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Abstract 

This paper deals with nonlinear active noise control using adaptive wavelet filters. The ability of wavelets in 

signal reconstruction and function approximation make them appealing for black box system identification. 

Moreover, the intrinsic similarity between wavelet filters and noise/vibration signals implies that better 

approximation of these signals can be achieved by employing wavelet filters. Here, a new simple structure for 

using in active noise control system is proposed comprises a nonlinear static mapping cascaded with an IIR filter 

to take care of the dynamics of the system. With this strategy, one can avoid using multi-dimensional wavelet 

networks and thus eliminate curse of dimensionality. The performance of the proposed ANC system is 

examined for typical linear/nonlinear cases. The simulation results demonstrate superior performance of this 

method in terms of fast convergence rate and noise attenuation as well as computational complexity reduction 

while avoiding curse of dimensionality. 
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1. Introduction  

Acoustic noise problems are among the main concerns in the today’s industrial world. The field of noise control 

can be broadly classified into two domains: passive noise control (PNC) and active noise control (ANC). PMC 

techniques aim at reducing the noise level by using absorbers and/or barriers. Although PNC method scan be 

efficient over a wide range of frequencies, their implementation at lower frequencies is costly while making the 

noise control system bulky. ANC systems have therefore been developed in order to overcome this limitation of 

PNC at low frequencies. Techniques used in ANC systems are based on the superposition of the primary noise 

source and the secondary source with their acoustic output shaving same amplitudes but opposite phases. The 

secondary source is powered by a controller, which utilizes a linear/nonlinear algorithm. A schematic diagram 

of a feedforward single cannel ANC system is shown in Figure 1. In ANC architecture, a reference microphone 

is used to feed the noise signal to the controller of the ANC system. The output of this controller is used to 

generate the anti-noise through a loudspeaker system. An error microphone is used to sense the residual noise 

which, in turn, is used to tune the ANC controller. The acoustic path from the noise source to the point of noise 

cancellation is called the primary path. The path from controller output through the loudspeaker, the acoustic 

path between the loudspeaker and the error microphone, plus the error microphone itself forms the secondary 

path. 

 

Figure 1: Feedforward ANC system in a duct 

Linear ANC systems [1] have been successfully applied for active noise cancellation. However, their 

performance degrades where: 

1- The noise coming from a dynamic system may be a nonlinear and deterministic noise process, such as 

a chaotic noise process rather than a stochastic, white, or tonal noise process [2], having a nonlinear 

term in the equation [3] and nonlinear noise inside an automotive cabin [4,5] 

2- the secondary path transfer function between the speaker and the error microphone  exhibits non-

minimum phase response [2], or 

3- the primary noise at the cancellation point exhibits nonlinear distortion due to nonlinear dynamics of 

the primary path (e.g. primary noise propagating in a duct with very high sound pressure) [2], or 

4- saturation effects dominate, making the ANC system nonlinear. Saturation may occur in microphone 

and other electronic devices [6]. 

Nonlinear ANC systems overcome these limitation of linear ANC systems. The nonlinear approaches were first 

introduced by Synder and Tanaka [7]  where they employed Multi-Layer Perceptron (MLP) network as general 
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function approximation in active noise control. Other nonlinear methods were then presented (reviewed by [8])  

such as radial basis function networks [9], fuzzy neural networks [10], Volterra filters [11], functional link 

artificial, TT-transform [12], neural network [13-16], and convex combinations [17]. Modification were also 

made on using neural network to improve the performance of noise cancellation [18].  

Families of frame wavelet functions are universal approximators. Inspired by capability of wavelets in signal 

reconstruction and function approximation, a novel approach is developed here based on wavelet filters 

including POLYWOG 1, RASP 1 and SLOG 1 wavelets [19-22].  

Moreover, a new simple structure for using in active noise control system is proposed in which comprises a 

nonlinear static mapping cascaded with an IIR filter to take care of the dynamics of the system. In this structure, 

only input at the current step is required to generate the output of the next sample; therefore, there is no need to 

use tab delayed line of input-output of the physical system. With this strategy, one can avoid using multi-

dimensional wavelet networks and thus eliminate curse of dimensionality.  

