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Abstract 

This paper proposes an improvement to the long memory stochastic volatility (LMSV) model to forecast 

volatility using high frequency data. To allow frequency domain quasi-maximum likelihood (FDQML) 

estimation, we suggest a parsimonious normalization procedure that avoids repetitive parameter estimation. This 

resultantly produces more efficient parameter estimation as less estimation error is involved. Besides, a de-

trending procedure is proposed prior to the de-seasonalization procedure to improve the identification of 

seasonal patterns. We compare the performance of volatility forecasts by the proposed refined FDQML-LMSV 

model with the existing LMSV and the linear long memory model that fits to logarithms of realised volatility. 

The empirical results show that the proposed method outperforms the existing models statistically, and the 

output of the proposed method improves the accuracy and efficiency in value-at-risk forecasting. 

Keywords: long memory; volatility; normalization; value-at-risk. 

1. Introduction  

The availability of vast high-frequency data on returns of financial assets has spurred an enormous research in 

the modelling and forecasting of return volatility.  
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Particularly, realized volatility (RV) which can be easily computed from high-frequency intra-day returns is 

introduced and promoted by [1–3]. The superiority of RV as an efficient estimator of return volatility is 

supported by the subsequent work of [4–6], which showed that RV modelled with autoregressive fractionally 

integrated moving average (ARFIMA) generally performs better than ARCH models for volatility forecasting. 

The significance of reliable volatility predictions is seen in the estimate and forecast of value-at-risk (VaR), the 

most sought-after technique that has been vigorously studied in quantitative risk management and financial 

econometrics. Several authors demonstrated that an accurately predicted volatility is materialized into economic 

benefits in the context of VaR forecasting [7–9]. 

RV is obtained by aggregating the high-frequency squared returns over a desired estimation or forecast horizon. 

Noting that RV has long memory property and high-frequency returns exhibit seasonality in volatility, Deo and 

his colleagues [10] proposed a time varying de-seasonalization method within the long memory stochastic 

volatility (LMSV) model. The LMSV model is suitable for financial returns that are captured at equally spaced 

time interval. To estimate the parameters of the LMSV model, the authors followed the frequency domain quasi 

maximum likelihood (FDQML) method which assumes a Gaussian time series. A power transformation to the 

series was suggested to meet such assumption. This approach is rather laborious because besides searching for a 

power that transforms the series into a Gaussian time series, it also requires the estimation of the spectral density 

and the covariance matrix of the transformed series as there is no analytic spectral density available for the 

powered transformed series. There are other models proven to be able to capture the long memory of the 

volatility such as heterogeneous autoregressive [11] and autoregressive fractionally integrated model [12]. The 

authors compared the performance of their FDQML-LMSV models with that of linear long-memory models fit 

to log RV proposed by Andersen and his colleagues [12] (ABDL).  It was reported that the ABDL method is a 

very good competitor to Deo’s FDQML-LMSV models, especially when forecasting over a short horizon.  

On the other hand, it has become increasingly clear that economic and financial series contain cyclical 

component [13,14]. As such, it is necessary to pre-treat a financial time series with an elimination of cyclical 

and seasonality components before it is transformed into a Gaussian time series. In the data pre-treatment 

procedure, prior to Deo’s time varying de-seasonalization, we propose a trend elimination adjustment in the 

form of linear combination of a sine and a cosine evaluated at Fourier frequencies in multiple of an appropriate 

number of periods per cycle. Besides the trend elimination, this paper also contributes to improve the FDQML-

LMSV model in the aspect of normalization and the back-transformation procedures. The normalization 

procedure is rather simple as it only involves fitting the empirical cumulative probabilities to the Gaussian 

cumulative distribution function [15]. For the purpose of back-transformation, a Weibull distribution is used to 

model the empirical data so that a normal cumulative probability can be matched to a point within the 

distribution of the pre-processed data. Nonetheless, a convex transformation is involved to recover the forecast 

of RV from log RV. To close down the gap of difference, we propose an adjustment factor that takes the overall 

weights of the linear combination in the forecast equation. 

