brought to you by

American Scientific Research Journal for Engineering, Technology, and Sciences (ASKJETS)

ISSN (Print) 2313-4410, ISSN (Online) 2313-4402

© Global Society of Scientific Research and Researchers

http://asrjetsjournal.org/

Hamltonian Connectedness and Toeplitz Graphs

Hassan Zafar^a, Naveed Akhter^{b*}, Muhammad Kamran Jamil^c, Faisal Nadeem^d

^aNational College of Business & Administration, DHA Campus, Lahore 54590, Pakistan ^bGovt. Dyal Singh College, Lahore 54590, Pakistan ^cRiphah Institute of Computing and Applied Sciences (RICAS) Riphah International University, Lahore 54590,

Pakistan. , Pakistan

^dDepartment of Mathematics, COMSATS, Institute of Information and Technology, Lahore 54590, Pakistan ^aEmail: hassanxfr@hotmail.com ^bEmail: akhtarnaweed@yahoo.com

> ^cEmail: m.kamran.sms@gmail.com ^dEmail: faisal.nadeem@ciitlahore.edu.pk

Abstract

A square matrix of order *n* is called Toeplitz matrix if it has constant elements along all diagonals parallel to the main diagonal and a graph is called Toeplitz graph if its adjacency matrix is Toeplitz. In this paper we proved that the Toeplitz graphs $T_n \langle 2, 3, t \rangle$, for $n \ge 28$ and $4 \le t \le \frac{n-8}{2}$ are Hamiltonian connected.

Keywords: Hamiltonian graph; Hamiltonian connected; Toeplitz graph; Toeplitz matrix; Hamiltonian path.

1. Introduction

A square matrix of order *n* is called **Toeplitz matrix** if it has constant elements along all diagonals parallel to the main diagonal. A simple undirected graph T_n with vertex set $\{1, 2, 3, ..., n\}$ is called a **Toeplitz graph** if its adjacency matrix is Toeplitz. A Toeplitz graph is uniquely defined by the first row of its adjacency matrix. The first row of adjacency matrix of a Toeplitz graph is always a sequence of 0's and 1's. If the 1's in that sequence places at $t_1 + 1, t_2 + 1, t_3 + 1, ..., t_k + 1$ positions with $1 \le t_1 < t_2 < t_3 < \cdots < t_k < n$, we write $T_n = T_n \langle t_1, t_2, t_3, \ldots, t_k \rangle$. In a Toeplitz graph $T_n \langle t_1, t_2, t_3, \ldots, t_k \rangle$ two vertices *a* and *b* are connected by an edge if and only if $|a-b| \in \{t_1, t_2, t_3, \ldots, t_k\}$.

^{*} Corresponding author.

A graph G of order n is called **Hamiltonian** if it contains a cycle of order n. A graph G of order n is called **traceable** if it contains a path of order n and such a path is called **Hamiltonian path**. The graph G is called **Hamiltonian connected** if for any pair of distinct vertices a and b of G, there exists a Hamiltonian path with ends a and b. Every Hamiltonian connected graph is Hamiltonian.

Connectedness, bipartiteness, colourbality and planarity of Toeplitz graphs are discussed in [1, 2, 3, 4]. Some of the Hamiltonian properties of undirected Toeplitz graphs were discussed in [1] and [5]. The Hamiltonian properties of directed Toeplitz graphs were studied in [6, 7]. S. Malik and T. Zamfirescu investigated Hamiltonian properties of Toeplitz graphs in [8]. M. F. Nadeem Ayesha Shabbir and Tudor Zamfirescu complete the picture of Toeplitz graphs $T_n \langle t_1, t_2 \rangle$, $T_n \langle 1, 3, t \rangle$ and $T_n \langle 1, 5, t \rangle$ in [9]. In this paper we proved that the Toeplitz graphs $T_n \langle 2, 3, t \rangle$ are Hamiltonian connected for $n \ge 28$ and $4 \le t \le \frac{n-8}{2}$.

Suppose T is a Toeplitz graph and l,m,k,q,n are its vertices. If l > m, then P[l,l+1,m] is a path with ends l and l+1 that contains all vertices, m,m+1,m+2,...,l. If m > l then P[l,l+1,m] a path with ends l and l+1 that contains all vertices, l,l+1,l+2,...,m. The path P[l,m] has end vertices l and m and contains all vertices, l,l+1,l+2,...,m except vertices l+1 and m-1. The path H[l,m] has ends l and m and contains all vertices l,l+1,l+2,...,m. The path P'[l,m,k] has end vertices l and m, and contains all vertices l,l+1,l+2,...,m. The path P'[l,m,k] has end vertices l and m, and contains all vertices l,l+1,l+2,...,m. The path P'[l,m,k] has end vertices l and m, and contains all vertices l,l+1,l+2,...,m. The path $P'_x[l,m]$ has ends x, y and contains vertices l,l+1,l+2,...,m. The path $h_x^y[l,m]$ has ends x and y contains all vertices l,l+1,l+2,...,m.

2. Preliminaries

Lemma 2.1 The Toeplitz graph $T_n(2,3)$, $n \ge 6$ admits Hamiltonian path P[1,2,n] and P[n-1,n,1].

Proof. The Toeplitz graph $T_{2n} \langle 2, 3 \rangle$ has he following Hamiltonian path P[1,2,n]. "1,3,5,...,2n-7, 2n-5, 2n-2, 2n, 2n-3, 2n-1, 2n-4, 2n-6,...6,4,2."

