clay above Kinley A 
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Section: 7= Ranch (7=) Date: 11 July, 1981 
Location:· SW 1/li, NE 1/li, SE 1/li, Sec. 32, T. 1li6 N., R. 102 W., 

McKenzie County, ND 
Base of Section: Lignite (HT?), well-exposed here, well-developed, often 

burned and overlain by scoria. 

Unit 
Interval 

199.5-206' 

198-199.5• 

193-198' 

185-193' 

179-185' 

165-179' 

161-165' 

160-161' 

156-160' 

15li-156' 

1li9 • 5-15li I 

1li8-1li9.5' 

142. 5-148' 

137-5-142.5' 

Sample 

7= F 

7= 15 
7: E 

7= lli 

Sample 
Position 

1li9.9' 

146.1 1 

Unit Description 

Petrified wood is abundant 
throughout this section. 

Silt, shaley, brown. Dirt-like. 
Weathers gray. Iron-stained. 

Lignite. 

Covered. 

Sand, fine, shaley. 

Silty, dirt-like slope. 

Shale, silty, sandy, gray to 
brown. Orange color-banded. 
Contains iron nodules and irreg­
ular white masses. White mass 
sampled (7=F). 

Shale, sandy, gray to brown. 
Largely covered. 
Lignite. 

Shale, blue-gray, popcorny. 

Lignite. Overlain by few inches 
of brownish gray, organic-rich 
shale. 

Shale, blue-gray, popcorny. Con­
tains a 1" lignite at 151 '. 

Lignite. Overlain by brown, 
organic-rich shale. 

Sand, fine to medium, yellow. 
Unconsolidated. Lower yellow 
bed? Sample (7=E). 

Claystone, sandy, brown. Forms 
a popcorny slope, rather dirt­
like. 

I 
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Unit 
Interval 

123-137-5' 

122-123' 

119-122' 

107-119' 

102.6-107' 

100-102.6' 

57-100' 

5ll-57' 

50-5ll' 

ll7-50' 

Sample 

7= 13 

7= 12 

7= D 
7= C 

7= 11 
7= 10 
7= 9 
7= 8 
7= 7 
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Sample 
Position 

122.9' 

110.3• 

97.5• 
87 .1' 
76.8' 
67.2• 
57.9• 

Unit Description 

Claystone, silty, blue-brown­
gray. Dirt-like slope, becoming 
sandy at 137 .5'. 

Siltstone. Iron-cemented. Forms 
shelf. 

Lignite. Covered. Estimated to 
be 2' thick. 

Sand, fine, light gray. Sparse 
concretions and nodules. 

Lignite. Base covered, presumed 
silty. Overlain by several 
inches light-brown organic-rich 
shaley silt which grades(?) up 
to medium sand. Thin iron-cem­
ented zone at 107'. samples: 
7=C (lignite), 7=D (shaley silt). 

Shale, blue-gray, popcorn-wea­
thered. Grades upward to silty 
shale. 

Alternating sand, silt, clay. 
Thin (1") lignitic zone at 
60'. Fossil plant remains and 
a fossil gastropod seen. 3" 
lignitic zone at 83' overlain by 
gray shale becoming more silty 
upward. Thin (1") iron-cemented 
zone forms very small bench at 
93.5'. Sand coarsens to fine at 
90' then quickly grades to 
silty or very fine sandy at 99'. 
Overlain by popcorny shale at 
100'. 

Lignite. Overlain by 1-1/2" 
of brown, organic-rich slightly 
silty shale. 

Shale, silty, sandy. Locally 
covered. 

Shale, blue-gray, popcorny. A 
1" carbonaceous and lignitic 
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Unit 
Interval 

33-47' 

31.5-33' 

27-31.5 I 

0-27' 

Sample 

7= 4 

7= B 

7= A 

7= 3 
7= 2 
7= 1 

additional samples: 
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Sample 
Position 

33.7• 

26.6 1 

20. 1 I 
14.6 1 

Unit Description 

zone at 50' is overlain by sev­
eral inches of light-gray organic­
remains-bearing shale. 

Shale, silty to very fine sandy. 
Brownish-gray. Orange color­
banded. Iron-nodule bearing. 

Lignite. Ssmple 7=B. 

Claystone, silty, gray to brown. 
More·organic-rich upward. 
Contains several (4-8} thin beds 
of "woody" organic-rich material 
(sample 7=A) grading upward to 
lignite. 

Alternating sand, silt, clay, in 
varying proportions. Rilled 
where more sandy, popcorny where 
more clayey and silty. Orange, 
gray, and light-gray color­
banded. Contains thin (1") 
iron-cemented zones and concre­
ions. Sandy portions are fine 
to medium. Finer-grained near 
top. Contains some widely 
scattered white pods (carbonate?) 

7= G -- basal sandstone near 7= measured section location 
7= H -- white, irregular sandy masses within a blue-gray popcorn­

weathered claystone north of road, west of section site 

... ,., ........ __________ ....,.. ______________ ,_, 
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Section: 
Location: 

Sentinel Butte (SB) Date: June, 1980 
NE 1/li, NW 1/li, NE 1/li, Sec. 8, T. 139 N., R. 10li W., 
Billings County, ND 

Base of Section: Base of basal sand exposure. 

Unit 
Interval 

365-375' 

350-365 1 

33li-350' 

329-33li' 

322-329' 

310-322' 

305-310' 

295-305' 

293.5-295' 

281.5-293.5' 

275.5-281.5' 

275-275.5' 

sample 

SB-1 

SB-2 
SB-3 
SB-li 

SB-5 

SB-6 

SB-7 

SB-8 
SB-9 

Sample 
Position Unit Description 

Sandstone, medium, gray-white, 
iron-stained. 

sandstone, fine, white, well 
indurated. Resistant unit. 
Horizontal weathering pattern. 
Appears to have four members: 
a slight slope-forming member 
at base, overlain by a horizon­
tally weathered section, followed 
by a 2' darker section, with a 
2-3' cap of very white fine­
grained sandstone. 

Sandstone, fine, yellow, indur­
ated. Contains trace fossils 
(worm tubes, burrows, or root 
casts?). 

Shale, lignitic, dark brown-gray. 

Sandstone, fine, gray, iron­
stained. 

Sandstone, fine, buff yellow. 
Coarsens upward to medium sand­
stone. Partially lithified. 
well indurated in coarser portion 
near top. 

Shale, brown. Grades upward to 
lignitic shale. 

sand, gray, slope-forming. 

Lignite. 

Shale, sandy, silty, slope­
forming. 

Sandstone, fine, yellow. Indur­
ated. 

Lignite. 
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Unit 
Interval 

272-275' 

269-272' 

253-269 I 

236-253 I 

228-236' 

227-228' 

219-227' 

214-219' 

213-214' 

210-213' 

208-210' 

198-208 1 

171-198' 

147.5-171' 

145-147.5' 

142-145' 

140-142' 

Sample 

SB-10 

SB-11 

SB-12 

SB-13 

SB-14 

SB-15 

SB-16 

SB-17 

SB-18 

SB-19 

SB-20 
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Sample 
Position Unit Description 

Siltstone, non-resistant. 

Lignite. 

Sandstone, very fine, yellow­
white. Fairly resistant in lower 
portion, slope-forming near top. 

Sandstone, yellow, indurated. 
contains fossil leaves and cones. 
Grades upward to fine to very 
fine, white, cross-bedded sand­
stone. 

Siltstone, slope-forming. 
Locally resistant and concretion­
bearing. 

Sandstone, silty, very well 
indurated. 

Sandstone, very fine to medium. 
Fines upward. 

Silt, light yellow, friable. 

Sandstone, fine to medium, cross­
bedded. 

Lignite. 

Shale to silt, dark brown-gray. 

Silt and clayey silt. Slope­
forming, Mostly covered. 

Sandstone, fine to very fine. 
Cross-bedded. Very friable. 

Siltstone to shaley silt, buff­
yellow, non-resistant. 

Lignite and lignitic shale. 
Mostly cove.red. 

Shale, silty, light brown-gray. 

Shale, brown-gray, organic-rich. 
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Unit 
Interval 

120-1110 1 

60.5-120' 

112.5-60.5' 

l!O-li2.5' 

39-liO' 

29-39' 

17-29' 

0-17' 

Sample 

SB-21 

SB-22 

SB-23 

SB-2li 

SB-25 

SB-26 

167 

Sample 
Position 

*specific sample locations not recorded 

Unit Description 

Silt to shaley silt, buff-yellow. 
Not very resistant, but more 
resistant than underlying bed. 
Lower yellow bed? 

Sandstone, silty, fine, buff 
brown to white. Local lignite 
or lignitic. Entire interval 
slope-forming. Largely covered. 

Sandstone, very fine, and shale, 
silty (alternating). Coarser 
zones somewhat lithified and con­
cretionary. Small scale cross­
bedding obscured by surface wea­
thering, but lignitic material 
locally thinly concentrated along 
cross-bedding surfaces. 

Sand, very fine, (few inches). 
Overlain by gray shale. 

Sand, fine, (few inches). 
Overlain by purple-brown silty 
shale. 

Sand, fine, gray and shale, dark 
gray, (alternating). Absence of 
concretions noticeable. Less 
resistant than underlying unit 
and forms nearly flat bench-like 
slope. Fines upward to clay. 

Sand, fine to medium, and silt, 
shaley, (alternating). Contact 
between lithologies often rich 
in organic remains and plant 
fragment imprints. Fairly resis­
tant. 

Sandstone, fine to medium gray. 
Cross-bedding preserved within 
many lensoid or cannonball-shaped 
concretions. Rilled weathering 
pattern. Basal sandstone. 



Section: 
Location: 

168 

Lost Bridge (LB) Date: 6 July, 1981 
SW 1/41 NE 1/4, SW 1/4, Sec. 34, T. 148 N., R. 95 W., 
Dunn County, ND 

Base of Section: Top of Lignite {HT?) 

Unit 
Interval 

210-310' 

197-210' 

192-197' 

188-192' 

186-188' 

183-186' 

164-183' 

158-164 1 

156-158' 

147-156' 

144.5-147' 

Sample 

LB-14 

LB-13 

LB-12 

LB-9 

Sample 
Position 

202.2' 

194.8• 

187.7' 

154.4 1 

Unit Description 

Covered, except for local 
lignite exposures. Probably 
is all fine-grained carbonaceous 
and lignitic. 

Alternating sand, silt, shale, 
in varying proportions. Color­
banded by iron-staining. Con­
tains some concretions and 
seemingly cross-bedded pods and 
lensoid white sandy masses. 

Shale, yellow-brown. Weathers 
white. More carbonaceous upward. 

Covered. 

Shale, silty, lignitic, carbon­
aceous. 

Sand, shaley, gray. 

Lignitic 
covered. 
stumps. 

interval. Mostly 
Abundant petrified 

Alternating sand, silt, shale in 
varying proportions. Iron­
stained, concretion-bearing. 
Contains individual light-gray 
sandy "pods" several feet in 
diameter. 

Lignite. 

Shale, sandy, Sand, shaley, 
shale, silty, and sand. Yellow­
gray, iron-stained, color-banded, 
concretion-bearing. Finer near 
top. 

Shale, sandy, gray, non-resis­
tant. 

··-,·'<:!>'-,- --,···-<c'. ,., .. ,, .. 
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Unit 
Interval 

1110-11111.5' 

136-1110' 

1311-136' 

130.5-1311' 

119.5-130.5• 

102-119.5' 

90.5-102' 

88-90.5' 

78.5-88' 

77-78.5' 

73-77' 

sample 

LB-8 

LB-7 

LB-6 

LB-5 

LB-3 

LB-2 
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sample 
Position 

1112.5 I 

1311.1• 

128.8 1 

117.6' 

96.7' 

90. 1' 

Unit Description 

Sand, shaley, light-gray. 
Coarser-grained than underlying 
unit; causes slope to steepen 
somewhat. 

