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Abstract  

The ability of the quadruped (four-legged) robot locomotion was used in a lot of different applications like 

walking over soft and rough terrains. These applications needed to guarantee the flexibility and mobility. 

Generally, quadruped robots have three basic periodic gaits:  creeping gait, running gait and galloping gait. The 

stability criteria are the main issue of the quadruped robot throughout walking with the slow motion gait like 

creeping gait. The gait of static stability is completely bases on the stability margins in the walking that was 

calculated in this paper. The quadruped robot legs walking sequence and creeping gait within the leg fixing and 

swinging phases carried out. The kinematics model of quadruped robot of the forward and inverse kinematics 

for each leg 3-DOF was calculated that lead to discover the minimum stability margins with walking on the 

vertical projection of the robot geometrical body. These stability margins needed to be optimized in order to 

obtain the best stability margin throughout this robot walking. In this paper we use the PSO optimization 

algorithm to get the best stability margins value. Simulation and results are verified the range of the stability 

margin values and the optimized results. 

Keywords: Quadruped Robot Simulation; Stability Margins; Quadruped Robot Gait PSO Optimization. 

1. Introduction 

In recent years, utilization of the leg-based walking systems has been transformed into a very familiar field in 

robotics. These systems adapted their ability in order to deal with irregular territories especially when compared 

with wheel systems [1].  
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This legged systems ability for transact with uneven territories also avoiding the obstacles that with the 

quadruped robots in the planning of standard walking gaits [2, 3]. The quadruped robots distinguish among the 

other legged robots by have the less complex structure, this structure give it to accomplish the requirements of 

the static stability gait throughout walking. The quadruped robots locomotion frequently utilized in many 

research that talked about the quadruped robot, its similarity in the investigation of insects and biological 

animals walking gaits. These studies have led to improve both dynamic running gaits and statically stable 

walking gait for legged robots [4]. The objective of this paper is to design and implement with robustness 

quadruped robot that has the static stable ability during its walking. These walking gaits are repeated to obtain 

the main sequence step which needed to make the quadruped robot stable on irregular places [5]. The quadruped 

robots also has the ability of arranging the step sequences and verification criteria of stability on incline surfaces 

that needed for verifying  the Omni-directional statically stable throughout this walking [6]. The criteria of 

stability depended on some elements such as Center of Gravity (COG), Stability margin (Sm) and the support 

polygon which framed by the legs tip of the quadruped robot. These elements are very important particularly 

when the quadruped robot walking utilizing creeping gaits for walking [7, 8]. Generate of the leg sequence of 

placing and lifting throughout the quadruped robot walking is called gait [9]. Generally, the quadruped robot 

gaits are dividing in two types, the first type is the static stability gait, and the second type is dynamic stability 

gait [10]. During the movement of the walking the body of quadruped robot should be remain stable and has the 

ability to travel from one place to another. The static stability gait is the easier gait which used by the quadruped 

robot when it needs a slow motion movement to walk. But when the quadruped robot walking at fast speed like 

trotting gait, the one must be used is the dynamic gait, which aims to reality of that the vertical projection of 

COG is derivative of the supporting polygon and not inside it. For this case the quadruped robot will be unstable 

and it is imminence to drop down. thus at the quadruped robot running gaits, its need to be content with the 

conditions of dynamic stability instead of the requirements of static stability [11]. Generally, the quadruped 

robot is attempt to be statically stable with its three legs fixed on the ground while the fourth leg is swing.  

In this paper, the PSO optimization algorithm utilized to obtain the best stability margins throughout the robot 

walking gait. The creeping gait matches the nature of the biological stable gait of animals and insects. In this 

case the statically stable gait is necessary in order to guarantee a stable walking. Also during the quadruped 

walking in the creeping gait, its stability will be achieved if and only if the COG vertical projection inside the 

supporting polygon which is framed by the legs tips. The basic problem is how to achieve and control of the legs 

sequences of lifting and putting all legs within the period of time when the quadruped robot walking. 