Although ABDL reported that the distributions of the logarithms of realized volatilities are approximately 

Gaussian, it is interesting to know if the proposed normalization procedure improves the ABDL model. The 

proposed improvement to the FDQML-LMSV and the ABDL models are estimated and used to forecast realized 
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volatility at various horizons for S&P500 and DAX indices. Besides, as the volatility forecastability is relevant 

for short time horizons, we evaluate the forecasts economically via their VaR performance for daily trading 

made up of long and short positions. It is found that the proposed procedures to FDQML-LMSV and ABDL 

models improve the accuracy in the RV forecasts and hence produce VaR forecasts with capital efficiency. 

The rest of the paper is organized as follows. Section 2 describes the FDQML-LMSV model. Section 3 presents 

the enhancement to FDQML-LMSV model. Section 4 presents the empirical analysis using the proposed 

methodology for statistical and economic forecast evaluations, and finally Section 5 concludes. 

2. FDQML-LMSV model 

The LMSV model for the returns 𝑟𝑟𝑡𝑡 , 𝑡𝑡 = 1, … ,𝑛𝑛 is given by 

𝑟𝑟𝑡𝑡 = 𝜎𝜎 exp �
ℎ𝑡𝑡
2
� 𝜀𝜀𝑡𝑡 

(1) 

 Where 𝜀𝜀𝑡𝑡 ~ 𝑖𝑖𝑖𝑖𝑖𝑖(0, 1), 𝜎𝜎 > 0 and {ℎ𝑡𝑡} is a stationary zero mean Gaussian long-memory process independent of 

{𝜀𝜀𝑡𝑡}. For the sake of simplicity, we assume that {ℎ𝑡𝑡} follows an autoregressive fractionally integrated moving 

average ARFIMA (𝑝𝑝,𝑖𝑖, 𝑞𝑞) that takes the form Φ(𝐿𝐿)(1 − 𝐿𝐿)𝑑𝑑ℎ𝑡𝑡 = Θ(𝐿𝐿)𝜂𝜂𝑡𝑡, where 𝐿𝐿 is the backshift operator, 

𝜂𝜂𝑡𝑡 ~𝑖𝑖𝑖𝑖𝑖𝑖 𝑁𝑁�0,𝜎𝜎𝜂𝜂2�, 0 < 𝑖𝑖 < 0.5,Φ(𝐿𝐿) and Θ(𝐿𝐿) are polynomials of orders 𝑝𝑝 and 𝑞𝑞 with all roots outside the unit 

circle. Prior to forecasting with the LMSV model, Deo and his colleagues [10] reasoned that it is necessary to 

eliminate the seasonal component in volatility, which shows periodic peaks in the periodogram of the log 

squared returns. The authors proposed a time varying seasonal adjustment procedure in the form of  

𝑅𝑅𝑡𝑡 = exp �
𝑆𝑆𝑡𝑡
2
� 𝑟𝑟𝑡𝑡 

(2) 

where 𝑅𝑅𝑡𝑡 is the high frequency return demeaned by sample mean �̂�𝜇𝑅𝑅, 𝑆𝑆𝑡𝑡 is the seasonal component and 𝑟𝑟𝑡𝑡 is the 

de-seasonalized high frequency return. The seasonality is written as a linear combination of sines and cosines 

evaluated at the Fourier frequencies with seasonal peaks as follows: 

𝑆𝑆𝑡𝑡 = �𝑎𝑎𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐𝜔𝜔𝑝𝑝𝑡𝑡
𝑘𝑘

𝑝𝑝=1

+ �𝑏𝑏𝑝𝑝 𝑐𝑐𝑖𝑖𝑛𝑛𝜔𝜔𝑝𝑝𝑡𝑡
𝑘𝑘

𝑝𝑝=1

 
(3) 

where {𝜔𝜔𝑝𝑝}𝑝𝑝=1𝑘𝑘  is the collection of Fourier frequencies at the seasonal peaks and their neighbouring frequencies 

that exhibit large magnitudes. The coefficients 𝑎𝑎𝑝𝑝 and 𝑏𝑏𝑝𝑝 can be obtained by running an equivalent regression 

log𝑅𝑅𝑡𝑡2 = ∑ 𝑎𝑎𝑝𝑝 cos𝜔𝜔𝑝𝑝𝑡𝑡𝑘𝑘
𝑝𝑝=1 + ∑ 𝑏𝑏𝑝𝑝 sin𝜔𝜔𝑝𝑝𝑡𝑡𝑘𝑘

𝑝𝑝=1 + 𝑒𝑒𝑡𝑡where 𝑒𝑒𝑡𝑡 is the residual term.  