Shale, silty, light-gray. Semi 
popcorn-weathered. 

Sand, shaley, light-gray. Rather 
conspicuous unit. A II", 
fissile, fossiliferous, silty 
shale in the middle of this unit. 

Sand, shaley, yellow to gray. 
Contains scattered small (few 
inches} iron-cemented nodules. 

Sand, shaley, yellow-gray. 
Fines upward. Iron-cemented­
nodule and concretion-bearing. 
Reddish iron-stained yellow-gray 
sandy concretion layer near top. 
Above, a thin (1-1/2") red, 
iron-cemented layer locally forms 
a cap. 

Alternating lignitic and organic­
rich shale. Uppermost lignite is 
capped by sand. 

Silt, shaley, to shale, silty. 
Yellow-gray, color-banded. Upper 
2' more shaley. Concretion­
bearing. 

Lignite. Capped by few inches of 
very light-gray, plant-fossil­
rich shale that resembles coal 
ash (often powdery). 

Shale, very light-gray, very 
fossiliferous (plants). Silt 
content increases upward, then 
more shaley upward. 

Lignite. 

Shale, silty, light-gray, yellow­
orange color-banded. Breaks into 
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Unit 
Interval Sample 

Sample 
Position Unit Description 

5-73' 

0-5' 

additional samples: 
Lost Bridge A 
Lost Bridge B 

Lost Bridge C 

small (several centimeters) 
blocks. Contains scattered 
weathered Iron-nodules. 

Covered. 

Silt, shaley, to Shale, silty. 
Orange-yellow to yellow-gray. 

white sandy pod, perhaps limestone 
light gray claystone, fossil-rich, capping lignite 
at 90.5' 
lower yellow bed from east of ranch house 
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Section: Mannhaven (Mann) 
Location: NE 1/4, SE 1/4, NE 1/4, 

Mercer County, ND 
Base of Section: Base of butte. 

Unit 
Interval 

82.4-83.2• 

80.4-82.4' 

65.3-80.4' 

62.5-65.3' 

60.5-62.5 1 

60-60.5' 

54-60' 

0-54' 

Sample 

Mann-8 

Mann-7 

Mann-6 

Mann-5 
Mann-4 
Mann-3 
Mann-2 
Mann-1 

Sample 
Position 

70.4' 

46.8' 
35.9• 
25.4' 
15 .4' 
7 .4 I 

Date: 7 June, 1981 
Sec. 12, T. 146 N., R. 85 W., 

Unit Description 

Shale, silty, yellow-brown. 
two feet of lignite at 92'. 
Non-resistant, forming a fairly 
grassy slope often covered with 
slopewash debris. 

Shale, gray. 

Shale, brownish gray. Grades 
upward to silt and then to car­
bonaceous shale. 

Sand, fine, gray. Resistant and 
rilled on surface. Abundant 
fossil plant remains near top. 

Shale, silty, blue-gray, carbon­
aceous. Popcorn-weathered sur­
face. 

Shale, brown-gray, carbonaceous. 

Lignite. 

Shale, silty, blue-gray. Popcorn 
weathered on surface. 

Alternating shale, silty; silt, 
shaley; shale, silty, sandy; 
sand, shaley, silty; and sand, 
fine. Color-banded by iron­
staining. Contains small reddish 
concretions. Colors alternate 
light yellow-gray, blue-gray, 
orange to buff brown or gray. 
Weather into surface rilles or 
popcorn depending on proportion of 
grain sizes present. Coarser 
sections rilled, finer (clayey) 
portions popcorny. A few thin 
(1-2") organic to lignitic shale 
zones present. A 10" lignite 
present at 15'. 
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Section: 
Location: 

Masonic Butte (MB) Date: 6 June, 1981 
NW 1/4, NE 1/4, NE 1/4, Sec. 14, T. 144 N., R. 84 W., 
McLean County, ND 

Base of Section: At first exposure of rock above grass-covered slope. 

Unit 
Interval 

103.0-104.5' 

102.3-103.0• 

97.3-102.3• 

97.2-97.3' 

96.0-97.2' 

93.0-96' 

80.0-93.0' 

79.5-80.0 1 

77.5-79.5' 

74.5-77.5' 

66-74.5' 

62-66• 

53-62 1 

51-53' 

49.5-51' 

48-49.5' 

45.5-48 1 

sample 

MB-9 

MB-8 

MB-7 

MB-6 

MB-5 

Sample 
Position 

95.4' 

86.8 1 

80.0 1 

68.3• 

50.4' 

Unit Description 

Lignite. 

Claystone, carbonaceous, gray to 
brown. 

Silt, green-gray. 

Lignite. 

5andstone, very fine, silty. 

Siltstone, clayey. Dull yellow 
brown with orange iron oxide 
concretionary bands. Lignitic 
claystone near top. 

Sandstone, very fine, silty. 
Uppermost foot indurated. 
Weathers buff yellow. 

Lignite. 

Siltstone, clayey to claystone, 
silty. Fossil plant fragments 
common. 

Siltstone, sandy, brown. 

Claystone, greenish gray. 

Claystone, silty, gray to tan. 
Orange concretionary layers. 

Claystone, silty. Fossil plant 
fragments in upper portion. 

Lignite. 

Claystone, brown, carbonaceous. 

Clays tone. Thin ( .. 111 ) lignite 
at base. 

Sandstone, very fine, silty. 
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Unit Sample 

l Interval Sample Position Unit Description 

43-45.5' Claystone, silty, light-brown. I Orange color-banded. 

38-43• MB-4 41.2 1 Sandstone, very fine, silty. 

1 

Light brown with orange color 
bands. Contains lensoid sandstone 
bodies. 

33-38' MB-3 35. 1' Claystone, silty. Iron-stained 

I concretionary color bands. 

24.5-33 1 
Sandstone, fine, clayey, gray to 
brown. Orange color banded. 

24-24.5' Claystone, silty, light gray. 

23.3-24' Lignite. 

23-23.3' Claystone, gray. Contains carbon-
aceous fossil plant fragments. 

20.5-23' MB-2 22. 11 Siltstone, sandy, gray-brown. 
Fossil plant fragments abundant. 

I 18-20.5' Claystone, silty. Gray-brown. 
orange bands. contains fossil ' plant fragments. ' l 17-18 1 
Sandstone, very fine, silty. I 

I 
clayey silt and silty clay bands. ! 3.8-17' MB-1 12.6' Claystone, silty to silt, clayey. 
Gray-brown with orange bands, 
in upper half. 

3.5-3.8' Lignite. 

0-3.5' Siltstone, clayey. Light 
to orange color-banded. 

brown 
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Section: Edge of a Glacier (EG) Date: June, 1980 
Location: SE 1/4, NW 1/4, Sec. 31, T. 38 H., R. 104 W., 

McKenzie County, HD 
Base of Section: Base of butte 

Unit 
Interval 

237-247' 

226-237' 

186.8-226 1 

184.8-186.8' 

174.8-184.8' 

174.5-174.8' 

Sample 

Edge-3 

169.9-174.5' EG-17 

169.6-169.9' EG-16 
EG-A 

168.3-169.6' EG-15 

Sample 
Position 

173.1' 

Unit Description 

Sand, very fine, white to light 
yellow. Unconsolidated at sur­
face. Cross bedding preserved 
beneath surface. Vertically 
oriented fossil organic matter 
{roots). 

Silt, yellow clayey. Forms slope 
which covers lower yellow bed. 

Clay, sandy, silty, gray. Is 
iron stained and contains white 
pods siJrilar to 146.5-151.5' 
interval. Interrupted 8-9' from 
base and again 19' from base by 
811 of lignite. Becomes 
less resistant upward, becoming a 
loose "dirt" slope. 

Lignite. 

Clay, silty, and silt, clayey 
(alternating). Popcorn­
weathers. 

Shale, fissile, blue-gray. 
Plant-fragment rich. Breaks 
into medium size chips. 

Sand, fine-grained, iron-stained 
{banded). Somewhat rilled. 
Contains large ( 1 m) pods of 
white sandstone with what looks 
like disturbed bedding. 
Increased clay component at top. 

Organic material. Appears allllost 
"woody". capped by thin (- 2") 
indurated, white sandstone (sample 
EG-A). 

Clay, sandy, gray. Somewhat 
popcorn weathered. 
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Unit 
Interval 

168-168.3 1 

163-168 1 

159-163' 

154-159' 

153-154' 

129.9-153' 

Sample 

EG-13 

EG-12 

EG-11 

EG-10 

EG-9 
EG-9B 

129.5-129.9' EG-8 

128-129.5' EG-7 

125-128 1 EG-6 

105.5-125' EG-5 

108.5~115,5 1 EG-4 
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Sample 
Position 

165.0' 

161.0' 

157.5' 

138.3• 

123.11• 

108.8 1 

Unit Description 

sandy material, blue-gray. 
Breaks into small chips. 

Clay, blue-gray, popcorn­
weathered. Forms a short bench. 
Is upper Sentinel Butte bento­
nite. 

Silt, clayey, white, horizon­
tally laminated. Weathers out as 
"pillars" or columns resembling 
stacked pankakes. Is the Senti­
nel Butte ash. 

Clay, blue-gray, popcorn-wea­
thered. Flows when wet, so 
drapes underlying unit, making 
thickness determination difficult. 
Forms a large bench. Is the lower 
Sentinel Butte Bentonite. 

Shale, blue-gray. Lithified. 
Breaks along horizontal planes. 
Well preserved water ripples with 
3 to II-inch-wavelength. 

Shale, silty, sandy, iron-stained. 
Some carbonaceous zones. (sample 
EG-9B, "woody" zone) • 

Lignite grading upward to shale. 

Shale, buff yellow. Breaks ea­
sily into very small chips. 

Shale, gray, silty. Somewhat less 
resistant than underlying unit. 

Shale, .sandy, gray to light blue­
gray, orange-banded, iron-stained. 
Popcorn-weathered where finer 
grained. Contains at least one 
1" organic shale zone. 

Shale, gray, organic-rich. Less 
lignitic and less "woody" than 
underlying unit. 
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UnU Sample 
Interval Sample Position Unit Description 

101-1oa.s• EG-3 Shale, lignitic. Very organic-
rich, looks "woody". 

100-107' EG-2 Clayey zone. Semi popcorn-wea-
thered. Less rilled than under-
lying unit. 

0-100' EG-1 13.a• Sand, medium, white to light gray. 
Very rilled, concretion-bearing. 

additional samples: 
Edge of a Glacier 1 -- lower yellow bed 
EGLYB-1 -- lower yellow bed below Edge of a Glacier 1 
Edge lC -- concretion from lower yellow bed 
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Section: Ash Coulee (AC) Date: 12 June, 1981 
Location: NW 1/4, NE 1/4, NE 1/4, Sec. 8, T. 142 N., R. 100 W., 

Billings County, ND 
Base of Section: At contact with Bullion Creek Formation; a lignite 

(the HT?) 