The Toeplitz graph $T_{2n+1}\langle 2,3 \rangle$ the Hamiltonian path "1,3,5,...2n-5, 2n-3, 2n, 2n-2, 2n+1, 2n-1, 2n-4, \square 2n-6,...6,4,2" that connects 1 and 2. Due to symmetry of the Toeplitz graphs $T_n\langle 2,3 \rangle$ has Hamiltonian path P[n-1,n,1]. The Hamiltonian paths connecting 1 and 2 are shown in Fig. 1 and Fig. 2.

Corollary 2.2 (a). In Toeplitz graphs $T_n \langle 2, 3 \rangle$, if l < m, then P[l, l+1, m] exists for $m-l \ge 5$.

(b). In Toeplitz graphs $T_n(2,3)$, if l > m, then P[l, l+1, m] exists for $l-m \ge 4$.

Figure 1: Hamiltonian Path with ends 1 and 2

Figure 2: Hamiltonian Path with ends 1 and 2

Lemma 2.3. The Toeplitz graph $T_n(2,3)$ for $n \ge 8$ contains the path P[1,n].

Proof. We divide the proof in following four cases.

Case 1. If $n = 0 \pmod{4}$, then n = 4k for $k \ge 2$. The required path is shown in Fig. 3.

Figure 3: Path with ends 1 and 4k containing all vertices except 2 and 4k-1

Case 2. If $n = 1 \pmod{4}$, then n = 4k + 1 for k = 2. The path that connects 1 with 4k + 1 and contains all the vertices in the Toeplitz graph $T_{4k+1}\langle 2,3 \rangle$ except 2 and 4k is "1,4,6,3,5,8,10,7,...,4k-6,4k-9,4k-7,4k-4,4k-2,4k-5,4k-3,4k-1,4k+1" and is shown in Fig. 4.

Case 3. If n = 2 (mod 4), then n = 4k + 2 for $n \ge 2$. The path that connects 1 with 4k + 2 and contains all the vertices in the Toeplitz graph $T_{4k+2}\langle 2,3\rangle$, except 2 and 4k+1 is 1,3,5,7,4,6,8,10,12,9,11,14,16,13,15,18,...4k-5 4k-2,4k,4k-3,4k-1,4k+2" and is shown in Fig. 5.

Figure 4: Path with ends 1 and 4k + 1 containing all vertices except 2 and 4k

Case 4. If n = 3 (mod 4), then n = 4k + 3 for $n \ge 2$. The path that connects 1 with 4k + 3 and contains all the vertices in the Toeplitz graph $T_{4k+3}\langle 2,3 \rangle$, except 2 and 4k + 2 is "1,3,5,7,4,6,9,11,8,10,13,...4k-5,4k-8, 4k-6,4k-3,4k,4k-2,4k-4,4k-3,4k+1,4k+3" and is shown in Fig. 6.

Figure 5: Path with ends 1 and 4k + 2 containing all vertices except 2 and 4k + 1

Figure 6: Path with ends 1 and 4k + 3 containing all vertices except 2 and 4k + 2

Corollary 2.4. The path P[l,m] exists in Toeplitz graphs $T_n \langle 2,3 \rangle$ for $m-l \ge 7$.

Lemma 2.5. The Toeplitz graph $T_n \langle 2, 3 \rangle$, for $n \ge 6$ and $n \ne 8$ admits a Hamiltonian path H[1, n].

Proof. We will prove this result in five cases.

Case 1. If $n = 1 \pmod{5}$ then n = 5k + 1 where $k \in N$. See Fig. 7 for a Hamiltonian path from 1 to 5k + 1.

Figure 7: Hamiltonian path connecting 1 and 5k + 1 in $T_{5k+1}\langle 2,3 \rangle$

Case 2. The Hamiltonian path connecting 1 and 7 in $T_7 \langle 2, 3 \rangle$ is shown in Fig. 8. If n = 2 (mod 5), then we can write n = 5k + 2 where $k \in N$. For any Toeplitz graph $T_{5k+2} \langle 2, 3 \rangle$ for $k \ge 2$ joining the path of Fig. 8 from 1

to 7 with the path of Fig. 7 from 7 to 5k + 2 we get the Hamiltonian path connecting 1 and 5k + 2.

Figure 8: Hamiltonian path between 1 and 7 in $T_7 \langle 2, 3 \rangle$

Case 3. The Hamiltonian path connecting 1 and 13 in Toeplitz graph $T_{13}\langle 2,3\rangle$, is shown in Fig. 9.

If n = 3 (mod 5), then we can write n = 5k+3 for any $k \ge 2$. The Hamiltonian path joining vertices 1 and 5k + 3 in any Toeplitz graph $T_{5k+3}\langle 2,3 \rangle$ for $k \ge 3$ is obtained by joining the path of Fig. 9 with the path of Fig 7.

Figure 9: Hamiltonian path connecting 1 and 13 in $T_{13}\langle 2,3\rangle$

Case 4. If $n = 4 \pmod{5}$, then n = 5k + 4 for $k \in N$. In the Toeplitz graph $T_9 \langle 2, 3 \rangle$ the Hamiltonian path connecting 1 and 9 is shown in Fig. 10. The Hamiltonian path connecting 1 and 5k + 4 for any $k \ge 2$ in the

Toeplitz graphs $T_{5k+4}\langle 2,3 \rangle$ is obtained by joining the path of Fig. 10 with the path of Fig. 7.

