University of North Dakota

Systematics, diversity, and origins of upper cretaceous continental molluscan fauna in the infraand intertrappean strata of the Deccan Plateau, central India

Marron J. Bingle-Davis
University of North Dakota

Follow this and additional works at: https:// commons.und.edu/theses
Part of the Geology Commons

Recommended Citation

Bingle-Davis, Marron J., "Systematics, diversity, and origins of upper cretaceous continental molluscan fauna in the infra- and intertrappean strata of the Deccan Plateau, central India" (2012). Theses and Dissertations. 24.
https://commons.und.edu/theses/24

SYSTEMATICS, DIVERSITY, AND ORIGINS OF UPPER CRETACEOUS CONTINENTAL MOLLUSCAN FAUNA IN THE INFRA- AND INTERTRAPPEAN STRATA OF THE DECCAN PLATEAU, CENTRAL INDIA
by

Marron J. Bingle-Davis
Bachelor of Science, Michigan State University, 2002
Master of Science, University of North Dakota, 2005

A Dissertation
Submitted to the Graduate Faculty
of the
University of North Dakota
in partial fulfillment of the requirements
for the degree of
Doctor of Philosophy
Grand Forks, North Dakota
August
2012

This dissertation, submitted by Marron J. Bingle-Davis in partial fulfillment of the requirements for the Degree of Doctorate of Philosophy from the University of North Dakota, has been read by the Faculty Advisory Committee under whom the work has been done and is hereby approved.

This thesis meets the standards for appearance, conforms to the style and format requirements of the Graduate School of the University of North Dakota, and is hereby approved.

PERMISSION

Title Systematics, Diversity, and Origins of Upper Cretaceous Continental Molluscan Fauna in the Infra- and Intertrappean Strata of the Deccan Plateau, Central and Western India
Department Geology
Degree Doctor of Philosophy

In presenting this dissertation in partial fulfillment of the requirements for a graduate degree from the University of North Dakota, I agree that permission for extensive copying for scholarly purposes may be granted by the professor who supervised my dissertation work or, in his absence, by the chairperson of the department or the dean of the Graduate School. It is understood that any copying or publication or other use of this dissertation or part thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of North Dakota in any scholarly use which may be made of any material in my dissertation.

Date June 14, 2012

TABLE OF CONTENTS

LIST OF FIGURES viii
LIST OF TABLES xi
ACKNOWLEDGMENTS xii
ABSTRACT. xiii
CHAPTER
I. INTRODUCTION 1
II. PREVIOUS STUDIES 3
Before 1850 3
Stephen Hislop (1853-1860) 6
After 1860 12
III. GEOLOGY 15
Pioneering Geological Studies in the Deccan Plateau. 15
Geological History of the Deccan Plateau 19
Paleo- and Biogeography of India 23
The Deccan Flood Basalts 28
Geology of the Study Area 32
Infratrappean-InL009 Pijdura 32
Intertrappean 1- InL004 Takli 33
Intertrappean 2-InL096 Kalmeshwar 35
Intertrappean 3-InL017 Butera 36
Intertrappean 3-InL106 Sindhi 37
IV. METHODS 39
Field Methods 39
Locating Original Localities 39
Sample Collection 40
Section Measurement 40
Laboratory Methods 42
Sample Preparation 42
Photography 42
Orienting and Scaling Images 43
Character Measurement 44
Basic Parameters 44
General Shell Shape 46
Suture Angle 47
Number of Whorls 47
Coiling Direction 48
Spire Angle 48
Plane of Aperture to Axis of Shell 49
Umbilicus 49
Suture Depression 50
Whorl Shape 50
Presence of Keel 50
Shell Sculpture 50
Statistical Analyses 51
Cluster Analysis 52
Analysis of Variance 53
χ^{2} Tests 54
Morphologic Trends 54
V. RESULTS 55
Cluster Analysis for Gastropod Morphotype Identification 55
Analysis of Variance (ANOVA) for Locality Distinction 60
Morphotype "hydA" 60
Morphotype "hydB" 63
Morphotype "hydC" 64
Morphotype "hydD" 65
Morphotype "lymA" 65
Morphotype "lymB" 65
Morphotype "lymC" 66
Morphotype "phyA" 68
Morphotype "phyB" 70
Morphotype "styA". 71
Morphotype "styB" 71
Morphotype "styC" 72
Morphotype "valA" 73
Morphotype "valB" 73
Morphotype "vivA" 74
Morphotype "vivB" 76
χ^{2} Analysis for Locality Distinction 77
VI. DISCUSSION 79
Systematics 79
Morphologic Changes through Time 110
VII. CONCLUSIONS 124
APPENDICES 130
REFERENCES 247

LIST OF FIGURES

Figure Page

1. The Deccan (basalt) Plateau in green with all continental mollusk localities in pink. Study localities labeled and in yellow 5
2. Typical Deccan sedimentary sequence around Nagpur as described by Hislop 8
3. Hislop and Hunter's (1854) view on the eruption of the Deccan basalts and the deposition of infra- and intertrappean sediments 16
4. Generalized stratigraphic column of India 19
5. The Deccan Trap sequence and the deposition of infra- and intertrappean sediments 21
6. Paleogeography of India at $200 \mathrm{Ma}, 150 \mathrm{Ma}, 100 \mathrm{Ma}$, and 65 Ma time slices 24
7. Major subregions of the Deccan flood basaltic province 30
8. Stratigraphic section at Pijdura as interpreted by Samant and Mohabey (2005). 34
9. Stratigraphic section at Takli Girl's Hostel locality 35
10. Stratigraphic section at Kalmeshwar 36
11. Stratigraphic section at Sindhi as interpreted by Samant and Mohabey (2005) 38
12. Standard photographed gastropod views 43
13. Basic gastropod shell parameters 45
14. Named gastropod shell shapes. 46
15. Measurement of the number of whorls 47
16. A. Gastropod coiling direction. B. Plane of aperture to axis of shell 48
17. A. Umbilicus description. B. Suture depression (upper), Whorl shape (lower) 49
18. A. Keel description. B. Sculpture description 51
19. Dendrogram of analysis with all specimens (types and modern equivalents 57
20. 16 distinct morphotype outlines 58
21. ANOVA results from post-hoc Tukey's test for "hydA," "hydB," and "hydC" 62
22. ANOVA results from post-hoc Tukey's test for "lymB" and "lymC" 67
23. ANOVA results from post-hoc Tukey's test for "phyA" and "phyB" 69
24. ANOVA results from post-hoc Tukey's test for "valA" and "valB" 74
25. ANOVA results from post-hoc Tukey's test for "vivA" and "vivB" 75
26. Portion of the complete dendrogram with all specimens (including types and modern) containing the "hyd" morphologies 83
27. Portion of the complete dendrogram with all specimens (including types and modern) containing the "lym" morphologies 88
28. Portion of the complete dendrogram with all specimens (including types and modern) containing the "phy" morphologies 92
29. Portion of the complete dendrogram with all specimens (including types and modern) containing the "sty" morphologies 95
30. Subulinidae species of the African Laetoli locality (Harrison, 2011) 96
31. The modern species Zootecus insularis 97
32. Portion of the complete dendrogram with all specimens (including types and modern) containing the "val" morphologies 101
33. Portion of the complete dendrogram with all specimens (including types and modern) containing the "viv" morphologies 106
34. Changes in Tricula virapai 111
35. Changes in Tricula conoidea 112
36. Changes in Tricula sankeyi. 113
37. Changes in Thiara quadrilineata 113
38. Changes in Lymnaea oviformis 114
39. Changes in Lymnaea pokhariensis 115
40. Changes in Lymnaea subulata 116
41. Changes in Platyphysa prinsepii elongata. 117
42. Changes in Platyphysa prinsepii normalis. 118
43. Changes in Zootecus burji 118
44. Changes in Subulina subcylindracea 119
45. Changes in Subulina pyramis 120
46. Changes in Valvata multicarinata 121
47. Changes in Valvata unicarinifera. 121
48. Changes in Bellamya lattooformis 122
49. Changes in Bellamya normalis 123

LIST OF TABLES

Table Page

1. Type specimen information from Sowerby (1840) and Hislop (1860) 10
2. Deccan trap basalt subgroups 31
3. Locality information from 2006 field trip 41
4. Number of specimens of each morphotype in each locality 61
5. Number of species and specimens for each locality 78
6. Distribution of specimen shell minimum, maximum, and mean heights for each morphotype in each locality 111
7. List of historic and revised nomenclature, including revised family and new genus and species names 125

ACKNOWLEDGMENTS

I would first like to thank Dr. Joseph Hartman. He not only offered me this interesting and fulfilling project but also guided me along the way. I would also like to thank the University of North Dakota for providing Dr. Hartman and I the seed grant that allowed the field research to be completed in India. I also thank the University of North Dakota for providing student assistantship funding during the completion of my coursework. My thanks go out to Dr. Dhananjay Mohabey (Geology Survey of India), Dr. Sunil Bajpai (University of Roorkee), Dr. Henning Schölz (Museum für Naturkunde), and Dr. Ritu Sharma for providing invaluable assistance in the field and beyond. I also thank Ashley Ignatius, Jessica Haas, Kristyn Voegele, and Don McCollor for their assistance in the preparation of the bulk material. I would also like to thank my husband, Mike, for his countless help and patience during the course of my project. Finally, I would like to thank my daughter, Alice, for her unprecedented patience during the completion of this work.

To My Grandpa,
Ralph E. Patterson Jr.
He was the first to call me doctor but never got to see me become one.

Abstract

The Deccan Plateau in western and central India has been a major area of interest for researchers since the 1800s. In 1840, James Sowerby described the molluscan collection sent to him by John Malcolmson. In 1860, Stephen Hislop identified new molluscan species and redescribed based on better preserved material. Although this seminal work was comprehensive, interpretations have changed since the mid 1800s. Species need to be reassigned to current and/or accurate taxa, as well as revalidated statistically. Seventeen character traits were measured on over 600 specimens from five eastern Deccan Plateau localities representing a stratigraphic and temporal sequence. Cluster analysis was utilized to observe grouping patterns among specimens including Deccan type specimens and modern related species. Three new species (Lymnaea pokhariensis, Bellamya lattooformis, and Zootecus burji) and four new subspecies (Tricula conoidea conoidea, T. c. hislopi, Valvata unicarinifera unicarinifera, and V. u. chiknaformis) were identified and described. Three families with their associated genera and one genus (Viviparidae to Pomatiopsidae, Viviparidae to Subulinidae, Physidae to Planorbidae, and Viviparus to Bellamya) were revised to accommodate a more accurate taxonomic and biogeographic framework. Analysis of Variance (ANOVA) was employed to look at changes in morphology through the sequence and χ^{2} tests were used to observe changes in diversity and abundance. Overall, there is a dramatic decrease in species size with the onset of volcanism but morphology and diversity remain stable. Species abundance changes but the lack of pattern suggests it is not a result of the volcanism.

CHAPTER I

INTRODUCTION

The Deccan Traps have been a subject of diverse inquiry since the 1800 s including studies on basalt geochemistry, flow stratigraphy, and paleobiogeography. The diverse fossil assemblage, especially the dinosaurs and other vertebrates, has been studied extensively. Despite the amount of work done on the paleontology of the Deccan Plateau, little has been accomplished in regards to the continental mollusks. James Sowerby described the collection sent from John Malcolmson in 1840. He named four new species of gastropods (one Thiaridae ["Melaniidae"], one Viviparidae ["Paludinidae"], one Lymnaeidae, and one Physidae) and one new species of bivalve (Unionidae). Since Sowerby described new species from a collection sent to him, he did not describe geologic context in a detailed manner. Stephen Hislop comprehensively collected in the region surrounding Nagpur. In 1860 he published an expansion of Sowerby's work on the continental mollusks. He described 22 new species and three new subspecies of gastropods and four new species of bivalves, renamed one species of bivalve, and redescribed two of Sowerby's species using better specimens. Hislop incorporated a geologic description with his paleontology providing the first and last extensive study of the continental mollusks of the Deccan Plateau. Although Hislop's work on the mollusks was inclusive, his knowledge of molluscan taxonomy was limited. For example, he used Viviparidae as an all-inclusive family incorporating any broadly similar morphology. Therefore, it is necessary to reevaulate his familial placements. Also, much of the nomenclature used by Hislop is antiquated and in need of revision. Sowerby and Hislop used taxonomic categories that are no longer considered valid, like "Paludina,"
"Melania," and the alternative spelling "Limnea." Until the taxonomy is reviewed later in this paper, the current usages Viviparus, Thiara, and Lymnaea, respectively, will be applied.

The vast eruption of lava in the Deccan Plateau potentially contributed to the extinction event at the end of Cretaceous. The eruption was periodic with periods of volcanism punctuated by periods of quiescence, allows for a unique perspective on the potential effects of this volcanism over an extended period of time. Several groups exhibit patterns of extinction during this period of eruption, including the dinosaurs and many foraminifera (Pardo and Keller, 2008). Little is known regarding the pattern of biotic change in the continental mollusks. It is important to analyze morphologic changes as well as diversity and abundance changes to achieve a comprehensive understanding of the molluscan response to volcanism.

CHAPTER II

PREVIOUS STUDIES

Since the Deccan Traps have been examined extensively since the 1800s, a review of the history of Deccan research is vital to understanding this current work. Three phases of research are discussed below, the initial studies before 1850, the work of Stephen Hislop (1853-4, 1860), and subsequent studies after 1860 .

Before 1850
H. W. Voysey's studies describing the geology of central India provide the basis for subsequent work on both the Deccan trap sequence and the molluscan fossil assemblage (Figure 1). He described the hills around Nagpur as containing semi-columnar porous basalt underlying an indurated claystone underlying a nodular basalt (Voysey, 1833a). He considered the basalt to be of igneous origin under pressure of a large body of water (Voysey, 1833a). Voysey (1833b) observed fossil shells in the intertrappean indurated clay west of Nagpur that were siliceous with some specimens completely replaced by chalcedony. He considered these fossils of marine origin, which reinforced his speculation of the existence of a large body of ocean water covering peninsular India. Voysey (1833b) concluded the flattening of many of the specimens indicated the presence of heat during fossilization, which further reinforced his theory that the Deccan basalts were the result of subaqueous volcanic eruptions.

John Grant Malcolmson, a Lieutenant in the 3rd Bombay Light Cavalry, examined the geology of central India between Hyderabad and Nagpur. Although he sent his fossil specimens to London for investigation, he traced and described the trap related formations across the region. Malcolmson built his geologic interpretation on the prior work of Voysey, including Voysey's maps and identifications of specific lithologies. Malcolmson described the Deccan trap basalts as being either amygdaloidal or having a "concentric globular structure" and overlying, in many instances, a decaying granite (Malcolmson, 1836). He reported fossil shells from the intertrappean sediments near Eidlabad (part of the Sichel Hills also known as the Nirmul Range), Etchoda, Medcondah, Munoor, and between Munnoor and Thitnoor (Mekalgandy Ghat)
(Malcolmson, 1836, 1840) (Figure 1). Malcolmson (1836, 1840) noted that the fossils were found in situ and as float littering the ground, and their preservation as often converted into chalcedony but sometimes unaltered shell material effervescing in acid. Malcolmson concluded that although most mollusk specimens were from various freshwater families, some were apparently marine. He suggested that a large inland sea or estuary with associated continental environments, most likely lakes due to the accumulation of shells, existed during the eruption of the Deccan flood basalts (Malcolmson, 1836, 1840). He also stressed the importance of determining whether the fossils and basalts he observed in the Sichel Hills region could be correlated, temporally and geographically, to other trap outcrops in India. This type of correlation would establish not only the size of the eruption but an age relationships as well.

James Sowerby (1840) described and illustrated the continental invertebrate fossils obtained by Malcolmson in 1832 and 1833 from the Deccan region between Hyderabad and Nagpur. The collection included mainly mollusks but also included charophytes and ostracodes. Sowerby's species descriptions represent the first published taxonomic work on the Deccan infraand intertrappean continental mollusks. He described one species of charophyte, Chara

Figure 1. The Deccan (basalt) Plateau in green with all continental mollusk localities in pink.
Study localities labeled and in yellow (Geology - GSI, 1998; Base Map - Gizi Map, 2005).
malcolmsonii, two species of freshwater ostracode were described, Cypris cylindrical and Cypris subglobosa, two species of unionoid bivalves, Unio deccanensis and Unio tumida, and four species of freshwater gastropods, Thiara quadrilineata, Lymnaea subulata, Physa prinsepii, and Viviparus deccanensis (Sowerby, 1840). Many of the specimens were collected from Munnoor and other localities in the Sichel Hills Region and Chickni (Sowerby, 1840).

Stephen Hislop (1853-1860)

Reverend Stephen J. Hislop began his work on the geology and paleontology of the Deccan Plateau while he was in India as a Christian missionary. He arrived in India from Scotland in 1844 and founded the Christian Mission and College in Nagpur (Smith, 1888). In 1845 he started exploring the area around Sitabaldi Hill and Kamthi (Smith, 1888). Further missionary work opened up the region outside Nagpur to Hislop after 1847, and he expanded his interests to not only documenting the physical features but also the geological history and fossil and mineral assemblages of the region (Smith, 1888). It was his collaboration with Reverend Robert Hunter that led to his fundamental contribution to the knowledge of the paleontology of the Deccan Plateau. Hislop and Hunter took a walk in 1851 to observe the surrounding geology that resulted in a large collection of fossils, minerals, and rocks (Smith, 1888). Hislop reported that he found his first fossil, a Physa, on Sitabaldi Hill (Hislop, 1853). This collection was later sent to London and formed the basis of several major publications including Hislop's 1860 seminal paper. Hislop and Hunter explored and collected at many localities around the Nagpur region.

Hislop (1853) published his first major work with the Royal Asiatic Society's journal on the geology of Nagpur and of western Bengal and Central India. Hislop published several more papers with his partner Hunter, with the Geological Society of London beginning in 1854. Aside from the articles written by Hislop, others used his collections to write several more. For example, Sir C. Bunbury (1861) published descriptions of the plant fossils of Nagpur that were collected by Hislop and Hunter. Even though Hislop contributed so much to the understanding of the geology and paleontology of central India, he fell to tragedy. Hislop, while working on stone circles near Takalghat in 1863, attempted to cross an unexpectedly swollen Wana River and drowned.

Hislop recognized the previous work done by Voysey and Malcolmson as the foundation of his studies and stated that his main goals were to describe the fossils found in the Nagpur region and not the reexamination of the physical features already described. Although his main focus was fossils, he described the typical sequence of beds in the Nagpur area (Figure 2). Hislop (1853) described the beginning of the section as metamorphic rocks disturbed by granite. The crystalline basement rock is overlain by either a Precambrian limestone or marble depending on the locality, which Hislop observed was often dolotomized from what he suggests was likely heat (Hislop, 1853).

The Precambrian basement is overlain by early Mesozoic sandstone and shale beds, which were deposited while India was connected to the supercontinent Gondwana. This interval is composed of a lower, middle, and upper sandstone with shale at the base. The shale contained some fossil remains including reptile (claw impressions) and earthworm trace fossils and the plant Phyllotheca (Hislop, 1853). The middle sandstone also contained fossil material such as plants and two species of mollusk (e.g., the corbulid Cyrena). Hislop considered the entire sequence conformable.

Overlying the sandstone and shale sequence is the first basaltic flow, which Hislop noted was most often vesicular. The basal trap is overlain by the intertrappean which, which Hislop identified as the freshwater formation. He described the intertrappean bed as between two centimeters and two meters thick, but the composition, color, and fossil content was variable depending on locality (Hislop, 1853). The intertrappean bed is no more than half a meter thick in the vicinity of Nagpur. The intertrappean formation contained a diverse fossil assemblage including reptiles (and/or dinosaurs), fish, insects, crustaceans, mollusks, and plants. Hislop noticed a distinct similarity between the flora of Nagpur, the flora of the intertrappean strata of

Mumbai (Bombay) and to the fruit fossils of the London clay of the Isle of Sheppey (Hislop, 1853).

Figure 2. Typical Deccan sedimentary sequence around Nagpur as described by Hislop (1853; 1860).

Hislop (1853) noted the molluscan assemblage throughout Nagpur and the surrounding regions listing Sowerby's species and identifying any new species to the genus level only (e.g., Thiara quadrilineata and Thiara n. sp.). He named and described these new species in 1860 (Table 1). Hislop (1853) also noticed similarity between the Unio obtained from Chickni in the Nagpur region and those from Ellichpur in the Sichel Hills region discussed by Sowerby and Malcolmson (Figure 1).

In Nagpur, the intertrappean bed is overlain by a nodular basalt flow. Overlying the trap is an unfossiliferous laterite that extends over a large geographic area but is no more than 1.5 meters thick (Hislop, 1853). The final interval in the Nagpur Deccan sequence is a recent soil. The soil is either black or red in color and may contain, in the red soil, unaltered modern fluviatile and lacustrine shells, such as Unio, Cyrena, and Lymnaea.

Hislop suggested that the abundance of land plants, the presence of the continental corbulid, Cyrena, and the complete absence of marine species confirmed the freshwater origin of the Gondwanan interval. Similarly abundant land plants and freshwater mollusks and absence of marine species confirmed the freshwater origin of the intertrappean interval. This interpretation invalidates the alternative view held at that time that these two formations were formed under marine conditions and any freshwater species present were carried to the ocean. Hislop proposed that the freshwater system producing the intertrappean beds was extensive but shallow, which he concluded based on the maximum thickness of the intertrappean intervals. Hislop estimated the age of the intertrappean beds and associated traps were Eocene, which is contrary to the current age interpretation of Upper Cretaceous and early Paleocene.

In 1860, Hislop focused primarily on the paleontology. He described and named 27 new species and three new subspecies, added information to Sowerby's 1840 species descriptions, and discussed his interpretation of the geology of the Deccan trap sequence, with an emphasis on the nature of the body of water in which the lava extruded (Table 1) (Appendix 1). Hislop obtained his fossil collection from the Nagpur District and areas outside of the Nagpur province in all directions as far away as Jabalpur (270 km), Mekalgandi Ghat (240 km), and Rajamundry (560 km). Hislop's and Sowerby's collections were reposited in the National Museum of Natural History in London, England. Although Hislop and Sowerby did not designate type specimens,
lectotypes or neotypes were assigned from the collections at the National Museum of Natural
History (GS number series) (Hartman et al., 2008). Type localities are proposed in table 1.

Table 1. Type specimen information from Sowerby (1840), Hislop (1860), and Hartman et al. (2008). Taxon numbers refer to plates in Appendix 1.

Taxon Number	Species	Lectotype	Localities	Notes
01	Thiara [Melania] quadrilineata (Sowerby)	Plate 47, fig. 18 (GS 10421) (Sowerby, 1840)	Chikni*; Karwad (c); Pahadsingha (un); Karuni	Found with unionoids at Karuni
02	Thiara [Melania] hunteri (Hislop)	Plate V, fig. 1 (GS 10257) (Hislop, 1860)	Pahadsingha* (c)	Differs from M. quadrilineata by lack of carinae
03	Viviparus [Paludina] normalis (Hislop)	Plate V, fig. 2b (GS 10259) (Hislop, 1860)	Pijdura*(c); Takli(c); Karwad; Ambiakanti, Tandra, Kateru	Found in brackish localities (Kateru) as well as freshwater
04	Viviparus [Paludina] deccanensis (Sowerby)	Plate 47, fig. 20 (GS 10423) (Sowerby, 1840)	Munnoor*; Chikni; Takli; Karwad	Common wherever fossils found
05	Viviparus [Paludina] wapsharei (Hislop)	Plate V, fig. 3 (GS 10260) (Hislop, 1860)	$\begin{aligned} & \text { Karwad* (c); } \\ & \text { Pijdura (r) } \end{aligned}$	Differs from V. deccanensis by having banding and being smaller
06	Viviparus [Paludina] acicularis (Hislop)	Plate V, fig. 4 (GS 10261) (Hislop, 1860)	Telankhedi* (c); Butera; Chichundra, Takli, Little Tisti	Shell with or without banding; based on preservation
07	Viviparus [Paludina] pyramis (Hislop)	Plate V, fig. 5 (GS 10262) (Hislop, 1860)	Telankhedi* (r)	
08	Viviparus [Paludina] subcylindracea (Hislop)	Plate V, fig. 6 (GS 10263) (Hislop, 1860)	Telankhedi*	
09	Viviparus [Paludina] sankeyi (Hislop)	Plate V, fig. 7 (GS 10246) (Hislop, 1860)	Telankhedi*	
10	Viviparus [Paludina] takliensis (Hislop)	Plate V, fig. 8b (GS 10265) (Hislop, 1860)	Takli*	
11	Viviparus [Paludina] soluta (Hislop)	Plate V, fig. 9 (GS 10267) (Hislop, 1860)	Narbadda Territory* (c); Karwad (r)	
12	Viviparus [Paludina] conoidea (Hislop)	Plate V, fig. 10 (GS 10268) (Hislop, 1860)	Pijdura*	
13	Viviparus [Paludina] rawesi (Hislop)	Plate V, fig. 11b (GS 10270) (Hislop, 1860)	Takli* (c)	

Table 1 cont.

Taxon Number	Species	Lectotype	Localities	
14	Viviparus [Paludina] virapai (Hislop)	Plate V, fig. 12a (GS 10271a) (Hislop, 1860)	Takli*	Notes
	Valvata minina (Hislop)	Plate V, fig. 13 (GS $10273)$ (Hislop, $1860)$	Karwad* (c); Little Tisti (c); Butera (c); Karuni (c)	Much smaller than other valvatids, shell has fine striae
16	Valvata unicarinifera (Hislop)	Plate V, fig. 14 (GS 10274) (Hislop, 1860)	Butera*; Melanwada	More high-spired

Table 1 cont.

Taxon Number	Species	Lectotype	Localities	Notes
29	Platyphysa [Physa] prinsepii inflata (Hislop)	Plate V, fig. 23d (GS 10288) (Hislop, $1860)$	Chikni; Takli (c); Telankhedi (c); Butera* (c); Pijdura (c); Chichundra; Pangadi; Kateru	Found wherever fossils found; found in brackish sediments (Pangadi and Kateru)
30	Unio malcolmsoni (Hislop)	Plate XLVII, figs. 12 (GS 10417) (Sowerby, 1840)	Mekalgandi Ghat*	Hislop renamed U. tumida (Sowerby) due to its usage for another species
31	Unio deccanensis (Sowerby)	Plate XLVII, figs. 4 (GS 10411-2) (Sowerby, 1840) (syntypes); Plate VI, figs. 14a-c (Hislop, 1860) (lectotype)	Munnoor*; Sip Ghat (c); north of Ellichpur (c); Karuni (c)	Hislop redescribed this species based on better preserved material
32	Unio hunteri (Hislop)	Plate VI, fig. 25 (GS 10291) (Hislop, 1860)	Karuni* (c)	Inward radiating sculpture
33	Unio mamillatus (Hislop)	Plate VII, fig. 26 (GS 10942) (Hislop,	Karuni* (c)	Single row of small tubercles centrally from umbo
34	Unio imbricatus (Hislop)	Plate VII, fig. 27a (GS 10293) (Hislop, 1860)	Mekalgandi Ghat* (c)	Single row of small tubercles centrally from umbo
35	Unio malcolmsoni (Hislop)	Plate VII, fig. 28 (GS 10355) (Hislop, 1860)	Karuni* (r)	Elongate

* Proposed type locality
(c) Common, (uc) Uncommon, (r) Rare

After 1860

Although much work has been conducted on the Deccan traps and its associated flora and some fauna, little study has been done on the continental molluscan fauna since Hislop (1860). Paul Fischer (1883) proposed the introduction of a new genus, Platyphysa, to apply to the large physid species of the Deccan trap sequence in India. He suggested the large size, enlargement of the final whorl near the suture, and the truncation of the columella, although similar to Physopsis, should be considered a separate group related to Bulinus (Fischer, 1887).

In the 1920s, N. Annandale and B. Prashad worked on the continental mollusks of India and the taxonomy of Hislop. Much of Annandale's work was on the modern mollusks of India and the surrounding regions, but he also examined the taxonomic placement of Physa prinsepii (Sowerby). Annandale (1920) argued for the generic change from Physa to Bulinus based on the predominance of Bulinus in the southern hemisphere. He also asserted that Physa prinsepii elongata was the only valid variation of P. prinsepii and that P. prinsepii inflata was simply a common morphology of P. prinsepii (Annandale, 1920). He proposed that P. prinsepii elongata be changed to Bulinus elongatus. Finally, he suggested the introduction of a distinct variation of P. prinsepii normalis (and inflata) on the basis of its occurrence with estuarine species, and he proposed the names Bulinus prinsepii for the freshwater forms and Bulinus prinsepii euryhalinus for the estuarine forms (Annandale, 1920). Annandale (1921) also revised the fossil viviparids of India. Although he relied on Sowerby's and Hislop's illustrations without actual specimens, he suggested that Viviparus normalis was a true viviparid while V. rawesi was not (Annandale, 1921). He left the taxonomic status of the rest of Sowerby's and Hislop's species of Viviparus unresolved.

A colleague of Annandale, B. Prashad worked mostly on the modern freshwater mollusks of India and surrounding regions, but he also studied India's fossil mollusks. Prashad (1928) completed an extensive work on the recent and fossil Viviparidae around the world, including discussion of the species of Sowerby and Hislop. Prashad reexamined the type species of Viviparus deccanensis, which was identified by Sowerby (1840) and confirmed in the genus Viviparus by Newton (1920). Prashad (1928) suggested that the group Hislop called Viviparus was heterogeneous and that the species V. deccanensis was actually a member of Hydrobiidae. He proposed that all members of Hislop's Viviparus, aside from V. conoidea, which he considered juvenile examples of V. normalis, were members of either Hydrobiidae or Thiaridae (Prashad,
1928). Prashad also asserted that Annandale's alliance between Viviparus normalis Hislop and Viviparus dissimilis Müller was correct, and that not only does V. normalis represent the first occurrence of Viviparidae in India but the ancestral stock of the V. dissimilis group (Annandale, 1918; Prashad, 1928). According to Prashad (1928) and Annandale (1921), Physa prinsepii, as well as the viviparids, most likely lived in marshy (paludal) environments instead of lacustrine or fluvial. The viviparids may also have inhabited flowing streams. Prashad also worked on the condition of bivalves of the intertrappean beds by reexamining a mislabeled specimen in the Geological Survey of India collections. The specimen was from the intertrappean beds of Goraha, Narbada and was labeled as Pisidium medlicottianum Hislop. The specimen was neither a Pisidium nor a member of a related genus. Prashad identified the specimen as belonging to the unionoid genus Lamellidens and named his new species Lamellidens vredenburgi (Prashad, 1921).

Several publications mention the continental mollusks, but most often secondarily as components of the overall assemblage. In these instances, the authors use Sowerby's and Hislop's original identifications and taxonomy with little to no further investigation. In Rana (1984), mollusk species were described for the purposes of illustrating the assemblage occurring at Takli but not for the purpose of molluscan study. The preservation of the mollusk species was described with their geographic and stratigraphic occurrence. This type of account of molluscan fauna is repeated in other studies (e.g., Sahni et al., 1984; Sahni, 1986; Sahni, 1987; Mohabey, 1996). Here the authors reported the occurrence of mollusks as constituents of the assemblages or localities they studied, but they did not describe or report further on the species.

CHAPTER III

GEOLOGY

The geology of India and the Deccan Plateau is diverse spanning Precambrian to present day and recording India's complex paleogeographic history. Understanding the geologic history of India is important in comprehending the living and depositional context of the molluscan assemblage. Determining the geologic context will help resolve extinction scenarios and volcanism response. Knowledge of the history of interpretation of India's geology is also important in understanding the evolution of theory changes.

Pioneering Geological Studies in the Deccan Plateau

Early studies in Indian geology were completed mostly by members of the Geological Survey of India in the mid-1800s when Britain was surveying for India's natural resources. Joseph Medlicott (1859) wrote "On the geological structure of the central portion of the Narbadda (Nerbudda) District" while conducting a geologic survey of central India (Figure 1). Medlicott's (1859) work mostly concerned the examination of the volcanic rocks of the region and identified three major periods of basalt intrusion in India instead of just the phase that created the main Deccan Plateau. He recognized a period of volcanism before the oldest Talchir (Talcheer) beds (Carboniferous), a period before the Lower Damuda beds (Permian) and Mahadeva beds (Upper Triassic), and the period of major Deccan volcanism previously called the "great Basaltic period" that constitutes the overlying trap exposed throughout India (Medlicott, 1859). The first two
traps are not distinct lithologically or mineralogically from each other and are distinguishable from the more recent phase by its terrace morphology (Medlicott, 1859).

Medlicott (1859) also recognized multiple flows within the most recent trap that are mineralogically distinct but not consistent in exposure. He identified at least two common types of basalt within these flows, which were granular subcrystalline diorite and ferruginous basalt (Medlicott, 1859). Although he identified multiple eruption events and was able to recognize differences in the intensity of volcanic activity based on geography, Medlicott was unable to locate the eruption center.

Medlicott (1859) provided an alternative theory of the relationship between the traps and their associated intertrappean beds to that of Hislop and Hunter (1854). Hislop and Hunter proposed formation of the sedimentary beds (stage 2) occurred in a vast lake covering all of central and western India (stage 1) prior to the outpouring of lava. When the volcanism began the lava worked its way in between the freshwater beds creating the infra- and intertrappean intervals (stage 3) (Figure 3).

Stage 3

Stage 2

Stage 1

Figure 3. Hislop and Hunter's (1854) view on the eruption of the Deccan basalts and the deposition of infra- and intertrappean sediments.

Medlicott suggested that to support Hislop and Hunter's theory there should be chemical alteration of the lower and upper surfaces of the intertrappean interval. He observed only the upper surface of the sediments altered by the lava with the lower surface completely unaltered (Medlicott, 1859). This scenario is only possible if the underlying basalt was completely cooled by the time the freshwater sediments were deposited, and the overlying basalt flowed over the sediments chemically altering them before cooling.

William Blanford (1867) also published on the Deccan traps and their intertrappean intervals, especially in the Narmada (Narbadda; Nerbudda) and Taptee Valleys in central India and Kachchh (Cutch) in western India (Figure 1). Blanford studied in greater detail the morphology, petrology, and a potential origin of the basalt flows. He suggested a potential center of volcanic eruption during the most recent Deccan eruption north of the Narmada River in the Rajpeepla hills (Blanford, 1867). He cited a large amount of dykes and a volcanic mass that appeared to be the center of a volcano as evidence for the eruptive center in this area (Blanford, 1867). Blanford found several more potential volcanic nuclei, one (or maybe two) in the lower Narmada Valley and several in the Kachchh region; however, he stressed the difficulty in proving these to be centers.

Blanford (1867) suggested the original extent was far greater before erosion as evidenced by the occurrence of basalt outliers outside the Deccan Plateau shown on the Malcolmson (1840) map. Hislop (1860) noticed a similarity between the freshwater fossils of these outlying regions and those of the main Deccan Plateau province. Blanford (1867) demonstrated that the mineralology of the outliers was comparable to that of the main Deccan Plateau basalt and therefore verified Hislop's account of the fossils. Blanford amended the idea of the presence of volcanic (or basaltic) breccias previously reported by Malcolmson (1840) to that of volcanic ash.

He compared the rocks found within the Deccan Plateau with those of known volcanic eruptions and concluded that they must have been formed of ejecta (Blanford, 1867).

Blanford also supported Hislop's (1860) theory that the Deccan traps were not extruded into submarine conditions as was the general consensus at the time. He argued that the presence of vesicular basalt and freshwater and brackish fossils suggested that the lava must have extruded at least partially under subaerial and continental conditions (Blanford, 1867).

Blanford (1867) supported the theory that of a succession of multiple mineralogically distinct flows with intertrappean intervals deposited, likely in lakes, between the flows. He also suggested that the intertrappean beds represented individual lakes with a small geographic extent based on the discontinuous distribution of the deposits. Lava flowing over an irregular surface would fill in existing depressions from previous erosion into which subsequent shallow lakes can form once the lava cools. Blanford (1867) suggested this sequence would repeat itself forming the series of flows he observed. This theory represents the current view on the formation of the Deccan traps and intertrappean intervals (Figure 7).

Blanford (1867) noticed a similarity between the estuarine fossils from the intertraps of Rajahmundry and those of the Cretaceous marine Trichinopoly beds. Blanford concluded that at least some traps were likely Upper Cretaceous in age with the lower traps possibly as old as middle Cretaceous. This not only contradicted the previous estimation of Eocene age, considered correct by most at the time, but also argued for longer eruption duration than previously proposed.

Geological History of the Deccan Plateau

During the Precambrian, India was part of the supercontinent Gondwana, which was located around the equator. The oldest rocks are roughly 3.5 Ga and are mainly gneisses and schists (Figure 4). The remainder of the Precambrian is divided into the Bijawar Group and the Gwalior Group. These Archean rocks underwent significant erosion before later deposition. Lower Proterozoic sediments were deposited 2 Ga and are characterized by a series of sedimentary and metasedimentary rocks (Figure 4).

Figure 4. Generalized stratigraphic column of India.

A substantial period of erosion and/or nondeposition followed the deposition of the Vindhyan Supergroup that resulted in an unconformity that encompasses most of the Paleozoic. Upper Carboniferous sediments, however, were preserved with the formation of Pangaea. The Upper Carboniferous is characterized by a glaciation that is represented by a tillite at the base of the Talchir Formation. The Talchir Formation is overlain by a series of fluvial and lacustrine shale, sandstone, and freshwater limestone beds that constitute the Gondwana Group, which is prevalent until the Jurassic or mid Cretaceous (Figure 4). During the Late Jurassic the Rajmahal traps are formed, which are mineralogically similar to the Deccan traps, and constitute the Rajmahal Formation with interbedded fossiliferous shale beds. Fossils are common throughout the Gondwana Group and consist of fish, mollusks (unionoids), reptiles, amphibians, and plants. The Deccan trap sequence, including the infratrappean Lameta beds, overlies either these Gondwanan sediments or Precambrian basement rocks depending on locality (Figure 5).

Continental and marine Cretaceous rocks occur mainly along the western and southern margins of the Deccan Plateau while mostly continental rocks occur in the eastern part of the plateau. The continental rocks are composed of mainly of claystone, silty sandstone, and freshwater limestone beds. The Deccan trap sequence is mostly Maastrichtian based on microvertebrate assemblages (Courtillot et al., 1986; Buffetaut, 1987; Sahni and Bajpai, 1988; Jaeger et al., 1989). Palynofloral evidence from the Nand-Dongargaon Basin also suggests a Maastrichtian age for at least the infratrappean through the first three intertrappean beds of the Deccan trap sequence (Samant and Mohabey, 2005). The Deccan trap sequence continued into the earliest Paleocene with at least one intertrappean interval, which occurs about 500 km north of Nagpur near Papro, Lalitpur (Uttar Pradesh) (Sharma et al., 2008). The Deccan Trap sequence, including the infratrappean sediments, was deposited unconformably in the topographic lows of the underlying Gondwanan and Precambrian rocks (Figure 5, stage 1). Intertrappean intervals are
formed as the basal trap covers the infratrappean beds and erosion creates a basin for a new lake (Figure 5, stages 2-4). This new lake becomes lithified and is covered by the next trap, and the sequence continues (Figure 5, stage 5). Often the intertrappean sediments are converted to chert still reflecting the original stratification of the lacustrine sediments. Each intertrappean unit is numbered based on its relation to its boundary flows. Intertrappean 1 lies between the first flow (flow 1) and flow 2, intertrappean 2 lies between flows 2 and 3, etc. (Figure 5).

Stage 3

Stage 2

Stage 1

Figure 5. The Deccan Trap sequence and the deposition of infra- and intertrappean sediments (stage 1 is earliest in the sequence).

Infratrappean sediments are referred to as the Lameta Formation or Lameta beds based on exposures at Lameta Ghat on the Narmada River, west of Jabalpur. The Lameta Formation ranges from $0.5-70 \mathrm{~m}$ thick and covers an area of roughly $5000 \mathrm{~km}^{2}$ (Salil et al., 1997; Samant and Mohabey, 2009). The Lameta Formation is exposed in discontinuous outcrops in five depositional
basins in Maharashtra, Madhya Pradesh, and Gujarat (Mohabey, 1996; Samant and Mohabey, 2009). In the Chandrapur District (Maharashtra) the Lameta Formation sediments is silty claystone and channel sandstone, with interbedded calcareous mudstone and limestone (Mohabey, 1996). In general, the Lameta Formation was deposited in a channel-overbanklacustrine setting in a semi-arid yet seasonal climate (Mohabey et al., 1993). These sediments are fossiliferous containing dinosaurs, fish, turtles, frogs, gastropods, bivalves, ostracodes, charophytes, conifers, algae, fungus, pteridophytes, and multiple species of gymnosperm and angiosperm micro- and macroflora (Mohabey et al., 1993; Mohabey, 1996; Mohabey and Udhoji, 1996; Mohabey and Samant, 2003; Ghosh et al., 2003; Sharma et al., 2004; Samant and Mohabey, 2005; Samant and Mohabey, 2009).

Intertrappean sediments are defined by their position between an under- and overlying basalt flow. However, both flows may not be present in all localities. Intertrappean sediments are exposed in multiple depositional basins in Maharashtra (Nand-Dongargaon Basin, the YeotmalNanded region, and Mumbai), Madhya Pradesh (the Chhindwara-Mandla-Jabalpur region), Gujarat (Kachchh), and parts of Andra Pradesh (Rajahmundry) and Utter Pradesh (Lalitpur) (Figure 1). Intertrappean sediments are similar to infratrappean and are mostly lacustrine siltysandy claystone, limestone, and marlstone beds. There is, however, evidence of channel influence from the significant sand component in the sediments and the presence of riverine mollusks. Intertrappean beds are generally thin, only a few centimeters to approximately a meter in thickness, and discontinuous. They are generally fossiliferous containing end-Cretaceous assemblages generally comparable to infratrappean beds. The biota of the intertrappean beds include multiple species of fish, turtles, dinosaurs, ostracodes, charophytes, mollusks, and mammals.

Paleobio- and Paleogeography of India

The western half of Gondwana (Africa and South America) began to separate from the eastern half (Antarctica, Australia, India, and Madagascar) during the Jurassic (~ 160 Ma) (Plummer and Belle, 1995). Separation continued as India, the Seychelles, and Madagascar separated from Antarctica ($\sim 130 \mathrm{Ma}$) and then India and the Seychelles separated from Madagascar ($\sim 90 \mathrm{Ma}$) (Gnos et al., 1997, Chand et al., 2001, Storey et al., 1995). The separation of India from Madagascar was caused by a mantle plume called the Marion hotspot, which currently lies south of Madagascar. India separates from the Seychelles at roughly 65 Ma , which coincides with the Deccan volcanism and the initial opening of the northwest Indian Ocean (Gnos et al., 1997, Chand et al., 2001, Storey et al., 1995) (Figure 6).

Biostratigraphic relationships observed in northwestern Pakistan indicate an initial contact between India and Eurasia between 58 and 55 Ma (Shafique, 2001). Marine biostratigraphy from Tibet indicates a contact between 51 and 53 Ma (Najman et al., 2010). Shallow marine rocks indicate a final suturing of India and Eurasia around 49 Ma (Beck et al., 1995). This suturing occurred as a two part event with suturing in western half of India occurring around 50 Ma and in the eastern half around 42 Ma . With the collision completed, India's momentum slowed, but there still could have been as much as 1500 to 4000 km of "freeboard" sediments lost after convergence.

Analyzing the paleobiogeographic relationships of the Indian assemblage is complex due to the existence of the Indian Plate tectonically as a subcontinent with an individual paleogeographic history. India was connected to Gondwana for most of the Proterozoic and Paleozoic and the beginning of the Mesozoic providing uninhibited migration throughout

Figure 6. Paleogeography of India at $200 \mathrm{Ma}, 150 \mathrm{Ma}, 100 \mathrm{Ma}$, and 65 Ma time slices with the Deccan Plateau represented by the blue circle (PaleoGIS v. 3.0).

Antarctica, Australia, Africa, South America, Madagascar, and India. In the Jurassic ($\sim 160 \mathrm{Ma}$) Gondwana separated into an eastern half containing Antarctica, Australia, India, and Madagascar and a western half containing Africa and South America (Plummer and Belle, 1995). India and Madagascar separate from Antarctica around 130 Ma and India and the Seychelles break away from Madagascar around 90 Ma (Gnos et al., 1997, Chand et al., 2001, Storey et al., 1995). India then separates from the Seychelles around 65 Ma but has been isolated from a major landmass since around 130 Ma . India remains on its own, travelling northward until its initial collision with Asia between 58 and 55 Ma and a final suturing around 49 Ma (Shafique, 2001; Beck et al., 1995). In other words India was isolated from simple biogeographic migrations through land
connection from the Early Cretaceous to the middle Eocene. Therefore, in order for new continental species to arrive in India after the separation there needed to be dynamic dispersal mechanisms. Since India was isolated for almost 100 million years, these continental dispersal mechanisms are likely through filter corridors where there is intermittent connection with other landmasses or sweepstakes corridors where migration is through chance (e.g., rafts, etc.). The Chagos-Laccadive Ridge is a potential corridor where the Deep Sea Drilling Project showed that Paleocene sediments with progressive sinking suggesting that during the Cretaceous this could have been above sea level (Sahni, 1986). Island arcs are another possible source for migration between Tibet and India. There is evidence of volcanism during the Cretaceous in Pakistan and the eastern Himalayas, which could have produced volcanic island arcs as a means of leapfrogging between India and Asia (Sahni, 1986).

The Indian biota shows a strong affinity to Africa and Madagascar. There are several lines of evidence suggesting a close proximity between India and Africa/Madagascar during the Cretaceous. There are several species of fish (e.g., Lepisosteus, Lepidotes, Amia, etc.), turtles (e.g., pelomedusids), and dinosaurs (common genera with a common species, Laplatosaurus madagascarensis) common to Niger, Madagascar, and the Deccan sequence of India (Jain and Sahni, 1983; Sahni, 1984, 1986). The paleomedusid turtles are found in infratrappean sediments of Pijdura, the Senonian of Niger, and the Early Cretaceous of the Saharan region (Sahni, 1984). These turtles also common in the Paleogene sediments throughout India and the Lesser Himalayas suggesting this group migrated from Africa sometime prior to the Deccan (Sahni, 1984). Also, there are some plant fossils and charophytes that are similar between Africa, Madagascar, and India (Sahni, 1986). The dinosaur fauna from Jabalpur (central India) is comparable to Madagascar and Africa (Sahni, 1984). Sereno, Wilson, and Conrad (2004) used similar abelisaurid dinosaurs from South America, India, and Madagascar to suggest there were
intermittent land bridges between the major Gondwanan regions during the Early Cretaceous that persisted until the Late Cretaceous ($100-90 \mathrm{Ma}$). This "pan-Gondwana" model allowed unproblematic migration between the Gondwanan landmasses for much of the Cretaceous (Sereno et al., 1996, 2004). Chatterjee (2002) suggests there was a previously unrecognized landmass between eastern Arabia and northwest India called "Greater Somalia." He proposes that as India moved closer to Africa during the latest Cretaceous, this landmass would have provided a corridor for which biota could have migrated from Africa and possibly even Europe into India. This would explain why the earliest occurrence of many groups in India is the Upper Cretaceous. Regardless of the exact dating of the lingering connection between India and other parts of Gondwana, there are several lines of evidence to support the existence of corridors of migration through much of the Cretaceous. The mammals show a slightly different paleobiogeographic history. Ninety mammalian dental specimens were reported and exist in Geological Survey of India collections (Prasad and Sahni, 1988; Prasad et al., 1994; Rana and Wilson, 2003; Khosla et al., 2004) and 90% of these are considered to be eutherians of Laurasian affinity (Wilson et al., 2007). The mammal fossil assemblage of India suggests there was a connection with the northern landmasses perhaps through the "Greater Somalia" scenario or some other means (e.g., island arcs, etc.). Nevertheless, the high degree of endemism that should exist in the Indian assemblage from a lengthy isolation is not observed.

Molluscan paleobiogeography during the evolution of the Indian subcontinent is difficult owing to consistent similarities between species of the same genus regardless of biogeographic origin. Prashad (1928) noticed a strong similarity between Viviparus normalis of the Deccan and V. leai from North America, V. sublentus from Paris, and V. lentus from England, which all are of a comparable age. Also, the Upper Cretaceous Deccan sequence is the first occurrence of many of the species of gastropods in India (e.g., Viviparidae) (Prashad, 1928). Older material for
comparison is scarce. V. normalis was considered by Annandale (1921) to be closely related to the modern V. dissimilis, with a southern Asian distribution, and should be considered to be the ancestral stock for the group. This similarity may suggest the Cretaceous Indian gastropods dispersed after the collision with Asia and became the ancestral forms for modern Asian gastropods. Newton (1920) compared V. deccanensis from the Deccan assemblage with several unidentified fossil specimens in Matabeleland, Central South Africa and concluded there were sufficient similarities between the species to consider a connection between the two land masses during the Cretaceous. Newton described these specimens from poorly preserved material but concluded that they were similar to the modern African species V. unicolor. Another fossil species, V. passargei, from the Kalahari area could potentially be Cretaceous based on Newton's inference that Cretaceous beds extended from the Zambesi River to the Cape Colony. This species is considered to be also related to V. unicolor but distinct as an intermediate form between the Matabeleland fossil and the modern forms. Viviparids have existed in Africa since the early to middle Cretaceous according to Fischer (1963) who identified from poorly preserved material what he called ?Campeloma from the Continental Intercalaire beds in Mali. So it is possible that the occurrence of viviparids in India originated from Africa as India passed closely in the early to middle Cretaceous.

Understanding the paleobiogeographic relationships of the Deccan Trap contintental molluscan assemblage is important to understanding its evolution and the evolution of the Indian Plate. The specific assemblage appears in the fossil record at the end of the Cretaceous in the Deccan Traps and is not reported in older strata. The evolution of such a diverse assemblage seems geologically abrupt and its origins are currently uncertain. There are potential African affinities, but more detailed work is needed. Determining the origins of the Deccan Trap
contintental molluscan assemblage will also track the movements of the Indian Plate as it moved northward.

The Deccan Flood Basalts

The Deccan flood basalts occupy an area of at least $500,000 \mathrm{~km}^{2}$ across peninsular India and a current volume of roughly 1.5 million km^{3} (Jay and Widdowson, 2008; Pande, 2002) (Figure 1). Estimates ten million km^{2} have been reported for the area covered prior to erosion, with an initial volume up to six or seven times that currently preserved (Courtillot et al., 1986; Courtillot and Renne, 2003; Cripps et al., 2005). Regardless of the total area and volume covered by basalt, the Deccan Plateau is a major geologic feature covering about one sixth of the surface area of present-day India. The timing and duration of volcanism has also been a topic of much discussion for many years. Some argue for a very short duration lasting at most one million years (Duncan and Pyle, 1988; Cande and Kent, 1995; Hoffman et al., 2000; Chenet et al., 2007).

On the basis of ${ }^{40} \mathrm{Ar}{ }^{39} \mathrm{Ar}$ dates of several trap basalts from multiple regions across the Deccan Plateau, three main pulses of volcanism during the main Deccan extrusion have been recognized (Chenet et al., 2007). Pulse one, which is restricted to the northern Deccan Plateau, occurred around 67.5 Ma at the $\mathrm{C} 30 \mathrm{r} / \mathrm{C} 30 \mathrm{n}$ reversal boundary. Pulse two began after roughly 2.5 million years of quiescence at around $65-66 \mathrm{Ma}$. This is the largest phase of volcanism and began in C29r before the end of the Cretaceous and ended roughly at the K / Pg boundary. The final pulse began in the Paleocene of C 29 r and ended in C 29 n with the reversal boundary dated at 64.7 Ma .

Others have argued for a much longer duration of Deccan volcanism from at least three million years to as much as eight million years long (Sheth et al., 2001; Pande, 2002; Courtillot and Renne, 2003). Pande (2002) demonstrated an age range of 69-62 Ma for the Deccan trap basalts based on their paleomagnetic record (Pande, 2002). He postulated that the largest pulse in
volcanism was during C30r, but admits that the paleomagnetic record is incomplete in the Deccan sequence because the basalts flows were episodic. Radiometric dating also supports a longer duration for Deccan volcanism. Alkaline rocks from the northern Deccan Plateau date to 68.5 Ma (Basu et al., 1993). Trachytes and basalts from Mumbai date to roughly 60.5 Ma (Sheth et al., 2001a,b; Lightfoot et al., 1987). Although these dates illustrate a much longer duration for the Deccan sequence, they do agree with previous statements that initial volcanism occurred in the north and moved farther south as India moved toward Eurasia. Volcanism reached its peak around $65-66 \mathrm{Ma}$ and ended around the K / Pg boundary (Chenet et al., 2007). Patterns in the marine microfossil record from the intertrappean sediments found near Rajahmundry also show that the largest period of Deccan volcanism ended at the K/Pg boundary (Keller et al., 2008).

The origin of Deccan flood basalts is also a subject of contention. The mantle plume model is a widely held explanation (e.g., Morgan, 1981; Richards et al., 1989; Campbell and Griffiths, 1990). Flood basalts originated during a large plume diaper (head) initiating along a hot spot track (Richards et al., 1989; Campbell and Griffiths, 1990). The Deccan flood basalts are considered, according to the mantle plume model, to be related to the initiation of the Reunion hot spot (e.g., Richards et al., 1989). During the height of Deccan flood volcanism there were periods of elevated lava production separated by times of inactivity (Richards et al., 1989; Courtillot et al., 1988). Deccan volcanism was connected with the Reunion hot spot by a series of submarine volcanic lineaments. The Laccadive, Chagos, and Mascarene lineaments get progressively younger to the south demonstrating the northward movement of India towards Eurasia (Richards et al., 1989).

The alternative hypothesis for the origin of Deccan Trap volcanism suggests that it is the result of continental rifting. The separation of India from the Seychelles caused mantle convection and decompression melting that resulted in volcanism (Sheth, 2005). The separation is
also suggested to be associated with the initiation of the Reunion hotspot (Sheth, 2005). Radial and focused flow from rifting instead of vertical flow from a mantle plume would not only account for the sizable volume of basalt, but it also explains the near circular shape of the Deccan Plateau (Sheth, 2005).

Figure 7. Major subregions of the Deccan flood basaltic province. Continental mollusk localities are shown in pink (Geology - GSI, 1998; Base Map - Gizi Map, 2005).

The Deccan basaltic province is split into four major subregions (Jay and Widdowson, 2008) (Figure 7). The main Deccan Volcanic Province ($73-78^{\circ} \mathrm{N}, 16-22^{\circ} \mathrm{E}$) includes the majority of the basaltic province, and is where much of Deccan research has been concentrated. Saurashtra and Kachchh together are smaller isolated lobes in the northwestern part of the province. The important Anjar locality, which contains iridium below the K/Pg boundary, is located in Kachchh. The Malwa Plateau is the northern lobe of the main Deccan Volcanic Province but is considered distinct. The Mandla lobe is an isolated portion of the province to the northeast of the main Deccan Volcanic Province. The Mandla lobe has been considered by some to represent a separate lava source, but geochemical analysis suggests a definite correlation to the main Deccan event
(Shrivastava and Ahmad, 2005). A small outlier of Deccan trap basalt also occurs in the Rajahmundry area southeast of the main Deccan Volcanic Province.

Deccan volcanics are mainly tholeiitic basalts and are classified into two main flow types (Cripps et al., 2005). Simple flows are generally nonamygdaloidal except for their vesicular and oxidized flow tops with joints perpendicular to their lower contacts. Compound flows are generally massive, amygdaloidal flows that have poorly developed joints. This type is composed of several individual flows that are a few centimeters to a few meters thick and are laterally discontinuous.

Extensive geochemical work was completed in the Western Ghats where researchers developed a detailed stratigraphic framework for the Deccan basalts. Ten chemically distinct formations in three subgroups were identified on the basis of their flow type, phenocryst mineralogy, grainsize, and chemical signature (Beane et al., 1986) (Table 2).

Table 2. Deccan trap basalt subgroups (shown in stratigraphic order).

Subgroup	Number of Formations	Thickness (m)	Flow Type
Wai	3	1100	Simple Lonavala
Kalsubai	2	525	Simple (lower); Compound (upper)
Lompound			

The three subgroups, Kalsubai, Lonavala, and Wai, were recognized in the Western Ghats and have been correlated to other regions of the Deccan. Jay and Widdowson (2008) correlated the Wai Subgroup formation boundaries to the Rajahmundry area based on ${ }^{87} \mathrm{Sr} /{ }^{86} \mathrm{Sr}$ ratios, Sr and Ba concentrations, and Ba / Y and $\mathrm{Zr} / \mathrm{Nb}$ ratios. Correlation of the Rajahmundry
basalts with the Western Ghats suggests that the stratigraphic nomenclature developed for the western Deccan basalts may be appropriate for usage in other regions of the province.

Geology of the Study Area

For this study, five localities were chosen based on their stratigraphic placement and quality of fossil material. One infratrappean (Pijdura), one intertrappean 1 (Takli), one intertrappean 2 (Kalmeshwar), and two intertrappean 3 (Butera and Sindhi) localities represent changes in geology and paleontology before and during the initial stages of Deccan trap volcanism (Figure 1). Two intertrappean 3 localities were used because although they are both stratigraphically intertrappean 3, Sindhi is chronologically younger than Butera due to the lack of an intertrappean bed between flows 3 and 4 at Sindhi. The sequence from infratrappean (Pijdura) to intertrappean 3 (Sindhi) is considered here to represent a continuous biotic and abiotic response to volcanism starting with the unaffected infratrappean locality.

Infratrappean-InL009 Pijdura

The Pijdura fossil locality (Maharashtra: Chandrapur District) is located approximately 100 km south of Nagpur just east of the village of Pijdura (Figure 1). The fossil bearing sediments are infratrappean underlying an exposed basalt (flow 1), and is locally referred to as the Lameta Formation. At Pijdura, the Lameta Formation (Maastrichtian) disconformably overlies the Kamthi Formation (Gondwana Group; Permian). Lameta Formation sediments were deposited in the paleotopographic lows of the Kamthi Formation.

The Lameta Formation is predominantly a lacustrine deposit containing mainly red and green overbank clay beds, with some intermittent sandstone lenses indicating fluvial influx. The majority of the site is red clay beds, which weather into agricultural fields. The hills above the fields display the red clay beds grading into green clay beds that are then overlain by the trap. The
green clay beds often contain microvertebrates, which are not found in the red clay beds. The reddish color to the clays suggests that the lake sequence deposited in the Pijdura was well oxidized. Within the red clay beds are intermittent lenses of coarse-grained light gray sandstone that contain some fossil snails and clams. Most of the fossils are acquired from the fields as float in isolated patches, which are most likely the result of the weathering (either natural or through agricultural activity) of fossil rich layers in the relatively thin Lameta Formation. The exposure observed by Samant and Mohabey (2005) consists of roughly 4.5 m of alternating clay and sandstone beds with a few thin carbonate layers (Figure 8). The lower carbonates and upper sandstone are the only fossiliferous beds with the carbonates containing gastropods, bivalves, diatoms, charophytes, dinosaurs, ostracodes, phytoliths, pollen, and plants and the sandstone containing gastropods, dinosaurs, fish, and diatoms (Samant and Mohabey, 2005). The majority of molluscan fossils were preserved as silicified steinkerns.

Intertrappean 1- InL004 Takli

The Takli fossil locality is located within the city limits of Nagpur (Maharashtra: Nagpur District). Takli is considered intertrappean 1 (Maastrichtian) because it occurs between flows 1 and 2 in the Takli section known as the Takli Formation. The section is composed mainly of green clay sediments. In the area of Takli, the first flow directly overlies Gondwana Group beds thus there are no Lameta beds present (Figure 9). The underlying trap is amygdaloidal, and the overlying trap is nodular. The Takli locality has two distinct sites of collection, the Takli hill site (considered similar in location to the original Hislop locality) and the Girl's Hostel site located downslope from the hill locality. Most of the sediments occurring at both sites are the green clays that are typical of the lacustrine Takli Formation, however there are some silts and sands that suggest some fluvial influence. The intertrappean sediments, especially the green clays, weather

Figure 8. Stratigraphic section at Pijdura ($20.36^{\circ} \mathrm{N}, 79.04^{\circ} \mathrm{E}$) as interpreted by Samant and Mohabey (2005).
to a rust color and the greatest producing layers seem to be found in these weathered sediments.
No measurements of the intertrap were taken on the hill due to the quality of the exposure, but the Girl's Hostel intertrap was approximately 1.5-2 m (Figure 9).

Fossils were collected at both sites; however the preservation and faunal assemblage varied slightly. The hill site assemblage consisted mainly of Physa casts, while the Girl's Hostel site assemblage was much more diverse with better preservation. The Girl's Hostel site also contained a diverse microsnail ($<5 \mathrm{~mm}$) assemblage. Fish have also been reported from Takli

Figure 9. Stratigraphic section at Takli Girl's Hostel ($21.17^{\circ} \mathrm{N}, 79.05^{\circ} \mathrm{E}$) locality.
(Rana and Sahni, 1989). The majority of specimens collected at the Girl's Hostel site were silicified steinkerns but some specimens retained original shell material as evidenced by the presence of shell coloration (keel). Specimens are commonly crushed along bedding planes.

Intertrappean 2-InL096 Kalmeshwar

The Kalmeshwar locality is located close to the town of Kalmeshwar (Maharashtra: Nagpur District), which is just west of Nagpur. The locality is Maastrichtian in age. The outcrop is very extensive in overall vertical and horizontal magnitude, and it consists of both an underlying trap (flow 2), an intertrappean bed (intertrappean 2), and an overlying trap (flow 3) (Figure 10). The underlying trap is nodular and/or vesicular and constitutes the ground and base of the outcrop. The overlying trap is at least three meters of the upper portion of the outcrop and has columnar (vertical) jointing. The intertrappean sediments are divided up into three lithologies. A basal chert directly overlies the underlying trap and is only a few centimeters thick. This chert is overlain by a bed of alternating reddish brown claystone beds with carbonate nodules and white to light-yellow colored siltstone beds, which is then overlain by another thin chert before the overlying trap. A layer of carbonate occurs at the base of the silt-clay unit but is discontinuous.

The chert beds are discontinuous and vary in thickness. The clay-silt unit has a greater volume of clay at the base and a greater volume of silt toward the top, although both lithologies are present throughout. Kalmeshwar preserved the contact between the upper and lower traps, which is a unique opportunity to observe the actual paleoshoreline of the intertrappean lake.

Figure 10. Stratigraphic section at Kalmeshwar ($21.29^{\circ} \mathrm{N}, 78.92^{\circ} \mathrm{E}$).