In the FDQML estimation procedure, the log squared de-seasonalized returns are expressed as a sum of a 

Gaussian long-memory signal plus a zero mean noise series, i.e.,  𝑍𝑍𝑡𝑡 = log(𝑟𝑟𝑡𝑡2) = 𝜇𝜇 + ℎ𝑡𝑡 + 𝜉𝜉𝑡𝑡  where 𝜉𝜉𝑡𝑡 =

log(𝜀𝜀𝑡𝑡2) − 𝐸𝐸(log(𝜀𝜀𝑡𝑡2)) and 𝜇𝜇 = log(𝜎𝜎2) +  𝐸𝐸(log(𝜀𝜀𝑡𝑡2)). The spectral density of 𝑍𝑍𝑡𝑡 is then given by 
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𝑓𝑓�𝜔𝜔𝑗𝑗� =
𝜎𝜎𝜂𝜂2

2𝜋𝜋
�𝛩𝛩�−𝑖𝑖𝜔𝜔𝑗𝑗��

2

�𝛷𝛷�−𝑖𝑖𝜔𝜔𝑗𝑗��
2�1 − 𝑒𝑒𝑒𝑒𝑝𝑝�−𝑖𝑖𝜔𝜔𝑗𝑗��

2𝑑𝑑 +
𝜎𝜎𝜉𝜉2

2𝜋𝜋
 

(4) 

 where 𝜎𝜎𝜉𝜉2 is the variance of 𝜉𝜉𝑡𝑡. The parameters are estimated by minimizing the Whittle approximation given 

below:  

ℒ = � �𝑙𝑙𝑐𝑐𝑙𝑙 �𝑓𝑓�𝜔𝜔𝑗𝑗�� +
𝐼𝐼𝑗𝑗

𝑓𝑓�𝜔𝜔𝑗𝑗�
 �

�𝑛𝑛−12 �

𝑗𝑗=1

 

(5) 

 

where 𝐼𝐼𝑗𝑗 = 1
2𝜋𝜋𝑛𝑛

�∑ 𝑍𝑍𝑡𝑡 exp�−𝑖𝑖𝜔𝜔𝑗𝑗�𝑛𝑛
𝑡𝑡=1 �2 is the periodogram of 𝑍𝑍𝑡𝑡 at the 𝑗𝑗𝑡𝑡ℎFourier frequency 𝜔𝜔𝑗𝑗 = 2𝜋𝜋𝑗𝑗

𝑛𝑛
, and [∙] is 

the integer part of (∙). 

Deo and his colleagues [10] argued that 𝑍𝑍𝑡𝑡 is not Gaussian, and hence, a transformed series |𝑟𝑟𝑡𝑡|𝑐𝑐 was suggested 

of which 𝑐𝑐 is chosen such that the transformed series is closer to Gaussian than that of log(𝑟𝑟𝑡𝑡2). This is done by 

setting the skewness of |𝑟𝑟𝑡𝑡|𝑐𝑐 to zero based on the initial parameter estimates of the LMSV model on log(𝑟𝑟𝑡𝑡2). 

