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ABSTRACT 

Establishing a relationship between surface area and volume of prairie potholes 

provides a simple method to estimate changes in water storage across the landscape. 

Applications include better prediction of floods and improved design for wetland 

restoration. Length, width, depth, surface area, and volumes were surveyed for eighty

two potholes within the upper Turtle River watershed which lies sixty kilometers west of 

Grand Forks, ND. These data were used to determine the relationship and uncertainty 

between pothole surface and volume. Chi squared tests defined distributions of each 

variable. F and T statistical tests resolved similarities in variance and mean. The eighty

two potholes were separated according to their National Wetlands Inventory (NWI) 

classification and tested using chi squared. T and F tests on the separate classes verified if 

the populations have a different mean and variance. Difference in depth, in particular, 

suggests that the two most common NWI classes PEMC and PEMA in the watershed are 

separate and distinct, based on the results from discriminant analysis. Despite this 

conclusion and the fact that PEMC wetlands are physically larger than PEMA wetlands, 

there is a stronger correlation between surface area and volume when the two classes 

remain combined. Regression of surface area and volume leads to an equation that can be 

applied to similar watershed throughout the prairie pothole region. 
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CHAPTER I 

INTRODUCTION 

Problem Statement 

The Prairie Pothole Region (PPR) of the North American Continent (Fig. 1) hosts 

hundreds of thousands of small depressions that function as important habitats for 

wildlife and storage for surface water. Human impacts and the variable climatic 

conditions of the prairie in the north central U.S. and south central Canada provide 

significant variations in the distribution and size of these potholes. These differences 

affect avian breeding (Delphey and Dinsmore, 1993), agriculture (Wienhold and van der 

Valk, 1989), and local climate and hydrology (Johnson et al., 2005). Remote sensing 

provides a record of the short-term changes in pothole surface area (Sethre, et al. 2005), 

but their depth and volume are more difficult to estimate. The accurate prediction of 

pothole and wetland expansion and contraction resulting primarily from climate 

variability requires accurate assessment of these parameters. 

Hypothesis 

Individual potholes have similar geometric properties that make it possible to use 

area and shoreline shape to estimate depth and volume. To test this hypothesis, 

bathymetric profiles and the general shape of 82 potholes in the upper Turtle River 

watershed of North Dakota were measured using level line surveying during the ice-free 

months of 2003 and 2004. These data are applied to: (1) establish differences between 
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and/or similarities with the various National Wetland Inventory classes, (2) develop a 

relationship between pothole area and volume, (3) compare the result to estimates of 

pothole area-depth-volume relationships determined elsewhere based on little data, and 

(3) establish a connection, if any, between the geometry of the profiles, the ecology of the 

region, and water persistence. 

Prairie Potholes and Their Significance 

The prairie pothole region (PPR) comprises portions of the states of North and 

South Dakota and Minnesota as well as the Canadian provinces of Manitoba, 

Saskatchewan, and Alberta (Figure 1 ). The PPR covers approximately 700,000 square 

kilometers and, because of its rich soils and numerous depressions, is considered to be 

one of the most important agricultural and ecological regions of North America (Kantrud 

et al., 1989). 

The United States Environmental Protection Agency (2001) estimates that the 

prairie pothole region's wetlands are responsible for up to one-half of North American 

bird species' nesting or feeding. Although they only compose five percent of the land 

surface in the conterminous United States, they are home to 31 % of the plant species. 

Agriculturally-related drainage practices altered approximately 65% percent of the 

original wetlands within the PPR, directly threatening their sustainability as an ecosystem 

(Tiner, 1982 and Dahl, 1990). 
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Figure 1 :.The Pr.asie Pothole Region. Locations of the Upper Turtle River Watershed 
(this study), St. Denis -Wildlife Area (Hayashi and Van der Kamp, 2000), Upper 
Assiniboine River Basin (Weins, 2001), Emmet County, Iowa (Hahn and Johnson, 1967), 
Churdin, Iowa (Hahn and Johnson, 1967), and Not Pictured Martin County, Florida 
(Wise, 2000). (Modified from Woo et al. 1993). 

The ratio C:f open water to vegetation-covered areas, as well as species zonation, 

is directly linked to water depth in the potholes (Aro and Branson, 1962). While there are 

distinct differences in flora and fauna between potholes, they are primarily due to 

differences in basin morphometry, specifically depth, size, hydrology, and basin water 

chemistry (Galatowitsch and van der Valk, 1994). Murkin et al. (2000) cite water level 
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as the direct cause for a pothole's water storage capacity, primary production, and 

mineral cycling, which can vary according to wet-dry cycles and affect biodiversity. 

The prairie potholes seen throughout the PPR are the result of glacial ablation 

during the Wisconsinan glacial retreat (Bluemle, 2000). During glacial recession, ice 

calves off smaller, scattered pieces that"result in the formation of depressions (Figure 2). 

The southern extent of the Wisconsinan glaciation during its retreat directly coincides 

with the southern reaches of the PPR. 

Figure 2: A Typical Pothole Seen in the Upper Turtle River Watershed. 
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The term "wetland" or "pothole" is subject to varying definitions and 

classification schemes depending on the professional discipline in which it is used (Woo 

and Young, 1997). The United States Fish and Wildlife Service (USFWS) established a 

definition that places an emphasis on the relationship between soil, water, and wildlife 

(Shaw and Fredine, 1956). The definition given by the Farm Service Agency (FSA) for 

"wetlands" is predominantly associated with soil types (Tiner, 2006) The National 

Wetlands Inventory (NWI), which uses the classification scheme developed by Cowardin 

et al. (1979), define "wetland" on the presence of one or more of the following three 

attributes: 

(1) Hydrophytes occur seasonally or throughout the year, 

(2) Substrate is predominantly undrained hydric soil, or 

(3) Sediments comprise the substrate, which is saturated or covered with shallow 

water periodically during each growing season of every year. 

The Cowardin (1979) system was applied to describe ecological units that have 

certain homogenous natural attributes, to arrange these units in a system that will aid 

decisions about resource management, to furnish units for inventory and mapping; and to 

provide uniformity in concepts and terminology throughout the United States (Appendix 

1 ). The US Fish and Wildlife Service is close to completing the mapping and digitization 

of wetland regions throughout the United States. Access to this readily available online 

data and a method of quantifying the width, length, and surface area is all that is required 

to calculate an individual watershed storage capacity as well as individual potholes 

internal geometry and volume. 
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Previous Studies 

Researchers have had with limited and localized success in determining 

relationships between a potholes width, length, depth, surface area, and volume. 

Quantifying the relationship between surface area and volume would provide researchers 

and land managers with the ability to access quickly and accurately the storage capacity 

of watersheds and their constituent potholes. 

Hahn and Johnson (1967) established relationships that quantitatively describe the 

three-dimensional shapes of the depressions. Their emphasis was on the geometry and 

distribution of the wetlands and the initial phase was the construction of half-meter 

contour interval topographic maps from pre-existing maps of the East Fork Hardin Creek 

watershed, Greene County, Iowa. Analysis of the maps allowed for estimates of volume, 

depth, and area values. Means and standard deviations were calculated for the volume, 

depth, and areas. Through the application of standard regression; this relationship is 

illustrated through the equation: 

V = 2. 7* 10-3 A 1.44 

V = volume (m3
) 

A= area (m2
) 

(1) 

The relationship of volume to surface area was found to have a correlation 

coefficient of 0.86. 

The second part of the Hahn and Johnson (1967) study was completed in Emmet 

County, Iowa. Measurements of volume, depth, and area were made in a similar manner 

to East Fork Hardin Creek. The equation generated from this study was: 
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V = 4.1 *10·3 Au6 (2) 

The resulting correlation coefficient was 0.87. The values for both of these study 

areas were then combined and a final correlation coefficient of 0.87 was calculated, 

resulting in a combined equation relating volume to area: 

V = 3.6*10·3 Al.38 (3) 

Hayashi and van der Kamp (2000) conducted their research on 27 depressions in 

the St. Denis National Wildlife Area (NW A), approximately 40 kilometers east of 

Saskatoon, Saskatchewan, Canada. Emphasis was placed on the relationship between the 

area, volume and depth. The purpose of the study is to interpolate area-depth and volume

depth from a detailed survey, approximate these relationships, and establish a geometrical 

model of depressions for applications in simulations. 