Unit 
Interval 

75-84 1 

74-75' 

71-74' 

59.5-71' 

33-59.5' 

32.5-33' 

20-32.5' 

17.5-20' 

10.5-17.5' 

3-10.5' 

0-3' 

Sample 

AC-9 

AC-A 

AC-8 

AC-7 

AC-6 
AC-5 
AC-4 

AC-3 

AC-2 

AC-1 

AC-B 

5allple 
Position 

83.4' 

71.4' 

62.2 1 

56.8• 
44.2 1 

35.0' 

29.0' 

16.1 1 

6.3• 

Unit Description 

Shale, silty, gray, yellow to 
orange color-banded. Contains 
reddish iron-cemented layers. 

Shale, carbonaceous, light gray. 
Contains abundant fossil plant 
fragments, very well preserved. 

Lignite. 

Shale, silty, to silt, shaley. 
Alternating light gray and yellow 
stained layers. Thin carbon­
aceous layers occur within the 
more shaley portions. 

Shale, silty. Alternating gray, 
brown, yellow color-banded. Con­
cretion-bearing. Abruptly coar­
sens to fine to medium gray­
white sand for top 4.5 to 61 • 

Upper sandy zone contains a 1 ' 
indurated zone. 

Lignitic zone. 

Shale, silty, to silt, shaley. 
Orange color-banded. Iron-cemen­
ted. thin layers. Ccncretion­
bearing. Upper 2.5' more shaley. 

Shale, gray. Contains two 111 

lignitic intervals. 

Shale. Alternating carbonaceous 
and lignitic. 

Claystone, brown-gray to gray. 
Contains petrified stumps. 

Lignite. Overlies yellow silt 
which ls locally baked and 
reddened. Local baked zones and 
brown carbonaceous zones. 

• "'~o,,.,-,.,.~,.·;•·: "I~ 
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Additional Samples, Collected Non-Randomly 

Square Butte A-E 
(SQB A-E) 

SU-A 

SU-B 

SU-C 

BR-A 

SS-1 

ss-2 

LYB~1 

LYB-2 

Long X D 

Sequence of samples from basal sandstone 
outlier north of Square Butte, central 
Golden Valley County. 
A: rilled, light gray sandstone 

(at base of sequence) 
B: iron-cemented "concretionary" 

band material. 
C: clayey siltstone above B. 
D: silty claystone above C. 
E: white slabs (black on inside) 

which cap sequence. 

Light gray to white sand similar to, 
but above, basal sandstone at 10.5 mile 
mark along south loop road of Theodore 
Roosevelt National Park, South Unit. 
From top of hill, south side of road. 
Contains large sandstone concretions. 

Basal sandstone from backside of 
exposure south of road exactly at mile 
marker 10. Finer grained here than at 
Square Butte. 

Petrified wood from above SU-B. 

Basal sandstone from exposure north side 
of Blacktail Road. 

A white, medium sand, very friable, 
cross-bedded, semi-consolidated. From 
right side of road just below top of hill 
north of Sully Springs RR crossing (Billings 
County). 

White, medium sandstone 100 yards north of 
RR tracks at "Petrified Forest" north of 
Sully Creek Road, about 1.ij miles southwest 
of Sully Springs RR crossing. Royse and 
Hennen's "basal sand"? 

White silt capping lower yellow bed east 
of Edge of Glacier sign, on west side of 
major gulley that approaches road. 

Lower yellow bed material from same 
location. 

Lower yellow .bed from river side of 
hill south of road near "Long X Trail" 
sign in North Unit of T.R. Park. 
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Popcorn-weathered clay bench below 
lower yellow bed. 

Slump Block 1 Blue-gray clay layer sampled as possible 
bentonite near "Slump Block" attraction 
in North Unit of T.R. Park. 

Marmarth Ash from 11.6-m-thick section shown in 
Figure 26. 

Additional samples of Sentinel Butte bentonite/ash: 

from exposure southeast of "Interpretive Shelter" at "River 
Bend Overlook" in North Unit of Theodore Roosevelt National Park: 

Bent-1 
Bent-2 
Bent-3 
Bent-II 
Bent-5 

lower bentonite bench. 
laminated, very fine, white siltstone (ash). 
upper bentonite bench. 
light gray to white sands.tone overlying upper bench. 
popcorn-weathered, organic-fragment-rich silty clay­
stone overlying Bent-II. 

from "Edge of a Glacier" overlook in North Unit of park: 

UBB-1 

LBB-1 

thin (few centimeters} gradational zone between upper 
clay bench and ash. 

similar gradational zone between lower bench and a.sh. 

from "Cedar Canyon" along park road in North Unit (west of Caprock 
Coulee): 

BB-1 ash adjacent to road; just before road curves west to rise 
onto prairie. 

from east wall of Squaw Creek Valley, beyond North Unit boundary 
(NE NE SW Sec. 18): 

BB-2 

BB-3 

BB-II 

BB-5 

BB-6 

BB-7 

BB-8 

ash, white. 11-3/11' thick here. 

upper clay.· 

brown, "woody" clayey material from 1" bed above upper 
bench. 

a popcorn-weathered clay unit above the upper bentonite 
bench. 

ledge-forming sandstone above BB-5. 

claystone above BB-6. 

lower yellow bed. 
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lower Sentinel Butte bentonite bench. 

dull white barium mineral (barite) locally concentrated on 
and below surface of lower bentonite bench. 

from "Zoar Church" site, NE Sec. 29, T 149 N, R 99 W, McKenzie Co.: 

BB-11 

BB-12 

BB-13 

BB-14 

BB-15 

BB-16 

BB-17 

BB-18 

ash. 

ash. 

sandstone above upper bentonite bench. 

gray shale underlying lower bentonite bench. Appears 
"rippled" on surface, but this may be a weathering effect. 

cherty chips from disintegrated ovoid to spherical masses 
within lower bentonite. 

barite fragmments from lower bentonite bench. Occurs in 
large circular masses. 

3rd popcorn clay bench from this site (above 3-layer 
sequence). 

froa gradational zone between laminated ash and upper 
bentonite. 
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Obtain 15 grams of sample. Crush between fingers to pea-size frag­
ments. 

Soak sample in distilled water to disaggregate. Use only as much 
water as necessary. 

Wet sieve sample through 63 µm screen. 
Continue to rinse silt through screen. 
volumes of water: 

Clays will pass rapidly. 
To prevent retention of large 

a) rinse silt through screen over a clean bucket. 
b) decant water from bucket after silt has settled to bottom. 
c) rinse silt grains from bucket into the beaker with clay. 

Allow beaker containing silt and clay to remain undisturbed over­
night. Check f'or fl_occulation of' clay by visual inspection or by 
withdrawing a small volume of suspended material and checking for 
adequate Brownian motion of clay particles using a microscope. 

5. If flocculated, add dispersant or centrifuge and decant repeatedly 
with distilled water. The following formula (from Jackson, 1969) 
is useful for determining centrifuge speeds and times: 

tmin = 

where; 

63.0 x 108n x log10R/S 

N2 x D 2 x S µ 

n = viscosity at existing temperature 
N = RPM 
Dµ = particle size in µm 
S = difference in specific gravity of liquid and particle 
R = radius from spin axis to top of sediment layer 
S = radius from spin axis to top of water column 

6. Silt may be obtained by pouring of'f the clay. Rewet silt and decant 
repeatedly (into dish with clay) until no more clay is liberated from 
the silt. Pour excess clear water from the silt fraction, distribute 
the silt evenly and thinly on the walls of an evaporating dish and 
allow it to dry. The silt can then be gathered by rubbing a finger 
along the walls of the di.sh. Sand caught on screen in step 3 can be 
dried and gathered in a .similar manner. 

7. Weigh .sand and silt fractions .separately. Clay weight can then be 
determined by difference from the starting weight of 15 grams. An 
alternate method is to .pipette, dry, and weigh a known volume of clay 
suspension from the clay beaker. Multiplying this weight by the 
original number of pipette volumes contained in the clay beaker 
gives the total clay weight. 
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( Table 15. Sand:Silt:Clay Percentages and Textural Classification I 
' I 
I Sample %Sand %Silt %Clay Classification 
I 

1 
EG-1 72 19 9 sand EG-3 LIGNITIC EG-4 LIGIHTIC 

1 EG-5 <1 42 58 MUD 

i EG-8 LIGNITIC EG-9 0 34 66 MUD TO CLAY ! EG-11 <1 20 80 CLAY EG-13 1 44 55 MUD EG-16 LIGNITIC EG-17 60 22 18 MUDDY SAND 
SB-1 INDURATED SAND SB-7 34 61 5 SANDY SILT SB-11 20 67 12 SANDY SILT SB-12 66 33 1 SILTY SAND SB-17 34 65 <1 SANDY SILT SB-18 87 13 <1 SILTY SAND SB-21 32 58 10 SANDY SILT SB-24 <1_ 52 118 MUD SB-25 80 12 8 MUDDY SAND I SB-26 16 63 20 SANDY SILT 

J 7= 1 10 55 35 SANDY MUD l 7= 2 5 61 311 MUD TO SILT 7= 3 <1 63 37 MUD 7= 11 <1 56 44 MUD 7= 7 <1 71 29 SILT 7= 8 <1 311 65 HUD TO CLAY 7= 9 2 70 28 SILT 7= 10 1 25 711 MUD 7= 12 5 81 14 SILT 
LB-2 LIGNITIC LB-3 <1 56 1111 MUD LB-5 LIGNITIC LB-6 <1 65 34 HUD TO SILT LB-7 <1 73 26 SILT LB-8 14 50 36 SANDY MUD LB-9 <1 67 32 SILT TO MUD LB-12 LIGNITIC LB-13 <1 37 62 MUD LB-14 4 78 18 SILT 
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Sample 

SHB-1 
SHB-2 
SHB-3 
SHB-4 
SHB-5 

SHB-6 
SHB-7 
SHB-8 
SHB-9 

LX-3 
LX-5 
LX-6 
LX-8 
LX-9 
LX-11 
LX-15 
LX-16 
LX-17 
LX-19 
LX-22 

MANN-1 
KANN-2 
MAHH-3 
MANN-4 
MANN-5 
MANN-6 
MANN-7 
MANN-8 

AC-1 
AC-2 
AC-3 
AC-4 
AC-5 
AC-6-
AC-7 
AC-8 
AC-9 

Table 

JSand %Silt 

8 66 
<1 59 
16 74 
0 49 

<1 66 

7 23 
24 37 
<1 42 
<1 98 

29 57 
<1 60 
<1 55 
<1 58 
2 71 

<1 6 
1 98 
2 59 

<1 43 
<1 59 
8 91 

<1 74 

2 83 

54 32 
2 32 

68 13 
0 46 

<1 38 

<1 71 
0 24 

<1 65 
54 29 
<1 74 

15 58 
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15 --continued 

%Clay Classification 
-·-·------·---· 

26 SILT 
41 MUD 
10 SANDY SILT 
51 MUD 
33 SILT TO MUD 

70 CLAY 
39 SANDY MUD 
57 MUD 
2 SILT 

14 SANDY SILT 
39 MUD 
45 MUD 
42 MUD 
27 SILT 
93 CLAY 

1 SILT 
39 MUD 
57 MUD 
41 MUD 

1 SILT 

25 SILT 
LIGHITIC 

15 SILT 
LIGHITIC 

14 SILTY SAND 
66 CLAY 
19 MUDDY SAND 
54 MUD 

61 MUD 
LIGHITIC 

29 SILT 
76 CLAY 
35 MUD TO SILT 
17 MUDDY SAND 
26 SILT 

LIGHITIC 
27 SANDY SILT 
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I Table 15 --continued j 
Sample %Sand %Silt %Clay Classification I -·------·--- ----------·--- -