The fossil assemblage of Kalmeshwar includes gastropods, ostracodes, and floral remnants. Fossils are found in the basal chert, but they are completely silicified and often incomplete. Fossils, mainly small snails and plants, are found in the brown claystone but were often broken or crushed. The siltstone contains much higher fossil diversity and abundance. Most specimens are silicified steinkerns, but the external impression is well preserved and shows shell sculpture. There are also a substantial proportion of microsnails ($<5 \mathrm{~mm}$).

Intertrappean 3-InL017 Butera

The Butera locality, in the Jabalpur-Mandla-Chhindwara sector, is located near the villages of Butera and Machhaghoda (Chhindwara District: Madhya Pradesh) roughly 160 km north of Nagpur ($22.11 \mathrm{~N}, 79.14 \mathrm{E}$). The sedimentary beds are intertrappean 3 (Maastrichtian) and were deposited during magnetochron C29r (Samant and Mohabey, 2009). Bulk material
brought to the laboratory for preparation was found as float as no actual outcrop is found at the fossil locality. Fossils are found in chert and siliciclastic rock and consist of gastropods, ostracodes, and some plants. There is some preservation of shell material, but most specimens are silicified steinkerns.

Intertrappean 3-InL 106 Sindhi

The Sindhi locality lies in the Nand-Dongargaon Basin around 100 km west of Pijdura (Maharashtra: Yavatmal District). Fossil bearing sediments are considered intertrappean 3, but the sediments occur between flows four and five in the region. Due to absence of an intertrappean bed between flows three and four, Sindhi is considered stratigraphically intertrappean 3 . Chronologically Sindhi is considered of a younger age than Butera. The Sindhi intertrappean interval was deposited during magnetochron C29r (Samant and Mohabey, 2009). Lithology is predominantly chert including the complete silicification of fossils. The section exposed at the Sindhi locality has intertrappean sediments in between two observable traps. The intertrappean interval is roughly three meters thick with a lower unfossiliferous carbonate bed ($\sim 1.5 \mathrm{~m}$ thick) and upper fossiliferous chert and porcellanitic claystone beds ($\sim 1.5 \mathrm{~m}$ thick) (Samant and Mohabey, 2005) (Figure 11).

The fossil assemblage reported from Sindhi includes pollen and megaflora, charophytes, ostracodes, bivalves, and gastropods (Samant and Mohabey, 2005; Samant and Mohabey, 2009). The locality was not visited during the 2006 field season and a small amount of bulk material was sent from D. M. Mohabey of the Geological Survey of India. Because of preservation of fossils in chert, preparation of the material was impossible without damaging the specimens.

Figure 11. Stratigraphic section at Sindhi $\left(\sim 20.33^{\circ} \mathrm{N}, 78.54^{\circ} \mathrm{E}\right)$ as interpreted by Samant and Mohabey (2005).

CHAPTER IV

METHODS

Field Methods

Locating Original Localities

Stephen Hislop (1860) and his contemporaries (e.g., Malcolmson, 1840) described their fossil localities very generally citing adjacent villages or military landmarks as the only reference to their location. According to these descriptions a locality like Pijdura was found " 60 mi S . of Nagpur" with no other reference to the fossil locality's location (Hislop, 1860). Additionally, these studies were conducted in the mid-1800s when spelling or names of these landmarks were different (e.g., Phizdura $=$ Pijdura). An attempt was made to more precisely locate all the molluscan localities on current topographic maps prior to field work. However, it was difficult to locate the actual fossil locality, so once the general area was located, local colleagues (e.g., D.M. Mohabey) helped trace Hislop's and his contemporaries' potential fossil sites. These sites are designated as potential because there is no definitive means of determining the original locations based on the information provided by Hislop. Therefore, any comparison to the species collected by Hislop should be considered close but not exact in terms of species typology and geology.

During field work precise locations were obtained using a Global Positioning System (GPS). During the field investigation twenty localities (eleven potential Hislop localities, five new localities in central India, and four new localities in western India) were precisely located
(Table 3). Due to previous extensive work, greater stratigraphic control is known for these localities in their relation to flow stratigraphy (i.e., Samant and Mohabey, 2005, 2009, etc.).

Fossil surveying was conducted at all localities where possible (i.e., Chickni was covered by construction and Sitabuldi is a military site and was inaccessible), but fossils were not always found even if they had been reported (i.e., no fossils were discovered at Telankhedi).

Five localities are used for the present study encompassing the infra- through intertrappean 3 stratigraphic levels; Infratrappean Pijdura (InL009), intertrappean 1 Takli (InL004), intertrappean 2 Kalmeshwar (InL096), intertrappean 3 Butera (InL017), and intertrappean 3 Sindhi (InL106). Sindhi was not visited during the 2006 field season but is found in the Nand-Dongargaon Basin like Pijdura. Samples were obtained from Dr. D.M. Mohabey.

Sample Collection

Fossil surveying and collection was conducted in central and western India in the 2006 field season (Table 3). Bulk matrix and specimens were extracted and removed to the laboratory for processing. Roughly 270 kg of material was shipped to the University of North Dakota from India, which included matrix and individual specimens. This amount of molluscan fossil material has more than doubled the amount of previously collected Deccan Plateau mollusk material and noticeably expanded the number of localities sampled.

Section Measurement

The stratigraphic section was measured where a sufficient exposure was available. The detail recorded for each section varied on the quality of the section. In several cases, section measurement was not possible due to time constraints or accessibility to the section. In all cases measurements were recorded in metric and were completed by Dr. Henning Schölz.

Table 3. Locality information from 2006 field trip.

Locality Number	Locality Name	Latitude ${ }^{\circ} \mathrm{N}$	Longitude ${ }^{\circ} \mathrm{E}$		State	Stratigraphic Level ${ }^{*}$
InL002	Karwad	20.33	78.88	Maharashtra	Int 2	Notes
InL003	Telankhedi	21.15	79.03	Maharashtra	Int 1	No fossils
InL004	Takli†	21.17	79.05	Maharashtra	Int 1	G/O/V/C
InL007	Chikni	20.35	78.93	Maharashtra	Int 1	Locality destroyed
InL008	Gidad Hill	20.66	79.11	Maharashtra	Ints 2-3	No fossils
InL009	Pijdura \dagger	20.36	79.04	Maharashtra	Inf	G/V
InL010	Kotbala	20.37	79.07	Maharashtra	Inf	G/B/V
InL011	Dongargaon	20.21	79.09	Maharashtra	Inf	V/C
InL017	Butera \dagger	22.11	79.14	Madhya Pradesh	Int 3	G/O/P
InL019	Pahadsingha	21.32	78.48	Maharashtra	Int 2	G
InL026	Sitabaldi	21.15	79.08	Maharashtra	Int 1	No Access
InL096	Kalmeshwar \dagger	21.29	78.92	Maharashtra	Int 2	G/O
InL097	Dhamni	20.25	79.13	Maharashtra	Inf	G/O
InL098	Daiwal	79.13	78.92	Maharashtra	Int 1	O/C
InL099-	Mohagaon	22.02	79.18	Madhya Pradesh	Int 2	G/P
InL102	Lakshmipur	23.44	69.02	Gujarat	Int 3?	G/O
InL103	Dayapur	23.64	68.90	Gujarat	Inf	G/O/P
InL104	Kora	23.65	68.88	Gujarat	Inf	G/O/P
InL105	Ram Nagar	21.14	79.05	Maharashtra	Int 1	No fossils InL123
Viri-Anjar	23.07	70.02	Gujarat	Int 3	G/B/V/P-	
K/Pg						

\dagger Denotes study locality (InL106 Sindhi is a study locality but was not visited in the field)
*Inf = Infratrappean, Int = Intertrappean.
${ }^{\wedge} \mathrm{G}=$ Gastropods, $\mathrm{B}=$ Bivalves, $\mathrm{O}=$ Ostracodes, $\mathrm{V}=$ Vertebrates, $\mathrm{C}=$ Charophtyes, $\mathrm{P}=$ Plants

Laboratory Methods

Sample Preparation

Individual specimens were collected from Pijdura as surface float and required little to no preparation. Takli and Kalmeshwar were composed mostly of softer matrix (i.e., siltstone and claystone) and preparation was accomplished with dental picks. Butera was composed of siltstone matrix surrounding chert and was prepared using a series of different sized air scribes. Once mechanical preparation was accomplished, residual matrix was washed using calgon soap, screened, and picked under magnification for specimens. This method was especially successful in Takli, which contained a vast abundance of microspecimens ($<5 \mathrm{~mm}$).

Individual specimens were separated by quality and identifiable and/or measureable specimens were assigned an "InS" number for ascension into the University of North Dakota fossil collection. A specimen of highest quality was considered to be mostly complete and/or uncrushed and labeled with a green dot on the specimen tag. A specimen of moderate quality was considered to be almost complete and/or uncrushed or crushed and was labeled with a purple dot on the specimen tag. A specimen of lowest quality was considered to be complete enough for identification but not necessarily measurement and was labeled with a red dot on the specimen tag. A total of 1461 specimens were numbered and sorted.

Photography

Specimens of highest quality were photographed for character measurement. Macrophotography was accomplished using a standard digital camera. Microphotography was used for specimens less than ten mm in length and was accomplished using the Spot Insight© series digital microscope camera. The Spot@ computer program was utilized to capture and calibrate images. Due to problems in the range of depth of field in microspecimens, a secondary
program, Helicon Focus®, was employed to create a focused composite image through combining a series of partially focused images. Specimens' apertural, apertural flush, and right lateral views were photographed (Figure 12). Apical views were also photographed for the most complete specimens and umbilical views were photographed for potential members of Valvatidae (Figure 12). Of the 1461 total specimens numbered, 679 specimens were photographed.

Figure 12. Standard photographed gastropod views.

Orienting and Scaling Images

Specimens were photographed with the axis of coiling parallel to the plane of view for apertural and right lateral views (Figure 12, apertural). For apertural flush the specimen was photographed with the aperture surface parallel to the plane of view. The apical and umbilical views were photographed with the axis of coiling perpendicular to the plane of view. Specimen
photographs were oriented for measurement using Photoshop CS5©. They were oriented along the axis of coiling, or the closest approximate axis of coiling for less than complete specimens (Figure 12). Once properly oriented the images were scaled for measurement in CorelDraw X5©. Each photographed was individually scaled according to their calibration scale bars and the internal metric scale available in the CorelDraw X5 program.

Character Measurement

Basic Parameters

The basic dimensions of each specimen were measured using CorelDraw X5 in millimeters to the thousandth place. A ratio was calculated for each basic measurement against another for use in analysis. Ratios were used in this study due to the drastic difference in sizes of similar morphotypes between localities. Almost all of the specimens are steinkerns, so measurements are of the internal cast. Maximum height was measured from the apex to the base of the aperture (Figure 13). Maximum width represents the widest point on the specimens and was measured from the outside of the final whorl to the outside of the aperture (Figure 13). Aperture height was measured from the base of the aperture to the point where the aperture meets the final whorl but is sometimes approximated due to preservation (Figure 13). Aperture width is measured from the inside to outside edges of the aperture (Figure 13). The height of the spire was measured from the apex to the plane where the body whorl intersects the axis of coiling (Figure 13). The height of the body whorl as measured from the plane where the body whorl intersects the axis of coiling to the base of the aperture (Figure 13). Both of these measurements are also subject to preservation. Character trait ratios from basic measurements included in this analysis consist of maximum height to maximum width, aperture height to aperture width, spire height to
maximum height, body whorl height to maximum height, aperture height to maximum height, and aperture width to maximum width (Figure 13).

Figure 13. Basic gastropod shell parameters.

General Shell Shape

The shell shape is a qualitative character trait based on the general outline shape. This outline shape is separated into distinct categories. For example, the shape category "ovate" refers to a general oval shape to the shell outline (Figure 14). Categories that contain two categories hyphenated retain qualities of both shapes such that the shape can only be described as a mixture of both. Shape categories modified from Burch (1989).

Figure 14. Named gastropod shell shapes.

Suture Angle

The suture angle represents the angle of growth of the individual whorls. This measurement is taken as the angle between the suture slope plane and the plane where the suture intersects the axis of coiling (Figure 13). The suture angle was acquired using the Photoshop CS5© angle function and is a continuous character.

Number of Whorls

The number of whorls for a given specimen represents the number of whorls from the initiation of growth (protoconch) to where the inside edge of the aperture intersects the body whorl (Figure 15). This was accomplished using Photoshop CS5© by orienting the edge of the aperture to the apex (approximated if poorly preserved) along a horizontal line. A secondary line is made through the apex to the initiation of growth, which represents the beginning of whorl measurement. The number of whorls is then the number of full whorls from the aperture edge towards the secondary line plus the remaining number of degrees to the secondary line (Figure 15). The remaining degrees are converted into a decimal, and the number of whorls is reported as the whole number of whorls plus the decimal degrees (e.g., 4.8 whorls).

Figure 15. Measurement of the number of whorls.

Coiling Direction

The coiling direction represents the direction of specimen growth during the course of its lifetime. Gastropods coil dextrally (to the right) or sinistrally (to the left) (Figure 16). This character trait is a fundamental difference between certain families of gastropods (i.e., physids coil sinistrally). If the aperture is located on the right side of the body then it coils dextrally and vice versa. The character trait is reported as dextral or sinistral.

Figure 16. A. Gastropod coiling direction. B. Plane of aperture to axis of shell.

Spire Angle

The spire angle represents the angle at which the specimen grows outward from the initiation of growth. It is measured as the angle from the apex to the maximum width of the shell (Figure 13). The spire angle was acquired using the Photoshop CS5© angle function and is a continuous character.

Plane of Aperture to Axis of Shell

The plane of the aperture represents the slope of the aperture from the right lateral view. It is measured using the Photoshop CS5© angle function and is a continuous character. The angle of the aperture is measured where the plane of the aperture crosses the intersection of the axis of coiling and the horizontal plane at the body whorl suture (Figure 16).

Umbilicus

The shape of the umbilicus is important in distinguishing certain gastropod families. The umbilicus is reported as open or closed. It is deemed open when it has not been covered by the callus, which is a thickening of the shell covering the umbilicus (Figure 17a).

A.
B.

Figure 17. A. Umbilicus description. B. Suture depression (upper), Whorl shape (lower).

Suture Depression

The depression of sutures describes the degree of indentation from the shell margin. Suture depression is related to strength of curvature of individual whorls. It is qualitative and classified slight, some, regular or strong depression (Figure 17b, upper).

Whorl Shape

The whorl shape describes the overall roundness of the whorls as applied to the all whorls. Whorls are described as being rounded, flattened-rounded, or flattened (Figure 17b, lower). Flattened-rounded is considered to be a whorl that has a rounded shape but is flat along the apex (Figure 17b, lower). If the spire whorls are collectively a different shape then the body whorl, then the trait is reported as two shape categories.

Presence of Keel

The keel is shell surface ornamentation that is not reflected on the steinkern. Most specimens from the study localities lack shell material and do not have the keel preserved. The character trait is reported as either present or absent (Figure 18a). However, this trait does not entirely describe the population because of the abundance of steinkerns.

Shell Sculpture

Shell sculpture in continental gastropods is strictly surface ornamentation and is not reflected on steinkerns. The sculpture present in most study specimens is found in the corresponding mold. To observe the sculpture in 3-dimensional form, a cast was made using Image Plus Impression Material by Parkell®. In rare occurrences (Kalmeshwar only) there was enough shell material remaining to preserve sculpture. The character trait is recorded as none, revolving, or axial sculpture (Figure 18b).

Figure 18. A. Keel description on viviparid specimens from Takli. B. Sculpture description on valvatid specimens from Kalmeshwar.

Statistical Analyses

Lectotype specimens of Sowerby (1840) and Hislop (1860), four paralectotype specimens with higher measurable quality, and nineteen modern specimens from comparable families (e.g., Viviparidae, Hydrobiidae, and Subulinidae) were included in analysis for comparison to the study specimens. Specimens with missing data were removed from analysis due to the difficulty of statistical software packages to interpret data gaps.

Cluster Analysis

Cluster analyses were used to identify morphotypes based on overall morphologic similarity. These morphotypes are interpreted as distinct species. The StatistiXL© v. 1.8 statistics package for Microsoft Excel 2007® using a mixed dataset, both quantitative (reported as numeric values) and qualitative traits (reported as categories), and the group average method calculated each dendrogram. The group average method is equivalent to the unweighted pair-group mean average method (UPGMA) where a dendrogram is built based on the calculated minimum distance between individuals.

A separate cluster analysis was conducted for each of the following datasets; all study specimens plus all Sowerby (1840) and Hislop (1860) types (443 specimens), all study specimens plus all modern representatives (437 specimens), and all study specimens plus all types and all modern representatives (462 specimens). All aforementioned character traits were included in these analyses except for the presence or absence of a keel. This character trait was considered uninformative due to the presence of a keel only in specimens with original shell material. To define morphotypes, all three analyses were evaluated in combination to identify consistent groupings. To further reinforce consistent groupings of specimens, individual cluster analyses were conducted using members of similar families only. These analyses included a physid, lymnaeid, valvatid, stylommatophoran, viviparid/hydrobiid, and viviparid/hydrobiid/valvatid/ stylommatophoran analysis. To evaluate the strength of individual clusters within a dendrogram, a correlation coefficient (R) was calculated by StatistiXL. A correlation coefficient value of 1.0 means 100% of the clusters can be explained by the relationships between the specimens or, in other words, the dendrogram is perfect. For the purposes of this study, a correlation coefficient of 0.7 or higher is considered to be a dendrogram with statistically significant clusters. A correlation coefficient of 0.6 or higher is considered to be a dendrogram with reasonably satisfactory clusters.

Cluster analysis will be used as a tool to establish taxonomic identity, including the revision of previous nomenclature and placement. These modifications will be described herein, but a more detailed analysis of evolutionary history, biogeography, and taxonomic relationships will be conducted and described in subsequent work thus the presented herein is a work in progress.

Analysis of Variance

Two-way analysis of variance (ANOVA) was used to examine the change in each morphotype through the Deccan trap sequence. This was to determine whether or not stratigraphic levels (or localities) are distinct based on the character traits of each morphotype. ANOVA was conducted using R: A Language and Environment for Statistical Computing v. 2.13.0 (2011)®. R calculated an F statistic and probability (p) to determine the statistical significance (Bates et al., 2011). The dataset was tested for normality and equal variance prior to analysis. Since there is no nonparametric equivalent for the 2-way ANOVA, if the assumptions were not met then a nonparametric Kruskall-Wallis test was utilized using only height or height to width ratio and the locality. A post-hoc Tukey's test, or pairwise t-test with bonferroni adjustment for the nonparametric test, was conducted to determine locality grouping if the analysis was significant with 95% confidence ($\alpha=0.05$).

Each of the sixteen morphotypes was tested using both raw data and transformed ratios. The separation of raw data from ratio data was to observe the effect of specimen size in stratigraphic level distinction. Maximum height or the height to width ratio and the locality combined with outline shape, whorl shape, or suture depression were used.

$$
\chi^{2} \text { Tests }
$$

χ^{2} tests were utilized to examine the difference between stratigraphic levels based on the number of species (diversity) and number of specimens (abundance). The number of species and number of specimens were obtained by counting the number of identified morphotypes for each locality. χ^{2} tests were accomplished using Microsoft Excel 2007®. 95% confidence was used to determine whether the outcome was statistically significant.

Morphologic Trends

Linear plots were created to show changes in morphology for each morphotype through time. Overall change was shown using mean measured maximum height, mean measured maximum width, mean measured spire height, mean measured body whorl height, and height to width ratio plotted against time. Mean number of whorls, mean suture angle, and mean spire angle were also plotted against time. Linear plots were created using Microsoft Excel 2007©.

CHAPTER V

RESULTS

Cluster Analysis for Gastropod Morphotype Identification

Using cluster analysis to differentiate morphotypes provides a quantitative approach to identifying similar morphologies based on shell characters. Distinctive clusters were recognized on each dendrogram based on overall grouping patterns. These distinctive clusters, or sets of clusters, were interpreted to be individual morphotypes (Figure 19). The clusters were compared between different trees, as previously discussed, to reinforce their repeatability and therefore morphotypes' validity.

Sixteen morphotypes were recognized from different freshwater and terrestrial gastropod families (Figure 20). Four morphotypes from Hydrobiidae, or a related family, are designated "hydA," "hydB," "hydC," and "hydD," with the morphology "hydD" possibly a member of Thiaridae. These four morphotypes are distinguishable based primarily on outline shape. Two morphotypes ("vivA" and "vivB") belong to Viviparidae, or a related family, and are distinguishable by whorl shape. There are two morphotypes ("valA" and "valB") from Valvatidae, or a related family, and are distinguishable by differences in the height to width ratios and whorl shape. Two morphotypes ("phyA" and "phyB") are from Physidae, or a related family, which is contrary to the three identified by Hislop (1860) but consistent with Annandale (1920). "PhyA" is more slender and elongate and is equivalent to the Physa prinsepii elongata species of Hislop (1860), while "phyB" is wider and more robust and is equivalent to Physa prinsepii
normalis and P. p. inflata of Hislop (1860). There are at least three morphotypes ("lymA," "lymB," and "lymC) of Lymnaeidae, or a related family, recognizable in the study sample. Three other morphotypes ("lymD," "lymE," and "lymF") are represented by the Hislop's type specimens of Lymnaea attenuata, L. telankhediensis peracuminata/L. t. radiolus, and L. spina, but were not found in the study sample. "LymA," "lymB," and "lymC are distinguishable by outline shape and height to width ratios. There are three morphotypes belonging to the terrestrial group Stylommatophora ("styA," "styB," "styC"). These are differentiated by outline shape.
"HydA" clusters with Viviparus virapai Hislop, 1860, but the close relationship with other clusters containing modern hydrobiids suggests this morphotype belongs in Hydrobiidae or a related family (Figure 19). "HydB" is a large cluster that includes modern representatives from Hydrobiidae (Incertihydrobia teesdalei Verdcourt, 1958) and Pleuroceridae (Elimia livescens Menke, 1830), as well as Hislop's (1860) types Viviparus conoidea and V. takliensis. Two distinctive morphologies are found within this cluster, which are denoted "hydB1" and "hydB2." "HydB1" includes Incertihydrobia teesdalei and V. conoidea and "hydB2" includes Elimia livescens and V. takliensis. "HydC" clusters with modern representatives from the freshwater families Hydrobiidae (Littoridina australis Marcus \& Marcus, 1965) and Micromelanidae (Micromelania grimani Brusina, 1874) and the terrestrial family Pomatiopsidae (Blanfordia simplex Pilsbry, 1902) as well as Viviparus sankeyi Hislop, 1860. There are only a few specimens of "hydD," which may be a thiarid, and they form a distinct minor cluster found within the major cluster containing the "hydC" morphology. "HydD" is considered a distinct morphotype rather than a common morphology within "hydC" based on its unique shell and aperture shape.
"LymA" is found in two distinctive clusters yet appears to be the same morphotype (Figure 19). "LymA" groups with a modern lymnaeid, Galba truncatula Müller, 1774, and Lymnaea oviformis Hislop, 1860 suggesting it is a member of Lymnaeidae. "LymB" is

Figure 19. Dendrogram of analysis with all specimens (types and modern equivalents) ($\mathrm{R}=0.71$).

Figure 20. Distinct gastropod morphotype outlines.
not found with modern representatives or type specimens, but it is closely related to the "lymC" cluster suggesting a taxonomic relationship. "LymC" clusters with a modern lymnaeid, Stagnicola elodes Say, 1821, and all other Deccan trap type lymnaeids (Lymnaea subulata Sowerby, 1840, L. telankhediensis peracuminata Hislop, 1860, L. t. radiolus Hislop, 1860, L. spina Hislop, 1860, and L. attenuate Hislop, 1860). "LymC" is considered equivalent to L. subulata, and although L. attenuata, L. spina, and L. t. peracuminata/L. t. radiolus cluster with "lymC," they appear to be distinct morphologies.
"PhyA" clusters with the modern physid, Aplexa niteus Say, 1821, and Physa prinsepii elongata Hislop, 1860 (Figure 19). "PhyB" clusters with two modern representatives of Physidae, Physella parkeri Currier, 1881 and P. gyrina Say, 1821, and Physa prinsepii normalis Hislop, 1860 and P. p. inflata Hislop, 1860. Although Hislop (1860) considered P. p. normalis and P. p. inflata to be two separate, there is no evidence to support these subspecies in the dendrogram.

Morphotypes were placed within each potential family based on overall appearance and clustering patterns with modern representatives (Figure 19). Both morphotypes considered as members of Valvatidae clustered with the modern valvatid representatives, Valvata virens Tyron, 1863 and V. utahensis Call, 1884, Valvata multicarinata Hislop, 1860 and V. unicarinifera Hislop, 1860.

Clustering of "styA," "styB," and styC" is more complicated due to the relationship of both freshwater and terrestrial families to these forms in all analyses. The cluster includes representatives from the freshwater families Micromelanidae, Hydrobiidae, Pleuroceridae, and two families of the terrestrial Stylommatophora (Subulinidae and Ferussaciidae) (Figure 19). Although "styA," "styB," and styC" are found together, their individual morphologies are readily distinguishable and are considered distinct morphotypes. The presence of terrestrial families and the type of shell morphology suggests they are terrestrial rather than freshwater. The cluster incorporating "styB" contains Viviparus acicularis Hislop, 1860 and V. subcylindracea Hislop, 1860. The cluster containing "styC" contains V. pyramis Hislop, 1860 and V. rawesi Hislop, 1860. The clustering pattern suggests that V. acicularis and V. subcylindracea and V. pyramis and V. rawesi, respectively, are perhaps the same species.

Although both morphotypes of Viviparidae appear to be valid members of the family, only "vivB" clusters with the modern representative from India, Bellamya bengalensis Lamarck,

1801, and Viviparus normalis Hislop, 1860 (Figure 19). "VivA" forms two distinctive clusters yet the morphology appears consistent (Figure 19).

Analysis of Variance (ANOVA) for Locality Distinction

Locality distinction based on changes in morphotype characteristics reflects changes in species due potentially to the Deccan trap eruptions. Analysis of variance demonstrated these changes by determining if at least one locality was distinct on the basis of shape and size of the morphotype. Subsequent post hoc testing determined how localities were related. In general, localities could be consistently differentiated based on specimen size but not on overall morphology. Specimens in the infratrappean Pijdura locality are statistically larger than the remainder of the sequence; however species retained the same shape between all localities.

Morphotype "hydA"

"HydA" was found throughout the sequence at all study localities (Table 4).
Differentiating localities using the height to width ratio and either outline shape showed that localities were not distinct (height/width: $\mathrm{F}_{4,10}=0.7841, p=0.5608$; height/width:shape: $\mathrm{F}_{4,1,10}=$ $0.0804, p=0.7826$). Localities were not distinct based on the height to width ratio and whorl shape (height/width: $\mathrm{F}_{4,10}=0.4254, p=0.7872$; height/width:whorl shape: $\mathrm{F}_{4,2,10}=0.6340$, $p=0.5505$). Localities also could not be differentiated based on the height to width ratio and suture depression (height/width: $\mathrm{F}_{4,9}=0.6784, p=0.6239$, height/width:suture depression: $\mathrm{F}_{4,2,9}=$ 2.246, $p=0.1617$).

Localities were statistically distinguishable based on maximum height and outline shape (height: $\mathrm{F}_{4,10}=26.64, p=<0.0001^{*}$; height:shape: $\mathrm{F}_{4,1,10}=9.777, p=0.0108^{*}$). Two locality groups were formed, the Takli-Kalmeshwar-Sindhi group and Pijdura-Butera group. "hydA" in the Pijdura-Butera group has a greater mean maximum height than the Takli-Kalmeshwar-Sindhi

Table 4. Number of specimens of each gastropod morphotype found at each locality.

	Pijdura (Inf)	Takli $($ Int1)	Kalmeshwar (Int2)	Butera $\left(\right.$ Int3 $\left._{1}\right)$	Sindhi $\left(\right.$ Int3 $\left._{2}\right)$	Totals	$\%$ of Family	$\%$ of Assemblage
hydA	2	5	9	2	2	20	10%	3%
hydB	26	30	31	3	6	96	48%	14%
hydC	1	28	38	11	7	85	42%	13%
hydD	2	0	0	0	2	4	100%	$<1 \%$
lymA	0	2	11	15	0	28	24%	4%
lymB	5	34	21	4	1	65	56%	10%
lymC	15	2	0	6	1	24	20%	4%
phyA	14	9	4	5	0	32	34%	5%
phyB	20	16	15	12	0	63	66%	9%
styA	0	9	1	0	0	10	14%	1%
styB	0	19	21	11	4	55	78%	8%
styC	0	1	3	2	0	6	8%	$<1 \%$
valA	0	0	12	6	0	18	24%	3%
valB	0	10	29	19	0	58	76%	9%
vivA	0	13	7	11	0	31	30%	5%
vivB	25	14	23	7	2	71	70%	11%
Totals	110	192	225	114	25			
	17%	29%	34%	17%	4%			

group (Figure 21a). Localities can be distinguished based on the height when incorporating the whorl shape (height: $\mathrm{F}_{4,10}=17.40, p=0.0002^{*}$, height:whorl shape: $\mathrm{F}_{4,2,10}=3.061, p=0.0918$). The resulting locality groups are the same. Similarly, localities are distinguishable based on the height when incorporating suture depression (height: $\mathrm{F}_{4,9}=20.82, p=0.0001^{*}$; height:suture depression: $\mathrm{F}_{4,2,9}=1.341, p=0.3092$). The same resulting locality groups occurred in this analysis (Figure 21a).

Overall, localities are not distinguishable when the morphology is corrected for size variation, as when using the height to width ratio, but are distinct forming two subgroups, the

Takli-Kalmeshwar-Sindhi group and Pijdura-Butera group, when analyzing the actual specimen dimensions.

Figure 21. ANOVA results from post-hoc Tukey's test for "hydA," "hydB," and "hydC." For each gastropod morphotype, members of group "a" are distinct from group "b." A. Results from raw data analysis for "hydA." B. Results from raw data analysis for "hydB." C. Results from ratio data analysis for "hydB." D. Results from raw data analysis for "hydC." Error bars = one standard deviation above mean, $\alpha=0.05$.

Morphotype "hydB"

"HydB" was common throughout the sequence at all study localities (Table 4). Differences between "hydB" distinguish localities based on the height to width ratio and outline shape (height/width: $\mathrm{F}_{4,70}=10.99, p=<0.0001^{*}$; height/width:shape: $\mathrm{F}_{4,5,70}=0.5632, p=0.7278$). Two locality groups are formed. The Takli-Kalmeshwar-Butera-Sindhi group has a lower height to width ratio than the Pijdura group (Figure 21c). "HydB" morphology differentiates localities based on the height to width ratio and whorl shape (height: $\mathrm{F}_{4,74}=10.30, p=<0.0001^{*}$; height/width:whorl shape: $\mathrm{F}_{4,4,74}=1.880, p=0.1229$). The resulting locality groups are the same.

Using the height to width ratio with the suture depression distinguished localities (height/width: $\mathrm{F}_{4,71}=9.856, p=<0.0001 *$ height/width:suture depression: $\mathrm{F}_{4,5,71}=1.390, p=$ 0.2383). Locality groups are the same as previous analyses. Localities are distinguishable based on the actual maximum height when incorporating outline shape (height: $\mathrm{F}_{4,70}=35.9757$, $p=$ $<0.0001^{*}$, height:shape: $\mathrm{F}_{4,5,70}=1.911, p=0.1034$). "hydB" is divided into two locality groups. The Takli-Kalmeshwar-Butera-Sindhi group has a lower mean height than the Pijdura group (Figure 21b). Localities are distinguishable based on actual height and whorl shape (height: $\mathrm{F}_{4,74}=$ $73.20, p=<0.0001^{*}$; height:whorl shape: $\left.\mathrm{F}_{4,4,74}=11.12, p=<0.0001^{*}\right)$. Locality groups are the same as the previous analysis. The height and suture depression distinguish localities (height: $\mathrm{F}_{4,71}=48.51, p=<0.0001^{*}$; height:suture depression: $\left.\mathrm{F}_{4,5,71}=3.254, p=0.0104^{*}\right)$. Resulting locality groups are the same as previous analyses.

Overall, "hydB" forms two locality groups based on ratio and raw data. The Pijdura group has a greater height or height to width ratio than the Takli-Kalmeshwar-Butera-Sindhi group.

Morphotype "hydC"

"HydC" was common throughout the sequence at all study sites (Table 4). Height to width ratio with outline shape does not distinguish localities (height/width: $\mathrm{F}_{4,67}=1.063, p=$ 0.3819 ; height/width:shape: $\mathrm{F}_{4,3,67}=0.6102, p=0.6107$). When incorporating height to width ratio and whorl shape, localities were not distinguishable (height/width: $\mathrm{F}_{4,69}=1.013, p=0.4071$; height/width:whorl shape: $\mathrm{F}_{4,3,69}=0.2959, p=0.8283$). Localities are also not distinguishable based on the height to width ratio with suture depression (height/width: $\mathrm{F}_{4,66}=1.075, p=0.3761$; height/width:suture depression: $\mathrm{F}_{4,3,66}=0.7682, p=0.5159$).

Incorporating the actual maximum height and outline shape produced a statistically significant result (height: $\mathrm{F}_{4,67}=3.935, p=0.0063^{*}$, height:shape: $\mathrm{F}_{4,3,67}=4.389, p=0.0070^{*}$). "hydC" specimens are divided into two locality groups. The Takli-Kalmeshwar-Butera-Sindhi group has a lower mean height than the Pijdura group (Figure 21d). Localities are also differentiable based on the height and whorl shape (height: $\mathrm{F}_{4,69}=3.726, p=0.0084^{*}$; height:whorl shape: $\mathrm{F}_{4,3,69}=3.486, p=0.0203 *$). The resulting locality groups are the same as the previous analysis. Localities were differentiable into two groups based on the height and suture depression (height: $\mathrm{F}_{4,66}=3.659, p=0.0094^{*}$; height:suture depression: $\mathrm{F}_{4,3,66}=1.515, p=0.2188$) (Figure 21d).

Generally, localities are not distinguishable when "hydC" is corrected for size variation, but are distinct forming two groups, the Takli-Kalmeshwar-Butera-Sindhi group and Pijdura group, when analyzing the actual specimen dimensions. "HydC" in the Pijdura group have a greater mean height than those in the Takli-Kalmeshwar-Butera-Sindhi group.
"HydD" is a rare morphology and was restricted to Pijdura and Sindhi (Table 4). The distribution of this morphology was not normal and a nonparametric Kruskall-Wallis test was used. Localities were not differentiable based on the height to width ratio $\left(\chi^{2}{ }_{1}=2.4, \mathrm{p}=0.1213\right)$ or the actual measured height $\left(\chi^{2}{ }_{1}=2.4, p=0.1213\right)$.

Morphotype "lymA"

"LymA" is an uncommon morphology found at Takli, Kalmeshwar, and Butera (Table 4). Localities were not differentiable based on the height to width ratio when incorporating the outline shape (height/width: $\mathrm{F}_{2,21}=0.1861, p=0.8316$). There is no interaction between the height to width ratio and outline shape indicating these factors have equal effect on locality separation. The height to width ratio with whorl shape could not be used to distinguish localities (height/width: $\mathrm{F}_{2,20}=0.1798, p=0.8368$; height/width:whorl shape: $\mathrm{F}_{2,1,20}=0.0720, p=0.7912$). Similarly, localities are not distinguishable based on the height to width ratio with the suture depression (height/width: $\mathrm{F}_{2,19}=0.1733, p=0.8422$; height/width:suture depression: $\mathrm{F}_{2,1,19}=4.128$, $p=0.0564)$.

The assumptions were not met when using the actual measured height due to a lack of a normal distribution, so a nonparametric Kruskall-Wallis test was used. Localities could not be distinguished based on specimen height $\left(\chi_{2}^{2}=2.457, p=0.2927\right)$.

Morphotype "lymB"

"LymB" was common throughout the sequence found at all study localities (Table 4). The height to width ratio of "lymB" nor its interaction with the outline shape could be used to distinguish localities (height/width: $\mathrm{F}_{4,53}=1.061, p=0.3851$; height/width:shape: $\mathrm{F}_{4,3,53}=0.6351$,
$p=0.5957$). Localities were also not differentiable based on the height to width ratio with the whorl shape (height/width: $\mathrm{F}_{4,54}=1.001, p=0.4154$; height/width:whorl shape: $\mathrm{F}_{4,2,54}=0.0972, p=$ 0.9075). The height to width ratio with the suture depression did not distinguish localities (height/width: $\mathrm{F}_{4,53}=1.068, p=0.3814$; height/width:suture depression: $\mathrm{F}_{4,1,53}=1.498, p=0.2264$).

The actual measured height with outline shape differentiated localities into three groups (height: $\mathrm{F}_{4,53}=13.78, p=<0.0001^{*}$; height:shape: $\mathrm{F}_{4,3,53}=0.9849, p=0.4070$). The Takli group has a lower mean height than the Takli-Kalmeshwar-Butera-Sindhi group, which has a lower mean height than the Pijdura group (Figure 22a). Localities are also distinguishable based on the height with whorl shape (height: $\mathrm{F}_{4,54}=12.36, p=<0.0001^{*}$; height:whorl shape: $\mathrm{F}_{4,2,54}=0.0352, p=$ $0.9654)$. The resulting groups are the same as the previous analysis. Localities are also differentiable using the height and suture depression (height: $\mathrm{F}_{4,53}=13.54, p=<0.0001^{*}$; height:suture depression: $\mathrm{F}_{4,1,53}=2.943, p=0.1240$). Similarly, specimens are divided into three locality groups (Figure 22a).

In general, localities are distinguishable based on the actual measured height but not the height to width ratio. The specimens of "lymB" form three locality groups. The Takli group has a lower mean height than the Takli-Kalmeshwar-Butera-Sindhi group, which have a lower height than the Pijdura group.

Morphotype "lymC"

"LymC" was found at all study localities (Table 4). The outline shape is constant throughout this morphology and therefore it cannot be used in the analysis. The height to width ratio distinguishes localities ($\mathrm{F}_{3,18}=8.270, p=0.0011^{*}$). The Pijdura-Sindhi group has a greater mean height to width ratio than the Takli-Butera group (Figure 22c). Localities are differentiable based on the height to width ratio when incorporating the whorl shape (height/width: $\mathrm{F}_{3,16}=8.091$,

Figure 22. ANOVA results from post-hoc Tukey's test for "lymB" and "lymC." For each gastropod morphotype, members of group "a" are distinct from group "b" and group "c." A. Results from raw data analysis for "lymB." B. Results from raw data analysis for "lymC." C. Results from ratio data analysis for "lymC." Error bars = one standard deviation above mean, $\alpha=$ 0.05 .
$p=0.0017^{*}$; height/width:whorl shape: $\mathrm{F}_{3,1,16}=1.065, p=0.3174$). There are two resulting locality groups (Figure 22c). The height to width ratio distinguishes localities when incorporating the suture depression (height/width: $\mathrm{F}_{3,16}=7.692, p=0.0021^{*}$). There is no interaction between the height to width ratio and the suture depression indicating equal effects on the differentiation of localities. Localities are divided into two groups (Figure 22c).

Since the outline shape is constant throughout the morphotype, a 2-way analysis of variance using the outline shape and actual measured height was not possible. Localities are differentiable into two groups ($\mathrm{F}_{3,18}=8.2719, p=0.0011^{*}$). The Pijdura-Sindhi group has a greater
mean height than the Takli-Butera-Sindhi group (Figure 22b). Localities are distinguishable based on height when incorporating the whorl shape and suture depression (Whorl Shape: $F_{3,16}=9.250$, $p=0.0009^{*}$; Suture Depression: $\mathrm{F}_{3,16}=8.3260, p=0.0015^{*}$). The interaction of height and whorl shape is not significant and there is no interaction between height and suture depression indicating an equal effect on locality distinction (height:whorl shape: $\mathrm{F}_{3,1,16}=0.9566, p=0.3426$). There were two resulting locality groups (Figure 22b).

Overall, localities are differentiable based on "lymC" morphology and size. The PijduraSindhi group has a greater mean height to width ratio than the Takli-Butera group. The PijduraSindhi group had a greater mean height than the Takli-Butera-Sindhi group.

Morphotype "phyA"

"PhyA" was found in all study localities except Sindhi (Table 4). The height to width ratio when including the outline shape differentiated localities into two groups (height/width: $\mathrm{F}_{3,24}=4.425, p=0.0130^{*}$) (Figure 23b). There is no interaction between the outline shape and height to width ratio indicating an equal effect on the analysis. Localities are differentiable based on the height to width ratio when incorporating the whorl shape (height/width: $\mathrm{F}_{3,24}=3.960, p=$ 0.0200^{*}, height/width:whorl shape: $\mathrm{F}_{3,1,24}=0.4698, p=0.4997$). Using the height to width ratio when including the suture depression differentiates localities into two groups (height/width: $\mathrm{F}_{3,21}=$ $4.019, p=0.0209^{*}$; height/width:suture depression: $\mathrm{F}_{3,3,21}=1.229, p=0.3242$). In all analyses, the Pijdura-Kalmeshwar-Butera group has a greater mean height to width ratio than the TakliKalmeshwar group (Figure 23b).

The distribution of the actual height of "phyA" was not normal, so a nonparametric Kruskall-Wallis test was used. Localities were differentiable into three groups $\left(\chi^{2}{ }_{3}=22.71, \mathrm{p}=\right.$
$<0.0001 *)$. The Pijdura group has a noticeably greater mean height than the Kalmeshwar-Butera group, which has a greater mean height than the Takli-Kalmeshwar group (Figure 23a).

Figure 23. ANOVA results from post-hoc Tukey's test for "phyA" and "phyB." For each gastropod morphotype, members of group "a" are distinct from group "b" and group "c." A. Results from raw data analysis for "phyA." B. Results from ratio data analysis for "phyA." C. Results from raw data analysis for "phyB." D. Results from ratio data analysis for "phyB." E. Results from ratio data analysis incorporating whorl shape for "phyB." Error bars = one standard deviation above mean, $\alpha=0.05$.

Generally, using the size corrected values and the actual dimensions of "phyA" differentiate localities. The Pijdura-Kalmeshwar-Butera group has a greater mean height to width ratio than the Takli-Kalmeshwar group. In order by mean height are the Pijdura group, the Kalmeshwar-Butera group, and the Takli-Kalmeshwar group.

Morphotype "phyB"

"PhyB" was common in all study localities except Sindhi (Table 4). Localities are distinguishable based on the height to width ratio and outline shape (height/width: $\mathrm{F}_{3,48}=10.35$, $p=<0.0001^{*}$, height/width:shape: $\mathrm{F}_{3,1,48}=0.0378, p=0.8466$). The Pijdura-Takli group has a greater mean height to width ratio than the Takli-Kalmeshwar-Butera group (Figure 23d). The height to width ratio with whorl shape differentiates localities into three groups (height/width: $\mathrm{F}_{3,44}=10.79, p=<0.0001 *$; height/width:whorl shape: $\mathrm{F}_{3,4,44}=1.431, p=0.2398$). The Pijdura group has a greater mean height to width ratio than the Takli-Kalmeshwar-Butera group, which has a greater mean height to width ratio than the Kalmeshwar group (Figure 23e). Localities are separated into two groups based on the height to width ratio when including the suture depression(height/width: $\mathrm{F}_{3,40}=10.18, p=<0.0001^{*}$; height/width:suture depression: $\mathrm{F}_{3,6,40}=$ $0.9408, p=0.4769)$. The resulting locality groups are the same as when including outline shape.

The assumptions were not met when including the actual measured height because of the lack of a normal distribution, so a nonparametric Kruskall-Wallis test was used. Localities were differentiable into two groups ($\chi_{3}^{2}=28.24, \mathrm{p}=<0.0001^{*}$). The Pijdura group has a noticeably greater mean height than the Takli-Kalmeshwar-Butera group (Figure 23c). Specimens from Butera have a broad distribution of shell heights ranging from one mm to almost 50 mm , which gives the locality a lower mean height although some specimens are comparable to those in the Pijdura group.

Overall, both the size corrected values and the actual dimensions of specimens of the "phyB" morphotype differentiate localities. The groups resulting from the height to width ratio and the outline shape or suture depression are the Pijdura-Takli group and the Takli-KalmeshwarButera group, while those from the whorl shape are the Pijdura group, the Takli-KalmeshwarButera group, and the Kalmeshwar group. Groups containing Pijdura have greater mean height to width ratios. The analysis with the actual height resulted in two locality groups. The Pijdura group has a greater mean height than the Takli-Kalmeshwar-Butera group.

Morphotype "styA"

"StyA" was rare and occurred only at Takli and Kalmeshwar (Table 4). Localities were not differentiable based on the height to width ratio when incorporating the outline shape, whorl shape, or suture depression (Outline Shape: $\mathrm{F}_{1,7}=1.438, p=0.2695$; Whorl Shape: $\mathrm{F}_{1,7}=1.248, p=$ 0.3608 ; Suture Depression: $\mathrm{F}_{1,6}=1.143, p=0.3262$). There are no interactions between variables indicating that they have an equal effect on distinguishing localities.

Localities were not differentiable based on height with outline shape, whorl shape, or suture depression did not differentiate localities (Outline Shape: $\mathrm{F}_{1,7}=0.1441, p=0.7155$; Whorl Shape: $\mathrm{F}_{1,7}=0.0724, p=0.7956$; Suture Depression: $\mathrm{F}_{1,6}=0.0651, p=0.8071$). There are no interactions between variables indicating an equal effect on distinguishing localities. In general, "styA" remains the same throughout all localities where present and cannot be used to differentiate localities.

Morphotype "styB"

"StyB" was relatively common at all study localities except Pijdura (Table 4). Height to width ratio when including outline shape, whorl shape, or suture depression did not distinguish localities (Outline Shape: $\mathrm{F}_{3,37}=0.3196, p=0.8111$; Whorl Shape: $\mathrm{F}_{3,35}=0.3209, p=0.8102$;

Suture Depression: $\mathrm{F}_{3,32}=0.3428, p=0.7945$). There is no interaction between height and outline shape, indicating the variables have an equal effect, and the interaction between height and the whorl shape and suture depression did not differentiate localities (Height:Whorl shape: $\mathrm{F}_{3,2,35}=$ 1.440, $p=0.2507$; Height:Suture depression: $\mathrm{F}_{3,3,32}=2.181, p=0.1095$).

Localities are also not differentiable based on actual height when including outline shape, whorl shape, or suture depression (Outline Shape: $\mathrm{F}_{3,37}=2.746, p=0.0567$; Whorl Shape: $\mathrm{F}_{3,35}=$ 2.655, $p=0.0636$; Suture Depression: $\mathrm{F}_{3,32}=2.480, p=0.0789$). There is no interaction between height and outline shape, indicating the variables have an equal effect, and the interaction between height and whorl shape and suture depression did not differentiate localities (Height:whorl shape: $\mathrm{F}_{3,2,35}=0.2923, p=0.7484$; Height:suture depression: $\mathrm{F}_{3,3,32}=0.0308, p=$ 0.9926). Overall, "styB" remains the same throughout all localities and cannot be used to differentiate the localities.

Morphotype "styC"

"StyC" was rare and found only at Takli, Kalmeshwar, and Butera (Table 4). The distribution of the height to width ratio was not normal, so a nonparametric Kruskall-Wallis test was used. "StyC" cannot differentiate localities based on the height to width ratio $\left(\chi^{2}{ }_{2}=0.0952\right.$, $p=0.9535)$.

The assumptions were also not met when incorporating the measured height due to normality, so a nonparametric Kruskall-Wallis test was used. Localities are not differentiable based on height $\left(\chi^{2}{ }_{2}=0.8095, p=0.6671\right)$. In general, using the morphologic characters of "styC" cannot distinguish localities.

Morphotype "valA"

"ValA" was rare and found only in Kalmeshwar and Butera (Table 4). The height to width ratio when incorporating outline shape, whorl shape, or suture depression did not differentiate localities (Outline Shape: $\mathrm{F}_{1,12}=1.133, p=0.8080$; Whorl Shape: $\mathrm{F}_{1,13}=1.227, p=$ 0.2881; Suture Depression: $\mathrm{F}_{1,12}=1.199, p=0.2950$). The interaction between height to width ratio and outline shape, whorl shape, or suture depression also did not differentiate localities (Height:Outline shape: $\mathrm{F}_{1,1,12}=0.3228, p=0.5804$; Height:Whorl shape: $\mathrm{F}_{1,1,13}=0.0885, p=$ 0.7708; Height:Suture depression: $\mathrm{F}_{1,1,12}=0.4713, p=0.5054$).

Localities were not differentiable based on the measured height when including the outline shape, whorl shape, or suture depression (Outline Shape: $\mathrm{F}_{1,12}=1.505, p=0.2435$; Whorl Shape: $\mathrm{F}_{1,13}=1.319, p=0.2715$; Suture Depression: $\mathrm{F}_{1,12}=1.529, p=0.2399$). The interaction between height and outline shape, whorl shape, or suture depression also did not differentiate localities (Height:Outline shape: $\mathrm{F}_{1,1,12}=0.5119, p=0.4880$; Height:Whorl shape: $\mathrm{F}_{1,1,13}=1.929$, $p=0.1883$; Height:Suture depression: $\mathrm{F}_{1,1,12}=0.4633, p=0.5090$). Overall, "valA" is consistent through the sequence where it is present and cannot be used to distinguish localities.

Morphotype "valB"

"ValB" was found at Takli, Kalmeshwar, and Butera (Table 4). The height to width ratio only differentiates localities with the interaction with outline shape (height/width: $\mathrm{F}_{2,45}=0.7124$, $p=0.4959$; height/width:shape: $\left.\mathrm{F}_{2,1,45}=4.225, p=0.0457 *\right)$. The height to width ratio with whorl shape and suture depression do not differentiate localities (height/width: $\mathrm{F}_{2,43}=0.6046, p=0.5509$; height/width:whorl shape: $\mathrm{F}_{2,2,43}=0.1273, p=0.8808$; height/width: $\mathrm{F}_{2,42}=0.6072, p=0.5496$; height/width:suture depression: $\mathrm{F}_{2,2,42}=0.6984, p=0.5031$).

Figure 24. ANOVA results from post-hoc Tukey's test for "valB." For each gastropod morphotype, members of group "a" are distinct from group "b." A. Results from raw data analysis. B. Results from raw data analysis incorporating the suture depression. Error bars $=$ one standard deviation above mean, $\alpha=0.05$.

Localities are distinguishable based on the measured height with outline shape (height: $\mathrm{F}_{2,45}=4.486, p=0.0167^{*}$; height:shape: $\left.\mathrm{F}_{2,1,45}=5.621, p=0.0221^{*}\right)$. The Takli-Kalmeshwar group has a lower mean height than the Kalmeshwar-Butera group (Figure 24a). The height with whorl shape differentiates localities into the same groups as with outline shape (height: $\mathrm{F}_{2,43}=5.248, p=$ 0.0091^{*}, height:whorl shape: $\mathrm{F}_{2,2,43}=0.8041, p=0.4541$). The height with suture depression also differentiates localities (height: $\mathrm{F}_{2,42}=8.734, p=0.0007^{*}$; height:suture depression: $\mathrm{F}_{2,2,42}=10.59$, $p=0.0002^{*}$). Here, the Takli group has a lower mean height than the Kalmeshwar-Butera group (Figure 24b).

Morphotype "vivA"

"VivA" was found at Takli, Kalmeshwar, and Butera (Table 4). Localities are differentiable based on the height to width ratio with outline shape (height/width: $\mathrm{F}_{2,24}=10.60, p=$ 0.0005^{*}; height/width:shape: $\mathrm{F}_{2,2,24}=0.2434, p=0.7858$). Localities are differentiable based on the height to width ratio and whorl shape and suture depression (Whorl Shape: height/width: $\mathrm{F}_{2,24}=6.961, p=0.0041^{*}$; interaction: $\mathrm{F}_{2,2,24}=0.8721, p=0.4309$; Suture Depression: $\mathrm{F}_{2,22}=7.141$,
$p=0.0041^{*}$; interaction: $\mathrm{F}_{2,2,22}=1.258, p=0.3038$). In all analyses, the Takli-Kalmeshwar group has a greater mean height to width ratio than the Takli-Butera group (Figure 25b).

Localities are distinguishable based on the interaction of height and outline shape (height: $\mathrm{F}_{2,24}=2.713, p=0.0867$; height:shape: $\left.\mathrm{F}_{2,2,24}=4.267, p=0.0260^{*}\right)$. The Takli-Kalmeshwar group has a lower mean height than the Kalmeshwar-Butera group (Figure 25a). Height with whorl shape and suture depression do not differentiate localities (Whorl Shape: $\mathrm{F}_{2,24}=2.066, p=0.1487$; interaction: $\mathrm{F}_{2,2,24}=0.0467, p=0.9544 ;$ Suture Depression: $\mathrm{F}_{2,22}=3.064, p=0.0670$; interaction: $\mathrm{F}_{2,2,22}=0.3884, p=0.6827$).

Figure 25. ANOVA results from post-hoc Tukey's test for "vivA" and "vivB." For each gastropod morphotype, members of group "a" are distinct from group "b." A. Results from raw data analysis for "vivA." B. Results from ratio data analysis for "vivA." C. Results from raw data analysis for "vivB." D. Results from ratio data analysis for "vivB." Error bars = one standard deviation above mean, $\alpha=0.05$.

In general, localities are differentiable when using the height to width ratio and measured height. The Takli-Kalmeshwar group has a greater mean height to width ratio than the TakliButera group. The Takli-Kalmeshwar group has a lower mean height than the KalmeshwarButera group.

Morphotype "vivB"

"VivB" was common throughout the sequence at all study sites (Table 4). Localities are distinguishable based on the height to width ratio with outline shape, whorl shape, and suture depression (Outline Shape: $\mathrm{F}_{4,62}=10.22, p=<0.0001^{*}$; Whorl Shape: $\mathrm{F}_{4,62}=9.910, p=<0.0001^{*}$, Suture Depression: $\mathrm{F}_{4,57}=10.80, p=<0.0001^{*}$). There are no interactions between the height to width ratio and the outline shape and whorl shape indicating the equal effects of the variables on the analyses; however, there is an interaction between the ratio and suture depression but it is not significant $\left(\mathrm{F}_{4,2,57}=0.5304, p=0.7138\right)$. The resulting groups for all analyses are the PijduraSindhi, which has a greater mean height to width ratio than the Takli-Kalmeshwar-Butera-Sindhi group (Figure 25d).

The distribution of the actual height is not normal, so a nonparametric Kruskall-Wallis test was used. Localities are differentiated into two groups based on height $\left(\chi^{2}=47.90, p=\right.$ $\left.<0.0001^{*}\right)$. The Pijdura group has a noticeably greater mean height than the Takli-Kalmeshwar-Butera-Sindhi group (Figure 25c).

Overall, localities are distinguishable when using ratios and the actual specimen dimensions. The Pijdura-Sindhi group has a greater height to width ration than the Takli-Kalmeshwar-Butera-Sindhi. The Pijdura group has a greater mean height than the Takli-Kalmeshwar-Butera-Sindhi group. Specimens from Sindhi are slightly narrower giving them a greater height to width ratio comparable to specimens from Pijdura, but Sindhi specimens are still
significantly smaller than Pijdura specimens so that they are not comparable when using the actual height measurements.
χ^{2} Analysis for Locality Distinction

Changes in the diversity, or number of species, and abundance, or number of specimens, through the locality sequence illustrate potential effects of the Deccan trap eruptions on the molluscan population. χ^{2} analyses measured differences between localities based on the number of species, total number of specimens measured for the study, and total number of specimens cataloged for each locality.

Localities are not distinguishable based on species diversity $\left(\chi^{2}{ }_{4}=5.445\right)$ (Table 5). The results were significant based on the total number of study specimens photographed and measured $\left(\chi^{2}{ }_{4}=183.9\right)$ (Table 5). Sindhi has noticeably fewer specimens; however, this is likely due to the small amount of material processed and the difficulty in preparing fossils from chert. Pijdura and Butera have fewer specimens than average while Takli and Kalmeshwar have more. Sindhi was removed to avoid skewing the results based on the amount of material processed and the test was conducted again. Localities were still distinct when removing Sindhi $\left(\chi^{2}{ }_{3}=61.56\right)$. Localities were distinct based on the total number of species identified to morphotype but not necessarily measured $\left(\chi^{2}{ }_{4}=486.3\right)$ (Table 5). Again, Sindhi has noticeably fewer specimens, which is likely due to the amount of material. Sindhi was removed and the analysis was conducted a second time. Localities were still distinguishable without Sindhi $\left(\chi^{2}=148.5\right)$. Pijdura and Kalmeshwar have fewer specimens than average while Takli and Butera have more.

Table 5. Number of species and specimens for each locality.

	Species	Specimens Measured	Specimens Identified
Pijdura	9	110	201
Takli	14	192	508
Kalmeshwar	14	225	306
Butera	14	114	415
Sindhi	8	25	30
Totals		666	1460

CHAPTER VI

DISCUSSION

Systematics

Cluster analysis is highly effective in identifying grouping patterns in paleontologic specimens that may coincide with taxonomic categories. Grouping patterns not only show distinct morphotypes but how these morphotypes are related to each other, which may identify higher taxonomic categories. Once potential taxonomic clusters are identified, knowledge of the group's taxonomy, geologic history, and biogeography is applied to flesh out more accurate systematics. In cluster analysis, the correlation coefficient (R) determines the goodness of fit of the resulting dendrogram or the degree of similarity of the data points. The correlation coefficient is given as a number between zero and one where one equals perfect correlation. Values between 0.9 and one are considered very strongly correlated, values between 0.7 and 0.9 are strongly correlated, values between 0.5 and 0.7 are moderately correlated, and values less than 0.5 have poor to no correlation (Calkins, 2005). The calculated correlation coefficients for analyses incorporating all specimens range from 0.70 to 0.71 , so the resulting clusters interpreted as morphotypes are considered strong.

According to the cluster analysis for taxonomic placement, "hydA" is distinct but is related to "hydB," "hydC," and "hydD" (Figure 26). It is distinguishable by an angular body whorl and a more triangular outline shape. "HydA" is also related to Viviparus virapai Hislop, 1860. Although it is not found with modern representatives, the closely related clusters contain Incertihydrobia teesdalei Verdcourt, 1958 and Littoridina australis Marcus \& Marcus,

1965 (Hydrobiidae), Elimia livescens Menke, 1830 (Pleuroceridae), Micromelania grimani Brusina, 1874 (Micromelaniinae), and Blanfordia simplex Pilsbry, 1902 (Pomatiopsidae).

Pleurocerids have a similar morphology to "hydA," and although originally the family included members from Asia, they are now considered restricted to North America. Micromelaniinae is a freshwater family very similar in shell morphology to the hydrobiids and are now included in Hydrobiidae (Bouchet and Rocroi, 2005). Micromelanids are found in many areas of the world including eastern India. Pomatiopsids are very similar in morphology to hydrobiids and were previously included as a Hydrobiidae subfamily (Davis, 1967). The pomatiopsids have a worldwide distribution with one modern species in northern India. Pomatiopsids evolved in Gondwana and migrated north through India, while hydrobiids evolved in Laurasia and migrated south (Davis, 1979). Most hydrobiids occur in Europe, North America, and Turkey (Davis, 1979). There are possible pomatiopsid fossils, which resemble the modern subfamily Triculinae, from the Cretaceous of India and South Africa (Davis, 1979). Although Davis did not discuss the Indian fossils in detail, he referenced Hislop (1860) and Malcolmson (1836) so he was likely referring to the Deccan trap fauna. Hydrobiids, pomatiopsids, and micromelanids are typically small and higher spired (2-8 whorls) with an ovate aperture. Hydrobiids are completely aquatic while pomatiopsids are aquatic, semi aquatic, or terrestrial.

Since pleurocerids are restricted to North America, Deccan Trap gastropod morphologies do not likely belong to this taxon. Micromelaniinae is currently included in the Hydrobiidae and are not considered a separate family. Shell morphology is very similar between hydrobiids and pomatiopsids and distinction is often based on habit, so it is difficult to identify with certainty which family applies to "hydA," "hydB," and "hydC." Since pomatiopsids evolved in Gondwana before migrating north (Davis, 1979), it is likely that the Cretaceous Deccan trap species are in Pomatiopsidae rather than the Laurasian Hydrobiidae. "HydA" is closely related to Viviparus
virapai, so they are considered the equivalent. The revised genus Tricula is applied to this species based on general morphologic similarity combined with the modern occurrence of the genus in India (Davis and Rao, 1997) and the fossil record of potential Triculinae from the Cretaceous (Davis, 1979).

Superfamily Rissooidea (Rissoacea) Adams and Adams, 1854

Family Pomatiopsidae Stimpson, 1865

Subfamily Triculinae Annandale, 1924

Genus Tricula Benson, 1843

Description: "Shell elongated ovate cone-shaped, not umbilicate; apex somewhat blunt; whorls moderately bulging, the last somewhat stretched downward; aperture oval, angular above, produced below: apertural margin blunt, continuous, in most cases somewhat broadened; operculum thin, with nearly marginal nucleus and rapidly increasing growth. Central plate of the radula trapezoidal, posteriorly with 2 (or 3) teeth, cutting edge with fairly large. triangular median cusp and 1 or 2 lateral cusps; intermediate plate with fairly short lateral process, cutting edge with large main cusp and few inner and outer lateral cusps; cutting edges of the lateral plates distinctly denticulate. T. montana Benson. Few species in India and South China (Thiele, 1992)."

Tricula virapai (Hislop), new genus assignment Paludina virapai Hislop, 1860

Description: "Shell turreted; apex acute, commonly truncate; eight, perhaps nearly 10, planar whorls; suture moderately impressed; aperture ovate, peristome interrupted; labial
margin reflexed. Length 1.1?, width 0.5 inch [27.9 ? mm, 12.7 mm] (Hislop, 1860; translated in Hartman et al., 2008)."

Distribution: Uncommon across Deccan Plateau infra- and intertrappean beds at Pijdura, Takli, Kalmeshwar, Butera, and Sindhi.

Holotype: GS 10271a; Plate V, fig. 12a (Hislop, 1860); Type locality: Takli.

Repository: Natural History Museum, London, England.
"HydB" clusters with Incertihydrobia teesdalei Verdcourt, 1958 (Hydrobiidae) and Elimia livescens Menke, 1830 (Pleuroceridae) and Viviparus conoidea Hislop, 1860 and V. takliensis Hislop, 1860. "HydB" is also closely related to "hydA," "hydC," and "hydD" (Figure 26). The taxonomic relationships discussed for "hydA" apply to "hydB" due to a close relationship between these morphologies.
"HydB" can also be separated into two distinctive morphologies that are distinguishable by whorl shape and shell width. "HydB1" has rounder whorls and a slightly wider body whorl than "hydB2" with flatter whorls and a narrower body whorl. These two morphs correspond to Viviparus conoidea Hislop, 1860 and V. takliensis Hislop, 1860, respectively. "HydB1" is more common than "hydB2." On the basis of clustering patterns and shell morphology, "hydB1" and "hydB2" are considered subspecies. Due to predominance of "hydB1," the two morphologies will be considered subspecies of the revised Tricula conoidea Hislop, 1860. The two subspecies proposed here are Tricula conoidea conoidea and Tricula conoidea hislopi to honor the extensive work done by Hislop.