Although the power transformation can be done quite easily to meet the assumption of normality, it is noted that 

the transformed series does not have the spectral density as given in Eq.(4), and hence, the Whittle 

approximation cannot be applied straightaway. Based on bivariate expected values and the initial parameter 

estimates of the LMSV model on log(𝑟𝑟𝑡𝑡2), the authors suggested that the spectral density of |𝑟𝑟𝑡𝑡|𝑐𝑐  is to be 

estimated from its auto-covariance function via Fourier transform. Subsequently, the FDQML estimation for 

series |𝑟𝑟𝑡𝑡|𝑐𝑐 is done by using the Whittle likelihood in Eq. (5), with 𝑓𝑓 and 𝐼𝐼 being the spectral density and the 

periodogram of |𝑟𝑟𝑡𝑡|𝑐𝑐 respectively. Once the parameters are estimated, the one-step ahead realized volatility 

forecast can be computed based on the best linear predictor below. 

E�rn+12 − µr,2 −�Aj ∗ ��rn−j�
c − µr,c�

n−1

j=0

  �

2

 
(6) 

where 𝜇𝜇𝑟𝑟,2 = 𝐸𝐸(𝑟𝑟𝑡𝑡2),  𝜇𝜇𝑟𝑟,𝑐𝑐 = 𝐸𝐸(|𝑟𝑟𝑡𝑡|𝑐𝑐), and the coefficients 𝐴𝐴𝑗𝑗 are the solution set of the linear equations given by 

𝐄𝐄𝐂𝐂𝐀𝐀 = γ2,c,1 (7) 

where 𝑬𝑬𝒄𝒄 = 𝑐𝑐𝑐𝑐𝑐𝑐(|𝑟𝑟𝑛𝑛|𝑐𝑐 ,⋯ , |𝑟𝑟1|𝑐𝑐), 𝛾𝛾2,𝑐𝑐,1 = [𝑐𝑐𝑐𝑐𝑐𝑐(𝑟𝑟𝑛𝑛+12 , |𝑟𝑟𝑛𝑛|𝑐𝑐),⋯ , 𝑐𝑐𝑐𝑐𝑐𝑐(𝑟𝑟𝑛𝑛+12 , |𝑟𝑟1|𝑐𝑐)]′ , and 𝑨𝑨 = (𝐴𝐴0,⋯ ,𝐴𝐴𝑛𝑛−1 )′. The 

entries of 𝑬𝑬𝒄𝒄 and 𝛾𝛾2,𝑐𝑐,1 are obtained using bivariate expected values that rely on the parameters of the LMSV 

model on |𝑟𝑟𝑡𝑡|𝑐𝑐. The best one-step ahead linear predictor of 𝑟𝑟𝑛𝑛+12  is then given by 

r�n+12 = µr,2 + �Aj ∗ ��rn−j�
c − µr,c�

n−1

j=0

 
(8) 

Deo and his colleagues [10] labelled such method as LMSV2, and they explained that the forecast of the squared 
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returns �̂�𝑟𝑛𝑛+12  using Eq.(8) may not be optimal as squared returns are not Gaussian. They proposed another 

method, called LMSVc to counter this problem. LMSVc is different from LMSV2 such that the best linear 

forecast, say |�̂�𝑟𝑛𝑛+1|𝑐𝑐, of  |𝑟𝑟𝑛𝑛+1|𝑐𝑐 is predicted based on |𝑟𝑟𝑛𝑛|𝑐𝑐 , … , |𝑟𝑟1|𝑐𝑐.  The forecast of 𝑟𝑟𝑛𝑛+12  is obtained by using 

power transformation �̂�𝑟𝑛𝑛+12 = 𝐸𝐸 �|𝑋𝑋|
2
𝑐𝑐�, where 𝑋𝑋 is a normal random variable with mean |�̂�𝑟𝑛𝑛+1|𝑐𝑐 and variance 

𝜎𝜎𝑐𝑐,1
2 = 𝐸𝐸(|𝑟𝑟𝑛𝑛+1|𝑐𝑐 − |�̂�𝑟𝑛𝑛+1|𝑐𝑐)2. Assume that a high-frequency data set contains 𝑚𝑚 intra-day returns in a trading 

day such that the forecast of the RV for the next trading day depends on the forecasts {�̂�𝑟𝑛𝑛+12 ,⋯ , �̂�𝑟𝑛𝑛+𝑚𝑚2 }. These 

squared return forecasts are obtained by repeating Eq.(8) 𝑚𝑚 times, of which in each iteration-𝑖𝑖, 𝑖𝑖 = 2, … ,𝑚𝑚, the 

most recent past observation |𝑟𝑟𝑛𝑛+𝑖𝑖−1|𝑐𝑐 is updated with the forecast that has just been generated |�̂�𝑟𝑛𝑛+𝑖𝑖−1|𝑐𝑐 . 