2. Adaptive wavelet network controller for active noise control 

2.1. Wavelet transform and wavelet families 

A wavelet is a function ( )2L Rψ ∈  with a zero average: 

( ) 0t dtψ
∞

−∞

=∫  (1) 

It is normalized 1ψ = , and centered in the neighborhood of 0t = [23]. A family of wavelets is obtained by 

scaling ψ by u and translating it by m : 

,
1

m u
t m

uu
ψ ψ − =  

 
 (2) 

The wavelet transform of ( )2f L R∈  at the time m and scale u is 

( ) ( ) *
,

1, , m d
t mWf m u f f t dt

ud
ψ ψ

∞

−∞

− = =  
 ∫  (3) 

A real wavelet transform is complete and invertible as long as the wavelet satisfies a weak admissibility 

condition, specified by the following [23]: 

Let ( )2L Rψ ∈  be a real function such that 
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( )
0

ˆ
C dψ

ψ ω
ω

ω

∞

= < +∞∫  (4) 

which is called wavelet admissibility condition. In equation (4), ( )ψ̂ ω is the Fourier transform of  ( )tψ  and ω  

represents frequency in the Fourier domain. 

To guarantee that the wavelet transform is invertible, we must ensure that ( )ˆ 0 0ψ =  and ( )ψ̂ ω is continuously 

differentiable. Admissibility condition ensures any function ( )2f L R∈ can be represented by wavelets [23]. 

The family of functions generated by ψ can be defined as: 

1 , &j
c j j j

j j

t m
m R u d

uu
ψ

  − Ω = ∈ ∈      
 (5) 

Two categories of wavelet functions, namely, orthogonal wavelets and wavelets frames, were developed. 

Orthogonal wavelet decomposition is usually associated to the theory of multidimensional analysis [24]. The 

fact that orthogonal wavelets cannot be expressed in closed form is a serious drawback for their application to 

function approximation. In contrast, wavelet frames called the mother wavelet, which must satisfy conditions 

that are less stringent than orthogonality conditions. A family cΩ is said to be frame of ( )2L R if there exist two 

constant 0a >  and 0b > such that for any square integrable function f  the following inequalities hold:  

22 2,
j c

ja f f b f
ψ

ψ
∈Ω

≤ ≤∑  (6) 

where f denotes the norm of function f  and ,f g  inner product of functions f  and g . Families of 

wavelet frames of ( )2L R  are universal approximators [24]. 

2.1.1 POLYWOG wavelets 

POLYnominal WinOwed with Gaussian (POLYWOG) wavelets are derivative of Gaussian function [25]. It is 

very simple to prove POLYWOG wavelets have the property ( )ˆ 0 0ψ = and ( )ψ̂ ω  is continuously 

differentiable. Therefore, they can be considered as wavelet frames. POLYWOG 1 wavelet filter which is used 

here is as follows: 

2

2
1 1

z

Polywog k zeψ −=  1
2k

π
=  (7) 

where 1k is determined such that 1 2
1.Polywogψ = Figure 2 shows the POLYWOG 1. 
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2.1.2 RASP wavelets 

Rational functions with Second-order Poles (RASP) arise from the residue theorem of complex variables [26]. 

These wavelets are real, odd functions with zero mean. The distinction among these mother wavelets is their 

rational form of strictly proper functions and having simple/double poles of second order. 

According to the admissibility condition, it must be shown that the families of RASP mother wavelets have zero 

mean value. This can be done easily using the residue theorem for evaluation of integrals. RASP 1 wavelet 

which is used here is as follows: 

( )
2

1 22 1
Rasp

k z

z
ψ =

+
 

2 3.0788k =  (8) 

where 2k is determined such that 1 2
1.Raspψ = Figure 2 demonstrates the RASP 1. 

2.1.3 SLOG wavelets 

This family of frame mothers are the Superposed LOGistic functions (SLOG). This taxon of mothers results 

from finite term sums of weighted and delayed logistic functions. A logistic function is a type of sigmoidal 

function having the form 1
1 te−+

 , a sigmoidal function is a strictly increasing, smooth, asymptotic function.  

This family of wavelets arises from a specific domain, namely, the theory of neural networks. Here, a mother 

wavelet is constructed using weighted, delayed versions of the neural net activation function which is typically 

sigmoidal and logistic [26]. SLOG 1 wavelet which is used here is: 

og1 3 1 3 3 1

1 1 1 1
1 1 1 1Sl z z z zk

e e e e
ψ − + − + − + − −

 = − − + + + + + 
 3 1.0572k =  (9) 

where 3k is determined such that log1 2
1.Sψ = Figure 2 depicts the SLOG 1. 