I KP-2 LIGNITIC I KP-3 0 57 43 MUD 
I KP-4 <1 76 24 SILT KP-5 4 74 22 SILT I KP-6 <1 68 32 SILT l KP-7 LIGNITIC KP-8 9 39 52 MUD 

l KP-9 18 80 2 SANDY SILT 
MB-1 2 75 23 SILT MB-2 1 82 17 SILT MB-4 4 64 32 SILT TO MUD MB-5 6 88 6 SILT MB-6 3 42 55 MUD MB-7 LIGNITIC MB-8 46 53 <1 SANDY SILT MB-9 1 98 1 SILT 
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I 
l'able 16 • Microprobe Analyses of Sentinel Butte Volcanic iock Fragaea.ts 

. 1 
part 1 -- Upper Sandstone I specimen: lg '• Jg •• s, 6g 7?1 7p2 

l S102 62.41 S9.21 85.71 61.23 64.12 58.74 68.11 70.02 69,34 
Alz03 19.92 16.8) 7.77 21.59 20.26 19.33 19.01 15.88 18.97 I F.O* 1.92 1.19 o.oo 2.69 0.88 7.46 o.oo 0.27 0.00 

I "80 0.00 o.oo o.oo 0.60 0.0'0 4,88 o.oo 0.00 0.00 

1 

Cao 2.13 9.1) 0.00 2.48 ),07 Q.97 0.15 1.56 0.01 
!ia20 4.88 ),65 0.35 3.95 5.69 7 ... 12.73 2,89 10.61 
<20 7.59 8.90 .6.02 6.17 5.98 0.12 0.00 8.56 0.82 
TiOz 1.15 0.82 0,15 0.74 o.oo Q.41 o.oo 0.15 0.16 

I Pz05 o.oo O.OQ 0.00 0.00 o.oo 0.00 0.00 a.co o.oo 
MnO 0.00 0.27 o.oo o.oo o.oo 0.25 0,00 0.24 o.oo I ClO o.oo 0,00 o.oo o.oo 0.00 0,00 O.oO 0.1.1 0.00 
so, 0.00 o.oo o.oo a.so o.oo o.oo 0.00 0.32 o.oo 

Ab 44.15 8.02 94.66 An 10.67 0.00 a.so Or 45,18 91.98 4,8) 

specil:ien: Sp .. 1 ,., •• lOpl 10.P2 lOp3 llp1 llp2 
Si02 66.27 67 .37 65,59 70.45 58.58 65.84 35.87 6S.83 66.68 
Al203 20.45 19.94 20.18 14.88 23.51 19.32 16.:SS 20.25 20.47 
FeO* l. 79 0.44 0.87 2.21 1.59 0.30 31.60 o.oo o.oo 
MgO 0.00 0.00 0.60 0.37 0.00 o.oo 12.11 o.oo o.oo 
Cao 0.65 0.52 0.78 1.44 8.38 0.65 1.38 l.07 0.96 I Na20 10.33 11.62 11.59 6.59 7,57 5.89 0.84 ll.8S 11.58 

,1 
•20 0.11 0.11 0.21 1.97 0.18 7.44 0.31 o.oo 0,00 
T102 o.oo o.oo 0.18 1.66 0.19 0.36 1.31 o.oo 0 • .31 

I 
P205 O.OQ o.oo o.oo 0.25 0.00 O.oO o.oo o.oo 0,.00 
MnO 0,00 o.oo o.oo o.oo 0,00 0.00 o.oo 0,00 o.oo 
Clo 0.17 o.oo o.oo 0.18 o.oo o.oo o.oo 0.{_10 0.00 

·1 
so, 0.23 o.oo o.oo 0.00 o.oo 0,20 0.00 0.00 o.oo 

Ab %.O 97.0 95 • .3 75.9 61.4 52.9 95,3 95.6 I An ,., 2.4 3.5 ,., 37 ,6 ,., 4.7 ••• Or 0.7 ••• l .l U.9 1.0 43.9 0.0 0.0 I 
part Il ~ Basal Sandstone 

specimen: lp1 lg ,., ,. 2p1 ,., 3p ,. •• S102 57 .45 60.32 54.40 65,15 56.45 57.42 57.83 68.80 72.91 
Al203 27 .64 25.12 28.01 19.32 27 ,61 26.92 26.10 16.91 15.45 
FeO* 0.00 0.43 0.40 o. 79 0,33 0,35 0.49 1.21 0,53 
MgO o.oo o.oo 0.44 0.34 o.oo o.oo 0.00 0,00 o.oo 
Cao 8.68 8.23 10.12 1.)4 9,21 9.05 8.42 2.46 2,59 
Na.20 6.60 4.70 .S-73 2.64 S.94 S.98 6.34 :1.69 J.87 
K2D 0.45 1.04 0~23 10.42 0.46 0.28 0.62 6.17 4.46 
Ti02 o.oo o.oo 0.45 o.oo o.oo 0.00 o.oo 0,45 0.19 
P205 o.oo O.OQ o.oo o.oo 0.00 o.oo o.oo o.oo o.oo 
MnO 0.00 o.oo o.oo 0.00 o.oo o.oo 0.20 O.OQ o.oo 
ClO 0.18 0.16 o.oo 0.00 OJlO 0.00 0.00 o.oo o.oo 
so, ·o.oo o.oo 0.22 o.oo ·o.oo o.oo o.oo 0,31 o.oo 

Ab 56,5 47 .J 49.9 52.J 53,5 55.6 47 .o An 41.0 45.8 48.7 44.9 44.8 40.8 12.3 Or 2.5 .. , 1.3 2.7 1.6 3.5 J.5,6 
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I Table 16 part II ~ontinulltd 

' 
.1 specilllen: •• 5g , .. '•2 •• ... ••2 6p3 '• l S10z 55.66 60.19 54.58 58.11 78.)0 54.08 55.07 55.91 66,35 

Alzo3 27 .JS 18.03 28.13 26.25 l2.75 29.37 28.17 27 .41 13.19 l FeO• 0.29 5.91 0.69 0.44 0.29 0.21 0,34 0.35 l,07 

i MgO o.oo 0.28 0.00 o.:u 0.00 o.oo 0.00 0.00 0.30 
CaO 9,49 2.73 11.35 8.63 1.43 10.64 10.1'.3 9.65 0.4l 

j Nazo 6.13 4.30 4.59 5.32 2.":2:a 5.49 5,75 5.61 0.59 

I 
K20 a.ss · 7 .25 0.615 0.94 4.77 0.21 0,36 0.59 12.80 
TiOz 0.29 1.08 o.oo 0.00 0.18 o.oo 0.18 0,26 0.00 
Pz05 0.00 0.00 o.oo o.oo 0.00 0.00 o.oo 0.00 0.00 
MnO 0,00 o.oo o.oo 0.00 0.00 o.oo o.oo 0.22 0.00 
Clo o.oo 0.23 0.00 a.co o.oo o.oo 0,00 o.oo o.oo 

I 

S03 0,24 0.00 o.oo o.oo o.oo 0.00 o.oo o.oo 0,29 I 

l Ab 52.2 40.6 49.7 47.7 49.6 U.1 .. 44,7 55.5 44,5 Sl.1 48.J 37.1 °" 3.1 3.8 5.8 1.2 2.0 3.4 
' 

l specimen: ,, •• •• •• lOg Ilg llp1 llpz 12pl 
SiOz 74.02 69.36 52.41 53.21 75.53 70.81 52.2S 51.84 53.79 
Al203 11.89 16.07 o.oo o.oo 13.38 15.09 29.54 29.84 29.63 
FeO• 1.86 0.8B 8.54 8.44 0.54 0.80 0.59 1.34 0.75 
MgO 0.22 0.00 38.55 l7 .27 o.oo 0.14 o.oo 0.19 o.oo 
eao 2.51 0.49 o.oo 0.14 0.43 1.46 12.BO 12.26 11.20 · 
:.la20 3.35 J.96 o.oo o.oo J.45 4.03 4.68 4.38 5.40 
KzO 1.95 8.93 o.oo 0.20 6.49 6.16 0.14 0.15 0.23 
TiOz o~oo o.oo 0.00 0.30 o.oo 1.18 0.00 0.00 o.oo 
Pz05 o.oo o.oo 0.00 o.oo o.oo o.oo o.oo o.oo o.oo 
MnO o.oo o.oo o.oo o.oo o.oo 0.21 o.oo o.oo o.oo 
ClO 0.17 0.00 0.23 0.33 0.18 0.12 o.oo o.oo o.oo 
S03 4.0.3 0.31 0.27 o.oo o.oo o.oo o.oo 0,00 0,00 

'l 
Ab 43.3 45.J 39.5 38.9 46.0 An l,O 9.1 59,7 60.2 )2.7 o, 

53.7 45.6 0.8 0.9. 1.3 

spei=.imen: 12p2 12p3 IJpl 13g I3p2 14g 15g 
S10z 53.88 SJ.OB 55.36 75.34 36.08 75.59 76.83 
Alz03 28.27 29.13 27.96 11. 90 14.39 13.86 12.45 • 

I 
FeO* 0.96 0.92 0.43 1.80 23.35 Q.52 a.so 
MgO 0.33 o.oo 0.19 0.00 9.60 o.oo 0,00 
eao 10.87 12.18 9.90 1.06 0.21 1.21 1.22 i N.szO 5.10 4.58 5,58 2.98 l.07 3.23 1.14 ' •20 Q,38 0.11 0.33 5.30 8.86 5.59 7.60 'I Ti02 o.oo o.oo 0.00 0.00 o.oo 0.00 0.00 ' 

I 
P205 o.oo o.oo 0.00 o.oo o.oo 0.00 o.oo 
MnO 0.00 0.00 0.25 o.oo 0.42 o.oo 0.26 
ClO 0.21 0.00 0.00 0.19 0,25 o.oo o.oo 

I S03 0.00 o.oo 0,00 0.16 0.18 0.00 o.oo 

I Ab 44.9 40.2 49.5 42,2 42.6 16.7 

l 
An 52.9 59.l 48.5 8.3 8.8 ••• o, 2.2 0,6 1.9 49.4 48,6 73.t. 

*Total iron as Feo, 
Calculated H20-free. Nonul.1.zed ,o 100%. 
subscri~t.s: s • g-rQUndtDass, p • phenocryst 
Ra,;;al sandstone sample EG-1. Upper sandstone s:aaple LX-M. 
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grain: 

5102 

Al2D3 
FeO* 

MgO 

Cao 

Na20 

KzO 

TiOz 

Pz05 

MnO 
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Table 17. Microprobe Analyses of Sentinel Bu~te Upper S4tl.d and Basal Sand Feldspars 

la lb 

56.47 57.63 

26.11 26,65 

0.00 0.00 

0.00 o.oo 
8.83 9.01 

5.85 5.97 

0.49 0.50 

0.23 0.24 

0.00 

0.00 

o.oo 
o.oo 

2a 

62.56 

18.83 

o.oo 
0.00 

0.46 

4.25 

10.34 

0.54 

0.00 

o.oo 

2b 

64.50 

19.42 

o.oo 
0.00 

0.48 

4.38 

10.66 

0.57 

0.00 

o.oo 

UPPER SAND 

Ja 

57.99 

24.83 

0.49 

0.00 

7 .10 

6.67 

0,85 

a.oo 
o.oo 
0.00 

Jb 

59.22 

25.35 

a.so 
0.00 

7 .25 

6.81 

0.87 

0.00 

0.00 

0.00 

4a 

64. 74 

18. 75 

0.00 

0,.00 

0.53 

6.66 

7.17 

0.14 

0.00 

o.oo 

4b 

66.06 

19.13 

0.00 

o.oo 
0.55 

6.80 

7.31 

0,15 

0.00 

o.oo 

,. 
60.50 

23.18 

0.27 

o.oo 
4.82 

8.48 

0.36 

o.oo 
a.oo 
0.00 

,. 
61. 97 

23.76 

0.27 

o.oo 
4.94 

B.69 

0.37 

0.00 

0.00 

0.00 

6a 

58.37 

24. 79 

0.00 

o.oo 
7.39 

7 .32 

0.24 

0,30 

o.oo 
0.00 

6b 

59.31 

25.20 

0.00 

0.00 

7.51 

7.43 

0.25 

0.30 

o.oo 
o.oo 

Total 97.98 100.00 97.00 100.00 97.93 100.00 97.99 100.00 97.61 100.00 98.41 100.00 

Ab 

An 

Or 

gra1n: 

Si02 

Al203 

FeQ>l< 

MgO 

Cao 

Na20 

KzO 

Ti02 

P205 

MnO 

52.9 

44.1 

2.' 