Figure 10: Hamiltonian path connecting 1 and 9 in $T_9(2,3)$

Case 5. If n = 0 (mod 5). The Hamiltonian path connecting 1 and 10 in Toeplitz graph $T_{10}\langle 2,3 \rangle$ is shown in Fig.

11 while the Hamiltonian path connecting 1 and 5k for $k \ge 3$ in the Toeplitz graphs $T_{5k} \langle 2, 3 \rangle$ is obtained by joining paths of Fig. 11 and Fig. 7.

Corollary 2.6. In Toeplitz graphs $T_n(2,3)$, the Hamiltonian path H[l,m] exists for $m-l \ge 5$ and $m-l \ne 7$.

Figure 11: Hamiltonian path connecting 1 and 10 in $T_{10} \langle 2, 3 \rangle$

Corollary 2.7. The Toeplitz graph $T_n \langle 2, 3 \rangle$ for $n \ge 9$ and $n \ne 11$ has a path with ends 1 and n that contains all vertices of the graph except vertices 2 and 3.

Proof. The required path is "1, 4, *H*[4, *n*], *n*".

Lemma 2.8. The Toeplitz graphs $T_n \langle 2, 3 \rangle$ for all $n \ge 7$ has a paths P'[1, n, 2] and P'[1, n, n-1].

Proof. The required paths for $T_7 \langle 2, 3 \rangle$ and $T_{10} \langle 2, 3 \rangle$ are shown in Fig. 12. The required path for all other n is obtained by first connecting 1 with 3 and then connecting 3 with n using the Hamiltonian path of Lemma 2.5. Due to symmetry of Toeplitz graph there is a path with ends 1 and n that contains all vertices except n - 1.

Figure 12: Path connecting 1 and *n* except 2

Corollary 2.9. In $T_n(2,3)$ the path P'[l,m,k] exists for m-1 \geq 6.

Lemma 2.10. In $T_n \langle 2, 3 \rangle$ for $n \ge 6$ and $n \ne 7$ 7 the Hamiltonian paths $H_2^n [1, n]$ and $H_1^{n-1} [1, n]$ exists.

Proof. In $T_6 \langle 2, 3 \rangle$ the required Hamiltonian path is "2,5,3,1,4,6". The path "2,5,7,4,1,3,6,8" is the required Hamiltonian path in $T_8 \langle 2,3 \rangle$. The required Hamiltonian path in $T_9 \langle 2,3 \rangle$ is "2,4,1,3,6,8,5,7,9". In $T_n \langle 2,3 \rangle$ for $n \ge 9$ the required path is "2,4,1,3, P'[3,n,4], n".

Lemma 2.11. In $T_n(2,3,t)$, $n \ge 20$ and $4 \le t \le n-11$, the Hamiltonian path $H_1^x[1,n]$ exists for all $2 \le x \le n$.

Proof. The Hamiltonian paths between vertex 1 with all other vertices except n-3 $4 \le t \le n-7$ are shown in Table 1.

End Vertices	Hamiltonian Path
$1-2, (n \ge 6)$	1, P[1, 2, n], 2.
$1 - 3, (n \ge 10)$	1, 4, 2, 5, <i>P</i> [5, 6, <i>n</i>], 6, 3.
$1 - 4, (n \ge 10)$	1, 3, 6, <i>P</i> [5, 6, <i>n</i>], 5, 2, 4.
$1-5, (n \ge 11)$	1, 3, 6, <i>P</i> [6, 7, <i>n</i>], 7, 4, 2, 5.
$1 - x, (n \ge 11)$	1, $P'[1, x+1, x]$, $x+1$, $P[x, x+1, n]$, x .
$6 \leq x \leq n-5$	
1 - (n - 4),	1, H[1, n-5], n-5, P[n-5, n-4, n], n-4.
$(n \ge 14)$	
1 - (n - 2),	1, <i>H</i> [1, <i>n</i> -4], <i>n</i> -4, <i>n</i> -1, <i>n</i> -3, <i>n</i> , <i>n</i> -2.
(<i>n</i> ≥13)	
1 - (n - 1),	1, <i>H</i> [1, <i>n</i> -4], <i>n</i> -4, <i>n</i> -2, <i>n</i> , <i>n</i> -3, <i>n</i> -1.
(<i>n</i> ≥13)	
$1 - n, (n \ge 9)$	1, H[1, n], n.

Table 1: Hamiltonian Path between 1 and other vertices.

Hamiltonian Path Between 1 and (n-3) in $T_n(2,3,t)$, for different values of t is shown in Table 2.

Condition on t	Hamiltonian Path
$t = 4, (n \ge 14)$	1, H[1, n-5], n-5, n-1, n-4, n-2, n, n-3.
$t = 5, (n \ge 14)$	1, H[1, n-5], n-5, n, n-2, n-4, n-1, n-3.
$t = 6, (n \ge 13)$	1, $P'[1, n-6, n-7]$, $n-6, n, n-2, n-5, n-7, n-4, n-1, n-3$.
$t = 7, (n \ge 14)$	$1, P^{l}[1, n-7, n-8], n-7, n, n-2, n-5, n-8, n-6, n-4, n-1, n-3.$
$t = 8, (n \ge 15)$	$1, P^{l}[1, n-8, n-9], n-8, n, n-2, n-5, n-7, n-9, n-6, n-4, n-1, n-3.$
$9 \le t \le n - 11,$ (n \ge 20)	1, $H[1, n-t-2]$, $n-t-2$, $P[n-t-2, n-t-1, n-5]$, $n-t-1, n-1, n-4$, n-2, n, n-3. This path is shown in Fig. 13.