 

Figure 2: Wavelet filters used in this study 
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2.2 Adaptive wavelet network 

In this subsection, the structure of Adaptive Wavelet Network (AWN) for active noise control is introduced 

(Figure 3). 

 

Figure 3: Architecture of proposed Adaptive Wavelet Network (AWN) based on POLYWOG wavelet frames 

In Figure 3, ( )x k  is the input signal, ( )1x k  is the output of nonlinear static mapping part and can be obtained as 

follows: 

( )1 1 0
1

( ) ( ( ))
wN

j j j
j

x k c z k a x k aψ
=

= + +∑  (10) 

where (.)jψ  is the wavelet functions listed in table 1, and
( )

( ) j
j

j

x k m
z k

u
−

=  in which jm  is the translation 

parameter, ju is the dilation parameter, 0a refers to the bias coefficient, 1a represents the direct connection 

weight and wN  is the total number of wavelet functions employed in the network. The output of our AWN is: 

( ) ( )1
0 1

ˆ ˆ( )
N N

m n
j j

y k x k m y k nβ α
= =

= − + −∑ ∑  (11) 

where N  is the order of system, mβ  are the feedforward coefficients and nα  are the feedback coefficient of the 

recursive part. The AWN is designed for the modeling a more general nonlinear ANC system. It is comprised of 

two cascade section: a nonlinear static mapping based on wavelet frames and a recursive filter for modeling the 

dynamic part. 

2.3 Structure of wavelet based ANC 

The structure of the wavelet based active noise control is demonstrated schematically in Figure 4. 

 

Figure 4: Structure of the wavelet based active noise control 
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P(z) represents the transfer function of primary path while S(z) indicates the transfer function of secondary path. 

The output of AWN controller ˆ( 1)y k + drives the secondary path and secondary path generates the acoustic 

signal ( 1)y k + given by: 

1

0
ˆ( 1) ( 1 )

M

j
j

y k s y k j
−

=

+ = + −∑  (12) 

where js is the coefficient of secondary path (known already from previous identification stage[1]). The aim of 

our adaptive algorithm is to update the AWN controller to minimize the residual noise ( )1e k +  measured by the 

error microphone. The structure of adaptive algorithm is presented in the following subsection. 

2.4 Online training of POLYWOG AWN 

In this subsection, the training relations of the AWN controller are derived. The gradient descent algorithm is 

employed; however the secondary path transfer function between AWN controller and error microphone should 

be considered in the learning procedure. Modifications are therefore made in the gradient algorithm to be 

applied in AWN for active noise control. 

To accomplish this we define a cost function as follows 

( ) ( ) ( ) ( )( )221 11 1 1 1
2 2

J k e k d k y k+ = + = + − +  (13) 

which is minimized during the learning process by tuning the AWN controller parameters. Then note that the 

vector of parameters consists of 

0 1 1 1 1 0 1, , ... ... , ... ... , ... ... , ... ... , ... ...
w w w

T
j N j N j N m N n Na a c c c m m m u u uθ β β β α α α =    (14) 

To minimize the cost function, the following updating relation is followed for every component of the vector θ  

introduced in (14): 

( ) ( ) ( ) ( ) ( )1 1 1
jj j j jk k k k J kθθ θ θ θ µ+ = + ∆ + = − ∇ +  (15) 

where 

( ) ( ) ( ) ( )1 1
1 1

j
j j

J k y k
J k e kθ θ θ

∂ + ∂ +
∇ + = = − + ⋅

∂ ∂
 (16) 

Now, our objective is to find the term ( )1

j

y k
θ

∂ +
∂

 for every component of vector θ . Hence differentiate (12) 
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w.r.t. every component jθ  beginning from 0a  and 1a up to nα : 

00 0

ˆ( 1) ( 1 )m

i
i

y k y k is
a a=

∂ + ∂ + −
=

∂ ∂∑  (17) 

Using equation (11), we can write: 

1

0 10 0 0

0 1 0

ˆ ˆ( 1 )( 1 ) ( 1 )

ˆ( 1 )

