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Abstract 

A new lifetime reliability model with four parameters is proposed. We call it the extra modified Weibull model 

(EMWM), which is an extension of the modified Weibull model (MWM), capable of modeling a different 

shapes of hazard function. The new model is developed by introducing fourth parameter in MWM called 

indicator parameter. The main advantage of an indicator (fourth) parameter is that it gives the new model 

mixture and non-mixture options, besides different shapes of hazard function including bathtub. The model 

parameters can be estimated based on a Bayesian generalized posterior method that serves as a tool for model 

identification, and it gives an efficient computational updating approach with new ways of predicting and 

measuring behavior. To have insight of the new indicator parameter and to see its importance, we have 

considered three data sets [Murthy and his colleagues [1], Badar and Priest [2], and  Aarset [3]) which have been 

studied in the past. A prediction updating of the earlier studies of the data sets through the generalized posterior 

summaries using Markov Chain Monte Carlo (MCMC) Gibbs sampling approach are presented for the proposed 

model for the different parameters. The behavior of the parameters would help the users to have more clarity 

about the role of the indicator parameter, and hence may be useful for certain sets of data. The proposed model 

is fully adaptive to the available failure data and gives reliability engineers and scientists another option for 

modeling the life time data. We provide description of the mathematical properties of the new model along with 

failure rate function. 

Keywords: bayesian analysis; extra modified weibull model; gibbs sampling;  indicator parameter; markov chain 

monte carlo; mixture model; modified weibull model. 

------------------------------------------------------------------------ 

* Corresponding author.  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by American Scientific Research Journal for Engineering, Technology, and Sciences...

https://core.ac.uk/display/235050418?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://asrjetsjournal.org/


American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2017) Volume 38, No  1, pp 283-292 

284 
 

1. Introduction 

In reliability analysis, hazard rate plays a very important role to characterize life phenomena. In literature, many 

modification and generalizations of Weibull model are suggested in recent years. [see Al-Saleh and Agarwal [4], 

Nasiru [5], Almalki, and Nadarajah [6], and  Benaicha [7] which can accommodate increasing, decreasing, 

unimodal and bathtub shaped hazard functions. These models are also tested to see whether they fit real life 

data. From the practical point of view, it is always important to consider bi-model shaped models with as few 

parameters as possible. So far none of the modified or generalized Weibull model is available in the literature 

which could identify and detect the problems involving uncertain events in mixed and non-mixed data. In this 

paper, a new fourth parameter (called indicator parameter) is introduced to the three parameters modified 

Weibull model [see  Lai and his colleagues [8], and  Ng [9]]. This parameter not only gives hazard function 

bathtub as well as bi-model but also helps to identify and detect the problems involving uncertain events in 

mixed and non-mixed data. The extra modified Weibull model may be useful in the reliability of a product of 

more generalize setting. For example, a product may be quite reliable and possibly work for some period of 

time, and then all of a sudden a fail appears to occur quickly, and then it begins to improve for sometimes, 

before a complete wear-out. This phenomenon causes a drastic shift in the behavior of the product under study. 

The new model includes many lifetime models such as, the Weibull model (WM), the modified Weibull model 

(MWM) as special cases. Further, the proposed extra modified Weibull model (EMWM) leads to an efficient 

computational Bayesian generalized posterior updating prediction. The Markov chain Monte Carlo (MCMC) 

Gibbs sampling methods are used to demonstrate a good fit for the real data in comparison to earlier well-known 

models used for given data sets. In section 2, we have proposed extra modified Weibull model, and studied 

some of its statistical properties. In section 3, the procedure to estimate the parameters of extra modified 

Weibull model using Bayesian generalized posterior methodology is developed. We have also estimated the 

hazard and reliability functions for EMWM and examined the issue of model compatibility using predictive 

results. Three data sets, available in literature, are used to show the importance and usefulness of EMWM by 

updating their prediction within the Bayesian framework. 