Figure 26. Portion of complete dendrogram with all specimens (including types and modern) containing the "hyd" morphologies $(\mathrm{R}=0.71)$.

Genus Tricula Benson, 1843

Tricula conoidea conoidea (Hislop), original morphotype Paludina conoidea Hislop, 1860

Diagnosis: Morphology differs from T. conoidea hislopi in having rounded whorls and a wider body whorl. More common subspecies of T. conoidea.

Description: Shell is small, ovate. Whorls rounded with strongly depressed sutures. Aperture small, ovate. Shell has 5-7 whorls. A single revolving keel has been documented on specimens with original shell material preserved. Shell smooth. Spire angle is roughly 50-60 degrees. Sutures are at around 14 degrees. Aperture is about 65 degrees to the axis of coiling.

Holotype: InS0187 (appendix 2, figure B; $9.9 \mathrm{~mm} \times 6.0 \mathrm{~mm}$); Type locality: Pijdura (InL009). Distribution: Common across Deccan Plateau infra- and intertrappean beds at Pijdura, Takli, Kalmeshwar, Butera, Sindhi.

Repository: University of North Dakota, Grand Forks, North Dakota.

Tricula conoidea hislopin. subsp.

Diagnosis: Morphology differs from T. conoidea conoidea in having flattened whorls and a narrower body whorl.

Description: Shell is small, ovate. Whorls flattened with regularly depressed sutures. Aperture small, ovate. Shell has 3-5 whorls. Shell smooth. Spire angle is roughly $50-60$ degrees. Sutures are at around 15-16 degrees. Aperture is about 60 degrees to the axis of coiling.

Distribution: Relatively common across Deccan Plateau infra- and intertrappean beds at Pijdura, Takli, Kalmeshwar, and Butera.

Holotype: InS0730, (Appendix 2, Figure C; $4.0 \mathrm{~mm} \times 2.8 \mathrm{~mm}$); Type locality: Takli (InL004b-3). Repository: University of North Dakota, Grand Forks, North Dakota.

Remarks: Named in honor of Stephen Hislop.
"HydC" clusters with Littoridina australis Marcus \& Marcus, 1965 (Hydrobiidae), Micromelania grimani Brusina, 1874 (Micromelaniinae), and Blanfordia simplex Pilsbry, 1902 (Pomatiopsidae) and Viviparus sankeyi Hislop, 1860. Although related to "hydA," "hydB," and "hydD," it is distinguishable by a more elongate outline shape (Figure 26). "HydD" is found within the "hydC" cluster, but "hydD" shell morphology is considered distinctive. The two morphologies are grouped together likely due to the rarity of "hydD" specimens and the overall elongate shell shape of both morphotypes. Taxonomic relationships discussed for "hydA" correspond to "hydC." "HydC" is considered equivalent to Viviparus sankeyi and revised to Pomatiopsidae.

Genus Tricula Benson, 1843

Tricula sankeyi (Hislop), new genus assignment

Paludina sankeyi Hislop, 1860

Description: "Shell subfusiform, single-banded; nine very or slightly convex whorls; suture impressed; aperture ovate, angular above. Length 0.4 , width 0.17 inch [10.2 mm, 4.32 mm] (Hislop, 1860; translated in Hartman et al., 2008)."

Distribution: Common across Deccan Plateau infra- and intertrappean beds at Pijdura, Takli, Kalmeshwar, Butera, Sindhi, and Telankhedi.

Holotype: GS 10246; Plate V, fig. 7 (Hislop, 1860); Type locality: Telankhedi.

Repository: Natural History Museum, London, England.
"HydD" is found within the "hydC" cluster but is considered distinct on the basis of a wider body whorl and more circular aperture shape (Figure 26). The group contains Thiara hunteri Hislop, 1860. Thiara quadrilineata Sowerby, 1840 was not included due to the poor preservation of the type specimen providing limited opportunity for character measurement. These species were originally placed in the genus "Melania" Lamarck, 1799 in the family "Melaniidae," which is now considered a junior synonym of Thiara Röding, 1798. The familial placement of the two Deccan Trap species is revised to Thiaridae. Thiarids are found worldwide in temperate to tropical environments, but are most common in subtropical to tropical areas.
"HydD" is considered a member of Thiaridae because of a turreted outline shape and almost circular aperture shape. Although the specimens included in the analysis do not have sculpture, the type specimen of Thiara quadrilineata Sowerby, 1840 has the revolving sculpture that is common within thiarids. Thiara hunteri Hislop, 1860 and T. quadrilineata Sowerby, 1840 are considered one species because the only apparent difference between these species is shell sculpture. The type specimen of Thiara quadrilineata Sowerby, 1840 is an impression while the T. hunteri Hislop, 1860 type specimen is a steinkern. Sculpture is not preserved on a steinkern so it is likely that these are actually one sculptured species. Since the species has sculpture, it is considered equivalent to Thiara quadrilineata Hislop, 1860.

Superfamily Cerithioidea Fleming, 1822

Family Thiaridae Gill, 1871

Genus Thiara Röding, 1798

Description: "Mantle edge papillate; males generally absent (parthenogenetic reproduction common, often the rule); females brood their young in an adventitious ("subhaemocoelic"; not uterine) brood pouch in the postero-dorsal head-foot region (Burch, 1989)."

Thiara quadrilineata (Sowerby), new genus assignment

Melania quadrilineata Sowerby, 1840

Description: "Subulate, whorls about eight, with four striae upon each; aperture nearly round (Hislop, 1860; translated in Hartman et al., 2008)."

Distribution: Rare across Deccan Plateau infra- and intertrappean beds at Pijdura, Sindhi, Chikni, Karwad, Pahadsingha, and Karuni.

Holotype: GS 10421; Plate 47, fig. 18 (Sowerby, 1840); Type locality: Chikni.

Repository: Natural History Museum, London, England.
"LymA" clusters with the modern Galba truncatula Müller, 1774 (Lymnaeidae) and Lymnaea oviformis Hislop, 1860. It does not cluster with the remainder of the Deccan lymnaeids and forms two separate clusters (Figure 27). Despite the clustering configuration, there is no noticeable difference between "lymA" in the two clusters. The morphology is distinguishable by a wider body whorl and typical lymnaeid large aperture. Lymnaeids are found worldwide but are in greatest diversity in temperate regions of North America (Burch, 1989). Genetically the family has three evolutionary clades separated geographically into the American, Eurasian, and IndoPacific groups (including Indian forms) (Correa et al., 2010). The shells are typically narrow with large apertures that are often wide. "LymA" is considered a member of Lymnaeidae based on its
relationship in the dendrogram, the existence of lymnaeids in modern India, and shell morphology (specifically the large, wide aperture).

Figure 27. Portion of the complete dendrogram with all specimens (including types and modern) containing the "lym" morphologies $(\mathrm{R}=0.71)$.
"LymA" is considered equivalent to Lymnaea oviformis Hislop, 1860 and will retain Hislop's (1860) diagnosis.

Superfamily Lymnaeoidea Rafinesque, 1815

Family Lymnaeidae Rafinesque, 1815

Genus Lymnaea Lamarck, 1799

Description: "Shell not covered by the mantle; spire nearly always elevated; columella twisted; aperture variably wide. The receptaculum seminis, which arises close to the female genital opening, has a duct which is sometimes short, sometimes fairly long; the prostate is variable in length (Thiele, 1992)."

Lymnaea oviformis Hislop, 1860
"LymB" does not cluster with modern representatives or Deccan trap species, but it is closely related to "lymC" and the modern Ferussacia vescoi Bourguignat, 1864 (Stylommatophora: Ferussaciidae) and Stagnicola elodes Say, 1821 (Lymnaeidae) and Lymnaea subulata, L. attenuata Hislop, 1860, L. telankhediensis peracuminata Hislop, 1860, L. telankhediensis radiolus Hislop, 1860, and L. spina Hislop, 1860 (Figure 27). Although the terrestrial species Ferussacia vescoi Bourguignat, 1864 clusters with "lymC," neither "lymB" nor "lymC" are considered terrestrial. "LymB" has a typical lymnaeid shape with the narrow shell and a large aperture and is placed within this family. The proposed name for this new species is Lymnaea pokhariensis from the Hindi word for pond.

Lymnaea pokhariensis n . sp .

Diagnosis: Intermediate morphology between L. oviformis and L. subulata. Body whorl is narrower than L. oviformis and wider than L. subulata. Whorls are more strongly depressed than other species of Lymnaea of the Deccan Traps.

Description: Shell small to medium, elongate conic. Whorls subrounded with strongly depressed sutures. Aperture large, narrow, loop-shaped. Shell has 3-4 whorls. Shell smooth. Spire angle narrow at 30-40 degrees. Sutures are at roughly 20-21 degrees. Aperture is about 67 degrees to the axis of coiling.

Distribution: Common across Deccan Plateau infra- and intertrappean beds at Pijdura, Takli, Kalmeshwar, Butera, and Sindhi.

Holotype: InS0261 (Appendix, Figure K; $2.6 \mathrm{~mm} \times 1.1 \mathrm{~mm}$); Type locality: Takli (InL004b-3).

Repository: University of North Dakota, Grand Forks, North Dakota.
Remarks: Species name derived from the Hindi word for pond. Closely related to L. subulata Sowerby, 1840.
"LymC" is related to the modern species Ferussacia vescoi Bourguignat, 1864 (Stylommatophora: Ferussaciidae) and Stagnicola elodes Say, 1821 (Lymnaeidae) and Lymnaea subulata Sowerby, 1840, L. attenuata Hislop, 1860, L. telankhediensis peracuminata Hislop, 1860, L. telankhediensis radiolus Hislop, 1860, and L. spina Hislop, 1860. "LymC" is closely related to "lymB" so the familial relationships discussed previously apply to "lymC" (Figure 27). "LymB" and "lymC" are distinguishable by the width of the body whorl. "LymB" has a wider and rounder body whorl than "lymC," which is more needlelike in shape. Both morphologies have narrower body whorls than "lymA." "LymC" is considered equivalent to Lymnaea subulata Sowerby, 1840 based on an elongate outline shape and whorl morphology.

Lymnaea subulata Sowerby, 1840

There are at least three other recognizable morphotypes within the "lymC" cluster, which are not found in the study sample. "LymD" is considered equivalent to Lymnaea attenuata Hislop, 1860, "lymE" is considered equivalent to both subspecies of L. telankhediensis Hislop, 1860, and "lymF" is considered equivalent to L. spina Hislop, 1860 (Figure 27). All are regarded as discrete species and at least L. attenuata Hislop, 1860 and L. telankhediensis Hislop, 1860 appear belong to Lymnaeidae. Both of these species and the two subspecies of L. telankhediensis Hislop, 1860 will retain their Hislop (1860) names. L. spina Hislop, 1860 is still elongate like lymnaeids, but does not have the characteristic large body whorl and large aperture. It is possible that L. spina Hislop, 1860 may belong to Stylommatophora but more work is needed before any conclusions are drawn.

Lymnaea attenuata Hislop, 1860

Lymnaea telankhediensis radiolus Hislop, 1860

Lymnaea telankhediensis peracuminata Hislop, 1860

Lymnaea? spina Hislop, 1860 sedis mutabilis
"PhyA" clusters with the modern Aplexa niteus Say, 1821 (Physidae) and Physa prinsepii elongata Hislop, 1860 (Figure 28). It is also closely related to the "phyB." Shell morphology is distinguished by a slender, more elongate outline shape. Fischer (1883) argued that the genus be revised to Platyphysa based on a relationship to Bulinus and the physids but with a discrete evolutionary history. Annandale (1920) suggested that the physid-types from the Deccan traps were actually members of Bulinus and not a new genus. The predominance of Bulinus in the southern hemisphere in tropical environments suggested the placement of the Deccan trap species

Figure 28. Portion of the complete dendrogram with all specimens (including types and modern) containing the "phy" morphologies $(\mathrm{R}=0.71)$.
into that genus (Annandale, 1920). Annandale (1920) also argued that Physa prinsepii inflata Hislop, 1860 was simply a common variation of Physa prinsepii normalis Hislop, 1860. The current study supports the distinction of only two physid species. "PhyA" is considered to be equivalent to Physa prinsepii elongata Hislop, 1860. The revised Platyphysa proposed by Fischer (1883) is applied due to the unique morphology of the Deccan trap species suggesting an isolated evolution.

Superfamily Planorboidea Rafinesque, 1815

Family Planorbidae Rafinesque, 1815

Genus Platyphysa Fischer, 1883

Description: "Shell like Physa, but columella truncate below. Last whorl enlarged at the shoulder; columella truncate below (Tyron, 1884)."

Platyphysa prinsepii elongata Hislop, 1860

Description: "Shell subturreted-elongate; spire extended; apex rather acute; 7-8 convex whorls separated by a distinct suture, the last whorl nearly equal to half of the length; aperture ovate-oblong, angular above; columella incrassate. Length 2.67, width 1.2 inch [67.82 mm, 30.48 mm] (Hislop, 1860; translated in Hartman et al., 2008)."

Distribution: Very common across Deccan Plateau infra- and intertrappean beds at Pijdura, Takli, Kalmeshwar, Butera, Chikni, Telankhedi, Chichundra, Pangadi and Kateru.

Holotype: GS 10286; Plate V, fig. 23b (Hislop, 1860); Type locality: Butera.

Repository: Natural History Museum, London, England.
"PhyB" clusters with the modern species Physella gyrina Say, 1821 and Physella parkeri Currier, 1881 (Physidae) and Physa prinsepii normalis Hislop, 1860 and Physa prinsepii inflata Hislop, 1860 (Figure 28). It is also closely related to "phyA." The aforementioned taxonomic relationships and assumptions of "phyA" apply to "phyB." The cluster analysis, and Annandale (1920), does not support Physa prinsepii normalis Hislop, 1860 and Physa prinsepii inflata Hislop, 1860 as two separate subspecies. One subspecies under the revised name Platyphysa prinsepii normalis Hislop, 1860 is proposed here.

Platyphysa prinsepii normalis Hislop, 1860

Description: "Shell huge, ovate, elegantly striated; spire moderately long; 7-8 convex whorls separated by an impressed suture, the last whorl fully two times greater in length than the spire; aperture ovate-oblong, angular above; columella incrassate. Length 2.75, width 1.56 inch [$69.85 \mathrm{~mm}, 39.62 \mathrm{~mm}$] (Hislop, 1860; translated in Hartman et al., 2008)."

Distribution: Very common across Deccan Plateau infra- and intertrappean beds at Pijdura, Takli, Kalmeshwar, Butera, Chikni, Telankhedi, Chichundra, Pangadi and Kateru.

Holotype: GS 10285; Plate V, fig. 23a (Hislop, 1860); Type locality: Chikni.

Repository: Natural History Museum, London, England.

The cluster considered to be the terrestrial stylommatophorans is complicated. All specimens were in one major cluster with no distinct minor clusters; however, there are two to three noticeable morphotypes present (Figure 29). These morphotypes cluster with the modern species Micromelania caspia Eichwald, 1829 (Micromelaniinae), Diala dubia Sowerby, 1892 (Dialidae), and Subulina normalis Morelet, 1885 (Subulinidae) and Viviparus acicularis

Figure 29. Portion of the complete dendrogram with all specimens (including types and modern) containing the "sty" morphologies $(\mathrm{R}=0.71)$.

Hislop, 1860, V. subcylindracea Hislop, 1860, V. pyramis Hislop, 1860, and V. rawesi Hislop, 1860.
"StyA" forms a small cluster and is distinctive with an elongate pupiform outline shape. This morphology superficially resembles the modern Diala dubia Sowerby, 1892. It was mislabeled as a hydrobiid but is actually a member of the marine family Dialidae, so it is highly unlikely that "styA" is in Dialidae. Hydrobiids (micromelanids) are often high-spired like "styA," "styB," and "styC," but they have a different aperture shape. Hydrobiids have an ovate aperture shape while the terrestrials, more specifically the subulinids, have a more trapezoidal shaped aperture. Stylommatophorans are also commonly narrower with a greater number of whorls than the hydrobiids. Subulinids are terrestrial species that live in tropical environments and typically have a narrowly conical and tapering outline shape (Kerney and Cameron, 1979). The subulinds originated on Gondwana and dispersed after the breakup of the supercontinent in the Mesozoic (Wade et al., 2001). Modern subulinds are found worldwide but are common throughout India, Africa, and Asia. Subulinid species that are very similar in shell morphology to the Deccan trap species are the most common gastropod component of the Pliocene Laetoli locality in eastern Africa (Harrison, 2011) (Figure 30).

Figure 30. Species of subulinidae from the African Laetoli locality (Harrison, 2011).

On the basis of aperture shape, high-spired shell, and abundance of subulinids in gastropod assemblages of Gondwana suggest that "styA," "styB," and "styC" are members of Subulinidae. The first recorded members of this family are from the early Paleocene (Wenz and Zilch, 1959-1960), but the probable divergence of the clade containing subulinids coinciding with the breakup of Gondwana (Wade et al., 2001) allows for the possibility of the existence of subulinids in the Cretaceous.

The morphology of "styA" is comparable to the modern subulinid genus Zootecus Westerlund, 1887 (Figure 31). There are modern species of Zootecus in India as well as Africa and Asia, but the earliest recorded species of Zootecus is from the Miocene of Abu Dhabi (Mordan, 1999). Although the fossil record of Zootecus only extends to the Miocene, there is a possibility of its existence in the Cretaceous due to the divergence of the family with the separation of Gondwana. Therefore, the species will be placed in Zootecus due to the strong morphologic comparison. The species name proposed is burji based on the Hindi word for turret.

Figure 31. The modern species Zootecus insularis Ehrenberg, 1831.

Superfamily Achatinoidea Swainson, 1840

Family Subulinidae Fischer \& Crosse, 1877

Description: "Shell very narrowly umbilicate, in most cases translucent, cylindrical with cone-shaped apex, with fine wrinkled striae, somewhat shiny; aperture small, oval; columellar margin callously thickened; apertural margin blunt. Lateral plates of the radula as in Xerocerastus; marginal plates tricuspid. Live-bearing (Thiele, 1992)."

Zootecus burji n. sp.

Diagnosis: Distinguished from other Deccan Trap stylommatophorans by its pupiform shape and flattened whorls on the lower spire whorls and body whorl.

Description: Shell small, pupiform. Apical whorls rounded with remainder of the whorls flattened to subrounded. Sutures with some to regular depression. Aperture small and trapezoidal shaped. Shell has 5-6 whorls. Shell smooth. Spire angle narrow at 30-40 degrees. Sutures at 10 degrees. Aperture is about 69 degrees to the axis of coiling.

Distribution: Rare across Deccan Plateau infra- and intertrappean beds at Takli and Kalmeshwar.

Holotype: InS0275 (Appendix 2, Figure P; $2.9 \mathrm{~mm} \times 1.4 \mathrm{~mm}$); Type locality: Takli (InL004b-3).

Repository: University of North Dakota, Grand Forks, North Dakota.
Remarks: Species name is derived from the Hindi for turret.
"StyB" and "styC" are found within the same major cluster as "styA," so the familial relationships discussed previously apply (Figure 29). "StyB" and "styC" are similar in overall morphology, but "styB" has a narrower conic outline shape while "styC" has a wider conic shape. These may be two subspecies instead of two separate species; however, for this study they are considered discrete species based on the degree of difference in spire angle. "StyB" is similar to

Viviparus acicularis Hislop, 1860 and V. subcylindracea Hislop, 1860. Although Hislop (1860) diagnosed these as two separate species, there is no evidence from the cluster analysis to support the separation. The only difference appears to be that V. subcylindracea Hislop, 1860 is larger than V. acicularis Hislop, 1860. A modern representative of the genus Subulina, which is the type genus of the family, is present in India, and based on this and before more detailed taxonomic analysis, "styB" will be considered in Subulina. The species name subcylindracea was chosen because the more robust form is more common throughout the sequence.

Superfamily Achatinoidea Swainson, 1840

Family Subulinidae Fischer \& Crosse, 1877

Genus Subulina Beck, 1837

Description: "Shell nonumbilicate, more or less high turreted, thin-walled; apex rounded; aperture small, oblique; columella twisted, truncated below. Central plate of the radula narrow; lateral plates nearly symmetrical, with inner and outer cusp; marginal plates tricuspid. Eggs with calcareous shell (Thiele, 1992)."

Subulina subcylindracea (Hislop), new genus assignment Paludina subcylindracea Hislop, 1860

Description: "Shell elongate-turreted, single-banded; apex subacute; 8-10 rather convex whorls; aperture small, ovate, narrow, angular above; labial margin subreflexed. Length 0.45 , width 0.17 inch [$11.43 \mathrm{~mm}, 4.32 \mathrm{~mm}$] (Hislop, 1860; translated in Hartman et al., 2008)."

Distribution: Common across Deccan Plateau infra- and intertrappean beds at Takli, Kalmeshwar, Butera, Sindhi, and Telankhedi.

Holotype: GS 10263; Plate V, fig. 6 (Hislop, 1860); Type locality: Telankhedi.

Repository: Natural History Museum, London, England.
"StyC" is comparable to Viviparus pyramis Hislop, 1860 and V. rawesi Hislop, 1860. Hislop (1860) diagnosed these as two separate species, but this is not supported by the analysis. The only noticeable difference is V. rawesi is larger than V. pyramis. Due to its similarity to the "styB" morphology, "styC" will be considered in the genus Subulina. This is a rare morphology but the slighter V. pyramis Hislop, 1860 appears to be more common. Therefore, the suggested species revision is Subulina pyramis.

Genus Subulina Beck, 1837

Subulina pyramis (Hislop), new genus assignment

Paludina pyramis Hislop, 1860

Description: "Shell chinked, pyramidal; apex acute; nine subconvex whorls with uniform growth in size; aperture ovate, angular above. Length 0.25 , width 0.1 inch [$6.35 \mathrm{~mm}, 2.5$ mm] (Hislop, 1860; translated in Hartman et al., 2008)."

Distribution: Rare across Deccan Plateau infra- and intertrappean beds at Takli, Kalmeshwar, Butera, and Telankhedi.

Holotype: GS 10262; Plate V, fig. 5 (Hislop, 1860); Type locality: Telankhedi.

Repository: Natural History Museum, London, England.

Figure 32. Portion of the complete dendrogram with all specimens (including types and modern) containing the "val" morphologies $(\mathrm{R}=0.71)$.
"ValA" clusters with Valvata multicarinata Hislop, 1860 (Figure 32). It is closely related to "valB," the modern valvatids, Valvata virens Tyron, 1863 and Valvata utahensis Call, 1884, and Valvata unicarinifera Hislop, 1860. "ValA" is considered in Valvatidae based on its open, wide umbilicus combined with a turbiniform to trochiform outline shape. It has revolving sculpture, which is common in Valvatidae. The distinguishing feature between "valA" and "valB" is a higher-spired more trochiform shell in "valA" compared with the shorter more turbiniform shell shape of "valB."

Although valvatids are generally found in temperate to cooler climates in the northern hemisphere, there is at least one modern species in India (Valvata piscinalis Müller, 1774). The predominance of valvatids in the northern hemisphere suggests they evolved in Laurasia before moving south, which complicates the existence of Cretaceous valvatids in India. The family is found in northern Africa, and although there is no record of valvatids from the Cretaceous, Africa could have been a corridor for dispersion. The dispersion of valvatids from Europe or western Asia to northern Africa and then to India is explainable if India's plate movements brought it near Africa as it headed toward Asia. Therefore, even though there is no fossil evidence to support the dispersal of valvatids from Africa to India in the Cretaceous prior to the Deccan trap eruptions, these assertions are possible.
"ValA" is considered equivalent to Valvata multicarinata until further taxonomic analysis identifies a more appropriate genus.

Superfamily Valvatoidea Gray, 1840

Family Valvatidae Gray, 1840

Genus Valvata Müller, 1773

Description: "Shell in most cases small, without indentations of the apertural margin. Living in fresh water. Animal oviparous; lateral plates of the radula with denticulate cutting edges (Thiele, 1992)."

Valvata multicarinata Hislop, 1860 sedis mutabilis

"ValB" clusters with modern species, Valvata virens Tyron, 1863 and Valvata utahensis Call, 1884 (Valvatidae), and Valvata unicarinifera Hislop, 1860 (Figure 32). It is related to "valA," so the taxonomic relationships previously discussed apply to "valB." Although "valB" are present in two distinct clusters, the morphotype appears to be the same. In one cluster the specimens have rounder whorls while in the other they have flatter whorls. Due to the uniqueness of each cluster, it is likely that these are subspecies. "ValB" is considered to be equivalent to Valvata unicarinifera Hislop, 1860 based on the association in the dendrogram. The two proposed subspecies are V. unicarinifera unicarinifera ("valB1") and V. unicarinifera chiknaformis ("valB2"). The rounded whorl morphology is V. u. unicarinifera and the flattened whorl morphology is V. u. chiknaformis from the Hindi word for flat. Although Hislop's (1860) type specimen does not have revolving sculpture, several study specimens of this morphology preserve it within the impression suggesting that V. unicarinifera is sculptured.

Valvata unicarinifera Hislop, 1860

Description: "Shell turbinate-conoid; apex subacute; 5-6 subventricose whorls that are unicarinate below the suture; umbilicus large; aperture subrounded. Length 0.4 , width $0.27-0.38$ inch [$10.2 \mathrm{~mm}, 6.86-9.65 \mathrm{~mm}$] (Hislop, 1860; translated in Hartman et al., 2008)."

Valvata unicarinifera unicarinifera Hislop, 1860, original morphotype

Diagnosis: Differs from V. unicarinifera chiknaformis in having rounded whorls and strongly depressed sutures. Differs from V. multicarinata by a lower height to width ratio.

Description: Shell small to medium, turbiniform. Whorls rounded. Sutures at 7 degrees and strongly depressed. Aperture circular. Shell has 4-5 whorls. Spire angle wide at $80-85$ degrees. Aperture is about 70-80 degrees to the axis of coiling. Wide, open umbilicus. Revolving sculpture present in specimen impressions.

Distribution: Relatively uncommon across Deccan Plateau infra- and intertrappean beds at Takli, Kalmeshwar, and Butera.

Holotype: InS1159 (Appendix 2, Figure O; $1.5 \mathrm{~mm} \times 1.7 \mathrm{~mm}$); Type locality: Kalmeshwar (InL0096b).

Repository: University of North Dakota, Grand Forks, North Dakota.

Valvata unicarinifera Hislop, 1860

Valvata unicarinifera chiknaformis n subsp.

Diagnosis: Differs from V. unicarinifera unicarinifera in having flattened whorls and mildly depressed sutures. Differs from V. multicarinata by a lower height to width ratio.

Description: Shell small to medium, turbiniform. Whorls flattened. Sutures at 8 degrees with some depression. Aperture circular. Shell has 4-7 whorls. Spire angle wide at 80-85 degrees. Aperture is about 70 degrees to the axis of coiling. Wide, open umbilicus. Sculpture not recorded but is proposed based on the presence in the species.

Distribution: Uncommon across Deccan Plateau infra- and intertrappean beds at Takli, Kalmeshwar, and Butera.

Holotype: InS1199 (Appendix 2, Figure N; $6.8 \mathrm{~mm} \times 7.6 \mathrm{~mm}$); Type locality: Butera (InL017).

Repository: University of North Dakota, Grand Forks, North Dakota.
Remarks: Species name derived from the Hindi for flat.

The Deccan trap species Valvata decollata Hislop, 1860 does not cluster with the rest of the valvatids, but the shell morphology is analogous to V. multicarinata Hislop, 1860 with a more high-spired, trochiform shape. The type specimen is poorly preserved so it is likely that the subtle differences between these two species are due to preservation. Therefore, it is proposed that Valvata decollata is not a valid species but simply a poorly preserved specimen of V. multicarinata. The taxonomic status of the Deccan species Valvata minima Hislop, 1860, which was not included in the analysis, is not discussed further due to the poor preservation of the only specimen.

Although "vivA" and "vivB" form distinct clusters, their morphologies are very similar and it is difficult to diagnose these as two species or two subspecies (Figure 33). "VivA" has flatter whorls and a slightly more angled body whorl with a more triangular outline shape than "vivB." They will be considered two separate species based on their separation into two definite clusters. Although "vivA" does not group with any modern representatives or Deccan trap species, it is closely related to "vivB," the modern Bellamya bengalensis Lamarck, 1822 (Viviparidae) and Viviparus normalis Hislop, 1860.

Viviparids are currently found worldwide except for South America (fossil only) in temperate to tropical environments with several genera in India. They are typically trochiform in

Figure 33. Portion of the complete dendrogram with all specimens (including types and modern) containing the "viv" morphologies $(\mathrm{R}=0.71)$.
shape with an ovate aperture. Annandale (1921) regarded V. normalis as the only of Hislop's (1860) "Paludina" forms to be a true viviparid. Based on the morphology of "vivA" and Annandale's (1921) argument, "vivA" is considered to be a member of Viviparidae. The genus Viviparus is typically of holarctic distribution so it is not likely that the Deccan viviparids are in this genus. It is more likely that the Deccan viviparids belong to the genus Bellamya, which is common in modern India as well as other tropical regions (e.g., Africa and Southeast Asia). The occurrence of Bellamya in these areas suggests a possible Gondwanan origin, which coincides with the existence of the genus in India during the Cretaceous. Therefore, based on biogeographic relationships, Deccan viviparids are revised to the genus Bellamya. The proposed new species name is Bellamya lattooformis from the Hindi word for top-shaped.

Superfamily Viviparoidea Gray, 1847

Family Viviparidae Gray, 1847

Subfamily Bellamyinae Rohrbach, 1937

Genus Bellamya Jousseaume, 1886

Description: "Shell of moderate size, often with a more or less distinct edge, in most cases narrowly umbilicate. Dorsum of the animal with a strong crest which ends behind the right tentacle which is considerably elongated in the male (Thiele, 1992)."

Bellamya lattooformis n . sp .

Diagnosis: Differs from B. normalis in having flattened whorls and regularly depressed sutures.

Description: Shell is small to medium, trochiform. Whorls flattened with sutures regularly depressed. Typically 5-6 whorls. Shell smooth. Spire angle wide at roughly 70 degrees. Suture angled at 10-11 degrees. Aperture broadly ovate, at 70 degrees to the axis of coiling. A single revolving keel has been documented on specimens with original shell material.

Distribution: Relatively uncommon across Deccan Plateau infra- and intertrappean beds at Takli, Kalmeshwar, and Butera.

Holotype: InS1207 (Appendix 2, Figure F; $6.2 \mathrm{~mm} \times 5.6 \mathrm{~mm}$); Type locality: Butera (InL017). Repository: University of North Dakota, Grand Forks, North Dakota.

Remarks: Species name derived from Hindi for top-shaped.
"VivB" clusters with the modern Bellamya bengalensis Lamarck, 1822 (Viviparidae) and Viviparus normalis Hislop, 1860 (Figure 33). This morphotype is related to "vivA," so familial relationships discussed previously apply to "vivB." "VivB" is considered equivalent to V. normalis Hislop, 1860, and will therefore retain the species name with the revised genus Bellamya.

Genus Bellamya Jousseaume, 1886

Bellamya normalis (Hislop), new genus assignment

Paludina normalis Hislop, 1860

Description: "Shell chinked, ovate-conical; apex subacute but rather often truncate; 5-6 ventricose whorls separated by a deep suture; aperture round, peristome continuous. Length 0.8, width 0.5 inch [$20.3 \mathrm{~mm}, 12.7 \mathrm{~mm}$] (Hislop, 1860; translated in Hartman et al., 2008)."

Distribution: Very common across Deccan Plateau infra- and intertrappean beds at Pijdura, Takli, Kalmeshwar, Butera, Sindhi, Karwad, Ambiakanti, Tandra, and Kateru.

Holotype: GS 10259; Plate V, fig. 2b (Hislop, 1860); Type locality: Pijdura.

Repository: Natural History Museum, London, England.

Viviparus wapsharei Hislop, 1860 has two different morphologies. There is a shorter form similar in morphology to V. normalis Hislop, 1860 and a taller form similar to V. conoidea Hislop, 1860. Although morphology is similar, it appears that Hislop (1860) distinguished V. wapsharei based on its smaller size ($<1 \mathrm{~cm}$). The cluster analysis does not support V. wapsharei as a distinct species but a close relationship to V. normalis and "vivB." Using shell morphology as an indicator of taxonomic relationships rather than size, the shorter form of V. wapsharei should be included in "vivB" equivalent to V. normalis while the taller form should be included in "hydB" equivalent to V. conoidea. The extensive size variation observed in the study localities suggests that difference in specimen size does not denote discrete species, but instead is likely an indicator of ecology or some external environmental pressure.

Viviparus soluta Hislop, 1860 was not included in the analysis due to the inability to measure most character traits. Hislop (1860) placed this species within Viviparidae, and initial observation of the type specimen suggests that it is similar in overall shell morphology to V. normalis. V. soluta is narrower and taller but has similar strongly rounded whorls and overall outline shape. The type specimen of V. soluta Hislop, 1860 is the only example of this species, and the preservation is poor so that the aperture is obscured. More work is needed on taxonomic relationships of this species.

The type specimen of Succinea nagpurensis Hislop, 1860 was included in the analysis, but no other examples of this species have been identified. The cluster analysis placed S.
nagpurensis with the "lymA" morphology, but this is likely due to the similar body whorl and aperture shape. Since the type specimen is the only occurrence of the species, it is difficult to ascertain the validity of the species or its taxonomic relationships. More work is needed on the relationships of this species.

Morphologic Changes Through Time

Tricula virapai ("hydA") is an uncommon morphology although it occurs in all study localities. Its greatest abundance is in Kalmeshwar. Specimens are largest in Pijdura (Table 6) and decrease significantly in size in Takli and Kalmeshwar (Figure 34). Specimens are larger in Butera before decreasing in Sindhi to a comparable size as in Takli and Kalmeshwar. Statistically Pijdura, although with larger specimens, is similar to Butera while Takli, Kalmeshwar, and Sindhi are similar. The general morphology of specimens, as depicted by dimension ratios, is relatively consistent through the sequence suggesting that although the specimen size changes their overall morphology remains the same. The spire and suture angles and the number of whorls display no obvious pattern. Specimens of Tricula virapai are largest prior to the Deccan eruptive events, which suggest an influence of the Deccan volcanism on the size of individual specimens causing a drastic decrease in size after the initial phase. The morphology does not appear affected by the volcanism.

Tricula conoidea ("hydB") is very common occurring in all study localities. Its greatest abundance is in Kalmeshwar although Takli also contains a significant amount. The specimens are largest in Pijdura (Table 6) and decrease in size dramatically in Takli (Figure 35). There is a slight increase in Kalmeshwar and more in Butera before decreasing again in Sindhi. Specimens in Pijdura are statistically larger than the remainder of the study sample. The general morphology of Tricula conoidea (dimension ratios) changes through time with Pijdura having a greater height

Table 6. Distribution of specimen shell minimum, maximum, and mean heights for each morphotype at each locality.

	Pijdura			Takli		KalmeshwarSpecimen Height (mm)				Butera			Sindhi			
	Min	Max	Mean													
hydA	4.3	7.8	6.0	1.3	2.3	1.6	1.1	2.2	1.8	3.1	7	5.1	1.2	1.7	1.4	
hydB	5.3	9.9	7.4	0.8	6.2	2.3	1.1	5.2	2.4	1.2	11	4.5	1.8	3.5	2.4	
hydC	9.7		9.7	1.3	9.7	3.0	1.2	5.4	2.7	1.4	10.9	3.3	0.8	2.7	1.8	
hydD	10.7	11.1	10.9										4.9	6.6	5.7	
lymA				1.2	4.6	2.9	2	4.1	3.2	0.9	4.4	2.3				
lymB	6.4	12.4	8.7	1.1	11.6	2.5	1.7	8	4.4	2.7	3.7	3.1	3		3.0	
lymC	9.7	23.2	15.6	1.3	6.9	4.1				3	14.7	7.6		6.5	6.5	
phyA	21.4	57.3	43.6	1.1	1.7	1.3	1.2	22.6	10.7	11.4	35.9	23.8				
phyB	5.4	52.2	37.0	1	26.2	4.0		29.9	6.2	0.8	48.7	13.9				
styA				2.1	4.8	2.8	3.1		3.03.0							
styB					8.5	3.0	1.4	4.2		2.5	6.3	4.3	2.2	6.7	4.3	
styC				2.9		2.9		.6-5.3	3.8	3.2	5.3	4.3				
valA						9.4		6.0	4.9	12.4	7.6					
valB					3.8		1.8	1.2	8.4	3.0	0.8	7.9				4.3
vivA				0.7	$7 \quad 3.5$	1.8		6.4	2.9	1.2	7.8	3.1				
vivB	3	13.4	9.0	0.8	3.4	1.4	0.6	3	1.4	0.6	3.8	2.1	1.5	2.6	2.1	
	0085		InS0262			InS0772				InS1478				InS1504		
	dura		Takli			Kalmeshwar				Butera			Sindhi			

Figure 34. Changes in Tricula virapai. Scale bar is 1 mm .
to width ratio resulting in narrower specimens. There is no trend in the spire or suture angles through the sequence. The number of whorls is greatest in Pijdura (5.1) decreasing in Takli (4.1), increasing slightly in Kalmeshwar (4.4), and then decreasing in Butera (4.1) and Sindhi (3.9). The decrease in size and number of whorls and the slight change in morphology following the initiation of volcanism suggest a potential effect on the fauna.

InS0187
Pijdura

InS0307
Takli

InS0828
Kalmeshwar

InS1397
Butera

InS1489 Sindhi

Figure 35. Changes in Tricula conoidea. Scale bar is 1 mm .

Tricula sankeyi ("hydC") is very common occurring in all localities. Its greatest abundance is in Kalmeshwar. Although there is only one specimen from Pijdura (Table 6), it is noticeably larger than those in the remainder of the localities (Figure 36). The size decreases dramatically in Takli and Kalmeshwar before increasing slightly in Butera and decreasing again in Sindhi. The general morphology remains consistent through the sequence. Statistically specimens of Tricula sankeyi in Pijdura are larger than specimens in all other study localities. There is no noticeable trend in the spire angles or suture angles of Tricula sankeyi specimens. The number of whorls is greatest in Pijdura averaging about 6.2 whorls. The number of whorls decreases in Takli (4.5) before increasing in Kalmeshwar (4.5), Butera (5.5), and Sindhi (5.0). Specimens of Tricula sankeyi are largest with the greatest number of whorls prior to volcanism suggesting a possible relationship.

Figure 36. Changes in Tricula sankeyi. Scale bar is 1 mm .

Thiara quadrilineata ("hydD") is a rare morphology occurring only in Pijdura and Sindhi with a total of four specimens. Due to the scarcity of specimens it is difficult to ascertain any patterns in this species. Specimens are roughly twice as large in Pijdura as in Sindhi but are not statistically distinct (Table 6) (Figure 37). Their general morphology is consistent between the two localities. The number of whorls, suture angle, and spire angle are greater in Pijdura than in Sindhi. Since there are so few specimens to establish a trend, there can be no conclusion as to the effects of Deccan volcanism. However, based on the sample obtained, the volcanism does appear to affect the size of Thiara quadrilineata specimens but not the overall morphology.

Figure 37. Changes in Thiara quadrilineata. Scale bar is 1 mm .

Lymnaea oviformis ("lymA") is uncommon occurring only in Takli, Kalmeshwar, and Butera. Its greatest abundance is in Butera. There is a complete absence of specimens in Pijdura prior to the onset of volcanic activity, so it is difficult to determine changes throughout the entirety of the sequence. Specimens are larger in Kalmeshwar than in Takli or Butera but with no statistical pattern (Table 6) (Figure 38). Similarly the general morphology remains statistically consistent over time. There is no overall pattern to the spire and suture angles or the number of whorls, but specimens in Kalmeshwar do have more whorls than Takli or Butera. Although conclusions as to the direct effect of volcanism cannot be gleaned from specimens of Lymnaea oviformis, the larger specimens in Kalmeshwar may indicate a preferential ecology for this type of snail and more research is needed to analyze relationships.

Figure 38. Changes in Lymnaea oviformis. Scale bar is 1 mm .

Lymnaea pokhariensis ("lymB") is a common lymnaeid morphology occurring in all localities although only one specimen was obtained from Sindhi. Its greatest abundance is in Takli. Specimens from Pijdura are noticeably and statistically larger before drastically reducing in size into Takli (Table 6) (Figure 39). Specimens increase slightly in Kalmeshwar before decreasing in Butera and remaining small in Sindhi. Specimens in Takli are statistically distinct from the remainder of the sample. The overall morphology remains relatively constant through
time supported by the lack of statistical significance. There is no observable pattern in the number of whorls of Lymnaea pokhariensis, although Pijdura has the greatest number of whorls (4.5 whorls). There is also no pattern within the spire or suture angles through time. The noticeably larger specimens of Lymnaea pokhariensis from Pijdura and smaller specimens in Takli may suggest some reaction to the onset of volcanism in the area.

Figure 39. Changes in Lymnaea pokhariensis. Scale bar is 1 mm .

Lymnaea subulata ("lymC") is relatively uncommon occurring in all localities except Kalmeshwar with only one specimen from Sindhi and two from Takli. The majority of specimens are found in Pijdura suggesting a possible pattern of reduction in population due to the onset of volcanism. Specimens are much larger in Pijdura creating a statistically distinct group with the specimen from Sindhi. Specimens reduce dramatically in size into Takli and increase in Butera and Sindhi (Table 6) (Figure 40). Although the specimen from Sindhi is found in both groups, the analysis of only one specimen should not be used as a definitive judgment of the nature of the morphology at the end of the sequence. The overall morphology is statistically different in Takli and Butera from Pijdura and Sindhi. Pijdura and Sindhi have much narrower specimens giving the group its greater height to width ratio than Takli and Butera. There is no observable trend in
the number of whorls through the sequence, however, the number of whorls is greatest in Pijdura (4.6 whorls). There is also no noticeable trend in the spire and suture angles. The larger specimens in Pijdura compared to the rest of the sample suggests a possible relationship between the size and shape of the morphology and volcanic activity. More specimens are needed before any conclusive statements are made regarding the Lymnaea subulata morphology.

Figure 40. Changes in Lymnaea subulata. Scale bar is 1 mm .

Platyphysa prinsepii elongata ("phyA") is common occurring in all localities but Sindhi, where planorbids are absent. Its greatest abundance is in Pijdura. Specimens from Pijdura are consistently larger than the rest of the specimens while those from Takli are consistently small with its largest specimen around two millimeters long (Table 6) (Figure 41). There is a slight increase in size in Kalmeshwar and again in Butera. Although there are a few specimens of comparable size to Pijdura in Kalmeshwar and Butera, the average size is small suggesting the dominant form is comparable to Takli. Specimens in Pijdura are statistically different from those in Takli and Kalmeshwar and those in Kalmeshwar and Butera. The overall morphology forms two statistically distinct groups. Specimens in Pijdura, Kalmeshwar, and Butera are thinner than in Takli and Kalmeshwar. There is no discernible trend in the number of whorls or the spire or
suture angles. The larger specimens in Pijdura with a dramatic decrease in size into Takli may indicate a response to the onset of volcanism, but more work is needed to explain the intermixing of micro- and macro specimens of Platyphysa prinsepii elongata.

Figure 41. Changes in Platyphysa prinsepii elongata. Scale bar is 1 mm unless otherwise noted.

Platyphysa prinsepii normalis ("phyB") is common occurring in all localities but Sindhi. The greatest abundance is in Pijdura but the number of specimens in the remaining localities is comparable. Specimens are much larger in Pijdura forming a statistically distinct group (Table 6) (Figure 42). The average specimen size in Takli, Kalmeshwar, and Butera is small, but there are also a few larger specimens of comparable size to Pijdura. The overall morphology changes through time. Pijdura has narrower specimens than Takli, Kalmeshwar, and Butera and specimens in Kalmeshwar are slightly broader than Takli and Butera. There is no apparent trend in the number of whorls or the spire and suture angles, but specimens from Pijdura do have the greatest number of whorls (~ 4.1) suggesting a possible relationship between number of whorls and the Deccan volcanism. The larger specimens of Platyphysa prinsepii normalis in Pijdura may suggest effects of volcanism, but the intermixing of micro- and macrosnails is interesting and needs further scrutiny.

Figure 42. Changes in Platyphysa prinsepii normalis. Scale bar is 1 mm unless otherwise noted.

Zootecus burji ("styA") is a rare morphology occurring only at Takli and Kalmeshwar. Most specimens are found in Takli. There is a slight increase in size from Takli into Kalmeshwar but this is not statistically significant (Table 6) (Figure 43). The overall morphology does not change from Takli into Kalmeshwar. There is no pattern in the number of whorls or the spire and suture angles. Since specimens are only present in two localities it is difficult to discern a trend through time although the slight increase in size from Takli into Kalmeshwar is comparable to other morphologies.

Figure 43. Changes in Zootecus burji. Scale bar is 1 mm .

Subulina subcylindracea ("styB") is common occurring in all localities but Pijdura, where terrestrial morphologies are absent. The greatest abundance is in Kalmeshwar, but the population size between this locality, Takli, and Butera are not markedly different. Specimens from Butera and Sindhi are slightly larger than those from Takli and Kalmeshwar but this is not statistically significant (Table 6) (Figure 44). Similarly, the overall morphology stays consistent throughout the sequence. There is no trend in the number of whorls or the spire and suture angles. The Subulina subcylindracea morphology remains statistically constant through time suggesting no noticeable response to volcanism, but the increase in size after Takli is comparable to other morphologies.

Figure 44. Changes in Subulina subcylindracea. Scale bar is 1 mm .

Subulina pyramis ("styC") is rare occurring in Takli, Kalmeshwar, and Butera. The abundance is greatest in Kalmeshwar with only three specimens. There is an increase in size consistently but slightly through time but this is not statistically significant (Table 6) (Figure 45). The overall morphology stays relatively the same. The number of whorls is consistent in Takli and Kalmeshwar before increasing in Butera. The spire angle is highest in Takli and then
decreases steadily through Butera. There is no apparent pattern to the suture angles. Subulina pyramis stays consistent through time suggesting little to no effects of volcanism.

Figure 45. Changes in Subulina pyramis. Scale bar is 1 mm .

Valvata multicarinata ("valA") is uncommon occurring only at Kalmeshwar and Butera. Its greatest abundance is in Kalmeshwar. There is a slight increase in specimen size from Kalmeshwar into Butera but this is not statistically significant (Table 6) (Figure 46). The overall morphology remains constant through the sequence. The number of whorls and suture angles increase while the spire angles decrease over time. Since Valvata multicarinata is only present in two localities, it is difficult to identify a response to volcanism. However, the increase in size from Kalmeshwar into Butera is comparable to other morphologies.

Valvata unicarinifera ("valB") is relatively common existing in Takli, Kalmeshwar, and Butera. Its greatest abundance is in Kalmeshwar. Kalmeshwar apparently supported desirable conditions for valvatids to thrive as this locality has a conspicuously larger population. Specimens are smallest in Takli and increase in size steadily through time (Table 6) (Figure 47). Specimens from Takli form a statistically distinct group. The overall morphology remains constant through

Figure 46. Changes in Valvata multicarinata. Scale bar is 1 mm .
time. The number of whorls increases through time while the suture angle decreases. There is no visible trend in the spire angle. Although there are no identified valvatids in Pijdura hindering examination of their response to Deccan volcanism, the steady increase in size from Takli to Butera is comparable to other morphologies.

Figure 47. Changes in Valvata unicarinifera. Scale bar is 1 mm .

Bellamya lattooformis ("vivA") is uncommon occurring in Takli, Kalmeshwar, and Butera. Its greatest abundance is in Takli. Specimens are smallest in Takli and increase in size in Kalmeshwar and Butera, but this trend is only statistically significant when there is an interaction
of the size and outline shape meaning the size changes only when effected by changes in the outline shape (Table 6) (Figure 48). Under these conditions specimens in Takli and Kalmeshwar form one group while Kalmeshwar and Butera form another. The overall morphology changes through time with Kalmeshwar retaining a narrower morphology than Takli and Butera. The number of whorls is lowest in Takli and then increases and remains stable through Kalmeshwar and Butera. There is a steady increase in the suture angle while no apparent trend in the spire angle is recognizable. Although there is little statistical evidence to support a change in size of Bellamya lattooformis through time, the increase from Takli through Butera is comparable to other morphologies. The change in overall morphology suggests volcanism may have had an effect on the shape of Bellamya lattooformis.

Figure 48. Changes in Bellamya lattooformis. Scale bar is 1 mm .

Bellamya normalis ("vivB") is very common existing in all localities. Its greatest abundance is in Pijdura. Specimens are markedly larger in Pijdura forming a distinct group while all other specimens are statistically similar (Table 6) (Figure 49). There is a decrease in size into Takli before increasing very slightly in Kalmeshwar and stabilizing for the remainder of the sequence. The overall morphology changes through time. Pijdura and Sindhi have a narrower shape than Takli and Kalmeshwar, which in turn are narrower than Butera. There is no pattern in
the number of whorls or the spire and suture angles, although Pijdura has the greatest number of whorls (~4.2). The larger specimens in Pijdura suggest volcanism may have affected specimen size, but the lack of a trend in the change in morphology suggests volcanism was not likely the cause.

Figure 49. Changes in Bellamya normalis. Scale bar is 1 mm .

CHAPTER VII

CONCLUSIONS

Between Sowerby and Hislop, 35 species of continental mollusks (gastropods [28 species] and bivalves [7 species]) were identified in the Deccan Trap sedimentary sequence. Sowerby and Hislop placed the 28 gastropod species into six families that are Viviparidae (12 species), Thiaridae (2 species), Valvatidae (4 species), Succinidae (1 species), Lymnaeidae (6 species), and Physidae (3 species) (Table 7). The analyses indicate that at least seven of these original species are no longer considered valid taxa (i.e., Viviparus wapsharei, V. deccanensis, V. takliensis, V. acicularis, V. rawesi, Thiara hunteri, and Valvata decollata), three need revision (V. soluta, Valvata minima, and Succinea nagpurensis) that was not included in this analysis, and three families, including one terrestrial, and one genus were revised to a more accurate taxonomic status. Furthermore, three new species and four new subspecies were identified and described. From this current study, there are now 23 species (plus three that still need revision) in seven families (Succinidae in revision). The revised family Pomatiopsidae includes four species, the family Thiaridae includes one species, the family Lymnaeidae includes six species with a questionable seventh, the revised family Planorbidae includes two species, the revised terrestrial family Subulinidae includes three species, the family Valvatidae includes three species, and the family Viviparidae includes two species (Table 7).

Table 7. List of historic and revised nomenclature, including revised family and new genus and species names.

Morphotype	Revised Family	Historic Nomenclature	Revised Nomenclature	New Species
hydA	Pomatiopsidae	Paludina virapai	Tricula virapai	
hydB		Paludina conoidea	Tricula conoidea	Tricula conoidea conoidea Tricula conoidea hislopi
hydB		Paludina takliensis		
hydC		Paludina sankeyi	Tricula sankeyi	
hydD	Thiaridae	Melania quadrilineata	Thiara quadrilineata	
		Melania hunteri	*Not valid species	
lymA	Lymnaeidae	Limnea oviformis	Lymnaea oviformis	
lymC		Limnea subulata	Lymnaea subulata	
lymD		Limnea attenuata Limnea	Lymnaea attenuata Lymnaea	
lymE		telankhediensis radiolus	telankhediensis radiolus	
		Limnea	Lymnaea	
lymE		telankhediensis peracuminata	telankhediensis peracuminata	
lymF		Limnea spina	Lymnaea? spina	
lymB				Lymnaea pokhariensis
phyB	Planorbidae	Physa (Platyphysa) prinsepii normalis	Platyphysa prinsepii normalis	
phyB		Physa (Platyphysa) prinsepii inflata	Platyphysa prinsepii normalis	
phyA		Physa (Platyphysa)	Platyphysa	
		prinsepii elongata Paludina	prinsepii elongata Subulina	
styB	Subulinidae	subcylindracea	subcylindracea	
styC		Paludina pyramis	Subulina pyramis	
styA				Zootecus burji
		Paludina acicularis	*Not valid species	
		Paludina rawesi	*Not valid species	
	Succinidae	Succinea nagpurensis	*Needs revision	
valA	Valvatidae	Valvata multicarinata	Valvata multicarinata	

Table 7 cont.

There is no change or trend in the number of species in the faunule at each locality through time as supported by the χ^{2} analyses. Takli, Kalmeshwar, and Butera all have fourteen of the sixteen species present while Pijdura and Sindhi, despite the reduced amount of processed material, have nine and eight species, respectively. Therefore there is no evidence to support volcanism or any other environmental or other condition had an effect on molluscan diversity through the Deccan sequence. The species abundance, however, does change between the localities. Kalmeshwar and Takli have the greatest number of specimens, which is likely a result of the quality of preservation. Despite the statistical significant difference in abundance, there is no distinct trend over time. This is likely due to the varying amounts of material able to be collected and processed for specimens and/or the conditions for inhabitability and fossilization in the localities.

Collectively, species size changes through time, with the exception of the "hydD," "lymA," and the three terrestrial morphologies. Species begin noticeably larger in the infratrappean Pijdura before the onset of volcanism. In some cases, specimens of the same species average about two to three times greater in size at Pijdura (e.g., "phyB" at Pijdura is 40 mm long, while 15 mm in Butera). In intertrappean 1 sediments, the species size is decreased dramatically to microsnail level. The species that exist at Takli appear to be equivalent in morphology to those in Pijdura only reduced in size (e.g., the average height of "vivB" in Pijdura is 9 mm , while Takli is only 1.4 mm). This decline in species size after the onset of volcanism is consistent throughout most species and could be described as dwarfing of the molluscan population. There is a slight consistent increase in size in most species throughout the remainder of the stratigraphic sequence, but species never obtain equivalent sizes as Pijdura.

The morphology of certain species changes through the sequence (i.e., "hydB," "lymC," and both planorbid and viviparid species), but this is likely not the result of volcanism due to the lack of an obvious pattern to these changes. Generally, through the sequence the size of species changes but not their morphology; however it is not certain that this is the result of volcanism. More research is needed before an accurate correlation between volcanism and molluscan morphology can be made.

Also to be considered when addressing the effects of volcanism on the molluscan population is the intermixing of some species of micro- and macrosnails (e.g., "phyB" occurs as both types in Takli, Kalmeshwar, and Butera). Despite intermixing, the microfauna is noticeably predominant in the intertrappean strata. Intermixing may indicate the beginning of a "return to normal conditions" situation in each intertrappean interval before the onset of another lava flow. In this case one would expect to find a few "normal" sized specimens occurring with the dwarfed forms, especially in the upper interval of the intertrappean strata as time progressed. Volcanism as
a cause for dwarfism also explains why there are no identified microsnails in the infratrappean Pijdura. The lack of local volcanism in Pijdura would not produce dwarfs to be intermixed.

Overall the results suggest the molluscan population is considered to be "normal" in Pijdura prior to volcanism in the area. After the initial phase of volcanism there is a dramatic reduction in species size in the first intertrappean interval (Takli). After this period species increased slightly with each subsequent intertrappean interval but never fully recovered to "normal" conditions observed at Pijdura. Molluscan diversity remains statistically constant through time suggesting little effect of volcanism. Species abundance changes, but this is most likely not from volcanism due to the lack of an obvious pattern through time.

The molluscan assemblage has not been studied in detail since the mid-1800s and was in need of restudy. This study of the taxonomy, changes through the sequence, and origins of the continental molluscan assemblage has identified several interesting aspects of the Deccan Plateau infra- and intertrappean strata. Cluster analysis assisted in the revision of the current taxonomic status as well as the recognition of new taxa in the molluscan assemblage. Seven continental gastropod families are represented including the terrestrial Subulinidae that was not recognized by Sowerby (1840) and Hislop (1860). This more accurate revised taxonomy is necessary in order to identify patterns in evolution, extinction, and spatial and temporal relationships in the molluscan assemblage. The occurrence of this assemblage just prior to the K / Pg boundary provides a unique window into the analysis of extinction patterns related to the massive Deccan volcanism. Analysis of variance and χ^{2} tests demonstrated these changes through the Deccan Trap sequence. There was a dramatic decrease in species size after the initial onset of volcanism, although no pattern in species diversity or abundance is observable. More research is needed before there is a better understanding of the actual relationships between changes in the molluscan population and volcanism. This study provides preliminary insights into how the
molluscan assemblage is reacting to volcanism that can be further expanded. There is something happening to these species, which may eventually provide answers to how Deccan Trap volcanism affected the biota.

APPENDICES

Appendix 1. Sowerby (1840) and Hislop (1860) type specimens. Plates 1-6.

Plate 1

"L." attenuata

"L." spina

Plate 3

Appendix 2. Revised taxonomy of the Deccan Trap gastropods.

Explanation of plate.
A. Tricula virapai
B. Tricula conoidea conoidea
C. Tricula conoidea hislopi n . subsp.
D. Tricula sankeyi
E. Thiara quadrilineata
F. Bellamya lattooformis n. sp.
G. Bellamya normalis
H. Platyphysa prinsepii elongata
I. Platyphysa prinsepii normalis
J. Lymnaea oviformis
K. Lymnaea pokhariensis n. sp.
L. Lymnaea subulata
M. Valvata multicarinata
N. Valvata unicarinifera unicarinifera
O. Valvata unicarinifera chiknaformis n . subsp.
P. Zootecus burji n. sp.
Q. Subulina subcylindracea
R. Subulina pyramis

Appendix 3. Morphologic trends of each morphoptype.

"hydB"

"lymA"

Appendix 4. Statistical analyses results.