N N

m n
m n

N N

m n
m n

x k i my k i y k i n
a a a

y k i n
a

β α

β α

= =

= =

∂ + − −∂ + − ∂ + − −
= +

∂ ∂ ∂

∂ + − −
= +

∂

∑ ∑

∑ ∑
 

 

(18) 

Similarly differentiate (12) w.r.t. 1a : 

01 1

ˆ( 1) ( 1 )m

i
i

y k y k is
a a=

∂ + ∂ + −
=

∂ ∂∑  (19) 

reuse (11): 

( )

1

0 11 1 1

0 1 1

ˆ ˆ( 1 )( 1 ) ( 1 )

ˆ( 1 )1

N N

m n
m n

N N

m n
m n

x k i my k i y k i n
a a a

y k i nx k i m
a

β α

β α

= =

= =

∂ + − −∂ + − ∂ + − −
= +

∂ ∂ ∂

∂ + − −
= + − − +

∂

∑ ∑

∑ ∑
 

 

(20) 

For the coefficients of wavelet nodes jc , we have: 

0

ˆ( 1) ( 1 )m

i
ij j

y k y k is
c c=

∂ + ∂ + −
=

∂ ∂∑  (21) 

( )

1

0 1

0 1

ˆ ˆ( 1 )( 1 ) ( 1 )

ˆ( 1 )1

N N

m n
m nj j j

N N

m j n
m n j

x k i my k i y k i n
c c c

y k i nk i m
c

β α

β ψ α

= =

= =

∂ + − −∂ + − ∂ + − −
= +

∂ ∂ ∂

∂ + − −
= + − − +

∂

∑ ∑

∑ ∑
 

 

(22) 

For translation and dilation wavelet parameters jm and ju : 

0

ˆ( 1) ( 1 )m

i
ij j

y k y k is
m m=

∂ + ∂ + −
=

∂ ∂∑  (23) 

1

0 1

ˆ ˆ( 1 )( 1 ) ( 1 )N N

m n
m nj j j

x k i my k i y k i n
m m m

β α
= =

∂ + − −∂ + − ∂ + − −
= +

∂ ∂ ∂∑ ∑
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(24) 

0

ˆ( 1) ( 1 )m

i
ij j

y k y k is
u u=

∂ + ∂ + −
=

∂ ∂∑  (25) 

( )

1

0 1

0 1

ˆ ˆ( 1 )( ! ) ( 1 )

( 1 ) ˆ( 1 )1

N N

m n
m nj j j

N N
j j

m j n
m nj j

x k i my k i y k i n
u u u

c z k i m y k i nk i m
u u

β α

β ψ α

= =

= =

∂ + − −∂ + − ∂ + − −
= +

∂ ∂ ∂

− × + − − ∂ + − −′= + − − +
∂

∑ ∑

∑ ∑
 

 

(26) 

For feedforward and feedback weights of recursive filter mβ and nα : 

0

ˆ( 1) ( 1 )m

i
im m

y k y k is
β β=

∂ + ∂ + −
=

∂ ∂∑  (27) 

1
1

ˆ ˆ( 1) ( 1 )( 1 )
N

n
nm m

y k y k i nx k i m α
β β=

∂ + ∂ + − −
= + − − +

∂ ∂∑  (28) 

0

ˆ( 1) ( 1 )m

i
in n

y k y k is
α α=

∂ + ∂ + −
=

∂ ∂∑  (29) 

1

ˆ ˆ( 1 ) ( 1 )ˆ( 1 )
N

n
nn n

y k i y k i ny k i n α
α α=

∂ + − ∂ + − −
= + − − +

∂ ∂∑  (30) 

3. Neural network base nonlinear ANC algorithm  

In order to compare the proposed algorithm with the neural network (NN) based nonlinear ANC, the Filtered-x 

Back Propagation Neural Network (FxBPNN) algorithm is briefly presented. In fact, FxBPNN is simply   

extension of the linear FxLMS algorithm in which the output layer has a single node and a linear nodal output 

function. It is also a form of gradient descent algorithm in which the error signal is used to adjust the weights in 

both the output and hidden layers. 

The block diagram of the single-channel broadband feedforward ANC system using Neural Network (NN) 

algorithm is illustrated in Figure 5 and Figure 6. In Figure 5, ( )P z  shows the primary path and ( )S z

demonstrates the secondary path. 