Table 2: Hamiltonian Path between 1 and n-3.

Figure 13: Hamiltonian path with ends 1 and n-3 in $T_n \langle 2,3,t \rangle$ when $4 \le t \le n-6$

Lemma 2.12. In $T_n \langle 2, 3, t \rangle$, $n \ge 18$ and $4 \le t \le n - 10$, the Hamiltonian path $H_1^x [1, n]$ exists for all $1 \le x \le n$

$x \neq 2$.

Proof. The Hamiltonian path of 2 with 1 is proved in Lemma 2.11 and with all other vertices except n-3 is shown in Table 3.

End Vertices	Hamiltonian Path
$2-3, (n \ge 9)$	3, 1, 4, <i>P</i> [4, 5, <i>n</i>], 5, 2.
$2 - 4, (n \ge 10)$	2, 5, <i>P</i> [5, 6, <i>n</i>], 6, 3, 1, 4.
$2-5, (n \ge 10)$	2, 4, 1, 3, 6, <i>P</i> [5, 6, <i>n</i>], 5.
$2-6, (n \ge 10)$	2, 4, 1, 3, 5, <i>P</i> [5, 6, <i>n</i>], 6.
$2-7, (n \ge 11)$	2, 5, 3, 1, 4, 6, <i>P</i> [6, 7, <i>n</i>], 7.
$2 - x, (n \ge 14)$	2, $H_2^{x-1}[1, x-1]$, $x-1$, $P[x-1, x, n]$, x .
$9 \leq x \leq n-4$	
2 - (n - 1),	2, $H_2^{n-5}[1, n-5]$, $n-5$, $n-3$, n , $n-2$, $n-4$, $n-1$.
(<i>n</i> ≥13)	
2 - (n - 2),	2, $H_2^{n-4}[1, n-4]$, $n-4$, $n-1$, $n-3$, $n, n-2$.
$(n \ge 12)$	
$2 - n, (n \ge 8)$	2, $H_2^n[1,n]$, <i>n</i> .

Table 3:	Hamiltonian	Path	of 2	with	other vertices	
rante et	rammonum	I au	01 <u>-</u>	** 1011	other vertices	•

The Hamiltonian path of 2 with n-3 for $44 \le t \le n-10$ is shown in Table 4.

Table 4: Hamiltonian Path of 2 with n-3

Condition on t	Hamiltonian Path
$t = 4, (n \ge 13)$	2, $H_2^{n-5}[1, n-5]$, $n-5$, $n-1$, $n-4$, $n-2$, n , $n-3$.
$t = 5, (n \ge 13)$	2, $H_2^{n-5}[1, n-5], n-5, n, n-2, n-4, n-1, n-3.$
$t = 6, (n \ge 16)$	2,4,1,3,P[3,n-6],n-6,n,n-2,n-5,n-7,n-4,n-1,n-3
$t = 7, (n \ge 17)$	2, 4, 1, 3, P[3, n-7], n-7, n, n-2, n-5, n-8, n-6, n-4, n-1, n-3.
$8 \le t \le n - 10,$	2, $H_2^{n-t-2}[1, n-t-2], n-t-2, P[n-t-2, n-t-2, 1, n-5], n-t-1, n-1, n-4,$
$(n \ge 18)$	n-2, n, n-3.

Lemma 2.13. In $T_n \langle 2, 3, t \rangle$, $n \ge 20$ and $4 \le t \le n - 11$, the Hamiltonian path $H_3^x [1, n]$ exists for all $1 \le x \le n$ and $x \ne 3$.

Proof. The concerned Hamiltonian path of 3 with 1 and 2 are shown in Lamma's 2.11 and 2.12 respectively. Hamiltonian path of 3 with 4 is shown in Table 5.

Condition on t	Hamiltonian Path
$t = 4, (n \ge 10)$	3,1,5,P[5,6,n],6,2,4.
$t = 5, (n \ge 11)$	3.5, 2, 7, P[6, 7, n], 6, 1, 4.
$t = 6, (n \ge 14)$	3,5,2,8,6,9,P[9,10,n],10,7,1,4.
$t = 7, \ (n \ge 14)$	3,1,8,6,9, <i>P</i> [9,10, <i>n</i>],10,7,1,4.
$t = 8, n \ge 20$	3, 1, 9, 7, 15, <i>P</i> [15, 16, <i>n</i>], 16, 13, 11, 14, 12, 10, 2, 5, 8, 6, 4.
$9 \le t \le n - 7$ $t = 1 \pmod{2}$	3,1,t+1,t-2,t,t+3,P[t+2,t+3,n],t+2,2,5,7,,t-4,t-1,t-3,,8,6,4.
(<i>n</i> ≥16)	
$10 \le t \le n - 7$ $t = 0 \pmod{2}$ $(n \ge 17)$	$3, 1, t+1, t-2, t-5, t-7, \dots, 5, 2, t+2, P[t+2, t+3, n], t+3, t, t-3, t-1, t-4, t-6, \dots, 8, 6, 4.$

Table	5:	Hamiltonian	Path	of 3	with 4
Lanc	~.	runnitoniun	1 uun	01.5	WILLI I

The Hamiltonian path between 3 and 5 for $4 \le t \le n-8$ is shown in Table 6.