2. Description of Quadruped Robot 

There are a different models of the quadruped robot, these models is based on some attributes and guide lines to 

design the robot structure and the gait movement. The main criteria to achieve these attributes are [13]: 

1. The standard walking of quadruped robot is repeated periodically during the planning path with a 

constant speed, steady state movement of the legs over even territories.   

2. The standard design of the quadruped robot must be symmetrical in both longitudinal body direction and 
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lateral body direction. This point is also applied to the legs structure leads to a less mechanical 

complexity. 

3. When the quadruped robot has a regular shape and symmetric, the vertical projection of COG of the 

robot body is located at the center of the supporting polygon that is resulted from the legs tips on the 

ground.   

The quadruped robot is design in Fig.(1), based on the above three criteria. In this research the walking direction 

assumed that the quadruped robot is walking foreword along the X-axis only. This means that there is no motion 

in the Y-axis stride .So the stride of every leg is a line. These stride lines are situated in the longitudinal body 

direction to meet the condition of forward walking. 

 

Figure 1: Quadruped robot (top view) illustrate the length (2b) and the width (2c) and the COG point 

As seen in Fig.(1), (2a) is the distance between the minimum point limit of the front leg stride line to the 

maximum point limit of the back leg. (2b) is the distance between the maximum point limit of the front leg 

stride line to the maximum point limit of the back leg. (2c) is the distance from front/back left leg stride line to 

the right leg stride line. So the definition of the leg stride line is [13]: 

Stride line = b – a                                                                                                                         (1) 

Along these considerations, the largest stride of the reachable area for a quadruped robot can be calculated from 

Equ. 1. Most of quadruped robots have the value of length equals to 2b and the value of width equals to 2c. 

Henceforth, the ratio between the length and width is equal to c/b. 

In this paper, the simulation design the quadruped robot leg shown that it has three joints named as the 

biological of the nature insects as (Coxa joint, Femur joint, Tibia joint) this make each leg has three DOF 

(degree of freedom). For all legs, hence, the total numbers DOFs equal to 12.  The quadruped robot structure is 

showing in Fig.(2). In Fig.(2-a) shows the quadruped robot main parts that is mimic the natural anatomy of 

insects and labeling of each leg. In Fig.(2-b) shows the leg joints and the link name of each joint in the 

quadruped leg. Leg1 is the right front (RF) side and leg3 is the right rear (RR) side and leg2 is the left front (LF) 
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side and Leg4 is the left rear (LR) side. And as mentioned before, the forward direction of motion of the 

quadruped robot, in case of the forward direction of motion is set to be with the X-axis direction and the lateral 

motion of the quadruped robot will be in Y-axis. The quadruped body has a symmetrical dimension in X and Y 

axes. Which giving the robot better stability during the walking and making it statically stable. 

 

 

(a) (b) 

Figure 2: Quadruped Robot Simulation Using Matlab (a) quadruped robot with four legs labeling (b) showing 

the three joints (Coxa, Femur, and Tibia) in each legs. 

The main point to ensure the stable walking in the statically stable gait, the quadruped legs positions are playing 

an important role during the walking of the stability calculations. The legs tips positions should be found by 

driving the forward kinematics and inverse kinematics for the quadruped robot. 

3. Creeping Gait Analysis and Sequence Description 

The quadruped robots have three main gaits. This gaits are classified according to its duty factor (𝛽𝛽𝑖𝑖) of each 

leg, where i=1,,,4. These gaits are named from the biological natural gaits of animals such as crawl gait, running 

gait, and the galloping gait. The quadruped robot locomotion has any type from these gaits according to its duty 

factor (𝛽𝛽𝑖𝑖) which is defined as the ratio of the time periods between the leg period of swinging to the period that 

the same leg is contact with the ground. When the quadruped robot walks using creeping gait, the value of the 

duty factor will equals to 0.75. When the quadruped robot is running, it will have duty factor ranged between 

0.5-0.75. Finally when the quadruped robot is galloping, it will have duty factor less than 0.5. These main gaits 

in the robotics field have also been given a name, these names are called: creeping gait, trotting gait and the 

bounding gait [15]. Hence, these gaits have been used by mammals. For example, cats are using the creeping 

gait for a very slow walking. Creeping gait has some advantages, this gait is ensure the statically stable 

movement which is used with the range of low-speed walking. The sequence condition of the creeping gait is 

need a three legs at least are contact with the ground when the fourth leg are swing to translate to new position. 

