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Abstract 

In view of the problem that the restoration effect of the daytime defogging algorithm is not ideal, especially the 

over-enhancement and color distortion in the sky and its nearby. A new parameter estimation method for 

atmospheric scattering model is proposed. Firstly, the sky and non-sky areas are segmented. Then, estimating 

the atmospheric light at the junction, and then corresponding restrictions on the value of transmittance according 

to the change of the depth of field. Finally, the transmittance is optimized by context-based regularization, so 

that the final image after dehazing is more in line with the visual characteristics. Through the subjective 

comparison and analysis with the existing mainstream algorithms, the dehazing effect of the proposed method 

has the advantages of low noise and high color recovery, especially in the sky. The restoration with the non-sky 

junction is the best, enriching the details that other algorithms have not restored and the colors are true and 

natural. 
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1. Introduction  

In recent years, due to the bad weather such as smog, the image and video quality of outdoor scene shooting will 

be seriously degraded, which affects our visual experience and perception of details. It urgently requires us to 

restore degraded images through image processing. 
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The recovery methods for degraded images are generally divided into two categories [1], one is to use image 

enhancement to highlight the difference between the target and the background to reduce the influence of haze, 

such as Retinex algorithm [2]; the other is according the principle of  image degradation, through the 

atmospheric scattering model [9] to obtain a clear fog-free image, such as the maximum local contrast method 

proposed by Tan and his colleagues [3] and proposed by He and his colleagues [4]. dark channel prior 

algorithm. Current research shows that the model dehazing effect is better than the former. However, in this 

model, the atmospheric light estimates of many methods are relatively rough. In these methods, the brightest 

points or regions in the dark channel  are selected to estimate atmospheric light [4-8,18]. Its biggest problem is 

susceptible to large areas of glare or white objects such as lights, snow and water, especially those that contain 

the sky. This is due to the high overall brightness of the sky area, which will seriously affect the estimation of 

atmospheric light, while atmospheric light estimation Inadequately, it will lead to inaccurate estimation of the 

transmittance of the sky area. Then because of the sky depth of field is large, the transmittance of this part of the 

area is generally estimated to be too low, so that the sky area after defogging is too enhanced, resulting in color 

distortion. 

In the past two years, with the development of deep learning and artificial intelligence, convolutional neural 

networks have also been applied to the field of dehazing. Based on the atmospheric scattering model, 

DehazeNet proposed by B. Cai and his colleagues [15] uses deep learning to learn the characteristics of haze. In 

order to estimate the concentration of smog and the depth of the scene to obtain better transmittance; Wenqi Ren 

and his colleagues [16] proposed a mapping between learning haze images and their corresponding 

transmittance maps. Multi-scale deep neural network for image dehazing; Boyi Li and his colleagues [17] 

proposed an All-in-One dehazing convolution network, which generates clear images directly through a small 

convolutional neural network. It is easy to embed in other deep network models to improve the defogging effect; 

K. Swami and his colleagues [20] proposed CANDY (de-fog image based on conditional confrontation network), 

which is a complete end-to-end model that can be directly The fog image is clean and fog-free. CANDY also 

adds visual quality optimization to the fog-free image, so it produces high-quality fog-free images. But deep 

learning defogging algorithms require a large number of data sets and special The collection of acquisitions, and 

the high standards of hardware requirements make the research cost higher. 

After studying the advantages and disadvantages of the above various algorithms, this paper proposes a new 

estimation method for atmospheric light, dark channel map and transmittance based on the atmospheric 

scattering model based on the atmospheric scattering model. Improve the defogging effect. 

2. Parameter Estimation in Atmospheric Scattering Model 

The atmospheric scattering model describes the process of image degradation in smog and other weather, as in 

equation (1): 

( ) ( ) ( ) (1 ( ))I x J x t x A t x= + −   (1) 

( )( ) d xt x e β−=     (2) 
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Where I(x) is the captured degraded image, J(x) is the restoration map, A is the atmospheric light. t(x) is the 

transmittance, using the equation (2), β is the scattering coefficient, d(x) For the scene distance, t(x) is negatively 

correlated with the imaging distance d(x). The key to whether the ideal J(x) can be obtained in this model is 

whether it can accurately estimate A and t(x). 