Subsequently, the forecasts of squared returns are re-seasonalized to give {𝑅𝑅�𝑡𝑡2}𝑡𝑡=𝑛𝑛+1𝑛𝑛+𝑚𝑚 , and the RV for the next 

trading day is predicted as the sum of these 𝑚𝑚 intra-day squared returns 𝑅𝑅𝑅𝑅��𝑛𝑛𝑚𝑚�+1
= ∑ 𝑅𝑅�𝑡𝑡2𝑛𝑛+𝑚𝑚

𝑡𝑡=𝑛𝑛+1 .  

Despite thorough considerations given to LMSV model, it is outperformed by a simple ARFIMA(1,𝑖𝑖,0) model 

applied to log𝑅𝑅𝑅𝑅,  especially when forecasting over a short horizon. This can be due to the noise generated 

when the power 𝑐𝑐  is determined based on the initial parameter estimates of the LMSV model on log(𝑟𝑟𝑡𝑡2). 

Besides, it is good to examine if there is other information contained in log𝑅𝑅𝑡𝑡2other than the time varying 

seasons so that 𝑍𝑍𝑡𝑡 truly represents a sum of a Gaussian long-memory signal plus a zero mean noise series. To 

address these concerns, we suggest the improvement in the following section. 

3. Refined FDQML-LMSV model 

Besides seasonality, a financial time series may contain cyclical trend. A graphical inspection of the time series 

plot is sufficient to determine the number of cycles per period. Similar to the approach of modelling the cyclical 

trend in [14], we suggest to estimate the trend component at cyclical frequencies. Based on the number of cycles 

per period, say 𝑘𝑘, observed in the time series plot, the trend component is fitted as a linear combination of a sine 

and a cosine evaluated at the Fourier frequencies in multiple of 𝑘𝑘, defined as follows: 

TLRj = α𝑐𝑐𝑖𝑖𝑛𝑛 �ωn
kj
� + β 𝑐𝑐𝑐𝑐𝑐𝑐 �ωn

kj
� + c, j = 0, 1. … , n − 1 (9) 

where 𝜔𝜔𝑛𝑛
𝑘𝑘𝑗𝑗

 are the Fourier frequencies with indices that are integer multiples of 𝑘𝑘. The coefficients 𝛼𝛼,𝛽𝛽 and the 

constant 𝑐𝑐 are estimated using the least squares method within the curve fitting procedure in Matlab.  

To identify the seasonal pattern efficiently, the cyclical trend in the log squared returns is to be eliminated and 

the de-trended series is obtained as 𝑟𝑟𝑒𝑒𝑐𝑐𝐿𝐿𝑅𝑅𝑡𝑡 = log𝑅𝑅𝑡𝑡2 − 𝑇𝑇𝐿𝐿𝑅𝑅𝑡𝑡−1. 𝑟𝑟𝑒𝑒𝑐𝑐𝐿𝐿𝑅𝑅𝑡𝑡 is then de-seasonalized following Deo’s 

time varying de-seasonalization procedure as described in Section 2. Let’s denote the de-trended and de-

seasonalized series as log 𝑟𝑟𝑡𝑡∗
2 . It is shown in Section 4 that these pre-processing steps can effectively eliminate 

the effects of trends and seasons, and hence, preparing the data suitable for the LMSV modelling. 