The first step in the calculation of the area-volume relationship is to establish the 

slope profile of the depression. This is obtained through the application of the following 

equation: 
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(4) 

y = relative elevation of surface at distance r from center 
(m) 

Yo= unit elevation (1 m) 
r = radius (m) 
ro= radius corresponding to Yo (m) 
p = dimensionless constant 

The slope profile "p" is derived from equation 4 by establishing a ratio between a 

unit representation of the pothole at unit radius and elevation. From equation 4, Hayashi 

and Van der Kamp (2000) estimate the area from the following equation: 

A = 1t r/(hlho)2'P = s(hlho)2'P 

h = maximum height (m) 
ho= unit height (m) 
s = scaling constant (unitless) 

(5) 

The scaling constant "s" is equal to the area of the surface water when h= ho. The 

constant p is the link between the area-depth relationship, with a p that equals two 

representing a parabolic shaped basin and, in an extreme case, p -too, which corresponds 

to a cylinder. Volume can also be estimated in a similar manner with the following 

equation: 

V= (s/(1 +2/p ))*(hl+(Zlp)/ hlP) (6) 
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Hayashi and van der Kamp (2000) surveyed the catchments of the wetlands and 

depressions using a total station. Survey points were located at a 9 to 15 m horizontal 

spacing in the uplands and 5 to 9 m interval within the wetlands. For smaller wetlands the 

survey points were spaced at a 2-5 m interval. SURFER (Golden Software, 2004) was 

used to estimate all other grid points and in the construction of digital elevation models 

(DEMs). 

The profile variable "p" is greater for larger wetlands and less for smaller 

wetlands. This translates to a gentler slope in smaller wetlands and a cylindrical shape for 

larger wetlands. The result is that the area-depth and volume-depth relationships can be 

estimated through the calculation of only two constants, s and p, which can be obtained 

through two independent measurements of area and depth (Hayashi and van der Kamp, 

2000). 

Wise et al. (2000) completed a study focusing on the hydraulic connectivity 

between a wetland and an underlying aquifer. The study site was an isolated marsh 

located in Martin County, Florida. The wetland depth was measured at 3 m intervals 

along west-east, south-north, southeast-northwest, and southwest-northeast transects. 

Solver, the linear programming code in Excel, was used to fit the measurements taken to 

produce the following equation for stage-volume relationship, 

V = 3,454((3.818+hw)-3 .77)2-I48.5(hw-3.77) (7) 

hw = height of water (m) 
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Wise et al. (2000) concluded that there was a connection between the aquifer and 

the surveyed wetland, judged by repeated volume measurements in response to 

meteorological events. For the current study, hw+ 3.818 is set as the maximum depth of 

the given pothole, allowing for its maximum volume to be estimated. The value 3.818 is 

used by Wise et al. (2000) as the datum for the bottom of the pothole. 

Weins (2001) obtained datasets from the Prairie Farm Rehabilitation 

Administration (PFRA) and Ducks Unlimited Canada (DU). These datasets contained 96 

surveyed depressions from the PFRA and 81 from DU, all from the Upper Assiniboine 

River Basin (UARB), Saskatchewan, Canada. Each of the datasets consisted of the mean, 

median, standard deviation, minimum and maximum for the area and volume. The two 

datasets were combined and separated into potholes under 7.0*106 m2 and those that had 

a larger area. A series of regression analyses were performed on the two datasets to 

establish an area-volume relationship that could be integrated into a hydrological model. 

The resulting equation follows: 

V = 3.8*10"2 Ai.22 (A< 7.0*106 m2
) (8) 

Weins (2001) concluded that the relationships established in this study were 

applicable for watershed volumetric estimations ( correlation coefficient of 0.89), 

however, on smaller sample sizes the accuracy decreases and the equation is only 

applicable to the watershed for which it was created. Hansen (2002) made corrections to 

Weins' (2001) work by first determining how Weins (2001) computed the standard error. 
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Once the standard error was calculated, a correction factor (CF) was found using the 

method described by Finney (1941). 

CF = correction factor 
SE= standard error 

n 

SE= ~)Yi-Y;) 
i=l 

n = number of data points 

(9) 

(10) 

k = number of independent variables (=1 in this case) 
Yi = value of observed data point i 
yi = value of computed point i 

The calculated CF was found to be 1.17, meaning that the results obtained from 

the original Weins (2001) equation were too small. With the corrections applied to the 

original Weins (2001) equation, the following equation is derived for wetlands with areas 

less than 7.0*106 m2
: 

V = 4.39*10·2 Ai.22 (A< 7.0*106 m2
) (11) 

Despite the previous researcher's examination of the same problem, there is a 

large variability in their conclusions with only moderate success (largest correlation 

coefficient of 0.89). These studies are all isolated to their subject watersheds with the 

exception of Hahn and Johnson (1967). The motivation behind completing these studies 

11 



is that conclusions drawn can be applied to watersheds that have not undergone such 

extensive field surveying or map analysis. It is also noted that although there is a 

common undercurrent of emphasis on the surface area- volume correlation, work 

completed by Hayashi and Van der Kamp (2000) demonstrate another connection 

between the pothole slope curvature, surface area, and volumes (Appendix 2). 

There is a need to standardize the approach behind the analysis of the potholes 

within the PPR. A single equation,or set of equations, relating surface area to volume 

needs to be established. By combining the existing equations, area-volume relationships 

for other pothole regions not yet surveyed can be determined. This prevents the need for 

continuously developing new equations and allows for a convenient method for 

estimating total surface water in storage for any watershed within the PPR. By analyzing 

existing equations and incorporating new field data collected in the upper Turtle River 

watershed, I attempt to demonstrate the effectiveness of this approach. 

Description of Study Site 

The upper Turtle River watershed (UTR) is located approximately 60 km. west of 

Grand Forks, North Dakota (Figure 3). The UTR watershed covers an area of roughly 93 

square kilometers and is composed primarily of gently rolling hills. The depressions 

contained within the UTR watershed are underlain by glacial sediments deposited during 

the Wisconsinan glaciation. Winter and Rosenberry (1995) recognized that these 

wetlands are typically filled with runoff from the spring snowmelt and, to a lesser extent, 

summer precipitation. This trend results in complete loss of water during the periodic dry 

cycles. The climate within the UTR tends to be extreme, with variations up to 85°C 

seasonally with sporadic and localized precipitation. 

12 



The Pleistocene and Holocene deposits that underlie the region are known 

collectively as the Coleharbor Formation. Bluemle (2000) describes the Coleharbor 

Formation as the lithostratigraphic unit that includes all bouldery, cobbly, pebbly, sandy, 

silty clay; sand and gravel and silt and clay, covering 99% of Nelson County and 

unconformably overlying the Pierre Shale. 

The Wisconsinan ice sheet advanced across Nelson County from the northwest, 

and was separated into two lobes by the Turtle Mountains. The western lobe is known as 

the Souris River and the eastern lobe, which overrode Nelson County, is known as the 

Leeds lobe (Lemke and Colton, 1958). Prest and Grant (1969) estimated this advance to 

have occurred approximately 13,200 radiocarbon years ago. The southernmost extent of 

the most recent glacial advance coincides with the southern margin of the PPR. 
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Figure 3: Upper Turtle River Watershed. Located Approximately 60 km West of Grand 
Forks, North Dakota. Yellow Dots Designate the Surveyed Potholes. 

