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Abstract 

Nuclear material verification for safeguards purposes is an activity carried out to confirm that the amount of 

nuclear material (NM) present at a given time within a certain place is in agreement with the operator 

declarations. Nuclear materials are usually measured using gamma-ray spectrometer in order to quantify certain 

isotopes. Different codes have been used to quantify the isotopic abundance in nuclear material samples.  This 

study is investigating the performance of the Multi Group Analysis (MGA), the Multi Group Analysis for 

Uranium (MGAU) and the Full Range Analysis (PC/FRAM) at different energy resolution of the counting 

systems and different uranium isotopic compositions. The normalized measured/certified values (M/C) were 

used to monitor the performance of each code.  The performance of the three codes showed proportional relation 

to measured enrichments. PC/FRAM analysis provided the best consistency along the studied resolution and 

enrichment ranges with normalized measured/certified values ranging from 0 to 7%. MGAU and MGA showed 

more sensitivity towards low resolution detectors especially at lower enrichments with normalized 

measured/certified values ranged from 0 to 30 % and 0 to 20 % respectively. 
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1. Introduction  

Resident materials at nuclear facilities or being in shipment must be categorized for domestic and international 

materials control and accountability. One of the key elements in nuclear material accounting system is the 

measurement system, which is used to verify and characterize the NM.  

Several destructive analysis (DA) and non-destructive assay (NDA) techniques are available for elemental and 

isotopic determinations [1-3]. The non-destructive assay is very common as it is a measurement of the nuclear 

material content, element or isotopic concentration of an item without producing significant physical or 

chemical changes in this item [4,5].  

Gamma spectrometry is the most applicable, non-destructive technique used for uranium isotopic composition 

analysis. The detector has to be chosen appropriately for every specific type of measurement. MGAU, MGA and 

PC/FRAM are common programs used for uranium isotopic measurements in safeguards activities.  The MGA 

is a widely used method in the isotopic abundance determination of nuclear materials. The MGAU [6] code 

analyzes the complex region in uranium spectra around 100 keV which requires the use of a High-r-Resolution 

Germanium (HpGe) detector in the acquisition of the spectrum. The general recommendation for MGAU 

analysis is to have the detector energy calibration gain set at approximately 0.075 keV/channel. In order to 

obtain those gain settings, it is usually set 185.71 keV on 2480 channels [7]. The large volume Broad Energy 

Germanium (BEGe) or Coaxial (COAX) detectors are generally preferred for their high efficiency and better 

sensitivity at high energies. The disadvantage of using large volume detectors is that they have significantly 

poorer energy resolution compared with the small planar detectors. Although BEGe detectors may have an 

energy resolution of less than 600 eV at 122 keV, which is still comparable with Low Energy resolution 

Germanium LEGe detectors [8], MGAU can be used to analyse such spectra and the code retrieves the initial 

energy calibration directly from the spectrum file or uses the user input. On the other hand, PC/FRAM, uses the 

full energy range, and it does not have strict requirements for high detector resolution [9]. In this work, the 

influence of detector resolution on the estimation of uranium isotopic using MGAU, MGA and PC/FRAM has 

been studied. 

2. Material and Equipment 

In this study, counting systems with different detector types (LEGe, BEGe or COAX) and consequently, energy 

resolution was used. Table 1 shows summary of the system information. 

Table 1: Characteristic of the used gamma spectroscopy systems 

System No. Detector Type  Manufacturer  Resolution at 122 (eV) 

Detector (1) Planer ORTEC 550 

Detector (2) Planer Canberra  650 

Detector (3) Coaxial  Canberra  939 

Detector (4) Coaxial  ORTEC  1450 
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In this study, a set of Uranium Standard Reference Materials (SRM 969) of nominal abundances 0.31%, 0.71%, 

2.96% and 4.46% of 235U were used for measurements. Each sample contains 200.1±0.2 gram of U3O8 powder, 

encased in aluminum cylindrical containers [10]. The dimension of Al cans is 70 mm height and 20.8 mm 

diameter. Table 2 shows the characteristic of the used samples. 

Table 2: Description of SNM-969 samples used in the measurement [10]. 