 

Figure 5: The block diagram of active noise control using the NN controller 
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Figure 6: Structure of the NN controller 

The aim of the NN controller is to minimize the cost function introduced in (13). To meet this end, FxBPNN has 

been developed in two parts, (A) forward and (B) backward propagation as follows [27]: 

(A) Forward propagation: 

Step (1): Input the reference signal ( )1X k + and the error signal ( )1e k +  at time 1k + , where 

( ) ( ) ( ) ( )1 1 ...
T

X k x k x k x k I+ = + −   is the reference signal vector. 

Step (2): Calculate the output of the hidden layer ( )1jq k + . 

( ) ( )( ) ( )( )1 1 tanh 1j j j j jq k f net k net k+ = + = +  (31) 

where, ( ) ( )
1

0
1 1

I

j ij
i

net k w x k i
−

=

+ = + −∑ . 

00 01 0 1

10 11 1 1

10 11 1 1

...

...
... ... ...

...

J

J

ij

I I I J

w w w
w w w

W
w

w w w

−

−

− − − −

 
 
 =
 
 
 

 

is the matrix of weights in the hidden layer and I  is the number of inputs. 

( )1jq k + is the output of the jth hidden layer neuron. ( ).f is the smoothing activation function which 

considered here as tangent hyperbolic function and J  is the total number of the hidden layer neurons. 

Step (3): Calculate the output of the output layer ( )ˆ 1y k +  at time 1k + : 
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( ) ( ) ( )
1

0

ˆ 1 1 1
J

j j
j

y k v k q k
−

=

+ = + +∑  (32) 

where ( )1jv k + , is the jth weight of output layer and J  is the total number of weights in the output layer. 

Step (4): Calculate the output of the system ( )1y k + : 

( ) ( )
1

0

ˆ1 1
M

j j
j

y k s y k j
−

=

+ = + −∑  (33) 

where js  is the jth coefficient of secondary path model and M is the length of the secondary path. 

(B) Back propagation: 

In this stage, the weights of the hidden/output layers are updated in order to minimize the cost function 

introduced in (13). To meet this end, the gradient descent algorithm (introduced in (15)) is employed to adjust 

the weights of the control system. The adaptation algorithm of the weights in the output layer can be written as 

[27]: 

( ) ( ) ( ) ( )
1

0
1 , 0,1,..., 1.

M

j j i j
i

v k v k e k s q k i j Jµ
−

=

+ = + − = −∑  (34) 

while the adaptation algorithm of the weights in the hidden layer is [27]: 

( ) ( ) ( ) ( ) ( )( ) ( )
1

0
1 ,

0,1,..., 1, 0,1,..., 1.

M

ij ij t j j j
t

w k w k e k s v k t f net k t x k i t

i I j J

µ
−

=

′+ = + − − − −

= − = −

∑  (35) 

4. Simulation results and discussion 

4.1. Simulation Results 

In this section, results are presented to compare the performances of nonlinear ANC algorithm based on 

different wavelet filters presented in this study as well  as Neural Network based ANC system. The number of 

wavelet neurons and order of IIR filter are also selected as 6wN N= = .The number of adaptive parameters, 

therefore, used in this structure is 33. The sampling frequency used in the simulations is 1000 Hz. Since a 

logistic chaotic noise is a second-order white noise and predictable nonlinear process [2], this signal along with 

an additional Gaussian white noise is used to generate the primary disturbance signal. The logistic chaotic noise 

is made using [2] 
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( ) ( ) ( )( )1 1x n x n x nλ+ = −  (36) 

where 4λ =  and ( )0 0.9x = . The variance of Gaussian white noise is set to 0.02. The learning rate of our 

proposed method is set to 0.005. 

Regarding the structure illustrated by the Figure 4 and Figure 5, two cases for ( )P z  and ( )S z  are considered. 

These cases have been selected based on the condition of an ANC system which may exhibit linear and/or 

nonlinear behavior. 

Case 1. A linear system is considered. Therefore, the primary path and secondary path are selected as [23]: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 0.8 6 0.6 7 0.2 8 0.5 9 0.1 10 0.4 11 0.05 12d k x k x k x k x x x k x k x k+ = − + − − − − − − − + − − −

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1 0.9 2 0.6 3 0.1 4 0.4 5 0.1 6 0.2 7 0.1 8 0.01 9 0.001 10y k y k y k y k y x y k y k y k y k y k+ = − + − + − − − − − + − + − + − + −

Although the primary path is chosen linear in this case, the overall system is nonlinear since logistic chaotic 

noise is a nonlinear process [6]. 