14 



CHAPTER II 

METHODS 

Sampling and Statistics 

The potholes measured during the course of this study were selected based on two 

criteria: (1) the pothole is singular, with no obvious sign of coalescence with surrounding 

potholes and (2) the pothole is isolated from section roads and tilled fields, which 

suggests a more natural boundary. U.S. Highway 2 provided a boundary that allowed the 

UTR to be divided into a northern and southern half. The two criteria were applied within 

this delineated area. The northern half was sampled from east to west; , the southern half 

was also sampled from east to west 

Eighty-two singular potholes were surveyed across two transects using an auto

level and stadia rod. Depth measurements were taken at three meter intervals. These two 

transects are orientated roughly north-south and east-west. The latitude and longitude of 

each transect end point were recorded using a Garmin handheld GPS and entered into a 

separate spreadsheet that was then downloaded into Arcview GIS (ESRI, 1999), where it 

was overlain with the wetlands inventory dataset. This dataset permitted each of the 

potholes to be cataloged according to the National Wetlands Inventory system. Four 

wetland classes were sampled within the UTR watershed: 21 PEMA, 45 PEMC, 3 PEMF, 

and 11 unknown. The unknown potholes were those near clusters that exemplified 

varying characteristics that precluded the determination of an exact classification. 
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Because of the small number of PEMF class potholes and the uncertainty associated with 

the unknowns, only the PEMA and PEMC( d) were suitable for further analysis. 

Once plotted, the geographic distribution pattern can be tested using the nearest 

neighbor index test. The nearest neighbor index test measures the similarity of the 

observed mean distance between surveyed potholes and the expected mean distance for a 

hypothetical random distribution (Mitchell, 2005). This nearest neighbor index can be 

tested for significance using a Z-test with the null hypothesis indicating that the potholes 

are randomly distributed. This result will expose any biases present within the sampling 

strategy across the UTR watershed. 

The collective length, width, and depth values were tabulated using SURFER 

(Golden Software, 2004). A digital elevation model was generated from the data which 

allowed SURFER to calculate the estimated volume and produce a graphical 

representation of each recorded pothole (Figure 4). 

The k:riging contouring algorithm was used to create the bathymetric grid. 

Kriging is referred to as an "exact interpolator," meaning that the depths estimated at the 

survey points will be the same as those measured. The error variances of the kriging 

method are also the lowest of any of the linear estimation methods (Davis, 2002). 

Simpson's rule was used for the volume estimation. It applies third order polynomial 

integration on the arc segments between the kriging points (Keckler, 1994). 
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Figure 4: SURFER Generated Digital Elevation Model. Measured in Meters. Note the 
Greater Slope on the Eastern (right) Side of the Map. Contour Interval= 0.2 meters. 

140 

Volume estimates were generated for each of the 82 potholes and these values 

were entered into the Excel spreadsheet along with the length, width, and the maximum 

depth. Surface areas were estimated using the length and width values then added to the 

spreadsheet. The mean, median, and, standard deviation were calculated for each of 

these values (Appendix 3). 

Linear regression analysis was used to calculate the correlation between the 

different measured variables as well as highlighting the differences of the PEMA and 

PEMC classes. Linear regression is a regression method of modeling the conditional 

expected value of one variable, y, given the values of some other variable, x. The 
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correlation coefficient (R2
) is a measure of the proportion of variability in a sample of 

paired data. It is a number between zero and one. A value close to zero suggests a weak 

model (Davis,2000). 

Chi-squared tests were completed to establish the distribution of both classes 

independent of one another and also on the combined data. The chi-squared distribution 

requires that the data are standardized to the standard normal form. This normal form is 

then applied to a goodness of fit test, which determines whether or not the sample 

populations are normally distributed. This is completed by comparing the observed 

frequency of measured traits (length, width, depth, surface area, and volume) to their 

expected frequency. The more that the observed frequencies deviate from the expected 

frequency, the greater the chances that it is not normally distributed (Davis, 2002). In 

cases where the data are not found to be normally distributed, it was log-transformed and 

then tested for a log-normal distribution. 

An F-test is performed to statistically determine if the two sample sets, PEMC and 

PEMA, have the same variance. The hypothesis is that the standard deviations of two 

normally distributed populations are equal and thus are of comparable origin. This test 

analyzed the length, width, depth, surface area, and volume measurements. Once the 

variance is found to be the same between the two datasets, the T-test can be performed. 

The T-test null hypothesis states that the means of two normally distributed 

populations are equal and thus that they are of comparable origin. Both of these tests use 

the observed data to calculate a value which is then compared to a tabular value that 

either supports or rejects the proposed hypothesis. 
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Each of the 75 potholes had their cross-sections divided into four sections that 

represented the shoreline slopes surveyed: north-middle, south-middle, east-middle, and 

west-middle transects. These were designated as Tl-T4 respectively. Second order 

polynomial best-fit lines were calculated for each of these slopes and the resulting value 

for the second-order coefficient (x2
) was entered into the spreadsheet (Appendix 4). The 

second root of the polynomial was emphasized because it is sensitive to the degree of 

curvature- the larger the value the greater the curve. A second-order polynomial implies a 

single inflection point in the curve, which provides a general sense of the curvature 

represented in a pothole bank slope. The second derivative of the second-order 

coefficient was determined to further illustrate the concavity or convexity of a given 

graph, or in this case, the slope of the shoreline. A pothole that has a smooth V - shape 

slope profile will have a second derivative that approaches zero, with a linear fit. Both the 

T and F tests were completed on each transect with the others, divided into their 

respective classes as well as the combined group. 

Discriminant analysis was performed to statistically support their separation into 

two groups, PEMC and PEMA. Discriminant analysis is a multivariate statistical method 

that involves testing the separation of two groups through the linear combination of a 

series of variables ( discriminant function) that would produce the greatest difference 

between the two groups (Davis, 2002). In terms of pothole discrimination, this tests the 

separation of the PEMA and PEMC classes based on the measured variables. The 

analysis transforms the individual PEMA and PEMC measurements into a single value 

called the discriminant score, which illustrates the degree of certainty with which the 

pothole can be assigned to a specific group. The separation of the two groups is measured 
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by the Mahalanobis distance (D2
)- the multivariate distance between the means of the two 

groups and D0 • D0 represents the halfway point on the Mahalanobis distance line (Davis, 

2002); therefore D0 is the position at which the best separation of the two groups and the 

discriminant scores occurs. Once the D0 and D2 are calculated, it is necessary to test the 

significance of the separation of the two classes, PEMC and PEMA. This is done using 

an F test, as described previously. This statistical test was performed using the DISCRIM 

software (Lefever, unknown date). The DISCRIM program provides an F-ratio value that 

can be compared with the tabular values in Davis (2000). 

Uncertainty in the Measurements 

The lengths, depths, and widths surveyed in the field were measured with a stadia 

rod to an accuracy of 0.06 meters. Prior to any pond survey, a clear line of sight between 

the auto-level and the stadia rod was established. The relative error of each of the 

volume estimates generated by SURFER was calculated using the following formula 

(Keckler, 1994): 

RE= (LR-SR)*lOO/Aver. 

RE= Relative Error 
LR = Largest Result 
SR = Smallest Result 
Aver = Average of Three Methods 

(12) 

The largest result (LR) is the volume calculated by the trapezoidal rule and the 

smallest result(SR), by Simpson' s 3/8 rule. Both of these volume estimates are generated 

by SURFER in its grid volume report. The relative error for the SURFER calculated 
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volumes ranged between ±0.01 % and ±0.04% (Equation 12). This range ofrelative error 

is less than ±1 % and can be considered insignificant in the analysis of this dataset. For 

example, a pothole with a volume of 1,000 m3 would vary between 1,000.1 m3 to 1,000.4 

m3
, having a minimal effect on the analysis. 
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CHAPTER III 

RESULTS AND DISCUSSION 

Descriptive Statistics 

The Z-test for random distribution of the surveyed potholes was rejected, meaning 

that the distribution of the potholes was more dispersed, i.e. distances between surveyed 

potholes is greater than the mean or expected distance. There is less than a 1 % likelihood 

that this dispersed pattern could be the result of random chance. It more likely due to the 

nature ofland management ofUTR than sampling error, as the watershed has been 

greatly impacted for agricultural and municipal use. 