ANOVA with Ratio Data																		
	Outline Shape			Outline Shape:Height/Width			Whorl Shape			Whorl Shape:Height/width			Suture Depression			Suture Depression:Height/Width		
	df	F	p															
hydA	4,10	0.7841	0.5608	4,1,10	0.0804	0.7826	4,10	0.4254	0.7872	4,2,10	0.6340	0.5505	4,9	2.354	0.1505	4,2,9	2.246	0.1617
hydB	4,70	10.99	<0.0001*	4,5,70	0.5632	0.7278	4,74	10.30	<0.0001*	4,4,74	1.880	0.1229	4,71	9.856	<0.0001*	4,5,71	1.390	0.2383
hydC	4,67	1.063	0.3819	4,3,67	0.6102	0.6107	4,69	1.013	0.4071	4,3,69	0.2959	0.8283	4,66	1.075	0.3761	4,3,66	0.7682	0.5159
hydD	1	$\mathrm{x}^{2}=2.400$	0.1213															
IymA	2,21	0.1861	0.8316				2,20	0.1798	0.8368	2,1,20	0.0720	0.7912	2,19	0.1733	0.8422	2,1,19	4.128	0.0564
lymB	4,53	1.061	0.3851	4,3,53	0.6351	0.5957	4,54	1.001	0.4154	4,2,54	0.0972	0.9075	4,53	1.068	0.3814	4,1,53	1.498	0.2264
lymC	3,18	8.270	0.0011*				3,16	8.091	0.0017*	3,1,16	1.065	0.3174	3,15	7.692	0.0021*			
phyA	3,24	4.425	0.0130*				3,24	3.960	0.0200*	3,1,24	0.4698	0.4997	3,21	4.019	0.0209**	3,3,21	1.229	0.3242
phy	3,48	10.35	<0.0001*	3,1,48	0.0378	0.8466	3,44	10.79	<0.0001*	3,4,44	1.431	0.2398	3,40	10.18	<0.0001*	3,6,40	0.9408	0.4769
styA	1,7	1.438	0.2695				1,7	1.248	0.3608				1,6	1.143	0.3262			
sty ${ }^{\text {B }}$	3,37	0.3196	0.8111				3,35	0.3209	0.8102	3,2,35	1.440	0.2507	3,32	0.3428	0.7945	3,3,32	2.181	0.1095
styC	2	$\mathrm{x}^{2}=0.0952$	0.9535															
valA	1,12	1.133	0.8080	1,1,12	0.3228	0.5804	1,13	1.227	0.2881	1,1,13	0.0885	0.7708	1,12	1.199	0.2950	1,1,12	0.4713	0.5054
valB	2,45	0.7124	0.4959	2,1,45	4.225	0.0457	2,43	0.6046	0.5509	2,2,43	0.1273	0.8808	2,42	0.6072	0.5496	2,2,42	0.6984	0.5031
vivA	2,24	10.60	0.0005*	2,2,24	0.2434	0.7858	2,24	6.961	0.0041*	2,2,24	0.8721	0.4309	2,22	7.141	0.0041*	2,2,22	1.258	0.3038
vivB	4,62	0.3038	<0.0001*				4,62	9.910	<0.0001*				4,57	10.80	0.0014*	4,2,57	0.5304	0.7138
ANOVA with Raw Data																		
	Outline Shape			Outline Shape:Height			Whorl Shape			Whorl Shape:Height			Suture Depression			Suture Depression:Height		
	df	F	p															
hydA	4,10	26.65	<0.0001*	4,1,10	9.777	0.0108*	4,10	17.40	0.0002*	4,2,10	3.061	0.0918	4,9	20.82	0.0001*	4,2,9	1.341	0.3092
hydB	4,70	35.98	<0.0001*	4,5,70	1.911	0.1034	4,74	73.20	<0.0001*	4,4,74	11.12	<0.0001*	4,71	48.51	<0.0001*	4,5,71	3.254	0.0104*
hydC	4,67	3.935	0.0063^{*}	4,3,67	4.389	0.0070*	4,69	3.726	0.0084*	4,3,69	3.486	0.0202*	4,66	3.659	0.0094*	4,3,66	1.515	0.2188
hydD	1	$\mathrm{x}^{2}=2.400$	0.1213															
IymA	2	$\mathrm{x}^{2}=2.457$	0.2927															
lymB	4,53	13.78	<0.0001*	4,3,53	0.9849	0.4070	4,54	12.36	<0.0001*	4,2,54	0.0352	0.9654	4,53	13.54	<0.0001*	4,1,53	2.943	0.1240
lymC	3,18	8.272	0.0011*				3,16	9.250	0.0009*	3,1,16	0.9566	0.3426	3,15	8.326	0.0015*			
phyA	3	$\mathrm{X}^{2}=22.72$	<0.0001*															
phyB	3	$\mathrm{X}^{2}=28.24$	<0.0001*															
styA	1,7	0.1441	0.7155				1,7	0.0724	0.7956					0.0651	0.8071			
sty ${ }^{\text {b }}$	3,37	2.746	0.0567				3,35	2.655	0.0636	3,2,35	0.2923	0.7484	3,32	2.480	0.0789	3,3,32	0.0308	0.9926
styC	2	$\mathrm{X}^{2}=0.8095$	0.6671															
valA	1,12	1.505	0.2435	1,1,12	0.5119	0.4880	1,13	1.319	0.2715	1,1,13	1.929	0.1883	1,12	1.529	0.2399	1,1,12	0.4633	0.5090
valB	2,45	4.486	0.0167^{*}	2,1,45	5.621	0.0221*	2,43	5.248	0.0091*	2,2,43	0.8041	0.4541	2,42	8.734	0.0007^{*}	2,2,42	10.59	0.0002*
vivA	2,24	2.713	0.0867	2,2,24	4.267	0.0260*	2,24	2.066	0.1487	2,2,24	0.0467	0.9544	2,22	3.064	0.0670	2,2,22	0.3884	0.6827
vivB	4	$\mathrm{x}^{2}=47.90$	<0.0001*															

Appendix 5．Specimens numbered and measured．

莹	気	$\begin{aligned} & \frac{\pi}{e} \\ & \frac{0}{0} \end{aligned}$		$\begin{aligned} & 5 \\ & \hline \end{aligned}$		\sum_{n}^{I}	$\begin{aligned} & \text { T } \\ & \text { 苞 } \end{aligned}$	$\begin{aligned} & \frac{3}{2} \\ & \frac{0}{4} \end{aligned}$	$\begin{aligned} & 0_{0}^{0} \\ & \stackrel{y}{E} \\ & = \end{aligned}$	$\begin{aligned} & \text { an } \\ & \stackrel{y}{2} \\ & \stackrel{y}{2} \end{aligned}$	$\begin{aligned} & \text { 品 } \\ & \frac{1}{2} \end{aligned}$	$\sum_{\#}^{5}$	区	हf	$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{y}{\bar{n}} \end{aligned}$	$\frac{\pi}{5}$	$\frac{8}{5}$	弟	\％
¢్ర］	发	\％																	或
\％్రె＇	\％	立																	㦴
\％	\％	品																	戓
呂	骨	3																	或
\％	$$	\％																	或
\％	雨	\％																	戓
$\stackrel{\text { ¢ }}{8}$	衰	\％																	㦴
\％	$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	立																	㦴
\％	$\begin{aligned} & \text { \% } \\ & \text { B } \end{aligned}$	E																	答
\bigcirc	O	E																	或
亏ิ	旡	E																	或
\％	\％	E																	戓
$\stackrel{m}{8}$	\％	会																	镸

홍	$\begin{aligned} & \text { ob } \\ & \text { 星 } \end{aligned}$	立																	宕
즁	$\begin{aligned} & \text { O} \\ & \text { B } \\ & \text { En } \end{aligned}$	立																	戓
\％	$\begin{aligned} & \text { O} \\ & \text { B } \\ & \hline \end{aligned}$	者																	戓
$\stackrel{\text { ¢ }}{\text { ¢ }}$	$\begin{aligned} & \text { O} \\ & \text { B } \end{aligned}$	$\frac{3}{3}$																	戓
\％	$\begin{aligned} & \text { O. } \\ & \text { 自 } \end{aligned}$	$\frac{3}{3}$																	枈
\％	$\begin{aligned} & \text { O} \\ & \text { 㫪 } \end{aligned}$	\＃																	觉
）	$\begin{aligned} & \text { O} \\ & \text { O} \\ & \text { 首 } \end{aligned}$		ते	$\stackrel{\otimes}{\infty}$	号	ñ	$\stackrel{\infty}{\infty}$	太	$\stackrel{\stackrel{\circ}{\infty}}{\stackrel{\infty}{\infty}}$	$\stackrel{+}{ \pm}$	$\begin{gathered} \text { y } \\ \underset{\substack{0}}{ } \end{gathered}$		\％	$\begin{aligned} & \text { ⿹ㅠㅇ } \\ & 0 \end{aligned}$			右 宕 号	\％	戓
\％	$\begin{aligned} & \text { O} \\ & \text { O} \\ & \hline \end{aligned}$	年	筬	$\frac{\mathfrak{g}}{\mathfrak{m}}$	$\stackrel{\sim}{\infty}$	宕	$\frac{\varnothing}{\infty}$	\％	$\begin{aligned} & \stackrel{(}{\infty} \\ & \stackrel{1}{\leftrightharpoons} \end{aligned}$	$\stackrel{\infty}{\dot{q}}$	$\begin{aligned} & \frac{\infty}{\cdots} \\ & \underset{8}{\circ} \end{aligned}$	$\stackrel{+}{\square}$	¿	$\begin{aligned} & \text { ⿹ㅏㅄ } \\ & \text { U } \end{aligned}$	$\begin{aligned} & \text { 咅 } \\ & \text { 碼 } \end{aligned}$			\％	或
\％\％	$\begin{aligned} & \text { O} \\ & \text { 夏 } \end{aligned}$	立																	
앙	$\begin{aligned} & \text { O} \\ & \hline \mathbf{B} \\ & \hline \end{aligned}$	交																	戓
\＃	$\begin{aligned} & \text { O} \\ & \text { O} \\ & \hline \end{aligned}$	倉																	皆
강	$\begin{aligned} & \text { O} \\ & \text { B } \\ & \hline \end{aligned}$	를																	第
管	\％	를																	皆
娄	产	閨		$\underset{\sim}{\sim}$	$\stackrel{n}{0}$	$\stackrel{\bar{m}}{\sigma}$	甭		$\stackrel{\stackrel{\circ}{\infty}}{\stackrel{\infty}{\circ}}$	$\stackrel{\square}{6}$		扣	\％	F	整		長	\％	宕
管	衰	$\frac{\infty}{2}$	$\begin{aligned} & \stackrel{\sim}{1} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \frac{n}{n} \\ & \stackrel{n}{2} \end{aligned}$	¢	奇	$\stackrel{\text { f }}{\substack{\text { f }}}$	－	$\frac{\tilde{n}}{6}$	$\stackrel{\sim}{\sim}$		$\stackrel{\text { F }}{ }$	＜	$\begin{aligned} & \overline{Z_{2}^{\prime}} \\ & \text { O} \end{aligned}$	哣		㜢	z	宕
웅	骨	立																	笭
\％	产	$\stackrel{\infty}{2}$	象苍	$\stackrel{\infty}{\infty}$	㞧	$\stackrel{\text { ®̃ }}{\stackrel{\text { ®n }}{ }}$	$\stackrel{\infty}{\text { ¢ }}$	$\stackrel{ \pm}{ \pm}$	鏟	\％			\％	J	矿		㜢	\％	震

\％	$\begin{aligned} & \text { O} \\ & \text { O } \\ & \hline \end{aligned}$	会	－	骨	$\stackrel{\text { ® }}{\substack{8}}$	¢	$\stackrel{\text { ¢ّ }}{\text { ¢ }}$	\％	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\infty}{\infty} \end{aligned}$	$\stackrel{\text { ¢ }}{\text { ¢ }}$		F		$\begin{aligned} & \overline{\ddot{O}} \\ & 0 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \text { an } \\ & \frac{0}{6} \\ & \hline \end{aligned}$		㜢	\％	㜢
앙	$\begin{aligned} & \text { O} \\ & \text { O} \\ & \hline \end{aligned}$	関	$\stackrel{\text { 尔 }}{=}$	$\underset{\substack{8 \\ \hline}}{\substack{\text { ¢ }}}$	$\stackrel{\stackrel{\circ}{\infty}}{\substack{\text { i }}}$	$\underset{\sim}{\text { ¢ }}$	ざさ	$\stackrel{\sim}{6}$	$\begin{aligned} & \underset{\sim}{\underset{\sim}{c}} \end{aligned}$	F			z			$\begin{aligned} & \text { 苞 } \\ & \text { 炀 } \end{aligned}$	㜢	\％	愿
吕	$\begin{aligned} & \text { O} \\ & \text { 景 } \end{aligned}$	会	$\stackrel{\text { ® }}{\stackrel{\circ}{\infty}}$	$\begin{aligned} & \text { N} \\ & \stackrel{ल}{=} \\ & \stackrel{1}{2} \end{aligned}$	$\stackrel{\ni}{\mathrm{i}}$	尔	$\stackrel{\bar{m}}{6}$	तु	$\stackrel{\tilde{x}}{\substack{2}}$		$\begin{aligned} & \stackrel{\otimes}{\circ} \\ & \stackrel{0}{0} \end{aligned}$		z				㜢	\％	砍
$\stackrel{\square}{8}$	$\begin{aligned} & \text { O} \\ & \text { B } \end{aligned}$	会	$\stackrel{\text { T }}{\text { a }}$	式	cio	水	$\frac{\mathrm{O}}{0}$	$\stackrel{\otimes}{\stackrel{\otimes}{\gtrless}}$	$\stackrel{\mathscr{R}}{\stackrel{R}{n}}$	ה̇	$\frac{\bar{\rightharpoonup}}{\stackrel{\rightharpoonup}{6}}$	\％	zํ	$\begin{aligned} & \text { ⿹ㅠㅈ } \\ & 0 \end{aligned}$			㜢	\％	
\％	$\begin{aligned} & \text { O} \\ & \text { O} \\ & \hline \end{aligned}$	会	సু	尔	त्ส̃	\％	$\underset{\text { 号 }}{\substack{\text { a }}}$	莒	$\stackrel{\bar{\sim}}{\text { n }}$	¢ٌ	$\begin{aligned} & \overline{\breve{y}} \\ & \stackrel{\rightharpoonup}{6} \end{aligned}$	$\stackrel{\circ}{+}$	z	$\begin{aligned} & \text { ⿹ㅏㅇ } \\ & \text { ㅇ } \end{aligned}$			㜢	\％	戓
8	$\begin{aligned} & \text { ob } \\ & \text { 呈 } \end{aligned}$	m	$\begin{aligned} & \stackrel{\otimes}{\mathrm{o}} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	$\underset{\sim}{\text { ® }}$	－	$\begin{gathered} \mathscr{\infty} \\ \infty \end{gathered}$	$\frac{\circ}{9}$	$\stackrel{n}{0}$	$\stackrel{\ominus}{\stackrel{\circ}{i}}$	ה	$\begin{aligned} & \bar{\infty} \\ & \stackrel{\rightharpoonup}{6} \end{aligned}$	$\stackrel{+}{+}$	亿ํ	$\begin{aligned} & \text { च्ê } \\ & \text { C } \end{aligned}$				\％	㡶
吉	$\begin{aligned} & \text { ob } \\ & \text { a } \end{aligned}$	\％	$\underset{\substack{\overline{7} \\ \ddagger \\ \hline}}{ }$	İ	$\stackrel{\circ}{\stackrel{\circ}{\oplus}}$	$\begin{aligned} & \stackrel{\sim}{0} \\ & \stackrel{0}{0} \end{aligned}$	$\stackrel{\text { J }}{\underset{\sim}{2}}$	哀	$\begin{aligned} & \text { त्సి } \\ & \text { à } \end{aligned}$	\bigcirc	$\begin{aligned} & \bar{\infty} \\ & \stackrel{\circ}{6} \\ & \hline \end{aligned}$	in	zㄴํ	$\begin{aligned} & \text { च⿹⿺㐅⿸尸匕二口} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 部 } \\ & \text { 劯 } \end{aligned}$			\％	䂞
\％	$\begin{aligned} & \text { O} \\ & \text { B } \\ & \hline \end{aligned}$	雨	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\circ}{0} \end{aligned}$	$\underset{\infty}{\stackrel{\rightharpoonup}{\infty}}$	$\stackrel{\circ}{4}$	$\stackrel{\stackrel{\circ}{\infty}}{\stackrel{\circ}{\infty}}$	$\stackrel{m}{0}$	$\underset{i}{n}$	衰	$\stackrel{+}{\infty}$	$\begin{aligned} & \stackrel{\rightharpoonup}{6} \\ & \underset{\sim}{\ddagger} \end{aligned}$		z	$\begin{aligned} & \text { J } \\ & \text { 흉 } \end{aligned}$	$\begin{aligned} & \text { on } \\ & \text { E. } \\ & \text { E } \end{aligned}$			\％	宸
吕	$\begin{aligned} & \text { ob } \\ & \text { 昱 } \end{aligned}$	旨	$\begin{aligned} & \text { శ్తి } \\ & \text { તid } \end{aligned}$	$\underset{\substack{\mathrm{g} \\ \text { in }}}{\text { n }}$	$\stackrel{ \pm}{3}$	$\begin{aligned} & \text { \& } \\ & \stackrel{6}{6} \end{aligned}$	$\begin{gathered} \text { ®. } \\ \text { in } \end{gathered}$	$\underset{\square}{\square}$	$\stackrel{\text { さ }}{\stackrel{\text { A}}{A}}$	¢ّ	$\stackrel{\text { E. }}{\stackrel{\rightharpoonup}{6}}$	寺	\％	$\begin{aligned} & \text { J } \\ & \text { 흥 } \end{aligned}$				\％	矿
\％	$\begin{aligned} & \text { O} \\ & \text { B } \\ & \hline \end{aligned}$	旨	$\begin{aligned} & \stackrel{\circ}{\otimes} \\ & \stackrel{\sim}{c} \end{aligned}$	缶	तु⿵	$\stackrel{\overline{7}}{\underset{寸}{2}}$			$\begin{aligned} & \text { ơ } \\ & \text { a } \end{aligned}$	\％	$\begin{gathered} \stackrel{\text { さ }}{\text { ¿ }} \end{gathered}$	「	\％	$\begin{aligned} & \text { ⿹ㅏㅇ } \\ & 0 \end{aligned}$	$\stackrel{\text { \％}}{\text { 号 }}$			\％	钶
\％	$\begin{aligned} & \text { ob } \\ & \text { 夏 } \end{aligned}$	兰	$\stackrel{\infty}{\stackrel{\infty}{气}}$	¢	$\stackrel{\text { ® }}{\substack{\text { ¢ }}}$	$\begin{aligned} & \bar{\infty} \\ & \underset{\sim}{i} \end{aligned}$			$\underset{\text { E }}{\text { E }}$	\％	$\begin{aligned} & \text { 冗̈ } \\ & \stackrel{y}{*} \end{aligned}$		z		$\begin{aligned} & \text { 部 } \\ & \text { छٍ } \\ & \text { ®n } \end{aligned}$			\％	戓
8	$\begin{aligned} & \text { ob } \\ & \text { 克 } \end{aligned}$	旨	$\xrightarrow[\sim]{\text { ¢ }}$	$\begin{aligned} & \text { O응 } \\ & \stackrel{0}{1} \end{aligned}$	學		$\stackrel{\text { n }}{\stackrel{\sim}{\gtrless}}$	$\stackrel{ }{\stackrel{\sim}{c}}$	$\frac{8}{9}$	$\stackrel{\sim}{\infty}$	$\begin{aligned} & \text { 区o } \\ & \stackrel{8}{6} \end{aligned}$	\％	\％	$\begin{aligned} & \text { ⿹ㅏㅇ } \\ & 0 \end{aligned}$				2	唇
$\stackrel{\circ}{8}$	$\begin{aligned} & \text { ob } \\ & \text { 首 } \end{aligned}$	兰	$\begin{gathered} \stackrel{0}{0} \\ \stackrel{0}{\sim} \end{gathered}$		$\begin{aligned} & \text { F } \\ & \stackrel{7}{=} \end{aligned}$	\％			$\begin{aligned} & \text { त्न } \\ & \underset{\sim}{\infty} \end{aligned}$	बें	$\stackrel{\widetilde{E}}{\stackrel{\circ}{6}}$	$\stackrel{\infty}{+}$	\％	$\begin{aligned} & \text { च्ê } \\ & \text { í } \end{aligned}$				\％	圧
$\stackrel{\rightharpoonup}{\circ}$	$\begin{aligned} & \text { O} \\ & \text { B } \\ & \hline \end{aligned}$	兰	$\begin{aligned} & \overline{\mathrm{I}} \end{aligned}$	$\stackrel{\cong}{\underset{\sim}{x}}$	$\stackrel{\otimes}{8}$	－	¢	ה̀	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{c}{i} \end{aligned}$	$\stackrel{\rightharpoonup}{\circ}$	$\begin{gathered} \text { 寺 } \\ \stackrel{y}{c} \end{gathered}$	$\stackrel{\circ}{+}$		$\begin{aligned} & \text { ت्ष̈ } \\ & \text { O} \end{aligned}$	$\begin{aligned} & \text { 咅 } \\ & \text { छٍ } \\ & \text { ®n } \end{aligned}$			\％	唇
－	$\begin{aligned} & \text { ob } \\ & \text { B } \end{aligned}$	旨	$\begin{aligned} & \stackrel{ஜ}{\varrho} \\ & \stackrel{\varrho}{6} \end{aligned}$	$\frac{\circ}{i}$	$\underset{\sim}{\text { ® }}$	$\begin{aligned} & \text { 寺 } \\ & \text { g } \end{aligned}$	$\underset{\substack{\circ \\ \infty}}{\substack{2}}$	象	$\begin{aligned} & \stackrel{\circ}{c} \\ & \underset{\text { N }}{2} \end{aligned}$	骨	$\begin{aligned} & \stackrel{\rightharpoonup}{n} \\ & \stackrel{N}{n} \end{aligned}$	$\stackrel{+}{+}$	亿	$\begin{aligned} & \text { ⿹ㅠㄹ } \\ & \text { 응 } \end{aligned}$		$\begin{aligned} & \text { 唇 } \\ & \text { 砋 } \end{aligned}$	旁：	\％	或
\％	\％	旨	$\begin{aligned} & \stackrel{m}{\mathrm{O}} \\ & \stackrel{\infty}{\infty} \end{aligned}$	婨		$\underset{\underset{~}{\text { I }}}{\text { in }}$	芯	ત્入入	$\stackrel{\overbrace{}}{\stackrel{\circ}{\square}}$	$\stackrel{\text { 寽 }}{ }$	$\begin{gathered} \text { R } \\ \text { 范 } \end{gathered}$	$\stackrel{3}{3}$	z̊		皆		\％	\％	즟
管	\％	兰	$\stackrel{\overline{9}}{=}$	$\stackrel{\circ}{\text { ¢ }}$	－	等	肓	获		$\stackrel{9}{8}$	$\begin{aligned} & \stackrel{\circ}{\infty} \\ & \underset{6}{2} \end{aligned}$	is	\％	或	喽	震		\％	唇

\％	$\begin{aligned} & \text { ò } \\ & \text { 夏 } \end{aligned}$	知													$\begin{aligned} & \text { 畜 } \\ & \text { 気 } \end{aligned}$			Z	気
\％	$\begin{aligned} & \text { ò } \\ & \text { 首 } \end{aligned}$	旨	$\stackrel{\infty}{\stackrel{\circ}{n}}$		令	$\stackrel{\text { ®. }}{\stackrel{\circ}{0}}$			\otimes $\stackrel{\sim}{\sim}$ \sim	\％	$\begin{aligned} & \text { J. } \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$		\％	或	$\begin{aligned} & \text { 硈 } \\ & \text { 気 } \end{aligned}$		壾号	z	区
¢	$\begin{aligned} & \text { ob } \\ & \text { an } \end{aligned}$	旨	$\stackrel{8}{9}$	$\stackrel{i}{\text { i }}$	\％	$\stackrel{\infty}{\text { ¢ }}$	$\stackrel{\text { \％}}{\text { in }}$	$\xrightarrow[\sim]{\text { cis }}$	$\begin{aligned} & \text { 若 } \\ & \stackrel{y}{2} \end{aligned}$	\ldots		$\stackrel{\infty}{\infty}$	\％			硣		\％	］
$\stackrel{\circ}{8}$	$\begin{aligned} & \text { O} \\ & \text { B } \end{aligned}$	E																	戓
\％	$\begin{aligned} & \text { O} \\ & \text { B } \\ & \hline \end{aligned}$	E										$\stackrel{\circ}{+}$		$\begin{aligned} & \overline{\ddot{W}} \\ & \text { 응 } \end{aligned}$	$\stackrel{0}{0}$			\％	気
\％	$\begin{aligned} & \text { ob } \\ & \text { 星 } \end{aligned}$	罢	$\begin{aligned} & \mathbb{N} \\ & \underset{\sim}{i} \end{aligned}$	$\stackrel{\text { E }}{\text { F }}$	筞	号	\％		$\begin{aligned} & \text { 答 } \end{aligned}$	示	$\begin{aligned} & \text { O} \\ & \hline 0 \\ & \hline 0 \end{aligned}$	$\stackrel{\square}{i}$						z	気
F	$\begin{aligned} & \text { O} \\ & \text { O} \\ & \hline \end{aligned}$	甡	\％	$\xrightarrow{\text { a }}$	®ั	$\stackrel{\text { ® }}{\text { ¢ }}$	\％	$\stackrel{n}{\underset{\sim}{c}}$	নু	¢	$\begin{gathered} \circ \\ \stackrel{\circ}{6} \end{gathered}$	$\stackrel{\infty}{+}$	\％	$\begin{aligned} & \bar{W} \\ & \text { O } \end{aligned}$	$\begin{gathered} \text { a } \\ \stackrel{\text { En }}{\omega} \\ \hline \end{gathered}$			\％	矿
§	$\begin{aligned} & \text { O} \\ & \text { O} \\ & \text { 首 } \end{aligned}$	咢	¢	¢	$\stackrel{\stackrel{0}{n}}{\substack{i}}$	ぞ	¢	$\stackrel{\text { ®－}}{\sim}$	$\stackrel{\text { ¢ }}{\substack{\text { a }}}$	$\stackrel{3}{7}$	$$	$\stackrel{+}{6}$	亿	$\begin{aligned} & \overline{\ddot{W}} \\ & \text { 응 } \end{aligned}$			\％	\％	듳
§ิ	$\begin{aligned} & \text { O} \\ & \text { O} \\ & \hline \end{aligned}$	盛	ন্ণী	－	号	¢ ¢ֻ¢			$\underset{\text { ¢ }}{\text { ¢ }}$	$\stackrel{\sim}{\sim}$		午			$\begin{aligned} & \text { 䯧 } \\ & \text { 磁 } \end{aligned}$	䔍		\％	矿
吉	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$	㕩	谷	第	$\stackrel{\text { ¢ }}{\substack{\text { a }}}$	¢	¢	$\stackrel{\text { N }}{\sim}$	\％	ir	$\begin{aligned} & \text { ఫ్ } \\ & \text { © } \end{aligned}$		\％	$\begin{aligned} & \text { ⿹ㅏㅇ } \\ & \text { ة } \end{aligned}$	$\stackrel{\text { 咅 }}{\substack{0}}$		\％	\％	戓
气ิ	$\begin{aligned} & \text { O} \\ & \text { O} \\ & \hline \end{aligned}$	䟵	in	守	$\stackrel{\text { ® }}{\substack{\text { ¢ }}}$	$\stackrel{\text { ® }}{\text { ¢ }}$	号	$\underset{\text { a }}{\substack{\text { a }}}$	$\begin{aligned} & \tilde{\circ} \\ & \stackrel{e}{0} \\ & \hline \end{aligned}$	$\%$	$\begin{aligned} & \text { O} \\ & \text { O. } \\ & \text { Bo } \end{aligned}$		\％	$\begin{aligned} & \overline{W_{z}^{1}} \\ & \bar{O} \end{aligned}$	$\begin{aligned} & \text { an } \\ & \frac{E}{\omega} \\ & \hline \end{aligned}$		\％	z	気
$8{ }^{\circ}$	$\begin{aligned} & \text { O} \\ & \text { a } \\ & \hline \end{aligned}$	甡	号	$\stackrel{\circ}{6}$	答	$\stackrel{\text { ® }}{\substack{7}}$	㱈	$\underset{\text { ¢ }}{\substack{\text { a }}}$	－	$\stackrel{9}{i}$	$\underset{\sim}{\text { İ }}$	\cdots	z̊	$\begin{aligned} & \text { ㅎ̈ㅇ } \\ & \text { ة } \end{aligned}$		$\begin{aligned} & \text { 哥 } \\ & \text { 己ٍ } \end{aligned}$	\％	\％	矿
E	$\begin{aligned} & \text { O} \\ & \text { B } \\ & \hline \end{aligned}$	咗	$\stackrel{\infty}{\substack{6 \\ \stackrel{\sim}{6}}}$	寺	¢ֻ．	¢	菏	¢	\％	¢	$\begin{gathered} \infty \\ \stackrel{\infty}{6} \\ \stackrel{c}{c} \end{gathered}$		z	$\begin{aligned} & \overline{\tilde{W}_{0}^{\prime}} \\ & \dot{O} \end{aligned}$			\％	z	
\％	$\begin{aligned} & \text { O} \\ & \text { O} \\ & \hline \end{aligned}$	$\stackrel{m}{\square}$	$\stackrel{3}{8}$	菏	$\stackrel{\otimes}{\infty}$	ત్లె	－	$\stackrel{\circ}{9}$	奇	fof	$\begin{gathered} \text { m } \\ \underset{\sim}{7} \end{gathered}$	₹	\％	$\begin{aligned} & \bar{W} \\ & 0 \\ & 0 \end{aligned}$		［		\％	㡶
\％ิ	$\begin{aligned} & \text { O. } \\ & \text { O} \\ & \hline \end{aligned}$	免	号	$\stackrel{\stackrel{0}{0}}{\text { m }}$	合		¢	$\stackrel{ \pm}{ \pm}$	\％	in	$\begin{aligned} & \text { R} \\ & \substack{0 \\ \text { on }} \end{aligned}$	$\underset{\text { 子 }}{ }$	\％	$\begin{aligned} & \overline{Z_{2}^{\prime}} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 䯧 } \\ & \text { 群 } \end{aligned}$	岩		z	矿
\％	$\begin{aligned} & \text { O} \\ & \text { O} \\ & \hline \end{aligned}$	甡	宕	$\stackrel{\circ}{8}$	$\stackrel{\text { ̇̇ }}{\text { ה }}$		¢	¢	$\begin{gathered} \stackrel{y}{\mathrm{y}} \\ \underset{\sim}{2} \end{gathered}$	¢	$\begin{aligned} & \text { of } \\ & 0 \\ & 0 \end{aligned}$	is	\％	$\begin{aligned} & \text { Z⿹⿺⿻一⿰亻⿱丶⿻工二口斤口 } \\ & 0 \end{aligned}$			\％	\％	］
$\stackrel{\text { ®0，}}{ }$	\％	$\stackrel{\infty}{\infty}$	－	埖	$\stackrel{\circ}{\square}$	溇	号	$\stackrel{\infty}{\infty}$	$\stackrel{\circ}{\circ}$	\％\％	さ		\％	或	沯	焄		\％	矿

\％	$\begin{aligned} & \text { O} \\ & \text { O} \\ & \hline \end{aligned}$	\％	\％	\cdots	$\stackrel{\text { ă }}{\square}$	$\stackrel{\text { ® }}{\substack{++}}$	$\stackrel{\infty}{\infty}$	¢	¢	$\stackrel{\rightharpoonup}{\infty}$	$\begin{aligned} & \text { E } \\ & \text { तु } \end{aligned}$		z	$\begin{aligned} & \overline{Z ⿹ 勹 巳} \\ & 0 \\ & \text { O} \end{aligned}$			砍	\％	或
\％	$\begin{aligned} & \text { O} \\ & \text { B } \\ & \hline \end{aligned}$	年	¢	敢	$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$	$\stackrel{\infty}{8}$	$\stackrel{\stackrel{\rightharpoonup}{e}}{\substack{5}}$	－	$\stackrel{\text { ®̇}}{\stackrel{\text { ® }}{ }}$	$\stackrel{8}{\circ}$	\％	\cdots	z	＂	㜢	咢	長	\％	唇
\％	$\begin{aligned} & \text { O. } \\ & \text { B} \\ & \hline \end{aligned}$	盛	¢	ત્ત̃	¢ิ่	类			$\stackrel{\text { 类 }}{=}$	哭		in	z	$\begin{aligned} & \overline{\mathrm{Z}} \\ & \text { O} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 部 } \\ & \text { 矵 } \end{aligned}$	喏	$\begin{aligned} & \text { E } \\ & \text { 膏 } \\ & \text { 亮 } \end{aligned}$	z	遃
器	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$	甡	$\underset{\sim}{0}$	$\underset{\sim}{\text { ® }}$	הั	$\underset{\text { d }}{\substack{\text { d }}}$	遃	$\underset{\sim}{\text { a }}$	$\begin{aligned} & \overline{0} \\ & \underline{n} \end{aligned}$	\％ิ่	$\begin{aligned} & \text { İ } \\ & \text { in } \\ & \text { in } \end{aligned}$	$\stackrel{\infty}{\circ}$	z	$\begin{aligned} & \text { च्̈̆ } \\ & \text { 응 } \end{aligned}$	$\begin{aligned} & \text { 第 } \\ & \text { E } \end{aligned}$		$\begin{aligned} & \stackrel{2}{n} \\ & 0 \end{aligned}$	\％	長
\％	$$	䂞		雩	ה	$\underset{\sim}{2}$	¢ֻ\％	$\stackrel{m}{7}$	$\stackrel{\unrhd}{\square}$	$\stackrel{\text { ¢ }}{0}$			z	$\begin{aligned} & \text { ⿹ㅡㅄ } \\ & \text { 응 } \end{aligned}$			\％	\％	或
\％	$\begin{aligned} & \text { ob } \\ & \text { B } \end{aligned}$	$\stackrel{\text { ® }}{\text { ® }}$	管	$\stackrel{\text { \％}}{\substack{\text { \％} \\ 寸}}$	¢ 둘	$\stackrel{\text { ® }}{\stackrel{\circ}{7}}$	$\stackrel{8}{8}$	$\stackrel{9}{\infty}$	$\underset{\sim}{\text { in }}$	$\stackrel{\infty}{\stackrel{n}{n}}$	$\begin{gathered} \circ \\ \stackrel{\circ}{6} \\ \hline- \end{gathered}$		亿			$\begin{aligned} & \text { ⿹ㅠㅁ } \\ & \text { 己ٍ } \end{aligned}$	$\begin{gathered} \text { 巳1 } \\ 0 \end{gathered}$	\％	戓
\％	$\begin{aligned} & \text { O} \\ & \text { O } \\ & \hline \end{aligned}$		年		$\underset{\text { Ñ }}{\substack{\text { N }}}$	$\underset{\text { ¢ }}{\substack{\text { ¢ }}}$	$\stackrel{\circ}{\infty}$	$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$	$\stackrel{\substack{\circ \\ \underset{\sim}{0} \\ \hline}}{ }$	F	$\begin{gathered} \text { त } \\ \stackrel{\text { ® }}{2} \end{gathered}$	in	z	$\begin{aligned} & \overline{\ddot{W}} \\ & \text { O} \end{aligned}$			\％	\％	孁
\％	$\begin{aligned} & \text { O} \\ & \text { O} \\ & \text { 首 } \end{aligned}$	㕩	$\stackrel{\sim}{\stackrel{\pi}{\square}}$	$\stackrel{\infty}{\stackrel{\infty}{i}}$	$\stackrel{\text { ® }}{\text { ¢ }}$	in	$\stackrel{\stackrel{\rightharpoonup}{6}}{\substack{6}}$	－		$\stackrel{\bullet}{\text { ¢ }}$		\cdots	z	$\begin{aligned} & \text { ⿹ㅏㅇ } \\ & \text { 응 } \end{aligned}$			\％	\％	戓
\％	$\begin{aligned} & \text { O} \\ & \hline \mathbf{B} \\ & \hline \end{aligned}$	会	¢̊̊	\％	尳	骨	$\stackrel{\text { a }}{\substack{\text { a }}}$		$\stackrel{\tilde{n}}{\underset{J}{\Xi}}$	$\stackrel{\square}{0}$	$\begin{gathered} \stackrel{\rightharpoonup}{7} \\ \underset{\sim}{2} \end{gathered}$		亿	$\begin{aligned} & \text { ⿹̈} \\ & \stackrel{0}{0} \end{aligned}$			$\begin{aligned} & \text { E } \\ & \text { 膏 } \\ & \text { 亮 } \end{aligned}$	\％	矿
\％	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$	甡		䢘	考	芉	$\stackrel{\sim}{\stackrel{\sim}{2}}$		$\stackrel{\text { İ }}{\text { I }}$	$\stackrel{+}{\infty}$	$\begin{aligned} & \text { ָ. } \\ & \end{aligned}$	\cdots	\％	$\begin{aligned} & \overline{\ddot{W}} \\ & \text { 응 } \end{aligned}$			$\begin{aligned} & \frac{2}{10} \\ & 0 \end{aligned}$	\％	孁
¢్ర8．	$\begin{aligned} & \text { O} \\ & \text { O} \\ & \hline \end{aligned}$	裵	$\underset{\infty}{\stackrel{R}{\circ}}$	菏	¢	$\begin{aligned} & \text { rob } \\ & \stackrel{n}{2} \end{aligned}$	¢	$\stackrel{\rightharpoonup}{6}$		¢	돌	\bar{s}	z	$\begin{aligned} & \text { प्ष̈ } \\ & \text { 응 } \end{aligned}$			$\begin{aligned} & \frac{0}{y} \\ & \text { ó } \end{aligned}$	z	或
\％	$\begin{aligned} & \text { ob } \\ & \text { B } \end{aligned}$	甡	年	$\frac{\otimes}{7}$	号	$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$	¢্入入	$\stackrel{5}{6}$	志	m	$\begin{aligned} & \text { tig } \\ & \text { dí } \end{aligned}$	in	\％	$\begin{aligned} & \text { ⿹ㅡㅄ } \\ & \text { 응 } \end{aligned}$			$\begin{gathered} \text { 巳1 } \\ \text { ćn } \end{gathered}$	\％	或
\％	$\begin{aligned} & \text { B } \\ & \text { a } \end{aligned}$	甡	䍞	$\stackrel{\gtrless}{\stackrel{\circ}{+}}$	$\stackrel{7}{5}$	¢	$\stackrel{\infty}{\infty}$	N	$\begin{aligned} & \stackrel{\circ}{7} \\ & \stackrel{1}{\leftrightharpoons} \end{aligned}$	$\stackrel{0}{\square}$			z				\％	\％	戓
壴	$\begin{aligned} & \text { O} \\ & \text { O} \\ & \hline \end{aligned}$	㕩	$\stackrel{\infty}{\infty} \stackrel{\infty}{\infty}$	尔	$\underset{\text { y }}{\text { F }}$	$\stackrel{7}{5}$	$\stackrel{\infty}{\square}$	$\stackrel{m}{m}$	\％	\％	$\frac{\text { İ }}{\underset{8}{8}}$	is	\％	$\begin{aligned} & \overline{\ddot{W}} \\ & \text { O} \end{aligned}$			\％	z	或
\％	$\begin{aligned} & \text { O} \\ & \text { O} \\ & \hline \end{aligned}$	㕩	¢	$\underset{i}{\bar{n}}$	$\stackrel{\infty}{\stackrel{\infty}{\sim}}$	$\frac{\infty}{n}$	$\stackrel{\sim}{n}$		$\overline{\bar{n}}$	$\stackrel{\text { ¢ }}{\text { ¢ }}$	$\underset{\substack{\underset{\sim}{i} \\ \hline}}{ }$		z				\％	z	
¢	$$	令	$\stackrel{\bar{\sim}}{\substack{\text { ¢ }}}$	$\stackrel{8}{8}$	¢	$\underset{\text { E }}{\underset{G}{2}}$	䱱	\％	菏	\bigcirc	$\stackrel{\text { B }}{\substack{\infty \\ \sim}}$		z	$\begin{aligned} & \text { Z⿹\zh26灬力 } \\ & \text { OU } \end{aligned}$	$\stackrel{\text { 気 }}{\text { 霛 }}$	硣	\％	\％	或
¢	\％		免	$\frac{\square}{i}$	号	$\stackrel{\infty}{\stackrel{\infty}{6}}$	令		$\stackrel{\text { İ }}{\stackrel{\text { ® }}{\text { ¢ }}}$	守	$\stackrel{\stackrel{\rightharpoonup}{\circ}}{\stackrel{\rightharpoonup}{*}}$	\bar{s}	\％	J			\％	\％	矿

\％	$\begin{aligned} & \text { ob } \\ & \text { 夏 } \end{aligned}$	$\stackrel{\text { ？}}{\text { ？}}$	$\stackrel{ \pm}{3}$	$\stackrel{\circ}{4}$	$\stackrel{\text { ले }}{ }$	※	$\stackrel{\sim}{\sim}$	$\stackrel{\text { ¢ }}{\stackrel{\text { d }}{\sim}}$	$\frac{\bar{m}}{\underline{i}}$	$\stackrel{\ddagger}{\sim}$	$\underset{i}{\text { Ei }}$	$\stackrel{+}{\text { m }}$	zㄴํ	$\begin{aligned} & \overline{\mathrm{e}} \\ & \text { 응 } \end{aligned}$	$\begin{aligned} & \text { an } \\ & \text { En } \\ & \text { En } \end{aligned}$		\％	¿	钅
\％	$\begin{aligned} & \text { ồ } \\ & \text { 自 } \end{aligned}$	$\stackrel{\text { ？}}{\text { ？}}$	$\stackrel{\stackrel{\rightharpoonup}{\circ}}{\stackrel{-}{\circ}}$	閔	$\stackrel{\ddagger}{\square}$	$\stackrel{\pi}{4}$	$\stackrel{\text { a }}{\text { a }}$	¢	$\stackrel{\text { 玉．}}{=}$	¢	$\begin{aligned} & \text { ợ } \\ & \text { díc } \end{aligned}$	¢	z	$\begin{aligned} & \overline{\mathscr{V}} \\ & \frac{0_{0}^{\prime}}{0} \end{aligned}$			\％	z	戓
응	$$	鲁	$\stackrel{\text { 等 }}{\sim}$	$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$	$\stackrel{\text { \％}}{\substack{8 \\ 7}}$	¢	$\begin{gathered} \stackrel{\leftrightarrow}{c} \\ \text { í } \end{gathered}$		ત్ત̃				z̊	$\begin{aligned} & \text { J } \\ & \text { 응 } \end{aligned}$			\％	z	钶
$\stackrel{\rightharpoonup}{\circ}$	$\begin{aligned} & \text { O} \\ & \text { O } \\ & \hline \end{aligned}$	咢	⿳亠㐅冖几	$\stackrel{\infty}{\stackrel{\infty}{\infty}}$	$\stackrel{\text { 「 }}{\text { ¢ }}$	$\underset{\sim}{\tilde{W}}$		$\stackrel{\text { ® }}{\text { ® }}$	$\begin{aligned} & \text { ñ } \\ & \underset{\alpha}{\infty} \end{aligned}$	$\stackrel{\sim}{\infty}$	$\begin{aligned} & \text { Po } \\ & \stackrel{0}{0} \end{aligned}$	ते	z				\％	z	圧
$\stackrel{\text { O}}{0}$	$\begin{aligned} & \text { O. } \\ & \text { 星 } \end{aligned}$	令	$\stackrel{\text { İ }}{=}$	$\underset{\sim}{\text { a }}$	$\begin{aligned} & \circ \\ & \stackrel{y}{4} \end{aligned}$	$\stackrel{\text { ® }}{\substack{\text { ® }}}$	$\begin{aligned} & \text { Oin } \\ & \underset{子}{2} \end{aligned}$	$\frac{\pi}{\underset{\sim}{c}}$	$\begin{aligned} & \stackrel{i}{n} \\ & \stackrel{0}{6} \end{aligned}$	\bar{m}	$\begin{aligned} & \stackrel{n}{0} \\ & \stackrel{c}{6} \end{aligned}$	\cdots	¿̊					z	\％
\％	$\begin{aligned} & \text { ò } \\ & \stackrel{3}{B} \end{aligned}$	令	$\begin{aligned} & \text { n} \\ & \stackrel{n}{\circ} \\ & \hline \end{aligned}$	$\begin{gathered} \underset{\sim}{J} \\ \end{gathered}$	ה－	管	娄	$\begin{gathered} \stackrel{\rightharpoonup}{8} \\ \underset{\sim}{n} \end{gathered}$	$\begin{aligned} & \text { Z్ট్ర } \\ & \underset{\text { In }}{ } \end{aligned}$	$\stackrel{\text { 年 }}{ }$		in	z	$\begin{aligned} & \text { Z } \\ & \text { B } \\ & \hline 0 \end{aligned}$				z	云
O	$\begin{aligned} & \text { ot } \\ & \text { 景 } \end{aligned}$	荳																	戓
$\stackrel{n}{0}$		耎	\％	$\begin{aligned} & \stackrel{\circ}{n} \\ & \underset{y}{c} \end{aligned}$	$\stackrel{\infty}{\underset{i}{i}}$	$\frac{9}{6}$	雨	$\begin{gathered} \text { ơ } \\ \underset{\sim}{2} \end{gathered}$	$\begin{aligned} & \underset{\leftrightarrow}{\otimes} \\ & \stackrel{\oplus}{\infty} \end{aligned}$	\％	$\stackrel{\text { Non }}{\text { N }}$	$\stackrel{\square}{i}$	z	$\begin{aligned} & \text { ⿹ㅠㅇ } \\ & \text { U } \end{aligned}$				亿	唇
응	$\begin{aligned} & \text { O} \\ & \hline, \\ & \hline \end{aligned}$	感	\％	$\underset{\sim}{\text { den }}$	$\stackrel{\rightharpoonup}{6}$	$\stackrel{\cong}{\infty}$	$\stackrel{\stackrel{\rightharpoonup}{\mathrm{o}}}{\substack{\mathrm{o}}}$	$\stackrel{\circ}{\stackrel{\circ}{-}}$	$\begin{aligned} & \text { in } \\ & \stackrel{n}{i} \end{aligned}$	$\stackrel{\circ}{6}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\text { in }}{\circ} \end{aligned}$	$\stackrel{\text { 「 }}{ }$	๕	$\begin{aligned} & \text { ⿹ㅏㅇ } \\ & 0 \end{aligned}$				z	砍
$\stackrel{\circ}{\circ}$	$\begin{aligned} & \text { oל } \\ & \text { B } \end{aligned}$	兰	$\begin{gathered} \text { ה̃ } \\ \end{gathered}$		$\stackrel{\circ}{\infty}$	$\stackrel{\text { ® }}{\stackrel{\circ}{+}}$				ה	$\underset{\stackrel{\rightharpoonup}{\mathrm{E}}}{\stackrel{\mathrm{t}}{\mathrm{~A}}}$	\cdots	z̊		$\begin{aligned} & \text { 咅 } \\ & \text { 矿 } \\ & \hline \end{aligned}$			z	钅
$\stackrel{\circ}{\circ}$	$$	률	$\begin{aligned} & \text { İ } \\ & \text { त्ત } \end{aligned}$	$\stackrel{\bar{\infty}}{\text { ® }}$	$\underset{\sim}{\underset{\sim}{\infty}}$	$\underset{\Omega}{\ddagger}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{a}} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$\stackrel{\rightharpoonup}{\mathrm{b}}$	$\begin{aligned} & \text { む } \\ & \stackrel{\rightharpoonup}{c} \end{aligned}$	$\stackrel{\sim}{\square}$		$\stackrel{\circ}{+}$	z̊	$\begin{aligned} & \text { ⿹ㅠㄹ } \\ & \text { OU } \end{aligned}$	镸			z	岩
\％	$\begin{aligned} & \text { ò } \\ & \text { a } \end{aligned}$	$\frac{\text { 咅 }}{2}$	$\begin{gathered} \stackrel{\circ}{\mathrm{m}} \\ \hline \end{gathered}$	$\begin{aligned} & \text { 영 } \\ & \stackrel{1}{\circ} \end{aligned}$		$\begin{aligned} & \text { 士 } \\ & \underset{n}{n} \end{aligned}$	$\begin{aligned} & \stackrel{p}{n} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{array}{r} \text { 等 } \end{array}$	$\begin{gathered} \stackrel{\circ}{\circ} \\ \underset{~}{2} \end{gathered}$	$\overline{\mathrm{i}}$	$\begin{aligned} & \stackrel{\sim}{\dddot{1}} \\ & \underset{\sim}{7} \end{aligned}$		z	$\begin{aligned} & \bar{W} \\ & \text { 흥 } \end{aligned}$	镸			z	唇
\bigcirc	$\begin{aligned} & \text { ob } \\ & \text { 星 } \end{aligned}$	会																	唇
三	$\begin{aligned} & \text { O} \\ & \text { O} \\ & \hline \end{aligned}$	鲁	$\begin{aligned} & \text { F } \\ & \underset{\sim}{\mathrm{i}} \end{aligned}$	$\begin{aligned} & \stackrel{6}{9} \\ & \infty \end{aligned}$	$\stackrel{i}{n}$	$\stackrel{\stackrel{\rightharpoonup}{0}}{\circ}$		$\begin{aligned} & n \\ & \vdots \\ & \vdots \end{aligned}$	$\stackrel{\underset{\sim}{\mathrm{N}}}{\substack{2}}$	¢	$\stackrel{\widetilde{N}}{\underset{\sim}{7}}$	$\stackrel{\circ}{+}$	z	$\begin{aligned} & \overline{W_{0}^{\prime}} \\ & \bar{O} \end{aligned}$	膏			z	唇
$⿳ 亠 丷 厂 犬$	骨	를																	唇
$\stackrel{m}{0}$	\％	咅																	硈
\pm	会	를																	岩

ก		諅	$\begin{aligned} & \text { ప} \\ & \stackrel{\rightharpoonup}{6} \end{aligned}$	$\begin{gathered} \stackrel{\circ}{7} \\ \underset{\sim}{\infty} \end{gathered}$	\cdots	$\stackrel{\substack{\mathrm{o} \\ \hline \\ \hline}}{ }$		$\begin{aligned} & \infty \\ & \underset{\sim}{0} \\ & \underset{\sim}{2} \end{aligned}$			$\stackrel{\text { g }}{\substack{\text { ¢ }}}$		\％	$\begin{aligned} & \text { ⿹ㅠㅇ } \\ & 0 \end{aligned}$			宕	\％	麇
\％	$\begin{aligned} & \text { O} \\ & \text { B } \\ & \hline \end{aligned}$	？	$\begin{gathered} \text { 志 } \\ \stackrel{y}{子} \end{gathered}$	合	魮	$\begin{gathered} \text { E. } \\ \stackrel{\circ}{\circ} \end{gathered}$	$\stackrel{\stackrel{\circ}{n}}{\stackrel{\circ}{9}}$	$\begin{aligned} & \stackrel{0}{3} \\ & \underset{\sim}{2} \end{aligned}$		${ }_{8}^{8}$	$\begin{aligned} & \stackrel{\leftrightarrow}{1} \\ & \stackrel{\infty}{\infty} \end{aligned}$		\％		号		岩	z	唇
答	$\begin{aligned} & \text { O} \\ & \text { B } \\ & \hline \end{aligned}$	会	$\frac{\because}{i}$		n	$\begin{gathered} \stackrel{\rightharpoonup}{6} \\ \stackrel{\text { ¢ }}{0} \end{gathered}$	$\begin{aligned} & \infty \\ & \underset{\oplus}{\infty} \\ & \hline \end{aligned}$	$\underset{\underset{\sim}{\mathrm{g}}}{\substack{\text { n }}}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\check{n}} \\ & \stackrel{1}{2} \end{aligned}$	$\stackrel{\sim}{\sim}$	$\stackrel{\stackrel{\circ}{\pi}}{\stackrel{\circ}{i}}$		z	$\begin{aligned} & \text { ⿹ㅏㅄ } \\ & \text { U } \end{aligned}$			宕	\％	䂞
$\stackrel{\%}{0}$	$\begin{aligned} & \text { O} \\ & \text { B } \\ & \hline \end{aligned}$	若	$\begin{aligned} & \text { ले } \\ & \stackrel{\text { en }}{0} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { ه̀ } \end{aligned}$	$\stackrel{\rightharpoonup}{\text { a }}$		$\begin{aligned} & \text { 杀 } \\ & \text { 子 } \end{aligned}$	合	$\begin{aligned} & \stackrel{\rightharpoonup}{\infty} \\ & \underline{\infty} \end{aligned}$	$\stackrel{\infty}{\infty}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\text { ® }} \end{aligned}$		\％	$\begin{aligned} & \text { ⿹ㅏㅄ } \\ & \text { 응 } \end{aligned}$			岩	z	唇
\％	$\begin{aligned} & \text { O} \\ & \text { O} \\ & \hline \end{aligned}$	$\frac{0}{2}$		$\begin{gathered} \circ \\ \stackrel{\circ}{q} \\ \underset{\sim}{2} \end{gathered}$	芯	$\underset{\underset{\sim}{\mathrm{a}}}{\substack{\text { an }}}$	$\underset{\underset{\infty}{\infty}}{\stackrel{\circ}{\infty}}$	$\stackrel{\circ}{\square}$	$\underset{\substack{\text { ¢ }}}{\substack{\text { ¢ }}}$	${ }_{6}$	$\stackrel{\otimes}{\pi}$		z	$\begin{aligned} & \text { ⿹ㅠㅇ } \\ & \text { 己 } \end{aligned}$			岩	z	唇
㤑	$\begin{aligned} & \text { O} \\ & \text { O} \\ & \hline \end{aligned}$	会		$\begin{aligned} & \stackrel{\rightharpoonup}{\infty} \\ & \stackrel{1}{=} \end{aligned}$	$\stackrel{\text { そ }}{\text { ¢ }}$	$\begin{gathered} \infty \\ \underset{\sim}{0} \\ \hline \end{gathered}$	$\begin{aligned} & \stackrel{\circ}{1} \\ & \underset{\Omega}{2} \end{aligned}$	$\stackrel{\text { 寺 }}{\substack{\text { ¢ }}}$	た̆	寺	$\begin{aligned} & \text { O్C్రి } \end{aligned}$		亿ํ		号			\％	鹿
$\stackrel{\infty}{0}$	$\begin{aligned} & \text { O} \\ & \text { B } \\ & \hline \end{aligned}$	？	$\begin{aligned} & \text { 吉 } \\ & \text { 呙 } \end{aligned}$	$\begin{gathered} \underset{\sim}{n} \\ \stackrel{\sim}{\infty} \end{gathered}$	通	$\begin{gathered} \stackrel{\circ}{\circ} \\ \underset{寸}{*} \end{gathered}$	$\begin{aligned} & \pi \\ & \underset{\sim}{\infty} \end{aligned}$	$\underset{\underset{\sim}{\circ}}{\substack{\text { O}}}$	令	$\stackrel{\square}{\infty}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\hat{i}} \\ & \hline \end{aligned}$		z	$\begin{aligned} & \text { ⿹ㅏㅄ } \\ & \text { 응 } \end{aligned}$	辰		砍	\％	唇
\％\％	$\begin{aligned} & \text { O} \\ & \text { O} \\ & \hline \end{aligned}$	$\frac{0}{2}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\sqrt{n}} \end{aligned}$	$\begin{aligned} & \text { F } \\ & \stackrel{\rightharpoonup}{d} \end{aligned}$	菏		$\underset{\sim}{\text { 导 }}$	$\stackrel{\overrightarrow{7}}{9}$	$\begin{aligned} & \text { 夻 } \\ & \pm \end{aligned}$	－	$\begin{aligned} & \text { ٌó } \\ & \underset{\sim}{2} \end{aligned}$		¿	$\begin{aligned} & \text { ⿹ㅠㅇ } \\ & \text { 己 } \end{aligned}$			砍	\％	唇
$\frac{9}{\square}$	$\begin{aligned} & \text { O} \\ & \stackrel{0}{\underline{E}} \end{aligned}$	$\stackrel{\infty}{\frac{\infty}{a}}$	$\begin{gathered} \mathscr{O} \\ \stackrel{\leftrightarrow}{6} \\ \end{gathered}$	$\stackrel{\stackrel{\rightharpoonup}{\mathrm{b}}}{\stackrel{\rightharpoonup}{\mathrm{a}}}$	$\underset{\sim}{\circ}$	$\stackrel{\underset{\sim}{9}}{\stackrel{\rightharpoonup}{m}}$	$\stackrel{\circ}{\circ}$	$\stackrel{\circ}{\circ}$	$\begin{aligned} & \underset{\AA}{\circ} \\ & \stackrel{\text { N }}{2} \end{aligned}$	骨	$\begin{aligned} & \stackrel{\circ}{\infty} \\ & \stackrel{1}{A} \end{aligned}$		๕	$\begin{aligned} & \overline{\ddot{6}} \\ & \text { O} \end{aligned}$	号		㜢	\％	唇
吉	$\begin{aligned} & \text { ob } \\ & \text { B } \end{aligned}$	？		$\begin{aligned} & \stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{n}} \\ & \stackrel{n}{n} \end{aligned}$	$\stackrel{\otimes}{\infty}$	$\begin{aligned} & \stackrel{\rightharpoonup}{7} \\ & \underset{\sim}{4} \end{aligned}$	$\stackrel{J}{⿳ 亠 口 子 口 ㇒ 寸 ~}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\infty} \\ & \end{aligned}$	$\stackrel{\text { 导 }}{=}$	\bigcirc	$\begin{gathered} \text { A } \\ \text { 苮 } \end{gathered}$	持	亿ํ	$\begin{aligned} & \text { ⿹ㅏㅄ } \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$			㜢	\％	唇
$\frac{7}{0}$	$$	를																	唇
管	$\begin{aligned} & \text { O} \\ & \text { B } \\ & \hline \end{aligned}$	药	$\begin{aligned} & \text { e. } \\ & \text { in } \\ & \text { in } \end{aligned}$	$\underset{\substack{\text { İ } \\ \underset{\sim}{2}}}{ }$	$\underset{\infty}{\stackrel{\rightharpoonup}{0}}$	$\begin{gathered} \text { 冗ơn } \\ \substack{\text { on }} \end{gathered}$	$\begin{gathered} \cong \\ \vdots \end{gathered}$	$\begin{aligned} & \text { İ } \\ & \underset{n}{n} \end{aligned}$		\％	$\begin{aligned} & \stackrel{\circ}{+} \\ & \underset{\sim}{\circ} \end{aligned}$		\％			$\begin{aligned} & \ddot{\partial} \\ & \text { 颜 } \end{aligned}$		z	唇
柰	$\begin{aligned} & \text { O} \\ & \text { B } \end{aligned}$	$\frac{\mathbb{T}}{\frac{3}{2}}$	$\stackrel{\imath}{\square}$	焦	Non	$\begin{aligned} & \text { 郘 } \\ & \dot{子} \end{aligned}$		$\begin{aligned} & \text { İ } \\ & \end{aligned}$		등	$\begin{aligned} & \text { ̃̃̃ } \\ & \underset{\sim}{n} \end{aligned}$		z		$\begin{aligned} & \text { on } \\ & \stackrel{y}{b} \\ & \text { En } \end{aligned}$			\％	唇
$\frac{\text { ？}}{}$	$\begin{aligned} & \text { O} \\ & \text { ל } \\ & \hline \end{aligned}$	$\frac{\widehat{3}}{\frac{3}{2}}$		$\begin{aligned} & \text { a } \\ & \stackrel{2}{2} \end{aligned}$	థ్ণু	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{C}} \\ & \text { cer } \end{aligned}$			$\begin{aligned} & \stackrel{\infty}{\Lambda} \\ & \stackrel{1}{-1} \end{aligned}$	馞	$\begin{aligned} & \infty \\ & \underset{\sim}{c} \\ & \underset{\sim}{2} \end{aligned}$	$\stackrel{\circ}{+}$	z	$\begin{aligned} & \overline{Z ⿹ 勹 巳} \\ & \text { B } \end{aligned}$				\％	唇
$\frac{\square}{\square}$	$\begin{aligned} & \text { O} \\ & \text { O} \\ & \hline \end{aligned}$	$\frac{\text { 合 }}{2}$	$\begin{gathered} \text { N } \\ \stackrel{\text { n }}{i} \end{gathered}$	$\underset{\substack{\underset{\sim}{j}}}{\bar{\sim}}$	$\underset{\substack{\infty \\ \infty \\ \infty}}{\substack{2}}$	$\begin{aligned} & \underset{~}{\text { a }} \\ & \hline \end{aligned}$	$\underset{\substack{\stackrel{\rightharpoonup}{c} \\ \stackrel{\sim}{6}}}{ }$	$\stackrel{\circ}{\stackrel{\circ}{\leftrightharpoons}}$	$\begin{aligned} & \text { O} \\ & \underset{\sim}{n} \\ & \end{aligned}$	न－			\％		$\begin{aligned} & \text { 嫘 } \\ & \text { 捃 } \end{aligned}$	$\begin{aligned} & \text { च्चे } \\ & \text { 槑 } \end{aligned}$		z	唇
f	$\begin{aligned} & \text { ob } \\ & \text { 直 } \end{aligned}$	若	$\begin{aligned} & \text { s. } \\ & \stackrel{\rightharpoonup}{i n} \end{aligned}$			$\begin{gathered} \text { 区o } \\ \stackrel{\rightharpoonup}{\circ} \end{gathered}$	$\underset{\substack{\mathrm{N}}}{\stackrel{y}{c}}$	$\begin{aligned} & \text { O} \\ & \underset{~}{~} \end{aligned}$	$\begin{aligned} & \underset{\substack{0}}{\infty} \\ & \end{aligned}$	in	$\stackrel{\stackrel{\rightharpoonup}{n}}{\underset{\sim}{n}}$		\％	$\begin{aligned} & \text { ⿹ㅏㅄ } \\ & \text { U } \end{aligned}$				z	唇
$\stackrel{\infty}{\square}$	$\begin{aligned} & \text { O. } \\ & \text { E } \end{aligned}$	若		$\begin{gathered} \text { İ } \\ \text { and } \end{gathered}$	芥	$\begin{aligned} & \tilde{N} \\ & \stackrel{N}{\text { w }} \end{aligned}$		N్ત̃	－	$\stackrel{\text { ¢ }}{\text { ¢ }}$	喜		\％	宮		震		\％	皆