This sequence condition is needed to ensure the statically stable gait. The quadruped robot creeping gait 

sequence has six types of legs arrangement. In this paper, quadruped robot leg sequence is (RR, RF, LR, and 

LF) where (R: right, L: left, R: rear, F: front). From the labeling Fig.(2)-a, it can be seen that RR is leg4, RF is 

leg2, LR is leg3, and LF is leg1. The advantage of choosing this leg sequence arrangement to have a safety 

walking which is ensure that the robot is body moving forward at the instance time[12]. There are two Cartesian 
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reference frames coordinate when talking about the quadruped structure, the first coordinate frame is located at 

the coxa joint and the second coordinate frame is located on the ground. In this Cartesian coordinate the X-axis 

is referred to the front side direction of the quadruped body, and Y-axis is referred to the left side of the 

quadruped body. So, these coordinates are very important in the analyzing and ensuring that vertical projection 

of COG have been located inside the supporting polygon [13].            

4. Kinematics Model of a Quadruped Robot 

4.1 Forward Kinematics 

The quadruped robot is depending on the configuration of each leg, because its represent as the physical 

constraints of the robot walking. In this paper, the robot leg has three-revolute joints which are labeled in the 

kinematical chain as ( 𝜃𝜃1,𝜃𝜃2 and 𝜃𝜃3). Every leg has a mechanism that is choosing according to these revolute 

joints. Modeling of the leg structure is to mimic the biological structures for animals and insects. To drive the 

geometrical model to each leg which is related to the robot center body, thus forward kinematics must be 

applied to find the position and orientation for each leg tip which is here named as (xi, yi, zi), i=1,2,3,and 4. In 

the Fig.(3) the kinematical chains for any leg is showing. 

 

Figure 3: Coordinate frames for one leg of Quadruped Robot 

Forward kinematics is depending on the D-H (Denavit-Hartenberg) parameters of the leg structure design; these 

parameters are showing in Table 1. 

Table 1: The Denavit-Hartenberg parameters table for one leg in our quadruped robot 

Link 

No. 

Link 

name 

𝜶𝜶𝒊𝒊 

(deg) 

𝒂𝒂𝒊𝒊 

(cm) 

𝒅𝒅𝒊𝒊 

(cm) 

𝜽𝜽𝒊𝒊 

(deg) 

1 Coxa 90 𝑎𝑎1 0 𝜃𝜃1 

2 Femur 0 𝑎𝑎2 0 𝜃𝜃2 

3 Tibia 0 𝑎𝑎3 0 𝜃𝜃3 
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Where the links parameter:𝑎𝑎1=2.5 cm 𝑎𝑎2= 5 cm, and 𝑎𝑎3= 9 cm. 𝑎𝑎𝑖𝑖 are the lengths of the leg links. The leg 

structure is symmetric on the coordinate axis and the walking is set towards the X-axis. The transformation 

matrix used to translate from one link named i to another link named i-1 by using the D-H parameters table. 

Equ. 2, the general matrix is given: 

𝑇𝑇𝑖𝑖𝑖𝑖−1 = �

𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑖𝑖 −𝑐𝑐𝑠𝑠𝑠𝑠𝜃𝜃𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 𝑐𝑐𝑠𝑠𝑠𝑠𝜃𝜃𝑖𝑖𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐𝑖𝑖 𝑎𝑎𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑖𝑖
𝑐𝑐𝑠𝑠𝑠𝑠𝜃𝜃𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 −𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑖𝑖𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐𝑖𝑖 𝑎𝑎𝑖𝑖𝑐𝑐𝑠𝑠𝑠𝑠𝜃𝜃𝑖𝑖

0
0

𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐𝑖𝑖
0

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖           𝑑𝑑𝑖𝑖
0                  1