The mean, median, mode, standard deviation, maximum and minimum were 

calculated for the width, length, depth, and volume of the 82 potholes (Table 1). 

Table 1: Basic Statistics for Combined Potholes. 

l\.1ean l\.1edian Standard l\.1aximum l\.1inimum 

Deviation 

Length (m) 71.81 60.96 34.99 170.69 21.34 

Width (m) 53.73 48.77 25.52 152.40 18.29 

Depth (m) 0.77 0.70 0.43 1.68 0.13 

Surface Area 4,518 3,014.93 4,435.17 26,006.55 355.73 

(m2) 

Volume (m3
) 1,504.08 644.51 1,887.88 7,323.19 15.68 

22 



The combined lengths have a mean that is approximately 30% greater than the 

combined widths, meaning that the average pothole has an overall elliptical shape. The 

large standard deviations seen for each of the five measured values illustrate the large 

variability within the population. A correlation matrix was generated for the five physical 

measurements (Table 2). 

Table 2: Correlation Matrix for Combined Physical Measurements. 

Length (m) 

Width (m) 

Depth (m) 

Surface Area 

(m2) 

Volume (m3
) 

Length 

0.86 

0.56 

0.91 

0.85 

Width 

0.58 

0.95 

0.89 

Max. depth Surface area Volume 

0.50 

0.72 0.90 

Correlations above 70% exist between the surface area and length, width, and 

volume. The length for the combined dataset was found to be log-normally distributed; 

the width and depth were found to be normally distributed. The surface area for the 

combined dataset was found to be lognormally distributed while the volume had neither a 

normal or lognormal distribution. 

Derivation of Empirical Formula Relating Area-Volume 

Standard linear regression techniques were used to derive a relationship between 

pothole area and volume seen in the UTR watershed. Linear regression was applied to 

this relationship and the resulting correlation coefficient was 0.87 (Figure 5). This 

relationship (Figure 5) yielded the following equation: 
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V = l.4*10-3 Ai.61 (13) 
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Figure 5: Correlation Between Surface Area and Volume for PEMC, PEMA and Other 
(Composed of PEMF, U, and Unknown). Volume is in Cubic Meters and Surface Area, 
Square Meters. 

While this appears similar to the equations derived in previous research, it is 

specific to the UTR. If the data were available from all of the previous works, a combined 

equation could be constructed as outlined by Hahn and Johnson (1967). The lack of 

additional datasets makes it impossible to construct a combined equation. 

Comparison with Prior Approaches 

The values collected for length, width, depth, and surface area were entered into 

the previous equations ( equations 1-11) to determine their applicability in the UTR 

watershed. The Hayashi and van der Kamp (2000) and Wise (2000) relationships were 

transformed into power functions. Wiens' (2001) equation was applied according to 
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corrections outlined by Hansen (2002). After the corrections were applied, the values 

were plotted versus the SURFER volumes (Appendix 5). The results showed significant 

variability between the SURFER and calculated volumes (Table 3). 

Table 3: Correlation Coefficients for Other Methods. Applied to the Data Collected from 
the UTR Watershed. 
Researcher 

Hahn and Johnson (1967) 

Wiens (2001) 

Hayashi and van der Kamp (2000) 

Wise et al. (2000) 

Hansen (2002) 

Correlation Coefficient 

0.87 (Emmit County) 0.86 (East Fork 

Creek), 0.87 combined 

0.89 

0.04 

0.49 

0.89 

Wiens' (2001), Hahn and Johnson's (1967), and Hansen's (2002) equations all 

produced strong correlations between their derived volumes and the observed volumes 

obtained by this study. The methods outlined by Hayashi and van der Kamp (2000) 

provided the weakest correlation between the calculated volume and actual modeled 

volumes. Hayashi (personal communitcation, 2006) recommends two additional 

equations that could be used to increase this correlation. The problem with using the 

Hayashi and van der Kamp (2000) and newly developed Hayashi equations is that they 

require high-precision surveying that would effectively eliminate the need to apply these 

equations. The equations are also unable to be applied to any pothole having a unit depth 

less than one. This means that if a pothole has a depth less than, or equal to, one unit 

depth, it is unable to calculate the "p" variable. 

The negative correlations seen with Wise et al. (2000) indicate that as one 

variable increases, the other decreases. In the context of most statistical applications, the 
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absolute value is taken, indicating the strength of the correlation. In this case, the Wise et 

al. (2000) equation produced a strong correlation coefficient of 0.71. 

The strong correlations produced by Weins (2001), Hahn and Johnson (1967), and 

Hansen (2000) indicates a similarity in the physical characteristics of the potholes 

throughout the entire PPR. With access to the previous researcher's data or the collection 

of new data it will be possible to combine all of these equations into a single equation 

that could be applied to most cases. 

Comparison of Profiles 

Quantifying the relationship between the length, width, depth, surface area, and 

volume were done with a combination of statistical tests on the collected data. 

Attempting to qualitatively measure and compare/contrast the pothole bank slope requires 

a different approach. These tests were completed to determine any symmetry that these 

pothole bank slopes may exhibit and how they relate to each-other and between the two 

classes, PEMC and PEMA. 

Each of the potholes were divided into quarter transects. These quarter transects 

were then plotted in Excel and fitted with a second order polynomial. To better 

approximate slope, the second order derivative of the second order polynomial was 

calculated. The slope values were then examined using the chi-squared test for 

distribution. This test was completed at the 95th percentile. 

The PEMA class of wetland is log-normally distributed for the Tl and T2 (north

center and south center) and neither normal nor log-normal for the T3 and T4 (east

center, west-center). When all the slopes were combined there was a log-normal 

distribution. There is little to no correlation between the four transects, with the strongest 
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correlation having only a coefficient of 0.75 between the south-center (T2) and the west

center (T4) (Table 4). 

Table 4: Correlation Matrix for Slope Values of PEMA Class Wetlands. 

Tl: North-Mid T2: South-Mid T3: East-Mid T4: West-Mid 

Tl: North-Mid 

T2: South-Mid 0.06 

T3: East-Mid 0.46 0.31 

T4: West-Mid 0.09 0.75 0.38 

The PEMC class has a lognormal distribution for T2 (south-center), normal 

distribution for Tl and T3 (north-center, east-center), and neither normal nor log-normal 

distribution for T4 (west-center). No strong correlation can be drawn between any of the 

slopes, with the highest correlation coefficient of 0.55 between the south-center (T2) and 

north-center (Tl) slopes (Table 5). 

Table 5: Correlation Matrix for Slope Values of PEMC Class Wetlands. 

Tl: North-Mid T2: South-Mid T3: East-Mid T4: West-Mid 

Tl: North-Mid 

T2: South-Mid 0.55 

T3: East-Mid 0.11 0.38 

T4: West-Mid 0.01 0.04 0.11 

When all of the slope values were combined and tested for distributions, there is a 

log-normal distribution in the T3 direction (east-center) and neither normal or log-normal 

for the Tl,T2, and T4. There is also no distribution evident with the total combined 

slopes. The combined slopes demonstrate no correlations, with the strongest having a 

correlation coefficient of 0.42 between the south-center (T2) and north-center (Tl). 
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Table 6: Correlation Matrix for the Combined Slopes of PEMA/PEMC Class Wetlands. 

Tl: North-Mid T2: South-Mid T3: East-Mid 

Tl: North-Mid 

T2: South-Mid 0.42 

T3: East-Mid 0.18 

T4: West-Mid 0.03 

0.35 

0.23 0.18 

T4: West-Mid 

There is no significant correlation between the measured transects and no 

symmetry observed in the potholes surveyed in the UTR. This means that attempting to 

apply a symmetrical approach to depression analysis is not feasible because the slope of 

each bank is essentially different. 