Table 6: Hamiltonian Path of 3 with 5

Condition on t	Hamiltonian Path
$t = 4, (n \ge 11)$	3, 1, 4, 7, <i>P</i> [6, 7, <i>n</i>], 6, 2, 5.
$t = 0 \pmod{2}$ $6 \le t \le n - 7 \ (n \ge 13)$	$3, 1, t+1, t-1, t-3, \dots, 7, 4, 6, 8, \dots, t, t+3, P[t+2, t+3, n], t+2, 2, 5.$
$\begin{array}{cccc} t = 1 \pmod{2} \\ 5 \leq t & \leq n - 8 \ (n \geq 13) \end{array}$	3, 1, t + 1, t + 4, P[t + 3, t + 4, n], t + 3, t, t -2,, 7, 4, 6, 8,, t - 1, t + 2, 2, 5.

The Hamiltonian paths of 3 with vertices in the set $\{6,7,8,\ldots,n\}$ except n-3 are shown in Table 7.

Table 7: Hamiltonian Path of 3 with 5.

End Vertices	Hamiltonian Path
$3 - 6, (n \ge 10)$	3, 1, 4, 2, 5, <i>P</i> [5, 6, <i>n</i>], 6.
$3-7, (n \ge 14)$	3, 1, 4, 2, 5, H_5^7 [5, <i>n</i>], 7.
$3-8, (n \ge 14)$	3, 1, 4, 2, 5, $H_5^8[5,n]$, 8.
$3-9, (n \ge 15)$	$3, 1, 4, 2, 5, H_5^9[5,n], 9.$
$3 - 10, (n \ge 16)$	3, 1, 4, 2, 5, $H_5^{10}[5,n]$, 10.
$3 - x, (n \ge 16)$ $11 \le x \le n - 5$	3, 1, 4, 2, 5, P'[5, x+1, x], x+1, P[x, x+1, n], x.
$3 - n, (n \ge 17)$	3, 1, 4, 2, 5, <i>H</i> [5, <i>n</i>], <i>n</i> .
$3 - (n - 1), (n \ge 13)$	3, 1, 4, 2, 5, <i>P</i> '[5, <i>n</i> -2, <i>n</i> -3], <i>n</i> -2, <i>n</i> , <i>n</i> -3, <i>n</i> -1.
3 − $(n - 2), (n \ge 17)$	3, 1, 4, 2, 5, <i>H</i> [5, <i>n</i> -4], <i>n</i> -4, <i>n</i> -1, <i>n</i> -3, <i>n</i> , <i>n</i> -2.
$3 - (n - 4), n \ge 18$	3, 1, 4, 2, 5, <i>H</i> [5, <i>n</i> -5], <i>n</i> -5, <i>n</i> -2, <i>n</i> , <i>n</i> -3, <i>n</i> -1, <i>n</i> -4.

The Hamiltonian path between 3 and n-3 for $4 \le t \le n-7$ is given in the Table 8.

Condition on t	Hamiltonian Path
$t = 4, (n \ge 18)$	3, 1, 4, 2, 5, <i>H</i> [5, <i>n</i> -5], <i>n</i> -5, <i>n</i> -1, <i>n</i> -4, <i>n</i> -2, <i>n</i> , <i>n</i> -3
$t = 5, (n \ge 18)$	3, 1, 4, 2, 5, <i>H</i> [5, <i>n</i> -5], <i>n</i> -5, <i>n</i> , <i>n</i> -2, <i>n</i> -4, <i>n</i> -1, <i>n</i> -3.
$t = 6, (n \ge 17)$	3, 1, 4, 2, 5, <i>P</i> '[5, <i>n</i> -6, <i>n</i> -7], <i>n</i> -6, <i>n</i> , <i>n</i> -2, <i>n</i> -5, <i>n</i> -7, <i>n</i> -4, <i>n</i> -1, <i>n</i> -3.
$t = 7, (n \ge 18)$	3, 1, 4, 2, 5, P'[5, n-7, n-8], n-7, n, n-2, n-5, n-8, n-6, n-4, n-1, n-3.
$t = 8, (n \ge 19)$	3, 1, 4, 2, 5, P'[5, n-8, n-9], n-8, n, n-2, n-5, n-7, n-9, n-6, n-4, n-1, n-3.
$9 \le t \le n-11,$	3, 1, 4, 2, 5, P'[5, n-t, n-t-1], n-t, P[n-t, n-t-1, n-5], n-t-1, n-1, n-4,
$(n \ge 20)$	n-2, n, n-3.

Table 8: Hamiltonian Path between 3 and n-3

Lemma 2.14. In $T_n \langle 2, 3, t \rangle$, $n \ge 24$ and $4 \le t \le n - 11$, the Hamiltonian path $H_5^x[1, n]$ exists for all $1 \le x \le n$ and $x \ne 5$.

Proof. The Hamiltonian path of 5 with vertices 1, 2 and 3 is already shown. The Hamiltonian path of vertex 4 with 5 for different values of t is given in Table 9.