�                                                                                     

(2) 

By multiplying each joint transformation matrix, the overall transformation matrix can be obtained as the 

following Eq. 3: 

𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑏𝑏𝑐𝑐𝑏𝑏𝑏𝑏 = 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑏𝑏𝑓𝑓𝑓𝑓𝑓𝑓 ∗ 𝑇𝑇𝑓𝑓𝑏𝑏𝑓𝑓𝑓𝑓𝑓𝑓

𝑡𝑡𝑖𝑖𝑏𝑏𝑖𝑖𝑐𝑐                                                                                                                                       (3) 

The transformation matrix for each joint in the quadruped robot leg is given by the following equations: 

𝑇𝑇10 = �

𝑐𝑐1 0 𝑐𝑐1 𝑎𝑎1𝑐𝑐1
𝑐𝑐1 0 −𝑐𝑐1 𝑎𝑎1𝑐𝑐1
0
0

1
0

0 𝑑𝑑1
0      1

�                                                                                                                                   (4) 

𝑇𝑇21 = �

𝑐𝑐2 −𝑐𝑐2 0 𝑎𝑎2𝑐𝑐2
𝑐𝑐2 𝑐𝑐2 0 𝑎𝑎2𝑐𝑐2
0
0

0
0

1   0    
0   1   

�                                                                                                                                  (5) 

𝑇𝑇32 = �

𝑐𝑐3 −𝑐𝑐3 0 𝑎𝑎3𝑐𝑐3
𝑐𝑐3 𝑐𝑐3 0 𝑎𝑎3𝑐𝑐3
0
0

0
0

1   0    
0    1    

�                                                                                                                                  (6) 

 

Multiplications of these matrixes produce the final matrix that it used to describe the leg-tip position and 

orientation. This matrix is given as the following: 

�

c1(c2+3) −c1s2−3 s1 a3c1(c2+3) + c1(a2c2+a1)
s1(c2+3) −s1(s2−3) −c1 a3s1(c2+3) + s1(a2c2+a1)

s2+3
0

(c2+3)
0

 0               a3(s2−3) +   a2s2
0                     1                        

�                                                                                (7) 

Where: 

𝑐𝑐𝑖𝑖 = 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑖𝑖  and 𝑐𝑐𝑖𝑖 = 𝑐𝑐𝑠𝑠𝑠𝑠𝜃𝜃𝑖𝑖 , for i=1,2, and 3. 
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(𝑐𝑐2+3)= cos (𝜃𝜃2 + 𝜃𝜃3) 

(𝑐𝑐2−3)= sin (𝜃𝜃2 − 𝜃𝜃3) 

Thus, the final position of the leg tip can be obtained as: 

𝑥𝑥𝑖𝑖 =  𝑎𝑎1𝑐𝑐1 + 𝑎𝑎2𝑐𝑐1𝑐𝑐2 + 𝑎𝑎3𝑐𝑐1                                                                                                                                   (8) 

𝑦𝑦𝑖𝑖 = 𝑎𝑎1𝑐𝑐1 + 𝑎𝑎2𝑐𝑐1𝑐𝑐2 + 𝑎𝑎3𝑐𝑐1𝑐𝑐2+3                                                                                                                            (9) 

𝑧𝑧𝑖𝑖 = 𝑎𝑎2𝑐𝑐2 +  𝑎𝑎3 𝑐𝑐2−3                                                                                                                                            (10) 

Where: (𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖 ,𝑧𝑧𝑖𝑖) is the leg-tip coordinates, i=1…4.  

4.2 Inverse Kinematics 

The inverse kinematics is used to formulate and achieve the joint angles from the leg tip position and orientation 

which has been calculated from the forward kinematics [14]. In this paper, the goal of inverse kinematics is to 

find joint angles of each leg, 𝜃𝜃1,𝜃𝜃2 and 𝜃𝜃3, from the leg position. The leg configuration assumed to be similar 

with the natural biological insect as illustrated in Fig.(4). 