7a 7b 

37.6 

2.2 

60. l 

•• 
58.26 59.71 65.30 

24.40 25.01 20.16 

0.00 0.00 0.24 

o.oo 0.00 0.00 

6.70 6.87 2.20 

7.37 7.56 9.02 

0.83 0.85 I.71 

0.00 0.00 o.oo 
0.00 o.oo 0.00 

0.00 0.00 o.oo 

8b 

66.22 

20.44 

0.24 

0.00 

2.23 

9.14 

l. 73 

0.00 

0.00 

0.00 

59.8 

35.2 

,.o 

9a 

64.30 

18.40 

o.oo 
0.00 

0.25 

2.74 

14.13 

0.17 

o.oo 
0.24 

9b 

64.16 

18.36 

0.00 

0.00 

0.24 

2.73 

14.10 

0.17 

0.00 

0.24 

57.1 

2.' 
40.4 

10a 

64.91 

18.74 

0.00 

0.00 

0.64 

7.68 

4.78 

0.00 

o.oo 
0.00 

!Ob 

67.08 

19.37 

o.oo 
0.00 

0.66 

7,94 

4,95 

o.oo 
o.oo 
o.oo 

74.5 

23.4 

2.1 

lla 

60.76. 

23.17 

0.60 

0.00 

4.97 

7.98 

1.05 

o.oo 
0.00 

o.oo 

llb 

61.67 

23.51 

0.61 

o.oo 
5.05 

8.09 

1.07 

o.oo 
0.00 

0.00 

63.3 

35.3 

1.4 

12a 

67 .25 

20.00 

o.oo 
o.oo 
o. 77 

11.29 

0.00 

o.oo 
o.oo 
0.00 

12b 

f.>7. 71 

20.14 

0.00 

o.oo 
0.78 

11.37 

o.oo 
o.oo 
o.oo 
o.oo 

Total 97.56 100.00 98.63 100.00 100.23 100.00 96.75 100.00 98.55 100.00 99.31 100.00 

Ab 

An 

Or 

grain: 

5102 

Al203 

FeQ>1< 

MgO 

CaO 

Na20 

KzO 

Ti02 

P205 

MnO 

Total 

Ab· 

An 

Or 

63.3 

31. 8 

4.7 

13a 13b 

58.05 58.65 

25.56 25.83 

0.28 0.28 

0.00 0.00 

8.29 8.38 

6.21 6.28 

0.41 0.41 

o.oo 0.00 

o.oo o.oo 
0.17 0.17 

98.97 100.00 

56. l 

41.4 

2.4 

79.4 

10.7 

9.9 

14a 

58. 73 

24.90 

0.39 

0.00 

6.96 

7. 72 

0.29 

0,00 

0.00 

o.oo 
98.99 

65.6 

32.7 

l. 6 

l4b 

59.33 

25.15 

0.39 

o.oo 
7.03 

7.80 

0.30 

0.00 

0.00 

0.00 

100.00 

22.5 

1.1 

76.4 

15a 

57.47 

24.78 

o.oo 
0.00 

7 .10 

7 .09 

0.26 

0.23 

0.00 

o.oo 
96.93 

63.4 

35.1 

l.5 

15b 

59.29 

25.57 

o.oo 
o.oo 
7.33 

7.31 

0.26 

0.24 

o.oo 
0.00 

100.00 

68.7 

3.1 

28.. 2 

16a 

54.49 

26.07 

o.oo 
o.oo 
9.88 

5,65 

0.33 

0.00 

o.oo 
o.oo 

96.42 

49.9 

48.2 

l.' 

16b 

56. 51 

27 ,04 

o.oo 
o.oo 

10.25 

5.86 

0.34 

0.00 

0.00 

0.00 

100.00 

69.8 

24.1 

•. 1 

17a 17b 

63.08 63.32 

21.08 21.16 

0.40 0.40 

o.oo 0.00 

3.32 3. 33 

6.92 6.95 

4.82 4.84 

0.00 o.oo 
0.00 0.00 

o.oo a.co 
99.62 100.00 

58.0 

15.4 

26.6 

96.4 

3.6 

0.0 

18a 18b 

61.97 62.68 

22.45 22. 70 

0.00 o.oo 
o.oo 0.00 

4.56 4.61 

8.45 8.54 

1.16 l.17 

0.30 0.30 

o.oo 0.00 

0.00 0.00 

98.89 100.00 

72.0 

21.5 

6.5 

.1J-
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Table 17 ~coatinued 

BASAL SAND 

,I grain: la lb 2a 2b 3a 3b 4a 4b 5a 5b 6a 6b 
S102 60.70 61.34 63.18 63.09 64.58 64.87 59.90 62.04 65.60 66.62 65.52 65.69 
Al203 23.68 23,94 18. 67 18.64 22.10 22.20 22.77 23.57 18.33 18.61 18.61 18.66 
FeO• o.oo o.oo 0.37 0.37 o.oo o.oo 0.00 0.00 0.19 0.20 0.00 o.oo 
HgO o.oo o.oo 0.00 o.oo o.oo 0.00 o.oo 0.00 o.oo o.oo o.oo o.oo 
Cao 5,71 s. 71 0,18 0.18 3.13 3.14 5,53 5.73 0.47 0.47 o.sa 0.58 
Na20 8,66 8.76 0.56 0.56 9.75 9.79 8.36 8.66 5.17 5,25 5.32 5,33 
•,o 0.19 0.19 16.67 16.64 o.oo 0.00 o._oo 0.00 8.72 8.85 9.42 9.44 
Ti02 o.oo 0.00 0,52 0.52 0.00 0.00 0.00 o.oo o.oo 0,00 0.00 o.oo 
P205 0.00 o.oo 0.00 0,00 o.oo o.oo o.oo 0.00 o.oo o.oo o.oo 0.00 
!mO o.oo o.oo o.oo 0.00 D.00 o.oo o.oo o.oo 0.00 o.oo 0.30 0.30 
Tot:al 98.94 100. 00 100.15 100.00 99.56 100.00 96.56 100.00 98,48 100.00 99,75 100.00 

Ab 12.5 4.9 84.9 73.2 46.3 44.9 
An 26.4 0.8 15.l 26.B 2.3 2.7 
o, l. r 94.3 0.0 0.0 51.4 52.3 

grain: 7a 7b Ba Sb 9a 9b lOa !Ob Ila llb 12a l2b 
SiOz 59.76 60.22 53.37 53.97 61.03 63.34 55.93 56.96 60.94 59.86 56.61 56.42 
A1203 24. 36 24.56 27. 77 28.09 18.46 19.17 26.20 26.69 25.18 24.73 27.15 27.05 
FeO* 0.00 o.oo 0.79 a.so o.oo 0.00 0,24 0.24 0.23 0.22 0.26 0,26 
HgO o.oo o.oo o.oo 0.00 o.oo 0.00 0.00 0.00 0.00 o.oo o.oo 0.00 
eao 6.98 7.04 11.48 11.61 0.30 0.32 9.13 9.30 6.31 6,20 10.00 9.96 
Na2o 7.83 7.89 5.09 5.15 3.09 3,21 6.24 6.35 8.93 8.77 6.04 6,01 
•20 0.28 ~-29 0.37 0.38 12.08 12.54 0.45 0.46 o.oo o.oo 0.30 O.JO 
T102 0.00 o.oo 0.00 0.00 1.37 1.42 0.00 o.oo o.oo o.oo 0.00 0.00 
Pz05 0.00 0.00 0.00 o.oo 0.00 o.oo o.oo 0.00 a.oo o.oo 0.00 o.oo 
MnO 0.00 0.00 o.oo 0.00 o.oo o.oo 0.00 o.oo 0.22 0.22 0.00 0.00 
Total 99.21 100. 00 98.87 100,00 96.33 100.00 98.19 100.00 101.81 100,00 100.36 100. 00 

Ah 65.9 43.6 27.6 53.9 71.9 51.3 
An 32.5 54.3 1.5 43.5 28.1 47.0 
o, 1.6 2.1 70.9 2.6 0.0 l. 7 

grain: 13a 13b 14a 14b 15a 15b "· 16b 17a 17b 18a 18b 
S102 53.55 54.44 56.10 57.02 58.24 58.00 56.36 57.08 64. 71 64.77 57 .80 58.43 
Alz03 27, 78 28.24 26.24 26.67 25,84 25.75 26.31 26.65 18.34 18.36 25.85 26,14 
FeO* 0.47 0.48 0.45 0.46 0.26 0.26 0.34 0.34 0.00 o.oo 0.00 0.00 
HgO o.oo o.oo 0.00 0.00 o.oo 0.00 o.oo 0.00 0.00 o.oo o.oo o.oo 
Cao 11.17 11.35 9.04 9.19 8,08 8.05 9.13 9.25 0.27 0.27 B.19 a.2s 
Na20 4.92 5.00 6,26 6.36 7,25 7.22 5.96 6.03 0.44 0.44 6.45 6,52 
K20 o.34 0.34 0.29 0.30 o.34 0.34 0.44 0.44 16.14 16.16 0.23 0.24 

I Ti02 0.14 0.15 o.oo 0.00 0.38 0,38 0.00 0.00 o.oo o.oo 0.39 0.39 

I P205 o.oo o.oo 0.00 o.oo o.oo 0.00 0,00 o.oo o.oo o.oo o.oo o.oo 

I 
HnO 0.00 o.oo 0.00 0.00 o.oo 0.00 0.21 0.21 o.oo o.oo 0.00 o.oo 
Total 98.37 100.00 98.38 100.00 100.39 100.00 98.75 100.00 99.90 100.QO 98.91 100.00 

Ah 43.5 54.7 60.7 s2.a 3.9 57 .9 
An 54.5 43.6 37.4 44.7 l.3 40.7 
o, 2.0 l. 7 l. 9 ,., 94,8 1.4 
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Table 17 -continued 

grain: 19a 20a 20b 

I S!02 65.76 57.57 58.28 

I Al203 20.07 25.9i 26.23 
Fe<>* 0.41 o.oo o.oo 

I MgO o.oo o.oo o.oo 

I CaO 1.83 8.25 8.35 
Na20 9.57 6.65 6.74 

I •,o 2.19 0.39 0.40 

l 
TiOz 0.17 0.00 0.00 

P205 0.00 o.oo o.oo 
MnO 0.00 o.oo 0.00 

I 
Total. 100.-00 98,77 100.00 

I Ab 79.6 ss.o 
AD .. , 39.7 
Or 12.Q 2.3 

*Total iron as FeO. 

a= unnormalized data, b • data aormali2ed to 100 percent. 
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Table 18. 