2.1. Estimation of atmospheric light 

At present, the estimation method of atmospheric light A is to select the brightest point or region in the dark 

channel map according to the He’s method [4]. The atmospheric light A estimated by this method is as shown in 

the blue region in Figure 1(a), Figure 1(b) is the dehazing result obtained according to A in Figure. 1(a). The 

effect between the sky and the non-sky junction is very poor. 

 

Figure 1: (a) Input image   (b) dehazing by He’s method 

According to equation (2), when the scene distance is infinity, t(x) is tight to zero. According to equation (1), 

I(x) is equal to A, that is, the reflected light of the object at the far end is transmitted through the atmosphere. 

The scattering of the medium attenuates to zero, and only the atmospheric light A is captured by the optical 

sensor. So theoretically A should take the value at the infinity point of the image, but the brightest point found 

by the method of He[4] is not necessarily the most far point. According to the principle of parallel perspective, 

the boundary between the sky and the non-sky is the line of extinction. This line of extinction is regarded as 

infinity. Therefore, it is estimated that the value of atmospheric light A is more in line with the principle of 

atmospheric scattering model. The result should be more accurate. 

According to this theory, a new method for estimating atmospheric light is proposed. Firstly, the sky and non-

sky regions are separated. According to the characteristics of the sky region with high brightness and uniform 

color [10], we use equation (3-4). The rough division of the sky in I(x): 
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Where Ib represents the divided binary image; τ1 and τ2 represents the grayscale and gradient threshold 

respectively, τ2=0.04 is the empirical value. Ig, G respectively represent the grayscale of I(x) and its standard 

neighborhood difference gradient; Ωsky for the estimated sky areaIn the sky area, we first assume that the 1/5 

area at the top of the image is the sky. (If the sky area is less than one-fifth of the image, there is very little 

distortion of the sky after dehazing, which has little effect on the algorithm and can be treated as no-sky image 

processing). Taking the gray mean value of the Ωsky area as the threshold value, in order to prevent the value 

from being too large and causing false detection, by setting b to define a, since the sky area selects the upper 1/5 

of the image and the gray value of the area is higher than I. The average gray value of  I(x), so b takes 1/7 of the 

average gray level of I(x). In the case of rough segmentation, it may be disturbed by scenes such as clouds due 

to the setting of the gradient threshold, resulting in mis-segmentation. However, since the purpose of dividing 

the sky is to find the area where the sky and the non-sky meet, it does not require precise segmentation. 

Therefore, after the pattern morphology processing such as eroding and dilating operations, the mis-segmented 

regions are eliminated, and the binary image after the sky segmentation is obtained. The effect after the 

segmentation is shown in Figure. 2(b), (d). In the neighborhood of the sky and non-sky junction, look for the 

brightest point in the dark channel map as an estimate of atmospheric light A, as shown in Figure 2(a), 2(c). 

 

(a)Input    (b)Result 

 

(c)Input    (d)Result 

Figure 2: Result sky segmentation 

At present, the estimation of dark channel maps generally adopts the method of He[4]. However, we study the 

distribution of fog distribution expressed by images and images by studying the fog concentration distribution 

map D(x) obtained by Yu Mingchen and his colleagues [11] in 2016. It is quite consistent, and it can maintain 

the edge information while also having smooth characteristics. Therefore, we do a minimum filtering on D(x) 
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and get a new dark channel map, which is stronger than He’s method. The light interference is small, and the 

denser the fog, the larger the D(x) value. We estimate the atmospheric light in this new dark channel map. In 

Figure 3, we fixed the algorithm by the literature [5] and [14]. In other steps, the estimated value of atmospheric 

light A is changed to compare the superiority of the algorithm. 