Correlation Between NWI Class and Physical Shape 

The Cowardin et al. (1979) classification system is based on a combination of 

hydrology, soil type and vegetation. This excludes any differentiation based on the 

lengths, widths, depths, surface areas, and volumes. A closer examination of the two 

classes PEMC and PEMA as individual entities based on physical constraints yield 

interesting results (Appendix 6). 

Chi-squared tests have concluded that the length, width, and depth of the PEMA 

class wetlands are all normally distributed at the 95th percentile. The surface area and 

volume were found to have a log-normal distribution. The PEMC class wetlands were 

found to have normal distributions for the length, width, depth, and surface area, with 

only the volume measurements being log-normal. 
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The standard deviation of both the length and width of PEMC are greater than 

PEMA, meaning that their dispersion about the means are greater, The means of PEMA 

are approximately 50% greater in length, 30% less in width, meaning a larger and more 

elongate form than seen in the PEMC (Figure 6) 
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Figure 6: Comparison of Length/Width Mean and Standard Deviation of PEMA, PEMC, 
and Combined Classes. 
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Figure 7: Comparison of Surface Area/Volume Mean and Standard Deviation of PEMA, 
PEMC, and Combined Classes. 
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Figure 8: Comparison of Depth Mean and Standard Deviation of PEMA, PEMC, and 
Combined Classes. 

The volume of PEMC is approximately 25% greater than PEMA and the standard 

deviation is approximately 30% greater. (Figure 7). The surface area of PEMC class 

wetlands are twice as large as the PEMA class. Lastly, the standard deviation of the 

PEMC class area are found to be twice that of the PEMA class. 

Surface area and volume further illustrate the larger geometries of the PEMC 

class of wetland. (Combined with a larger standard deviation) This illustrates a higher 

degree of dispersion in PEMC, which are flooded each year, whereas PEMC are subject 

to ephemeral and short-term flooding and therefore have less time when there is no water 

present. 

To verify whether the PEMC and PEMA values for length, width, depth, surface 

area, and volume come from the same population, both a T-test and an F-test were 

completed at the 95th percentile. The T-test calculates the probability that both classes 
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come from a population with the same mean, while the F-test is used to establish whether 

both the PEMC and PEMA come from populations with the same variance. 

The T and F tests found that variance and means for the lengths of the PEMC and 

PEMA are from the same populations. Although the PEMC displays overall larger 

lengths, this essentially means that the means and the variance were the same. The widths 

were from populations with different means but the same variance. This illustrates the 

fact that the PEMC has an overall larger mean when compared to the PEMA, while the 

variance or dispersion about that mean are statistically the same. The depths were found 

to have the same mean but different variance. This indicates the PEMC has greater 

dispersion about that same mean. The surface area of PEMC and PEMA were found to 

have the same means and variances. Lastly, the volumes of PEMC and PEMA were 

found to have the same mean with different variance. 

The correlation between PEMC values of length, width, depth, volume, and 

surface area (Table 7) shows that surface area has a significant relationship between all of 

the measured traits except for depth, which has its strongest correlation with volume 

(0.68). 

Table 7: Correlation Matrix for Physical Measurement Values for PEMC Wetlands. 

Length Width Max. Depth Surface Area Volume 

Length 

Width 0.86 

Max. depth 0.50 0.55 

Surface area 0.91 0.95 0.44 

Volume 0.87 0.89 0.68 0.90 
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The PEMA correlation matrix (Table 8) suggests a close connection between all 

of the measured traits except depth, which, as seen in the PEMC class, has its strongest 

correlation with volume (0.90). 

Table 8: Correlation Matrix for Physical Measurement Values for PEMA Wetlands. 

Length Width Max. depth Surface area Volume 

Length 

Width 0.79 

Max. depth 0.48 0.47 

Surface area 0.96 0.89 0.47 

Volume 0.71 0.67 0.90 0.74 

There are higher correlations when the PEMC and PEMA classes are combined. 

There is an increased correlation (90%) between the maximum depth and volume seen in 

the PEMA classes. In PEMC, the maximum depth- area correlation is greater, and the 

PEMA maximum depth- volume correlation is greater. This is due to geometrical 

differences involving their shapes. 

Discriminant analysis on PEMC and PEMA was conducted using the DISCRIM 

program at the 95th percentile. The DISCRIM program provides an end F-ratio value that 

can be compared with the tabular values in Davis (2000). The discriminant analysis F

ratio calculated was 4.54. In order for the data to be considered as one group, the F-ratio 

must be below 2.83 (Davis, 2000). This indicates that the two groups are distinct and 

separate, with depth contributing the largest to the difference. The depth value also had 

the highest correlation, as illustrated by Table 8. Galatowitsch and van der Valk (1994) 

stated that while there are differences in the presence of flora and fauna between 

32 



potholes, this is primarily due to differences in basin morphology (specifically depth), 

size, hydrology, and water chemistry. 

Separate power functions were generated for both PEMA and PEMC classesin 

order to illustrate any differences between the two. Figure 9 shows the power regression 

for the PEMC class. A correlation coefficient of 0.90 was calculated which, when 

compared to the other approaches, can be considered significant. 
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Figure 9: Best Fit Power Regression Line for PEMC Class Wetlands (Surface Area in 
Square Meters and Volume, Cubic Meters). 

The PEMA class has a somewhat lower correlation coefficient (0.76). (Figure 10). 

This value is within the acceptable range demonstrated by the other statistical methods. 
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Figure 10: Best Fit Power Regression Line for PEMA Class Wetlands (Surface Area in 
Square Meters and Volume, Cubic Meters). 
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CHAPTERIV 

CONCLUSIONS 

There is a high degree of variability between the potholes in different sub-regions 

of the PPR and within an individual watershed. Attempts to quantify the differences in 

volume in relation to surface area have met with moderate success on a local basis. 

Difficulties in deriving an equation that can be successfully applied to all watersheds 

within the PPR are partially due to the lack of a classification scheme based on 

geometrical properties. 

The system of classification of wetlands developed by Cowardin (1979) proved 

successful in differentiating two classes of pothole found in the UTR watershed, the 

PEMA and PEMC. These two classes, separated by differences in water permanence, will 

have distinct physical differences in depth, surface area and volume. Aro and Branson 

(1962) state that the ratio of open water to vegetation-covered areas, as well as species 

zonation, is linked directly to the depth of water in the potholes. This fact, in light of the 

discriminant analyses results presented herein, indicate that depth is the major factor for 

distinguishing the two groups. 

Curve values generated for the different transects for each pothole failed to 

produce any viable correlations or distributions. This means that subsurface symmetry is 

lacking log-normal or normal distributions, with each of the different transects displaying 
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no correlation to each other. This helps to explain the inability of other regression 

equations to adequately model potholes in other watersheds. 

Additional surveying needs to be completed within the different sub-regions of 

the PPR to increase bathymetric data. Analysis of these additional data could be used to 

support or refute the applicability of the Cowardin et al. (1979) system of classification 

and NWI data for simple predictions of pothole volume. These measurements need to 

include classes not outlined in this study and on a scale that makes our assumptions more 

meaningful. The divisions may exist at the subsystem or system levels of the NWI 

classification system. 

Careful consideration to include all data collected will provide subsequent 

researchers with the ability to produce single, combined equations relating surface area to 

volume, as seen in Hahn and Johnson (1967). It is only through this inclusion that a 

single set of equations can be produced for separate NWI classes as well as the possibility 

of a single, master equation for the PPR. 
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APPENDIX 1: NATIONAL WETLANDS INVENTORY (NWI) CLASSIFICATIONS 
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The national wetlands inventory (NWI) classification system was developed by 

Cowardin et al. (1979) to provide a framework for classifying wetlands. The first 

delineation is the system, which divides the wetlands into five distinct categories: marine, 

estuarine, riverine, lacustrine, and palustrine. The first letter P in the PEMC and PEMA 

designations, represents palustrine. The palustrine category includes marshes, wet 

meadows, fens, playas, pocosins, bogs, swamps, and small shallow ponds. The palustrine 

system displays the following characteristics: 

(1) Area less than 81 square decameters 

(2) Lack of wave-formed or bedrock shoreline 

(3) Water depth less than 2 meters at low water 

(4) Salinity due to ocean derived salts less than 0.5%0 

The next delineation is subsystem. Since this level of classification does not apply 

to palustrine systems, it will not be discussed further. Each system/subsystem is further 

divided into classes, which describe the substrate or dominant vegetative form. There are 

five vegetative classes for areas across which vegetation covers 30% or more of the 

surface. These include aquatic bed, moss-lichen, emergent, scrub-shrub, and forested 

wetlands. There are an additional six classes that designate a general lack of vegetative 

cover. The EM in PEMC and PEMA classify these potholes within the emergent 

wetlands class. The emergent wetland class is characterized by erect, herbaceous, rooted, 

hydrophytes, excluding mosses and lichens. 