After these pre-processing procedures, we propose to normalize log 𝑟𝑟𝑡𝑡∗
2  based on a comparison between the 

empirical and Gaussian cumulative distributions. This procedure is adopted from [15] whereby the normal 
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variate 𝑧𝑧𝑡𝑡 is produced by matching the cumulative probability 𝑃𝑃�log 𝑟𝑟𝑡𝑡∗
2 � to the Gaussian cumulative distribution 

𝐷𝐷(𝑧𝑧𝑡𝑡) with the mean 𝑧𝑧̅ = 𝐸𝐸(log 𝑟𝑟𝑡𝑡∗
2 ) and the variance 𝜎𝜎𝑧𝑧2 = 𝐸𝐸 �log 𝑟𝑟𝑡𝑡∗

2 − 𝐸𝐸�log 𝑟𝑟𝑡𝑡∗
2 ��

2
 as follows: 

D(zt) =
1

σz√2π
� 𝑒𝑒𝑒𝑒𝑝𝑝 �

(x − z�)2

2σz2
�dx

zt

−∞
= P(𝑙𝑙𝑐𝑐𝑙𝑙 rt∗

2 ) 
(10) 

The normality of series {𝑧𝑧𝑡𝑡} can be verified by using Jarque-Bera test. It is noted that the transformed series {𝑧𝑧𝑡𝑡} 

has the spectral density in the form of Eq.(4), which permits the application of Whittle approximation in Eq.(5). 

Subsequently, the one-step ahead normalized log squared return, 𝑧𝑧𝑛𝑛+1, is computed similar to the best linear 

predictor in Eq.(8), except that the series {|𝑟𝑟𝑡𝑡|𝑐𝑐}  is replaced by {𝑧𝑧𝑡𝑡}, and the expected value as well as the auto-

covariance are computed based on {𝑧𝑧𝑡𝑡} and its respective LMSV parameters as shown below. 

z�n+1 = µz + �Aj ∗ (zn−j − µz)
n−1

j=0

 
(11) 

where 𝜇𝜇𝑧𝑧 = 𝐸𝐸(𝑧𝑧𝑡𝑡), and 𝐴𝐴𝑗𝑗 are the coefficients in Eq.(7) with 𝑬𝑬𝒄𝒄 and 𝛾𝛾2,𝑐𝑐,1 being replaced by  𝑐𝑐𝑐𝑐𝑐𝑐(𝑧𝑧𝑛𝑛,⋯ , 𝑧𝑧1) and 

[𝑐𝑐𝑐𝑐𝑐𝑐(𝑧𝑧𝑛𝑛+1, 𝑧𝑧𝑛𝑛),⋯ , 𝑐𝑐𝑐𝑐𝑐𝑐(𝑧𝑧𝑛𝑛+1, 𝑧𝑧1)]′ respectively. The one-step ahead forecast �̂�𝑧𝑛𝑛+1has to be back-transformed to 

be of any utility. This requires the distributional form of log 𝑟𝑟𝑡𝑡∗
2 . To do this, we fit the probability distribution of 

log 𝑟𝑟𝑡𝑡∗
2  with Weibull distribution due to its flexibility to assume various characteristics. In fact, Weibull 

distribution is popular amongst the quality practitioners in survival analysis, reliability engineering, hydrology 

as well as weather forecasting [15]–[18]. The Weibull probability density function is given below: 

f(yt) =
b
a
�

yt
a
�
b−1

𝑒𝑒𝑒𝑒𝑝𝑝 �−�
yt
a
�
b
� , yt ≥ 0 

(12) 

 where 𝑎𝑎 and 𝑏𝑏 are the scale and shape parameters to be estimated using maximum likelihood estimates given 

the values in the series {𝑦𝑦𝑡𝑡}. To ensure that 𝑦𝑦𝑡𝑡 ≥ 0, we suggest that the de-trended and de-seasonalized series 

log 𝑟𝑟𝑡𝑡∗
2  is to be adjusted such that 𝑦𝑦𝑡𝑡 = log 𝑟𝑟𝑡𝑡∗

2 − 𝑦𝑦m∗ + 0.1, where 𝑦𝑦m∗  is the minimum of {log 𝑟𝑟𝑡𝑡∗
2 }. With this 

distributional form, the forecast �̂�𝑧𝑛𝑛+1can be connected to log �̂�𝑟(𝑛𝑛+1)∗
2  in two steps. First, the Gaussian cumulative 

