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Abstract 

Systematic, random and gross errors are considered the main problems facing those working in the photo-

triangulation processes. The influence of systematic errors on photo-measurements may include lens distortion, 

film deformation, refraction and other distortions. Usually, these types of errors can be solved by the calibration 

process. Meanwhile, the traditional least-squares method was used to adjust photogrammetric data in order to 

solve the problems of random errors. In case observations contain gross errors, the reliability of least-squares 

estimates is strongly affected. In this paper, two independent mathematical models (photo-variant self-

calibration and robust estimation) are combined for solving and processing the problems of systematic and gross 

errors in one step. Also, this paper investigated the effectiveness of robust estimation models on solving gross 

errors in close-range photogrammetric data sets that require photo bundle adjustment solution. The results of 

investigation indicate that all robust methods have the advantage of detecting and removing gross errors over the 

least squares method especially in cases of observation contains large-sized errors. Moreover, the Modified M-

estimator (IGGIII) method has the best performance and accuracy. Furthermore, gross error was also revealed in 

the residuals. 

Keywords: Gross Errors; Least-square; Robust Estimation Methods; Close-Range Photogrammetry; Photo 

Bundle adjustment; Photo-Variant Self-Calibration. 
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1. Introduction  

Robust estimation methods were used in different surveying applications such as triangulation and leveling 

networks for the first time in 1964 [7,10]. Subsequently, several weight functions were developed for the robust 

estimators. Although most of these weight functions have no theoretical basis, weight functions were empirical 

[1,2,3,4]. The weight functions could be selected for robust estimates if only their values are less and residuals 

are larger. This is due to the measures of robustness for robust estimates being not unique [5]. Based on the least 

squares estimate, this research studies the robustness, defines a measurement for it and deduces the 

corresponding robust estimate. Robust estimation methods are able to simultaneous parameter estimation and 

outlier elimination during the estimation process [6]. If observation equations contain additional parameters to 

model the effect of systematic errors, then the use of iteratively reweighted least squares with an appropriately 

chosen estimation gives us a tool for simultaneous treatment of all errors [6,14]. The main objective of this 

research is to study the effect of gross errors on close-range photogrammetric data and the ability to detect and 

remove this type of errors using a combination model from photo-variant self-calibration and robust estimation. 

Robust estimation methods were used in different surveying applications such as triangulation and leveling 

networks for the first time in 1964 [7,10]. Subsequently, several weight functions were developed for the robust 

estimators. Although most of these weight functions have no theoretical basis, weight functions were empirical 

[1,2,3,4]. The weight functions could be selected for robust estimates if only their values are less and residuals 

are larger. This is due to the measures of robustness for robust estimates being not unique [5]. Based on the least 

squares estimate, this research studies the robustness, defines a measurement for it and deduces the 

corresponding robust estimate. Robust estimation methods are able to simultaneous parameter estimation and 

outlier elimination during the estimation process [6]. If observation equations contain additional parameters to 

model the effect of systematic errors, then the use of iteratively reweighted least squares with an appropriately 

chosen estimation gives us a tool for simultaneous treatment of all errors [6,14]. The main objective of this 

research is to study the effect of gross errors on close-range photogrammetric data and the ability to detect and 

remove this type of errors using a combination model from photo-variant self-calibration and robust estimation. 

Robust estimation methods were used in different surveying applications such as triangulation and leveling 

networks for the first time in 1964 [7,10]. Subsequently, several weight functions were developed for the robust 

estimators. Although most of these weight functions have no theoretical basis, weight functions were empirical 

[1,2,3,4]. The weight functions could be selected for robust estimates if only their values are less and residuals 

are larger. This is due to the measures of robustness for robust estimates being not unique [5]. Based on the least 

squares estimate, this research studies the robustness, defines a measurement for it and deduces the 

corresponding robust estimate. Robust estimation methods are able to simultaneous parameter estimation and 

outlier elimination during the estimation process [6]. If observation equations contain additional parameters to 

model the effect of systematic errors, then the use of iteratively reweighted least squares with an appropriately 

chosen estimation gives us a tool for simultaneous treatment of all errors [6,14]. The main objective of this 

research is to study the effect of gross errors on close-range photogrammetric data and the ability to detect and 

remove this type of errors using a combination model from photo-variant self-calibration and robust estimation.  
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2. Solving Gross Errors 

Close-range applications do not produce large data sets as in aerial triangulation. The failed process acquires 

data affected by gross errors. Data acquired with a non-metric camera for close-range applications should use a 

photo-variant bundle solution. Almost, the measurements are acquired with gross errors. Robust estimation 

methods are then suitable for use in adjusting these measurements. A robustfied bundle adjustment procedure 

has been developed along this direction [8]. This method showed the exact values of gross errors in the 

residuals. On the other hand, classical least-squares method distributed these gross errors to other un-affected 

measurements [9]. This research discusses the combination of photo-variant self-calibration and different robust 

estimation methods for processing close-range measurements. 