SAMPLE 

(peak heights) 

EG-1 
EG-5 
EG-9 
EG-11 
EG-13 
EG-17 

SB-7 
SB-11 
SB-12 
SB-17 
SB-18 
SB-21 
SB-24 
SB-25 
SB-26 

7= 1 
7= 2 
7= 3 
7= 4 
7= 7 
7= 8 
7= 9 
7= 10 
7= 12 

LB-3 
LB-6 
LB-7 
LB-8 
LB-9 
LB-13 
LB-14 

SHB-1 
SHB-2 
SHB-3 
SHB-4 
SHB-5 

195 

Clay Mineralogy of Sentinel Butte Samples 

MONT. I/M Clll..OR. KAOL.* 

44 nd nd nd 
24 5 7 nd 
35 11 9 nd 
55 2 2 nd 
93 2 <1 <1 
87 tr <1 nd 

nd 8 8 nd 
nd 14 13 nd 
nd 13 4 nd 
nd 8 4 nd 
<1 8 <1 <1 
45 2 1 nd 
50 4 5 5 
45 1 2 2 
90 4 5 1 

34 6 5 3 
36 7 6 3 

100 5 6 nd 
62 6 6 nd 
34 9 9 4 
14 13 12 10 
82 4 5 3 
20 5 9 5 

100 2 2 2 

62 8 12 6 
45 4 6 6 
70 6 5 6 
40 3 3 3 
6 6 6 5 

27 9 3 nd 
50 4 4 4 

8 3 nd 5 
20 7 6 5 
89 5 4 2 
6 3 4 3 

24 4 7 5 
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i Table 18 --continued 
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Sample Mont. I/H Cblor. Kaol.* 

i SHB-6 6 2 4 2 
I SHB-7 100 2 3 nd 

I SHB-8 38 4 1 nd 
SHB-9 15 6 6 nd 

\ LX-3 80 nd <1 nd ' I LX-4 34 4 5 5 
l LX-6 38 7 5 5 

I 
LX-8 23 3 3 2 
LX-9 40 3 3 2 

I LX-11 23 4 4 2 
LX-15 17 8 7 nd 

I LX-16 18 7 7 nd 

! LX-17 65 5 4 2 
LX-19 100 3 nd 4 

I LX-22 10 5 3 nd 

l MANN-1 46 6 6 3 
MANN-3 68 2 3 <1 
MANN-5 69 2 3 2 
HANN-6 37 3 <1 2 
MANN-7 100 3 3 1 
MANN-8 17 4 2 nd 

AC-1 50 5 5 4 
AC-3 76 2 4 1 
AC-4 8 6 6 4 
AC-5 50 2 3 1 
AC-6 100 2 3 1 
AC-7 60 1 1 1 
AC-9 100 2 1 tr 

KP-3 33 6 6 5 
KP-4 21 1 1 1 
KP-5 112 1 1 1 
KP-6 10 3 3 1 
KP-8 13 9 7 nd 
KP-9 2 6 5 nd 
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Table 18 --continued. 

SAMPLE MONT. I/M CHLOR. KAOL.* 

MB-1 70 5 3 4 
MB-2 100 3 3 3 
MB-4 92 2 2 2 
MB-5 7 1 tr 2 
MB-6 90 13 10 10 
MB-8 7 4 3 4 
MB-9 7 2 2 2 

abbreviations: mont.:montmorillonite, I/M:illite/mica, chlor.= 
Chlorite, Kaol.=kaolinlte, tr=trace, nd:not determined. 
Note: Data reported are from ethylene glycol-solvated samples. 
Ttie reader is cautioned against drawing conclusions from diffrac­
tion intensity comparisons between samples. Although sample prep­
aration methods were kept uniform, some samples were x-rayed over 
two years apart under different instrument allignment and calibra­
tion conditions. 
The data presented is meaningful primarily in a qualitative sense. 
*Intensities determined by proportioning the 7 A chlorite/kaolinite 
peak according to the intensity differences between the 3.53 A chlorite 
and 3.56 A kaolinite peaks. 
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Table 19. Mic~opYobe Analyses of Sentinel Butte Zeolites 

specimen: la lb ,. 2b 3a 3b 4a 4b 5a Sb 
SiOz 72.86 74.79 76.46 73.99 68.64 74,5S 62.53 73.81 72.05 74.23 
Alz03 15.60 16.02 17. 28 16.71 15.38 16. 70 14.87 17 .55 16. 08 16.58 
FeO* o.:n 0,32 0.00 o.oo 0.26 0,28 0.00 0.00 o.oo o.oo 
MgO 0.66 0.68 0.97 0.93 0.57 0.62 0.43 0.51 1.08 1.11 
cao 2.51 2.57 LBS 1.81 l..47 1.60 1.56 l.84 2.96 J,05 
N.azO 2.96 3.04 4.46 4.32 2.83 3.07 2..49 2.94 2.68 2.76 
K20 2.51 2.58 2. 31 2.24 2.59 2,81 2. 71 3.20 l.97 Z..03 
TiOz o.oo 0,00 o.oo o.oo 0.23 o.zs 0.13 0.15 o.oo 0,00 
MnO o.oo o.oo o.oo 0.00 0.11 0.12 0.00 0.00 0,21 0.22 
ClO o.oo o.oo o.oo o.oo 0.00 o.oo 0.00 0.00 0,00 o.oo 
Total 97, 41 100,00 103.35 l00.00 92.08 100.00 84.72 100.00 96,91 100.00 

number of ions on the basis of 72 oxygen$ 

Si 28.88 2B.S6 28. S3 28.15 28.56 
A.l 1 ,lf, 7. 61 7.46 7.74 7 .49 
Fa 0,10 o.oo 0,09 o.oo o.oo 
Mg 0.39 0.S:3 (I. 35 0.28 0,64 
Ca 1. 07 0. 75 0.66 0.76 1.26 
Na 2.26 3,23 2.24 2.09 2.04 
K 1.27 1.10 1. 39 1. 58 1.00 

Si/Al 3.98 3.75 3.82 3 .64 3.81 

spec.~n: •• 6b 7a 7b Sa Sb 9a 9b 10, !Ob 
SiOz 6li,09 74.2S 67 .23 74.:n 57.48 62.74 52.55 61.83 51.95 64.03 
Al203 14.38 16.67 14,68 16.22 2.2.69 24.77 22.02 25.91 19.43 23.94 
Feo* a.co a.oo 0,00 o.oo . o.oo 0.00 0.00 o.oo 0.14 0.18 
MgO 0.66 o. 77 0.76 0.84 o.oo o.oo 0,00 0.00 o.oo o.oo 
Cao 2.83 3.28 2.55 2,82 0.08 0.09 o.oo o.oo 0.10 0.12 
Na20 4, 19 4.87 4.35 4.81 11.35 12.40 10,23 l.Z.04 9.16 11.30 
KzO 0.11 0.13 0.00 o.oo o.oo 0.00 0.18 0.22 0.16 0.20 
TiOz o.oo o.oo O. lS 0.20 o.oo o.oo o.oo o.oo 0.19 0.23 
MnO o.oo o.oo 0.67 0,75 o.oo o.oo 0.00 o.oo 0.00 o.oo 
ClO o.oo o.oo O.OB 0.09 o.oo o.oo o.oo o.oo 0.00 o.oo 
Total 86.26 100.00 90.50 100.00 91.60 100.00 84.98 100,00 81.13 100.00 

nu.t11b@l' of ions on the basis of 72 o,c:ygens 

Sl 28. 57 Z8.-6s 2 .43 2.50 2.48 
Al 7,42 7,28 l.12 1. 09 1.06 

•• 0.00 o.oo < o.oo 0.01 O.Ol .. 0.44 0.4B 0.00 o.oo o.oo 
ca 1. 36 1.17 o.oo o.oo D.00 

•• 3.48 3.50 0.90 0.71 0.79 
K 0.06 o.oo o.oo 0,01 0.01 

Si/Al 3.85 3.93 2.17 2.29 2.34 
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Table 19 -cont:inued 

specuen.: lla llb 12a 12b 13a 13b 14a 14b !Sa 15b 
Si02 61.99 75.ll 54.86 73.03 53.09 74.24 57.80 75.64 51.50 59.Sl 
Al2;03 13.23 16.03 11.71 15.59 11.29 15.79 11.32 14. 81 22.33 25.80 
FeO* o.oo 0.00 0.12 0.42 0.25 0.34 0.28 0.36 0,37 0.43 
MgO 0.37 0.45 Q.34 0.46 D,30 0.42 0,19 0.25 o.oo o.oo 
Cao l.31 1.5B 1.27 l. 70 l.26 l. 76 0.58 0.76 o.oo o.oo 
NazO 4.26 5.16 5.92 7.88 4.38 6,12 5.40 7.07 11. 92 13. 78 •,o 1.27 l.67 0.69" 0.92 0.95 1.33 0.78 1.02 0.27 0.31 
IiOz o.oo o.oo o.oo o.oo 0.00 0.00 D.00 o.oo 0.00 0.00 

' 
HnO 0.00 o.oo o.oo o.oo o.oo o.oo o.oo o.oo 0.15 0.17 

I Clo o.oo 0.00 o.oo o.oo 0.00 0.00 0.07 0.09 o.oo o.oo ; 

I Total 82.53 100.00 75, ll 100.00 71.52 100.00 76.42 100.00 8£..54 100.00 

1 nW11ber of ions on the basis of 72 oxygens 

l Si 29.05 28.67 28.95 29.:H 2.25 
Al 7 -15 7.00 7.01 6,SS 1.17 ! Fe o.oo 0.14 0.11 a.12 0.01 

I Mg 0,25 0.26 0,23 0.14 o.oo 
c, 0.66 o.72 o. 75 0.32 o.oo 

l •• 3.68 5.57 4.26 4. 95 LOO 
K o.83 0,47 0.68 0,52 0.01 

Si/Al 4.06 4,013 4.13 4,45 2.01 

*Total icou as FeO. 
a - unnonn.ilized data, b a data normalized to 100 pe~ceat. Specimens: l) cl1noptilol1ce shown in Figure 14a, 2) cl1nopt11olite shl'.>wn in Figure 14e, 3,.4) clinoptilolite shown in Figure 14c, 
;) c!inoptilolite shown in Figure 14b, 6,7) mordenite(?) shown in Figure 14d, 8) analclllle shown 
in Figure l 6d, 9) analcime shown in figure 15d, 10) analc:tme shown in Figure 16a, 11-14) clin-optilolite shown in Figure 14f, 15) analcime shown in Figure 15b. 
Note: Water content not determined. Unit cell contents determined on water-free basis for 
purposes of comparison. Analysis of non-flat surfaces accounts for some of the analytical un-
certainty of water co~tent, which might otbetvise be approximated by differeoce from the per-
centage tocal. 
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Table 20. Pipette Analysis Grain Size Data from the Sentinel Butte 

Bentonite/Ash 

Ii sample: BB-3 starting weight: 13.4146 g 

t 
c:umul. % indiv. % cumul. % size (µm) weight {g) indiv. % coarser silt (>2 µm) silt 

J 44 13.3475 0.5 0.5 1. 85 1.85 
,Ii 31 13.1675 1.34 1.84 4.95 6.80 

~ 22 13.0475 0.90 2.74 3.33 10.13 
I 16 12.8725 1.30 4.04 4.80 14.93 ! 8 11. 9000 7.25 11.29 26.79 41. 72 
l 

4 10.7175 8.82 10.11 32.59 74.31 l 
l 2 9.7850 6.95 27.06 25.68 99.99 

I l 8.5000 9.58 36.64 

l sample: LBB-1 starting weight: 14.499 

I c:umul. % indiv. % c:umul. % size (µm) weight {g) indiv. % coarser silt {>2 um) silt 
44 14.3175 1.25 1.25 2.23 2.23 