2. The new extra modified Weibull model (EMWM) 

The distribution function of proposed extra modified Weibull model with parameters α, β, γ >0, and κ ≥ 0, is 

defined as: 
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with failure rate (hazard function) λ(x)  

(2.3)             λ(x) =   
)1(

)1)(1(
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xx x
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 +++ κγβα γβ

  , α, β, γ >0, κ≥0, x > 0. 

In some particular cases the parameter k of equation (2.1) can be seen as providing not only an extra flexibility 

to the model, but can also be considered as an indicator parameter that helps to express proposed probability 

model [equation (2.1)] as an exact form of mixture of models under certain conditions as shown in the following 

figures.  

Figure 1(a,e) represent the salient characteristics of the distribution (2.2) and the failure rate λ(x) for different 

values of α, β, γ, and κ.  

  
 

Figure 1(a): The pdf (2.2) for α=1, β=2, γ=13, and 

different values of κ 

 

Figure 1(b): The failure rate (2.3) for α=1, β=2, 

γ=13, and different values of κ 

 

 
 

Figure 1(c): The failure rate (2.3) for α=0.1, β=2, 

γ=0.001, and κ=2 

 

Figure 1(d): The failure rate (2.3) for α=0.00095, 

β=2,  γ=2, and κ=2 
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Figure 1(e): The pdf (2.2) for β=2, γ=2, κ =2, and 

different values of α= 0.00095, 0.01, 0.1, 0.5, 1.0  

 

The figure 1(a) shows the different shapes for differing values of indicator parameter (k =0, 0.5 and 1.0) when 

α=1, β=2, γ=13. It can be seen the role of k which provides not only an extra flexibility to the model, but its 

usefulness as mixture of models. For k=0 it is MWM.  

The figure I (e) gives the different shapes for varying values of α for β=2, γ=2, κ =2.  It can be seen that pdf of 

proposed model not only shows an exact form of mixture of models under certain conditions, but also provides 

the density function more flexibility over the positive range.  

The figure 1(b) shows the shapes of hazard function for differing values of indicator parameter κ when α=1, 

β=2, γ=13, while figures 1(c and d) give different shapes for differing values of α and γ ,  when β=2, and κ=2. 

These shapes may give an idea to the users about the behavior of hazard function for varying values of 

parameters. 

3. Bayesian updating predictions data analysis 

In this section we discuss the problem of determining whether a given data set can be adequately modeled by 

EMWM. We will demonstrate it within the framework of Bayesian approach by assuming that the true failure 

data follow the EMWM.  

Further we assume the following prior specification for the parameters α~uniform, β~uniform, γ~uniform, and 

κ~gamma, independent.  

A Markov Chain Monte Carlo (MCMC) Gibbs sampling approach implemented in using Openbugs@ computer 

software can give an analysis of estimates of each parameter. A burn in of 1000 updates followed by a further 

20000 updates is implemented.  

The table 3.1, represents the estimates of α, β, γ, for MWM (k = 0) for the three data sets (see Appendix), where 

as the table 3.2, represents the estimates of α, β, γ, and the fourth indicator parameter κ for EMWM for all three 

data sets, along with standard deviation, mean and MC error.  
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Table 3.1: A Bayesian summary  for (modified Wiebull model) for data sets 1-3 

 Data set 1 Data set 2 Data set 3 

 Mean SD MC err Mean SD MCerr Mean SD MC err 

α 0.4952 0.2916 0.00318 0.02931 0.00932 2.02E-4 0.07145 0.02971 9.09E-4 

β 0.4978 0.2879 0.00289 0.946 0.05436 0.00107 0.355 0.1066 0.00368 

γ 0.5001 0.2887 0.00292 0.9778 0.02638 6.11E-4 0.02271 0.00463

3 

1.2E-4 

 