$\frac{9}{0}$	$\begin{aligned} & \text { O} \\ & \text { O } \\ & \hline \end{aligned}$	容	$\begin{aligned} & \infty \\ & \stackrel{0}{6} \\ & \stackrel{i}{n} \end{aligned}$	$\frac{\underset{N}{7}}{\underset{m}{2}}$	$\begin{aligned} & \circ \\ & \substack{4 \\ \underset{~}{4}} \end{aligned}$	$\stackrel{\stackrel{\rightharpoonup}{6}}{\stackrel{\circ}{6}}$	$\begin{aligned} & \text { a } \\ & \stackrel{\rightharpoonup}{8} \end{aligned}$	$\begin{aligned} & \stackrel{\infty}{\infty} \\ & \stackrel{\sim}{n} \end{aligned}$	$\stackrel{\circ}{\circ}$	示	$\frac{8}{\otimes 8}$		z	$\begin{aligned} & \overline{\ddot{O}} \\ & \text { ठ } \end{aligned}$				z	礝
$\frac{8}{0}$	$\begin{aligned} & \text { O. } \\ & \text { 星 } \end{aligned}$	$\frac{\widehat{3}}{\overrightarrow{3}}$	$\begin{aligned} & \text { to } \\ & \stackrel{0}{0} \end{aligned}$	$\frac{\tilde{\sim}}{\stackrel{\sim}{\sim}}$	\％		$\underset{\sim}{\underset{\sim}{c}}$	$\begin{aligned} & \underset{\sim}{\tilde{1}} \\ & \end{aligned}$	$\begin{aligned} & \check{\sim} \\ & \stackrel{\infty}{\infty} \end{aligned}$	守	$\begin{aligned} & \text { 芯 } \\ & \underset{\sim}{6} \end{aligned}$		zㄴํ	$\begin{aligned} & \overrightarrow{\ddot{W}_{0}^{\prime}} \\ & \stackrel{0}{0} \end{aligned}$				z	碰
$\stackrel{5}{0}$	$\begin{aligned} & \text { O} \\ & \hline, ~ \\ & \hline \end{aligned}$	䓓		$\begin{aligned} & \stackrel{\otimes}{6} \\ & \stackrel{\circ}{6} \end{aligned}$	¢	$\stackrel{\tilde{i n}}{\underset{\sim}{n}}$	$\stackrel{\text { g}}{\stackrel{\circ}{\mathrm{a}}}$	¢	$\underset{\sim}{\infty}$	$\frac{n}{6}$	$\begin{aligned} & \text { Ki } \\ & 0.8 \end{aligned}$		z\％	$\begin{aligned} & \text { ⿹ㅏㅄ } \\ & \text { U } \end{aligned}$				亿	唇
ก	$\begin{aligned} & \text { ob } \\ & \stackrel{a}{\square} \end{aligned}$	$\frac{\substack{3 \\ 2}}{}$	$\frac{n}{\frac{n}{i}}$	$\begin{aligned} & \stackrel{\circ}{n} \\ & \end{aligned}$	車	$\stackrel{\substack{\infty \\ \stackrel{\omega}{\omega} \\ \hline}}{ }$	$\stackrel{\infty}{\stackrel{\infty}{\square}}$	$\underset{\sim}{a}$	笭	\％	$\begin{aligned} & \text { 品 } \\ & \underset{\sim}{2} \end{aligned}$	子	z̊	$\begin{aligned} & \overline{\ddot{W}} \\ & \text { 응 } \end{aligned}$				z	唇
$\stackrel{8}{8}$	$$	$\frac{\widehat{3}}{2}$	$\begin{aligned} & \text { 그 } \\ & \text { n } \end{aligned}$	$\begin{aligned} & \text { Ï } \\ & \text { 士 } \end{aligned}$	$\stackrel{\otimes}{\circ}$	$\underset{\text { ¿ }}{\underset{\sim}{\text { ® }}}$	$\begin{aligned} & \infty \\ & \underset{\sim}{n} \\ & \underset{\sim}{n} \end{aligned}$	$\underset{\substack{\infty \\ \underset{\sim}{n}}}{ }$	$\begin{aligned} & \stackrel{\otimes}{\mathbf{~}} \\ & \underset{\sim}{2} \end{aligned}$	$\underset{\sim}{\infty}$	$\stackrel{\stackrel{\pi}{n}}{\stackrel{1}{\sim}}$	¢̂	z	$\begin{aligned} & \text { ⿹ㅠㅇ } \\ & \text { 己 } \end{aligned}$	会			z	岩
$\stackrel{\text { 寺 }}{0}$	$\begin{aligned} & \text { ob } \\ & \text { B } \end{aligned}$	若	$\underset{\text { in }}{\underset{\sim}{i}}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{i}} \\ & \underset{\sim}{2} \end{aligned}$	¢	$\begin{gathered} \stackrel{\rightharpoonup}{\circ} \\ \stackrel{\rightharpoonup}{0} \end{gathered}$	$\begin{aligned} & \stackrel{\circ}{\mp} \\ & \underset{\infty}{\infty} \end{aligned}$	帚	$\begin{gathered} \stackrel{\leftrightarrow}{0} \\ \stackrel{\rightharpoonup}{\triangle} \end{gathered}$	$\stackrel{\rightharpoonup}{\infty}$	$\begin{aligned} & \text { ત્ळ } \\ & \stackrel{\text { ®en }}{ } \end{aligned}$	\cdots	z̊					z	唇
$\stackrel{n}{0}$	$\begin{aligned} & \text { O} \\ & \text { O } \\ & \hline \end{aligned}$	$\stackrel{\text { ？}}{\text { ？}}$	$\begin{aligned} & \stackrel{\infty}{7} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{i} \\ & \underset{\sim}{i} \end{aligned}$	素	$\begin{aligned} & \stackrel{\text { ® }}{4} \end{aligned}$	$\underset{\substack{\infty \\ \stackrel{n}{n}}}{\substack{n}}$	$\begin{aligned} & \stackrel{\sim}{\circ} \\ & \stackrel{y}{*} \end{aligned}$	$\stackrel{\substack{\infty \\ \dot{+} \\ \hline}}{ }$	$\stackrel{\sim}{\infty}$	$\begin{aligned} & \text { Fo } \\ & \stackrel{\text { a }}{2} \end{aligned}$		z	$\begin{aligned} & \overline{\ddot{W}} \\ & \stackrel{0}{0} \end{aligned}$				z	愿
号	$\begin{aligned} & \text { ol } \\ & \text { B } \\ & \hline \end{aligned}$	会	$\begin{aligned} & \underset{\sim}{\text { IN }} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\%}{6} \\ & \stackrel{e}{6} \end{aligned}$	$\stackrel{ \pm}{2}$	$\begin{aligned} & \stackrel{\otimes}{\infty} \\ & \underset{\sim}{\infty} \end{aligned}$	$\stackrel{\infty}{\infty}$	$\begin{aligned} & \text { B } \\ & \underset{\sim}{2} \end{aligned}$	$\stackrel{\text { ্ָ }}{=}$	$\stackrel{\infty}{\ddagger}$	$\begin{aligned} & \stackrel{\circ}{\infty} \\ & \underset{\sim}{+} \end{aligned}$		z	$\begin{aligned} & \text { ⿹ㅠㅇ } \\ & \text { 응 } \end{aligned}$	会		宕	亿	䂦
$\stackrel{5}{0}$	$\begin{aligned} & \text { O} \\ & \text { O} \\ & \hline \end{aligned}$	$\stackrel{\text { m }}{\text { B }}$	$\underset{\sim}{\text { む }}$	$\stackrel{\Gamma}{\infty} \stackrel{\infty}{\leftrightharpoons}$	پ!	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \underset{\text { did }}{ } \end{aligned}$	$\begin{aligned} & \text { 导 } \\ & \text { d } \end{aligned}$	$\underset{\substack{\text { g }\\}}{ }$	$\stackrel{̊}{7}$	$\stackrel{\sim}{\infty}$	$\begin{aligned} & \text { oin } \\ & \stackrel{0}{2} \end{aligned}$	$\stackrel{\infty}{+}$	\％	$\begin{aligned} & \text { ⿹ㅏㅄ } \\ & \text { 응 } \end{aligned}$			岩	z	唇
$\stackrel{\infty}{\infty}$	$\begin{aligned} & \text { O} \\ & \text { 昱 } \end{aligned}$	？	$\begin{aligned} & \stackrel{\circ}{\sharp} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \text { নे } \\ & \text { d } \end{aligned}$	$\begin{aligned} & \stackrel{8}{6} \\ & n \end{aligned}$	$\begin{gathered} \stackrel{\otimes}{0} \\ \stackrel{\text { en }}{0} \end{gathered}$	$\begin{gathered} n \\ \stackrel{n}{n} \\ \tilde{m} \end{gathered}$	$\begin{gathered} \stackrel{9}{7} \\ \underset{9}{9} \end{gathered}$	$\begin{gathered} \text { N } \\ \stackrel{y}{6} \end{gathered}$	¢	$\begin{aligned} & \text { Ey } \\ & \text { chin } \end{aligned}$		z\％	$\begin{aligned} & \overline{\ddot{6}} \\ & \stackrel{0}{0} \end{aligned}$			砍	z	苞
$\frac{8}{0}$	$\begin{aligned} & \text { O} \\ & \text { O} \\ & \vdots \end{aligned}$	를																	或
응	$\begin{aligned} & \text { O} \\ & \text { 景 } \end{aligned}$	$\begin{aligned} & 0 \\ & 2 \\ & 0 \end{aligned}$																	
$\stackrel{\square}{0}$	$\begin{aligned} & \text { ot } \\ & \text { 景 } \end{aligned}$	를																	硈
$\stackrel{\text { ¢ }}{\circ}$	$\begin{aligned} & \text { O} \\ & \text { B } \end{aligned}$	$\frac{\text { 喜 }}{2}$					$\begin{aligned} & \stackrel{\rightharpoonup}{6} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$						¿	$\begin{aligned} & \text { प्ष̈ } \\ & \text { B } \end{aligned}$			岩	z	晋
$\stackrel{8}{0}$	$$	兴	$\begin{aligned} & \text { オ太 } \\ & \text { ¢ } \end{aligned}$	$\begin{aligned} & \text { ợ } \\ & \stackrel{\rightharpoonup}{\alpha} \end{aligned}$	筑	$\begin{gathered} \text { 菒 } \\ \hline \end{gathered}$		$\underset{\underset{~}{~}}{\underset{\sim}{f}}$	ت̃ત̃	$\stackrel{\infty}{\infty}$			亿				宕	z	䂞
¢	\％	E																	唇
$\stackrel{\square}{0}$	衰	\％																	戓

$\stackrel{\infty}{\circ}$		）																	钅
$\stackrel{ \pm}{\text { ¢ }}$		3																	\％
$\stackrel{\infty}{\infty}$	\％	3																	ت
$\stackrel{\otimes}{\circ}$	\％	$\frac{3}{3}$																	匍
$\stackrel{\infty}{\circ}$	$\begin{aligned} & \text { O} \\ & \text { O} \\ & \text { B } \end{aligned}$	会	$\begin{aligned} & \underset{\infty}{\infty} \\ & \underset{\sim}{2} \end{aligned}$	$\stackrel{\infty}{\infty}$	$\stackrel{\partial}{\dot{\sigma}}$	$\begin{aligned} & \text { O} \\ & \text { io } \\ & \text { in } \end{aligned}$	$\underset{\substack{⿱ 士 心 ㇒ ⿱ 丶 ⿰ ㇇ ⿰ 亅 ⿱ 丿 丶 一 灬 ~}}{ }$	\bar{n}	$\underset{\underset{J}{ \pm}}{\underset{J}{ \pm}}$	$\stackrel{\square}{\circ}$	$\begin{aligned} & \stackrel{\circ}{n} \\ & \text { 勺ुं } \end{aligned}$	\bigcirc	\％	$\begin{aligned} & \stackrel{\rightharpoonup}{\ddot{W}} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { on } \\ & \text { ED } \\ & \text { En } \end{aligned}$	䓓	$\begin{aligned} & \text { थ } \\ & 0 \\ & 0 \end{aligned}$	¿	픛
$\stackrel{\infty}{\infty}$	\％ O 星	3																	
$\stackrel{\infty}{0}$	骨	3																	淢
\％	\％	3																	钶
亏े	$\begin{aligned} & \text { oi } \\ & 0 \\ & \vdots \end{aligned}$	3																	
\％	\％	交																	戓
$\stackrel{\text { \％}}{0}$	O2，	를																	皆
\％	\％ O 景	를																	F
\because	O O 云	츨																	第
$\%$	\％	를																	或
$\frac{5}{0}$	O20	合																	第
$\stackrel{\infty}{\circ}$	O O 星	를																	或
\％	\％	令																	第

,										
8										
+										
,										
,										
-										
\%										
,										
${ }_{3}^{3}$										
\%										
8										
5										
\%										
:										
${ }_{8}$										
\%										1
8										1
	i,									1

ఫ్రু		䨖																	唇
ス̃ํ		䨖																	
กิส		交																	戓
志	$\begin{aligned} & \text { 采 } \\ & \text { 星 } \end{aligned}$	家																	
合	$\begin{aligned} & \text { 受 } \\ & \text { E } \end{aligned}$	云																	㦴
号	$\begin{aligned} & \text { N్I゙ } \\ & \text { En } \\ & \hline \end{aligned}$	考																	宕
ก	$$	$\frac{3}{3}$																	
凩		家																	
\％	$\begin{aligned} & \text { ? } \\ & \text { 言 } \\ & \text { a } \end{aligned}$	帚	$\stackrel{\infty}{\infty}$	喜	$\stackrel{\text { ® }}{\substack{\text { ¢ }}}$	$\stackrel{ \pm}{\text { i }}$	冎	$\stackrel{\text { ® }}{3}$	$\stackrel{\bar{\alpha}}{\stackrel{\rightharpoonup}{\mathrm{a}}}$	\％）	$\begin{gathered} \bar{\circ} \\ \stackrel{\rightharpoonup}{\circ} \end{gathered}$	$\stackrel{+}{m}$	๕	흥	整			z	矿
\％	$\begin{aligned} & \text { of } \\ & \text { 高 } \\ & \text { a } \end{aligned}$	訾	$\stackrel{\text { d }}{\text { ¢ }}$	$\stackrel{\text { ® }}{\substack{\text { i }}}$	$\stackrel{\text { \％}}{\text { \％}}$	$\stackrel{\text { \％}}{\substack{\text { ¢ }}}$	等	\％	$\stackrel{\stackrel{\rightharpoonup}{b}}{=}$	$\stackrel{\infty}{\text { ¢ }}$	$\begin{gathered} \bar{\sim} \\ \underset{\sim}{\infty} \end{gathered}$	$\stackrel{\square}{6}$	亿ํ	\％	$\begin{aligned} & \text { 覀 } \\ & \text { 㪊 } \end{aligned}$		－	\％	矿
区్ర్ర		怎	－	$\stackrel{\text { ob }}{\substack{\text { ¢ }}}$	合	$\stackrel{\text { ® }}{\text { ® }}$	$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$	능	$\frac{n}{a}$	$\stackrel{\infty}{\stackrel{\circ}{e}}$	$\begin{aligned} & \infty \\ & \stackrel{\substack{0 \\ \hline 8 \\ 0}}{ } \end{aligned}$	$\stackrel{\circ}{\circ}$	z	Ó	$\begin{aligned} & \text { an } \\ & \text { E. } \\ & \text { En } \end{aligned}$			z	唇
ત్రు		寺	毞	$\stackrel{\text { 骂 }}{\text {－}}$	喠	$\stackrel{\infty}{\infty}$	ก	告	$\stackrel{7}{\square}$	$\stackrel{\sim}{8}$	$\begin{aligned} & 8 \\ & \text { 8 } \\ & \text { 80 } \end{aligned}$	¢	\％	응				\％	䂞
\％	3 莫 0		$\stackrel{n}{0}$	感	¢	姓	$\overline{\bar{n}}$	\％	蕆	응	$\stackrel{\text { İ }}{\stackrel{y}{i}}$	$\stackrel{\square}{0}$	\％	ठ	$\begin{aligned} & \text { on } \\ & \stackrel{y}{b} \\ & \text { En } \end{aligned}$		\％	\％	戓
㕺	$\begin{aligned} & \text { 旁 } \\ & \text { 宿 } \end{aligned}$	年	ลิo	永	$\stackrel{\square}{\circ}$	$\stackrel{\infty}{\square}$	蚵	谷	$\stackrel{\text { B }}{\text { ® }}$	¢	$\begin{aligned} & \text { n} \\ & \text { ñin } \\ & \hline \end{aligned}$			－				\％	或
号	$\begin{aligned} & \text { ? } \\ & \text { 啇 } \\ & \text { B } \end{aligned}$	䟤	\bar{n}	午	$\stackrel{n}{i}$	\cdots	$\stackrel{\text { N }}{\text { N }}$	$\stackrel{\circ}{\circ}$	$\stackrel{\circ}{\square}$	\％	$\begin{aligned} & \text { त⿹丁口欠 } \\ & \text { dí } \end{aligned}$	$\underset{\sim}{\text { c }}$		或	整	㜢或		\％	宕
发	$\begin{aligned} & \text { 管 } \\ & \text { 亳 } \end{aligned}$	$\stackrel{\text { ® }}{\text { ® }}$	－	合	\％	플	$\stackrel{\text { ¢ }}{\text { ¢ }}$	获	$\xrightarrow{\text { 芯 }}$	$\stackrel{\circ}{6}$	$\begin{gathered} \text { t } \\ \stackrel{\rightharpoonup}{0} \end{gathered}$		\％	－			\％	z	矿
\％	$\begin{aligned} & \text { of } \\ & \text { 高 } \\ & \text { an } \end{aligned}$	－	$\stackrel{\infty}{\sim}$	劲	®	$\stackrel{\text { ¢ }}{\sim}$	\％	¢	$\stackrel{\stackrel{\rightharpoonup}{\infty}}{\infty}$		$\begin{aligned} & \stackrel{\circ}{6} \\ & \stackrel{c}{6} \end{aligned}$		z	응	沯	㝘宕		\％	5

\％	$\begin{aligned} & \text { of } \\ & \text { 产 } \\ & \text { 星 } \end{aligned}$	菏	髇	¢	玺	ત્ત̃	$\stackrel{\overline{3}}{\square}$	กิ̣	$\stackrel{\%}{8}$	¢	$\begin{aligned} & \text { E } \\ & 0 . \end{aligned}$		z	$\begin{aligned} & \text { प्⿱艹⿸⿻一丿口} \\ & 0 \end{aligned}$				z	唇
\％	$\begin{aligned} & \text { of } \\ & \text { 啇 } \\ & \text { a } \end{aligned}$	镸	$\stackrel{?}{3}$	त্ণ	－	大⿳亠丷厂犬	¢	\％	$\stackrel{\text { \％}}{\substack{\text { ® }}}$	\％	$\begin{aligned} & \text { I్త్రీ } \\ & \text { Bin } \end{aligned}$	$\bar{\sim}$	\％	\％	$\begin{gathered} \text { ag } \\ \frac{E}{5} \\ \hline \end{gathered}$			z	
청	$\begin{aligned} & \text { of } \\ & \text { 啇 } \\ & \text { b } \end{aligned}$	$\stackrel{\text { 寿 }}{ }$	$\stackrel{\stackrel{\rightharpoonup}{9}}{\sim}$	\％\％	जू่	$\stackrel{\infty}{\circ}$	$\stackrel{\circ}{\circ}$	哭	$\begin{aligned} & \underset{\sim}{\sim} \\ & \underset{\sim}{2} \end{aligned}$	$\stackrel{\sim}{8}$	$\begin{aligned} & \text { 筑 } \end{aligned}$		z	$\begin{aligned} & \text { ⿹ㅏㅄ } \\ & \text { U } \end{aligned}$			\％	z	唇
청	$\begin{aligned} & \text { 筑 } \\ & \text { ⿳亠口子阝} \\ & \hline \end{aligned}$	$\stackrel{m}{3}$	¢	\％	तु	$\stackrel{\circ}{8}$	\％	त	$\begin{aligned} & \text { 气㐅⿸⿻一丿工⿴囗⿱一一犬} \end{aligned}$	答	$\begin{aligned} & \text { ô } \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$		\％	$\begin{aligned} & \text { ⿹ㅏㅇ } \\ & \text { 응 } \end{aligned}$		麇	E 或 E	z	唇
त్వ̃	$\begin{aligned} & \text { 倉 } \\ & 0 \end{aligned}$	䂞	$\stackrel{\stackrel{\rightharpoonup}{9}}{-}$	¢	$\stackrel{ \pm}{3}$	$\stackrel{\text { F }}{\text { ¢ }}$	\％	$\stackrel{\infty}{\stackrel{\infty}{\circ}}$	䈅	$\stackrel{3}{2}$	$\stackrel{\text { ¢్ర }}{\underset{\sim}{2}}$	₹	亿	$\begin{aligned} & \text { ⿹ㅠㅇ } \\ & \text { 己 } \end{aligned}$			㜢	\％	䂞
กิ์	$\begin{aligned} & \text { of } \\ & \text { it } \\ & \text { i } \end{aligned}$	菏	$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$	－	答	\％\％	$\stackrel{8}{8}$	咎	$\stackrel{\infty}{\stackrel{\infty}{7}}$	$\bar{\infty}$		F	亿ํ	$\begin{aligned} & \text { ⿹ㅠㅇ } \\ & \text { 응 } \end{aligned}$	$\begin{aligned} & \text { 麃 } \\ & \text { 硈 } \end{aligned}$			\％	㡶
茯	$\begin{aligned} & \text { of } \\ & \text { 产 } \\ & \underline{B} \end{aligned}$	左	$\stackrel{\stackrel{+}{\infty}}{\substack{\text { a }}}$	会	$\stackrel{\text { c }}{\substack{\text { c }}}$	$\stackrel{\stackrel{\rightharpoonup}{\underset{\sim}{\sim}}}{\sim}$	$\stackrel{ \pm}{5}$	®	惑	亳		$\stackrel{\infty}{+}$	z	$\begin{aligned} & \text { ⿹ㅏㅄ } \\ & \text { 응 } \end{aligned}$			\％	\％	
だઠ	$\begin{aligned} & \text { of } \\ & \text { 受 } \\ & \text { a } \end{aligned}$	免	$\stackrel{\circ}{\text { ¢ }}$	$\stackrel{\stackrel{\rightharpoonup}{3}}{\substack{3}}$	笑	F	¢ ¢	～ٌ̛	帯	$\stackrel{\text { ¢ }}{\text { ¢ }}$		$\stackrel{4}{6}$	z	$\begin{aligned} & \text { ⿹ㅠㅇ } \\ & \text { 己 } \end{aligned}$				\％	或
잉	$\begin{aligned} & \text { 合 } \\ & \text { 言 } \\ & \text { a } \end{aligned}$	著	$\stackrel{\text { ®̃ }}{\text { ¢ }}$	柰	番	$\stackrel{\text { ® }}{\substack{\text { a }}}$	\％	¢ٌ80	$\stackrel{\curvearrowleft}{\mathscr{\alpha}}$	$\stackrel{\infty}{m}$	$\begin{gathered} \text { ì } \\ \text { à } \end{gathered}$	З	๕	$\begin{aligned} & \overline{\ddot{6}} \\ & \text { O} \end{aligned}$				z	鹿
A	$\begin{aligned} & \text { of } \\ & \text { 产 } \\ & \text { 星 } \end{aligned}$	会	（\％）	$\stackrel{\text { 年 }}{\sim}$	⿹ㅡㄴ	$\stackrel{\infty}{ٌ}$	F̂o	令	$\begin{aligned} & \text { Ö } \\ & \underset{\sim}{0} \end{aligned}$	\cdots	$\begin{aligned} & \% \\ & \hline 0 \\ & \hline 0 \end{aligned}$	$\stackrel{\sim}{i}$	亿ํ	$\begin{aligned} & \text { ⿹ㅏㅄ } \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$			\％	\％	㜢
¢్ઠీ	$\begin{aligned} & \text { of } \\ & \text { 啇 } \\ & \text { a } \end{aligned}$	免	$\stackrel{\rightharpoonup}{\text { i }}$	宕	喜	ます。	๕0．	莒	$\begin{aligned} & \text { İ } \\ & \underline{\text { gr }} \end{aligned}$	$\bar{\sim}$	$$	n	z	$\begin{aligned} & \overline{W_{0}^{\prime}} \\ & \text { O} \end{aligned}$			－	z	或
ิิธ్రి	$\begin{aligned} & \text { of } \\ & \text { 骦 } \end{aligned}$	会	®	\bigcirc	さ	只	$\stackrel{\circ}{\circ}$	¢	$\stackrel{\infty}{\rightrightarrows}$	\％		is	๕	$\begin{aligned} & \text { ⿹̈} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \text { 唇 } \\ & \text { 硈 } \end{aligned}$		－	z	
\％\％	$\begin{aligned} & \text { of } \\ & \text { 䓂 } \\ & \text { a } \end{aligned}$	U	$\stackrel{\text { ®aber }}{ }$	$\stackrel{\bar{y}}{\square}$	ㅠㅜㅇ	\％	厄̂mb	$\frac{\pi}{n}$		$\stackrel{\rightharpoonup}{0}$	$\begin{aligned} & \bar{\infty} \\ & \text { Bo } \end{aligned}$	$\stackrel{\infty}{+}$	\％				\％	z	唇
区్ઠ̇ర	$\begin{aligned} & \text { on } \\ & \text { 言 } \\ & \text { a } \end{aligned}$	过	$\stackrel{ \pm}{ \pm}$	$\stackrel{\text { a }}{\substack{\text { a }}}$	产	$\stackrel{\infty}{\circ}$	管	管	号	$\stackrel{\bullet}{7}$	$\begin{aligned} & \text { 䜤 } \\ & \hline \end{aligned}$	\％	z	$\begin{aligned} & \overline{Z ⿹ 勹 巳} \\ & \text { B } \end{aligned}$	ED	礌	\％	\％	㜢
®్สั	$\begin{aligned} & \text { ? } \\ & \text { 言 } \\ & \text { a } \end{aligned}$	兰	$\stackrel{\boxed{\infty}}{\stackrel{\circ}{6}}$		$\stackrel{\rightharpoonup}{9}$	$\stackrel{\stackrel{\rightharpoonup}{7}}{\substack{\text { a }}}$			$\stackrel{\text { ® }}{\stackrel{\text { ® }}{\square}}$	\％	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \underset{i}{2} \end{aligned}$		\％	或			旁品	z	䂞
\％${ }_{\text {® }}$	$\begin{aligned} & \text { b } \\ & \text { 言 } \\ & \text { 首 } \end{aligned}$	首	守	$\stackrel{\bar{e}}{\sim}$	\％${ }_{\text {a }}$	$\stackrel{8}{+}$			$\begin{aligned} & \text { オ } \\ & \underset{\sim}{\mathrm{y}} \end{aligned}$	莴			\％	$\begin{aligned} & \overline{\mathrm{Z}} \\ & \text { O} \\ & \hline \end{aligned}$				z	达
\％	管	等	合	号	${ }_{\text {® }}^{\text {¢ }}$		べ	－	¢	¢		$\stackrel{\circ}{+}$	\％	或				z	

														18	
		:					:				1	11	11	18	:
		$3:$					S							18	,
		:	:		:		\%							18	,
		13	81		:		\%				11			4	
		18^{1}	85		:		\%	:						4	
		:	1	8							1			4	:
		:					\%				${ }^{11}$			H	:
		:	\%				3				1			1	
		:			8		1				1			U	,
		8			18		3	-			1			14	
		:	1		:		1								
		:	${ }^{2}$	8	\%		8				1				
		:	\%		1		!				\%			11	
							\%							1	
		88													

		\%					Is,								:
,		8		:	:		\%			8	1	11		1	:
1		83	\%	8	8		${ }^{3}$				1	1		1	:
1		8	\%	\%	,		\%				1	11		11	:
!		:	8	8	:	:	B=			8	1	1		1	2
¢		:	8	:	5	,	\%		=	1	1	1		1	=
1		:			:		3:			1	1			:	:
$\stackrel{1}{8}$:			8		8				1	-		1	:
8		:		8	5		8				1	-		1	2
i		:					\%			1	1	1	11	:	$=$
4		:			8		\%				\%	11	1	1	:
3		:	\%	8	\%	\%	8			1	1	1		1	
1		:			\%		\%			8	1	1		\%	
		1													

		:					8						1	5		
1		:			\%		\%						11	!	:	
1		1	\%				-						11	II	:	
,		:	:		\%		:						1	1	:	
1		\%	\%				1						1	4	:	
1																
1																
1		:					:						11	8	:	
,		:					\%						11	1	2	
1		:			1	18	\%						11	t	2	
,		:			-	8	\because						11	1	:	
,		:			\%		8						1	y	2	
-		:	8										11	d	2	
1		8	\%		1									i	,	
,		\%				8	3						11	8	2	
		88			\%								1	1	2	

\％		2																	矿
帯	$\begin{aligned} & \text { en } \\ & \text { 言 } \\ & \text { B } \end{aligned}$	\％	$\stackrel{\text { 勉 }}{\substack{\text { ¢ }}}$	$\stackrel{\circ}{8}$	N్ర	\％				$\stackrel{\sim}{8}$	$\begin{gathered} \text { 热 } \\ \stackrel{0}{6} \end{gathered}$	is	z				会它	z	唇
管		\％	合	\％	È	¢			$\underset{\text { İ }}{\text { I }}$	$\stackrel{m}{8}$	$\stackrel{N}{\infty}$		z	$\begin{aligned} & \text { च्ष̛̃ } \\ & 0.0 \end{aligned}$			令号	\％	長
\％		U	迳	$\stackrel{\text { O}}{\stackrel{\circ}{2}}$	管	$\stackrel{\infty}{\infty}$	呇	F	䓂	荌	$\begin{aligned} & \underset{\sim}{\text { İ }} \\ & \text { n } \end{aligned}$		z	$\begin{aligned} & \text { ⿹̈} \\ & 0 \end{aligned}$				\％	5
令	$\begin{aligned} & \text { b } \\ & \text { 言 } \\ & \text { a } \end{aligned}$	U	$\stackrel{3}{3}$	$\stackrel{ \pm}{\square}$	\％	$\stackrel{\text { 奇 }}{ }$	莫	¢	\％	$\stackrel{\text { ris }}{ }$	$\begin{aligned} & \text { す} \\ & \stackrel{8}{6} \end{aligned}$		z		$\begin{aligned} & \text { 咅 } \\ & \text { 碼 } \\ & \ddot{\varkappa} \end{aligned}$	$\begin{aligned} & \text { 흠 } \\ & \text { 䚯 } \end{aligned}$	完号	z	唇
\％	$\begin{aligned} & 6 \\ & \text { 产 } \\ & \text { a } \end{aligned}$	斉	$\stackrel{\text { ® }}{\text { ¢ }}$	$\stackrel{\pi}{\text { ® }}$	$\xrightarrow{\text { co }}$	哭	$\stackrel{\text { ？}}{\text { ¢ }}$	ב	$\begin{aligned} & \stackrel{\rightharpoonup}{\bar{n}} \\ & \stackrel{y}{6} \end{aligned}$	$\stackrel{+}{8}$	$\begin{gathered} \text { 菏 } \end{gathered}$	ลे	z					z	宕
\％	$$	E																	戓
융	$\begin{aligned} & \text { î } \\ & \text { 言 } \\ & \underline{a} \end{aligned}$	年	产	等	$\stackrel{\stackrel{\rightharpoonup}{0}}{ }$	$\stackrel{\sim}{\infty}$	会	$\stackrel{\substack{0 \\ \hline}}{2}$	$\begin{aligned} & \frac{ \pm}{\infty} \\ & \stackrel{\alpha}{\infty} \end{aligned}$	¢ฺ	$\begin{aligned} & \widehat{0} \\ & \stackrel{y}{ \pm} \end{aligned}$	$\stackrel{\infty}{\sim}$	z	$\begin{aligned} & \text { प्ष्ٌ } \\ & \text { U } \end{aligned}$				\％	砏
¢	$\begin{aligned} & \text { 合 } \\ & \text { 虽 } \end{aligned}$	斉	$\stackrel{\text { i }}{ }$	¢ָ	苟	$\stackrel{\leftrightarrow}{8}$	$\stackrel{\text { in }}{\text { n }}$	喜		\％	$\begin{aligned} & \text { E. } \\ & \text { O. } \end{aligned}$	$\stackrel{+}{m}$	๕	$\begin{aligned} & \text { च्ष्ष } \\ & \text { U } \end{aligned}$				\％	矿
¢	$\begin{aligned} & \text { of } \\ & \text { 言 } \\ & \text { a } \end{aligned}$	年	$\stackrel{\circ}{\stackrel{\circ}{i}}$	$\xrightarrow{\text { a }}$	Ẽ	－	Э	䓫	$\begin{gathered} \text { - } \\ \text { a } \end{gathered}$	瓷			\％		$\begin{gathered} \text { ad } \\ \stackrel{E}{\omega} \\ \hline \end{gathered}$			\％	矿
管	$\begin{aligned} & \text { of } \\ & \text { 言 } \\ & \text { a } \end{aligned}$	怎	$\stackrel{\text { c }}{\stackrel{\infty}{c}}$	－	＋	$\stackrel{\square}{n}$	$\stackrel{n}{3}$	孚		¢	$\begin{aligned} & \infty \\ & \stackrel{0}{6} \\ & \text { Cob } \end{aligned}$	สิ		$\begin{aligned} & \text { प्ष̈ } \\ & \text { 己 } \end{aligned}$				¿	唇
䓵	$\begin{aligned} & \text { of } \\ & \text { 㯖 } \\ & \underline{b} \end{aligned}$	罢	奇	ก	\％	－	Э	吕	$\begin{aligned} & \infty \\ & \stackrel{\infty}{6} \\ & \stackrel{2}{2} \end{aligned}$	$\stackrel{n}{7}$		$\stackrel{\sim}{\infty}$	\％					\％	䂞
\％	$\begin{aligned} & \text { of } \\ & \text { 重 } \\ & \text { 臬 } \end{aligned}$	年	$\stackrel{\text { ® }}{\sim}$	＋	汬	$\stackrel{\text { ¢i }}{ }$	त्ד̧	尔	呙	热			\％				）	\％	戓
¢	$\begin{aligned} & \text { 令 } \\ & \text { O} \\ & \text { an } \end{aligned}$	年	$\stackrel{\infty}{\infty}$	St	\％	$\stackrel{\text { ¢ }}{\substack{4}}$	$\stackrel{\text { ® }}{\text { O}}$	¢	$\stackrel{\text { U }}{\substack{\infty\\}}$	年	$\begin{aligned} & \text { ⿳⿵冂𠃍冖口⺝刂} \\ & \stackrel{\rightharpoonup}{6} \end{aligned}$		亿	$\begin{aligned} & \text { ⿹ㅠㅇ } \\ & 0 . \end{aligned}$	$\begin{aligned} & \text { ag } \\ & \stackrel{E}{5} \\ & \hline \end{aligned}$			¿	唇
管	$\begin{aligned} & \text { 合 } \\ & 0 \\ & \text { En } \end{aligned}$	答		－	$\stackrel{\square}{0}$	等	\exists	？	$\underset{\underset{\sim}{c}}{\bar{\sim}}$	\％	$\stackrel{\text { 采 }}{\underset{~}{~}}$	ה		或	$\begin{gathered} \text { ag } \\ \frac{E}{5} \\ \hline \end{gathered}$			\％	彦
\％	$\begin{aligned} & \text { of } \\ & \text { 言 } \\ & \text { 景 } \end{aligned}$	E																	矿
¢	$\begin{aligned} & \text { 令 } \\ & \text { 言 } \\ & \text { an } \end{aligned}$	年		菦	$\stackrel{\sim}{0}$	＋	$\underset{\square}{\ddagger}$	${ }_{8}^{\text {f }}$	䓵	$\stackrel{\text {＊}}{\text { ¢ }}$.⿳亠丷厂犬		z	或	呪			\％	砏

													11	4		
		:			8			,	:		1	1	11	8		
		1:						,	\%			1	11	${ }^{1}$		
		:			,			\%	\&			-	II	18		
		3			1			\%	\%			1	11	8		
		3	\%		1			\%	,		1	1	11			
		3			\%			:			1	1	11			
		${ }^{1}$			4			,			8	1	11			
		${ }^{3}$									\%	1	1			
											1	1	1			
		:			1			,			8	\%	11	3		
		1			\%				1		1	\%	11	8		
		1							\%			1	11			
		1			1			-	8			1	11			
		:														
		4										1	11	II		
													11	11		

为	管	首							$\stackrel{\text { 年 }}{\stackrel{\text { d }}{\sim}}$				z	＂			碼品品	\％	戓
岡	$\begin{aligned} & \text { if } \\ & \text { 莒 } \end{aligned}$	䓓	N	$\stackrel{ \pm}{\text { ¢ }}$	\％	\％	会	$\stackrel{\square}{7}$	$\xrightarrow{\circ}$	¢	答	$\stackrel{\text { ® }}{\text { i }}$	\％	㦴	$\begin{aligned} & \text { 嫘 } \\ & \text { 砋 } \end{aligned}$			z	碳
\％	$\begin{aligned} & \text { of } \\ & \text { 啇 } \\ & \text { b } \end{aligned}$	会	$\stackrel{\rightharpoonup}{\square}$	$\stackrel{\text { ®．}}{\stackrel{\text { ¢ }}{\text { ¢ }}}$	\％	气ֻ	管	\％	$\stackrel{\text { © }}{\stackrel{\text { IN}}{1}}$		$\stackrel{\text { ® }}{\stackrel{\text { ® }}{\text { ¢ }}}$		\％	$\begin{aligned} & \text { 팜 } \\ & \stackrel{6}{O} \end{aligned}$	$$		砍	\％	岩
앙	旁	E																	5
产	$\begin{aligned} & \text { b } \\ & \text { 言 } \\ & \text { a } \end{aligned}$	知																	砏
\％	$\begin{aligned} & \text { î } \\ & \text { 言 } \\ & \text { 景 } \end{aligned}$	E																	㡶
\％	$\begin{aligned} & \text { of } \\ & \text { 重 } \\ & \underline{b} \end{aligned}$	E																	宕
莍	$\begin{aligned} & \text { of } \\ & \text { 即 } \\ & \underline{a} \end{aligned}$	E																	唇
合	$\begin{aligned} & \text { of } \\ & \text { 言 } \\ & \text { 首 } \end{aligned}$	E																	矿
\％	$\begin{aligned} & \text { of } \\ & \text { 高 } \\ & \text { 克 } \end{aligned}$	E																	戓
䯧	$\begin{aligned} & \text { of } \\ & \text { i⿳亠口冋口十 } \\ & \text { a } \end{aligned}$	E																	㜢
号	$\begin{aligned} & \text { 倉 } \\ & \text { 首 } \end{aligned}$	咼	$\stackrel{\sim}{i n}$	$\stackrel{\stackrel{\infty}{\square}}{\stackrel{\sim}{\square}}$	${ }_{0}$	$\stackrel{\text { a }}{\sim}$	$\stackrel{\infty}{\square}$	\％	$\stackrel{\substack{0}}{\substack{0}}$	$\stackrel{\ddagger}{\infty}$	$\underset{\substack{\approx \\ i}}{\substack{n}}$	\cdots	2	$\begin{aligned} & \text { J्⿺⿸⿻一丿口⿰亻⿱丶⿻工二十} \end{aligned}$			唇	z	第
\％		를																	镸
웅	號	免																	宕
훙		를																	砢
웅	¢ 产 星	를																	唇
筞	管	諅	令	$\stackrel{\infty}{8}$	第	$\stackrel{\text { ® }}{ }$	寺	硆	$\stackrel{7}{6}$	\％	$\stackrel{\stackrel{\rightharpoonup}{\otimes}}{\stackrel{\rightharpoonup}{\circ}}$	\bar{m}	\％	矿			砍	z	唇

1		:								1	11	1	,	
${ }^{1}$	1	:												1
1		:												1
${ }^{1}$:												1
5		:												1
8		=												
8		:	3		5		:	\%	8	1	11	1	,	
${ }^{3}$	1													
\%		:												
3	1	,												
-		:												
3	1	\%												
8	1	:												
-	1	:												
		:												
	1	:												
		I												

尔	誾	를																	麇
\％		를																	碰
筞		咅																	唇
寺		를																	碓
等		$\stackrel{m}{\frac{m}{3}}$	$\underset{\sim}{\tilde{m}}$	吽	$\stackrel{\sim}{3}$	$\stackrel{\otimes}{\square}$	－	$\stackrel{\rightharpoonup}{n}$	$\begin{gathered} \text { 笑 } \end{gathered}$	\％	$\begin{aligned} & \text { さ } \\ & \text { U } \end{aligned}$	\bar{i}	z	$\begin{aligned} & \text { ⿹̈ㅁ } \\ & \text { 응 } \end{aligned}$	$\begin{aligned} & \text { 咢 } \\ & \stackrel{\rightharpoonup}{b} \\ & \text { Bn } \end{aligned}$		㜢	\％	䂞
눙	\％ 彦 星	\＃																	唇
¢		$\stackrel{m}{\text { ¢ }}$	年	过	N	答		$\stackrel{y}{\mathscr{B}}$	$\begin{aligned} & \text { n } \\ & \stackrel{0}{0} \\ & \hline \end{aligned}$	$\underset{\infty}{\text { ¢ }}$	$\stackrel{\stackrel{\rightharpoonup}{\circ}}{\stackrel{\rightharpoonup}{\circ}}$		z	$\begin{aligned} & \overline{\ddot{W}} \\ & \stackrel{0}{0} \end{aligned}$		硣		\％	
¢্ড়ㅇ	哏	$\overline{3}$																	唇
ఫ్ず		F																	或
䂞	倉	F																	戓
答	倉	팢																	或
等	號	\＃																	唇
等	倉	팔																	唇
柰		픚																	戓
等		$\stackrel{m}{\text { m }}$	$\stackrel{\text { ® }}{\substack{\text { ¢ }}}$	$\stackrel{\text { ®ob }}{\substack{\text { ¢ }}}$	त्ले	त̃	¢	in	$\frac{0}{6}$	$\stackrel{m}{\sim}$		\cdots	z	＂	整	喽	㜢	z	唇
等		팢																	W
告		팔																	

等	$\begin{aligned} & \text { on } \\ & \text { 啇 } \\ & \text { E } \end{aligned}$	\％	¢	－	$\stackrel{8}{3}$	¢	¢	¢	¢	$\stackrel{\sim}{\infty}$	$\stackrel{\infty}{\stackrel{\circ}{\circ}}$		亿		$\begin{aligned} & \text { an } \\ & \stackrel{y}{b} \\ & \text { En } \end{aligned}$			\％	戓
品	8 管 3 3	F																	或
㛈	$\begin{aligned} & \text { of } \\ & \text { 承 } \\ & \text { a } \end{aligned}$	］																	矿
閏	3 重	$\frac{3}{3}$																	릋
嘋		菏	$\stackrel{\overline{\text { w }}}{\substack{\text { che }}}$	त	N	$\stackrel{\square}{\text { a }}$	奇	¢	$\stackrel{\circ}{\infty}$	त̇		ir	$\stackrel{4}{*}$					\％	矿
융	$\begin{aligned} & \text { ô } \\ & \text { 旁 } \\ & 0 \end{aligned}$	$\frac{3}{3}$																	戓
5		考																	矿
융		交																	或
等	$\begin{aligned} & \text { of } \\ & \text { 哀 } \\ & \text { a } \end{aligned}$	$\frac{3}{3}$																	碳
晏	？ 高 而	菏	$\stackrel{8}{\text { ¢ }}$	$\stackrel{\sim}{8}$	$\stackrel{n}{0}$	$\stackrel{\text { そ }}{\text { ¢ }}$	®	¢	$\stackrel{\text { g }}{=}$	$\underset{\infty}{\text { m }}$	$\stackrel{\rightharpoonup}{\hat{i}}$	$\stackrel{\infty}{+}$	\％	$\begin{aligned} & \text { च⿹\zh26灬犬 } \\ & \text { U } \end{aligned}$	$\begin{aligned} & \text { 嵒 } \\ & \text { 碼 } \end{aligned}$			\％	区
\％	3 啇 克	m	$\stackrel{\text { ® }}{\text { ci }}$	$\stackrel{n}{n}$	$\stackrel{\square}{0}$	$\underset{\sim}{\text { ¢ }}$	$\stackrel{\text { O }}{\substack{\text { a }}}$	응	茄	$\stackrel{\text { ¹ }}{\sim}$	$\stackrel{F}{f}$	in	z		$\begin{aligned} & \text { on } \\ & \stackrel{y}{b} \\ & \text { En } \end{aligned}$			z	矿
\％	3 亳 自	立																	㡶
名	$\begin{aligned} & \text { O} \\ & \text { 旁 } \\ & \text { 景 } \end{aligned}$	$\frac{3}{3}$																	
哭	$\begin{aligned} & \text { î } \\ & \text { 言 } \\ & \underline{b} \end{aligned}$	考																	
等		交																	듳
星	8 ⿳亠丷厂犬 0 3	$\frac{3}{3}$																	钅
守		$\stackrel{\infty}{\sim}$	奇	$\stackrel{\gtrless}{\square}$	需	$\stackrel{\circ}{\circ}$	끙	๕ั	$\stackrel{\otimes}{\text { Br }}$	앙	$\begin{aligned} & \text { ob } \\ & \dot{\theta} \end{aligned}$	$\stackrel{\text { \％}}{7}$	$\stackrel{\substack{8}}{\sim}$	ت	穊			\％	矿

篂	倉	\％																	戓
考	䚻	立																	픛
答		$\frac{3}{3}$																	릋
答	\％ 产 星	交																	㜢
考	䛚	$\frac{3}{3}$																	或
缶	彦	気																	或
年	容	ソ	永	$\stackrel{\sim}{\infty}$	ホ̛̣	封	$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{y}{2} \end{aligned}$	$\stackrel{\circ}{\rightrightarrows}$	$\stackrel{n}{\underset{子}{f}}$	年	$\begin{aligned} & \stackrel{\circ}{9} \\ & \underset{6}{6} \end{aligned}$	¢	\％	$\begin{aligned} & \overline{\ddot{6}} \\ & \stackrel{0}{0} \end{aligned}$				\％	雨
缶	旍	可																	或
筞		気																	
	¢ 产 景	気																	㜢
最	\％ 产 景	吅																	W
V	盛	？																	唇
N		気																	䮆
\％		可																	㜢
赏	\％ 哀 景	\＃																	或
会	O 言 景	気																	즟
号		？																	

吕		U	合	$\stackrel{\infty}{\circ}$	¢ิ웅	$\stackrel{\infty}{\circ}$	co	等	華	\％）	P $\stackrel{y}{4}$ i	「	¿̊	－				\％	唇
	答	莫																	W
\％	\％ ⿳亠丷厂犬 星	踝																	릋
5		？																	㜢
会	\％ 動 星	？																	W
हิ\％	\％ 产 星	莫																	或
\％	容	蔓																	唇
항	旡	蔓																	唇
\％	鰝	曼																	砍
\％	产	T																	즟
	产	獝																	W
右		砍		$\stackrel{\sim}{\square}$	鏟	$\stackrel{\circledR}{\circ}$	స్ర	$\stackrel{\infty}{0}$		－	$\begin{gathered} \text { O. } \\ \substack{0 \\ \text { Con }} \end{gathered}$		z	$\begin{aligned} & \text { Z⿹\zh26灬 } \\ & \text { OU } \end{aligned}$			\％	\％	或
\％		気																	戓
\％	令	＂																	즟
\％	倉	\＃																	픛
\％	盛	号	®	答	\％	ลิ่	麘	\％	¢	$\stackrel{\rightharpoonup}{i}$	$\stackrel{\stackrel{\pi}{\dot{q}}}{\stackrel{\circ}{q}}$	$\stackrel{\circ}{+}$	z\％	F	沯		\％	\％	릋
\％	管	？																	砍

可		受																	唇
\％	箬	$\stackrel{\text { 寿 }}{ }$	$\stackrel{\text { ¢ }}{\substack{4}}$	荷	लें	$\stackrel{\circledR}{\circ}$	）	त⿹丁口欠心	$\stackrel{\text { ¢at }}{=}$	$\stackrel{\sim}{8}$	$\xrightarrow{\text { I }}$		\％	$\begin{aligned} & \overline{\ddot{W}} \\ & \text { 응 } \end{aligned}$		$\begin{aligned} & \ddot{\nabla} \\ & \text { 䚯 } \\ & \text { 訁 } \end{aligned}$	\％	\％	镸
\％	锋	気																	鹿
落	管	？																	
合		？																	㜢
앙	3 产 E	荎																	㡶
気		或																	픛
吕		合	$\stackrel{\text { \％}}{\text { ¢ }}$	会		$\stackrel{\text { F}}{0}$	志	踻		$\stackrel{+}{\circ}$	$\begin{aligned} & \bar{\circ} \\ & \stackrel{\rightharpoonup}{0} \\ & \text { © } \end{aligned}$		\％	$\begin{aligned} & \overline{\ddot{W}} \\ & \text { O} \end{aligned}$	$\begin{aligned} & \text { og } \\ & \frac{5}{5} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { चु } \\ & \text { y } \\ & \ddot{\ddot{x}} \end{aligned}$	\％	\％	長
骨	$\begin{aligned} & \text { of } \\ & \text { 言 } \\ & \text { 首 } \end{aligned}$	蓇																	㜢
\％		芧																	矿
항		器	$\stackrel{\text { 年 }}{ }$	$\stackrel{\infty}{\infty}$	¢	E	\％	笭	$$	$\stackrel{\infty}{\infty}$		$\stackrel{\circ}{+}$	z	$\begin{aligned} & \text { ত्ष̈ } \\ & \text { 응 } \end{aligned}$	$\begin{aligned} & \text { on } \\ & \text { E. } \\ & \text { En } \end{aligned}$	$\begin{aligned} & \text { 흘 } \\ & \text { 联 } \end{aligned}$	\％	z	唇
－		\＃																	或
\％	3 产 a	蓇																	
麔		受																	즟
尊	倉	$\stackrel{\text { 寿 }}{ }$	$\stackrel{\infty}{\infty}$	$\stackrel{\rightharpoonup}{\infty}$	㕆．	$\stackrel{\circ}{\otimes}$	$\stackrel{\square}{0}$	$\stackrel{\text { t }}{0}$	¢ু	$\stackrel{\infty}{6}$	$\begin{aligned} & \text { 娄 } \\ & \text { i } \end{aligned}$		z	ت	年		\％	z	戓
\％	哏	芧																	矿
㕩	管	式																	宕

\％	管	F																	㜢
\％		F																	或
	8 $\frac{1}{6}$ 3	？																	㜢
\％	旁 而	？																	
右		莫																	㜢
＂	$\begin{aligned} & \text { en } \\ & \text { 高 } \\ & \text { a } \end{aligned}$	式																	唇
	$\begin{aligned} & \text { of } \\ & \text { 吉 } \\ & \text { a } \end{aligned}$	z																	䂞
\％	？ 高 3 3	可																	唇
㗊	$\begin{aligned} & \text { if } \\ & \text { 言 } \\ & 0 \end{aligned}$	気																	
发	$\begin{aligned} & \text { of } \\ & \text { 高 } \\ & \text { 星 } \end{aligned}$	気																	㜢
\％	$\begin{aligned} & \text { 合 } \\ & \text { 管 } \end{aligned}$	骨	$\stackrel{n}{i}$	$\stackrel{\square}{\square}$	¢	等	筞		$\stackrel{\infty}{\stackrel{\infty}{\infty}} \stackrel{+}{\substack{4}}$	\％	$\begin{aligned} & \text { n } \\ & \text { io } \end{aligned}$		z	$\begin{aligned} & \overline{\mathscr{H}_{0}^{\prime}} \\ & \frac{0}{0} \end{aligned}$	$\begin{aligned} & \text { 哭 } \\ & \stackrel{y}{0} \\ & \hline \end{aligned}$		\％	z	戓
勉	$\begin{aligned} & \text { if } \\ & \text { 镸 } \\ & \text { a } \end{aligned}$	可																	或
\＆		U	晏	$\stackrel{\text { ¢ }}{\substack{\text { a }}}$	$\stackrel{\circ}{\infty}$	\％	ลิ	\％	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	\％	$\stackrel{\stackrel{\rightharpoonup}{\infty}}{\dot{\alpha}}$		z					\％	䮆
\％	3 产 a	可																	즟
骨	？	\＃																	或
－${ }_{8}$		$\stackrel{\text { ® }}{\text { ® }}$	\％	$\stackrel{\text { en }}{\text { ¢ }}$	b	\％	$\stackrel{\overline{8}}{\bigcirc}$	$\stackrel{\text { n }}{\text { a }}$	$\stackrel{8}{8}$	寺		＋	z	颜	或	7 \％ \％ \％	\％	\％	픛
太్ర口⿺尢丶	䇾	？																	砍

\％		受																	宕
莒	$\begin{aligned} & \text { if } \\ & \text { 莒 } \end{aligned}$	気																	5
亿		気																	矿
\％	$\begin{aligned} & \text { of } \\ & \text { 产 } \\ & \text { 克 } \end{aligned}$	喜	त⿹⿺龴⿵冂𠃍冖⺝丶	Э	篂	$\stackrel{ٌ}{\circ}$	\％	㖪	$\underset{\sim}{\infty}$	\％	筞	$\stackrel{\circ}{f}$	\％	$\begin{aligned} & \text { ⿹ㅏㅇ } \\ & \text { 응 } \end{aligned}$	$\begin{aligned} & \text { an } \\ & \stackrel{\text { bin }}{b} \end{aligned}$			\％	5
		？																	㜢
\％	$\begin{aligned} & \text { î } \\ & \text { 言 } \\ & \text { 景 } \end{aligned}$	$\stackrel{\text { 骨 }}{\text { ² }}$	ก్త్ర	¢	\％${ }_{\text {¢ }}^{\text {¢ }}$	$\stackrel{ \pm}{\stackrel{\rightharpoonup}{\circ}}$	$\frac{\stackrel{2}{n}}{8}$	等	$\stackrel{\text { さ̃ }}{=}$	∞	$\stackrel{\text { ® }}{ }$		亿ํ	$\begin{aligned} & \overline{Z ⿹ 勹 匕 匕} \\ & \text { O} \\ & \hline \end{aligned}$			\％	\％	㡶
\％	$\begin{aligned} & \text { of } \\ & \text { 言 } \\ & \text { 夏 } \end{aligned}$	或																	震
\bigcirc	$\begin{aligned} & \text { of } \\ & \text { 即 } \\ & \underline{a} \end{aligned}$	曼																	戓
릉	$\begin{aligned} & \text { of } \\ & \text { 言 } \\ & \text { 首 } \end{aligned}$	呂																	戓
®ั	$\begin{aligned} & \text { 염 } \\ & \text { a } \end{aligned}$	号	哭	筞	尔	等	$\underset{\substack{\mathrm{c} \\ \hline}}{ }$	움	$\begin{aligned} & \text { 苛 } \\ & \stackrel{y}{*} \end{aligned}$	8	$\begin{aligned} & \text { F } \\ & \stackrel{7}{6} \end{aligned}$	\cdots	亿ํ	$\begin{aligned} & \overline{\ddot{6}} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \text { 単 } \\ & \text { \#n } \end{aligned}$		$\begin{aligned} & \text { en : } \\ & \text { Bub } \end{aligned}$	\％	矿
\％	$\begin{aligned} & \text { 䓂 } \\ & \text { 首 } \end{aligned}$	U		哭	$\stackrel{\infty}{\sim}$	$\stackrel{\substack{+++ \\ \hline}}{\text { d }}$	感	$\stackrel{8}{8}$		$\stackrel{n}{n}$	$\begin{aligned} & \text { 管 } \end{aligned}$	$\stackrel{\circ}{6}$	z	$\begin{aligned} & \overline{W_{0}^{\prime}} \\ & \text { O} \end{aligned}$				z	言
荅	$\begin{aligned} & \text { 영 } \\ & \text { 景 } \end{aligned}$	$\stackrel{\text { U }}{\sim}$	$\stackrel{\text { ®̃ }}{\text { ® }}$		$\underset{\text { cio }}{\substack{\text { ¢ }}}$	$\stackrel{\ddagger}{子}$	或	¢	$\stackrel{\text { B }}{\underset{\sim}{\mathrm{I}}}$	守		\％	\％	$\begin{aligned} & \text { ⿹̈} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \text { 咅 } \\ & \text { 碼 } \end{aligned}$			\％	或
合	$\begin{aligned} & \text { 영 } \\ & 0 \\ & \hline \end{aligned}$	蓇																	矿
\％		咢	年		苟	\％	\％	\％	$\xrightarrow{\text { 寺 }}$	¢		ลิ่	z	$\begin{aligned} & \overline{\ddot{Z}} \\ & \text { 응 } \end{aligned}$		震	\％	\％	震
合		2																	䃄
$\stackrel{\square}{\circ}$	哏	2																	矿
\％	管	2																	宕

$\stackrel{1}{\circ}$	筒	2																	픛
층	\％ 第 a	家																	픛
त	$\begin{aligned} & \text { of } \\ & \text { 高 } \\ & \text { 克 } \end{aligned}$	z																	릋
$\stackrel{3}{5}$		膆	$\stackrel{\stackrel{3}{3}}{\text { i }}$	$\xrightarrow{\text { さ }}$	¢	$\stackrel{\text { ¢ }}{\text { ¢ }}$	气ֻٌ	鬲	$\begin{aligned} & \bar{\circ} \\ & \underset{~}{\square} \end{aligned}$	A	$\begin{aligned} & \text { ® } \\ & \text { f } \end{aligned}$		$\stackrel{\sim}{\sim}$	$\begin{aligned} & \text { ⿹ㅠㅈ } \\ & 00 \end{aligned}$	$\begin{aligned} & \text { 営 } \\ & \text { gn } \end{aligned}$		¢	\％	矿
$\stackrel{\text { J }}{\text { J }}$	$\begin{aligned} & \text { of } \\ & \text { 受 } \\ & \text { 首 } \end{aligned}$	2																	픛
年	$\begin{aligned} & \text { oे } \\ & \text { 言 } \\ & \text { 首 } \end{aligned}$	2																	廌
$\stackrel{\square}{\square}$		2																	钅
今	$\begin{aligned} & \text { of } \\ & \text { 言 } \\ & \text { a } \end{aligned}$	를																	䂞
$\stackrel{\infty}{5}$	$\begin{aligned} & \text { 合 } \\ & \text { 虽 } \end{aligned}$	를																	镸
${ }^{\circ}$	$\begin{aligned} & \text { of } \\ & \text { 合 } \\ & \hline \end{aligned}$	를																	
충	$\begin{aligned} & \text { of } \\ & \text { 啇 } \\ & \text { 首 } \end{aligned}$	鲁	$\stackrel{\circ}{7}$	へ̃	$\stackrel{\rightharpoonup}{\mathrm{O}}$	$\underset{\sim}{\underset{\sim}{\tau}}$	$\begin{gathered} \text { ત } \\ \text { Nu} \end{gathered}$	$\stackrel{\square}{\square}$	$\begin{aligned} & \stackrel{\pi}{त} \\ & \hline \end{aligned}$	$\stackrel{\infty}{\infty}$	$\underset{\substack{n \\ \stackrel{n}{0} \\ \hline}}{ }$	¢		$\begin{aligned} & \overline{W_{n}^{\prime}} \\ & \text { U } \end{aligned}$			宕	z	鹿
증	$\begin{aligned} & \text { if } \\ & \text { 言 } \\ & \underline{0} \end{aligned}$	总	亮	范	员	$\stackrel{ \pm}{\text { i }}$	$\stackrel{\text {－}}{\substack{\text { ¢ }}}$	奌	$\begin{aligned} & \underset{\sim}{\underset{O}{0}} \\ & \substack{0} \end{aligned}$	$\stackrel{\text { n }}{\text { ¢ }}$		\％	๕	$\begin{aligned} & \text { Z⿸\zh14⿵冂卄 } \\ & \text { O } \end{aligned}$	$\begin{aligned} & \text { 覀 } \\ & \text { 桾 } \end{aligned}$			\％	䂞
	倉	艾	$\stackrel{\rightharpoonup}{\text { ¢ }}$	$\stackrel{\stackrel{\rightharpoonup}{6}}{-}$	㕺	สิ	त్తู	等	$\begin{gathered} \bar{\infty} \\ \underset{\sim}{d} \end{gathered}$	晏	$\begin{gathered} \mathscr{O} \\ \stackrel{\infty}{\infty} \\ 0 \end{gathered}$			$\begin{aligned} & \text { ⿹⿺夂几 } \\ & \stackrel{0}{U} \end{aligned}$				\％	或
No	管	奂	$\stackrel{\sim}{\circ}$	$\stackrel{5}{3}$	N	$\stackrel{\text { à }}{ }$	$\stackrel{\circ}{\circ}$	志	$\begin{aligned} & \text { たి } \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	\pm	$\begin{aligned} & \text { ̃̈ } \\ & \text { ס } \end{aligned}$	ત	z	欨	岩		宕	\％	愿
管	\％	$\frac{\pi}{\frac{1}{2}}$	䔞	${ }_{\text {® }}^{\text {® }}$	$\stackrel{\text { ते }}{0}$	$\stackrel{\cong}{\sim}$	¢	¢	咢	¢		$\stackrel{\text { ® }}{ }$	zㄴ	麋				\％	䂞
กั์	\％	会	$\stackrel{\bigcirc}{\rightrightarrows}$	\＆	$\stackrel{\infty}{\square}$	\％	$\stackrel{\square}{\square}$	奇	$\stackrel{n}{\underset{\sim}{ \pm}}$	$\stackrel{\infty}{\infty}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\%} \\ & \underset{\infty}{\infty} \end{aligned}$			麋			宕	\％	唇
だ	管	震	获	$\stackrel{\text { ¢ }}{\text { ® }}$	$\stackrel{\text { ® }}{8}$	$\underset{\sim}{\ddagger}$	$\stackrel{7}{9}$	声。	$\stackrel{n}{\substack{\text { n }}}$	${ }_{8}^{\circ}$				㦴				\％	愿

స్ઠ		를																	第
ニัธ		\％																	5
तิธ	$\begin{aligned} & \text { of } \\ & \text { 言 } \\ & \text { 首 } \end{aligned}$	交																	矿
응		㖘	$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$		弟	$\underset{\text { i}}{\infty}$	$\begin{gathered} \stackrel{\rightharpoonup}{\mathrm{o}} \\ \underset{i}{2} \end{gathered}$	骨	$\begin{aligned} & \text { 呙 } \\ & \stackrel{6}{6} \end{aligned}$	$\stackrel{4}{\sim}$	$\begin{aligned} & \text { ni } \\ & \hline 0.0 \end{aligned}$	$\stackrel{+}{*}$	\％	$\begin{aligned} & \overline{\mathrm{G}} \\ & \text { 而 } \end{aligned}$			$\begin{aligned} & \frac{0}{\tilde{x}} \\ & 0 \end{aligned}$	\％	震
羚		3																	㜢
	$\begin{aligned} & \text { of } \\ & \text { 合 } \\ & \hline \underline{E} \end{aligned}$	考																	或
－	$\begin{aligned} & \text { 令 } \\ & \text { 景 } \end{aligned}$	㕩	त̇	管	¢े．	ત્ત犬	気	产	$\stackrel{\underset{\sim}{\underset{d}{*}}}{ }$	8	$\begin{aligned} & \frac{8}{9} \\ & \frac{1}{2} \end{aligned}$		\％	$\begin{aligned} & \overline{\ddot{U}} \\ & \stackrel{8}{0} \end{aligned}$				\％	答
吉	$\begin{aligned} & \text { of } \\ & \text { 啇 } \\ & \text { a } \end{aligned}$	\％	त̇	－		鲄	－	$\xrightarrow{\text { 奇 }}$	$\stackrel{n}{6}$	$\stackrel{+}{\infty}$		\cdots	$\stackrel{\sim}{*}$				唇	\％	镸
\％	$\begin{aligned} & \text { 合 } \\ & \text { 亳 } \end{aligned}$	会	\％	$\stackrel{\text { a }}{\sim}$	\％	遻	$\stackrel{\text { ले }}{\text { ¢ }}$	$\stackrel{\stackrel{3}{7}}{\square}$	ส̇	$\stackrel{\infty}{\sim}$	$\stackrel{n}{\sigma}$	$\stackrel{\square}{\text { g }}$	\％	$\begin{aligned} & \overline{\ddot{W}} \\ & \text { 응 } \end{aligned}$	$\begin{aligned} & \text { 培 } \\ & \text { 劯 } \end{aligned}$		㜢	\％	矿
\％	$\begin{aligned} & \text { 令 } \\ & \text { ⿳亠口冋口木 } \\ & \text { an } \end{aligned}$	甡	$\stackrel{\infty}{\text { ¢ }}$	$\stackrel{\infty}{\text { ¢ֻ }}$	तֻ	吕	$\stackrel{\infty}{\infty}$	－	$\underset{\substack{\text { m }}}{\substack{\text { a }}}$	哲	$\begin{aligned} & \stackrel{\circ}{2} \\ & \stackrel{y}{2} \\ & \stackrel{y}{2} \end{aligned}$	$\stackrel{\circ}{i}$	$\stackrel{*}{*}$	$\begin{aligned} & \text { 핪 } \\ & \text { 응 } \end{aligned}$	$\begin{aligned} & \text { 点 } \\ & \text { 砍 } \end{aligned}$		\％	\％	矿
	$\begin{aligned} & \text { of } \\ & \text { 言 } \\ & \text { 直 } \end{aligned}$	䟵		\％${ }^{\text {a }}$	${ }_{\text {尔 }}$	¢	范	号	$\stackrel{\circ}{2}$	웅	$\underset{\substack{\text { n } \\ \text { A } \\ \hline}}{\text { r }}$	$\stackrel{\circ}{+}$	$\stackrel{*}{*}$	$\begin{aligned} & \overline{\ddot{O}} \\ & \text { 응 } \end{aligned}$	$\begin{aligned} & \text { 品 } \\ & \text { ̈ㅡㅇ } \end{aligned}$	$\begin{aligned} & \text { ⿹ㅠ } \\ & \text { 伴 } \end{aligned}$	\％	z	唇
¢	$\begin{aligned} & \text { of } \\ & \text { 啇 } \\ & \text { 臬 } \end{aligned}$	交																	馬
僉	$\begin{aligned} & \text { of } \\ & \text { 重 } \\ & \underline{b} \end{aligned}$	考																	矿
앙		免	$\stackrel{\text { ® }}{\square}$	$\stackrel{\infty}{\infty}$	－	$\stackrel{\sim}{8}$	$\begin{aligned} & \text { oٌ } \\ & \stackrel{y}{n} \text { in } \end{aligned}$	筞	$\underset{\infty}{\infty}$	$\stackrel{\square}{\sim}$	$\begin{gathered} \text { む } \\ \text { B } \end{gathered}$		¿	$\begin{aligned} & \overline{\ddot{Z}} \\ & \text { 응 } \end{aligned}$	$\begin{aligned} & \text { ag } \\ & \stackrel{E}{5} \\ & \hline \end{aligned}$		\％	\％	断
吉		立																	或
答	$\begin{aligned} & \text { ib } \\ & \text { 言 } \\ & 0 \end{aligned}$	$\stackrel{\text { 骨 }}{ }$	\％¢	榙	¢	$\stackrel{\infty}{\circ}$		\％	$\stackrel{\substack{0 \\ \hline \\ 0}}{ }$	$\%$	$\begin{aligned} & \text { 简 } \end{aligned}$	$\stackrel{\sim}{\text { ® }}$	\％	$\begin{aligned} & \overline{\widetilde{W}} \\ & \stackrel{0}{0} \end{aligned}$	霏		\％	\％	戓
答	$\begin{aligned} & \text { 符 } \\ & \text { O} \\ & \text { 虽 } \end{aligned}$	咢	\％	品	¢	$\stackrel{\infty}{\circ}$	䈁	产	$\stackrel{\text { t }}{\text {＋}}$	$\stackrel{\text { ® }}{ }$	$\frac{2}{\dot{\theta}}$	$\stackrel{\circ}{+}$	z			砺	\％	\％	矿