' 31 13. 6700 5. 72 7 .97 10.20 j 4.47 
22 13.3750 2.03 7.75 3.62 13.82 !I 16 11.8825 10.30 18.05 18.36 32.18 1 
8 8.7375 21.69 39. 74 38.66 70.84 
4 7.3500 9.57 49.31 17 .06 87.90 
2 6.3650 6. 79 56.10 12.11 100.00 
1 5.2125 7.95 64.05 

sample: BB-2 starting weight: 14.3290 g 

cumul. % indiv. % cumul. % size {µm) weight{!!) indiv. % coarser silt {>2 µm) silt 
44 14.0425 2.00 2.00 2.20 2.20 
31 12.2650 12.40 14.40 13.63 15.83 
22 11. 2150 7.33 21. 73 8.06 23.89 
16 8.4975 18.97 40. 70 20.85 44.74 

I 8 3.4300 35.36 76.06 38.87 83.61 

I 4 1.8925 10.73 86.79 11. 79 95 .40 
2 l.2925 4.19 90.98 4.60 100.00 
1 0.8400 3.16 94.14 
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Table 20 --continued 
! 

l sample: UBB-1 starting weight: 14.5900 g 

cumul. % indiv. % cumul. % 
size (J.l1ll) weight {g) indiv. % coarser silt {>2 um) silt l 44 14.4100 1.23 1.23 1. 73 1. 73 

I 
31 13.9575 3.11 4.34 4.37 6.10 I 

! 22 13.0975 5.89 10.23 8.28 14.38 
16 11.2900 12.39 22.62 17.43 31.81 I 8 7.2825 27.47 50.09 38.64 70.45 
4 5.3950 12.93 63.02 18.19 88.64 
2 4.2175 8.07 71.09 11. 35 99.98 
1 3. 3750 5. 78 76.87 

sample: BB-9 starting weight: 14.0900 g 

cumul. % ind iv. % cumul. % 
size (um) Weight {g) indiv. % coarser silt (>2 um) silt 

44 14.0625 0.20 0.20 o. 70 o. 70 
31 13. 7175 2.44 2.64 8.50 9.20 
22 13.6"675 0.36 3.00 1.25 10.45 
16 13.2825 2. 73 5.73 9.51 19.96 
8 11. 8900 9.88 ·15.61 34.41 54.37 
4 10.8975 7. 05 22.66 24.56 78.93 
2 10.0450 6,05 28.71 21.07 100.00 
1 9.3425 4.98 33.69 

,., ... -~ ... .,.,.,,.-,, .,; :,;: 
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Table 21. 

sample: 

size ( Jllll) 

63 

44 

31 

22 

16 

8 

4 

2 

1 
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Pipette Analysis Grain Size Data from the Marmarth Ash 

Marmarth starting weight: 8.6725 g (+ 4.6188 g sand) 

cumul. % 
weight (g) indiv. % coarser 

8. 6725 34.75 34.75 
4.9250 28.20 62.95 
2.3220 19.58 82.53 
1.4300 6.71 89.24 
1.1950 1. 77 91.01 
0.9450 1.88 92.89 
0.8125 1.00 93.89 
o. 7275 0.64 94.53 
0.6625 0.48 95.01 
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1 
S8111.ple: 

5102 

Al203 

F.O• 

Mao 

Cao 

Na20 

<20 

T.t.02 

P205 
lino 

ClO 

so, 
Total 

sample: 

Si02 

Al203 

FeO* 

MgO 

CaD 

8a2D 

<20 

TiOz 

PzOs 
MnO 

ClO 

so, 
Total 

68.44 

20.06 

4.06 

3.65 

1.10 

1.83 

0.39 

o. u 
o.oo 
0,13 

0.10 

O.l3 

100.00 

13 

.59.50 

21. 05 

4.22 

2,44 

0.38 

10.84 

0.25 

0.56 

o.oo 
0.11 

0.11 

0.54 

100. 00 
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Table 2.Z. ~icroprobe Analyse$ of Selected <2 JJID Clay SatD.ples* 

2 

66.14 

19.98 

4.82 

3. 67 

0.74 

3.46 

0.33 

0.11 

o.oo 
0.12 

0.12 

0.51 

100.00 

14 

68, 64 

17 .J9 

3.67 

4,06 

I.21 

3.39 

0.54 

0.48 

o.oo 
0,25 

0.19 

0.18 

66.84 

20.02 

li,5.5 

3. 51 

0.97 

2.84 

0.63 

b.:31 
o.oo 
o.oo 
o.oo 
0.33 

100.00 

15 

53.93 

21. 49 

6.91 

2.78 

1.06 

9.89 

2.01 

0.72 

o.oo 
0,25 

0.19 

o. 77 

4 

62.06 

22.52 

7.48 

1.91 

0.74 

2.54 

l.93 

0.48 

o.oo 
o.oo 
0,00 

0,34 

100.00 

I6 

51. 75 

21.66 

5.60 

2.55 

0.B9 

10. 75 

1. 98 

0.42 

o.oo 
0.00 

0,47 

3.93 

5 

58,31 

23,62 

7 .54 

3.12 

0,92 

l. 75 

3.63 

0.77 

0.00 

0.11 

0.10 

O.IJ 

100.00 

17 

53.94 

23.83 

7.34 

2.94 

2.35 

2.. 72 

3.10 

0.34 

0.00 

O.D 

0.55 

2.16 

6 

60.33 

19.80 

7.51 

2.75 

1.52 

3.93 

0.42 

0.76 

1.88 

o.oo 
0.65 

0.39 

100.00 

18 

63.22 

19.05 

4.70 

3.32 

0.88 

7.31 

Q.32 

0.24 

o.oo 
0,00 

0.27 

Q.69 

7 

60.64 

23.44 

4.41 

1.43 

0.51 

3.11 

2.49 

1.08 

0.00 

0.00 

0.04 

2.85 

100.00 

19 

66.06 

11}.91 

5.07 

2.39 

0.99 

4.03 

o.37 

0.13 

0.00 

0.08 

0.25 

0.72 

8 

59.72 

21.82 

S.79 

2.35 

1.37 

S.12 

0.48 

0.38 

o;oo 
0.22 

Q.62 

2.13 

100,00 

20 

63 .85 

21.61 

5. 76 

1.74 

0.43 

2.01 

3.67 

1.21 

0.00 

0.00 

0.00 

o. 70 

9 

64. 76 

9.29 

2.34 

2.73 

4.56 

10.54 

1.52 

o.38 
o.oo 
0.00 

0.38 

3.50 

100.00 

21 

68.47 

15,69 

3.60 

3 .01 

4.18 

3,53 

a.so 
0.09 

o.oo 
o.07 

0.26 

0.60 

10 

64.12 

,20 • .56 

5.97 

2.70 

1.21 

2.91 

1.23 

o.43 

o.oo 
0.05 

o.os 
0.77 

100.00 

22 

68. 75 

17. 97 

4.02 

2.93 

1.19 

3.48 

Q.4B 

0.20 

o.oo 
0.00 

0.21 

0.77 

11 

58.26 

15.06 

S.74 

2.80 

J. 75 

7. 57 

2.12 

o.42 

0.00 

0.21 

o.53 

2.94 

100.00 

23 

67 .41 

18,63 

4.24 

3.13 

1.14 

3.17 

0.67 

0.42 

o.oo 
0.18 

a.Jo 
O.lJ 

12 

ss. 37 

21.61 

4.58 

l.ll 

1.29 

13.30 

0.43 

a.20 
o.oo 
o.oo 
o.17 
o. ]4. 

100.00 

24 

68. 59 

19 ,24 

4,57 

J.Jl 

2.42 

1.25 

o.so 
o.oo 
o.oo 
o.oo 
o.oo 
0.12 

100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 l00.00 

"'samples: 1) Blue Bed 2., glass-derived authigenic clay frOfll D'liddle ash of Sent.inel But.t.e bent.onite/-ash, 
2) Blue Bed 3, glas$-detived authigenic clay from upper Sentinel Butte bentonite, 3) Blue Bed 1, glass­
der1ved authigenic clay fr0tn lower Sent1nel Butt.e bent.onite, 4) Kann-6, detr1tal montincrillonite, 5) LX-K, 
1U0ntl'llorillontce of unknown origin, 6) EG-l, aurhigenic precipitated pore-lining 1110n011orillonite, 7) SlUlllp 
atock l, montmorillonite of unknown origin, 8) SU-B, authigenic precipitated por~lining lllOnrmorillonite, 
9) 7•l0, detrital monemorillonice, 10) Long X-C, monrmorillon1te of unknown origin, 11) AC-4, detrital 
~ontmorillonice, 12} Square Butte A, authigenic precipitated pore-lining montmorillonite, l3) BR-A, authi­
genic precipitated pore-lining 1110ntmorillonite, 14) Mal'Jllarth. glass-derived authigenic montmorillonite from 
MaI111arth ash, 15)_t.X-17, detrical D'lontlllorillonite, 16) AC-1, detrital montmorillonite, 17} MB-6, detrttal 
montmorillonite, 18) EG-13, glass-derived authigenic montRwrillonite frPDI upper Sentinel Butte bentonit~. 
19) EG-11, glas$-de~ived authigenic wontmorillonite f~oa lower Santioel Butte bentonite, 20} LX-E, mont­
lllOtillonite of unknown origin, 21J EG-12, glass-deriva-d authigenic montm0rillonite frOlll Sentinel Butte ash, 
22) RB-9, glass-derived authigenic montmorillonite from lower Sentinel Butte bentonite, 23} BB-3, glass~ 
derived authigenic mont:morillonice frOlll upper Sentinel Butte bentonice, 24) BB-2, glass-derived authigenic 
11LOntmorillonite frCIIJI Sencinel Butte ash. 
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Table 23, Discriminant Scores from Samples Plotted in Figure 29. 

DTRL DTRL DTRL G.D. G.D. PRCPT 
Sample vs vs VS vs vs vs 

G.D. PRCPT UNKNWN PRCPT llNKNWN umoom 

SQB-A (P) -6.92 -14. 12 16.66 
BR-A (P) -8.27 -5.~ 12.10 
MARM (GD) -22.92 17,08 16.87 
LX-17 (D) 18.60 4.96 9, 15 
AC-1 (D) 20.85 4.68 9.85 
MB-6 (D) 18.21 9,83 4.l13 
EG-13 (GD) -9.66 2.59 11,53 
EG-11 (GD) -9.31 1.55 7,74 
LI-E (U) -11.02 -23.77 -26.29 
EG-12 (GD) -12.3ll 6.67 12.78 
BB-9 (GD) -16.01 9.63 10.84 
BB-3 (GD) -14.92 9,56 10.17 
BB-2 (GD) -19,9ll 12. 16 15,33 
BENT-2 (GD) -25.46 16.57 17.82 
BENT-3 (GD) -19.17 10,79 15.82 
BENT-1 (GD) -19.15 12.50 13,55 
MANN-6 (D) 8.24 2.44 _,. 17 
LX-K (U) -4.76 -16.15 -18.23 
EG-1 (P) -5.80 -12,71 16.66 
SBK-10 (U) -7.66 -14.15 -12.57 
SU-B (P) :..7,42 -8.73 13.30 
7= 10(D) 11.97 7. 11 7,76 
LX-"C" (U) -1.53 1.87 O,ll2 
AC-Ji (D) 24.84 12.97 9.74 

(element) (J contr.) 