In Figure 7(a) and 7(b), the dash-dotted dark line is used when ANC is off, solid-magenta line depicts FxBPNN, 

solid-blue line shows the results of RASP 1, solid-brown line demonstrates the result of POLYWOG 1, solid-

green represents the output of SLOG 1. 

Figure 7(a) shows the convergence rate of proposed methods with different wavelet filters based on the Mean 

Square of cancelling Error (MSE) in dB versus time. In this case the convergence rate of RASP 1 is relatively 

improved; while POLYWOG 1 shows less attenuation for the same noise signal. 

In order to show the performance of algorithms in the frequency domain, Figure 7(b) is presented which shows 

the Power Spectral Density (PSD) of square error of wavelet filters. In computing PSD, the last 5 seconds of the 

signal length was employed which represents the steady state response of the algorithms. As it can be seen in 

this Figure, improved attenuation of the logistic chaotic noise was obtained by RASP 1. 

Case 2. The reference and error sensors of ANC system saturate if the noise level exceeds the dynamic range of 

the sensors. In this case, clipping signals of error and reference microphone are used to approximate the 

saturation. The theoretical analysis shows that the clipping of a sinusoidal signal produces extra odd harmonics, 

thus affecting the convergence speed [6]. The saturated signal is generated by defining a fixed threshold value 

(0.6 in this study) and clipping the signal if its absolute magnitude exceeds the threshold value. The primary 

path ( )P z  and secondary path ( )S z  are considered the same as case 1. Figure 8(a) and 8(b) show experimental 

results for saturation effect in the ANC system. The same line notation as in the previous case is used here. 

Figure 8(a) shows the MSE of cancelling error in dB versus time. SLOG 1 has a rather acceptable convergence 

rate while the RASP 1 maintains its superior convergence.Figure 8(b), shows PSD of cancelling error in dB in 

the frequency domain which implies improved attenuation by using RASP 1. 
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(a) 

 
(b) 

 

Figure 7: The dash-dotted dark curve is used when ANC is off, solid magenta depicts FxBPNN, solid-blue 

curve shows RASP 1 performance, solid-brown curve demonstrates POLYWOG 1 and solid-green represents 

SLOG 1. (a) Mean square of cancelling error (dB) versus time (second) where P(z) and S(z) are considered 

linear (b) Power Spectral Density (PSD) (dB) versus frequency (Hz) where P(z) and S(z) are considered linear 

 
(a) 

 
(b) 

 

Figure 8: The dash-dotted dark curve is used when ANC is off, solid magenta depicts FxBPNN, solid-blue 

curve shows RASP 1 performance, solid-brown curve demonstrates POLYWOG 1 and solid-green represents 

SLOG 1. (a) Mean square of cancelling error (dB) versus time (second) where nonlinear P(z) is considered (b) 

Power Spectral Density (PSD) (dB) versus frequency (Hz) where nonlinear P(z) is considered 
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4.2. Computational load 

In this subsection, the computational load of the algorithms are presented. For computational complexity per 

iteration of the AWN POLYWOG, let us consider wN  wavelet frames employed in the proposed method and 

N  memory block in the IIR section. M is assumed as the length of secondary path transfer function. The 

computational complexity per iteration of our proposed algorithm is computed as follows: 

i) For calculating the output of the AWN POLYWOG controller ( )ŷ n  : 

Number of required multiplications = 2 2 2wN N+ +  , Number of required additions = 2 2 3wN N+ +  

Number of required wavelet frames and their derivatives = wN  

ii) For updating weights : 

Number of required multiplications = ( )4 6 17 10 6wN N M N+ + + +  , Number of required additions = 

( )2 3 12 7 3wN N M N+ + + +  

Number of required wavelet frames and their derivatives = wN  

iii) Total computational load 

Total number of required multiplications = ( )6 8 17 10 8wN N M N+ + + +   

Total number of required additions = ( )4 5 12 7 6wN N M N+ + + + , Total number of required wavelet 

frames and their derivatives = 2 wN  

Now, assuming 1N   inputs to the input layer of neural network, 2N  hidden nodes and similar to the previous 

case M  is considered as the length of secondary path transfer function, the computational load per iteration of 

the neural network algorithm is calculated as follows: 

i) For calculating the output of the neural network controller ( )ŷ n  : 