Table 3.2:  A Bayesian summary (extra-modified Wiebull model) for data sets 1-3 

 Data set 1 Data set 2 Data set 3 

 Mean SD MC err Mean SD MC err Mean SD MC err 

α 0.05701 0.05063 0.0031 0.01574 0.01515 8.27E-4 0.01132 0.00908 8.01E-4 

β 0.5361 0.2413 0.01587 0.531 0.2923 0.01863 0.1972 0.1727 0.01605 

γ 0.1581 0.07925 0.00516 0.3724 0.1534 0.00940 0.05366 0.01317 0.00120 

k 0.7197 0.1496 0.00564 1.481 0.1364 0.00488 0.07692 0.1496 0.00457 

 

In order to have more clarity, we have also given figures 2, 3 and 4 which show the  estimates α, β, γ, for κ = 0 

(MWM), and for κ ≥ 0 (EMWM) for data sets 1, 2 and 3 respectively. On examination of the above tables 3.1 

and 3.2, the following observations can be noted.  

When we see the posterior means of the estimate α for k=0 [Table 3.1] and for k≥0 [Table 3.2], we notice that 

there is a drastic shift of the posterior mean to the left as k moves away from zero, while there is sharp declined 

of the posterior standard deviation (s.d.), except for data 2 (s.d. is not far away in two cases), for k≥0. On 

comparison of the MC error for k=0 and for k≥0 shows there is no difference in both cases. More or less similar 

observations can be noted for the posterior mean of the estimate of β (except for data 1) as well as for the 

posterior mean of the estimate of γ. However, the s.d. increases for the case k≥0, except for data 1. On 

comparing the posterior mean of the estimate k [table 3.2], we notice a drastic shift to the right from k=0, while 

for data 3 the shift is not much (may be non-mixing data).  

In brief, the values of the posterior means vary to some extent across the results for known k=0 (MWM) and 

unknown k≥0. However, the estimated prediction is better in the case when k is unknown compared to k=0. It 

shows that the parameter k behaving as an indicator parameter to indicate the presence of mixed data. Therefore, 

in the above example, when k is unknown, the updating Bayesian analysis using EMWM for the failure mixed 

data seems more successful than the MWM (k=0). The proposed new class of models EMWM offers more 
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flexibility for Bayesian methods to choose among the existing classes of MWM models. Hence, the hazard and 

reliability function are estimated using EMWM for the failure mixed data instead of MWM (see Figures 5,6, and 

7). 

 

Figure 2: The behavior of estimates α, β, γ, for known κ=0 (MWM) and for unknown κ ≥ 0 (EMWM) for data 

set 1 

 

Figure 3: The behavior of estimates α, β, γ, for known κ=0 (MWM) and for unknown κ ≥ 0 (EMWM) for data 

set 2  

 

Figure 4: The behavior of estimates α, β, γ, for known κ=0 (MWM) and for κ ≥ 0 (EMWM) for data set 3 
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Figure 5(a): The estimated hazard 

function for EMWM (κ≥ 0) for failure 

mixed data set 1 

Figure 5(b): The estimated reliability 

function for EMWM (κ≥ 0) for failure  

mixed data set 1 
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Figure 6(a): The estimated hazard 

function  for EMWM (κ≥ 0) for failure 

mixed data set 2 

Figure 6(b): The estimated reliability 

function for EMWM (κ≥ 0) for failure 

mixed data set 2 
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Figure 7(a): The estimated hazard 

function  for EMWM (k≥0) for failure 

non-mixed data set 3 

Figure 7(b): The estimated reliability 

function for EMWM (κ≥ 0) for failure  

non-mixed data set 3 

Figures 5(a) to 7(a) give the shape of the estimated hazard function for EMWM (κ≥ 0) for data sets 1, 2 and 3 

while figures 5(b) to 7(b) give the shape of the estimated reliability function. For data set 1 the mean of 

estimated κ is 0.7197 (< 1); while for data sets 2 and 3 it is 1.481, (> 1) and 0.07692 (close to 0) respectively.  

The estimated hazard function for data set 1 shows sharp piece wise upward trend, and for data set 2 this upward 

trend is more sharper, while for data set 3 (non-mixed and κ close to zero), and  it is concave. The estimated 

reliability function for EMWM for data set 3 (non-mixed and κ close to zero) gives a downward more or less a 
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straight line, while for data sets 1 and 2 (mixed)  it is slightly concave or convex. These shapes give the 

importance of role of indicator parameter κ.  