 
Figure 4: Shows one leg of insect and its links (Coxa, Femur, Tibia) [16] 

    To solve inverse kinematics for every legs, its need to use the geometrical methods. Firstly, its need to simple 

the geometrical figure of the leg from (3D) views to (2D) view. Secondly, finding each joint angle by using the 

geometrical analysis to find (𝜃𝜃1,𝜃𝜃2 and 𝜃𝜃3) as shown in Fig.(5). 

 

Figure 5: quadruped top view showing leg angle 𝜃𝜃1 
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𝜃𝜃1 Can be directly calculated as: 

𝜃𝜃1 = 𝑡𝑡𝑎𝑎𝑠𝑠−1(𝑋𝑋 𝑡𝑡𝑖𝑖𝑡𝑡
𝑌𝑌 𝑡𝑡𝑖𝑖𝑡𝑡

)                                                                                                                                   (11) 

After finding 𝜃𝜃1, the other angels𝜃𝜃2 and 𝜃𝜃3 are in the same (Y-Z) plane. Firstly, finding 𝜃𝜃2 by dividing it into 

two parts 𝑐𝑐1and 𝑐𝑐2 to simplify the problem. From Fig.(6), it can be seen that 𝑐𝑐1 is depending on the distance L 

which equals to: 

𝐿𝐿 = �𝑧𝑧𝑐𝑐𝑓𝑓𝑓𝑓𝑏𝑏𝑏𝑏𝑡𝑡2 + (𝐿𝐿1 − 𝑐𝑐)22                                                                                                                                  (12) 

Where: c is the length of Coxa link. 

So 𝑐𝑐1 can be calculated as: 

𝑐𝑐1 = 𝑐𝑐𝑐𝑐𝑐𝑐−1(𝑧𝑧𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝐿𝐿

)                                                                                                                                   (13) 

From the cosine rules and from Fig.(6),   𝑐𝑐2will be found as: 

𝑇𝑇2 = 𝐹𝐹2 + 𝐿𝐿2 − (2 ∗ 𝐹𝐹 ∗ 𝐿𝐿)cos (𝑐𝑐2) 

Thus: 

𝑐𝑐2 = 𝑐𝑐𝑐𝑐𝑐𝑐−1 �𝐹𝐹
2+𝐿𝐿2−𝑇𝑇2

2∗𝐹𝐹∗𝐿𝐿
�                                                                                                                                   (14) 

Where: F is the Femur link length and T is the Tibia Link length. 

 

Figure 6: Quadruped robot leg and its links (Coxa, Femur, Tibia),  𝜃𝜃2 and𝜃𝜃3 [14] 

From Fig.(6),𝜃𝜃2  equals to: 

𝜃𝜃2 = 𝑐𝑐1 + 𝑐𝑐2 
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𝜃𝜃2 = 𝑐𝑐𝑐𝑐𝑐𝑐−1 �𝑧𝑧𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝐿𝐿

� + 𝑐𝑐𝑐𝑐𝑐𝑐−1 �𝐹𝐹
2+𝐿𝐿2−𝑇𝑇2

2∗𝐹𝐹∗𝐿𝐿
�                                                                                                           (15) 

By the same method, 𝜃𝜃3 is calculated as: 

𝜃𝜃3 = 𝑐𝑐𝑐𝑐𝑐𝑐−1 �𝐹𝐹
2+𝑇𝑇2−𝐿𝐿2

2∗𝐹𝐹∗𝑇𝑇
�                                                                                                                      (16) 

5. Stability  Margins Analysis for Quadruped Robot Creeping Gait 

The quadruped robot walks with a specific goal to have a statically stable movement. During the robot walking 

the vertical projection of COG on the ground must be inside the supporting polygon. This is the main criterion 

which is conditioned for the statically stable walking. The quadruped robot is stable and will not turn down 

when it satisfied these conditions of the statically stable walking. The main advantage of the quadruped robot 

walking in periodically repeated locomotion is to produce a constant speed. This property is leading to the fact 

that the accelerations on the robot body are equal to zero, and the disturbances on the legs will be reduced. 