distribution function 𝐷𝐷(�̂�𝑧𝑛𝑛+1)  is matched to the Weibull cumulative distribution function 𝐹𝐹𝑤𝑤(𝑦𝑦�𝑛𝑛+1) = 1 −

exp �−�𝑦𝑦�𝑛𝑛+1
𝑎𝑎
�
𝑏𝑏
�,  such that 𝐷𝐷(�̂�𝑧𝑛𝑛+1) = 𝐹𝐹𝑤𝑤(𝑦𝑦�𝑛𝑛+1). Next, the forecast is adjusted back to its original scale, that is 

log �̂�𝑟(𝑛𝑛+1)∗
2 = 𝑦𝑦�𝑛𝑛+1 + 𝑦𝑦m∗ − 0.1. 

We follow the one-step-ahead forecast procedure as outlined in Section 2, whereby 𝑚𝑚 one-step ahead forecast 

��̂�𝑟(𝑛𝑛+1)∗
2 ,⋯   , �̂�𝑟(𝑛𝑛+𝑚𝑚)∗

2 � are taken to form the next daily forecast 𝑅𝑅𝑅𝑅��𝑛𝑛𝑚𝑚�+1
. From Eq.(11), we note that the forecast 

�̂�𝑧𝑛𝑛+1  relies heavily on the linear combination of the past values {𝑧𝑧𝑛𝑛, 𝑧𝑧𝑛𝑛−1,⋯ , 𝑧𝑧1}  that can be matched to 

{log 𝑟𝑟𝑛𝑛∗
2 , log 𝑟𝑟(𝑛𝑛−1)∗

2 ⋯ , log 𝑟𝑟1∗
2 }. Focusing on the linear combination, we have  

�̂�𝑧𝑛𝑛+1 ≈ 𝐴𝐴0𝑧𝑧𝑛𝑛 + 𝐴𝐴1𝑧𝑧𝑛𝑛−1 + ⋯+ 𝐴𝐴𝑛𝑛−1𝑧𝑧1 
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�̂�𝑧𝑛𝑛+2 ≈ 𝐴𝐴0�̂�𝑧𝑛𝑛+1 + 𝐴𝐴1𝑧𝑧𝑛𝑛 + ⋯+ 𝐴𝐴𝑛𝑛−1𝑧𝑧2 

⋮ 

�̂�𝑧𝑛𝑛+𝑚𝑚 ≈ 𝐴𝐴0�̂�𝑧𝑛𝑛+𝑚𝑚−1 + 𝐴𝐴1�̂�𝑧𝑛𝑛+𝑚𝑚−2 + ⋯+ 𝐴𝐴𝑛𝑛−1𝑧𝑧𝑚𝑚 

According to Jensen’s inequality, we anticipate that exp�log �̂�𝑟(𝑛𝑛+𝑗𝑗)∗
2 � < 𝑟𝑟(𝑛𝑛+𝑗𝑗)∗

2 , 𝑗𝑗 = 1,⋯ ,𝑚𝑚 , of which 

exp�log �̂�𝑟(𝑛𝑛+𝑗𝑗)∗
2 �  can be matched to exp��̂�𝑧𝑛𝑛+𝑗𝑗� ≈ exp�𝐴𝐴0�̂�𝑧𝑛𝑛+𝑗𝑗−1 + 𝐴𝐴1�̂�𝑧𝑛𝑛+𝑗𝑗−2 + ⋯+ 𝐴𝐴𝑛𝑛−1𝑧𝑧𝑗𝑗� . To adjust the 

error due to the convex transformation, we propose to consider an average effect across the 𝑚𝑚 one-step-ahead 

forecasts. With this notion, let us estimate the linear combination as a product of the mean 𝑧𝑧̅ = 𝐸𝐸(log 𝑟𝑟𝑡𝑡∗
2 ) and 

the sum of coefficients 𝐴𝐴𝑗𝑗. As these forecasts are obtained based on the observation sets that are updated with 

the preceding forecasts, the sum of coefficients of each one-step ahead forecast can be explained as follows: 

forecast sum of coefficients 

z�n+1 s1 = ∑ Aj
n−1
j=0   

z�n+2 s2 = A0 ∗ s1 + ∑ Aj
n−1
j=1   

⋮ ⋮ 

z�n+m 
sm = A0 ∗ sm−1 + ⋯+ Am−2 ∗ s1 + � Aj

n−1

j=m−1

 