Each class is further subdivided into subclass, which define the dominant 

vegetation and the substrate in non-vegetated areas. Within this subclass, a variety of 
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modifiers can be added to illustrate characteristics such as soil types, chemistry, and 

human effects. 

In the context of this study, the A, C, or F modifier designates the water regime 

present in the pothole. A refers to temporarily flooded, F semi-permanently flooded, and 

C seasonally flooded. The lower case d seen in PEMCd is a special modifier that signifies 

the poorly drained nature of this class of wetland. 
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APPENDIX 2: DERIVING THE HAYASHI AND VAN DER KAMP EQUATIONS 
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When deriving the Hayashi and Van der Kamp (2000) equations the first step is to 

complete two transects for each pothole, one in the north-south direction and another in 

the east-west direction by measuring depth at three meter intervals. Once collected they 

are entered into a mapping program such as SURFER and gridded/mapped. 

The first step is to determine what the "p" (profile) constant for the particular 

depression. This is completed by using the equation: 

(14) 

The r variable represents the overall radius of the surveyed depression and the y 

variable is referencing the total depth, y O is the unit depth. Since the interval and unit 

applied is one meter, this means that y0 is always one meter. The r0 represents what the 

radius of the depression would be at the unit depth (ho). Once these three values are 

known we can then enter them into a modified version of the above equation: 

1nL 

p=~ 
r 

ln-
ro 

(15) 

The p constant is essentially a ratio of the unit radius and depth to the total 

depression radius and depth. The p value is the degree of curvature of the pothole bank 

slope. 

The third step is to derive s using the following equation: 

S= Ilr 2 
0 
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Solving for s gives us what Hayashi and Van der Kamp (2000) refer to as a 

scaling constant; essentially it is the area of the water surface when the depth is one 

meter. 

The volume is then calculated using the following equation: 

( 

S )( h
1
+(

2
/ p) J 

V= (1+2/p) h;'P (17) 
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APPENDIX 3: SURVEY DATA 
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--------------

Length Width Depth Volume Area 
Pond# Lat Long NWI Class meters meters meters meters "3 meters"2 

1 48.01 -97.90 PEMCd 67.06 45.72 1.07 1074.33 3064.15 
2 48.01 -97.91 PEMCd 131 .06 79.25 1.22 5223.01 10342.05 
3 48.01 -97.91 PEMC 155.45 76.20 1.21 4847.04 11786.86 
4 48.02 -97.90 PEMCd 85.34 54.86 1.26 2394.10 4680.68 
5 n/a n/a unknown 115.82 100.58 1.11 5478.57 11635.70 
6 n/a n/a unknown 60.96 54.86 0.85 683.58 3150.89 
9 48.04 -97.91 u 88.39 45.72 0.42 550.88 3987.39 
10 48.04 -97.92 PEMA 36.58 33.53 0.54 212.61 1187.39 
11 n/a n/a unknown 45.72 33.53 0.43 224.67 1477.03 
12 48.00 -97.93 PEMC 70.10 67.06 1.53 2841.84 4695.16 
14 47.99 -97.92 PEMA 45.72 36.58 0.16 50.28 1598.21 
15 47.99 -97.92 PEMA 21 .34 21.34 0.22 21 .16 355.73 
16 47.99 -97.92 PEMA 42.67 30.48 0.55 243.96 1299.64 
17 47.99 -97.92 PEMA 54.86 51 .82 0.57 331 .24 2826.42 
18 47.99 -97.92 PEMA 121 .92 54.86 0.39 652.33 6657.27 
19 47.99 -97.92 PEMA 39.62 39.62 0.37 160.29 1397.63 
20 47.99 -97.92 PEMA 33.53 30.48 0.26 25.69 1020.70 
21 47.99 -97.93 PEMF 134.11 115.82 1.13 6202.67 15530.13 
22 47.99 -97.93 PEMC 57.91 42.67 0.92 595.05 2465.71 
23 47.98 -98.00 PEMC 146.30 91.44 0.90 4340.14 13042.61 
24 47.98 -98.00 PEMC 94.49 70.10 1.41 3769.06 6621 .77 
25 47.98 -98.00 PEMC 85.34 54.86 1.12 1564.28 4421 .42 
26 47.96 -97.99 PEMC 82.30 57.91 0.93 1584.01 4763.38 
27 47.96 -97.99 PEMC 67.06 45.72 0.47 480.05 3064.42 
28 47.95 -97.99 PEMC 100.58 57.91 0.69 1298.85 5822.99 
29 48.00 -98.01 PEMA 57.91 48.77 0.35 319.12 2730.77 
30 47.98 -98.01 PEMA 57.91 39.62 0.60 313.85 2292.70 
31 47.96 -98.01 PEMC 170.69 152.40 1.08 7323.19 26006.55 
32 47.97 -98.01 PEMA 39.62 36.58 0.23 86.11 1448.25 
33 47.97 -98.01 PEMA 48.77 42.67 0.33 140.35 2078.58 
34 47.98 -98.02 PEMC 103.63 67.06 0.79 2567.02 6751.23 
35 47.98 -97.92 PEMC 134.11 73.15 1.58 5577.16 9736.44 
36 47.98 -97.92 PEMC 106.68 73.15 1.60 3875.04 7786.15 
37 47.98 -98.03 PEMC 82.30 39.62 0.77 644.51 3196.17 
40 48.03 -98.01 PEMC 146.30 146.30 1.36 6914.35 17855.49 
41 48.03 -98.01 PEMC 33.53 27.43 0.29 97.18 918.34 
42 48.03 -98.01 PEMC 85.34 76.20 0.91 1950.79 6501 .06 
43 48.03 -98.00 PEMC 118.87 79.25 0.92 2882.21 9415.74 
44 48.04 -98.00 PEMF 33.53 30.48 0.38 85.15 1019.90 
45 48.04 -97.99 PEMC 97.54 54.86 0.86 1722.82 5347.58 
46 48.04 -97.99 PEMC 45.72 27.43 0.42 93.07 1248.41 
47 48.05 -98.02 PEMC 27.43 21 .34 0.15 28.29 584.46 
48 48.05 -98.00 u 45.72 27.43 0.26 114.28 1252.11 
49 48.05 -98.00 PEMC 48.77 48.77 0.90 714.22 2372.85 
50 48.04 -97.98 PEMC 103.63 73.15 0.78 2060.35 7577.99 
51 48.01 -97.90 PEMC 57.91 36.58 1.04 575.46 2103.91 



Length Width Depth Volume Area 
Pond# Lat Lono NWI Class meters meters meters meters "3 meters112 