3. Image-Variant Parameters of Interior Orientation 

The photogrammetric data is influenced by systematic errors which may be lens distortion, film deformation, 

refraction, etc. The values of these types of errors can be modeled and determined from the camera calibration 

processes in close-range photogrammetry. Metric cameras have stable interior geometry over a period of time. 

The parameters solved by calibration are always carried as constant from photograph to another. An advanced 

data processing model allows for the distortions to vary from a photograph to another. This process is known as 

photo-variant solution [16]. The use of non-metric camera for close-range photogrammetry has been improved 

by many researchers [12,17,18]. Nowadays, digital consumer cameras of high-resolution are vastly available 

and used in close-range photogrammetry. The mechanical construction of this type of cameras oftentimes does 

not achieve the demands of close-range photogrammetry, so they have to be modeled sufficiently. A camera 

modeling is called image-variant parameters of interior orientation should be applied. Significant improvements 

of object accuracy have been achieved with respect to standard calibration techniques based on self-calibrating 

bundle adjustment [18].  

3.1. Camera Parameters Model (Image-variant parameters)  

Camera parameters of interior orientation are applied for all images of photogrammetric projects. Parameters of 

distortion are normally defined by the photo's principal point. So, the equation of the standard observation given 

by the following equations: 

 x – xo +∆𝒙𝒙𝒑𝒑 =  −𝒇𝒇
𝒎𝒎𝟏𝟏𝟏𝟏(𝑿𝑿𝒊𝒊−𝑿𝑿𝒐𝒐)+𝒎𝒎𝟏𝟏𝟏𝟏(𝒀𝒀𝒊𝒊−𝒀𝒀𝒐𝒐)+𝒎𝒎𝟏𝟏𝟏𝟏(𝒁𝒁𝒊𝒊−𝒁𝒁𝒐𝒐)

𝒎𝒎𝟏𝟏𝟏𝟏(𝑿𝑿𝒊𝒊−𝑿𝑿𝒐𝒐)+𝒎𝒎𝟏𝟏𝟏𝟏(𝒀𝒀𝒊𝒊−𝒀𝒀𝒐𝒐)+𝒎𝒎𝟏𝟏𝟏𝟏(𝒁𝒁𝒊𝒊−𝒁𝒁𝒐𝒐)
 

 y – yo+∆𝒙𝒙𝒑𝒑 =  −𝒇𝒇
𝒎𝒎𝟏𝟏𝟏𝟏(𝑿𝑿𝒊𝒊−𝑿𝑿𝒐𝒐)+𝒎𝒎𝟏𝟏𝟏𝟏(𝒀𝒀𝒊𝒊−𝒀𝒀𝒐𝒐)+𝒎𝒎𝟏𝟏𝟏𝟏(𝒁𝒁𝒊𝒊−𝒁𝒁𝒐𝒐)

𝒎𝒎𝟏𝟏𝟏𝟏(𝑿𝑿𝒊𝒊−𝑿𝑿𝒐𝒐)+𝒎𝒎𝟏𝟏𝟏𝟏(𝒀𝒀𝒊𝒊−𝒀𝒀𝒐𝒐)+𝒎𝒎𝟏𝟏𝟏𝟏(𝒁𝒁𝒊𝒊−𝒁𝒁𝒐𝒐)
                                                

where Δxp , Δyp are offsets from the principle point to the centre of image frame, 𝒇𝒇 is the nominal camera focal 

length, (Xo , Yo , Zo) are the ground coordinates of the projection centre, (Xi , Yi , Zi) are the ground coordinates 

of point i and m11 to m33 are elements of rotation matrix. 
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4. Robust Estimation Methods 

Usually, the influence of systematic errors on photo- measurements can be solved by calibration reports. The 

conventional least squares method leads to unbiased estimates with minimum variance if the model is entirely 

correct [17]. But in case observations contain gross errors or single-point displacement, the outcome is no longer 

correct. These type of errors or displacements contaminate the estimates of parameters and are distributed over 

the whole residual vector. Hence, it is extremely difficult and sometimes impossible to locate blunders by 

screening the residuals. This disadvantage can be avoided, if a robust estimation method is applied. Robust 

estimates are not influenced by blunders as long as the majority of points conform to the modeled trend [13]. 