晏	$\begin{aligned} & \text { of } \\ & \text { 合 } \\ & \hline \end{aligned}$	$\stackrel{\text { 寿 }}{ }$	$\stackrel{\text { ® }}{\text { ® }}$	$\stackrel{8}{8}$	令		¢	＋	$\stackrel{\square}{\underline{m}}$	F	$\begin{gathered} \text { ob } \\ \text { on } \\ \text { in } \end{gathered}$		¿̊	च	$\begin{aligned} & \text { an } \\ & \text { E. } \\ & \text { En } \end{aligned}$		\％	\％	W
等	$\begin{aligned} & \text { of } \\ & \text { 莒 } \\ & 0 \end{aligned}$	立																	钅
＋		$\stackrel{m}{2}$	$\stackrel{\text { ® }}{\sim}$	$\stackrel{\text { 玉．}}{\substack{\text { che }}}$	答	$\stackrel{ \pm}{ \pm}$	$\stackrel{\circ}{\circ}$	俞	$\stackrel{\stackrel{\rightharpoonup}{\mathrm{E}}}{\stackrel{\text { O}}{0}}$	$\stackrel{\circ}{\circ}$			z		$\begin{aligned} & \text { 咢 } \\ & \stackrel{\rightharpoonup}{b} \\ & \text { En } \end{aligned}$		㜢	\％	断
吉	$\begin{aligned} & \text { W } \\ & \text { 产 } \\ & \text { 景 } \end{aligned}$	家																	蛈
筞	$\begin{aligned} & \text { of } \\ & \text { 高 } \\ & \underline{a} \end{aligned}$	$\frac{\text { m }}{}$	$\stackrel{\frac{t}{\infty}}{\stackrel{\sim}{\circ}}$	¢	$\stackrel{\rightharpoonup}{9}$	合	$\stackrel{r}{5}$	$\underset{\substack{\mathrm{a} \\ \hline}}{\substack{2 \\ \hline}}$	$\stackrel{\sim}{n}$	$\stackrel{\stackrel{1}{8}}{\stackrel{1}{8}}$	$\begin{gathered} \frac{\sqrt{n}}{~} \\ \stackrel{i}{0} \end{gathered}$		$\stackrel{\sim}{*}$	$\begin{aligned} & \overline{Z_{2}^{\prime}} \\ & \text { O} \end{aligned}$	$\begin{aligned} & \text { on } \\ & \text { 坒 } \\ & \hline \end{aligned}$			z	钅
管	$\begin{aligned} & \text { of } \\ & \text { it } \\ & \text { a } \end{aligned}$	$\frac{\infty}{\frac{m}{7}}$	$\stackrel{\otimes}{\infty}$	$\stackrel{\text { ® }}{\text { ® }}$	$\stackrel{\text { \％}}{\circ}$	麿	商	$\stackrel{0}{7}$		สั่		$\stackrel{+}{+}$	\％	$\begin{aligned} & \text { Z⿹\zh26灬犬 } \\ & \text { U } \end{aligned}$			唇	\％	唇
\％	$\begin{aligned} & 3 \\ & \text { 槀 } \\ & \text { an } \end{aligned}$	$\stackrel{\text { m }}{\text { ¢ }}$	$\stackrel{\%}{\circ}$	$\stackrel{\bar{\infty}}{\text { ¢ }}$	¢	喜	\％	秢	$\stackrel{\circ!}{\vdots}$	玉ें		\cdots	¢	$\begin{aligned} & \text { ⿹̈ㅇ } \\ & \text { O} \end{aligned}$				\％	㜢
$\overline{5}$	$\begin{aligned} & \text { î } \\ & \text { 言 } \\ & \underline{a} \end{aligned}$	会	$\stackrel{\infty}{\circ}$	$\begin{aligned} & \circ \\ & \hline 0.0 \\ & \hline 0 \end{aligned}$	］	충	宕	－	$\begin{aligned} & \stackrel{\rightharpoonup}{\infty} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\stackrel{\infty}{8}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\infty} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$		z	$\begin{aligned} & \overline{\mathrm{Z}} \\ & \text { O } \end{aligned}$		$\begin{aligned} & \text { च⿳丷厂二⿱十口刂 } \\ & \text { 䚯 } \end{aligned}$	\％	\％	唇
กิ\％	$\begin{aligned} & \text { of } \\ & \text { 亳 } \end{aligned}$	立																	즟
会		$\frac{\infty}{\text { m }}$	$\stackrel{\substack{\circ \\ \hline \\ \hline}}{ }$	$\stackrel{\hat{C}}{\hat{0}}$	ホ̛̇犬	答	$\begin{aligned} & \text { ণ } \\ & \text { O1 } \end{aligned}$	合	$\begin{aligned} & \stackrel{\circ}{6} \\ & \stackrel{9}{6} \end{aligned}$	®	$\begin{aligned} & \stackrel{\rightharpoonup}{*} \\ & \stackrel{\sim}{7} \end{aligned}$	$\stackrel{\circ}{\sim}$	z̊				㜢	\％	断
答	$\begin{aligned} & \text { ef } \\ & \text { 言 } \\ & \text { a } \end{aligned}$	立																	㜢
会	$\begin{aligned} & \text { of } \\ & \text { 㯖 } \\ & \underline{b} \end{aligned}$	立																	或
¢	$\begin{aligned} & \text { 哀 } \\ & 0 \\ & 0 \end{aligned}$	立																	㜢
E	號	立																	喽
会	哭	会	$\stackrel{ٌ 2}{\stackrel{\leftrightarrow}{c}}$	$\underset{\sim}{\infty}$	$\stackrel{\text { d }}{\text { d }}$	$\underset{\underset{\sim}{\lambda}}{\stackrel{\rightharpoonup}{2}}$			$\stackrel{\circ}{7}$	＋	$\begin{gathered} \text { o} \\ \stackrel{y}{6} \\ \hline \end{gathered}$	$\stackrel{+}{+}$	z	岛	ジす		砍	z	唇
\％ิ\％		会	$\stackrel{\stackrel{0}{6}}{=}$	$\stackrel{\infty}{\rightrightarrows}$	㱈	零	哭	筞	$\stackrel{\text { ® }}{\bar{\sim}}$	\％	$\stackrel{\text { F }}{\stackrel{\text { f }}{\stackrel{1}{*}}}$	¢	z\％	$\begin{aligned} & \text { ⿹ㅏㅄ } \\ & \text { U } \end{aligned}$				\％	릋
$\stackrel{8}{\circ}$	边	立																	唇

50	$\begin{aligned} & \text { O} \\ & \text { O. } \\ & \hline \end{aligned}$	$\frac{3}{3}$																	或
¢	$\begin{aligned} & \text { O} \\ & \text { E } \end{aligned}$	U	$\underset{\sim}{\text { ¢ }}$	$\stackrel{\circ}{\underset{\sim}{i}}$	$\stackrel{\text { cín }}{\substack{0}}$	－			$\begin{gathered} \underset{\sim}{ส} \\ \hline \end{gathered}$	寺			z	F			令	\％	唇
\％	$\begin{aligned} & \text { Q } \\ & \text { D } \\ & \text { 首 } \end{aligned}$	立							$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$				z	$\begin{aligned} & \overline{\ddot{W}} \\ & \text { U } \end{aligned}$			㜢	\％	
遂	$\begin{aligned} & \text { O} \\ & \text { O} \\ & \hline \end{aligned}$	$\frac{3}{3}$																	戓
\％	$\begin{aligned} & \text { O} \\ & \text { In } \end{aligned}$	品	$\stackrel{8}{2}$	$\frac{\pi}{m}$	范	¢ֻ	率	N	$\stackrel{\infty}{\infty}$	$\stackrel{\text { i }}{\text { i }}$		$\stackrel{\circ}{+}$		$\begin{aligned} & \text { ⿹ㅠㅄ } \\ & \text { 응 } \end{aligned}$	$\begin{aligned} & \text { on } \\ & \stackrel{y}{b} \\ & \text { En } \end{aligned}$		\％	z	戓
\％	$\begin{aligned} & \text { O} \\ & \text { O} \end{aligned}$	$\frac{\pi}{3}$	$\frac{\stackrel{y}{c}}{\stackrel{c}{m}}$		$\stackrel{\text { ®̈ }}{\text { ® }}$	$\stackrel{\stackrel{\infty}{c}}{\underset{\sim}{c}}$	哭	ホ̛̣	¢	$\stackrel{7}{6}$	$\begin{aligned} & \text { ત̈́ } \\ & \text { İ } \end{aligned}$	\cdots	z	$\begin{aligned} & \text { ⿹̈ㅁ } \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \text { 髟 } \\ & \text { 鵘 } \end{aligned}$		塞	z	唇
¢	$\begin{aligned} & \text { \% } \\ & \text { 弟 } \end{aligned}$	咢	尤	年	＋	第	¢	合	$\frac{\pi}{\pi}$		$\begin{aligned} & \text { d } \\ & \stackrel{0}{8} \end{aligned}$	$\stackrel{\circ}{+}$	z	$\begin{aligned} & \text { ⿹ㅠㅈ } \\ & \stackrel{0}{0} \end{aligned}$			㜢	\％	㜢
$\stackrel{8}{8}$	$\begin{aligned} & \text { 另 } \\ & \text { B } \end{aligned}$	合	录	－	苟	宮	亏⿳亠丷口犬0	鱼	$\stackrel{\text { ్̄ }}{=}$	\％	$\stackrel{\bar{m}}{\stackrel{m}{\approx}}$	$\stackrel{\text { \％}}{+}$	z	$\begin{aligned} & \text { ㅁ̈ㅁ } \\ & \text { 己 } \end{aligned}$			\％	\％	唇
\％	$\begin{aligned} & \text { \& } \\ & \text { D } \\ & \text { En } \end{aligned}$	$\stackrel{\infty}{3}$	壱	坒	歇	合				\％			z	$\begin{aligned} & \text { ⿹ㅡㅄ } \\ & \text { 응 } \end{aligned}$	$\begin{aligned} & \text { go } \\ & \text { Eby } \\ & \text { En } \end{aligned}$		唇	\％	砍
\＆	$\begin{aligned} & \text { Q } \\ & \text { D } \end{aligned}$	考																	砍
E	$\begin{aligned} & \text { O} \\ & \text { O} \end{aligned}$	E																	或
E	$\begin{aligned} & \text { Ø. } \\ & \text { 品 } \end{aligned}$	走	$\stackrel{\overline{7}}{\sim}$	三	¢	荙			$\begin{aligned} & \stackrel{\rightharpoonup}{i n} \\ & \stackrel{i}{2} \end{aligned}$	\＆	$\frac{\stackrel{\rightharpoonup}{\dot{o}}}{8}$		z	$\begin{aligned} & \text { Z्⿳⿵人一⿲丶丶㇒一⿸⿻一丿口子乚㇒ } \end{aligned}$	$\begin{aligned} & \text { on } \\ & \text { 坒 } \\ & \hline \end{aligned}$		塞	\％	㡶
Ê	$\begin{aligned} & \text { O} \\ & \text { O} \\ & \hline \end{aligned}$	立																	颜
寺		冎	\％	$\stackrel{\text { ®̃3 }}{\substack{\text { ® }}}$	等	$\stackrel{\vec{N}}{\stackrel{1}{0}}$	$\underset{n}{n}$	$\begin{aligned} & \text { Qे } \\ & \hline 0 \end{aligned}$	$\underset{\text { E }}{\text { E }}$	$\stackrel{+}{\stackrel{+}{*}}$	$\stackrel{\text { 雭 }}{\gtrless}$			$\begin{aligned} & \overline{\ddot{W}} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { on } \\ & \stackrel{0}{0} \\ & \underline{n} \end{aligned}$		㜢	Z	砍
E		镄	E	¢	$\stackrel{4}{\square}$	$\stackrel{\infty}{\ddagger}$			$\xrightarrow{\text { ¢ }}$	$\stackrel{\text { a }}{ }$			zㄴํ	或			長	\％	唇
Eٌ	$\begin{aligned} & \text { Z. } \\ & \text { an } \\ & \hline \end{aligned}$	临	$\stackrel{\infty}{\stackrel{\infty}{m}}$	$\stackrel{\circ}{\text { i }}$	逨	誌			$\stackrel{\stackrel{C}{\infty}}{\stackrel{\circ}{\infty}}$	\％	$\stackrel{\stackrel{\rightharpoonup}{6}}{\substack{0}}$		z\％	J			O゙J	\％	砏
E	产	号		等	กั่	$\stackrel{\text { \％}}{\substack{\text { ¢ }}}$	咸	令	$\stackrel{\otimes}{\stackrel{\circ}{2}}$	$\stackrel{\infty}{\stackrel{\infty}{e}}$	$\begin{aligned} & \stackrel{\rightharpoonup}{6} \\ & \underset{~}{2} \end{aligned}$	in	z		$\stackrel{\text { 硈 }}{\text { \％}}$	砤	\％${ }^{\text {che }}$	\％	钅

													,	8		
)			:		\%		8		\%		8	1	1	1		
		3					:		1		8	1	1			
		:					:				8	1	1	1		
1	,	:	\%	\%	\%		+		8		8	1	11	$!$		
,	1	\%	\%	28	E	\%	\%				8	1	11	8		
1	1	${ }^{1}$	\%	$=1$			$1{ }^{1}$				8	1	1	,		:
	1	-	\%		8		\%				8	1	1	1		
-	1	3	,		181	8	18,				8	1	1	${ }^{8}$		
,		\%	13		${ }^{5}$		\%				8	i	1	1		
1			\%		S	3	\%				1	1	11	11		
1		,	18		-		\%					1	11	1		
		\%										1	1	8		
		:	3		:		\%				8	1	1	1		
													1			

\％	边	U											z	W			\％	\％	唇
\％	$\begin{aligned} & \text { Q } \\ & \text { O } \\ & \hline \end{aligned}$	年	$\stackrel{\pi}{\text { ® }}$	$\stackrel{\infty}{\stackrel{\circ}{+}}$	$\stackrel{\text { ® }}{\sim}$	¢			$\stackrel{M}{\underset{\sim}{n}}$	$\stackrel{\infty}{\text { ¢ }}$	¢	$\stackrel{+}{\text { ¢ }}$	z	$\begin{aligned} & \text { ⿹ㅠㅄ } \\ & \text { 응 } \end{aligned}$				z	镸
\％	$\begin{aligned} & \text { Q } \\ & \text { O } \\ & \text { B } \end{aligned}$	$\stackrel{\text { 骨 }}{ }$	骨	$\stackrel{\bar{\infty}}{\text { ¢ }}$	$\stackrel{\square}{\square}$	\％			$\begin{aligned} & \bar{\sim} \\ & \underset{\sim}{n} \end{aligned}$	앙			\％	$\begin{aligned} & \text { ⿹ㅏㅄ } \\ & \text { U } \end{aligned}$			\％	z	鿎
¢	$\begin{aligned} & \text { Q } \\ & \text { a } \\ & \text { an } \end{aligned}$																		
\％े		会	$\stackrel{\circ}{¢}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \end{aligned}$	$\stackrel{\overline{\mathrm{m}}}{\mathrm{~s}}$	$\stackrel{\text { ® }}{\substack{\text { \％}}}$			$\begin{gathered} \underset{\sim}{\infty} \\ \underset{\infty}{\infty} \end{gathered}$	令			z	$\begin{aligned} & \overline{Z_{2}^{\prime}} \\ & \text { O} \end{aligned}$			$\begin{aligned} & \stackrel{0}{w .0} \\ & \text { 品荷 } \end{aligned}$	\％	或
\％	$\begin{aligned} & \text { 气㐅⿸⿻一丿口⿴囗口 } \\ & \text { at } \end{aligned}$	受																	㡶
－	$\begin{aligned} & \text { た } \\ & \text { 弟 } \end{aligned}$	成	$\stackrel{\rightharpoonup}{\square}$	亮	令	答	雚	会	$\begin{aligned} & \underset{\sim}{\underset{\sim}{2}} \\ & \underset{\sim}{2} \end{aligned}$	를	$\begin{gathered} \text { 占 } \\ \substack{0} \end{gathered}$		z				㜢	z	唇
\％		砍	Э	$\stackrel{\text { ® }}{\infty}$	n	吕	$\stackrel{\infty}{\circ}$	\％	$\stackrel{\stackrel{r}{n}}{\stackrel{y}{n}}$	\％	$\begin{aligned} & \text { 荡 } \\ & \text { © } \end{aligned}$	in	z	$\begin{aligned} & \text { ⿹ㅏㅄ } \\ & \text { 흥 } \end{aligned}$			免	\％	唇
\％		$\frac{m}{\frac{m}{3}}$	$\stackrel{\infty}{\leftrightharpoons}$	$\stackrel{\text { ¢ }}{\text { ® }}$	－	$\stackrel{\leftarrow}{\infty}$	§	E	$\stackrel{n}{\stackrel{n}{d}}$	$\stackrel{\rightharpoonup}{i}$	$\begin{aligned} & \text { 等 } \end{aligned}$	ते	2	$\begin{aligned} & \text { ⿹̈} \\ & \stackrel{0}{0} \end{aligned}$			㜢	\％	唇
\％	$\begin{aligned} & \text { Q } \\ & \text { 高 } \end{aligned}$	立																	或
\％	$\begin{aligned} & \text { Q } \\ & \text { O} \\ & \text { and } \end{aligned}$	立																	或
\％		免		喜	奇		$\stackrel{\text { 吕 }}{\sim}$		令	$\stackrel{n}{n}$	$\begin{aligned} & \bar{\lambda} \\ & \text { in } \end{aligned}$		\％	$\begin{aligned} & \text { ⿹ㅏㅄ } \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$				z	唇
）	$$	立																	或
\％	$\begin{aligned} & \text { \% } \\ & \text { 景 } \end{aligned}$	U	喿	¢	E	¢	永	శ్ స్	$\begin{aligned} & \hat{\alpha} \\ & \underset{ \pm}{\circ} \end{aligned}$	n	$\stackrel{ \pm}{\underset{~}{~}}$		\％	$\begin{aligned} & \overline{\ddot{W}} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \text { an } \\ & \stackrel{y}{\omega} \\ & \hline \end{aligned}$		㜢	\％	砏
\％	边	立																	
$\stackrel{\circ}{\circ}$	辰	$\frac{2}{3}$																	戓
$\overline{\bar{\circ}}$		$\frac{3}{3}$																	

룽		3																	或
$\stackrel{\text { \％}}{8}$	$\begin{aligned} & \text { Q } \\ & \text { 高 } \end{aligned}$	$\overline{3}$																	㜢
$\stackrel{\ddagger}{8}$	$\begin{aligned} & \text { 爰 } \\ & \text { En } \end{aligned}$	考																	发
$\stackrel{n}{*}$	$\begin{aligned} & \text { Q } \\ & \text { O } \\ & \hline \end{aligned}$	知	$\stackrel{ \pm}{\square}$	等		さ্লু	ঞ্ণী	$\stackrel{\overline{3}}{3}$	$\stackrel{\cong}{0}$	8	$\begin{gathered} \stackrel{\circ}{0} \\ \text { on } \end{gathered}$	\cdots	z	$\begin{aligned} & \text { ⿹̈ㅁ } \\ & \text { ة } \end{aligned}$				\％	砍
$\stackrel{\circ}{\circ}$		？																	㡶
$\stackrel{\widetilde{8}}{\sim}$	$\begin{aligned} & \text { ®. } \\ & \text { O } \\ & \text { Ben } \end{aligned}$	－	$\stackrel{\infty}{\circ}$	$\stackrel{\cong}{\stackrel{\circ}{¢}}$		等	®	\exists	$\begin{gathered} \text { たd } \\ \substack{0} \end{gathered}$	－	$\begin{aligned} & \text { E. } \\ & \text { O } \end{aligned}$	$\stackrel{\circ}{+}$	z	$\begin{aligned} & \text { Jy } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \text { og } \\ & \frac{5}{5} \\ & \hline \end{aligned}$		¢	z	或
$\stackrel{\infty}{\infty}$	$\begin{aligned} & \text { \% } \\ & \text { 弟 } \end{aligned}$	$\frac{\infty}{\frac{m}{3}}$		柰	$\stackrel{\rightharpoonup}{\circ}$	$\stackrel{\text { ה̇ }}{\text { ה }}$	骂	त्สู	$\stackrel{\otimes}{\sigma}$	$\stackrel{n}{n}$	$\stackrel{\pi}{\stackrel{\pi}{ }}$	$\stackrel{\rightharpoonup}{2}$	z	$\begin{aligned} & \text { ⿹ㅠㅈ } \\ & \stackrel{0}{0} \end{aligned}$			㜢	\％	唇
®ิ－	$\begin{aligned} & \text { 另 } \\ & \text { B } \end{aligned}$	$\stackrel{\sim}{\sim}$	$\stackrel{\text { ¢ }}{\text { ¢ }}$	ה	重	®			$\begin{aligned} & \text { İ } \\ & \text { © } \end{aligned}$	$\stackrel{\text { ¢ }}{\text { ¢ }}$		is	z	$\begin{aligned} & \text { ㅁ̈ㅁ } \\ & \text { 己 } \end{aligned}$				\％	唇
\％	$\begin{aligned} & \text { 靣 } \\ & \text { an } \end{aligned}$	会	$\stackrel{\cong}{¢}$	第	－	誌	$\stackrel{\text { Or }}{\substack{\text { er }}}$	¢	$\begin{aligned} & n \\ & \stackrel{n}{0} \\ & \underline{0} \end{aligned}$			จิ	๕	$\begin{aligned} & \text { 픖 } \\ & \text { 응 } \end{aligned}$			\％	\％	戓
$\overline{\text { ® }}$	$\begin{aligned} & \text { 合 } \\ & \text { an } \end{aligned}$	\％	cick	$\stackrel{\text { ® }}{\stackrel{\text { ® }}{-}}$	咢	－	$\stackrel{\text { ® }}{\sim}$		N̈	$\stackrel{7}{5}$	$\begin{gathered} \infty \\ \underset{\sim}{\ddagger} \\ \hline \end{gathered}$		z̊	$\begin{aligned} & \text { ⿹ㅏㅄ } \\ & \stackrel{3}{O} \end{aligned}$			㜢	\％	断
İ		$\stackrel{\infty}{\square}$		$\stackrel{\text { 皆 }}{ }$	$\stackrel{\stackrel{\sim}{9}}{\sim}$	$\stackrel{\text { 年 }}{\sim}$	$\stackrel{n}{3}$	\％	$\stackrel{\circ}{\dot{4}}$	$\stackrel{\rightharpoonup}{\sim}$	$\begin{gathered} \text { 总 } \\ \stackrel{y}{c} \end{gathered}$	¢	z̊	$\begin{aligned} & \overline{W_{0}^{\prime}} \\ & \text { O} \end{aligned}$	$\begin{gathered} \text { go } \\ \stackrel{⿸ \zh14 ⿰ ⿺ 乚 一 匕 刂}{n} \\ \hline \end{gathered}$		¢	z	唇
\％	$\begin{aligned} & \text { Q } \\ & \text { O } \\ & \text { B } \end{aligned}$	莫																	㡶
＊	$\begin{aligned} & \text { 亳 } \\ & \text { and } \end{aligned}$	耎	$\stackrel{\sim}{\sim}$	冎	$\stackrel{\text { ® }}{\text { ® }}$	䧲			产	$\stackrel{\infty}{\text { ¢ }}$	$\begin{gathered} \text { t } \\ \stackrel{\rightharpoonup}{\circ} \\ \hline \end{gathered}$	\cdots	z					\％	唇
\％	$\begin{aligned} & \text { Q } \\ & \hline \mathbf{O} \\ & \hline \end{aligned}$	哭	先	$\stackrel{\text { \％}}{\substack{\circ \\ \hdashline}}$	$\mathscr{N}_{\infty}^{\infty}$	¢	$\stackrel{\bigcirc}{\square}$	$\stackrel{\circ}{\circ}$	$\frac{士}{2}$	$\stackrel{\text { ¢ }}{0}$	$\stackrel{\text { 志 }}{\substack{i}}$		z		$\begin{aligned} & \text { og } \\ & \stackrel{⿸ \zh14 ⿰ ⿺ 乚 一 匕 刂}{n} \end{aligned}$		\％	Z	즟
\％	$\begin{aligned} & \text { Q } \\ & \hline \mathbf{3} \\ & \hline \end{aligned}$	를	＋	$\stackrel{\rightharpoonup}{\square}$	\％	会	会	$\stackrel{\text { O}}{\sim}$					z	岛				\％	䂞
区－	$\begin{aligned} & \text { 哥 } \\ & \text { an } \end{aligned}$	交																	픛
$\stackrel{\infty}{\infty}$	产	$\stackrel{\text { \％}}{\text { ¢ }}$	तิ	合	Б̄	$\stackrel{\square}{9}$	\％	管	¢	$\stackrel{\infty}{8}$	$\stackrel{\infty}{\stackrel{\circ}{\circ}}$	is	z			砤	\％	\％	钅

⿷匚\％\％	$$	\％																	픛
웅		萑	$\stackrel{\text { ๕o }}{\substack{\circ}}$	O	$\stackrel{\ddagger}{3}$	$\stackrel{\square}{n}$	骨	冎	$\begin{aligned} & \text { ng } \\ & \underset{\sim}{c} \end{aligned}$	8	$\begin{aligned} & \text { 荅 } \\ & \stackrel{y}{\circ} \end{aligned}$	\cdots	z	$\begin{aligned} & \text { ⿹ㅠㅄ } \\ & \text { 응 } \end{aligned}$				z	
＂		U	¢્ત્તુ	$\stackrel{\text { ® }}{\sim}$	$\stackrel{\text { O}}{\substack{\text { O }}}$	$\stackrel{\square}{3}$	$\stackrel{\gtrless}{\circ}$	会	$\begin{aligned} & \stackrel{\infty}{\circ} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\stackrel{n}{7}$	$\stackrel{\text { 윷 }}{\underset{\sim}{2}}$	$\stackrel{i}{i}$	zํ	$\begin{aligned} & \text { ⿹ㅏㅄ } \\ & \text { U } \end{aligned}$				\％	钅
® ${ }_{\text {® }}$	$\begin{aligned} & \text { た。 } \\ & \text { 品 } \end{aligned}$	䂞	$\stackrel{\overline{ \pm}}{\stackrel{\rightharpoonup}{i}}$	－®on	\％	$\stackrel{\sim}{\square}$	$\stackrel{\infty}{\otimes}$	閏	旍	年	$\stackrel{\text { ® }}{\stackrel{\circ}{8}}$	\cdots	z	$\begin{aligned} & \text { च्̈̆ } \\ & \text { 응 } \end{aligned}$	$\begin{gathered} \text { 咅 } \\ \text { 硈 } \end{gathered}$		\％	z	気
\％	$\begin{aligned} & \text { Q } \\ & \text { す } \\ & \text { En } \end{aligned}$	方																	Ј
志	$\begin{aligned} & \text { ®. } \\ & \text { 亳 } \end{aligned}$	交																	気
\％	$\begin{aligned} & \text { た } \\ & \text { 弟 } \end{aligned}$	$\frac{\square}{\bar{y}}$	茵	－	珨	$\stackrel{+}{\square}$	๕	$\underset{\underset{\sim}{\underset{\infty}{e}}}{\frac{J}{2}}$	స్తి	$\stackrel{\infty}{\infty}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\infty} \\ & \stackrel{\infty}{\infty} \end{aligned}$	－	z	$\begin{aligned} & \overline{\mathrm{W}} \\ & \text { O} \end{aligned}$				z	矿
\％		号	$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$	$\stackrel{5}{\square}$	\％		\％	答	$\stackrel{8}{7}$	ก	$\begin{aligned} & \stackrel{\circ}{i} \\ & \hline \text {. } \end{aligned}$	$\stackrel{\circ}{+}$	z	$\begin{aligned} & \overline{\ddot{W}} \\ & \text { 응 } \end{aligned}$				z	戓
\％		会	$\stackrel{\text { ®̃ }}{\text { ¢ }}$	䓖	篂	$\stackrel{\text { ज }}{5}$			－	$\stackrel{⿳ 亠 二 口 犬}{\circ}$	$\frac{\stackrel{2}{7}}{\stackrel{2}{i}}$	$\stackrel{\infty}{\infty}$	亿ํ	$\begin{aligned} & \overline{\ddot{6}} \\ & \stackrel{0}{0} \end{aligned}$		$\begin{aligned} & \text { च्च } \\ & \text { 哣 } \end{aligned}$		z	唇
$\stackrel{\infty}{\circ}$		䨖																	运
\％	$\begin{aligned} & \text { た。 } \\ & \text { O} \\ & \underline{\Xi} \end{aligned}$	免	$\xrightarrow{\text { \％}}$	吕	$\stackrel{\text { a }}{\stackrel{\circ}{\circ}}$	$\stackrel{\square}{9}$	\％ֻ8	鹵	$\stackrel{\text { N}}{\infty}$	～		$\stackrel{\infty}{+}$					㜢	z	戓
枵		䉼	$\stackrel{n}{7}$	$\stackrel{\sim}{8}$	है	$\stackrel{\circ}{\infty}$	$\stackrel{\infty}{\stackrel{\infty}{\circ}}$	สั่	$$	$\stackrel{\infty}{\circ}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\tilde{o}} \\ & \stackrel{0}{2} \end{aligned}$	$\overline{\mathrm{m}}$	¿	$\begin{aligned} & \text { Z्⿺⿸⿻一丿口心} \\ & \text { U } \end{aligned}$				z	
¢		）																	矿
黭	$\begin{aligned} & \text { た。 } \\ & \text { 品 } \end{aligned}$	）																	㹡
篂		를																	E
吉	$\begin{aligned} & \text { た } \\ & \text { O } \\ & \text { an } \end{aligned}$	立																	戓
¢	$\begin{aligned} & \text { 若 } \\ & \text { 昆 } \end{aligned}$	3																	达

\％	\＃	를																	硈
\％	長	立																	戓
\％	$\begin{aligned} & \text { ¿్ర } \\ & \text { O} \end{aligned}$	$\frac{2}{3}$																	矿
¢	$\begin{aligned} & \text { Q } \\ & \text { Q } \\ & \text { B } \end{aligned}$	隠							$\stackrel{\substack{\text { ¢ }}}{\infty}$		$\begin{aligned} & \text { 免 } \\ & \text { 付 } \end{aligned}$		\％	或			\％	\％	鹿
8		이S																	矿
$\overline{8}$	$\begin{aligned} & \text { ®. } \\ & \text { 亳 } \end{aligned}$	를																	或
\％		E																	矿
\％		寻																	宕
莐		噪	䍑	\％	¢	$\stackrel{\text { ® }}{\infty}$	$\stackrel{\text { ç }}{\substack{\circ \\ \hline}}$	$\begin{aligned} & \text { ్ְ } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { n } \\ & \pm \\ & \hline \end{aligned}$	$\stackrel{\text { ¢ }}{\text { ¢ }}$	$\stackrel{\text { I }}{\underset{\sim}{*}}$	9	2	岛	$\begin{gathered} \text { 咅 } \\ \text { 砳 } \end{gathered}$	$\begin{aligned} & \text { च्च } \\ & \text { 䚯 } \\ & \text { 己. } \end{aligned}$	\％	\％	즟
\％	$\begin{aligned} & \text { Q } \\ & \text { 高 } \end{aligned}$	立																	戓
\％		$\stackrel{m}{3}$	\equiv	$\stackrel{\circ}{\circ}$	蓇	骨	䁍	志	$\begin{aligned} & \text { 总 } \\ & \stackrel{y}{n} \end{aligned}$	$\stackrel{\sim}{\sim}$	$\stackrel{R}{i}$		\％	T		$\begin{aligned} & \text { gु } \\ & \text { 信 } \end{aligned}$	砍	z	長
\％		考																	츷
¢	$\begin{aligned} & \text { た。 } \\ & \text { B } \\ & \hline \end{aligned}$	立																	矿
${ }_{8}^{8}$	边	立																	㜢
\％	這	堇							$\stackrel{\sim}{\sim}$	号	$\begin{gathered} \stackrel{\infty}{\infty} \\ \text { © } \end{gathered}$		z	麋			\％	\％	或
－	辰	$\frac{2}{3}$																	矿
¢	這	㐮	$\stackrel{\infty}{\infty}$	¢	$\stackrel{8}{8}$	®	$\stackrel{\text { ® }}{\substack{\infty \\ 0}}$	玺	$\xrightarrow{\text { ¢ }}$	筞	$\begin{aligned} & \bar{n} \\ & \stackrel{\infty}{\infty} \\ & \stackrel{n}{n} \end{aligned}$	$\stackrel{\circ}{\text { i }}$	\％	㦴				\％	唇

\％	$\begin{aligned} & \text { O} \\ & \text { O. } \\ & \hline \end{aligned}$	立																	或
突	$\begin{aligned} & \text { 边 } \\ & \text { ta } \end{aligned}$	盛			¢	苍	号	会	$\underset{\sim}{\bar{\infty}}$	$\stackrel{\text { ® }}{2}$	$\begin{aligned} & \text { oin } \\ & \stackrel{\circ}{\infty} \\ & 0 \end{aligned}$		z	$\begin{aligned} & \overline{Z ⿹ 勹 巳} \\ & 0 \\ & \text { O} \end{aligned}$	$\begin{aligned} & \text { og } \\ & \frac{0}{5} \\ & \hline \end{aligned}$		㜢	z	㜢
\％		穴																	岩
\％	$\begin{aligned} & \text { Q. } \\ & \text { 亳 } \end{aligned}$	$\frac{3}{3}$																	砍
¢0		立																	唇
\％		\％	管	$\underset{\substack{\tilde{U} \\ \text { in }}}{ }$	¢	$\begin{aligned} & \text { તٌ } \\ & \text { Non } \end{aligned}$	$\stackrel{\text {－}}{\substack{\text {－}}}$	$\stackrel{\text { 年 }}{\text {＋}}$	なֻ	$\stackrel{\text { F }}{ }$	$\stackrel{\underset{\sim}{\underset{\sim}{+}}}{\stackrel{1}{+}}$		z			$\begin{aligned} & \text { 苞 } \\ & \text { 䛌 } \end{aligned}$		z	唇
\％	$\begin{aligned} & \text { \&. } \\ & \text { 品 } \end{aligned}$	会																	E
\％	$\begin{aligned} & \text { ®. } \\ & \text { O} \\ & \text { En } \end{aligned}$	免	䄳	¢	$\underset{\text { ત }}{\substack{n}}$	¢	守	$\frac{\stackrel{5}{n}}{i n}$	$\stackrel{\text { t }}{\stackrel{\rightharpoonup}{\oplus}}$	$\stackrel{n}{n}$	$\stackrel{\mathscr{\circ}}{\stackrel{\unrhd}{\gtrless}}$	̄	z	感	$\begin{aligned} & \text { og } \\ & \frac{5}{5} \\ & \hline \end{aligned}$			\％	钅
항	$\begin{aligned} & \text { 合 } \\ & \text { On } \end{aligned}$	会	号	$\stackrel{\otimes}{\underset{\sim}{c}}$	\％̇	喜	$\stackrel{\infty}{\infty}$	筞	$\begin{aligned} & \stackrel{\circ}{木} \\ & \underset{\sim}{6} \end{aligned}$	号		$\underset{\sim}{8}$	๕	$\begin{aligned} & \text { 픖 } \\ & \text { 응 } \end{aligned}$				z	圧
N	$\begin{aligned} & \text { Q } \\ & \text { D } \end{aligned}$	帚	$\frac{\varnothing}{i}$	\％	\％	$\stackrel{\text { ® }}{\substack{\text { a }}}$	药	$\stackrel{\text { ã }}{ }$	$\stackrel{\frac{士}{n}}{\stackrel{2}{2}}$	$\stackrel{\infty}{\infty}$		$\overline{\mathrm{m}}$	z̊	或			$\stackrel{\stackrel{t}{b}}{\substack{t \\ \#}}$	\％	断
${ }_{\infty}^{0}$	$\begin{aligned} & \text { Q } \\ & \text { O } \\ & \text { B } \end{aligned}$	家																	砍
${ }_{80}^{*}$	$\begin{aligned} & \text { ¿} \\ & \text { O. } \end{aligned}$	$\stackrel{\text { 佥 }}{2}$	¢	$\stackrel{\sim}{\infty}$	這	$\stackrel{\text { ®\％}}{\substack{\text { ¢ }}}$	$\stackrel{\rightharpoonup}{\infty}$	$\xrightarrow{\text { t }}$	$\stackrel{\stackrel{\rightharpoonup}{i n}}{\sim}$	守			z	贈			\％	z	或
\％	$\begin{aligned} & \text { O} \\ & \text { O } \\ & \hline \end{aligned}$	立																	颜
¢	$\begin{aligned} & \text { O. } \\ & \text { O } \\ & \hline \end{aligned}$	号	co	$\xrightarrow[\text { ® }]{\underset{\sim}{*}}$	\cong	蕆	$\stackrel{\text { ® }}{\text { ¢ }}$	\％	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{I}} \\ & \stackrel{\text { n }}{ } \end{aligned}$	$\stackrel{\bigcirc}{6}$	$\frac{\infty}{\frac{\infty}{6}}$	in	z	或	咢		\％	z	즟
E	$\begin{aligned} & \text {. } \\ & \text { O} \\ & \vdots \end{aligned}$	镄	N	会	令	$\stackrel{\boxed{\otimes}}{\stackrel{\circ}{-}}$	$\stackrel{\text { ® }}{\sim}$	$\stackrel{\infty}{n}$	$\begin{aligned} & \text { in } \\ & \text { un } \end{aligned}$	$\stackrel{\infty}{\circ}$	$\stackrel{8}{N}$	$\stackrel{\text { ¢ }}{+}$	z	或	碰	䃝		z	唇
$\stackrel{\infty}{6}$	$\begin{aligned} & \text { Z. } \\ & \text { an } \\ & \hline \end{aligned}$	临	筞	$\stackrel{\text { ה }}{\substack{4 \\ \hline}}$	$\stackrel{N}{¢}$	$\stackrel{ \pm}{9}$	骨	$\stackrel{\rightharpoonup}{\infty}$	馬	ま	$\begin{aligned} & \stackrel{P}{\infty} \\ & \dot{\infty} \end{aligned}$	$\stackrel{\square}{\circ}$	z\％	J	年		会	\％	砏
\％	辰	雉	$\stackrel{\text { ® }}{\substack{\infty \\ \text { i }}}$	$\stackrel{\stackrel{\circ}{\dddot{\%}}}{\sim}$	$\stackrel{\text { ה }}{\sim}$	$\stackrel{3}{\square}$	\％	㫴	$\xrightarrow{\text { ̇ }}$	$\stackrel{\sim}{\infty}$		¢ู	z		碰		¢	\％	唇

			\|				\| 1				1	1	1		1
i				18	1	\%	:		\% $=$	$=3$	1	1	8	=	
1			3	8	:	8	\%			1	1	11	11		1
1															1
1		:	\%	:	\%	\%	\%	1	\%	.	,	11	8	\%	1
1															1
8		:	:	88	:	S	1-			3	1	1	8		1
1															1
1															1
1		:	\%	8	:		:			1	1	1	1		21
8															1
-															1
															1
	1														1
	1														1

	1	1:	18				1	1			1	1	11	1		,
1	1	:	\%	8	8	18	1	=	\%	:	:	1	11	H	1	
1	,	:	8	\%	3	\%	\%	=	\%		3	11	11	4	,	1
8	1	:	\% $=$	1	\%		\%	,				1	11	11	1	1
-	,															1
,	1															1
8	1															
8	1															1
1	1															1
8	1															1
1	1	\%	\%		\%			:				H	1	:		1
1	\%	,														1
8	1															1
$\stackrel{1}{4}$	1															1
	1															1
,		:					\%	:			8	\%	1	1		
																1

＂	辰	를																	第
\％	$\begin{aligned} & \text { 亜 } \\ & \text { En } \end{aligned}$	厑		$\stackrel{\text { ¢ }}{\substack{\text { i }}}$	$\stackrel{ \pm}{J}$	夺			\％	\％			\％		$\begin{aligned} & \text { 咅 } \\ & \text { 硈 } \end{aligned}$			\％	唇
\％	$\begin{aligned} & \text { 合 } \\ & \text { an } \end{aligned}$	팍																	孁
菏	$\begin{aligned} & \text { Q. } \\ & \text { 夏 } \end{aligned}$	考																	宕
\％	$\begin{aligned} & \text { Ø. } \\ & \text { O} \\ & \hline \end{aligned}$	？																	砏
\％		帚	$\stackrel{\infty}{\stackrel{\infty}{\infty}}$	$\stackrel{\sim}{\sim}$	$\underset{0}{\mathrm{E}}$	$\stackrel{\text { ¢ }}{\stackrel{\text { ¢ }}{ }}$			$\xrightarrow[\substack{\text { ¢ }}]{\text { ¢ }}$	$\stackrel{i}{i}$			亿ํ						宕
ิิ	$\begin{aligned} & \text { 茍 } \\ & \text { an } \end{aligned}$	会	$\stackrel{\infty}{\infty}$	骨	和	\％	N	$\stackrel{\rightharpoonup}{3}$	$\stackrel{\infty}{\stackrel{\infty}{\omega}}$	\％		$\stackrel{\circ}{+}$	z	$\begin{aligned} & \stackrel{\rightharpoonup}{6} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$		8 0 0 0	$\begin{aligned} & \text { 恶. } \\ & \text { 曾 } \end{aligned}$	z	戓
＊		$\overline{3}$																	唇
佥	$\begin{aligned} & \text { ®. } \\ & \text { O } \\ & \hline \end{aligned}$	骨	尔	志	$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$	$\stackrel{\stackrel{\rightharpoonup}{c}}{\substack{\text { i }}}$			－	？			๕	$\begin{aligned} & \text { ⿹ㅏㅇ } \\ & \text { O } \end{aligned}$	$\begin{gathered} \text { 咅 } \\ \text { 砳 } \end{gathered}$		¢	z	戓
\％		苃		¢	$\xrightarrow{\text { ¢ }}$	等			免	$\stackrel{\rightharpoonup}{0}$			亿ํ		$\begin{gathered} \text { on } \\ \stackrel{y}{\omega} \\ \stackrel{y}{n} \end{gathered}$		㜢	z	
9		F																	或
ま	$\begin{aligned} & \text { た } \\ & \text { O. } \\ & \text { 首 } \end{aligned}$	\＃											\％					\％	馬
\％	第	\＃																	矿
答	會	픚																	矿
吉	辰	㛃	$\stackrel{\text { in }}{ }$	$\stackrel{\text { Ñ }}{\substack{\text { cin }}}$	$\stackrel{\text { a }}{\text {－}}$	$\stackrel{¢}{8}$	$\begin{gathered} \infty \\ \underset{\infty}{\infty} \\ \underset{\sim}{\infty} \end{gathered}$	䫆		F	$\begin{gathered} \text { ờ } \\ \stackrel{\rightharpoonup}{2} \end{gathered}$	\cdots	＜	诼	沯	言宕		z	戓
等	¢	팢																	矿
¢	¢	इ																	宕

動	$\begin{aligned} & \text { Q } \\ & \text { B } \\ & \hline \end{aligned}$	$\frac{\square}{\text { ¢ }}$		苍	$\stackrel{\sim}{\underset{\sim}{\sim}}$	$\stackrel{\text { ¢ }}{\text { ¢ }}$			$\stackrel{\text { ® }}{\substack{\text { ® }}}$	$\bar{\infty}$		F	z	\％					或
훙	$\begin{aligned} & \text { Q } \\ & \text { O } \\ & \hline \end{aligned}$	年	$\underset{\sim}{\stackrel{\rightharpoonup}{\circ}}$	志	$\stackrel{n}{c}$	¢			$\stackrel{\stackrel{\circ}{\sim}}{\stackrel{1}{2}}$	令			z	$\begin{aligned} & \text { च⿹\zh26山己 } \\ & \text { O } \end{aligned}$				z	镸
守			¢	$\stackrel{\infty}{\sim}$		$\stackrel{\text { ®̃ }}{\text { ¢ }}$			¢	\cdots			\％			碳		\％	震
응	$\begin{aligned} & \text { Q } \\ & \text { 品 } \end{aligned}$	$\frac{\text { m }}{\text { \％}}$	$\stackrel{ \pm}{2}$	寺	誌	N			势	$\stackrel{\text { ® }}{\text { ® }}$			\％					\％	或
＂			$\stackrel{\text { ç }}{\text { cin }}$	管	第	$\stackrel{\circ}{i}$			$\stackrel{\text { ¢ }}{\text { B }}$	$\stackrel{\square}{\square}$	$\begin{aligned} & \text { b. } \\ & \text { ci } \end{aligned}$	$\stackrel{\text { \％}}{+}$	z	\％					唇
\％	$\begin{aligned} & \text { ®. } \\ & \text { 亳 } \end{aligned}$	帚										¢	\％						䂞
冬	$\begin{aligned} & \text { た } \\ & \text { 弟 } \end{aligned}$		合	哭	$\stackrel{\rightharpoonup}{5}$	${ }_{0}^{\mathbb{N}}$				＋＋	$\stackrel{\infty}{\stackrel{\infty}{\infty}}$	$\stackrel{\square}{i}$	z	\％					脣
舛	$\begin{aligned} & \text { Q } \\ & \text { O} \\ & \text { an } \end{aligned}$	F																	唇
合	$\begin{aligned} & \text { た } \\ & \text { O. } \\ & \hline \end{aligned}$	팢																	鿎
哭	$\begin{aligned} & \text { 若 } \\ & \text { 首 } \end{aligned}$	既							$\begin{aligned} & \stackrel{\circ}{0} \\ & \text { तु } \end{aligned}$	ช			2	$\begin{aligned} & \overline{\ddot{W}} \\ & \text { 응 } \end{aligned}$				z	
\％		咢	－	$\stackrel{\text { ¢ }}{\stackrel{\text { c }}{\sim}}$	$\stackrel{\substack{9}}{\sim}$	$\stackrel{\infty}{9}$	$\stackrel{\overline{7}}{\square}$	\％	$\begin{aligned} & \stackrel{\varrho}{\infty} \\ & \underset{\sim}{\infty} \end{aligned}$	¢̧	$\stackrel{\text { O}}{\stackrel{\circ}{\sim}}$	$\stackrel{+}{\text { ¢ }}$	\％	$\begin{aligned} & \overline{\mathscr{H}_{0}^{\prime}} \\ & \frac{0}{0} \end{aligned}$				z	或
®	$\begin{aligned} & \text { Ø. } \\ & \text { at } \\ & \hline \end{aligned}$	会	$\xrightarrow{\infty}$	¢	$\stackrel{\rightharpoonup}{\square}$	$\stackrel{\stackrel{5}{+}}{\substack{+ \\ \hline}}$	$\stackrel{\overline{7}}{\text { m }}$	$\stackrel{\rightharpoonup}{\square}$	$\begin{aligned} & \underset{\sim}{\circ} \\ & \underset{\sim}{\infty} \end{aligned}$	缶	$\begin{aligned} & \circ \\ & m \\ & 0 \\ & \hline \end{aligned}$		\％	$\begin{aligned} & \text { ⿹ㅡㅄ } \\ & \text { 응 } \end{aligned}$	$\begin{aligned} & \text { 唇 } \\ & \text { 硈 } \end{aligned}$			z	或
\％	$$	立																	或
\％	$\begin{aligned} & \text { Q } \\ & \text { O } \\ & \hline \end{aligned}$	号	$\stackrel{\text { F }}{\substack{\text { ¢ } \\ \text { d }}}$	¢	骂	$\stackrel{\stackrel{\infty}{\infty}}{\stackrel{\text { ® }}{+}}$	$\stackrel{\text { ¢ }}{\substack{4}}$	$\stackrel{9}{9}$	$\begin{gathered} \text { İ } \\ \underset{\sim}{2} \end{gathered}$	$\stackrel{+}{\text { ¢ }}$	$\frac{\stackrel{2}{8}}{8}$	$\stackrel{\circ}{+}$	\％		$\begin{aligned} & \text { ap } \\ & \stackrel{⿸ \zh14 ⿰ ⿺ 乚 一 匕 刂}{ } \end{aligned}$		ob	z	或
区ু	$\begin{aligned} & \text { 己 } \\ & \text { 首 } \end{aligned}$	$\frac{2}{3}$																	或
®ัठ	$\begin{aligned} & \text { 合 } \\ & \text { and } \end{aligned}$	冡																	戓
\％	$\begin{aligned} & \text { ®. } \\ & \text { O} \\ & \hline \end{aligned}$	号	$\underset{\substack{\text { n }}}{\substack{\text { c }}}$	$\stackrel{\infty}{\text { ¢ }}$	$\stackrel{\text { N }}{ }$	筞	ถั	®	¢	$\stackrel{\sim}{n}$	$\begin{aligned} & \text { Nig } \\ & \stackrel{\text { en }}{0} \end{aligned}$		\％	或	鹪		\％	z	䂭

㚚	$\begin{aligned} & \text { O. } \\ & \text { O } \\ & \hline \end{aligned}$	E																	唇
\％		号	$\stackrel{\text { N }}{\text { ¢ }}$	$\stackrel{ \pm}{ \pm}$	$\stackrel{\cong}{\stackrel{\circ}{\circ}}$	大亏			$\stackrel{\stackrel{8}{6}}{=}$	$\underset{~+~}{\text { 孚 }}$	$\begin{aligned} & \stackrel{\circ}{\mathrm{o}} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	$\stackrel{\%}{7}$	z				$\begin{aligned} & \text { en en } \\ & \text { oub } \end{aligned}$	z	W
迢	$\begin{aligned} & \text { 鹵 } \\ & \text { an } \end{aligned}$	会	\％	骨	苍哭	俞	笅	\％	$\stackrel{\otimes}{\underset{\sim}{\square}}$	$\stackrel{\circ}{\infty}$	$\begin{gathered} \text { 둘 } \\ \stackrel{y}{2} \end{gathered}$	¢	๕	$\begin{aligned} & \text { ⿹ㅡㅄ } \\ & \text { U } \end{aligned}$			既	\％	砏
¢	$\begin{aligned} & \text { 靣 } \\ & \text { 星 } \end{aligned}$	帚	$\stackrel{\leftrightarrow}{\sim}$	产		®ี®			$\stackrel{\text { 玉े }}{=}$	$\stackrel{\square}{\square}$		\cdots	\％					\％	蛈
为		를																	喽
\％	$\begin{aligned} & \text { Q } \\ & \text { O } \\ & \text { B } \end{aligned}$	$\stackrel{m}{2}$							$\stackrel{\stackrel{8}{2}}{=}$	$\stackrel{\infty}{\mp}$			＜	$\begin{aligned} & \text { Jy } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \text { og } \\ & \frac{5}{5} \\ & \hline \end{aligned}$		－	z	䂭
옹		F																	
E	$\begin{aligned} & \text { Q } \\ & \text { O} \\ & \text { an } \end{aligned}$	E																	㡶
N	$\begin{aligned} & \text { 若 } \\ & \text { 首 } \end{aligned}$	乭	$\underset{\substack{\infty \\ \underset{\sim}{f}}}{\substack{\infty}}$	$\frac{\tilde{O}}{\square}$	䓵	太			$\underset{\sim}{\text { E }}$	¢	$\begin{aligned} & \text { O} \\ & \stackrel{\circ}{\infty} \\ & \stackrel{0}{c} \end{aligned}$		\％	亭	$\begin{gathered} \text { 槀 } \\ \text { 鵘 } \end{gathered}$				砍
${ }_{8}^{8}$	$\begin{aligned} & \text { 若 } \\ & \text { an } \end{aligned}$	U					管	$\stackrel{8}{8}$	$\stackrel{\underset{\infty}{\infty}}{\stackrel{E}{\otimes}}$	$\stackrel{7}{6}$			z	$\begin{aligned} & \text { ⿹ㅏㅇ } \\ & \text { 응 } \end{aligned}$			$\frac{\dot{x}}{2}$	z	즟
吉	$\begin{aligned} & \text { た. } \\ & \text { 良 } \end{aligned}$	無							$\begin{aligned} & \text { ̈ㅡㄹ } \\ & \stackrel{y}{2} \end{aligned}$	$\stackrel{\infty}{\square}$		子	z	或				\％	W
咸		無							$\begin{aligned} & \text { \% } \\ & \stackrel{\rightharpoonup}{6} \end{aligned}$	$\stackrel{\stackrel{\circ}{\bullet}}{\stackrel{+}{\circ}}$	$\begin{gathered} \stackrel{\rightharpoonup}{7} \\ \underset{i}{\circ} \end{gathered}$	$\stackrel{\circ}{\circ}$	\％				$\begin{aligned} & \text { 高 } \\ & \text { en } \\ & \text { E. } \end{aligned}$		蛈
${ }_{8}^{\circ}$		䎂	筞	¢	$\stackrel{\text { ¢ }}{\substack{\text { ¢ } \\ \text { ¢ }}}$	$\stackrel{\text { ® }}{\substack{\text { ¢ }}}$			$\stackrel{\stackrel{e}{r}}{ }$	$\stackrel{\infty}{\text { ¢ }}$			z	F	刽		－	z	戓
E		茳	$\stackrel{n}{\sim}$	$\begin{gathered} \stackrel{\circ}{0} \\ \text { in } \end{gathered}$	\％	$\stackrel{\infty}{\underset{\sim}{i}}$			Б亏亏．	＋			z	或		硍	宕	z	㜢
¢	這	苞	筞	$\stackrel{m}{n}$	$\stackrel{ \pm}{\ddagger}$	奇			产	in			\％	或	咢		\％	z	픛
ิิ		号	范	－	$\stackrel{\circ}{\circ}$	$\stackrel{\text { ¢ }}{ }$			$\stackrel{ \pm}{\square}$	\cdots			z	遍	$\stackrel{\text { 気 }}{\text { 岩 }}$			z	砍
®	㐌	令																	喽

＂	$\begin{aligned} & \text { だ } \\ & \text { 吕 } \end{aligned}$	$\stackrel{\text { m }}{\text { ¢ }}$	$\underset{\sim}{\text { ¢ }}$	$\stackrel{\widetilde{\circ}}{\sim}$	危	$\stackrel{\text { ®ob }}{\substack{\text { ¢ }}}$	$\stackrel{\otimes}{\bullet}$	$\stackrel{\rightharpoonup}{8}$	\％	$\underset{\infty}{\infty}$	$\stackrel{\text { cos }}{\substack{\infty \\ \underset{\sim}{+}}}$	ลิ	\％		$\begin{aligned} & \text { an } \\ & \text { E. } \\ & \text { En } \end{aligned}$		㜢	\％	雨
®̌8）	$\begin{aligned} & \text { Ø. } \\ & \text { 品 } \end{aligned}$	怎																	或
®		$\stackrel{\infty}{\square}$	$\stackrel{\text { त̃ }}{\text { त̇ }}$	¢	$\stackrel{3}{2}$	त̃	\％	$\stackrel{\square}{\text { ® }}$	喜	$\stackrel{\square}{\square}$	$\begin{gathered} \text { à } \\ \text { ç } \end{gathered}$	$\stackrel{\infty}{\infty}$	®	\％				\％	求
㔛		$\stackrel{\infty}{\sim}$	－	鸟	¢	ন্ল্	冎	¢	$\frac{\pi}{\sim}$			${ }_{7}$	\％	V	言		0	\％	戓
\％		\％	$\stackrel{\text { त̇ }}{ }$	$⿳ 亠 丷 厂 犬$	$\stackrel{\circ}{\square}$	$\stackrel{5}{\square}$			$\stackrel{8}{8}$		$\underset{\substack{\text { 等 } \\ \hline}}{\text { n }}$	\cdots	๕	－	$\begin{aligned} & \text { 嫘 } \\ & \text { 気 } \end{aligned}$		¢゙ठ	z	矿
®	$$	E																	気
\％	$\begin{aligned} & \text { 苞 } \\ & \text { B } \end{aligned}$	$\frac{3}{3}$																	矿
合		？	$\stackrel{\overline{6}}{\sim}$	$\stackrel{\text { 寺 }}{ }$	in	$\stackrel{\rightharpoonup}{9}$			$\begin{aligned} & \stackrel{\infty}{\tilde{i}} \\ & \underset{\sim}{2} \end{aligned}$	声		\bar{m}	\％	$\begin{aligned} & \text { प्ֶ̈ } \\ & \text { U } \end{aligned}$			㜢	\％	唇
僉	$\begin{aligned} & \text { ¿た } \\ & \hline \mathbf{E} \\ & \hline \end{aligned}$	完																	毞
\％	$\begin{aligned} & \text { 边 } \\ & \text { E } \end{aligned}$	考																	『
馬		考																	或
\％		$\stackrel{\text { 圱 }}{ }$	宕	$\stackrel{\overline{8}}{\square}$	尔	${ }^{\text {® }}$			$\begin{aligned} & \stackrel{\rightharpoonup}{6} \\ & \stackrel{y}{2} \end{aligned}$	$\stackrel{\infty}{i}$		\cdots	z	$\begin{aligned} & \text { Z } \\ & \text { B } \\ & \hline 0 \end{aligned}$			\％	z	㡶
\％		考																	或
缶	$\begin{aligned} & \text { \% } \\ & \text { 最 } \end{aligned}$	䫆	$\frac{\circ}{0}$	$\stackrel{\bar{\infty}}{\stackrel{\circ}{\circ}}$	N్లু	$\stackrel{\cong}{\otimes}$	等	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { त্, } \\ & \stackrel{3}{2} \end{aligned}$	\％	$\underset{\sim}{\underset{\sim}{i}}$	\cdots	z				㜢	\％	
合		立																	
\％		考																	区
蕗	骨	$\frac{3}{3}$																	矿

\％	$\begin{aligned} & \text { ®o } \\ & \text { O } \\ & \text { En } \end{aligned}$	$\frac{\pi}{3}$	茵	층	菏	冎	＋	$\stackrel{\otimes}{0}$		$\stackrel{\infty}{8}$	$\begin{aligned} & \stackrel{\circ}{0} \\ & \text { ®80 } \end{aligned}$	$\stackrel{\infty}{\sim}$		砍		$\begin{aligned} & \text { 퓰 } \\ & \text { 䚯 } \end{aligned}$		年	钅
名		交																	
\％	$\begin{aligned} & \text { ® } \\ & \text { O} \\ & \text { On } \end{aligned}$	号	$\stackrel{\text { 䓣 }}{\text { i }}$	$\stackrel{\text { Red }}{\substack{\text { ¢ }}}$	خ⿳八㐅冖一	冎			$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\circ}{\circ} \end{aligned}$	\bar{i}		t	zํ	$\begin{aligned} & \text { ⿹ㅏㅄ } \\ & \text { U } \end{aligned}$				z	
항	$\begin{aligned} & \text { O. } \\ & \text { O } \\ & \hline \end{aligned}$	考																	戓
®®		立																	Ј
®		考																	気
家	$\begin{aligned} & \text { O. } \\ & \text { O } \\ & \hline \end{aligned}$	$\overline{3}$																	矿
\％	$\begin{aligned} & \text { ®. } \\ & \text { O. } \\ & \text { an } \end{aligned}$	免	$\stackrel{\text { ¢ }}{\substack{\text { ¢ } \\ \text { i } \\ \hline}}$	$\stackrel{\text { ® }}{\text { ® }}$	$\stackrel{\stackrel{\rightharpoonup}{\infty}}{\stackrel{\infty}{\circ}}$	$\xrightarrow{\text { 氢 }}$			$\begin{aligned} & \text { 见o․ } \\ & \stackrel{0}{0} \end{aligned}$	กٌ̛			z	$\begin{aligned} & \text { ⿹ㅠㅄ } \\ & \text { 응 } \end{aligned}$			㜢	z	⿹ㅡㅊ
$\stackrel{\circ}{\circ}$		］																	矿
¢		考																	戓
$\stackrel{\circ}{8}$		考																	或
\％	$\begin{aligned} & \text { Q } \\ & \text { O} \\ & \text { En } \end{aligned}$	U	＂	$\stackrel{\text { ®̃ }}{\text { ¢ }}$	\cdots	$\stackrel{\sim}{q}$			$\stackrel{\circ}{\dot{N}}$		$\begin{gathered} \text { 厄} \\ \stackrel{\rightharpoonup}{6} \end{gathered}$	\cdots	zํ	$\begin{aligned} & \overline{\ddot{6}} \\ & \stackrel{0}{0} \end{aligned}$			－	z	馬
$\stackrel{\circ}{\circ}$	$\begin{aligned} & \text { O} \\ & \hline 0.0 \\ & \hline \end{aligned}$	会	\％	व్త్	会	淾	$\stackrel{8}{8}$	咸	त्̃ $\stackrel{\text { ® }}{ }$		$\begin{gathered} \stackrel{\rightharpoonup}{3} \\ \stackrel{1}{3} \end{gathered}$			碳			¢	z	듳
三		\％							¢		$\begin{gathered} \text { n} \\ \stackrel{a}{i} \end{gathered}$			$\begin{aligned} & \text { Z्ê } \\ & \text { U } \end{aligned}$			¢	z̊	즟
ㄹ	$\begin{aligned} & \text { B } \\ & \text { O} \\ & \hline \end{aligned}$	会	$\underset{\substack{n \\ i n \\ i n}}{\substack{\text { n }}}$	合	N	$\stackrel{\infty}{8}$	$\stackrel{8}{8}$	$\underset{\substack{\mathrm{a}}}{\stackrel{N}{\mathrm{~N}}}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{6} \end{aligned}$		N	$\stackrel{\text { ® }}{\text {－}}$	亿ํ	或			E	z̊	E
$\stackrel{\square}{\text { ® }}$			$\stackrel{\circ}{\text { ® }}$	$\stackrel{\Omega}{\stackrel{\sim}{i}}$	$\stackrel{\text { n }}{\text { ran }}$	－	$\stackrel{\sim}{\infty}$	$\stackrel{\text { ® }}{\stackrel{\circ}{\square}}$	告	\％	$\stackrel{\text { ® }}{\substack{\infty \\ 0}}$	\％	zํ	碳			\％	z̊	즟
$\stackrel{\ddagger}{\square}$	\％	家																	