52 48.01 -97.90 PEMC 42.67 42.67 0.83 433.77 1818.66 
53 48.02 -97.92 PEMA 60.96 39.62 0.65 549.42 2414.25 
54 48.02 -98.06 PEMC 42.67 42.67 0.60 362.27 1818.42 
55 48.03 -98.05 PEMA 91.44 42.67 0.70 999.33 3896.73 
56 48.04 -98.05 PEMA 45.72 42.67 0.54 324.40 1948.41 
57 n/a n/a unknown 91 .44 85.34 0.42 1071 .84 7581 .79 
58 48.01 -98.04 PEMC 33.53 33.53 0.40 99.32 960.67 
59 47.98 -98.02 PEMA 39.62 39.62 0.34 94.49 1504.62 
60 47.98 -97.98 PEMC 94.49 64.01 1.55 3294.73 6032.32 
61 48.05 -98.06 PEMC 67.06 64.01 1.05 1429.57 4274.63 
62 48.06 -98.01 PEMC 39.62 36.58 1.19 584.45 1417.39 
63 48.06 -97.97 PEMC 54.86 51 .82 0.31 287.57 2822.78 
64 48.06 -97.97 PEMC 76.20 30.48 0.34 128.85 2135.98 
65 48.03 -97.96 PEMF 33.53 33.53 0.33 99.05 1069.72 
66 48.04 -97.95 PEMA 60.96 42.67 1.29 1282.65 2545.42 
67 48.02 -97.91 PEMC 73.15 57.91 0.70 891 .18 4111 .20 
68 48.05 -97.90 PEMC 45.72 36.58 0.65 337.55 1652.38 
69 48.04 -98.03 PEMA 82.30 54.86 1.68 2306.64 4504.54 
70 48.04 -98.03 PEMC 27.43 24.38 0.55 87.71 640.23 
71 48.03 -98.03 PEMC 42.67 39.62 0.66 288.57 1680.71 
72 47.99 -97.91 PEMA 106.68 73.15 0.88 1863.39 7483.22 
73 47.99 -97.90 PEMC 100.58 91 .44 1.67 6714.24 9182.93 
74 47.99 -97.90 PEMC 67.06 64.01 1.58 1889.17 4285.74 
75 47.99 -97.94 PEMCd 103.63 73.15 0.60 1890.69 7565.92 
76 48.02 -98.06 PEMA 64.01 60.96 0.47 502.67 3675.63 
77 48.00 -97.93 PEMA 27.43 24.38 0.13 20.68 666.87 

78 47.99 -97.98 PEMC 60.96 51 .82 1.04 671 .92 3014.93 

79 48.04 -97.98 PEMC 27.43 18.29 0.17 15.68 372.15 
80 48.05 -98.00 PEMC 51.82 51 .82 1.30 1350.12 2651 .63 

81 n/a n/a unknown 45.72 33.53 0.87 412.67 1529.50 
82 nla n/a unknown 45.72 42.67 0.44 269.78 1876.67 

83 n/a n/a unknown 51 .82 45.72 1.08 791 .97 2367.37 

84 n/a n/a unknown 51 .82 48.77 1.44 1274.65 2511 .81 

85 n/a n/a unknown 73.15 45.72 1.11 1176.33 3305.74 

86 n/a n/a unknown 48.77 24.38 0.43 191 .93 1168.01 

87 n/a n/a unknown 54.86 45.72 0.75 522.03 2484.45 
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SLOPES x2 
Pond# NWI Class North-Mid Mid-South West-Mid Mid-East 

T1 T2 T3 T4 
1 PEMCd 1.00E-04 5.00E-04 5.00E-04 2.00E-05 
2 PEMCd 1.00E-04 1.00E-04 2.00E-04 4.00E-03 
3 PEMC 2.00E-04 2.00E-04 1.00E-04 8.00E-05 
4 PEMCd 2.00E-04 4.00E-04 4.00E-04 6.00E-04 

10 PEMA 8.00E-04 6.00E-07 8.00E-04 6.00E-04 
12 PEMC 5.00E-04 2.00E-04 4.00E-04 4.00E-04 
14 PEMA 5.00E-07 1.00E-04 3.00E-04 2.00E-04 
15 PEMA 3.00E-04 1.30E-03 6.00E-04 2.80E-03 
16 PEMA 3.00E-04 2.00E-04 3.00E-04 8.00E-04 
17 PEMA 4.00E-04 2.00E-04 5.00E-04 1.00E-04 
18 PEMA 5.00E-06 5.00E-07 1.00E-04 5.00E-10 
19 PEMA 5.00E-04 -1.00E-05 6.00E-04 -8.00E-05 
20 PEMA 1.00E-04 3.00E-04 1.00E-04 5.00E-04 
21 PEMF 2.00E-04 2.00E-05 2.00E-04 2.00E-04 
22 PEMC 2.00E-04 4.00E-04 6.00E-04 9.00E-05 
23 PEMC 1.00E-05 8.00E-05 5.00E-05 1.00E-04 
24 PEMC 5.00E-04 4.00E-04 2.00E-04 3.00E-04 
25 PEMC 3.00E-04 2.00E-04 4.00E-04 3.00E-04 
26 PEMC 5.00E-04 3.00E-04 2.00E-04 2.00E-04 
27 PEMC 1.00E-04 2.00E-06 1.00E-04 3.00E-05 
28 PEMC 9.00E-05 6.00E-05 7.00E-04 2.00E-04 
29 PEMA 1.00E-04 3.00E-04 1.00E-04 2.00E-04 
30 PEMA 2.00E-04 2.00E-05 6.00E-04 9.00E-04 
31 PEMC 2.00E-05 2.00E-05 9.00E-05 1.00E-04 
32 PEMA 7.00E-04 8.00E-05 2.00E-04 1.00E-04 
33 PEMA 3.00E-04 1.00E-04 2.00E-05 1.00E-05 
34 PEMC 2.00E-05 6.00E-04 2.00E-04 7.00E-05 
35 PEMC 6.00E-05 6.00E-05 2.00E-04 1.00E-04 
36 PEMC 4.00E-04 3.00E-04 9.00E-05 2.00E-04 
37 PEMC 1.90E-03 7.00E-04 4.00E-06 2.00E-04 
40 PEMC 2.00E-04 5.00E-04 1.00E-04 9.00E-05 
41 PEMC 4.00E-04 7.00E-04 2.00E-04 2.00E-04 
42 PEMC 9.00E-05 2.00E-04 8.00E-05 2.00E-04 
43 PEMC 3.00E-05 3.00E-04 2.00E-04 1.00E-04 
45 PEMC 2.00E-04 2.00E-04 4.00E-04 2.00E-04 
46 PEMC 9.00E-04 1.20E-03 2.00E-04 4.00E-04 
47 PEMC 3.00E-04 1.10E-03 4.00E-04 4.00E-04 
49 PEMC 7.00E-04 2.00E-04 2.00E-04 5.00E-04 
50 PEMC 7.00E-06 6.00E-05 2.00E-04 4.00E-04 
51 PEMC 8.00E-05 1.00E-03 6.00E-04 6.00E-04 
52 PEMC 8.00E-05 1.00E-04 1.60E-03 1.00E-04 
53 PEMA 1.10E-03 2.00E-04 3.00E-04 4.00E-04 
54 PEMC 5.00E-04 2.00E-04 5.00E-04 6.00E-04 
55 PEMA 1.00E-04 1.00E-04 2.00E-04 3.00E-04 
56 PEMA 3.00E-04 7.00E-04 3.00E-04 6.00E-05 
58 PEMC 4.00E-04 7.00E-04 1.10E-03 9.00E-04 
59 PEMA 3.00E-04 1.00E-04 4.00E-04 7.00E-05 
60 PEMC 3.00E-04 3.00E-04 3.00E-04 3.00E-04 