 
 
 

 
Sample 

ID 

 
 
 
 

Full High 
(cm) 

 
 
 
 

Density 
g/cm3 

Certified /Declared values of Uranium 

U3O8 235U Reference relative abundance 

Weight 
(g) 

Weight 
(g) 

235U 
(atom%) 

238U 
(atom%) 

234U 
(atom%) 

031 2.08±0.05 2.50±0.06 200.1±0.2 0.5260 0.3206±0.0002 99.6627±0.0004 0.0020±0.0002 
071 2.08±0.05 2.50±0.06 200.1±0.2 1.2047 0.7209±0.0005 99.2738±0.0004 0.0053±0.0002 
194 2.08±0.05 2.50±0.06 200.1±0.2 3.2918 1.9664±0.0014 98.0159±0.0159 0.0174±0.0002 
295 2.08±0.05 2.50±0.06 200.1±0.2 5.0056 2.9857±0.0021 96.9826±0.0029 0.0280±0.0002 
446 1.58±0.05 3.291±0.1 200.1±0.2 7.5678 4.5168±0.0032 95.4398±0.0032 0.0365±0.0004 

 

3. Measurements  

Each sample was measured three times at 10 cm distance from the end cap of the detector for measuring time of 

duration one hour with each detector. The obtained uranium spectra were analyzed using MGAU version 4.2, 

PC/FRAM version 5.2 and U235 version 1.06.  Fig.ure 1 shows the configuration of the experimental set up.   

 

Figure 1: Experimental setup configuration. 

4. Results and Discussion 

The normalized measured/certified values (M/C) were used to monitor the performance of each code.  Figure 2 

shows the effect on accuracies of calculated enrichment using MGAU, PC/FRAM and MGA codes for systems 

with resolutions below and above 750 eV at 122 keV. For the three used codes, the accuracy of calculated 

enrichments was much better using detectors with resolution below 750 eV than with resolutions above750 eV. 

Although one of the features of MGAU code is the ability to analyze gamma-ray spectra collected using both 



American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2017) Volume 31, No  1, pp 201-206 

 

204 
 

high resolution planar detector and high efficiency coaxial detector, still accuracies obtained at resolution 1450 

eV were affected more than those obtained by MGA and PC/FRAM code. At 1450 eV resolution, for the four 

measured enrichments in ascending order, the (M/C) calculated percentages based on MGAU, MGA and 

PC/FRAM were [36, 18, 4, 2, 0.4%], [28, 12, 8, 4, 3%] and [6, 7, 4, 5, 0.9 %] respectively 

 

Figure 2: Calculated enrichment using MGAU, PC/FRAM and MGA codes using different detectors with 

different resolutions. 

 

As seen in Fig.ure3, enrichment of measured samples had a pronounced impact on the obtained accuracies.  The 

performance at each resolution, improved as the enrichment increased. At low enrichments, the (M/C) 

percentages obtained by MGAU, MGA and PC/FRAM were 30 %, 28% and 6% respectively. On average the 

most consistent performance expressed in (M/C) values over different resolutions and range of enrichments was 

obtained by PC/FRAM. At enrichment 4.46%, the calculated (M/C) percentages at 550 eV, 650 eV, 939 eV and 

1450 eV were 0.4, 0, 0 and 0.9. 
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Figure 3: Calculated biases at different enrichment using MGAU, PC/FRAM and MGA code 

One of the features of MGAU is the ability to analyze gamma-ray spectra collected using both a high resolution 

planar Ge detector and a high efficiency coaxial Ge detector. Fig.ure 4 shows a comparison of enrichment 

calculated using data collected with high efficiency coaxial detector below and above 300 keV. Analysis using 

spectrum above 300 keV showed slight deviation from certified values at 3% enrichment while spectrum below 

300 keV showed deviation at 0.71%. 

 

Figure 4: Obtained enrichment using MGAU and two energy segment spectral analysis 

5. Conclusion 
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It is recommended to use MGAU, PC/FRAM and MGA codes with systems with resolutions below 750 eV at 

122 keV. For measuring systems with resolution above 1450 eV, up to 30% bias may be expected. The 

performance of the three codes showed proportional relation to measured enrichments. PC/FRAM analysis 

provided the best consistency along the studied resolution and enrichment ranges with biases ranging from 0 to 

7%. MGAU and MGA showed more sensitivity towards low resolution detectors especially at lower 

enrichments. 
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