When the quadruped robot walking using creeping gait, the static stability walking is depending on the stability 

margins. These margins are defined as shortest distance between the vertical projection of COG to the 

boundaries of the supporting pattern [13]. The next figures are showing and explaining the quadruped robot 

model, and the stability margins mathematically analysis to find and calculate the stability margins as the 

following cases: 

 

 
Figure 7: Quadruped robot (top-view) showing the support triangle when leg4 is swinging and other legs are 

fixed on the ground 

Case one: when the quadruped robot leg4 is swing and the other legs (1, 2, and 3) are fixed on the ground as 

showing in Fig. (7). The supporting area will be divided into three areas called (Area1, Area2, and Area3). The 

blue lines are the lines of the stability margins which are needed to be the minimum from the vertical projection 

of COG to the supporting lines (L1, L2, and L3). These blue lines are denoted as (T1, T2, and T3). After this 

method is applied, the stability margins will be found as: 

𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎1 =
1
2
�

1 1 1
𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐 𝑥𝑥1 𝑥𝑥3
𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐 𝑦𝑦1 𝑦𝑦3

� 

Where, (𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐 ,𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐) is the center of gravity coordinate of the quadruped robot on the ground. (𝑥𝑥1,𝑦𝑦1) is the leg1 
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coordinate of tip position. (𝑥𝑥3,𝑦𝑦3) is the leg3 coordinate of tip position. By expanding and simplify this matrix 

𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎1can be calculated as the following: 

𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎1 =
1
2
��𝑥𝑥1 − 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐��𝑦𝑦3 − 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐� −  �𝑥𝑥3 −   𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐��𝑦𝑦1 − 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐� � 

𝐿𝐿1 = �(𝑥𝑥1 − 𝑥𝑥3)2 + (𝑦𝑦1 − 𝑦𝑦3)2 

𝑑𝑑1 = 2 ∗ (𝐴𝐴𝑓𝑓𝑏𝑏𝑐𝑐1
𝐿𝐿1

)                                                                                                                                    (17) 

By the same way, 𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎2 and 𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎3 will be found as: 

𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎2 =
1
2
��𝑥𝑥1 − 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐��𝑦𝑦2 − 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐� −  �𝑥𝑥2 −   𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐��𝑦𝑦1 − 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐� � 

𝐿𝐿2 = �(𝑥𝑥1 − 𝑥𝑥2)2 + (𝑦𝑦1 − 𝑦𝑦2)2 

𝑑𝑑2 = 2 ∗ (𝐴𝐴𝑓𝑓𝑏𝑏𝑐𝑐2
𝐿𝐿2

)                                                                                                                                    (18) 

𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎2 =
1
2
��𝑥𝑥2 − 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐��𝑦𝑦3 − 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐� −  �𝑥𝑥2 −   𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐��𝑦𝑦3 − 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐� � 

𝐿𝐿3 = �(𝑥𝑥2 − 𝑥𝑥3)2 + (𝑦𝑦2 − 𝑦𝑦3)2 

𝑑𝑑3 = 2 ∗ (𝐴𝐴𝑓𝑓𝑏𝑏𝑐𝑐3
𝐿𝐿3

)                                                                                                                                    (19) 

Finally, the first stability margin 𝑐𝑐𝑠𝑠1is the minimum distance from these three margins: 

𝑐𝑐𝑠𝑠1 = 𝑠𝑠𝑠𝑠𝑠𝑠 (𝑑𝑑1,𝑑𝑑2,𝑑𝑑3)                                                                                                                      (20) 

The other stability margins have been calculated in each period when the other legs are swinging respectively. 