Values of t	Hamiltonian Path
$t = 4, (n \ge 11)$	4, 1, 3, 7, <i>P</i> [6, 7, <i>n</i>], 6, 2, 5.
$t = 5, (n \ge 11)$	4, 2, 7, <i>P</i> [6, 7, <i>n</i>], 6, 1, 3, 5.
$t = 6, (n \ge 14)$	4, 2, 8, 6, 9, <i>P</i> [9, 10, <i>n</i>], 10, 7, 1, 3, 5.
$t = 7, (n \ge 15)$	4, 7, 10, <i>P</i> [10, 11, <i>n</i>], 11, 8, 1, 3, 6, 9, 2, 5.
$t = 8, (n \ge 15)$	4, 2, 10, <i>P</i> [10, 11, <i>n</i>], 11, 8, 6, 3, 1, 9, 7, 5.
$t = 9, (n \ge 17)$	4, 1, 3, 12, <i>P</i> [12, 13, <i>n</i>], 13, 10, <i>P</i> [10, 11, 6], 11, 2, 5.
$10 \le t \le n-7$	$4 \ 2 \ t+2 \ P[t+2 \ t+3 \ n] \ t+3 \ t \ P[t \ t+1 \ 6] \ t+1 \ 1 \ 3 \ 5$
(<i>n</i> ≥17)	$\neg, 2, t + 2, t = t + 2, t + 3, t_0, t + 3, t_1, t = 1, 0, t + 1, 0, 5, 5.$

Table 9: Hamiltonian Path of Vertex 4 with vertex 5

The Hamiltonian path of vertex 5 with vertex 6 in Toeplitz graph $T_n \langle 2, 3, t \rangle$ for all values of $4 \le t \le n - 7$ and $n \ge 14$ is given in Table 10.

Conditions on t	Hamiltonian Path
$t = 4, (n \ge 11)$	5, 2, 4, 1, 3, 7, <i>P</i> [6, 7, <i>n</i>], 6.
$t = 5, (n \ge 11)$	5, 3, 1, 4, 2, 7, <i>P</i> [6, 7, <i>n</i>], 6.
$t = 6, (n \ge 12)$	5, 3, 1, 7, <i>P</i> [7, 8, <i>n</i>], 8, 2, 4, 6.
$t = 7, (n \ge 15)$	5, 3, 1, 8, 11, <i>P</i> [10, 11, <i>n</i>], 10, 7, 9, 2, 4, 6.
$t = 8, (n \ge 16)$	5, 8, 11, <i>P</i> [11, 12, <i>n</i>], 12, 9, 7, 10, 2, 4, 1, 3, 6.

Table 10:	Hamiltonian	Path of	Vertex 5	with vertex 6
Table To:	runnitoniun	I uni oi	vertex 5	with vertex o

$$\begin{array}{|c|c|c|c|c|} 9 \leq t \leq n-7, \\ (n \geq 16) \end{array} \qquad 5, 3, 1, 4, 2, t+2, P[t+2, t+3, n], t+3, P^{l}[6, t+3, t+2], 6. \end{array}$$

The Hamiltonian path of vertex 5 with vertex x such that $7 \le x \le n$ and $x \ne n-3$ in Toeplitz graph $T_n \langle 2, 3, t \rangle$ for $4 \le t \le n-7$ and $n \ge 25$ is "5, 2, 4, 1, 3, 6, $H_6^x[6,n], x$ "

Main Result

Theorem 3.1. The Toeplitz graph $T_n \langle 2, 3, t \rangle$ is Hamiltonian connected for all $n \ge 28$ and $4 \le t \le \frac{n-8}{2}$

Proof. For every $x, y \in V(T_n \langle 2, 3, t \rangle)$, and $6 \le x < y \le n-5$ the Hamiltonian path for different conditions on y-x, for $4 \le t \le n-7$ and for $n \ge 17$ is shown in Table 11.

Conditions on x and y	Hamiltonian Path
$y-x \ge 5$ and $n \ge 16$	x, P[x-1, x, 1], x-1, P[x-1, y+1], y+1, P[y, y+1, n], y.
$y-x=1$ and $n \ge 12$	x, P[x-1, x, 1], x-1, y+1, P[y, y+1, n], y.
$y-x=2$ and $n \ge 13$	x, P[x-1, x, 1], x-1, x+1, y+1, P[y, y+1, n], y.
$y-x=3$ and $n \ge 14$	x, P[x, x+1, 1], x+1, y+1, x+2, y+2, P[y+2, y+3, n], y+3, y.
$y-x=4$ and $n \ge 16$	x, P[x-1, x, 1], x-1, x+2, y+1, P[y+1, y+2, n], y+2, x+3, x+1, y.

Table 11: Hamiltonian	Path between x and	v when $6 \le x \le y \le n-5$

The Hamiltonian path of vertex 4 with vertex 6 in Toeplitz graph $T_n \langle 2, 3, t \rangle$ for all values of $4 \le t \le n - 7$ is given in Table 12.

Values of t	Hamiltonian Path
$t = 4, (n \ge 12)$	4, 1, 3, 7, <i>P</i> [7, 8, <i>n</i>], 8, 5, 2, 6.
$t = 5, (n \ge 11)$	4, 1, 3, 5, 2, 7, <i>P</i> [6, 7, <i>n</i>], 6.
$t = 6, (n \ge 11)$	4, 2, 5, 3, 1, 7, <i>P</i> [6, 7, <i>n</i>], 6.
$t = 7, (n \ge 12)$	4, 2, 5, 7, <i>P</i> [7, 8, <i>n</i>], 8, 1, 3, 6.
$t = 8, (n \ge 16)$	$4, 2, 5, 7, H_7^9[7, n], 9, 1, 3, 6.$
$9 \leq t \leq n-7, (n \geq 16)$	4, 1, 3, 5, 2, $t+2$, $P[t+2, t+3, n]$, $t+3$, $P'[6, t+3, t+2]$, 6.