SI02 61 2 46 82 15 13 
AL203 -1 13 31 -19 -15 2 
FEO 12 1 -1 13 5 -2 
MOO 14 _, 

-2 30 25 -1 
CAo -1 -3 12 0 Jj 2 
NA20 -3 0 -4 -8 1 -3 K20 19 89 16 1 66 88 

abbreviations: DTRL: Detrital, PRCPT: Precipitate, llllXNWN: Unknown, 
G.D.= Glass-Derived, P :Precipitate, D = Detrital, GD= Glass-Derived 
u =. Unknown 

' ... j.·· --------------------,.· . ..,T.,. _.., ... ,..rs .. , ._. ...... ·.,·o"'T'"'o,.·· ..,,.,,..rt""'· v-.. -y.,·1iiifEr""rtlalMt1""1'fl"""-, • .,-'·""w*"'>""' t .. t''"'Yt.:.1·1r""v~""' .. """'""'··,if'""'"""r,.tll.(,;"1' ,:(. -
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Table 24. Discriminant Scores of "Potential Bentonite" Clays Plotted 
in Figure 30. 

DTRL UNKNWN 
Sample vs vs 

G.D. G.D. 

BB-17 -4.83 6.83 
BB-5 -12.99 6.21 
7= 15 15.33 -25.70 
LX-A 17 .12 -23,78 
BADLANDS 3 21.311 -8.15 
SHB-6 6.118 -2.64 
KINLEY B 18.06 -25.88 
SB-C 24.110 -26.47 
LX-11 11. 73 -14.15 
LX-J 6.04 -12.31 
SHB-1 -5.90 3.02 
BB-7 5.15 -1.91 

abbreviations: DTRL: detrital, UNKWH = unknown, G.D.= glass-derived 
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Table 25, 

Sample: Lll-2 
AB Determined: 

Dry: 
Moisture and Ash-Free: 

Sample: MB-7 
As Determined: 

Dry: 
Moisture and Ash-Free 

Sample: SBK-3 
As Determined : 

Dry: 
Moisture and Ash-Free : 

Sample: KP-7 
As Determined : 

Dry: 
Hois ture and ABh-Free: 

Sample: Mann-2 
As Determined: 

Dry: 
Moisture and Ash-Free: 

I 
.-,··. --·----- ·-. ------41 

I 
I 
I 

Proximate/Ultimate Analyses of Sentinel Butte Lignitic Samples 

C H N s ASH H20 VM BTU 0 H/C O/C 

38.64 4.02 0.63 0.63 21.6 19.l 30.3 6027 15.38 
47. 76 2.33 o. 78 0.78 26. 7 21.65 
65 .16 3,17 1.06 1.06 29.54 0.54 o. 34 

23, 15 4,51 0.60 2,47 27.! 33.6 30.5 3263 8.57 
34.86 1.13 0,90 3. 72 40.8 18.58 
58.91 1.91 1.53 6.28 31. 37 0,39 0.40 "' .... .... 
39, 19 3,39 0.91 0.93 20. l 15.4 37 .8 5915 20.08 
46 ,32 l.97 1.08 1.10 23,8 25.73 
60. 76 2.58 1.41 1.44 33,80 0.51 0.42 

15.65 1.34 0.26 0.80 68.0 4.5 19 .o 2417 9.45 
16.39 0.88 0.27 0.84 71.2 10.42 
56.91 3,04 0 ,95 2.91 36 .19 0.64 0.48 

51.48 4. 76 o. 77 1.26 7.3 16 .5 36.6 8573 17 .93 
61.65 3.49 0.92 1.51 8.7 23.73 
67 .56 3,82 l.01 1.65 25.95 0.,67 0.29 
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TABLE 25 --continued 

C H N s ASH H20 VM BTU 0 H/C 0/C 
Sample: ,SB-9 

As Determined: 30.38 3.06 0.65 0,60 43.1 9.4 31.8 4702 12.81 Dry: 33.53 2.22 o. 72 0.66 47.6 15.27 Moisture and Ash-Free: 63,96 4.23 1.37 1.26 29.18 0.79 0,34 
Sample: SB-16 

As Determined : 7.35 1.24 0.26 0,54 78.3 5.2 13,3 0590 7, 11 
Dry: 7, 75 0.69 0,27 0,57 82.6 8.12 Moisture and ·Ash-Free: 44.55 3,99 1.58 3,27 46.62 1.07 o. 79 

Sample: LX-21 
N -As Determined: 34.51 5, 75 0.49 1.10 13.1 34,9 30,3 5495 10.24 N 

Dry: 53.01 2,83 o. 75 1.55 20.1 21. 76 Moisture and Ash-Free: 66.37 3.55 0.94 1.94 27.20 0.64 0.31 

Sample: SB-19 
As Determined: 27,53 4.30 0.70 4.06 26.5 26, 7 38.2 5518 10 .21 Dry: 37 ,56 1. 79 0.95 5,54 33.l 18.06 Moisture and Ash-Free: 58. 82 2. 80 1,50 8.68 28,20 0,57 0.36 

Sample: EG-3 
As Determined: 44. 85 3.47 0.84 1.24 17 .5 11. 3 38.5 6909 20.80 

Dry: 50.56 2.49 0.95 1.40 19.7 24.90 Moisture and Ash-Free: 62,99 3.10 1.18 1. 74 30.99 0,59 0,37 

Sample: AC-B 
As---iie te rmined : 42.77 5 ,98 0.91 0 .32 2.6 33,4 31.9 6947 14.02 

Dry: 64.22 3,37 1.37 0.48 3.9 26.66 Moisture and Ash-Free: 66.83 3.50 1.42 0.50 27. 75 0.62 0.31 

i,.; 
~ 
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TABLE 25 --continued 

C H N s ASH H20 VM BTU 0 H/C O/C 
Sample: 7= C 

As Determined: 51.24 4.32 1.10 0.80 1.1 11.8 43.4 8236 29 .64 
Dry: 58.10 3.40 1.25 0.91 1.2 35. 14 

Moisture and Ash-Free: 58.83 3.44 1.26 0.92 35.55 o. 70 0.45 

Sample: AC-8 
Asnetermined: 39.42 4,20 0.92 o.88 15.0 21.9 34.3 6105 17 .68 

Dry: 50,47 2,24 1.18 1.13 19.2 25.78 
Moisture and Ash-Free: 62.47 2. 77 1.46 1.39 31.90 0,53 0.38 

Sample: LX-F N .-As Determined: 48. 78 4.16 o. 79 1.53 9.6 15 .9 39.9 7596 19.24 w 
Dry: 58,00 2,83 0.94 l.82 11.4 25.01 

Moisture and Ash-Free: 65.48 3.20 1.06 2.05 28.21 0.58 0.32 

Sample: EG-8 
Asnetermined: 51.49 3.63 o. 77 1.08 10.4 11. 7 39. 7 8074 20.93 

Dry: 58,31 2.63 0.87 1.22 11.8 25.17 
Moisture and Ash-Free: 66 .10 2 .98 0.99 1.39 28.55 0.54 0.32 

Sample: AC-2 
As Determined: 44.40 4.48 1.04 1.64 12.6 17.5 38.4 7099 18,34 

Dry: 53,82 3.06 1.26 l.99 14.4 25.47 
Moisture and Ash-Free: 63.52 3 .61 1.49 2,35 29.04 0,68 0,34 

Sample: 7• B 
As Determined: 52,46 4.47 o. 86 0,98 5,9 16.6 37.4 8297 18,73 

Dry: 62.90 3.13 1.03 1.18 7.1 24.66 
Moisture and Ash-Free: 67.69 3.37 1.11 1.26 26.56 0.59 0 .29 

i 
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TABLE 25 --continued 

C H N s ASH HzO VM BTU 0 H/C O/C 
Sample: LX-B 

Asnetermined: 50.37 4.41 o. 70 0.81 4,5 18.8 38.0 7796 20.41 
Dry: 62.03 2.84 0 .86 1.00 5.5 27.80 

Moisture and Ash-Free: 65 ,67 3.04 0.91 1.06 29.35 0.55 0.34 

Sample: SBK-9 
As-----iie"termined 51. 75 4.28 1.00 0.58 4.4 15. t 40.2 8093 22. 89 

Dry: 60.95 3.05 1.18 0,68 5.2 28.90 
Moisture and.Ash-Free: 64,29 3.22 1.24 o. 72 30.53 0.60 o. 36 

Sample: EG-16 "' As Determined: 5.26 0.93 0.18 0,32 84.3 
,... 

4.7 10.5 0338 4.31 ~ 

Dry: 5,52 0,42 0.19 0.34 88.5 5.03 
Moisture and Ash-Free: 47.82 3.67 1.64 2.91 43.96 0,92 0.69 

*. 
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Ta.ble 26. Correlation Coefficie.uts Between Prox:tllate and UltUDate Varjabl~s Determin&d 
for Sentinel Bu~te Lignitic Samples 

{~oisture-and-aah-free basis) 
Rank Color C R N s a HIC 

Color . .437 

C • 731 .331 

H .065 .256 -.096 
N -.329 -.068 -.609 -.019 
s -.sao -.167 -.410 -.402 .414 

0 -.boo -.302 -.952 -.159 .500 .124 

B/C -.481 .141 .347 -.068 .693 
0/C -.672 -.302 .202 .521 .213 

SUllllll&ry Statistics 

Variable N Me= Std. DQv. Minimum Maxim= 

Rank 20 7.80 3.29 1.00 11.00 

Color 18 l. 63 0.32 t.JO 2.20 

Carbon 20 61. 73 6.21 4li.55 67 .69 

H 20 3.25 0,52 1.91 4,2.3 

N 20 1. 25 0,24 0.91 1.64 

20 2. 24 1-98 o. 50 8.68 
D 20 31.52 5,46 25, 95 46.62 

H/C 20 0.64 0,15 0.39 l. 07 

0/C 20 0.39 0.13 0.29 0.79 

(as-dQtel:"111.ined basis) 
Rank Colet C " N s ASH •,o VM BTU 0 ll/C 

Color .437 

C .767 .426 

R .538 .366 .709 

N • 712 ,278 ,849 . 671 

s -.246 - .155 -.033 .248 .096 

ASl! -. 713 -.426 -,937 -.892 -.861 -.144 

RzO .166 .074 ,221 .824 • 2.70 .416 -.533" 

VM .&/)6 .260 .904 .713 .895 .307 -.916 .317 

>TU .732 .464 ,990 .740 .851 .062 -.944 .262 .923 

0 .687 .253 .880 .~22 .847 -.144 -.765 -.086 ,895 .852 

HIC -.484 .142 -.493 -.J89 .699 -.569 -.646 -.546 -. 376 

0/C -.672 -. 302 -.808 -.63-4 -.242 .839 -.533 -.789 -.817 

SU111111ary Statistics 
Va?'iable N Mean Std. [)ev. Minil!luur. Maximum 

Rank 20 7.80 3.29 1.00 11.00 
Color 18 1. 63 0.32 1.30 2.20 

C 10 37. 53 14.92 5 .26 52.46 

• 20 3.83 l.34 o. 93 5,98 

N 20 0.12 0.26 0.18 1.10 

s 20 1.13 Q.85 0.32" 4.06 

ASH 20 23.65 25.17 1.10 84.30 

•20 20 17 .20 9.LS 4.5() 34.90 

VM 20 :n.oo 8.99 10.50 43.40 

BTU 20 5899.SO 2491.32 338. oo 8573.00 

0 20 15.94 6.25 4.31 29,64 

H/C 20 Q.64 0.15 0.39 1.07 

0/C 20 o.J9 o.13 0.29 Q.79 

·, 
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