 

(a)Result of [4]   (b)Our result 

 

(c)Result of [13]   (d)Our result 

Figure 3: Comparison after using our method to estimate atmospheric light A 

2.2. Improvement and optimization of transmittance  

After determining the atmospheric light A, the initial estimation of the transmittance according to equation (5) is 

obtained [4]. 
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In order to estimate the transmittance more accurately, we further optimize )(ˆ xt  according to equation (6) to 

obtain ( )t x . The parameter ω is the limiting factor, which is used to control the degree of defogging. The closer 

it is to 1, the more obvious the defogging effect is. But at the same time, the image color tends to be over 

saturated. Because the intensity of the light emitted by the point source is inversely proportional to the square of 

the distance, that is, the visibility of the target decreases as the depth of field increases, and the intensity of the 
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close distance decays rapidly, and as the distance increases, This rate of decay tends to be smooth, and this 

phenomenon is also in line with daily observations. Based on this optical characteristic, we appropriately adjust 

the parameter ω to limit the transmittance and prevent the image from being over saturated. 

According to the equation (7), it is divided into three segments. Each pixel points adaptively adjusts the 

parameter ω according to the mapping relationship between the transmittance and the depth of field, so that the 

final restored image can produce natural depth of field effects from far and near. 
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Since the depth d(x) is usually not easy to obtain, we use the initial estimated )(ˆ xt  in equation (7) because the 

transmittance is negatively correlated with the depth of field. The farther the distance is, the smaller the 

transmittance is, Therefore, )(ˆ xt  should be positively correlated with the limiting factor ω. The limiting factor 

ω is usually in the range of 0.7~0.9, so the first segment represents the distant view, ω should take a smaller 

value, here we take 0.7 (less than 0.7, the defogging effect is too weak), The parameters a and c of the second 

quadratic curve can be calculated from the endpoint coordinates (0.05, 0.7) and (0.65, 0.9) of the two labels in 

Figure. 4: a = 0.476, c = 0.6988, and the third segment indicates Closer view, visibility is higher, ω should be 

closer to 1, here we take 0.9. 
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Figure 4: Adaptive value of ω 

At this time, the transmittance we obtained is based on the block, which is rich in edge information, and leads to 

the halo effect after defogging. This requires optimization of the transmittance. Here we use Meng and his 

colleagues [5] the context regularization method based on L1 norm weighting proposed in  optimizes the 

transmittance. Since the gross estimated transmittance has a halo effect at the scene edge where there is a large 

depth of field change, we hope to introduce a weighting function to constrain the adjustment. This distortion 

phenomenon protects the edge information of the image. Therefore, according to equation (8), the optimized 
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transmittance is obtained by minimizing the objective function, so that the obtained transmittance can ensure 

continuous and smooth while retaining the image. Edge information: 

∑
∈

⊗+−
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λ  (8) 

Among them, the first term is the fidelity term, which is used to measure the fidelity of t(x) and ( )t x ; the 

second term is the context constraint of t(x), that is, the constraint condition of the objective function, and is also 

the L1 weighted regularization term. This item can be derived from equation (9): 
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ti and tj are adjacent pixels, which are replaced by a set of difference operators Dj, which is rewritten as the 

second term of equation (8). In literature [5], 8 Kirsch operators and 1 Laplacia operator are used. The set of 

higher-order difference operators of the group. The Wj in the equation (9)and ω in equation (8) represent 

weighting functions. The most important thing here is the construction of the weighting function, which 

determines the transmittance after regularization, and thus also The defogging effect of the final restored image. 

In [5], we construct according to the variance of the RGB vector values of adjacent pixels in the original image. 

Here we use another method to introduce the following formula to form the weighting function [10]. 

1)))()((( −+−= εαyxwxy    (10) 

Equation (10) represents that the weighting function is constructed based on the difference in brightness of the 

neighborhood pixel points. The difference operator is added, and after rewriting, as in equation (11): 

-1)|(|)( εα +⊗= ijj DiW    (11) 

Then, according to the variable splitting method used in the literature [5], the auxiliary variable is introduced, 

the objective function is simplified, and the optimized transmittance is obtained through iterative optimization. 