The mathematical models of the robust estimation methods used in this research are summarized in table (1). 

Table 1: Models of robust estimation methods and their weight functions 

Robust 

method 

Weight function Critical values Reference 

 R-Estimators 𝑀𝑀𝑀𝑀𝑀𝑀∑ 𝛼𝛼(𝑅𝑅𝑖𝑖)
𝑣𝑣𝑖𝑖
�𝑄𝑄𝑖𝑖𝑖𝑖

𝑛𝑛
𝑖𝑖=1  where 𝑅𝑅𝑖𝑖  is the rank of 

weighted residuals and 𝛼𝛼 is the score function 

1.5  𝑠𝑠𝑜𝑜 : 2 𝑠𝑠𝑜𝑜  [1] 

S-Estimator 𝑏𝑏 = 1
𝑛𝑛
∑ 𝑝𝑝 �𝑣𝑣𝑖𝑖

𝛿𝛿𝑜𝑜
�𝑛𝑛

𝑖𝑖=1  in which 𝛿𝛿𝑜𝑜  is the posteriori 

scale factor given by the robust estimator  

1.5  𝑠𝑠𝑜𝑜 : 2 𝑠𝑠𝑜𝑜  [21] 

Danish 

𝑤𝑤𝑖𝑖 �

exp (−𝑣𝑣𝑖𝑖2/𝑐𝑐2)             |𝑣𝑣𝑖𝑖| > 𝑐𝑐

1                                      |𝑣𝑣𝑖𝑖| ≤ 𝑐𝑐  
� 

1.5  𝑠𝑠𝑜𝑜 : 2 𝑠𝑠𝑜𝑜  [3] 

Andrews 

M-estimators 
𝑤𝑤𝑖𝑖 �

sin(vi/𝑐𝑐)/(𝑣𝑣𝑖𝑖/𝑐𝑐)        |𝑣𝑣𝑖𝑖| ≤ 𝑐𝑐𝑐𝑐

0                                        |𝑣𝑣𝑖𝑖| > 𝑐𝑐𝑐𝑐  
� 

1.5  𝑠𝑠𝑜𝑜: 2 𝑠𝑠𝑜𝑜  [2] 

Modified M-

estimator 

(IGGIII) 𝑤𝑤𝑖𝑖

⎩
⎪⎪
⎨

⎪⎪
⎧

1                                   |𝑣𝑣𝑖𝑖| ≤ 𝑐𝑐𝑜𝑜

𝑐𝑐𝑜𝑜
|𝑣𝑣𝑖𝑖|

                         𝑐𝑐𝑜𝑜 < |𝑣𝑣𝑖𝑖| ≤ 𝑐𝑐1

0                                    |𝑣𝑣𝑖𝑖| > 𝑐𝑐1    
⎭
⎪⎪
⎬

⎪⎪
⎫

 

co = 2.0 : 3.0 

c1 = 4.5 : 8.5 

 [20] 

Huber 

𝑤𝑤𝑖𝑖 �

1                                   |𝑣𝑣𝑖𝑖| ≤ 𝑐𝑐

𝑐𝑐/|𝑣𝑣𝑖𝑖|                           |𝑣𝑣𝑖𝑖| > 𝑐𝑐 
� 

1.5  𝑠𝑠𝑜𝑜: 2 𝑠𝑠𝑜𝑜  [11] 

 

Where so is the a priori standard error of the unit weight given by: 

𝑚𝑚𝑚𝑚𝑚𝑚���𝑝𝑝𝑖𝑖𝑣𝑣𝑖𝑖��/0.6745, 
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vi is the residual of observation, med is the median, pi is the weight of observation, ci is the constant critical 

value given by: 𝑐𝑐𝑖𝑖 = so �𝑄𝑄𝑣𝑣𝑣𝑣  .�𝑝𝑝𝑖𝑖𝑖𝑖 . 𝑡𝑡𝑓𝑓,1−𝛼𝛼/2 in which 𝑄𝑄𝑣𝑣𝑣𝑣  is the cofactor matrix of the residuals, p is the weight 

matrix of the observations, f is the degree of freedom, α is the significance level, and t represents t-table. So, the 

critical value can be calculated as follows: 𝑐𝑐 = ∑ 𝑐𝑐𝑖𝑖/𝑀𝑀𝑛𝑛
𝑖𝑖=1  in which n is the number of observations. 