$\stackrel{\square}{\square}$	$\begin{aligned} & \text { O. } \\ & \text { O } \\ & \hline \end{aligned}$	立																	唇
$\stackrel{\square}{\square}$		会	$\stackrel{\sim}{\infty}$	N	$\stackrel{\text { ² }}{\text { ¢ }}$	会	$\stackrel{\infty}{\infty}$	$\stackrel{\circ}{9}$	$\stackrel{\stackrel{\rightharpoonup}{\infty}}{\stackrel{\alpha}{\circ}}$	กֻ0	$\stackrel{\text { D. }}{\stackrel{\rightharpoonup}{\circ}}$	\cdots	z	$\begin{aligned} & \overline{W_{0}^{\prime}} \\ & \text { O} \end{aligned}$			\％	z	䂞
§	$\begin{aligned} & \text { 合 } \\ & \text { a } \\ & \hline \end{aligned}$	立																	㜢
$\stackrel{\infty}{\varrho}$	$\begin{aligned} & \text { 靣 } \\ & \text { 星 } \end{aligned}$	年		\％	ñ	ल్ल్లి	－	E	$\underset{\substack{\text { ® } \\ \underset{\sim}{0}}}{ }$	$\frac{9}{6}$	$\begin{gathered} \stackrel{\rightharpoonup}{\mathrm{A}} \\ \underset{\sim}{n} \end{gathered}$	is	z	$\begin{aligned} & \bar{G} \\ & \text { 苞 } \end{aligned}$				\％	蛈
ڤ	$\begin{aligned} & \text { Ø. } \\ & \text { D. } \\ & \hline \end{aligned}$	怎	$\stackrel{\bar{\sim}}{\substack{\text { i }}}$	$\underset{\sim}{\mathrm{N}}$	\％	苟	$\stackrel{\circ}{\text { i }}$	尔	$\stackrel{\imath}{\square}$			$\stackrel{\text { m }}{7}$	z	$\begin{aligned} & \overline{W_{0}^{\prime}} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{gathered} \text { og } \\ \stackrel{y y y y y}{c} \\ \hline \end{gathered}$			z	㡶
¢	$\begin{aligned} & \text { Q } \\ & \text { O } \\ & \text { B } \end{aligned}$	$\stackrel{\text { ® }}{\text { ® }}$	$\stackrel{\text { ® }}{\text { ¢ }}$	范	\％	$\begin{aligned} & \text { bern } \\ & \text { n } \end{aligned}$	$\xrightarrow[+]{\substack{++}}$	\％	$\underset{\underset{\sim}{\pi}}{ }$	\cdots	$\begin{aligned} & \overline{\mathrm{c}} \\ & \underset{\mathrm{f}}{ } \end{aligned}$	\cdots	z	$\begin{aligned} & \overline{\ddot{6}} \\ & \overline{0} \end{aligned}$			\％	\％	䂭
$\overline{\text { İ }}$		蔓																	
İ	$\begin{aligned} & \text { B. } \\ & \text { O. } \\ & \text { an } \end{aligned}$	怎	$\stackrel{\rightharpoonup}{6}$	㨐	¢ิ．	筞	$\begin{gathered} \text { O. } \\ \underset{\sim}{n} \end{gathered}$	$\stackrel{\otimes .}{\circ}$	$\stackrel{ \pm}{\underset{\alpha}{\alpha}}$	8		$\stackrel{+}{+}$	z	可				\％	砏
§		钲							$\begin{aligned} & \text { Ï } \\ & \stackrel{y}{\underset{\sim}{2}} \end{aligned}$	$\stackrel{\rightharpoonup}{i}$	$\begin{gathered} \text { S. } \\ \text { or } \end{gathered}$		z	$\begin{aligned} & \text { Z्⿺辶⿳亠丷厂彡} \\ & 0 \end{aligned}$	$\begin{gathered} \text { 槀 } \\ \text { 鵘 } \end{gathered}$		¢ٍ	\％	
さ	$\begin{aligned} & \text { 若 } \\ & \text { an } \end{aligned}$	U		$\stackrel{\sim}{\infty}$	生	$\stackrel{\rightharpoonup}{\square}$			$\stackrel{0}{n}$	8			z̊	$\begin{aligned} & \text { च्⿺⿸⿻一丿口⿴囗⿱一一儿口 } \end{aligned}$			$\frac{\dot{x}}{2}$	\％	즟
合	$\begin{aligned} & \text { た. } \\ & \text { 宸 } \end{aligned}$	知	$\stackrel{\bigcirc}{\ddagger}$	$\begin{gathered} n \\ n \\ n \end{gathered}$	¢ ¢	－		$\stackrel{7}{\text { 年 }}$	$\stackrel{\stackrel{\rightharpoonup}{e}}{\stackrel{1}{i}}$	찰		\％	zㄴ					z	砍
¢	$\begin{aligned} & \text { Ø. } \\ & \text { O} \\ & \hline \end{aligned}$	咗	$\stackrel{\infty}{\text { ¢ }}$	$\stackrel{8}{8}$	$\stackrel{\infty}{\rightrightarrows}$	$\underset{\sim}{\text { F }}$	奇	袁		$\underset{\text { ¢ }}{\substack{\text { ¢ }}}$	$\begin{gathered} \text { \% } \\ \text { Nid } \\ \text { on } \end{gathered}$	$\stackrel{\infty}{+}$	z	婏		$\begin{aligned} & \ddot{0} \\ & \text { 番 } \end{aligned}$	\％	\％	唇
¢	$\begin{aligned} & \text { Q } \\ & \stackrel{\rightharpoonup}{3} \\ & \hline \end{aligned}$	E																	戓
$\stackrel{\text { © }}{ }$	$\begin{aligned} & \text { \& } \\ & \text { O. } \\ & \hline \end{aligned}$	咢	¢	$\frac{\mathrm{t}}{\mathrm{o}}$	$\stackrel{\sim}{¢}$	$\stackrel{\mathscr{冂}}{\underset{\sim}{i}}$		号	$\begin{aligned} & \text { g } \\ & \underline{9} \end{aligned}$	$\stackrel{\sim}{n}$	$\begin{gathered} \stackrel{\circ}{\circ} \\ \stackrel{\leftrightarrow}{6} \end{gathered}$	$\stackrel{\square}{6}$	z	或			\％	\％	즟
ธ్రి	$\begin{aligned} & \text { た. } \\ & \text { O} \\ & \hline \end{aligned}$	呂	co	奇	$\stackrel{\sim}{\infty}$	$\stackrel{N}{n}$	$\stackrel{\bar{\alpha}}{\sim}$	吕	¢	？		$\stackrel{\square}{2}$	z	或			\％	\％	或
율	$\begin{aligned} & \text { 边 } \\ & \text { a } \end{aligned}$	E																	픛
$\stackrel{\overline{0}}{\square}$	$\begin{aligned} & \text { ®o } \\ & \text { O } \\ & \hline \end{aligned}$	$\frac{\square}{\text { ¢ }}$	$\stackrel{\infty}{\sim}$	$\stackrel{\infty}{\stackrel{\circ}{i}}$	$\stackrel{\cong}{\circ}$	会	$\stackrel{\text { ® }}{ }$	$\stackrel{\rightharpoonup}{\square}$	$\stackrel{\text { ఫి }}{\substack{\text { an }}}$	స్రై	$\stackrel{\stackrel{\rightharpoonup}{\gtrless}}{\stackrel{1}{2}}$	$\stackrel{\circ}{+}$	z	흥	㜢	砳		\％	砍

®ㅡㅇ	求	艺																	戓
$\stackrel{\text { ®® }}{\stackrel{1}{2}}$	$\begin{aligned} & \text { \& } \\ & \text { 号 } \end{aligned}$	免	$\stackrel{\text { ¢ }}{\text { ¢ }}$	¢	答	$\stackrel{\text { \％}}{\substack{1}}$	$\stackrel{\sim}{3}$	\％	$\underset{\substack{\text { ¢ }}}{\text { ¢ }}$	志			z	$\begin{aligned} & \overline{Z_{z}^{0}} \\ & \text { U } \end{aligned}$				z	砏
管	$\begin{aligned} & \text { た } \\ & \text { a } \\ & \hline \end{aligned}$	佼	合	$\stackrel{\text { ® }}{\text { ® }}$	$\stackrel{\square}{9}$	$\stackrel{\stackrel{5}{3}}{3}$	¢	号	$\begin{aligned} & \infty \\ & \stackrel{\leftrightarrow}{6} \\ & \underset{-}{2} \end{aligned}$	\％\％	$\stackrel{\stackrel{8}{\circ}}{\substack{6 \\ \hline}}$	$\stackrel{8}{8}$	\％	$\begin{aligned} & \overline{\ddot{W}} \\ & \stackrel{0}{0} \end{aligned}$			¢ٍ	z	答
$\stackrel{\sim}{\otimes}$	$\begin{aligned} & \text { \&. } \\ & \text { B } \\ & \hline \end{aligned}$	会	$\stackrel{\infty}{\text { ¢ }}$	年	－	蓠	尔	E		F	$\begin{aligned} & \stackrel{n}{n} \\ & n \end{aligned}$	\cdots	\％	$\begin{aligned} & \text { ⿹ㅡㅄ } \\ & \text { 응 } \end{aligned}$				\％	唇
$\stackrel{\circ}{\square}$	$\begin{aligned} & \text { た. } \\ & \text { 亳 } \end{aligned}$	会	茳	$\stackrel{\sim}{\sim}$	热	¢	$\stackrel{\text { 令 }}{\sim}$	$\stackrel{\circ}{\circ}$	$\begin{aligned} & \ddot{\circ} \\ & \stackrel{\circ}{\circ} \end{aligned}$	\％	荌	$\overline{\mathrm{m}}$	z	$\begin{aligned} & \overline{V_{2}^{\prime}} \\ & \text { 응 } \end{aligned}$				z	或
厄ิ	$\begin{aligned} & \text { 边 } \\ & \text { 景 } \end{aligned}$	$\stackrel{\text { 骨 }}{\text { ² }}$	$\stackrel{7}{4}$	$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$	$\stackrel{8}{8}$	$\stackrel{\text { g }}{\substack{\text { a }}}$	$\stackrel{\circ}{\square}$	\％	$\stackrel{\substack{\circ \\=}}{ }$	8	$\begin{aligned} & \text { Ò } \\ & \text { di } \end{aligned}$		\％	$\begin{aligned} & \text { ⿹ㅏㅇ } \\ & \text { 己 } \end{aligned}$			\％	z	戓
$\stackrel{\infty}{\otimes}$	$\begin{aligned} & \text { た。 } \\ & \text { a } \\ & \hline \end{aligned}$	E																	宕
\％	$\begin{aligned} & \text { Q } \\ & \text { O } \\ & \text { an } \end{aligned}$	膆								\cdots		$\stackrel{\circ}{\circ}$	z	$\begin{aligned} & \overline{\ddot{W}} \\ & \text { 응 } \end{aligned}$			¢	\％	戓
알		U	$\underset{\substack{\underset{\sim}{c} \\ \hline}}{ }$	$\stackrel{\text { ¢ }}{\sim}$	年	$\stackrel{\infty}{\sim}$	\％\％\％	\％	杂	？	$\begin{gathered} \stackrel{\rightharpoonup}{त} \\ \underset{\sigma}{6} \end{gathered}$		2	$\begin{aligned} & \bar{Z} \\ & \text { 으́ } \end{aligned}$			\％	\％	矿
き		$\stackrel{\text { 骨 }}{\text { ² }}$							$\stackrel{\bar{e}}{=}$	ब్రి			\％				\％	z	矿
管	$\begin{aligned} & \text { Q } \\ & \text { O} \\ & \text { and } \end{aligned}$	谷																	枈
管	$\begin{aligned} & \text { Ø. } \\ & \text { at } \\ & \hline \end{aligned}$	U	钅	$\stackrel{\substack{\text { ra }}}{\sim}$	$\stackrel{\circ}{\infty}$	$\stackrel{\square}{\square}$	¢	ㅊ．	$\underset{\underset{\sim}{\underset{\sim}{2}}}{\underset{\sim}{2}}$	$\stackrel{\square}{\text { g }}$		\bar{i}	\％	$\begin{aligned} & \text { ⿹ㅏㅄ } \\ & \text { 응 } \end{aligned}$				z	或
晏	$$	呂																	㦴
管	$\begin{aligned} & \text { ¿太 } \\ & \text { 品 } \end{aligned}$	U	$\frac{\sqrt{n}}{i}$	E	ה̇ד̇	ㅎ．	骨	ぎ	$\frac{\mathfrak{i}}{\mathrm{a}}$	柇	$\stackrel{\stackrel{R}{\mathrm{R}}}{\stackrel{\text { R}}{2}}$	¢	\％	$\begin{aligned} & \overline{\widetilde{W}} \\ & \text { 응 } \end{aligned}$		硣	\％${ }^{\text {cou }}$	z	戓
울	$\begin{aligned} & \text { ¿. } \\ & \text { D } \\ & \hline \end{aligned}$	苞	$\stackrel{\bar{\infty}}{-}$	ה	筞	$\stackrel{\stackrel{\circ}{\infty}}{\otimes}$	产	$\stackrel{\text { ® }}{\stackrel{\text { ® }}{\text { ¢ }} \text {－}}$	$\stackrel{\text { ® }}{\stackrel{1}{=}}$	$\stackrel{\ddagger}{+}$	$\begin{aligned} & \overleftarrow{\overleftarrow{O}} \\ & \text { तु } \end{aligned}$		z	碳	$\begin{gathered} \text { ag } \\ \frac{E}{5} \\ \hline \end{gathered}$		喊号	z	픛
完	$\begin{aligned} & \text { ¿た } \\ & \text { O} \\ & \hline \end{aligned}$	交							$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \underset{\sim}{6} \end{aligned}$	$\stackrel{m}{m}$			\％	J 矿 ¢	乭		\％	\％	矿
$\stackrel{\text { ¢ }}{\text {＋}}$	骨	咢	$\stackrel{n}{\sim}$	鸟	$\stackrel{\circ}{\circ}$	家	$\stackrel{\text { ci }}{\substack{\text { ¢ }}}$	$\stackrel{\infty}{\bigcirc}$	$\stackrel{\text { ¢ }}{\stackrel{\text { g }}{\text { g }}}$	㞧		$\stackrel{\circ}{\circ}$	\％	或	\％		\％	\％	릋

앙	$\begin{aligned} & \text { ®o } \\ & \text { O} \\ & \text { En } \end{aligned}$	年	荷	픚	¢	¢	$\stackrel{\stackrel{\circ}{\circ}}{\stackrel{\circ}{\circ}}$	$\stackrel{\%}{\circ}$	\％	$\stackrel{\square}{\circ}$	囱	$\stackrel{\sim}{1}$	z	$\begin{aligned} & \overline{\ddot{Z}} \\ & \text { O} \end{aligned}$	$\begin{aligned} & \text { an } \\ & \stackrel{y}{b} \\ & \text { En } \end{aligned}$			\％	钅
응	$\begin{aligned} & \text { O. } \\ & \text { 品 } \end{aligned}$	蓇																	或
$\stackrel{\rightharpoonup}{8}$		를																	岩
厄ٌ̈		考																	戓
\％	$\begin{aligned} & \text {. } \\ & \text { O. } \\ & \text { Ban } \end{aligned}$	立																	唇
奇	$\begin{aligned} & \text { B } \\ & \text { O} \\ & \text { an } \end{aligned}$	唇	$\stackrel{\square}{\square}$	$\stackrel{\stackrel{\rightharpoonup}{6}}{\substack{\text { a }}}$	尔	$\stackrel{\text { ® }}{\substack{\text { ¢ }}}$	\＆	ลิ	$\begin{gathered} \text { ¿ } \\ \text { ה } \end{gathered}$	$\stackrel{\infty}{\infty}$	$\begin{gathered} \text { 俞 } \\ \substack{0} \end{gathered}$		亿	$\begin{aligned} & \text { ⿹ㅡㅄ } \\ & \text { 으 } \end{aligned}$		$\begin{aligned} & \text { च्चे } \\ & \text { 䚯 } \end{aligned}$		z	気
$\stackrel{\sim}{0}$	$\begin{aligned} & \text { た } \\ & \text { 星 } \end{aligned}$	会	$\stackrel{\text { ® }}{\substack{\text { ® }}}$	등	热	לి	篂	菏	$\stackrel{\sim}{\Omega}$	$\frac{3}{6}$	$\frac{\stackrel{\circ}{6}}{\substack{6}}$		z	$\begin{aligned} & \overline{\breve{g}} \\ & \text { 응 } \end{aligned}$				z	矿
吕	$\begin{aligned} & \text { し. } \\ & \text { 品 } \end{aligned}$	者																	㜢
合	$\begin{aligned} & \text { 骨 } \\ & \text { a } \end{aligned}$	閏	$\stackrel{\infty}{๕}$	槑	\％	$\stackrel{\infty}{\square}$	\％	$\stackrel{ल}{\circ}$	$\begin{gathered} \stackrel{n}{n} \\ \underset{\sim}{n} \end{gathered}$	\％	$$	$\stackrel{\circ}{+}$	亿	$\begin{aligned} & \text { ت} \\ & \text { 흥 } \end{aligned}$	$\begin{aligned} & \text { oo } \\ & \text { E. } \\ & \text { En } \end{aligned}$	䔍		z	矿
$\stackrel{\infty}{\circ}$		䂞	$\stackrel{\sim}{3}$	$\stackrel{\sim}{\text { Br }}$	$\stackrel{\text { ® }}{\circ}$	$\stackrel{\infty}{\rightrightarrows}$	$\stackrel{\widetilde{8}}{\square}$	\％	$\begin{gathered} \infty \\ \stackrel{\infty}{\circ} \end{gathered}$	合	$\begin{aligned} & \text { Ḧ } \\ & \text { तु⿵ } \end{aligned}$		z	$\begin{aligned} & \text { ⿹ㅏㅁ } \\ & \stackrel{6}{0} \end{aligned}$			\％	z	릋
合	$\begin{aligned} & \text { \& } \\ & \text { O } \\ & \hline \underline{E} \end{aligned}$	를																	雬
\％		感		$\stackrel{\stackrel{\rightharpoonup}{\mathrm{a}}}{\substack{\mathrm{i}}}$		\％	$\stackrel{\sim}{\sim}$	¢	$\begin{aligned} & \text { 㧱 } \end{aligned}$	\％	$\begin{gathered} 2 \\ 4 \\ 0 \\ \hline \end{gathered}$	$\stackrel{\sim}{i}$	z	$\begin{aligned} & \text { ⿹ㅡㅄ } \\ & \text { 응 } \end{aligned}$	$\begin{aligned} & \text { on } \\ & \text { E. } \\ & \text { En } \end{aligned}$			z	
$\stackrel{\text { ® }}{\square}$		立																	砍
区্هِ		無							¢	$\stackrel{\infty}{\text { ¢ }}$			¿	$\begin{aligned} & \text { ⿹̈} \\ & \text { ó } \end{aligned}$	$\begin{aligned} & \text { 咢 } \\ & \text { 硈 } \end{aligned}$		\％	z	즟
\％	$\begin{aligned} & \text { ® } \\ & \text { O} \\ & \text { E } \end{aligned}$	$\stackrel{m}{3}$	$\stackrel{ \pm}{-}$	会	合	$\begin{aligned} & \text { Nơo } \\ & 0 \end{aligned}$	¢	号		ก	$\stackrel{\bar{m}}{\underset{\sim}{~}}$	\cdots	z	$\begin{aligned} & \text { ⿹ㅠㅄ } \\ & \text { 응 } \end{aligned}$			䂞	z	気
$\stackrel{\text { ® }}{\text { g }}$	$\begin{aligned} & \text { \% } \\ & \text { 亳 } \end{aligned}$	\cdots	亳	สั่	त్త్ర	¢	증ㅇ․	\％	¢	${ }_{\infty}^{\infty}$	$\stackrel{\text { B }}{\substack{\circ \\ \sim}}$	m	z̊	팡	硅	苞	㜢	z	颜
\％	㐌	\％	永	$\stackrel{\rightharpoonup}{3}$	$\stackrel{\sim}{n}$	$\stackrel{\circ}{\square}$	충	$\stackrel{\circ}{6}$	尔	\％	$\stackrel{\pi}{n}$	$\bar{\square}$	\％		岩	㜢宕	这	z	矿

$\stackrel{\circ}{\circ}$	㐌	知																	或
$\stackrel{8}{8}$	$\begin{aligned} & \text { B } \\ & \text { O} \\ & \hline \end{aligned}$	$\stackrel{\infty}{\text { P }}$		号	求	$\begin{gathered} \text { そ } \\ \stackrel{\text { O}}{2} \end{gathered}$	ત্ত犬	$\underset{\substack{\infty \\ \infty}}{\infty}$			$\begin{aligned} & \bar{\sim} \\ & \underset{\sim}{\bar{\infty}} \end{aligned}$		z	或			宕	z	喽
$\stackrel{\otimes}{\otimes}$	$\begin{aligned} & \text { Q } \\ & \text { O} \\ & \text { En } \end{aligned}$	会	กั¢	$\stackrel{9}{\underline{n}}$	$\begin{gathered} \infty \\ \underset{\sim}{7} \end{gathered}$	$\stackrel{\circ}{\circ}$			¢	$\stackrel{\text { ®® }}{\text { ® }}$		¢	z	］	$\begin{aligned} & \text { 咅 } \\ & \text { 砳 } \end{aligned}$		宕	z	唇
\％	$\begin{aligned} & \text { ఫ. } \\ & \text { O} \\ & \text { E } \end{aligned}$	$\stackrel{m}{\text { a }}$	$\stackrel{\rightharpoonup}{\square}$	$\underset{\sim}{\infty}$	䧼	$\underset{i n}{\underset{i n}{n}}$			$\stackrel{\infty}{7}$	？	$\begin{gathered} \stackrel{\rightharpoonup}{0} \\ \stackrel{\rightharpoonup}{6} \end{gathered}$			$\begin{aligned} & \text { 믐 } \\ & \text { U } \end{aligned}$	$\begin{aligned} & \text { og } \\ & \stackrel{\text { En }}{n} \end{aligned}$		宕	\％	唇
응	$\begin{aligned} & \text { し. } \\ & \text { O } \\ & \text { Ean } \end{aligned}$	इ																	츷
흘	$\begin{aligned} & \text { B } \\ & \text { O} \\ & \hline \end{aligned}$	U	$\stackrel{\infty}{\infty}$	$\stackrel{\mathscr{\infty}}{\underset{i}{i}}$	$\begin{gathered} \infty \\ \underset{\sim}{c} \\ \hline \end{gathered}$	$\stackrel{\text { き }}{\text { き }}$			$\begin{gathered} \sqrt{n} \\ \underset{\sim}{n} \end{gathered}$	令	$\begin{aligned} & \text { ion } \\ & \stackrel{i}{i} \end{aligned}$		zํ	$\begin{aligned} & \text { 팜 } \\ & \stackrel{3}{0} \end{aligned}$	$\begin{aligned} & \text { 麃 } \\ & \text { 硈 } \end{aligned}$			z	䃄
Nิ		态																	즟
กิ์	$\begin{aligned} & \text { 亳 } \\ & \text { E } \end{aligned}$	礙																	戓
苞	$\begin{aligned} & \text { Q } \\ & \text { O } \\ & \text { En } \end{aligned}$	知	$\stackrel{\text { g }}{\substack{\text { f }}}$	－	佥	$\underset{i}{\text { む }}$	§ু	$\stackrel{\rightharpoonup}{\square}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\hat{e}} \\ & \stackrel{1}{2} \end{aligned}$	∞	$\stackrel{\stackrel{\rightharpoonup}{*}}{\stackrel{\rightharpoonup}{\gtrless}}$	$\stackrel{\circ}{+}$		$\begin{aligned} & \overline{\ddot{W}} \\ & \text { 응 } \end{aligned}$				z	达
๕	$\begin{aligned} & \text { Q } \\ & \text { O} \\ & \text { an } \end{aligned}$								$\stackrel{\stackrel{8}{6}}{\infty}$			子	亿ํ					\％	钅
$\stackrel{\circ}{\square}$	$\begin{aligned} & \text { O} \\ & \text { O} \\ & \text { En } \end{aligned}$	$\frac{\pi}{3}$	$\frac{0}{\infty}$	¢ֻ\％	ה	$\frac{\tilde{q}^{\prime}}{i n}$	$\underset{\sim}{7}$		$\stackrel{\text { ® }}{\text { ¢ }}$	\％	$\begin{aligned} & \infty \\ & \text { ત̃ } \\ & \text { B } \end{aligned}$	$\overline{\text { i }}$		⿹ㅡㅇ	$\begin{aligned} & \text { 咅 } \\ & \text { 砳 } \end{aligned}$	$\begin{aligned} & \text { g⿸厂巳一 } \\ & \text { 䚯 } \end{aligned}$			戓
合	$\begin{aligned} & \text { 高 } \\ & \text { O } \end{aligned}$	$\frac{\pi}{3}$	$\begin{aligned} & \text { 冗ą } \\ & \stackrel{\rightharpoonup}{6} \end{aligned}$	$\stackrel{\overline{0}}{\circ}$	$\stackrel{\text { 合 }}{\sim}$	$\begin{aligned} & \bar{n} \\ & \underline{n} \end{aligned}$			$\underset{\sim}{\tilde{a}}$		$\begin{gathered} \stackrel{\rightharpoonup}{\omega} \\ \underset{\infty}{\infty} \end{gathered}$		๕	$\begin{aligned} & \overline{\ddot{6}} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \text { 唇 } \\ & \text { 硈 } \end{aligned}$			z̊	
$\stackrel{\infty}{\oplus}$	$\begin{aligned} & \text { Q } \\ & \text { O} \\ & \text { an } \end{aligned}$	$\frac{\infty}{2}$	$\stackrel{\stackrel{0}{0}}{\underset{\sim}{c}}$	$\stackrel{\rightharpoonup}{\underset{c}{i}}$	$\underset{\sim}{ \pm}$	$\underset{\underset{\sim}{n}}{\substack{n \\ \hline}}$	合	$\begin{gathered} \text { İ } \\ \text { gin } \end{gathered}$	$\stackrel{\stackrel{\infty}{\otimes}}{\stackrel{\leftrightarrow}{\sim}}$		$\begin{gathered} \text { 㐅⿸厂⿰⿱㇒日勺十} \\ \stackrel{y}{c} \end{gathered}$		z	$\begin{aligned} & \overline{\ddot{6}} \\ & \stackrel{0}{0} \end{aligned}$			E	z	皆
ลิ	言																		
을		交																	픛
$\stackrel{\rightharpoonup}{\otimes}$	$\begin{aligned} & \text { ® } \\ & \text { O} \\ & \text { an } \end{aligned}$	考																	즟
$\stackrel{\otimes}{\otimes}$	®	号	$\stackrel{\text { c }}{\substack{\text { c }}}$	$\stackrel{\bar{\sigma}}{\sim}$	$\stackrel{\sim}{\infty}$	$\stackrel{\sim}{\infty}$				䓓			z	或	年	鹿	\％	\％	钅

	11															
1	1															
1	1															
1	1															
8	1															
-	1	\%	\%	8	\%	,	1			8	1	11	1		:	
-	1	:	:	\%	:		1			8	1	11	1	1	-	
8		:			\%		1				1	11	1		1	
-	1	:	\%	\%	S		1			1	4	11	1	1	2	
8	1	:	:	\%			1			8	1	11	1	1	,	
${ }^{1}$	1	1					8			8	1	11	1		=	
1	1	1	8	1	8		\%			1	1	1	1	1	2	
\bigcirc	1	\%	:	8	S	3	1			1	1	1		8	,	
1	1	:	:	1	\%		1				1	11	8	8	,	
8	1	,														
-	1					\%	\%			8	1	1		1		
		,								:	1	1		1		

$\stackrel{8}{7}$		宕	\％	$\underset{\substack{\text { b }}}{\substack{\text { a }}}$	珨	त्लু	$\stackrel{\infty}{\%}$	$\stackrel{\infty}{\stackrel{\infty}{子}}$	$\xrightarrow[\text { さ }]{\substack{\text { d }}}$	$\stackrel{\text { F }}{ }$	$\begin{aligned} & \stackrel{b}{6} \\ & \stackrel{N}{\wedge} \end{aligned}$	³	z	\％	穊		㜢	\％	矿
$\stackrel{\rightharpoonup}{\square}$		䂞	$\stackrel{\text { a }}{\stackrel{\text { i }}{\text { i }}}$	隺	$\stackrel{\circ}{8}$	$\stackrel{\text { O}}{\square}$			寺	$\stackrel{3}{8}$			z	$\begin{aligned} & \overline{\mathscr{H}_{0}^{\prime}} \\ & \hline \end{aligned}$			㜢	z	気
$\stackrel{\text { ®̈ }}{ }$		E																	钅
$\stackrel{\text { ®® }}{ }$	$\begin{aligned} & \text { Q. } \\ & \text { O} \\ & \text { En } \end{aligned}$	를																	唇
豆		3																	Ј
$\stackrel{\text { ® }}{ }$	$\begin{aligned} & \text { B } \\ & \text { O} \\ & \text { an } \end{aligned}$	$\underset{\sim}{\infty}$	$\begin{gathered} \text { N } \\ \underset{i}{c} \end{gathered}$	$\begin{gathered} \text { to } \\ \text { i } \end{gathered}$	$\stackrel{\rightharpoonup}{0}$	$\stackrel{\sim}{\sim}$	F	$\stackrel{+}{\square}$	$$	\cdots		is	z	$\begin{aligned} & \overline{\mathscr{O}} \\ & \stackrel{\rightharpoonup}{U} \end{aligned}$			㜢	z	気
$\stackrel{\circ}{\square}$	$\begin{aligned} & \text { \& } \\ & \text { 亳 } \end{aligned}$	3																	崖
$\stackrel{\text { ® }}{ }$	$\begin{aligned} & \text { Ø. } \\ & \text { 昆 } \end{aligned}$	를																	喽
$\stackrel{\infty}{ٌ}$	$\begin{aligned} & \text { O. } \\ & \text { O } \\ & \hline \mathbf{E} \end{aligned}$	몰																	矿
$\stackrel{\text { 일 }}{ }$		$\stackrel{\text { 骨 }}{ }$	$\stackrel{\otimes}{8}$	$\stackrel{\infty}{\infty}$	\cdots	\％	\％	$\stackrel{\infty}{n}$	稆	－	$\stackrel{\text { 㥻 }}{2}$	$\stackrel{\sim}{2}$	๕ั	$\begin{aligned} & \text { ⿹ㅠㅇ } \\ & 0 \end{aligned}$		$\begin{aligned} & \overline{\mathrm{g}} \\ & \text { 刮 } \end{aligned}$	$\begin{aligned} & \frac{2}{y} \\ & \text { ón } \end{aligned}$	z	즟
\cong	$\begin{aligned} & \text { 苟 } \\ & \text { E! } \end{aligned}$	E																	或
三		E																	Ј
\cong	苞	）																	¹
$\stackrel{\text { }}{\exists}$	\％	）																	砍
\pm	$\begin{aligned} & \text { 膏 } \\ & \text { an } \end{aligned}$	$\stackrel{\infty}{\square}$		$\stackrel{\text { ¢ }}{\sim}$	－	$\stackrel{̣}{\square}$	$\stackrel{\otimes}{\infty}$	$\stackrel{\stackrel{\rightharpoonup}{\infty}}{\dot{\alpha}}$	侖	$\stackrel{\infty}{\sim}$	$\begin{aligned} & \text { N } \\ & \text { Bi } \end{aligned}$	$\stackrel{\circ}{\circ}$	z	$\begin{aligned} & \stackrel{\rightharpoonup}{6} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$		菏	㜢	z	픛
\cong	¢ O E	？																	矿
\cong	高	를																	唇

三	边	를																	雨
$\stackrel{\infty}{\exists}$	迤	立																	或
$引$	遃	考																	钅
$\stackrel{\text { ® }}{ }$	$\begin{aligned} & \text { し. } \\ & \text { 首 } \end{aligned}$	\cdots		הี	枵	号	¢ָ	$\underset{\sim}{\text { ® }}$	答	－	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$		亿	$\begin{aligned} & \text { ⿹ㅠㅈ } \\ & \text { 응 } \end{aligned}$	$\begin{aligned} & \text { an } \\ & \text { ED } \\ & \text { En } \end{aligned}$		㜢	\％	ت
$\stackrel{\square}{\Xi}$		立																	戓
İ	$\begin{aligned} & \text { Q } \\ & \text { 克 } \end{aligned}$	$\stackrel{\text { ® }}{\text { ® }}$	$\stackrel{\text { E }}{\substack{\text { a }}}$	$\stackrel{\stackrel{\rightharpoonup}{3}}{\square}$	๗ٌ	K̃	$\stackrel{n}{\stackrel{n}{0}}$	$\stackrel{.0}{0}$	$\stackrel{\text { 亏े}}{9}$	？	$\begin{aligned} & \stackrel{\cong}{8} \\ & \stackrel{\rightharpoonup}{6} \end{aligned}$		z	$\begin{aligned} & \overline{\ddot{6}} \\ & \stackrel{0}{0} \end{aligned}$		च	\％	Z	즟
$\stackrel{\text { N }}{\sim}$	$\begin{aligned} & \text { 边 } \\ & \text { 克 } \end{aligned}$	会	$\xrightarrow{\text { ¢ }}$	ત̇	孚	$\stackrel{\text { a }}{ }$				\％	$\begin{aligned} & \text { İ } \\ & \text { ल̃ } \end{aligned}$	∞	z	$\begin{aligned} & \text { च्⿳े口 口㇒ } \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \text { an } \\ & \text { ED } \\ & \text { En } \end{aligned}$	\％	㜢	\％	愿
$\stackrel{\text { さ }}{\text { g }}$		家																	唇
先	$\begin{aligned} & \text { Q } \\ & \text { O} \\ & \text { En } \end{aligned}$	曼																	矿
®		考																	\％
즐	发																		
$\stackrel{\infty}{\rightrightarrows}$	$\begin{aligned} & \text { O. } \\ & \text { O. } \\ & \hline \end{aligned}$	E																	Ј
ปิ	告	立																	戓
$\stackrel{\text { 악 }}{ }$	\％	E																	듳
$\stackrel{\text { T }}{=}$	\％	E																	T
$\stackrel{\sim}{\sim}$	\％	知																	
$\stackrel{\sim}{\sim}$	\％	咅																	唇

$\stackrel{\text { 寺 }}{\sim}$	\％	를										¢		W				\％	唇
$\stackrel{\cong}{\sim}$	$\begin{aligned} & \text { O} \\ & \text { ! } \end{aligned}$	를	$\begin{gathered} \stackrel{\circ}{\infty} \\ \substack{\infty} \end{gathered}$	$\underset{\text { in }}{\text { IN }}$	$\stackrel{\infty}{8}$	$\underset{\substack{n \\ \underset{\sim}{n} \\ \hline}}{\text { n }}$	$\begin{aligned} & \underset{\sim}{\mathcal{G}} \\ & \underset{\sim}{n} \end{aligned}$	$\stackrel{\pi}{n}$	®ٌ8080		$\begin{aligned} & \text { İ } \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$		z	岛			岩	Z	䂞
$\stackrel{\circ}{\square}$		会	$\begin{gathered} \stackrel{\circ}{\infty} \\ \stackrel{\alpha}{\alpha} \end{gathered}$	$\begin{aligned} & \tilde{y} \\ & \underset{\sim}{n} \end{aligned}$	浐	$\begin{aligned} & \text { J } \\ & \text { di } \end{aligned}$	$\begin{gathered} \stackrel{6}{7} \\ \underset{\sim}{2} \end{gathered}$	$\begin{aligned} & \text { O} \\ & \text { di } \end{aligned}$	$\begin{aligned} & \text { ®̈ } \\ & \end{aligned}$	নু		¢ิ		$\begin{aligned} & \text { ⿹ㅏㅄ } \\ & \text { U } \end{aligned}$	\sim		岩	\％	唇
$\stackrel{\text { ®n }}{\sim}$		E																	릋
$\stackrel{\infty}{\cong}$		E																	㦴
$\stackrel{\text { \％}}{\sim}$	$\begin{aligned} & \text { 区o } \\ & \text { 品 } \end{aligned}$	咼	$\begin{gathered} \text { 筑 } \end{gathered}$		È	$\stackrel{\underset{+}{木}}{\stackrel{\rightharpoonup}{\alpha}}$	$\begin{aligned} & \text { ঞ̈ } \\ & \text { di } \end{aligned}$	픙	答		$\begin{gathered} \text { g } \\ \stackrel{y}{6} \end{gathered}$		z̊				宕	\％	
$\stackrel{\text { I }}{ }$		雪	$\stackrel{\text { \％}}{\substack{\text { ¢ }}}$	¢	$\stackrel{\sim}{\sim}$	$\stackrel{\infty}{\circ}$			矿	¢		$\stackrel{+}{+}$	z	辰				20	䂞
き		意	$\underset{\text { di }}{\substack{\text { an }}}$	－	$\stackrel{\text { N }}{\sim}$	$\begin{gathered} \infty \\ \underset{\sim}{n} \end{gathered}$	$\begin{aligned} & \text { 冗a } \\ & \underset{\infty}{\infty} \end{aligned}$	$\stackrel{\cong}{0}$	$\underset{\sim}{\underset{\sim}{7}}$	－	$\begin{aligned} & \infty \\ & \stackrel{\infty}{i} \\ & \infty \\ & \infty \end{aligned}$		z	$\begin{aligned} & \text { ⿹ㅏㅄ } \\ & \text { 응 } \end{aligned}$	－			\％	砏
さ		呂																	砍
$\stackrel{\text { 年 }}{=}$	$\begin{aligned} & \text { す⿳亠口冋几} \\ & \text { an } \end{aligned}$	를																	砏
声		或																	或
き	$\begin{aligned} & \text { Q } \\ & \text { D } \\ & \text { B } \end{aligned}$	ソ							$$					亭				2	
$\stackrel{\square}{2}$		会							¢	等			z\％		言总荡		\％	\％	즟
星		를																	E
$\stackrel{\infty}{ \pm}$	$\begin{aligned} & \text { 骨 } \\ & \text { En } \end{aligned}$	E	$\stackrel{\circ}{\circ}$	$\stackrel{\infty}{\infty}$	$\underset{\sim}{\text { F }}$	¢			蕆				z̊	苞				$\stackrel{\circ}{2}$	或
$\stackrel{\text { g }}{ }$		U	$\stackrel{n}{\text { i }}$	$\stackrel{\sim}{\infty}$	$\stackrel{\text { ® }}{\substack{\text { a }}}$	\％ั응	N	융	咸	守	第	$\stackrel{\circ}{i}$		岩	気		\％	\％	즟
$\stackrel{8}{7}$		嗉	$\xrightarrow[\substack{\text { a } \\ \text { ¢ } \\ \\ \hline}]{ }$	3	$\xrightarrow{\text { d }}$	$\stackrel{\text { I }}{\sim}$			$\stackrel{\sim}{\gtrless}$	$\stackrel{m}{m}$			z	或			－	\％	唇

							3						1	1	=	
	1	,	O	8	\%		\%					1	11	1	1	
-																1
-																1
1		\%					1			,				4	1	1
-		,	0	5	\%		:					1	1	4	1	1
-	1	:	:	8	\%		1	:			.	1	1	8		11
$\underline{8}$	1	\%	8	\%	8		S					11	11	1		1
-		,	\%	\%	8		8	:				1	1	1		1
1	1	:	8	8	${ }^{3}$:						11	8		
-	1	:	83		${ }^{2}$	\%	8	,				,	1	8		: 1
5		\%	3	\%	=			\%					1	8		1
${ }^{1}$	1	,	S	\%	8		3	:					11	1		$\cdots 1$
-	1	\%										1	1			
${ }^{3}$		${ }^{2}$														
		:														1

	:												11	1		1
1	1	:			:		\%				8	1	II	$\frac{1}{2}$		$=1$
${ }^{-1}$	-	:	8				1				8	1	11	1		
-	1	:	8	1	S		\%				8	1	11	${ }_{1}$		2
\square	1	:	8	\%	\%		\%			:		1	1	1		
-	1	8	\%	\%	\%		:				8	1	11	1		: 1
$\stackrel{5}{5}$	1															
\%	1															
	1															
${ }^{8}$																
B	1															
${ }^{5}$		${ }^{2}$	1		1	8	8				8			1		* 1
$\stackrel{5}{5}$	1	:				\%	18				8	1	1	1		
-	\%	:					1				8	1	1	1		
	1	\%	\%				\%				8	1	1	1		
	1	3				3	8	\%				\%	1	18		
													11	8		

$\stackrel{\text { J }}{\sim}$	言	免	茳	$\stackrel{\square}{\text { ® }}$	$\stackrel{\circ}{\circ}$	$\stackrel{\infty}{\sim}$	$\stackrel{\infty}{\square}$	$\stackrel{\infty}{9}$	$\stackrel{\bar{\infty}}{\stackrel{\rightharpoonup}{\circ}}$	¢ٌ	$\stackrel{\infty}{\stackrel{\infty}{\sim}}$	\cdots	zㄴํ	［				\％	或
$\stackrel{\otimes}{\otimes}$		交																	或
$\stackrel{\circ}{\square}$	$\begin{aligned} & \text { N } \\ & \text { E } \\ & \hline 1 \end{aligned}$	¢	学	$\stackrel{\text { ® }}{\sim}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \infty \end{aligned}$	\％	$\stackrel{\rightharpoonup}{6}$	志	¢ิ¢	¢\％	$\begin{aligned} & \text { N} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	¢	z	$\begin{aligned} & \text { ⿹ㅏㅇ } \\ & \text { O } \end{aligned}$				\％	圧
$\stackrel{\text { ® }}{\sim}$	$\begin{aligned} & \hat{E} \\ & \text { E } \end{aligned}$	家																	唇
$\stackrel{\infty}{\Perp}$	$\stackrel{\hat{\rightharpoonup}}{\bar{E}}$	立																	或
$\stackrel{\text { ® }}{=}$		를																	岩
$\stackrel{\circ}{\square}$	$\begin{aligned} & \text { I } \\ & \text { In } \end{aligned}$	答																	
$\stackrel{\rightharpoonup}{\square}$	$\overline{\hat{E}}$	鲑		ત્লુ	$\stackrel{\Gamma_{\infty}}{\infty}$	$\stackrel{ٌ}{\square}$	ત্તী	बे	$\begin{aligned} & \text { 熹 } \\ & \underline{9} \end{aligned}$	$\stackrel{\infty}{\sim}$	$\underset{\substack{\mathrm{B}}}{\stackrel{\rightharpoonup}{6}}$	is	z	$\begin{aligned} & \text { ت⿹\zh26灬犬 } \\ & \text { U } \end{aligned}$			\％	\％	钅
Ǒ	言	冎	$\underset{\substack{\circ \\ \\ \hline}}{\circ}$	$\underset{\substack{\infty \\ \underset{\sim}{\infty} \\ \hline}}{ }$	壳	$\begin{aligned} & \overline{\breve{y}} \\ & \hline 0 \end{aligned}$				管	$\begin{aligned} & \stackrel{\otimes}{\otimes} \\ & \stackrel{2}{2} \end{aligned}$	n	z					\％	唇
$\stackrel{\text { ® }}{ }$	$\begin{aligned} & \overline{\bar{a}} \\ & \text { E } \end{aligned}$	3																	唇
$\stackrel{ \pm}{\square}$	$\begin{aligned} & \text { 들 } \\ & \text { E } \end{aligned}$	家																	或
※	$\begin{aligned} & \overline{\overline{0}} \\ & \text { En } \end{aligned}$	立																	砬
$\stackrel{\circ}{\square}$	$\begin{aligned} & \overline{\overline{0}} \\ & \text { En } \end{aligned}$	F																	唇
$\stackrel{\text { ® }}{ }$	気	$\overline{3}$																	喽
$\stackrel{®}{\square}$	雨	를			＋				¢			3	zㄴํ	岛	咢			\％	唇
\％	首	$\frac{\text { m }}{\text { ¢ }}$	$\stackrel{\text { ¹ }}{\underset{\sim}{\infty}}$	$\stackrel{\text { ¢ }}{\text { ¢ }}$	$\underset{\sim}{\text { E }}$	总	获	等	$\underset{\sim}{\infty}$	$\underset{\infty}{\ddagger}$	$\stackrel{\text { ¢ }}{\stackrel{8}{7}}$	$\stackrel{+}{\sim}$	z\％	흥	㕆		$\begin{aligned} & \stackrel{y}{b} \\ & \frac{1}{\#} \\ & \vdots \end{aligned}$	\％	㜢
\％	言	$\frac{4}{3}$	筞	管	$\stackrel{\infty}{\stackrel{\circ}{-}}$	蜽			¢	\％		$\stackrel{+}{4}$	z		哭			\％	砍

ฐ్త్ర	衰	立																	長
ปั	$\begin{aligned} & \bar{\partial} \\ & \underline{a} \end{aligned}$	乭	冎	\％	\％	$\overrightarrow{\mathrm{q}}$	¢	区－¢	\％	－亏．	$\begin{aligned} & \sqrt{n} \\ & \stackrel{i}{6} \\ & \hline \end{aligned}$	$\stackrel{+}{6}$	z	${ }_{0}^{5}$				z	듳
®	E	門	$\underset{\substack{\text { a } \\ \text { rin }}}{ }$	答	$\stackrel{\infty}{\stackrel{\circ}{\overparen{-}}}$	¢	$\stackrel{\text { ® }}{\text { ¢ }}$	淢	\％	∞	$\underset{\underset{i}{\lambda}}{\stackrel{\rightharpoonup}{\lambda}}$	\％	\％	$\stackrel{\text { ²，}}{0}$	$\begin{aligned} & \text { 硈 } \\ & \text { 矿 } \end{aligned}$			z	矿
等		考																	戓
๕	产	$\frac{\frac{2}{z}}{z}$																	枈
\％																			
ล	$\begin{aligned} & \text { E } \\ & \text { B } \end{aligned}$	免	$\stackrel{8}{6}$	号	－	$\stackrel{\circ}{\text { ci }}$	第	$\stackrel{\sim}{\text {－}}$	$\begin{aligned} & \overline{\text { In }} \\ & \stackrel{0}{2} \end{aligned}$	～2	$\begin{aligned} & \text { ప. } \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	$\stackrel{\sim}{i}$	z	$\begin{aligned} & \text { ⿹ㅠㅇ } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 咅 } \\ & \text { 㪊 } \end{aligned}$			\％	戓
$\stackrel{\square}{\square}$	츨		$\stackrel{\leftrightarrow}{6}$	$\frac{⿳ 亠 丷 厂 犬}{\text { ch }}$	－	¢	骨	$\begin{gathered} \check{\infty} \\ \stackrel{\sim}{2} \end{gathered}$	$\underset{\substack{\text { O} \\ \hline}}{ }$	$\stackrel{\Im}{8}$	$\begin{aligned} & \text { Ö } \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	$\stackrel{7}{7}$	z	\％	$\begin{aligned} & \text { 咅 } \\ & \text { 碼 } \end{aligned}$			\％	或
®్త్ర	$\begin{aligned} & \text { 气 } \\ & \text { 首 } \end{aligned}$	를																	皆
$\stackrel{\bigcirc}{\text { ® }}$	$\begin{aligned} & \text { N } \\ & \text { 首 } \end{aligned}$	$\frac{\square}{\text { ® }}$	\％	$\stackrel{8}{8}$	$\stackrel{\circ}{\circ}$	$\stackrel{\bar{\sim}}{\stackrel{1}{+}}$	曆	尔	\％	$\stackrel{\square}{\infty}$	$\begin{gathered} \stackrel{\infty}{+} \\ \stackrel{\rightharpoonup}{\gtrless} \end{gathered}$	$\stackrel{4}{6}$	\％	\％	$\begin{aligned} & \text { 覀 } \\ & \text { 㪊 } \end{aligned}$			z	鹿
玉	$\begin{aligned} & \hat{\partial} \\ & \underline{a} \end{aligned}$	$\frac{\text { x }}{\frac{1}{3}}$	$\begin{aligned} & \text { ন্ধে } \end{aligned}$	$\stackrel{ \pm}{\vec{n}}$	$\stackrel{\circ}{\circ}$	$\stackrel{5}{\sim}$	ה	त̃	$\underset{\underset{\sim}{\mathrm{g}}}{\stackrel{\text { g }}{2}}$	です	$\begin{aligned} & \text { oct } \\ & \text { ©i } \end{aligned}$	¢	\％	\％	$\begin{aligned} & \text { an } \\ & \stackrel{\text { din }}{0} \end{aligned}$	$\begin{aligned} & \text { g } \\ & 0 \\ & \text { 䚯 } \end{aligned}$	$\begin{aligned} & \text { 亮 } \\ & \text { 豆 } \end{aligned}$	z	㜢
ปี	$\begin{aligned} & \text { I } \\ & \text { 首 } \end{aligned}$	考																	㦴
$\stackrel{\text { a }}{\text { a }}$	$\begin{aligned} & \text { E } \\ & \text { 首 } \end{aligned}$	令																	㦴
$\stackrel{\text { g }}{\text { a }}$	気	立																	喽
$\stackrel{n}{3}$	会	立																	㦴
$\stackrel{\bigcirc}{\square}$	気	，																	或
こ	気	奂	$\stackrel{7}{4}$	$\stackrel{\bar{m}}{=}$	ત̛̣	¢	$\stackrel{\text { O}}{\square}$	$\stackrel{\square}{6}$	－	శ్ర	$\begin{gathered} \text { n } \\ \substack{\infty \\ 0} \end{gathered}$	ה	\％	J	㜢		亳	\％	第

$\stackrel{\infty}{\beth}$	自	立																	長
ఫे	会	立																	戓
ష్త్	$\begin{aligned} & \text { E } \\ & \text { B } \end{aligned}$	嶴	会	痕	n		$\stackrel{\text { ç }}{\substack{0}}$	$\stackrel{\infty}{ٌ}$	$\begin{aligned} & \text { J } \\ & \stackrel{y}{n} \\ & \end{aligned}$	す	$\begin{aligned} & \tilde{\tilde{N}} \\ & \stackrel{y}{さ} \end{aligned}$	${ }^{7}$	z				㜢	\％	
ป్త	言	$\frac{3}{3}$																	戓
ส్	$\begin{aligned} & \hat{\overline{0}} \\ & \text { En } \end{aligned}$	를																	第
ત్ส	$\begin{aligned} & \text { 들 } \\ & \text { E } \end{aligned}$	를																	歌
先	言	咙																	岩
ส	$\begin{aligned} & \overline{\bar{t}} \\ & \text { En } \end{aligned}$	寻																	宕
筞		$\frac{3}{3}$																	或
ส	$\begin{aligned} & \hat{O} \\ & \underline{E} \end{aligned}$	交																	戓
ส্ส̃	$\overline{\hat{0}}$	倉																	皆
ส్తి	\hat{E}	怎	$\begin{gathered} \stackrel{n}{c} \\ \underset{\sim}{2} \end{gathered}$	$\frac{\mathfrak{Z}}{\mathrm{i}}$	$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$	$\underset{\sim}{\tilde{\sim}}$			$\stackrel{\mathscr{O}}{=}$	8	导	\％	\％	$\begin{aligned} & \text { ⿹ㅡㅄ } \\ & \text { 응 } \end{aligned}$				\％	宕
（	気	立																	
］	気	交																	或
ก	言	交																	产
ก	首	左	$\stackrel{\text { ç }}{\text { ¢ }}$	¢	$\stackrel{\text { ते }}{\text { ¢ }}$	$\stackrel{\text { Ê}}{ }$	$\stackrel{\text { ® }}{\text { ® }}$	$\stackrel{\text { a }}{\substack{\text { a }}}$	$\xrightarrow[\text { ¢ }]{\substack{\text { c } \\ \text {－}}}$	$\stackrel{\infty}{¢}$	¢	∞	\％		碰		宕	z	皆
艺	E	\％																	矿

～	衰	立																	長
ก	言	年	$\stackrel{\text { ¢ }}{\text { ¢ }}$	合	㗊	咸	年	$\stackrel{\circ}{\square}$	\％\％	$\stackrel{+}{\infty}$	$\stackrel{\infty}{\stackrel{\circ}{*}}$	\bar{m}	z	$\begin{aligned} & \text { च⿹\zh26山己 } \\ & \text { O } \end{aligned}$			㜢	\％	砏
กิ	E	者																	戓
$\stackrel{\sim}{\sim}$		F																	戓
\％	$\stackrel{\hat{O}}{\bar{\theta}}$	怎	㐌	¢	$\stackrel{\text { さ }}{\text { ¢ }}$	菏			$\underset{\infty}{\text { ¢ }}$	\cdots	$\begin{aligned} & \text { \% } \\ & \text { BO } \end{aligned}$		z	$\begin{aligned} & \overline{Z_{2}^{\prime}} \\ & \text { O} \end{aligned}$				\％	颜
¢	$\begin{aligned} & \text { 츨 } \\ & \text { 首 } \end{aligned}$	E																	或
¢	$\begin{aligned} & \text { N } \\ & \text { 首 } \end{aligned}$	考																	矿
先	$\begin{aligned} & \text { 츨 } \\ & \text { Ben } \end{aligned}$	寻																	宕
等	$\stackrel{\hat{訁}}{\underline{E}}$	立																	或
志	$\begin{aligned} & \text { N } \\ & \text { 首 } \end{aligned}$	立																	戓
年	$\begin{aligned} & \hat{\bar{O}} \\ & \text { En } \end{aligned}$	考																	枈
$\stackrel{\square}{\square}$	$\begin{aligned} & \text { I } \\ & \text { 首 } \end{aligned}$	考																	㦴
年	言	立																	㦴
$\stackrel{\sim}{\sim}$	気	U	$\overline{\mathrm{i}}$	$\stackrel{\stackrel{\circ}{¢}}{\substack{\circ}}$	$\stackrel{\infty}{\infty}$	宮	\％${ }^{\text {a }}$	$\stackrel{\text { \％}}{\substack{\text { O }}}$	$\stackrel{\overline{7}}{\underset{\mathrm{I}}{2}}$	\％		$\stackrel{\text { ¢ }}{ }$	¿	F		g 詸 ¢	\％	\％	㜢
$\stackrel{\text { ？}}{\square}$	会	立																	㦴
）	気	立																	或
＂	会	\％																	戓

กี	产	를																	硈
\％		立																	戓
先		怎	鱼	\％	号	¢્¢़	88．	\％\％\％	$\stackrel{n}{\bar{i}}$	\％	$\begin{gathered} \infty \\ \stackrel{\infty}{6} \\ \end{gathered}$	\cdots	\％	［				z	戓
ก		考																	戓
ٌ	$\stackrel{\hat{O}}{\bar{\theta}}$	楌	\％	㫌	$\mathscr{O}_{0.0}^{0}$	苟			$\begin{aligned} & \stackrel{R}{n} \\ & \underset{~}{7} \end{aligned}$	๕		ה	z	－		$\begin{aligned} & \ddot{0} \\ & 0 \\ & \ddot{訁} \\ & \text { 己. } \end{aligned}$	宕	z	颜
）	$\begin{aligned} & \hat{\partial} \\ & \text { E } \end{aligned}$	를																	或
$\stackrel{\otimes}{\text { a }}$	$\begin{aligned} & \text { N } \\ & \text { 首 } \end{aligned}$	考																	矿
ป	言	E																	或
\％	言	$\frac{\text { m }}{\text { \％}}$	¢	$\stackrel{\circ}{\circ}$	F	铬	哭	筞	$\stackrel{\mathscr{\infty}}{\stackrel{\infty}{c}}$	$\stackrel{\infty}{\sim}$	$\stackrel{\text { ®. }}{\underset{\sim}{~}}$	กֻ	2	\％				\％	戓
区	$\begin{aligned} & \text { N } \\ & \text { 首 } \end{aligned}$	知	$\frac{\stackrel{\circ}{4}}{\substack{4}}$	$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$		$\underset{\sim}{\text { ® }}$	雚	篂	$\begin{gathered} \bar{q} \\ \underset{~}{寸} \end{gathered}$	$\stackrel{\text { ¢ }}{\infty}$	$\begin{aligned} & \text { İ } \\ & \text { Ò } \end{aligned}$	$\stackrel{\text { ® }}{ }$	\％	騩	$\begin{aligned} & \text { on } \\ & \text { E. } \\ & \text { E} \end{aligned}$			z	鹿
区్త్ర	$\begin{aligned} & \hat{\bar{O}} \\ & \text { En } \end{aligned}$	E																	枈
\％	$\begin{aligned} & \text { I } \\ & \text { 首 } \end{aligned}$	立																	㦴
薙	合																		
\％	気	를																	宕
\％	会	立																	㦴
－	気	左	$\begin{aligned} & \underset{\infty}{ \pm} \\ & \underset{\sim}{j} \end{aligned}$	\％	$\stackrel{\infty}{\sim}$	喜	$\begin{aligned} & \text { 咨 } \\ & \underset{\sim}{f} \end{aligned}$	$\begin{aligned} & \underset{\sim}{む} \\ & \end{aligned}$	$\begin{aligned} & \stackrel{8}{6} \\ & \underline{6} \end{aligned}$		$\begin{aligned} & \text { İ } \\ & \text { © } \end{aligned}$		\％	\％			㜢	\％	第
$\stackrel{\square}{\square}$	気	品	＋	$\stackrel{n}{7}$	令	－		漦	$\xrightarrow{\text { ¢ }}$	年	$\begin{aligned} & \text { bob } \\ & \dot{0} \end{aligned}$	$\stackrel{\circ}{+}$	\％	或	㜢			\％	릋

¢	言	苔	$\stackrel{\stackrel{1}{n}}{\underset{\sim}{m}}$	$\stackrel{\sqrt{n}}{=}$	－		$\xrightarrow{\text { E }}$	答		\cdots		$\stackrel{\square}{6}$	z	或	訔	矿		\％	碰
척	言	？	¢	$\stackrel{\sim}{\infty}$	考			\％ু	$\underset{\sim}{\bar{\circ}}$	$\stackrel{\infty}{\text { ® }}$	$\begin{aligned} & \text { B } \\ & \stackrel{y}{2} \end{aligned}$		z	F			砢	\％	
－	$\begin{aligned} & \text { I } \\ & \text { B } \end{aligned}$	］																	或
ה̇	$\begin{aligned} & \text { N } \\ & \text { 首 } \end{aligned}$	$\frac{3}{3}$																	矿
§	$\begin{aligned} & \text { N } \\ & \text { 首 } \end{aligned}$	立																	或
さ	$\begin{aligned} & \text { 츨 } \\ & \text { 首 } \end{aligned}$	考																	或
合	$\begin{aligned} & \overline{\hat{a}} \\ & \text { 首 } \end{aligned}$	를																	唇
¢	$\hat{\vdots}$	宕	$\stackrel{\text { ® }}{\substack{+\sim}}$	笭	ה	$\begin{gathered} \infty \\ \stackrel{\infty}{\dot{q}} \end{gathered}$	$\begin{aligned} & \underset{8}{8} \\ & \underset{子}{2} \end{aligned}$	$\stackrel{\circ}{\circ}$	$\stackrel{\bar{\infty}}{\text { ® }}$	$\underset{\infty}{\infty}$	$\begin{gathered} \stackrel{\rightharpoonup}{\infty} \\ \text { Ó } \end{gathered}$	\cdots	z	$\begin{aligned} & \overline{\ddot{W}} \\ & \text { O} \end{aligned}$				\％	気
E	$\begin{aligned} & \hat{\vdots} \\ & \underline{0} \end{aligned}$	完																	長
$\stackrel{\infty}{\text { ¢ }}$	$\begin{aligned} & \text { E } \\ & \text { it } \end{aligned}$	免	芯		$\stackrel{\text { 菏 }}{\text { ¢ }}$	$\stackrel{\rightharpoonup}{\text { F }}$			चু	N		$\stackrel{\infty}{+}$	z		$\begin{aligned} & \text { on } \\ & \text { E. } \\ & \text { En } \end{aligned}$				矿
ิิ	$\begin{aligned} & \hat{\bar{O}} \\ & \text { En } \end{aligned}$	$\frac{3}{3}$																	或
®	$\begin{aligned} & \bar{\partial} \\ & \underline{E} \end{aligned}$	立																	気
$\stackrel{\rightharpoonup}{\sim}$	$\begin{aligned} & \hat{0} \\ & \underline{E} \end{aligned}$	䓓	$\begin{aligned} & \stackrel{\circ}{8} \\ & \underset{\sim}{2} \end{aligned}$	䒽	$\stackrel{8}{9}$	$\stackrel{n}{\mathrm{I}}$	$\stackrel{\text { ® }}{\substack{\text { a }}}$	㻟	¢ั内	\％	$\begin{gathered} \stackrel{\rightharpoonup}{\circ} \\ \underset{\infty}{\infty} \end{gathered}$	m	z	$\begin{aligned} & \overline{\ddot{6}} \\ & \stackrel{0}{0} \end{aligned}$	号			\％	等
区్త్ర	合	$\overline{3}$																	矿
®	自	$\frac{\pi}{3}$	¢ิ	$\stackrel{8}{\circ}$	$\stackrel{\text { ®̃ }}{\text { ¢ }}$	年	$\stackrel{\circ}{\infty}$	さ	亏̈	¢	$\begin{gathered} \text { 筞 } \end{gathered}$	$\stackrel{\sim}{\sim}$	z	辰		碳	亳	z	或
$\stackrel{\text { ® }}{\text { ¢ }}$	自	会	－	弪	同。	E	${ }^{5}$	¢	$\stackrel{\circ}{0}$ $\stackrel{\sim}{8}$	$\stackrel{\sim}{\infty}$	$\begin{aligned} & \text { 亮 } \\ & 0 . \end{aligned}$	$\stackrel{\sim}{i}$	\％	套	穊		O゙	z	戓
®	気	考																	

1	1	1	：				10				\％		1	11	：	
－	1															
${ }^{1}$	1															
1	1															
8	，															
－	1	\％	\because	8	\％	8	1	$=1$		左	$!$	1	1	1	：	
8	1	S	\％	\％	\％	\％	8	：		左	1	1	11	11	，	
1	1															
8	1															1
1	1															
8	1	：	：	8	5		8	\％			1	11	11	4	＝	1
1	1	：	8	8	\％		\％	＝			1	1	1	8	，	
1	1															1
8	1															1
－	1	\％	8	5			\％				1	1	1	8	：	1
	1															
	1	\％														1