 Table 12: Hamiltonian Path of Vertex 4 with vertex 6

The Hamiltonian path of vertex 4 with vertex 7 in Toeplitz graph $T_n \langle 2, 3, t \rangle$ for all values of $4 \le t \le n - 7$ is given in Table 13.

The Hamiltonian path of vertex 4 with vertex 8 in Toeplitz graph $T_n \langle 2, 3, t \rangle$ for all values of $4 \le t \le n - 7$ is given in Table 14.

The Hamiltonian path of vertex 4 with vertex 9 in Toeplitz graph $T_n \langle 2, 3, t \rangle$ for all values of $4 \le t \le n-7$ is given in Table 15.

Values of t	Hamiltonian Path
$t = 4, (n \ge 11)$	4, 1, 3, 5, 2, 6, <i>P</i> [6, 7, <i>n</i>], 7.
$t = 5, (n \ge 11)$	4, 2, 5, 3, 1, 6, <i>P</i> [6, 7, <i>n</i>], 7.
$t = 6, (n \ge 14)$	4, 1, 3, 5, 2, 8, 6, 9, <i>P</i> [9, 10, <i>n</i>], 10, 7.
$t = 7, (n \ge 14)$	4, 2, 5, 3, 1, 8, 6, 9, <i>P</i> [9, 10, <i>n</i>], 10, 7.
$t = 0 \pmod{2}$	$4, 2, t+2, P[t+2, t+3, n], t+3, t, t-2, \dots, 8, 6, 9, 11, \dots, t+1, 1, 3, 5, 7.$
$8 \leq t \leq n - 7 \ (n \geq 5)$	
$t = 1 \pmod{2}$	$4, 2, t+2, P[t+2, t+3, n], t+3, t, t-2, t-4, \dots, 9, 6, 8, 10, \dots, t+1, 1, 3, 5,$
$9 \leq t \leq n - 7 \ (n \geq$	7.

Table 13: Hamiltonian Path of Vertex 4 with vertex 7

Table 14: Hamiltonian Path of Ver	rtex 4 with vertex 8
-----------------------------------	----------------------

Values of <i>t</i>	Hamiltonian Path
$t = 4, (n \ge 15)$	4, 1, 3, 5, 2, 6, 9, 7, 10, <i>P</i> [10, 11, <i>n</i>], 11, 8.
$t = 5, (n \ge 15)$	4, 2, 5, 3, 1, 6, 9, 7, 10, <i>P</i> [10, 11, <i>n</i>], 11, 8.
$t = 6, (n \ge 15)$	4, 2, 5, 3, 1, 7, 10, <i>P</i> [9, 10, <i>n</i>], 9, 6, 8.
$t = 7, (n \ge 18)$	$4, 1, 3, 5, 2, 9, H_9^8[6,n], 8.$
$t = 8, (n \ge 14)$	4, 7, 5, 2, 10, <i>P</i> [9, 10, <i>n</i>], 9, 1, 3, 6, 8.
$t = 1 \pmod{2}$	$4, 1, t+1, t-1, t-3, \dots, 10, 7, 9, 11, \dots, t, t+3, P[t+2, t+3, n], t+2, 2, 5, 3, 6, 8$
$9 \le t \le n-7, (n \ge 16)$	
$t = 0 \pmod{2}$	$4, 1, t+1, t-1, t-3, \dots, 7, 10, 12, \dots, t, t+3, P[t+2, t+3, n], t+2, 2, 5, 3, 6, 8.$
$10 \le t \le n-7$, $(n \ge 17)$	

Table 15: Hamiltonian Path of Vertex 4 with vertex 9

Values of t	Hamiltonian Path
$t = 4, (n \ge 15)$	4, 1, 3, 5, 2, 6, H_6^9 [6, n], 9.
$t = 5, (n \ge 15)$	$(4, 1, 3, 5, 2, 7, H_7^9[6, n], 9.$
$t = 6 \ (n \ge 19)$	4, 1, 3, 5, 2, 8, $H_8^9[6, n]$, 9.
$t = 7, (n \ge 19)$	$4, 2, 5, 3, 1, 8, H_8^{\circ}[6, n], 9.$
$t = 8, (n \ge 15)$	4, 1, 3, 6, 8, 11, <i>P</i> [10, 11, <i>n</i>], 10, 2, 5, 7, 9.
$t = 9, (n \ge 15)$	4, 1, 3, 6, 8, 10, <i>P</i> [10, 11, <i>n</i>], 11, 2, 5, 7, 9.
$t = 1 \pmod{2}$	$4, 7, 5, 2, t+2, P[t+2, t+3, n], t+3, t, t-2, t-4, \dots, 11, 8, 10, 12, \dots, t+1, 1, 3, 6, 9.$
$11 \le t \le n - 7 \ (n \ge n)$	
$t = 0 \pmod{2}$	4, 7, 5, 2, <i>t</i> +2, <i>P</i> [<i>t</i> +2, <i>t</i> +3, <i>n</i>], <i>t</i> +3, <i>t</i> , <i>t</i> -2, <i>t</i> -4,, 8, 11, 13, 15,, <i>t</i> +1, 1, 3, 6, 9.
$10 \le t \le n - 7 \ (n \ge n)$	

The Hamiltonian path of vertex 4 with vertex 10 in Toeplitz graph $T_n \langle 2, 3, t \rangle$ for all values of $4 \le t \le n-7$ is given in Table 16.