5. Numerical Example 

Cannon digital IXUS 990 IS, digital compact camera equipped with 5x zoom lens and has been calibrated at the 

widest view of its zoom lenses. It was also calibrated with a lens equivalent to 35 mm film format. A building 

was photographed with one stereo-pair by the target camera for the calibration purpose. The distance between 

the target camera and the photographed building was 15 m. the distance between the two projection centers was 

3 m. The control and check points have been marked on the acquired image. The coordinates of the control and 

check points have been measured from the stereo-model. The differences between their coordinates derived 

from ground surveying technique and those defined by the photogrammetric process have been computed. A 

photogrammetric software is called BUNDLEH Lite [15,19] has been used for the process of non-metric camera 

calibration.  Four values of gross errors: zero, 5 mm, 10 mm and 20 mm were added to one coordinate of an 

image point. The different robust methods in table (1) were used to process the data in turn while the photo-

variant self-calibration mode was activated in the adjustment. 

6. Results and Analysis 

Results of the test are tabulated in tables (2), (3), (4) and (5) with the Root Mean Square Errors (RMSE) of 

check points when zero, 5 mm, 10 mm and 20 mm blunders were introduced to a point coordinates obtained 

from traditional least-squares and different robust estimation methods respectively.  

Table 2: Root Mean Square Error (RMSE) of check points in case of zero gross error using different robust 

methods 

Method of adjustment RMSE 

 X (mm)  Y (mm) Z (mm) 

Least Squares 0.28 0.25 0.79 

R-Estimators 0.25 0.27 0.92 

S-Estimator 0.22 0.23 0.75 

Danish 0.12 0.14 0.83 

Andrews 

M-estimators 

0.20 0.24 0.69 

Modified M-estimator 

(IGGIII) 

0.16 0.15 0.50 

Huber 0.36 0.41 0.94 
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Table 3: Root Mean Square Error (RMSE) of check points in case of 5 mm gross error using different robust 

methods 

Method of adjustment RMSE 
X (mm) Y (mm) Z (mm) 

Least Squares 12.15 10.16 99.79 
R-Estimators 0.35 0.38 1.03 
S-Estimator 0.33 0.34 1.26 
Danish 0.23 0.25 1.01 
Andrews 
M-estimators 

0.31 0.35 1.34 

Modified M-estimator 
(IGGIII) 

0.27 0.26 1.03 

Huber 0.48 0.52 1.56 

 

Table 4: Root Mean Square Error (RMSE) of check points in case of 10 mm gross error using different robust 

methods 

Method of adjustment RMSE 
X (mm) Y (mm) Z (mm) 

Least Squares 25.15 30.16 134.45 
R-Estimators 0.33 0.41 1.12 
S-Estimator 0.36 0.36 1.34 
Danish 0.28 0.29 1.11 
Andrews 
M-estimators 

0.37 0.38 1.35 

Modified M-estimator 
(IGGIII) 

0.29 0.29 1.12 

Huber 0.52 0.55 1.58 

 

Table 5: Root Mean Square Error (RMSE) of check points in case of 20 mm gross error using different robust 

methods 

Method of adjustment RMSE 
X (mm) Y (mm) Z (mm) 

Least Squares 32.15 42.16 134.45 
R-Estimators 0.35 0.43 1.45 
S-Estimator 0.38 0.38 1.55 
Danish 0.31 0.31 1.23 
Andrews 
M-estimators 

0.38 0.40 1.56 

Modified M-estimator 
(IGGIII) 

0.30 0.32 1.34 

Huber 0.54 0.56 1.59 

 

Statistical tests have been performed for detecting and decreasing the effect of gross errors and then the 
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adjustment should be performed again. Least-squares method was carried out with blunder-free measurements 

as a reference adjustment. Six robust estimation methods were used to adjust the same measurements after 

adding blunders to a point coordinates.  

It is easy to notice that the effect of zero or small-sized gross errors on the adjusted coordinates was minimal 

and can be neglected as shown in table (2). On the other hand, large-sized gross errors breakdown the adjusted 

coordinates completely as shown in tables (3), (4) and (5). Furthermore, gross errors were also included in the 

residuals as shown in tables (6) and (7). The results were not sufficiently accurate in case of using least-squares 

method for adjusting close-range photogrammetric data that contains blunder values of 10 mm and 20 mm, 

while there was an improvement in accuracy when robust estimators were used.  