4. Conclusion 

In this paper we have shown the importance and usefulness of indicator parameter κ of EMWM through three 

data sets, which are available and used by authors in the past. By giving the shapes of pdf of proposed model 

[fig 1(a) and 1(e)], it is shown that under certain conditions, the pdf acts as an exact form of mixture of models 

and has more flexibility over the positive range. The salient characteristics of the failure rate for different values 

of α, β, γ, and κ are also shown which includes bathtub. The estimated reliability function for EMWM for three 

data sets are computed, which indicates the role of indicator parameter. The shape, for k close to zero in 

EMWM, is more or less same as that of the shape when in the past the author used MWM. The  figures 2, 3 and 

4 give the behavior of estimates α, β, γ, for (MWM) and for κ (EMWM). It can be seen that for data set 3 this 

relationship is very close between two model (k=0 for MWM and k =0.07 for EMWM) . The present study not 

only helps to identify and detect for problems involving uncertain events in mixed and non-mixed data, but also 

gives an efficient computational updating approach with new ways of predicting and measuring behavior. 

However, EMWM should be verified for further research. 
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5. Appendix 

A.1 Data set 1 

The data set given in Table A.1 is taken from [1] Murthy and his colleagues (2004), p180. It represents the 

failure times of 50 components(per 1000h). 

Table A.1: data set 

0.036 0.058 0.061 0.074 0.078 0.086 0.102 0.103 0.114 0.116 

0.148 0.183 0.192 0.254 0.262 0.379 0.381 0.538 0.570 0.574 

0.590 0.618 0.645 0.961 1.228 1.600 2.006 2.054 2.804 3.058 

3.076 3.147 3.625 3.704 3.931 4.073 4.393 4.534 4.893 6.274 

6.816 7.896 7.904 8.022 9.337 10.940 11.020 13.880 14.730 15.080 

 

A.2  Data set 2 

The following strength of carbon bers data (Table A.2) is reported by [2] Badar, and Priest (1982). This data 
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represent the strength measured in GPa, for single carbon bers and impregnated 1000-carbon-ber tows, which 

were tested under tension. 

Table A.2: Strength data of carbon bers at gauge lengths of 20 mm 

1.312 1.314 1.479 1.552 1.700 1.803 1.861 1.865 1.944 1.958 

1.966 1.997 2.006 2.021 2.027 2.055 2.063 2.098 2.140 2.179 

2.224 2.240 2.253 2.270 2.272 2.274 2.301 2.301 2.359 2.382 

2.382 2.426 2.434 2.435 2.478 2.490 2.511 2.514 2.535 2.554 

2.566 2.570 2.586 2.629 2.633 2.642 2.648 2.684 2.697 2.726 

2.770 2.773 2.800 2.809 2.818 2.821 2.848 2.880 2.954 3.012 

3.067 3.084 3.090 3.096 3.128 3.233 3.433 3.585 3.585 2.526 

2.546 2.628 2.628 2.669 2.669 2.710 2.731 2.731 2.731 2.752 

2.752 2.793 2.834 2.834 2.854 2.875 2.875 2.895 2.916 2.916 

2.957 2.977 2.998 3.060 3.060 3.060 3.080    

 

A.3 Data set 3 

The non-mixed data set representing failure times and shown in (Table A.3 see [3] Aarset (1987))  

Table A.3: Data set 

0.1 0.2 1.0 1.0 1.0 1.0 1.0 2.0 3.0 6.0 

7.0 11.0 12.0 18.0 18.0 18.0 18.0 18.0 21.0 32.0 

36.0 40.0 45.0 45.0 47.0 50.0 55.0 60.0 63.0 63.0 

67.0 67.0 67.0 67.0 72.0 75.0 79.0 82.0 82.0 83.0 

84.0 84.0 84.0 85.0 85.0 85.0 85.0 85.0 86.0 86.0 
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