As 𝑐𝑐𝑠𝑠1 analyzed, the other margins are equals to: 

𝑐𝑐𝑠𝑠2 = min (𝑑𝑑4,𝑑𝑑5,𝑑𝑑6)                                                                                                                                       (21) 

𝑐𝑐𝑠𝑠3 = 𝑠𝑠𝑠𝑠𝑠𝑠 (𝑑𝑑7,𝑑𝑑8,𝑑𝑑9)                                                                                                                     (22) 

𝑐𝑐𝑠𝑠4 = 𝑠𝑠𝑠𝑠𝑠𝑠 (𝑑𝑑10,𝑑𝑑11,𝑑𝑑12)                                                                                                                                  (23) 

 

Where (𝑐𝑐𝑠𝑠2,𝑐𝑐𝑠𝑠3, 𝑎𝑎𝑠𝑠𝑑𝑑 𝑐𝑐𝑠𝑠4) have been calculated corresponding to the other cases when the legs are swinging 

sequence during the robot creeping gait. And 𝑑𝑑𝑖𝑖 (i=4,...,12) are the distances between the robot center and the 

legs tips, when all the legs had been swing as 𝑙𝑙𝐴𝐴𝑙𝑙2, 𝑙𝑙𝐴𝐴𝑙𝑙3, and 𝑙𝑙𝐴𝐴𝑙𝑙1 respectively.  
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6. Stability Margins Optimization using PSO 

The stability margins of each leg sequence when the quadruped robot walking with creeping gait is analyzed. 

These margins are varying between a range of values, and its need to achieving the optimal value of each 

stability margin. In this section an optimization method called Particle Swarm Optimization is used to optimize 

the stability margins to have the best stability margin during the quadruped robot walking using creeping gait 

locomotion. 

The PSO optimization algorithm is based on some features such as:  

1- The cost function: this is the main function of the problem that it needs to be optimized. In this paper, 

the main parameters that will pass to the cost function are the robot body center in X-axis and Y-axis 

and the leg tips which are presented as the constraint of the cost function. 

2- The minimum and maximum values of variables: in this paper, the stability margin limiting values are 

presented as VARmin and VARmax 

3- Number of iteration: in this paper the number of iteration is: 500 iteration 

4- Number of population: in this paper the number of population equals to 5. 

5- The initial weight : in this paper the initial weight 𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑐𝑐𝑖𝑖 = 1, and the damping weight 𝑊𝑊𝑑𝑑𝑐𝑐𝑓𝑓𝑡𝑡 = 0.99 

6- The constant values 𝐶𝐶1and𝐶𝐶2: in this paper 𝐶𝐶1=3.999 and𝐶𝐶2 = 0.0001.    

       All these parameters are playing a very important role for enhancement the optimization method working. 

The PSO optimization results of the stability margins are showing in section 7. 

7. Simulation and Results 

In this section, the quadruped robot walking according to the creeping gait sequence locomotion is shown. Each 

gait has its stability margin is varying between a range of values according to which leg is swing in the air. After 

finding the stability margin of each gait, applying the PSO optimization algorithm to achieve the best stability 

margin which gives the best stability that it used to balance the quadruped robot at the period when it walks with 

creeping gait locomotion. As shown in the following figures. 

 
 

(a) (b) 

Figure 8: (a) Leg 4 in swinging phase (b) The stability margin 𝑆𝑆𝑠𝑠1(cm) when leg4 is swing. 
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(a) (b) 

Figure 9: (a) Leg 2 in swinging phase. (b) The stability margin 𝑆𝑆𝑠𝑠2(cm) when leg2 is swing. 

 

 
(a) (b) 

Figure 10: (a) Leg 3 in swinging phase. (b) The stability margin 𝑆𝑆𝑠𝑠3(cm) when leg3 is swing. 

 
 

(a) (b) 

Figure 11: (a) Leg 1 in swinging phase. (b) The stability margin 𝑆𝑆𝑠𝑠4(cm) when leg1 is swing.

From above figures it can be seen the following:  

1. In Fig.(8): leg4 tip is swinging and the stability margin 𝑆𝑆𝑠𝑠1(cm) equals to (1.71) cm. 

2. In Fig.(9): leg2 swinging and the stability margin 𝑆𝑆𝑠𝑠2(cm) equals to (1.35) cm. 
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3. In Fig.(10): leg3 swinging and the stability margin 𝑆𝑆𝑠𝑠3(cm) equals to (2.3) cm. 