Number of required multiplications = 1 2 22N N N+  , Number of required additions = 1 2 22N N N+  

Number of required wavelet frames and their derivatives = 2N  
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ii) For updating weights : 

Number of required multiplications = ( )2 13 1 3MN N+   

Number of required additions = ( )2 1 1 21 2MN N N N+ + +  

Number of required wavelet frames and their derivatives = 1 2N N  

iii) Total computational load 

Total number of required multiplications = ( )2 1 1 2 23 1 3 2MN N N N N+ + +   

Total number of required additions = ( )2 1 1 2 1 21 4MN N N N N N+ + + +  

Total number of required activation function and its derivative = ( )2 11N N+  

The summary of computational complexity per iteration of algorithms for the cases are presented in the Table 1.  

Table 1: Computational load per iteration of algorithms for cases 

 

AWN POLYWOG Neural Network 

Multiplicati

on 
addition 

nonlinear 

function 

Multiplicati

on 
addition 

nonlinear 

function 

Case 1 

6, 9wN N M= = =  1 2 10, 9N N M= = =  

1100 771 12 8490 1140 110 

493 342 12 2910 480 110 

Case 2 

6, 9wN N M= = =  1 2 10, 9N N M= = =  

1100 771 12 8490 480 110 

1100 771 12 8490 480 110 

 

Total number of adaptive parameters in our proposed method and the neural network approach are  33 and 110 

respectively. As a result, computational complexity in the table 2 shows that the minimum computational load 

belongs to our proposed algorithm. Moreover, one can compare the required complexity for the AWN 

POLYWOG and neural network method assuming that the computational complexity of nonlinear functions of 

these two are equal. The number of required multiplication of AWN POLYWOG is less than 17% of neural 

network approach. The required number of additions for our proposed method is also less than 72% of neural 

network. Furthermore, the number of required nonlinear function calculation in the AWN POLYWOG is 10% 
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of the corresponding required calculation of nonlinear function in the neural network approach.  

4.3 Discussion 

The results obtained are discussed here. For every case of simulation results, two figures are presented. The first 

one shows the error signal in time domain while the second one demonstrates the error signal in the frequency 

domain. The aim of presenting the error signal in dB in time domain is to show the overall noise reduction of 

each algorithm and their convergence rate. The main purpose of demonstrating the error signal in the frequency 

domain is to show the performance of each algorithm in different frequency bands. There are some points which 

should be noted here. Similarities between wavelet frames and noise/ vibration signals imply that these frames 

can be good candidates for signal approximation of these variables. This is the main idea which motivated this 

study. This similarity can result in reducing number of required frames for signal approximation which this in 

turn decreases computational load as shown in this study. Among the adaptive parameters in the proposed 

network, the dilation parameters jd  are the most sensitive coefficients. Drastically changing of this parameter 

can make the network unstable. Therefore, the step size of these parameters are suggested to be 10% of the step 

size of translation parameters jm . As a recommendation for future work, this method for active noise 

cancellation can be implemented when there are multiple noise sources in the system. 

5. Conclusion 

In this study, a nonlinear adaptive wavelet filters with moderately simple structure was introduced. In this novel 

structure a nonlinear static mapping cascaded with an IIR filter was utilized in order to model system dynamics. 

A highlighted advantage of the proposed structure was that only the input at the current step was required to 

generate the output of next sample. This eliminated the need for tab delayed line of input-output of the physical 

system. Furthermore, utilizing this strategy, one could avoid using multi-dimensional wavelet networks and 

hence the curse of dimensionality. In addition, online dynamic backpropagation learning algorithms based on 

gradient descent method were employed to update the parameters of Adaptive Wavelet Networks (AWN). The 

performance of the new algorithm was assessed using 3 wavelet filters while compared to the FxBPNN 

algorithm by considering 2 typical cases. Experiments revealed RASP 1 exhibited good attenuation and fast 

convergence rate among other wavelet filters while POLYWOG 1 presented poor outcomes. The simulation 

results also demonstrated superior performance of this method in terms of fast convergence rate and noise 

attenuation as well as computational complexity reduction while avoiding curse of dimensionality. 
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