Finally, using the guided filtering proposed by He and his colleagues [4] to refine the transmittance, and finally 

get t*. 

After many experiments, we found that the transmittance of the sky area obtained at this time tends to be low, 

which will lead to the sky area being over-enhanced. Therefore, the transmittance of the sky area should be 

further limited, as in equation (12): 
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(a)Transmittance before optimization  (b)Result 

 

(c)Transmittance after optimization  (d)Result 

Figure 5: Comparison of image defogging results after transmittance optimization 

There σ represents the average value of the t* at the junction of the sky and the non-sky. With the boundary line 

as the boundary, the sky area is treated in two cases. If the transmittance is less than the set threshold σ, it is 

processed according to equation (12), and the upper limit is added and set. 0.4, so that the region's t(x) is not too 

low. The defogged result obtained in this way is more real and natural than the pre-optimization of the 

transmittance, and the details are more abundant, as shown in Figure. 5. 

3. Experimental results and analysis 

The general algorithm adds image enhancement methods such as gamma correction after image defogging. This 

paper does not add any post-correction. We have selected the classic haze test chart with sky area and the latest 

defogging database, and The dehazing results of He[4], Berman [14] and B. Cai [15] were compared, as shown 

in Fig. 6. The comparison shows that He has the weakest dehazing effect and the sky area is too bright; Berman 

has better defogging effect. However, there are also problems such as excessive fogging, insufficient overall 

color, over-saturation and darkness in the foreground, and inaccurate color recovery in the sky. B. Cai's method 

is generally effective, and the effect is not obvious in some images. Depth learning with deep learning requires a 

large number of real scene values, but it is more difficult to capture both foggy and fog-free images in the same 

natural scene, so the dataset is basically an indoor scene image plus artificial fog processing, which is natural. 

There is a deviation in the fog of the scene, so the algorithm is not effective in the natural scene. The method has 

the best restoration effect. While ensuring the image defogging effect, the color restoration is closer to the 

original image. At the junction of the sky and the non-sky, the details are richer and the color is more natural. 

The defogging effect of the whole image is very layered, more in line with the imaging principle and visual 
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characteristics. Since some documents do not find the source program, in Figure 7 In addition, the results of the 

algorithm in Fattal [13] and Boyi Li [17] are compared as a comparison reference. 

We also used the fog-free density evaluator (FADE) proposed in [19], and used this objective evaluation method 

to analyze the dehazing results of Figure 6, as shown in Table 1. The evaluation method Based on the statistics 

of a large number of natural scene pictures and fog characteristics, the fog concentration in the image can be 

evaluated without reference. The larger the index value, the higher the image fog concentration; otherwise, the 

image fog concentration is low. 

Table 1: Referenceless Prediction of Perceptual Fog Density 

Figure He Berman B. Cai Our 

Manhattan 0.2205 0.1428 0.2696 0.1792 

Hongkong 0.2456 0.1401 0.3415 0.2058 

YT_Google_223 1.2438 0.5984 1.3414 0.4384 

YT_Bing_639 3.1950 1.2731 1.3930 1.2553 

YT_Google_590 1.5525 1.1888 2.0993 1.1826 

Through Table 1, we find that in the mist image, the objective index of dehazing is not as good as that of 

Berman, but combined with subjective observation, the color restoration of the algorithm is more accurate, and 

the sky has not been enhanced, but the algorithm result of Berman The color is obviously distorted, which 

embodies the superiority of the algorithm in color recovery. In the dense fog image, the objective index of this 

paper is better, and while ensuring defogging, there is still no over-enhancement to the sky area, and no The 

phenomenon of color distortion. 

4. Conclusion 

Aiming at the deficiency of key parameters estimation in atmospheric scattering and defogging model, a new 

estimation method is proposed. The effectiveness of this method is proved by a large number of experimental 

verifications and analysis. 
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