－	츨	交																	픙
苟	言	盛	$\stackrel{\rightharpoonup}{\square}$	$\stackrel{\text { ¢̛ }}{ }$	蔚	층			$\stackrel{\text { 芯 }}{=}$	$\stackrel{\circ}{\sim}$	$\frac{\stackrel{2}{\dot{o}}}{8}$	$\stackrel{+}{+}$	¿	或			宕	z	砏
合	言	茳		答	$\stackrel{\rightharpoonup}{\circ}$	等				Σ		\cdots	๕	J			䂞	z	砏
\％	$\overline{\hat{0}}$	帚	⿳亠㐅冖⿺𠃑	$\stackrel{\infty}{\sim}$	¢	号	吉		$\begin{aligned} & \stackrel{+}{N} \\ & \stackrel{y}{6} \end{aligned}$	志	$\stackrel{\text { ה. }}{\substack{\text { in }}}$	$\stackrel{\sim}{i}$	\％	或	$\begin{aligned} & \text { an } \\ & \text { ED } \\ & \text { En } \end{aligned}$			z	蛈
－	$\overline{\hat{O}}$	\％	$\stackrel{\stackrel{\rightharpoonup}{\circ}}{\stackrel{\sim}{c}}$	$\stackrel{\text { ® }}{\frac{8}{7}}$	㚜	$\underset{\sim}{n}$	$\underset{\sim}{\underset{\sim}{\mathrm{O}}}$	$\underset{\text { ત̃ }}{\text { İ }}$	$\begin{aligned} & \text { 翤 } \\ & \stackrel{1}{0} \end{aligned}$	$\stackrel{\infty}{\sim}$	$\begin{aligned} & \text { İ } \\ & \text { Ni } \end{aligned}$	\cdots	＜	$\begin{aligned} & \text { ⿹ㅠㅇ } \\ & \text { 而 } \end{aligned}$	$\begin{aligned} & \text { 咅 } \\ & \text { 硈 } \end{aligned}$		㜢	z	钅
$\stackrel{\infty}{\sim}$	$\begin{aligned} & \overline{\hat{0}} \\ & \text { En } \end{aligned}$	E																	或
\％	$\begin{aligned} & \text { 들 } \\ & \text { E } \end{aligned}$	家																	矿
$\stackrel{\circ}{\sim}$	$\overline{\hat{E}}$	号																	或
$\underset{\sim}{\text { ® }}$	$\begin{aligned} & \hat{O} \\ & \text { 首 } \end{aligned}$	立																	唇
$\stackrel{\sim}{\sim}$	$\begin{aligned} & \hat{\bar{O}} \\ & \text { 首 } \end{aligned}$	$\frac{3}{3}$																	唇
$\stackrel{\sim}{\sim}$	$\begin{aligned} & \hat{\bar{u}} \\ & \text { Bin } \end{aligned}$	家																	或
$\stackrel{ \pm}{\sim}$	产	怎	$\stackrel{\text { O－}}{\square}$	$\underset{\text { స్ }}{ }$	$\stackrel{\rightharpoonup}{5}$	$\stackrel{\stackrel{\leftrightarrow}{+}}{\substack{+ \\ \hline}}$			$\begin{aligned} & \underset{\sim}{n} \\ & \underset{n}{n} \end{aligned}$	F	$\begin{gathered} \text { \% } \\ \text { ה } \\ \hline \end{gathered}$	₹	z	$\begin{aligned} & \text { ⿹̈} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \text { on } \\ & \text { 坒 } \\ & \hline \end{aligned}$			z	㡶
$\stackrel{n}{n}$	$\begin{aligned} & \hat{e} \\ & \text { it } \end{aligned}$	\％																	戓
$\stackrel{\circ}{\oplus}$	言	\％																	戓
$\stackrel{\text { ® }}{\sim}$	E	䨖																	或
$\stackrel{\infty}{\sim}$	気	立																	断
$\stackrel{\text { ¢ }}{\sim}$	䍖	를																	皆

－	言	$\frac{3}{3}$																	或
－	或	㪯																	唇
İẽ	$\begin{aligned} & \text { N } \\ & \text { E } \end{aligned}$	怎	总	$\stackrel{\otimes}{\stackrel{\sim}{\sim}}$	డ్రిరి	合			$\stackrel{\text { N }}{\infty}$	$\stackrel{\infty}{\infty}$		\cdots	๕	$\begin{aligned} & \text { ⿹ㅏㅇ } \\ & 0 \end{aligned}$				\％	
$\underset{\sim}{\text { ® }}$	$\begin{aligned} & \hat{\vec{a}} \\ & \underline{E} \end{aligned}$	艺	$\stackrel{\sim}{\circ}$	$\stackrel{\text { ®̀ }}{\text { ¢ }}$	倉	$\stackrel{\text { g }}{\sim}$	$\stackrel{8}{8}$	－	$\stackrel{m}{\stackrel{\infty}{\infty}}$	$\bar{\infty}$	$\begin{aligned} & \text { \% } \\ & \substack{\text { Ci }} \end{aligned}$	ते	z	$\begin{aligned} & \text { 亏⿹丁口⿵冂⿱丷丅⿵ } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { an } \\ & \text { ED } \\ & \text { En } \end{aligned}$		㜢	z	㜢
－	$\begin{aligned} & \text { Nen } \\ & \text { Ben } \end{aligned}$	立																	或
漡	$\begin{aligned} & \text { 들 } \\ & \text { Be } \end{aligned}$	立																	䂞
－	$\begin{aligned} & \hat{0} \\ & \underline{a} \end{aligned}$	感	$\stackrel{\diamond}{\square}$	ヘั̇	$\stackrel{\circ}{8}$	$\stackrel{\rightharpoonup}{\vec{i}}$	$\stackrel{\stackrel{\rightharpoonup}{0}}{\substack{\text { ® }}}$	त्ส़	$\stackrel{\bar{\infty}}{\underset{\beth}{\mathrm{I}}}$	$\stackrel{\sim}{\sim}$	$\begin{aligned} & \text { 冗o } \\ & \substack{\infty\\ } \end{aligned}$	$\stackrel{i}{i}$	亿	$\begin{aligned} & \text { ت} \\ & \text { B } \\ & \text { O} \end{aligned}$	$\begin{aligned} & \text { an } \\ & \text { 悉 } \end{aligned}$		岩	z	唇
－	气	家																	或
$\stackrel{\sim}{\sim}$		䍃	$\underset{\sim}{j}$	$\begin{aligned} & \text { ñ } \\ & \text { N } \end{aligned}$	＋	$\stackrel{\widetilde{®}}{\stackrel{\text { ® }}{\sim}}$			$\begin{gathered} \stackrel{\circ}{\circ} \\ \stackrel{y}{\circ} \end{gathered}$	त⿹⿺⿻⿻一㇂㇒丶⿱一口犬灬		\cdots	z				\％	z	즟
శ్ల్రి	$\begin{aligned} & \text { N } \\ & \text { En } \end{aligned}$	\％		$\stackrel{\circ}{\text { i }}$	$\stackrel{\circledR}{\circledR}$	$\stackrel{9}{\ddagger}$	$\stackrel{\text { ¢ }}{\square}$	$\underset{\sim}{\text { 冎 }}$	$\stackrel{\circ}{\oplus}$	$\stackrel{\text { }}{\sim}$	$\begin{aligned} & \text { ol } \\ & \text { + } \end{aligned}$	¢	z	$\begin{aligned} & \overline{\tilde{6}} \\ & \text { O} \end{aligned}$			㜢	亿	断
\％	$\stackrel{N}{\underline{a}}$	家																	或
$\bar{\sim}$	N	感	－	$\xrightarrow{\text { N }}$	气̃	$\stackrel{\stackrel{\rightharpoonup}{c}}{\sim}$	告	－	$\frac{n}{a}$	$\stackrel{\sim}{\text { ® }}$	$\stackrel{\gtrless}{\sim}$	寺	z	$\begin{aligned} & \text { Z⿹\zh26灬 } \\ & \text { OU } \end{aligned}$			－	\％	唇
$\stackrel{\text { ® }}{\sim}$	$\begin{aligned} & \text { In } \\ & \text { in } \end{aligned}$	E																	莀
$\stackrel{\sim}{\sim}$	N	年			尔	$\frac{\mathrm{N}}{\mathrm{n}}$	$\stackrel{\text { ® }}{\stackrel{\circ}{\square}}$	$\stackrel{\square}{\square}$	$\stackrel{n}{\infty}$	$\stackrel{\infty}{8}$			z		$\stackrel{\text { \％}}{\text { 号 }}$			z	㜢
劳	言	䨖																	愿
\cdots	自	立																	戓
$\stackrel{\sim}{\sim}$	言	$\frac{3}{7}$																	钅

令	右	会	扁	$\stackrel{\circ}{0}$		$\stackrel{\text { a }}{\text { a }}$	－	$\stackrel{\infty}{\circledR}$	$\begin{aligned} & \text { 冗ٌo } \\ & \stackrel{\rightharpoonup}{6} \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{N}} \\ & \text { N } \end{aligned}$	$\stackrel{\sim}{i}$						\％	㜢
$\stackrel{\sim}{\sim}$	$\begin{aligned} & \text { E } \\ & \text { E } \end{aligned}$	\％																	或
\％	言	$\frac{5}{3}$	或	${ }_{\text {F }}^{\text {i }}$	$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$	$\stackrel{\sim}{\sim}$	$\stackrel{\text { ¢ }}{\sim}$	$\stackrel{\text { ¢ }}{\square}$	$\stackrel{\text { ® }}{\text { ® }}$	$\stackrel{\text { a }}{ }$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{7} \\ & \text { ço } \end{aligned}$	\％	z\％	$\begin{aligned} & \text { च्ê } \\ & \text { U } \end{aligned}$	$\begin{aligned} & \text { 咅 } \\ & \text { 鵘 } \end{aligned}$			\％	
䟓	$\stackrel{\hat{0}}{\underline{0}}$	立																	戓
雩	$\overline{\hat{O}}$	会	$\stackrel{\infty}{\stackrel{\circ}{-}}$			¢	等	菦	$\begin{aligned} & \stackrel{\sim}{1} \\ & \stackrel{\rightharpoonup}{6} \end{aligned}$	กٌ̛	$\begin{gathered} \infty \\ \stackrel{\infty}{n} \\ \stackrel{y}{2} \end{gathered}$	$\stackrel{+}{*}$	z	$\begin{aligned} & \text { ⿹ㅏㅇ } \\ & \text { C } \end{aligned}$			$\begin{aligned} & \frac{E}{D} \\ & \frac{E}{V_{\tilde{W}}^{E}} \end{aligned}$	\％	砏
践		$\begin{aligned} & \text { 希 } \\ & \hline \end{aligned}$	$\underset{\sim}{\pi}$	$\overline{\mathrm{I}}$	崖	$\begin{gathered} \mathscr{O} \\ \text { dien } \end{gathered}$			$\begin{aligned} & \text { 等 } \end{aligned}$	鹪	$\begin{aligned} & \stackrel{?}{⿱ 巳 寸} \\ & \stackrel{\infty}{\infty} \end{aligned}$	in	z	$\begin{aligned} & \text { ت⿹丁口欠 } \\ & \frac{0}{0} \end{aligned}$				\％	唇
等	$\begin{aligned} & \overline{\overline{0}} \\ & \text { En } \end{aligned}$	咅																	唇
寺	$\begin{aligned} & \overline{\bar{y}} \\ & \text { En } \end{aligned}$	云																	或
等	E	핓																	唇
尔	言	交																	戓
告	$\overline{\hat{O}}$	$\frac{\square}{\text { ¢ }}$	$\stackrel{\sim}{\sim}$	－	¢	$\underset{\substack{\infty \\ \underset{\sim}{x}}}{ }$	$\frac{\mathfrak{Z}}{\text { g }}$	$\stackrel{\cong}{i}$	$\stackrel{\rightharpoonup}{\alpha}$	${ }_{\infty}$	$\begin{aligned} & \text { P } \\ & \text { 守 } \end{aligned}$	is	z	合	$\begin{aligned} & \text { 咢 } \\ & \text { 砳 } \end{aligned}$			\％	W
筞	$\begin{aligned} & \text { I } \\ & \text { 首 } \end{aligned}$	免	¢	偁	$\stackrel{\text { 尔 }}{\text {－}}$	$\stackrel{\text { 寺 }}{\substack{\text { c }}}$	$\underset{\substack{\mathrm{i}}}{\substack{\text { re}}}$	$\stackrel{\approx}{\stackrel{ஜ}{i}}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \underset{~}{7} \end{aligned}$	$\stackrel{\text { ¢ }}{\infty}$		is	z	砍				\％	
甬	言	耎	$\stackrel{\bar{\infty}}{\substack{\text { ¢ }}}$	茯	号	等	\％ัֵ	๕	$\begin{aligned} & \bar{\infty} \\ & \stackrel{\infty}{\infty} \end{aligned}$	令		₹	z	$\begin{aligned} & \text { Z⿹\zh26灬力 } \\ & \text { U } \end{aligned}$			－	\％	雨
号	E	号	鏟	ま	$\stackrel{\sim}{\infty}$	$\stackrel{\widetilde{9}}{\square}$	¢	충	$\begin{aligned} & \text { \% } \\ & \stackrel{\circ}{0} \end{aligned}$	\％	$\frac{\varnothing}{8}$	\cdots	z	$\begin{aligned} & \text { ت⿹\zh26灬犬 } \\ & \text { O } \end{aligned}$			\％＂\％	\％	㜢
$\bar{\sim}$	気	$\stackrel{\cup}{\text { S }}$	ç	2\％	さ̃	む్త	－${ }_{\text {® }}^{\text {® }}$	$\stackrel{\text { ñ }}{\stackrel{N}{i}}$	$\stackrel{\text { Q }}{\underset{\sim}{2}}$	$\stackrel{\infty}{\text { ¢ }}$	$\begin{gathered} \text { U } \\ \text { U } \\ \hline \end{gathered}$	$\stackrel{\circ}{0}$	z	$\begin{aligned} & \text { ت} \\ & \text { ت丷 犬 } \end{aligned}$			\％30	\％	戓
®	合	立																	䂞
N	気	立																	

苞	$\begin{aligned} & \text { In } \\ & \hline \underline{E} \end{aligned}$	交																	長
冎		离	$\stackrel{\infty}{\gtrless}$	Ј্̣	等	\％	N	$\stackrel{\infty}{7}$	$\begin{aligned} & \mathbb{Z} \\ & \underset{\sim}{2} \end{aligned}$	n	$\underset{\infty}{\underset{\infty}{\infty}}$	n	\％	$\begin{aligned} & \text { ⿹ㅠㅄ } \\ & \text { 응 } \end{aligned}$	$\begin{aligned} & \text { 咅 } \\ & \text { gn } \\ & \text { gn } \end{aligned}$			z	等
号	$\begin{aligned} & \text { 气 } \\ & \text { an } \end{aligned}$	를																	镸
$\stackrel{\sim}{n}$		를																	長
$\stackrel{\otimes}{\sim}$		를																	镸
合	$\begin{aligned} & \text { E } \\ & \text { 首 } \end{aligned}$	를																	宕
$\stackrel{8}{0}$	$\begin{aligned} & \text { E } \\ & \text { 曾 } \end{aligned}$	를																	镸
区	$\begin{aligned} & \text { N } \\ & \text { Ben } \end{aligned}$	会		合	$\stackrel{\tilde{m}}{0}$	咸	$\stackrel{\circ}{\circ}$	筞	$\stackrel{\circ}{\mathrm{n}}$	N			z	$\begin{aligned} & \text { ⿹ㅠㅄ } \\ & \text { 응 } \end{aligned}$	$\begin{aligned} & \text { an } \\ & \text { E. } \\ & \text { En } \end{aligned}$		宕	z	皆
¢	$\begin{aligned} & \text { E } \\ & \text { 号 } \end{aligned}$	－	$\stackrel{ \pm}{\infty}$	$\stackrel{\circ}{\sim}$	$\stackrel{\text { t }}{\substack{\text { a }}}$	$\stackrel{\circ}{\circ}$		$\stackrel{\circ}{0}$	$\underset{\underset{\sim}{c}}{\stackrel{\rightharpoonup}{0}}$		$\begin{aligned} & \stackrel{8}{6} \\ & \stackrel{y}{2} \\ & \stackrel{1}{2} \end{aligned}$	㧊	\％				\％	z	즟
®	$\begin{aligned} & \hat{\partial} \\ & \underline{E} \end{aligned}$	\％	尃	$\stackrel{\text { ® }}{\text { ¢ }}$	$\stackrel{\text { ® }}{\stackrel{\circ}{\circ}}$	¢			适	志		\cdots	z	$\begin{aligned} & \text { 팜 } \\ & \stackrel{6}{O} \end{aligned}$				z	矿
苟	$\begin{aligned} & \text { E } \\ & \text { Ben } \end{aligned}$	棗	$\stackrel{\infty}{\infty}$	号	$\stackrel{\infty}{\leftrightarrows}$	¢	ิิ．	둥		$\stackrel{\text { ¢ }}{\text { ¢ }}$	$\stackrel{\stackrel{\rightharpoonup}{\square}}{\stackrel{\rightharpoonup}{\infty}}$	ते	z	$\begin{aligned} & \overline{\ddot{W}} \\ & \stackrel{0}{0} \end{aligned}$			岩	z	言
吕	$\begin{aligned} & \text { E } \\ & \text { in } \end{aligned}$	$\stackrel{\text { ？}}{\text { ？}}$	ত্ণ̧		$\stackrel{\text { \＆}}{\substack{\circ \\ \text { ¢ }}}$	충			$\begin{aligned} & \mathfrak{q} \\ & \underset{\sim}{\dot{N}} \end{aligned}$	$\stackrel{0}{\infty}$			z	$\begin{aligned} & \overline{\ddot{6}} \\ & \stackrel{0}{0} \end{aligned}$			${ }^{\circ}$	z	宕
	$\begin{aligned} & \hat{\partial} \\ & \underline{\partial} \end{aligned}$	$\stackrel{\text { m }}{ }$	$\stackrel{\text { ã }}{\text { ¢ }}$	䓂	¢	犬	$\stackrel{\circ}{\circ}$	尔	$\begin{aligned} & \underset{\sim}{\beth} \\ & \hline \end{aligned}$	\％	$\begin{aligned} & \text { 柰 } \\ & \text { 号 } \end{aligned}$	$\stackrel{\sim}{\sim}$	z	\％	E00	\＃ \％ \＃ \％		z	孁
尔	$\begin{aligned} & \text { E } \\ & \text { 夏 } \end{aligned}$	$\stackrel{\text { m }}{ }$	$\stackrel{\text { E }}{\text { A }}$	茴	\％	$\stackrel{®}{\otimes}$	$\stackrel{\square}{\square}$	\％	$\begin{aligned} & \stackrel{\rightharpoonup}{i n} \\ & \stackrel{\rightharpoonup}{6} \end{aligned}$	∞	$\begin{aligned} & \text { ત్రె } \\ & \text { In } \end{aligned}$	\％	z	50\％	沯	碄		z	矿
吕	$\begin{aligned} & \text { E } \\ & \text { E } \end{aligned}$	著	皆	奇	号	$\stackrel{\otimes}{\circ}$			$\stackrel{\%}{\stackrel{\%}{2}}$	$\stackrel{\infty}{\circ}$	$\stackrel{\stackrel{\rightharpoonup}{\circ}}{\substack{\mathrm{A}}}$	$\stackrel{+}{+}$	亿ํ	㦴				z	镸
准	気	無	$\stackrel{\circ}{+}$	区欠	¢	$\stackrel{\infty}{\infty}$	－	กัธ	$\stackrel{\text { 窢 }}{ }$	－	$\begin{aligned} & \overline{m_{n}^{\prime}} \\ & \stackrel{n}{n} \end{aligned}$	$\stackrel{\infty}{\sim}$	zํ	흥	硅			z	長
울	気	इ																	遃

E	会	F																	宸
N	言	를																	唇
$\stackrel{\text { ® }}{\sim}$	$\begin{aligned} & \hat{0} \\ & \underline{a} \end{aligned}$	怎	ก	先	\hat{n}	$\stackrel{\circ}{\stackrel{\circ}{\square}}$	等	－	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\text { O}}{0} \end{aligned}$	$\stackrel{\infty}{\sim}$	$\begin{aligned} & \text { N} \\ & \hat{0} \end{aligned}$	「	z					\％	
$\xrightarrow{\text { 何 }}$	$\begin{aligned} & \hat{\partial} \\ & \underline{a} \end{aligned}$	旨	む̇	£	$\stackrel{\infty}{\circ}$	¢్రై			$\stackrel{\circ}{9}$	n	$\begin{aligned} & \text { ñ } \\ & \stackrel{\leftrightarrow}{\gtrless} \\ & \end{aligned}$		z				韦品	z	圧
会	$\begin{aligned} & \hat{\bar{O}} \\ & \text { Bun } \end{aligned}$	怎	尔	$\stackrel{\circ}{\square}$	$\stackrel{\text { ® }}{\text { ® }}$	$\stackrel{\otimes}{\square}$			$\stackrel{\circ}{\sim}$	$\stackrel{\sim}{\sim}$	$\begin{aligned} & \text { 学 } \\ & \end{aligned}$	$\stackrel{\sim}{\circ}$	z	$\begin{aligned} & \text { ⿹ㅠㅁ } \\ & \text { 응 } \end{aligned}$				z	㡶
$\stackrel{0}{\sim}$	$\begin{aligned} & \text { E } \\ & \text { 首 } \end{aligned}$	怎	$\stackrel{\sim}{\square}$	$\stackrel{\text { Ȯ }}{\substack{\text { ® }}}$	扁	$\xlongequal{\circ}$	\％\％	नेत	$\stackrel{\overline{7}}{\ddagger}$	¢	$\begin{aligned} & \text { \&̈口 } \\ & \stackrel{\circ}{\circ} \end{aligned}$	ल	z	$\begin{aligned} & \text { ⿹̈ㅁ } \\ & \stackrel{0}{0} \end{aligned}$		$\begin{aligned} & \text { 苞 } \\ & \text { 䛌 } \end{aligned}$		z	唇
F	$\begin{aligned} & \hat{0} \\ & \underline{E} \end{aligned}$	知	岡	$\underset{\substack{\infty \\ \hline}}{\infty}$	$\stackrel{\square}{\square}$	¢0．			चु			\bar{m}	z	$\begin{aligned} & \text { ⿹ㅠㅈ } \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \text { 彩 } \\ & \text { 㪊 } \end{aligned}$			z	㜢
$\stackrel{\infty}{\sim}$	合	怎	骨	E	$\stackrel{\circ}{0}$	たें	$\stackrel{\circ}{\stackrel{\circ}{\circ}}$	ज	管	$\stackrel{n}{\infty}$	$\stackrel{ঞ}{\grave{N}}$	$\stackrel{\circ}{\sim}$	z					z	㡶
\％	$\begin{aligned} & \text { E } \\ & \text { 首 } \end{aligned}$	怎	$\stackrel{\sim}{\infty}$	$\stackrel{6}{6}$	$\stackrel{\bar{n}}{0}$	$\stackrel{\rightharpoonup}{\circ}$	可	尺્లి	$\stackrel{\text { İ }}{=}$	$\underset{\sim}{\infty}$	$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{0}{0} \end{aligned}$	ત̇	z					z	砍
$\stackrel{\otimes}{\sim}$	$\begin{aligned} & \bar{\partial} \\ & \underline{E} \end{aligned}$	E																	唇
＂	$\begin{aligned} & \overline{\mathrm{O}} \\ & \underline{a} \end{aligned}$	知																	或
区欠	$\begin{aligned} & \bar{\partial} \\ & \underline{B} \end{aligned}$	知																	唇
$\stackrel{\text { ® }}{\sim}$	$\begin{aligned} & \overline{\overline{3}} \\ & \underline{E} \end{aligned}$	E																	莀
$\stackrel{\text { ® }}{\sim}$	$\begin{aligned} & \text { 들 } \\ & \text { in } \end{aligned}$	$\frac{\widehat{3}}{2}$	$\underset{\underset{\sim}{\mathrm{J}}}{\stackrel{\circ}{\mathrm{~N}}}$	$$		$\stackrel{\bar{\infty}}{\stackrel{\infty}{e}}$		O	$\begin{gathered} \infty \\ \substack{\infty \\ \infty} \end{gathered}$		$\begin{gathered} \bar{N} \\ \underset{\infty}{\infty} \\ \end{gathered}$							z	唇
®	会	\％																	或
$\stackrel{\circ}{\sim}$	自	考																	戓
$\stackrel{\text { ® }}{\sim}$	或	$\frac{3}{3}$																	断

$\stackrel{\infty}{\sim}$	気	$\underset{y}{\infty}$	$\stackrel{\infty}{\text { çi }}$	＋¢＋¢	$\stackrel{\infty}{\circ}$	$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$	$\stackrel{n}{i}$	$\stackrel{\text { ® }}{\text { ¢ }}$	$\stackrel{\text { 年 }}{ \pm}$	$\stackrel{\infty}{\infty}$	$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$	$\bar{\square}$	\％	\％				z	矿
®®	寿	\％	$\stackrel{\square}{\mathrm{j}}$	－	$\stackrel{\text { ® }}{\stackrel{\circ}{=}}$	$\stackrel{ \pm}{\stackrel{ \pm}{\infty}}$	$\stackrel{\bar{c}}{\stackrel{1}{8}}$	$\stackrel{n}{3}$	$\stackrel{8}{\square}$	＊	¢	$\stackrel{\infty}{+}$	®	可	$\begin{aligned} & \text { 亳 } \\ & \text { 硈 } \end{aligned}$			z	矿
웅	首	茳	\％	$\begin{gathered} \text { ® } \\ \text { í } \end{gathered}$	¢	莒	$\stackrel{\text { 知 }}{ }$	$\stackrel{m}{n}$	$\begin{aligned} & \stackrel{\theta}{\infty} \\ & \underset{\sim}{n} \end{aligned}$	$\stackrel{\infty}{\infty}$	$\frac{\mathrm{F}}{\sqrt[3]{6}}$	$\stackrel{\circ}{6}$	®	［	$\begin{aligned} & \text { an } \\ & \stackrel{y}{b} \\ & \text { En } \end{aligned}$			z	矿
歌		考																	矿
\％	$\begin{aligned} & \hat{\bar{u}} \\ & \text { Ben } \end{aligned}$	立																	或
\％	$\begin{aligned} & \hat{B} \\ & \underline{E} \end{aligned}$	를																	喽
苟	部	$\stackrel{m}{\text { ¢ }}$	운	$\stackrel{\text { ¢ }}{\text { ¢ }}$	ٌ	ลั้		亏．	ત్สี่	$\bar{\sim}$	$\begin{aligned} & \text { त } \\ & \text { त̂ } \end{aligned}$	\cdots	z	ํㅡㅇ	$\begin{aligned} & \text { an } \\ & \text { 坒 } \\ & \hline \end{aligned}$			z	矿
合	$\overline{\hat{e}}$	年	$\stackrel{\sim}{¢}$	$\stackrel{\bar{\sim}}{\sim}$	素	夻	$\stackrel{\rightharpoonup}{\mathrm{N}}$	$\stackrel{\circ}{\circ}$	$\stackrel{\stackrel{\alpha}{6}}{6}$	N	$\begin{aligned} & \text { 荅 } \\ & \text { in } \end{aligned}$	$\stackrel{+}{\square}$	\％	등	$\begin{aligned} & \text { an } \\ & \text { E. } \\ & \text { En } \end{aligned}$			z	砏
－	$\begin{aligned} & \text { 들 } \\ & \text { In } \end{aligned}$	立																	矿
合	信	立	ন্ড̇	Ξ	¢	Ñ			$\underset{\underset{\sim}{7}}{\stackrel{N}{4}}$	$\bar{\sim}$	$\begin{aligned} & \text { त్ } \\ & \text { O} \\ & \hline 0 \end{aligned}$	₹	z		$\begin{aligned} & \text { oo } \\ & \text { E. } \\ & \text { En } \end{aligned}$	䓓		z	矿
$\stackrel{\otimes}{\sim}$	$\overline{\hat{O}}$	免	⿳亠⿴囗十丌	焘	等	－	¢ิઠ		寺	तु	$\stackrel{\overbrace{}}{8}$	$\stackrel{\infty}{\infty}$	z	$\begin{aligned} & \text { प्थ̈ } \\ & \text { U } \end{aligned}$	$\begin{aligned} & \text { an } \\ & \text { E. } \\ & \text { En } \end{aligned}$			z	戓
\％	$\begin{aligned} & \bar{\partial} \\ & \underline{E} \end{aligned}$	$\stackrel{m}{\frac{m}{3}}$	$\stackrel{\infty}{\stackrel{\infty}{¢}}$	$\stackrel{\circ}{\stackrel{\sim}{n}}$	䍞	\％	$\stackrel{\infty}{\circ}$	$\stackrel{0}{\circ}$	$\underset{\substack{\text { ¢ }}}{\text { ¢ }}$	\％	$\begin{aligned} & \text { ๙ } \\ & \text { §ु } \end{aligned}$	$\stackrel{7}{7}$	$\%$		$\begin{aligned} & \text { on } \\ & \text { 坒 } \\ & \hline \end{aligned}$			z	気
8	家	立																	或
可	三	立																	钅
䪅	E	立																	乭
等	耎	$\frac{3}{3}$																	戓
吉	言	$\frac{3}{3}$																	矿

1	1	1:										
\%	1	,										
-	\%											1
1	1											
1	1											
\%	1	:										
\%	1	,										
1	1											
1	:											1
\%	1											
-	1											1
-	1											1
-	1											1
-	1											1
,	1											1
1	1											
	1											1

1	1	1:									
-	1	:									
,	\%	\%									
)	1	,									
$\stackrel{1}{4}$	1	:									
	1	-									
\%	1										
1	1	,									
${ }^{3}$	1										1
1	1										
1	1	:									
8	1	;									1
${ }^{1}$	1	:									1
$\stackrel{1}{ }$	1										1
1	1										
	1	1									

尔	閏	\％																	픛
年	$\begin{aligned} & \text { N } \\ & \text { E } \\ & \text { Ben } \end{aligned}$	\％	魚	$\stackrel{\text { ® }}{\text { ¢ }}$	禺	会	$\stackrel{\square}{\square}$	$\stackrel{\otimes}{\square}$		$\stackrel{0}{\sim}$	$\begin{gathered} \text { orn } \\ \stackrel{0}{\circ} \end{gathered}$	$\bar{\infty}$	\％	$\begin{aligned} & \overline{Z_{2}^{\prime}} \\ & 0 \end{aligned}$			－	z	䃄
$\underset{\sim}{\text { ¢ }}$	$\begin{gathered} \text { Nen } \\ \text { En } \end{gathered}$	会	$\stackrel{\leftrightarrow}{\stackrel{\sim}{4}}$	$\stackrel{\text { E }}{\text { ̇ }}$	筞	冎			$\stackrel{5}{8}$	$\stackrel{\infty}{\infty}$	$\stackrel{\text { g }}{\underset{\mathrm{g}}{\mathrm{C}}}$	¢̧	z근	$\begin{aligned} & \text { ⿹ㅏㅇ } \\ & \text { ة } \end{aligned}$			\％	\％	戓
嵒	$\begin{aligned} & \hat{\mathrm{C}} \\ & \text { 首 } \end{aligned}$	$\frac{\square}{\bar{y}}$	$\stackrel{\text { ®® }}{\sim}$	若	\％	¢			$\stackrel{\overline{7}}{\infty}$	$\stackrel{\infty}{\infty}$		${ }_{7}$	z		㜢			z	矿
岩	$\stackrel{\hat{\partial}}{\underline{\partial}}$	奀	$\begin{aligned} & \stackrel{\text { ָi }}{\text { in }} \end{aligned}$	$\stackrel{\circ}{\text { No }}$	¢	$\stackrel{\rightharpoonup}{2}$			$\underset{\sim}{\text { a }}$	犬		$\stackrel{4}{4}$	\％	$\begin{aligned} & \overline{W_{0}^{\prime}} \\ & \dot{O} \end{aligned}$	吢			z	戓
予	$\begin{aligned} & \text { 气 } \\ & \text { 感 } \end{aligned}$	感	$\stackrel{ \pm}{\stackrel{\rightharpoonup}{c}}$	尔	会	$\stackrel{\ddots}{3}$			$\begin{aligned} & \underset{\sim}{y} \\ & \stackrel{n}{6} \end{aligned}$			$\bar{\square}$	亿	$\begin{aligned} & \overline{\ddot{6}} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \text { on } \\ & \stackrel{0}{b} \\ & \hline \end{aligned}$		¢	\％	気
等	$\begin{aligned} & \text { E } \\ & \text { 首 } \end{aligned}$	$\frac{\square}{\text { ® }}$	$\stackrel{\infty}{\text { ® }}$		¢ֻ	\％	$\stackrel{\infty}{\circ}$		$\begin{aligned} & \text { Qody } \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	\pm	$\frac{\square}{8}$	\％		㦴	$\begin{aligned} & \text { 部 } \\ & \text { ̈̃ } \end{aligned}$			\％	\％
\％	言	会	$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$	त̇	$\frac{\square}{4}$	$\stackrel{\text { N }}{\text { ה }}$	$\stackrel{n}{n}$	ก̃	$\stackrel{\text { 夺 }}{\text { 年 }}$	$\stackrel{\square}{\text { a }}$		$\stackrel{1}{2}$	zํ	$\begin{aligned} & \overline{W_{0}^{0}} \\ & \bar{O} \end{aligned}$	$\begin{aligned} & \text { 第 } \\ & \stackrel{y}{b} \end{aligned}$		¢	\％	或
奇	言	会		$\stackrel{\curvearrowleft}{i}$	－	तิ	$\stackrel{\circ}{\square}$	$\stackrel{\infty}{\square}$	$\begin{aligned} & \stackrel{\rightharpoonup}{6} \\ & \stackrel{\text { ¢ }}{2} \end{aligned}$	¢ֻ8		${ }_{6}^{+}$	亿근	$\begin{aligned} & \overline{\mathrm{G}} \\ & \stackrel{6}{O} \end{aligned}$			¢	\％	츷
等	$\begin{aligned} & \overline{0} \\ & \underline{E} \end{aligned}$	U	\％	$\stackrel{\overline{\mathrm{j}}}{ }$	$\stackrel{\circ}{\text { ® }}$	$\stackrel{\widetilde{3}}{\sim}$	$\stackrel{\sim}{\text { en }}$	$\stackrel{\text { E}}{\substack{e}}$	8	F		$\stackrel{7}{3}$	\％		$\begin{aligned} & \text { 点 } \\ & \text { ᄈ̈n } \end{aligned}$	$\begin{aligned} & \text { च्च } \\ & \text { 䚯 } \\ & \text { 號 } \end{aligned}$	\％		즟
年		$\overline{3}$																	或
亚	$\begin{aligned} & \text { E } \\ & \text { en } \end{aligned}$	$\stackrel{\text { \％}}{ }$		$\begin{gathered} \stackrel{\rightharpoonup}{*} \\ \stackrel{y}{*} \end{gathered}$				¢ ¢				$\stackrel{\circ}{+}$	\％					z	Ј
骂	$\begin{aligned} & \hat{E} \\ & \text { E1 } \end{aligned}$	$\frac{\text { m }}{\text { \％}}$	$\stackrel{\text { \％}}{\substack{8 \\ \sim \\ \hline}}$	$\stackrel{\text { 䒿 }}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\substack{\text { ¢ }}}{\text { ¢ }}$	$\stackrel{\sim}{\infty}$	暻					z극	⿹ㅡㅇ	$\begin{aligned} & \text { 部 } \\ & \text { 劯 } \end{aligned}$			\％	J
䂞	$\begin{aligned} & \hat{\partial} \\ & \text { E } \end{aligned}$	U	$\stackrel{\substack{\text { a } \\ \text { ¢ }}}{ }$	F		$\stackrel{\text { 区－}}{\substack{\text { ¢ }}}$	$\stackrel{セ}{6}$	\％	$\stackrel{\text { ®}}{\stackrel{\circ}{\circ}}$	\％		－8．	¿		$\begin{aligned} & \text { 部 } \\ & \text { छٍn } \\ & \text { gn } \end{aligned}$	［		\％	気
星	$\begin{aligned} & \hat{\partial} \\ & \underline{E} \end{aligned}$	咢	$\begin{aligned} & \text { F } \\ & \stackrel{\text { an }}{2} \end{aligned}$	∞	®	喜	$\stackrel{\infty}{ٌ}$	$\stackrel{\stackrel{\circ}{9}}{\sim}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{6} \\ & \underline{i} \end{aligned}$	$\stackrel{\infty}{\text { ¢ }}$		๑ิ	¿		$\begin{aligned} & \text { 嘸 } \\ & \text { \#̈n } \end{aligned}$		\％	z	픛
守			范	亿ٌ		$\stackrel{N}{n}$	$\stackrel{\infty}{\infty}$	\cdots	甚	울		$\stackrel{\circ}{+}$	z̊	亭	$\begin{aligned} & \text { 部 } \\ & \text { 矵 } \end{aligned}$			z	\＃
I	会	号	¢ֻٌ	$\stackrel{\overline{\bar{\alpha}}}{\text { ¢ }}$	令	㐌			F	$\stackrel{\sim}{8}$			\％	㦴	硅	$\xrightarrow{\text { \％}}$		z	矿

							1)			\%	1	1	18		
d	,	1	\%	\%			:			1	1	11	1 H		
,	1	\%	8	,	8		:			8	!	1	18		
\%	1	:	\%		:		:			1	!	1	1		
d	1	:	\%		\%			1			1	11	14		
	1	5	\%	\%	8		1			8	1	11	1		
8	1	:			3		\%			8	:	11	1		
\%	1	\because					\%	\%		\%	1	1	8		
S	1	1			8		\%				1	11	$1]$		
\%	1														
-	1														
1	1	:			,		8,			1	1	1	8		
)	\%	${ }^{3}$			\%		1			8	1	1	1		
1	\%	\%			\%		\%			8	\%	1	8		
	\%	\%			5		:			1	1	1	13		
		:			8		8			1	1	1	1		
		\%					\%					11	4		

							1:					1	d		
					:		8				:	1	8		
	1														
	1	:	1	1	\%		8				1	11	:		
5	\%	:	:	\%			\%				$!$	1	1		
	\%	:	\%	+1	1		\%				!	1	1		
	1	:		${ }^{1}$:		:				1	1	$:$		
1	\%	:			\%		8				1	1	1		
		\%		\%	${ }^{3}$:				1	1	1		
	i	*			\%		\%				\%	1	1		
		\%			\%		\%				1	1	8		
		:	8		\%		\%				1	1	t		
1		:			\%		\%				1	1	18		
8	1	:		\%	${ }^{3}$		\%				1	1	1		
	\%	8	\%	8	${ }^{2}$	\%	\%				1	1	8		
					8		\%				1	1	1		

\％	$\stackrel{\circ}{\square}$		$\stackrel{\square}{\rightrightarrows}$	$\stackrel{\text { ®ob }}{\sim}$	\％	年			$\stackrel{ \pm}{\underset{\sim}{2}}$					$\begin{aligned} & \overline{Z ⿹ 勹 巳} \\ & 0 \\ & \text { O} \end{aligned}$			硡	z	戓
気	$\stackrel{\circ}{\square}$	咢	$\stackrel{\stackrel{\rightharpoonup}{9}}{\sim}$	さ	$\stackrel{\text { ® }}{-}$	$\stackrel{\infty}{\infty}$			$\underset{\infty}{\text { ¢ }}$	\％			亿	$\begin{aligned} & \text { ⿹ㅠㅄ } \\ & \text { 응 } \end{aligned}$				z	
－	$\stackrel{\otimes}{\square}$	考	咼	怘	宕	$\stackrel{®}{\circ}$			$\stackrel{N}{\text { an }}$										戓
宫	$\frac{8}{B}$	U	管	$\stackrel{5}{5}$	๕ั囚	®			$\stackrel{\overbrace{}}{\stackrel{\circ}{7}}$	将			\％		$\begin{aligned} & \text { on } \\ & \text { E. } \\ & \text { En } \end{aligned}$	$\begin{aligned} & \text { ⿹ㅡㄹ } \\ & \text { 䚯 } \end{aligned}$		\％	気
$\stackrel{\circ}{1}$	$\stackrel{\circ}{1}$	立																	或
\bar{n}	$\stackrel{8}{\square}$	枵	$\begin{gathered} \text { O } \\ \substack{\text { 子 }} \end{gathered}$	$\stackrel{\text { ® }}{\text {－}}$	$\stackrel{\infty}{\stackrel{\infty}{n}}$				$\begin{aligned} & \text { P } \\ & \text { din } \end{aligned}$	$\stackrel{\sim}{\text { j }}$			¿		$\begin{aligned} & \text { on } \\ & \text { 坒 } \\ & \hline \end{aligned}$		\％	z	気
$\frac{N}{n}$	$\frac{8}{\square}$	E																	矿
$\stackrel{m}{3}$	$\stackrel{\circ}{1}$	矦																	或
$\stackrel{7}{9}$		会	$\begin{gathered} n \\ \tilde{n} \\ i n \end{gathered}$	$\stackrel{\infty}{\underset{\sim}{m}}$	$\stackrel{\Gamma}{\infty}$	§̆		F		尔	$\begin{aligned} & \bar{\rightharpoonup} \\ & \stackrel{\rightharpoonup}{6} \\ & \stackrel{\rightharpoonup}{n} \end{aligned}$	Ј	\％	$\begin{aligned} & \overline{\ddot{6}} \\ & \stackrel{0}{0} \end{aligned}$			¢゙	z	碳
$\stackrel{n}{n}$		年	$\begin{gathered} \infty \\ \underset{\sim}{6} \\ \stackrel{y}{c} \end{gathered}$		$\stackrel{5}{-}$	$\underset{\sim}{\infty}$			$\begin{aligned} & \stackrel{8}{\circ} \\ & \underset{\sim}{\infty} \end{aligned}$	䔍	$\begin{gathered} \text { O} \\ \stackrel{\rightharpoonup}{+} \end{gathered}$	\cdots	\％	$\begin{aligned} & \overline{\widetilde{g}} \\ & \text { 응 } \end{aligned}$				z	J
\cdots			－	令	$\stackrel{\text { ® }}{\text { ¢ }}$	¢	ন্ত্ন	录		$\stackrel{7}{\square}$	$\begin{aligned} & \text { B } \\ & \text { © } \end{aligned}$	午	z	⿹ㅣㅇ	$\begin{aligned} & \text { 怠 } \\ & \text { 硈 } \end{aligned}$			\％	矿
$\stackrel{5}{5}$	$\begin{aligned} & \text {. } \\ & \text { O} \\ & \text { an } \end{aligned}$	唇	$\underset{\substack{\text { ¢ }}}{\substack{\text { ¢ }}}$	$\stackrel{\text { ® }}{\substack{*}}$	$\stackrel{\circ}{\text { ¢ }}$	¢	$\xrightarrow{\text {＋}}$	¢			$\begin{aligned} & \text { N} \\ & \stackrel{N}{\gtrless} \end{aligned}$	$\stackrel{\sim}{2}$	\％	辰	$\begin{aligned} & \text { 高 } \\ & \text { 硈 } \end{aligned}$				気

REFERENCES

Annandale, N., 1918, Records of the Indian Museum, v. 14, p. 159-168.
Annandale, N., 1920, Observations on Physa prinsepii, Sowerby and on a clionid sponge that burrowed in its shell: Records of the Geological Survey of India, v. 51, p. 50-66.

Annandale, N., 1921, Indian fossil Viviparidae: Records of the Geological Survey of India, v. 51, p. 362-368.

Basu, A.R., Renne, P.R., DasGupta, D.K., Teichmann, F., and Poreda, R.J., 1993, Early and Late Alkali Igneous Pulses and a High-3He Plume Origin for the Deccan Flood Basalts: Science, v. 261, p. 902-906.

Bates, D., Chambers, J., Dalgaard, P., Falcon, S., Gentleman, R., Hornik, K., Iacus, S., Ihaka, R., Leisch, F., Ligges, U., Lumley, T., Maechler, M., Murdoch, D., Murrell, P., Plummer, M., Ripley, B., Sarkar, D., Temple Lang, D., Tierney, L., and Urbanek, S., 2011, R: A language and environment for statistical computing v. 2.13.0.

Beane, J.E., Turner, C.A., Hooper, P.R., Subbarao, V., and Walsh, J.N., 1986, Stratigraphy, composition and form of the Deccan basalts, Western Ghats, India: Bulletin of Volcanology, v. 48, p. 61-83.

Beck, R.A., Burbank, D.W., Sercombe, W.J., Riley, G.W., Barndt, J.K., Berry, J.R., Afzal, J., Khan, A.M., Jurgen, H., Metje, J., Cheema, A., Shafique, N.A., Lawrence, R.D., and Khan, A, 1995, Stratigraphic evidence for an early collision between northwest India and Asia: Nature, v. 373, p. 55-58.

Blanford, W., 1867, The geology of Taptee and Nerbudda Valleys and some adjoining districts:
Memoirs of the Geological Survey of India, v. 6, p. 56-71.

Bouchet, P. and Rocroi, J.P., 2005, Classification and nomenclature of gastropod families:
Malacologia: International Journal of Malacology, v. 47, 397 p.
Buffetaut, E., 1987, Archosaurian reptiles with Gondwanan affinities in the Upper Cretaceous of Europe: Terra Nova, v. 1, p. 69-74.

Bunbury, C., 1861, Notes on a collection of fossil plants from Nagpur, central India: Quarterly Journal of the Geological Society, v. 17, p. 325-346.

Burch, J.B., 1989, North American Freshwater Snails: Malacological Publications, Hamburg, Michigan, 365 p.

Calkins, K.G., 2005, Applied statistics: Correlation coefficients:
http://www.andrews.edu/~calkins/math/edrm611/edrm05.htm, Andrews University, Berrien Springs, Michigan.

Campbell, I.H. and Griffiths, R.W., 1990, Implications of mantle plume structure for the evolution of flood basalts: Earth and Planetary Science Letters, v. 99, p. 79-93.

Cande, S., Kent, D.V., 1995, Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic: Journal of Geophysical Research, v. 100, p. 159-190.

Chand, S., Radhakrishna, M., and Subrahmanyam, C., 2001, India-East Antarctica conjugate margins: rift-shear tectonic setting inferred from gravity and bathymetry data: Earth and Planetary Science Letters, v. 185, p. 225-236.

Chenet, A.L., Quidelleur, X., Fluteau, F., Courtillot, V., and Bajpai, S., 2007, ${ }^{40} \mathrm{~K} /{ }^{40} \mathrm{Ar}$ dating of the main Deccan large igneous province: further evidence of KTB age and short duration: Earth and Planetary Science Letters, v. 263, p. 1-15.

Correa, A.C., Escobar, J.S., Durand, P., Renaud, F., David, P., Jarne, P., Pointier, J.P., HurtrezBousses, S., 2010, Bridging gaps in the molecular phylogeny of the Lymnaeidae (Gastropoda: Pulmonata), vectors of Fascioliasis: BMC Evolutionary Biology, v. 10, p. 381.

Courtillot, V., Besse, J., Vandamme, D., Montigny, R., Jaeger, J.J., Cappetta, H., 1986, Deccan flood basalts at the Cretaceous/Tertiary boundary?: Earth and Planetary Science Letters, v. 80, p. 361-374.

Courtillot, V., Féraud, G., Maluski, H., Vandamme, D., Moreau, M.G., Besse, J., 1988, The Deccan flood basalts and the Cretaceous-Tertiary boundary: Nature, v. 333, p. 843-846.

Courtillot, V. and Renne, P.R., 2003, On the ages of flood basalt events: Comptes Rendus Geoscience, v. 335, p. 113-140.

Cripps, J.A., Widdowson, M., Spicer, R.A., and Jolley, D.W., 2005, Coastal ecosystem responses to late stage Deccan Trap volcanism: the post K-T boundary (Danian) palynofacies of Mumbai (Bombay), west India: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 216, p. 303-332.

Davis, G. M, 1967, The systematic relationship of Pomatiopsis lapidaria and Oncomelania hupensis formosana (Prosobranchia: Hydrobiidae): Malacologia, v.6, p. 1-143.

Davis, G. M., 1979, The origin and evolution of the gastropod family Pomatiopsidae, with emphasis on the Mekong River Triculinae: Monograph of the Academy of Natural Sciences of Philadelphia, v. 20, p. 1-120.

Davis, G. M. and S. Rao., 1997, Discovery of Erhaia (Gastropoda: Pomatiopsidae) in northern India with description of a new genus of Erhaiini from China: Proceedings of the Academy of Natural Sciences of Philadelphia, v. 148, p. 273-299.

Duncan, R.A., Pyle, D.G., 1988. Rapid eruption of the Deccan flood basalt at the Cretaceous/Tertiary boundary: Nature, v. 333, p. 841-8443.

Fischer, P., 1887, Manuel de conchyliologie et de paleontologie conchyliologique of histoire naturelle des mollusques vivants et fossiles: Paris Librarie F, Savy, p. 507-511.

Fischer, J.C., 1963, Mollusques du Continental intercalaire (Mesozoique) du Sahara central: Societe geologique de France.

Ghosh, P., Bhattacharya, S.K., Sahni, A., Kar, R.K., Mohabey, D.M., and Ambwani, K., 2003, Dinosaur coprolites from the Late Cretaceous (Maastrichtian) Lameta Formation of India: isotopic and other markers suggesting a C3 plant diet: Cretaceous Research, v. 24, p. 743-750.

Gnos, E., Immenhauser, A., Peters, T.J., 1997, Late Cretaceous/early Tertiary convergence between the Indian and Arabian plates recorded in ophiolites and related sediments: Tectonophysics, v. 271, p. 1-19.

Harrison, T., 2011, Paleontology and geology of Laetoli: human evolution in context, Volume 2: Fossil hominins and the associated fauna: ed. Terry Harrison, Springer, New York, New York, 600 p .

Hartman, J.H., Erickson, D.N., and Bakken, A., 2008, Stephen Hislop and his 1860 Cretaceous continental molluscan new species descriptions in Latin from the Deccan Plateau, India: Paleontology, v. 51, p. 1225-1252.

Hislop, S., 1853, Remarks on the geology of the Nagpur state: Journal of the Bombay Natural History Society, v. 5, p. 148-150.

Hislop, S. and Hunter, R., 1854, On the geology of the neighborhood of Nagpur, central India: Proceedings of the Geological Society of London, p. 470-473.

Hislop, S., 1860, On the Tertiary deposits associated with trap-rock in the East Indies - with descriptions of the fossil shells: Quarterly Journal of the Geological Society of London, v. 16, p. 154-182, 188, 189.

Hofmann, C., Féraud, G., Courtillot, v., 2000, 40Ar/39Ar dating of mineral separates and whole rocks from the Western Ghats lava pile: further constraints on duration and age of the Deccan traps. Earth and Planetary Science Letters: v. 180, p. 13-27.

Jaeger, J.J., Courtillot, V., and Tapponnier, P., 1989, Paleontological view of the ages of the Deccan Traps, the Cretaceous/Tertiary boundary, and the India-Asia collision: Geology, v. 17, p. 316-319.

Jain, S.L. and Sahni, A., 1983, Some upper Cretaceous vertebrates from central India and their paleogeographical implications: in Cretaceous of India, ed. Maheswari, H.K., p. 66-83.

Jay, A.E. and Widdowson, M., 2008, Stratigraphy, structure and volcanology of the SE Deccan continental flood basalt province: implications for eruptive extent and volumes: Journal of the Geological Society, v. 165, p. 177-188.

Keller, G., Adatte, T., Gardin, S., Bartolini, A., and Bajpai, S., 2008, Main Deccan volcanism phase ends near the K-T boundary: Evidence from the Krishna-Godavari Basin, SE: Earth and Planetary Science Letters, v. 268, p. 293-311.

Kerney, M.P. and Cameron, R.A.D., 1979, A field guide to the land snails of Britain and northwest Europe: Collins, London, England, 288 p.

Khosla, A., Prasad, G.V.R., Verma, O., Jain, A.K., and Sahni, A., 2004, Discovery of a micromammal-yielding Deccan intertrappean site near Kisalpuri, Dindori District, Madhya Pradesh: Current Science, v. 87, p. 380-383.

Lightfoot, P.C., Hawkesworth, C.J., Sethna, S.F., 1987, Petrogenesis of rhyolites and trachytes from the Deccan Trap: Sr, Nd, and Pb isotopic and trace element evidence: Contributions to Mineralogy and Petrology, v. 95, p. 44-54.

Malcolmson, J.G., 1836, On the fossils of the eastern portion of the Great Basaltic District of India: Transactions of the Geological Society of London, v. 5, p. 96-121.

Malcolmson, J. G., 1840, On the fossils of the eastern portion of the Great Basaltic District of India: Transactions of the Geological Society of London, v. 5, p. 537-575.

Medlicott, J., 1859, On the geological structure of the central portion of the Nerbudda District: Memoirs of the Geological Survey of India, v. 2, p. 217-227.

Mohabey, D.M., Udhoji, S.G., and Verma, K.K., 1993, Palaeontological and sedimentological observations on non-marine Lameta Formation (Upper Cretaceous) of Maharashtra, India : their palaeoecological and palaeoenvironmental significance: Palaeogeography , Palaeoclimatology, Palaeoecology, v. 105, p.83-94.

Mohabey, D.M., 1996, A new oospecies, Megaloolithus matleyi, from the Lameta Formation (Upper Cretaceous) of Chandrapur District, Maharashtra, India, and general remarks on the paleoenvironment and nesting behavior of dinosaurs: Cretaceous Research, v. 17, p. 183-196.

Mohabey, D.M. and Udhoji, S.G., 1996, Fauna and flora from Late Cretaceous (Maastrichtian) non marine Lameta Sediments associated with Deccan volcanic episodes, Maharashtra: its relevance to the K / T boundary problem, Palaeoenvironment and palaeoclimate: Gondwana Geological Magazine, Special Publication 2 349-364.

Mohabey, D.M. and Samant, B., 2003, Floral remains from Late Cretaceous fecal mass of Sauropods from central India: implications to their diet and habitat: Gondwana Geological Magazine, Special Publication 6, p. 225-238.

Mohabey, D.M. and Samant, B., 2005. Late Cretaceous non-marine diatom assemblage from Iridium bearing intertrappean sediments of Anjar Kachchh, Gujarat: in Ab XX Colloquium on Micropaleontology and Stratigraphy, Visakhapatnam, p. 18-19.

Mordan, P.B., 1999, A terrestrial pulmonate gastropod from the late Miocene Baynunah Formation, Emirate of Abu Dhabi, United Arab Emirates: in Fossil vertebrates of Arabia: late Miocene faunas, geology, and paleoenvironments of the Emirate of Abu Dhabi, United Arab Emirates, eds. Whybrow, P.J. and Hill, A., Yale University Press, New Haven, Connecticut and London, England, 465 p.

Morgan, W.J., 1981, Hotspot tracks and the opening of the Atlantic and Indian oceans: in The Oceanic Lithosphere, ed. Cesare Emiliani, John Wiley \& Sons, Inc., Oxford, England, 1730 p.

Najman, Y., Appel, E., Boudagher-Fadel, M., Bown, P., Carter, A., Garzanti, E., Godin, L., Han, J., Liebke, U., Oliver, G., Parrish, R., and Vezzoli, G., 2010, Timing of India-Asia collision: Geological, biostratigraphic, and palaeomagnetic constraints: Journal of Geophysical Research, v. 115, p. 16-18.

Newton, R.B., 1920, On some freshwater fossils from central South Africa: Annals and Magazine of Natural History, 9th series, p. 241-249.

Pande, K., 2002, Age and duration of the Deccan Trap, India: Constraints from radiometric and Paleomagnetic data: Proceedings of the Indian Academy of Science (Earth and Planetary Science), v. 111, p. 115-123.

Pardo, A. and Keller, G., 2008, Biotic effects of environmental catastrophes at the end of the Cretaceous and early Tertiary: Guembelitria and Heterohelix blooms: Cretaceous Research, v. 29, p. 1058-1073.

Plummer, P.S. and Belle, E.R., 1995, Mesozoic tectono-stratigraphic evolution of the Seychelles microcontinent: Sedimentary Geology, v. 96, p. 73-91.

Prasad, G.V.R. and Sahni, A., 1988, First Cretaceous mammal from India: Nature, v. 332, p. 638640.

Prasad, G.V.R., Jaeger, J.J., Sahni, A., Gheerbrant, E. and Khajuria, C.K., 1994, Eutherian mammals from the Upper Cretaceous (Maastrichtian) intertrappean beds of Naskal, Andhra Pradesh, India: Journal of Vertebrate Paleontology, v. 14, p. 260-277.

Prashad, B., 1928, Recent and fossil Viviparidae: A study in distribution, evolution, and paleogeography: Memoirs of the Indian Museum, v. 8, p. 153-252.

Rana, R.S., 1984, Microvertebrate paleontology and biostratigraphy of the infra- and intertrappen beds of Nagpur, Maharashtra, PhD thesis, Panjab University, Chandigarh, India, 234 p.

Rana, R.S. and Wilson, G.P., 2003, New Late Cretaceous mammals from the intertrappean beds of Rangapur, India and paleobiogeographic framework: Acta Palaeontologie Poland, v. 48, p. 331-348.

Richards, M.A., Duncan, R.A., and Courtillot, V.E., 1989, Flood basalts and hot-spot tracks: plume heads and tails: Science, v. 246, p. 103-107.

Sahni, A., 1984, Cretaceous-Paleocene terrestrial faunas of India: lack of endemism during drifting of the Indian plate: Science, v. 226, p. 441-443.

Sahni, A., Rana, R.S., and Prasad, G.V.R., 1984a, SEM studies of thin egg shell fragments from the intertrappeans (Cretaceous-Tertiary transition) at Nagpur and Asifabad, peninsular India: Journal of the Paleontological Society of India, v. 29, p. 26-33.

Sahni, A., 1986, Cretaceous-Paleocene microfossil assemblages from the infra- and intertrappeans of peninsular India: implications for the drift of the Indian plate: Bulletin of the Geological, Mining, and Metallurgical Society of India, v. 54, p. 91-100.

Sahni, A., 1987, Faunal assemblage, correlation and paleoecology of Late Cretaceous nonmarine sequences of peninsular India, I GCP 216 Symposium China, Aspects of Nonmarine Cretaceous Geology, p. 94-109.

Sahni, A. and Bajpai, S., 1988, Cretaceous-Tertiary boundary events: the fossil vertebrate, paleomagnetic and radiometric evidence from peninsular India: Journal of the Geological Society of India, v. 32, p. 382-396.

Salil, M.S., Shrivastava, J.P., and Pattanayak, S.K., 1997, Similarities in the mineralogical and geochemical attributes of detrital clays of Maastrichtian Lameta Beds and weathered Deccan basalt, Central India: Chemical Geology, v. 136, p. 25-32.

Samant, B. and Mohabey, D.M., 2009, Palynoflora from Deccan volcano-sedimentary sequence (Cretaceous-Palaeogene transition) of central India: implications for spatio-temporal correlation: Journal of Bioscience, v. 34, p. 811-823.

Sereno, P.C., Dutheil, D.B., Larochene, M., Larsson, H.C.E., Lyon, G.H., Magwene, P.M., Sidor, C.A., Varricchio, D.J. \& Wilson, J.A, 1996, Predatory dinosaurs from the Sahara and Late Cretaceous faunal differentiation: Science, v. 272, p. 986-991.

Sereno, P.C., Wilson, J.A., and Conrad, J.L., 2004, New dinosaurs link southern landmasses in the Mid-Cretaceous: Proceedings of the Royal Society: Biological Sciences, v. 271, p. 13251330.

Shafique, N.A., 2001, Spatial biostratigraphy of NW Pakistan: PhD dissertation, Miami University, 137 p.

Sharma, N., Kar, R.K., Aggarwal, C., and Ratan, K., 2004, Fungi in dinosaurian (Isisaurus) coprolites from the Lameta Formation (Maastrichtian) and its reflection on food habit and environment: Micropaleontology, v. 51, p. 7-82.

Sharma, R., Bajpai, S., and Singh, M.P., 2008, Freshwater Ostracoda from the ?Paleocene-age Deccan intertrappean beds of Lalitpur (Uttar Pradesh), India: Journal of the Paleontological Society of India, v. 53, p. 177-183.

Sheth, H.C., Pande, K., Bhutani, R., 2001a,b, 40Ar/39Ar age of a national geological monument: the gilbert Hill basalt, Deccan Traps, Bombay: Current Science, v. 80, p. 1437-1440.

Sheth, H. C., 2005, Were the Deccan flood basalts derived in part from ancient oceanic crust within the Indian continental lithosphere?: Gondwana Research, v. 8, p. 109-127.

Shrivastava, J.P., Ahmad, M., 2005, Compositional studies on organic matter from iridium enriched Anjar intertrappean sediments: Deccan volcanism and paleoenvironmental implications during the Cretaceous/Tertiary boundary: Journal of Iberian Geology, v. 31, p. 167-177.

Smith, G., 1888, Stephen Hislop - pioneer missionary \& naturalist in Central India from 1844 to 1863: ed. John Murray, London, 317 pp.

Sowerby, J. D. C., 1840, Organic remains collected by Mr. [John G.] Malcolmson, and described and engraved by Mr. James de Carle Sowerby: In Plates and maps in illustration of volume V. Transactions of the Geological Society of London, series 2,5 .

Storey, M., Mahoney, J.J., Saunders, A.D., Duncan, R.A., Kelley, S.P., and Coffin, M.F., 1995, Timing of Hot Spot-Related Volcanism and the Breakup of Madagascar and India: Science, v. 267, p. 852-855.

Thiele, J., 1992, Handbook of Systematic Malacology; Part 1-2 (Loricata; Gastropoda: Prosobranchia): Smithsonian Institution Libraries and the National Science Foundation, Washington, District of Colombia, 625 p.

Tyron Jr., G.W., 1884, Structural and systematic conchology: an introduction to study of mollusca, vol. III: Academy of Natural Sciences, Philadelphia, Pennsylvania, 453 p.

Voysey, H.W., 1833a, Geological and mineralogical structure of the hills of Sitabuldi, Nagpur, and its immediate vicinity: Asiatic Researchers or Transactions of the Society instituted in Bengal, v. 18, p. 187-194.

Voysey, H.W., 1833b, Petrified shells found in the Gawilgerh range of hills, in April, 1823: Asiatic Researchers or Transactions of the Society instituted in Bengal, v. 18, p. 123-127.

Wade, C.M., Mordan, P.B., and Clarke, B., 2001, A phylogeny of the land snails (Gastropoda: Pulmonata): Proceedings of the Royal Society of London, v. 268, p. 413-422.

Wenz, W. and Zilch, A., 1959-1960, Gastropoda: Handbook of Paleozoology, v. 6, p. 377-448.
Wilson, G.P., Das Sarma, D.C., and Anantharaman, S., 2007, Late Cretaceous sudamericid gondwanatherians from India with paleobiogeographic considerations of gondwanan mammals: Journal of Vertebrate Paleontology, v. 27, p. 521-531.