4. In Fig.(11): leg1 swinging and the stability margin 𝑆𝑆𝑠𝑠4(cm) equals to (1.95) cm. 

The best stability margins achieving from the PSO optimization algorithm are showing in the following figures 

  
Figure 12: Best cost for the stability margin 𝑆𝑆𝑠𝑠1 Figure 13: Best cost for the stability margin 𝑆𝑆𝑠𝑠2 

  
Figure 14: Best cost for the stability margin 𝑆𝑆𝑠𝑠3 Figure 15: Best cost for the stability margin 𝑆𝑆𝑠𝑠4 

The following Table (2) is a comparison between the classical stability margins analysis and proposed 

optimization using PSO algorithm method used in this paper. 

Table 2: Stability margins comparison between the classical analyses and the optimized method 

Classical Analysis Method  
Proposed Optimization using 

PSO algorithm 

1.  When Leg 4 is swing the 

stability margin 𝑆𝑆𝑠𝑠1 ranging 

between (2 – 4.55) cm. 

1.  When Leg 4 is swing the best 

stability margin 𝑆𝑆𝑠𝑠1 equals 

to2.851 cm. 

2.  When Leg 2 is swing the 

stability margin 𝑆𝑆𝑠𝑠2 ranging 

between (3 – 6.2) cm. 

2.  When Leg 2 is swing the best 

stability margin 𝑆𝑆𝑠𝑠2 equals to2.75 

cm. 

3.  When Leg 3 is swing the 

stability margin 𝑆𝑆𝑠𝑠3 ranging 

between  (2.7 – 5.3) cm. 

3.  When Leg 3 is swing the best 

stability margin 𝑆𝑆𝑠𝑠3 equals to: 

3.667 cm. 

4.  When Leg 1 is swing the 

stability margin 𝑆𝑆𝑠𝑠4 ranging 

between (1.6 – 3.6) cm. 

4. When Leg 1 is swing the best 

stability margin 𝑆𝑆𝑠𝑠4 equals to: 

2.308 cm. 
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From above figures it can be seen that: 

1. In Fig.(12): the best cost of the stability margin 𝑆𝑆𝑠𝑠1equals to (1.635) cm. 

2. In Fig.(13): the best cost of the stability margin 𝑆𝑆𝑠𝑠2 equals to (1.25) cm. 

3. In Fig.(14): the best cost of the stability margin 𝑆𝑆𝑠𝑠3 equals to (2.173) cm. 

4. In Fig.(15): the best cost of the stability margin 𝑆𝑆𝑠𝑠4equals to (2.309) cm. 

During the creeping gait sequence, the quadruped robot leg angles are changing. These angles are (𝜃𝜃1,𝜃𝜃2and𝜃𝜃3) 

of each leg. This changing is showing in Fig.(19): 

 
 

Figure 16: Changing of Coxa-angle in one step 

movement 

Figure 17: Changing of Femur-angle in one step 

movement 

 
Figure 18: Changing of Tibia-angle in one step movement 

From above figures it can be seen that: 

1. Fig.(16) is the changing of Coxa-angle𝜃𝜃1. This angle is varying between (90 degree) to (76 degree). 

2. Fig.(17) is the changing of Femur-angle 𝜃𝜃2. This angle is varying between (23 degree) to (60 degree). 

3. Fig.(18) is the changing of Tibia-angle 𝜃𝜃3. This angle is varying between (30 degree) to (49 degree). 
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8. Conclusion 

 Illuminating the basic points of this paper, analyze of the quadruped robot walking of creeping gait and the 

derivation, emphasize and showed that the quadruped robot is statically stable throughout walking. To access 

the objective of the work, firstly, the whole forward and inverse kinematics model have been derived and 

utilized for stability validation of walking steps. So the intersection between sequence of robot creeping gait and 

the geometric modeling of robot legs-tip which are derived to find the entire static stability margins during 

walking. The results certainly proved the best of stability margins that own the minimum values with utilizing 

PSO algorithm to guarantee the robot COG preservation into the supporting triangle via the swing phase for one 

leg with the rest legs that on the ground. Furthermore, an improvement for future work, it’s necessary to analyze 

and enhance the quadruped robot walking on hard and rough terrain. 
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