Condition on t	Hamiltonian Path
$4 \le t \le n - 7, t \ne 8, (n \ge 22)$	4, 1, 3, 5, 2, $t + 2$, $H_{10}^{t+2}[6,n]$, 10.
$t = 8, (n \ge 20)$	$4, 2, 5, 3, 1, 9, H_9^{10}[6, n], 10.$

Table 16: Hamiltonian Path of Vertex 4 with vertex 10

The Hamiltonian path of vertex 4 with vertex x for $11 \le x \le n-5$ in Toeplitz graph $T_n \langle 2, 3, t \rangle$ for all values of $4 \le t \le \frac{n-8}{2}$ and $n \ge 27$ is given in Table 17.

Table 17: Hamiltonian Path of Vertex 4 with vertex $11 \le x \le n-5$

Condition on t	Hamiltonian Path
$t = 4, (n \ge 24)$	4, 1, 3, 5, 2, 6, $H_6^x[6,n]$, x. For all $7 \le x \le n$.
$t = 5, (n \ge 24)$	4, 2, 5, 3, 1, 6, $H_{6}^{x}[6,n]$, x. For all $7 \le x \le n$.
$t = 6, (n \ge 24)$	4, 2, 5, 3, 1, 7, $_{H_7^x[6,n]}$, <i>x</i> . For all $8 \le x \le n$.
$t = 7, (n \ge 25)$	4, 2, 5, 3, 1, 8, $_{H_8^x[6,n]}$, <i>x</i> . For all $9 \le x \le n$.
$t = 8, (n \ge 26)$	4, 1, 3, 5, 2, 10, $H_{10}^{x}[6,n]$, <i>x</i> . For all $11 \le x \le n$.
$t=9, (n\geq 26)$	4, 2, 5, 3, 1, 10, $H_{10}^{x}[6,n]$, <i>x</i> . For all $11 \le x \le n$.
$10 \le t \le n-7, x = t+1, (n \ge 21)$	4, 1, 3, 5, 2, $t + 2$, $h_{t+2}^{x} [6, n]$, x . For all $11 \le x \le n-5$.
$10 \le t \le n - 7, x \ne t+1, (n \ge 21)$	4, 2, 5, 3, 1, $t+1$, $h_x^{t+1}[6, n]$, x Hamiltonian path of Table 11,

The Hamiltonian path of vertex 4 with vertex n-3, for $10 \le t \le \frac{n-8}{2}$ and for $n \ge 28$ is "4,1,3,5,2, t+2, P[t+2,t+1,6], t+1, P'[t+1, n-t-1, t+2], n-t-1, P[n-t-1, n-t, n-5], n-t, n, n-2, n-4, n-1, n-3".

2. Conclusion

S. Malik and T. Zamfirescu investigated Hamiltonian properties of Toeplitz graphs in [8]. M. F. Nadeem Ayesha Shabbir and Tudor Zamfirescu complete the picture of Toeplitz graphs $T_n \langle t_1, t_2 \rangle$, $T_n \langle 1, 3, t \rangle$ and $T_n \langle 1, 5, t \rangle$ in [9]. In this paper we proved that the Toeplitz graphs $T_n \langle 2, 3, t \rangle$ are Hamiltonian connected for $n \ge 28$ and $4 \le t \le \frac{n-8}{2}$. It would be interesting to derive similar results for other families of Toeplitz graphs such as $T_n \langle 2, 5, t \rangle$ and generalize the results for $T_n \langle 2, s, t \rangle$.

References

- R. Van Dal, G. Tijssen, Z. Tuza, J. A. A. Van Der Veen, Zamfirexcu, T. Zamfirescu, "Hamiltonian properties of Toeplitz graphs", Discrete Mathe- matics 159, 69–81 (1996).
- [2] R. Euler, "Characterizing bipartite Toeplitz graphs". Theor. Comput. Sci. 263, 47-58 (2001).
- [3] R. Euler, H. Leverge, T. Zamfirescu, "A characterization of infinite, bipartite Toeplitz graphs". In: Tung-Hsin, K. (ed.) Combinatorics and Graph Theory 95, Vol. 1. Academia Sinica, pp. 119–130. World Scientific, Sin- gapore (1995).
- [4] R. Euler, T. Zamfirescu, "On planar Toeplitz graphs". Graphs Comb. 29, 13111327 (2013).
- [5] C. Heuberger, "On Hamiltonian Toeplitz graphs". Discret. Math. 245, 107-125 (2002).
- [6] S. Malik, "Hamiltonicity in directed Toeplitz graphs of maximum (out or in) degree 4". Util. Math. 89, 33–68 (2012)
- [7] S. Malik, A. M. Qureshi, "Hamiltonian cycles in directed Toeplitz graphs". Ars Comb. 109, 511–526 (2013).
- [8] S. Malik, T. Zamfirescu, "Hamiltonian connectedness in directed Toeplitz graphs". Bull. Math. Soc. Sci. Math. Roum. 53 (101) No. 2, 145156 (2010).
- [9] M. F. Nadeem, A. Shabbir, T. Zamfirescu, 'Hamiltonian Connectedness of Toeplitz Graphs''. Springer Basel 2015 P. Cartier et al. (eds.), Mathematics in the 21st Century, Springer Proceedings in Mathematics & Statistics 98, DOI 10.1007/978-3-0348-0859-08.