The Modified M-estimator (IGGIII), which is one of the robust estimation methods, gives better accuracy than 

other robust methods (see tables (3), (4) and (5)). From table (3), it can be noticed that the gross error was 

forbade from share in the solution, then  the accuracy of the solution obtained earlier from the least squares 

method can be improved, provided sound geometry is still maintained. Table (8) shows that gross error was 

detected in the residual. The Modified M-estimator (IGGIII) method performance was the best for X, Y and Z 

coordinates without iterations.  

Huber's estimation method has shown the least accurate results in both plane and height coordinates accuracy 

with few iterations. In case of large-sized blunders (10 mm and 20 mm), the Modified M-estimator (IGGIII) 

method has the best performance and accuracy without iterations.  

Table 6: Robust Estimator for detecting gross errors of selected points on images in case of use 5 mm error 

Point-id VX (mm) Weight VY (mm) Weight 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

0.0004 

0.0000 

-0.0009 

0.0006 

0.0005 

0.0007 

0.0003 

0.0003 

0.0003 

0.0029 

0.0003 

0.0004 

0.0002 

-0.0005 

0.0002 

0.685 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

0.000 

1.000 

1.000 

1.000 

1.000 

1.000 

0.0008 

0.0001 

0.0002 

0.0003 

0.0002 

0.0001 

0.0002 

0.0001 

0.0001 

0.0009 

0.0003 

0.0001 

0.0002 

0.0002 

0.0002 

0.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

0.000 

1.000 

1.000 

1.000 

1.000 

1.000 
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Table 7: Robust Estimator for detecting gross errors of selected points on the images in case of use 10mm error 

Point-id VX (mm) Weight VY (mm) Weight 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

0.0004 

0.0000 

-0.0002 

0.0002 

0.0002 

0.0001 

0.0002 

0.0001 

0.0001 

0.0089 

0.0003 

0.0001 

0.0002 

-0.0005 

0.0002 

0.685 

1.000 

0.897 

0.754 

1.875 

0.987 

0.943 

0.989 

0.978 

0.000 

0.764 

0.990 

0.986 

0.987 

0.885 

0.0007 

-0.0001 

-0.0007 

0.0001 

0.0002 

0.0001 

0.0005 

0.0004 

0.0003 

0.0000 

0.0009 

0.0007 

0.0006 

0.0008 

0.0005 

0.423 

0.965 

0.453 

0.990 

0.954 

0.989 

0.897 

0.912 

0.876 

1.000 

0.345 

0.453 

0.654 

0.534 

0.867 

 

Table 8: Robust Estimator for detecting gross errors of selected points on the images in case of use 20mm error 

Point-id VX (mm) Weight VY (mm) Weight 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

0.0005 

0.0000 

-0.0002 

0.0001 

0.0001 

0.0002 

0.0002 

0.0002 

0.0002 

15.432 

0.0002 

0.0002 

0.0001 

-0.0001 

0.0002 

0.355 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

0.000 

1.000 

1.000 

1.000 

1.000 

1.000 

0.0007 

0.0000 

-0.0005 

0.0004 

0.0001 

0.0004 

0.0003 

0.0001 

0.0003 

0.0006 

0.0005 

0.0006 

0.0004 

0.0008 

0.0002 

0.312 

1.000 

0.342 

0.423 

1.000 

0.412 

0.543 

1.000 

0.654 

0.353 

0.342 

0.234 

0.542 

0.234 

0.864 
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7. Conclusion 

The main objective of this paper was to apply different methods of robust estimation with the classical least-

square method for detecting and solving the gross errors in close range-photogrammetric data. For this purpose, 

one stereo-pair terrestrial photos were taken by non-metric digital camera. A calibration process was also carried 

out using BUNDLEH Lite software. Four values of gross errors: zero, 5 mm, 10 mm and 20 mm were added to 

one coordinate of an image point. The different robust methods in table (1) were used to process the data in turn 

while the photo-variant self-calibration mode was activated in the adjustment. The results indicate that the effect 

of zero or small-sized gross errors on the adjusted coordinates was minimal and can be neglected. Large-sized 

gross errors breakdown the adjusted coordinates completely. Gross errors were also included in the residuals. 

The results were not sufficiently accurate in case of using least squares method for adjusting close-range data 

that contains 10 mm and 20 mm, while there was an improvement in accuracy when robust estimators were 

used. The Modified M-estimator (IGGIII), which is one of the robust estimation methods, gives better accuracy 

than other robust methods.  
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