SLOPES x2 
Pond# NWI Class North-Mid Mid-South West-Mid Mid-East 

T1 T2 T3 T4 
61 PEMC 3.00E-04 3.00E-04 2.00E-05 8.00E-05 
62 PEMC 9.00E-04 1.SOE-03 3.00E-03 8.00E-04 
63 PEMC 1.00E-04 2.00E-04 6.00E-05 2.00E-06 
66 PEMA 7.00E-04 6.00E-04 2.00E-03 1.20E-03 
67 PEMC 3.00E-04 1.00E-04 1.00E-04 5.00E-04 
68 PEMC 8.00E-04 8.00E-04 3.00E-04 1.00E-04 
69 PEMA 4.00E-04 5.00E-04 4.00E-04 4.00E-04 
70 PEMC 9.00E-04 1.40E-03 1.00E-04 7.00E-04 
71 PEMC 5.00E-04 3.00E-04 2.00E-04 6.00E-04 
73 PEMC 2.00E-04 3.00E-04 3.00E-04 5.00E-04 
74 PEMC 3.00E-04 6.00E-04 6.00E-04 5.00E-05 
75 PEMCd 3.00E-04 2.00E-04 1.00E-04 1.00E-04 
76 PEMA 3.00E-04 1.00E-04 1.00E-04 2.00E-04 
77 PEMA 5.00E-04 3.00E-04 1.00E-03 1.00E-04 
78 PEMC 6.00E-04 6.00E-04 5.00E-04 2.00E-04 
79 PEMC 3.00E-04 5.00E-04 2.10E-03 n/a 
80 PEMC 1.00E-03 8.00E-04 8.00E-04 6.00E-04 
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Figure 11: Hahn and Johnson (1967) Generated Volumes Versus the SURFER Modeled 
Volumes (Both in Meters Cubed). 
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Figure 12: Wise et al. (2000) Generated Volumes Versus the SURFER Modeled Volumes 
(Both in Meters Cubed). 
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Figure 13: Weins (2001) Generated Volumes Versus the SURFER Modeled Volumes 
(Both in Cubic Meters). 
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Figure 14: Hansen (2002) Generated Volume Versus the SURFER Modeled Volume 
(Both in Meters Cubed). 
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Figure 14: Hayashi and van der Kamp (2001) Generated Volume Versus the SURFER 
Generated Volume (Both in Meters Cubed). 
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Descriptive Statistics for PEMA Class Wetlands 

length meters width meters depth meters volume cub. Meters area sq. meters vol/area 
Mean 1.84E+02 5.62E+01 1.39E+02 4.22E+01 1. 76E+OO 5.36E-01 1.77E+04 5.00E+02 2.74E+04 2.55E+03 5.22E-01 
Median 1.60E+02 4.88E+01 1.30E+02 3.96E+01 1.55E+OO 4.72E-01 1.11E+04 3.14E+02 2.24E+04 2.08E+03 3.84E-01 
Mode 1.30E+02 3.96E+01 130, 140i24, 42.672 
Std Error 1.83E+01 5.59E+OO 8.71E+OO 2.65E+OO 2.67E-01 8.14E-02 4.80E+03 1.36E+02 4.32E+03 4.01E+02 9.68E-02 
Std Dev. 8.41 E+01 2.56E+01 3.99E+01 1.22E+01 1.22E+OO 3.73E-01 2.20E+04 6.23E+02 1.98E+04 1.84E+03 4.43E-01 
Variance 7.07E+03 6.56E+02 1.59E+03 1.48E+02 1.50E+OO 1.39E-01 4.83E+08 3.88E+05 3.91E+08 3.38E+06 1.97E-01 
Coeff. Var. 4.56E+01 4.56E+01 2.88E+01 2.88E+01 6.96E+01 6.96E+01 1.25E+02 1.25E+02 7.21E+01 7.21 E+01 8.50E+01 
Minimum 7.00E+01 2.13E+01 7.00E+01 2.13E+01 4.20E-01 1.28E-01 7.30E+02 2.07E+01 3.83E+03 3.56E+02 8.26E-02 
Maximum 4.00E+02 1.22E+02 2.40E+02 7.32E+01 5.52E+OO 1.68E+OO 8.15E+04 2.31E+03 8.06E+04 7.48E+03 1.68E+OO 
Range 3.30E+02 1.01 E+02 1. 70E+02 5.18E+01 5.1 OE+OO 1.55E+OO 8.07E+04 2.29E+03 7.67E+04 7 .13E+03 1.60E+OO 
Count 2.10E+01 2.10E+01 2.10E+01 2.10E+01 2.10E+01 2.10E+01 2.10E+01 2.10E+01 2.10E+01 2.1 OE+01 2.1 OE+01 
Skewness 1.22E+OO 1.22E+OO 6.79E-01 6. 79E-01 1.86E+OO 1.86E+OO 1.91E+OO 1.91E+OO 1.52E+OO 1.52E+OO 1. 71 E+OO 
P(Skewnef 1.99E-02 1.99E-02 1.65E-01 1.65E-01 1.27E-03 1.27E-03 1.01E-03 1.01E-03 5.58E-03 5.58E-03 2.42E-03 
Kurtosis 1.20E+OO 1.20E+OO 9.21E-01 9.21 E-01 3.93E+OO 3.93E+OO 3.17E+OO 3.17E+OO 2.11E+OO 2.11 E+OO 2. 78E+OO 
P(Kurtosis) 2.03E-01 2.03E-01 2.83E-01 2.83E-01 1.11E-02 1.11E-02 2.33E-02 2.33E-02 7.12E-02 7.12E-02 3.45E-02 



Descriptive Statistics for PEMC Class Wetlands 

length meters width meters depth meters volume cub. Meters area sq. meters vol/area 
Mean 2.59E+02 7.90E+01 1.91E+02 5.81E+01 3.02E+OO 9.20E-01 6.89E+04 1.95E+03 5.71E+04 5.30E+03 1.01E+OO 
Median 2.40E+02 7.32E+01 1.80E+02 5.49E+01 3.00E+OO 9.14E-01 4.77E+04 1.35E+03 4.60E+04 4.27E+03 9.84E-01 
Mode 2.20E+02 6.71E+01 2.40E+02 7.32E+01 
Std Error 1.79E+01 5.46E+OO 1.33E+01 4.05E+OO 2.00E-01 6.10E-02 1.06E+04 3.00E+02 7.84E+03 7.29E+02 8.07E-02 
Std Dev. 1.20E+02 3.67E+01 8.90E+01 2.71E+01 1.34E+OO 4.09E-01 7.12E+04 2.01 E+03 5.26E+04 4.89E+03 5.41E-01 
Variance 1.45E+04 1.34E+03 7.93E+03 7.37E+02 1.80E+OO 1.68E-01 5.06E+09 4.06E+06 2.77E+09 2.39E+07 2.93E-01 
Coeff. Var. 4.64E+01 4.64E+01 4.67E+01 4.67E+01 4.45E+01 4.45E+01 1.03E+02 1.03E+02 9.22E+01 9.22E+01 5.37E+01 
Minimum 9.00E+01 2.74E+01 6.00E+01 1.83E+01 5.00E-01 1.52E-01 5.54E+02 1.57E+01 4.01 E+03 3. 72E+02 1.38E-01 
Maximum 5.60E+02 1.71 E+02 5. OOE+02 1.52E+02 5.47E+OO 1.67E+OO 2.59E+05 7.32E+03 2.80E+05 2.60E+04 2.40E+OO 
Range 4.70E+02 1.43E+02 4.40E+02 1.34E+02 4.97E+OO 1.51E+OO 2.58E+05 7.31E+03 2.76E+05 2.56E+04 2.26E+OO 
Count 4.50E+01 4.50E+01 4.50E+01 4.50E+01 4.50E+01 4.50E+01 4.50E+01 4.50E+01 4.50E+01 4.50E+01 4.50E+01 
Skewness 6.38E-01 6.38E-01 1.60E+OO 1.60E+OO 3.44E-02 3.44E-02 1.27E+OO 1.27E+OO 2.24E+OO 2.24E+OO 4.39E--01 
P(Skewne! 7.22E-02 7.22E-02 1.62E--04 1.62E--04 9.18E-01 9.18E--01 1.39E--03 1.39E-03 2.69E-06 2.69E-06 2.03E-01 
Kurtosis -1.96E-01 -1 .96E-01 4.10E+OO 4.10E+OO -7.45E-01 -7.45E-01 7.66E-01 7.66E-01 6.80E+OO 6.80E+OO -2.86E--01 
P(Kurtosis) 6.11E-01 6.11E-01 2.02E--03 2.02E--03 2.49E-01 2.49E--01 2.40E--01 2.40E--01 1.37E--04 1.37E-04 5.30E-01 
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