We propose to adjust the difference in exp�log �̂�𝑟(𝑛𝑛+𝑗𝑗)∗
2 � and 𝑟𝑟(𝑛𝑛+𝑗𝑗)∗

2 , 𝑗𝑗 = 1,⋯ ,𝑚𝑚, by multiplying a constant 𝑐𝑐𝑤𝑤 to 

the forecast exp�log �̂�𝑟(𝑛𝑛+𝑗𝑗)∗
2 � , 𝑗𝑗 = 1,⋯ ,𝑚𝑚 . The constant 𝑐𝑐𝑤𝑤  is a ratio that corrects the effect of convex 

transformation given as follows: 

cw =
E(𝑒𝑒𝑒𝑒𝑝𝑝(κ ∗ {zt}t=1n ))

𝑒𝑒𝑒𝑒𝑝𝑝(κ ∗ z�)
 

(13) 

Where 𝜅𝜅 is the average of 𝑐𝑐𝑖𝑖 , 𝑖𝑖 = 1,⋯𝑚𝑚. 

In short, the forecast of the pre-processed squared return is obtained by 

r�(n+j)∗
2 = 𝑒𝑒𝑒𝑒𝑝𝑝�Fw−1(D(z�n+j)) + y𝑚𝑚∗ − 0.1� ∗ cw, j = 1, … , m (14) 

where 𝐹𝐹𝑤𝑤−1(∙) is the inverse Weibull cumulative distribution function. 

The forecast of the squared returns 𝑅𝑅�𝑛𝑛+𝑗𝑗2  is subsequently obtained after the procedures to undo the de-

seasonalization, mean and trend adjustments. We follow Deo’s procedures to re-seasonalize the returns. To undo 

the trend adjustment, the forecast �̂�𝑟(𝑛𝑛+𝑗𝑗)∗
2  is added back with 𝑇𝑇𝐿𝐿𝑅𝑅� 𝑛𝑛+𝑗𝑗 following Eq.(9), where the argument is 

𝜔𝜔�𝑛𝑛
𝑘𝑘(𝑛𝑛+𝑗𝑗) = 2𝜋𝜋𝑘𝑘

𝑛𝑛
(𝑛𝑛 + 𝑗𝑗), 𝑗𝑗 = 1,⋯ ,𝑚𝑚. The forecast of the squared return is obtained as follows: 
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R�n+j2 = ��𝑒𝑒𝑒𝑒𝑝𝑝�Sn+j−m + TLR� n+j� ∗ r�(n+j)∗
2 + µ�R�

2

, j = 1,⋯ , m 
(15) 

where �̂�𝜇𝑅𝑅 is the sample mean of {𝑅𝑅𝑡𝑡} 𝑡𝑡=1𝑛𝑛 . 

The RV for the next trading day is predicted as the sum of squared returns, that is 𝑅𝑅𝑅𝑅��𝑛𝑛𝑚𝑚�+1
= ∑ 𝑅𝑅�𝑡𝑡2𝑛𝑛+𝑚𝑚

𝑡𝑡=𝑛𝑛+1 .  

In short, the refined FDQML-LMSV procedures can be summarized as follows, with steps (2), (4), (8) and (9) 

being the proposed enhancement. Let the first estimation window be {𝑅𝑅𝑡𝑡2}𝑡𝑡=1𝑛𝑛 , and assume that the observations 

{𝑅𝑅𝑡𝑡2}𝑡𝑡=1𝑛𝑛+𝑚𝑚∗𝑖𝑖are available after �𝑛𝑛
𝑚𝑚
� + 𝑖𝑖 – day of forecast. To obtain the forecast 𝑅𝑅𝑅𝑅��𝑛𝑛𝑚𝑚�+𝑖𝑖

: 

(1) Obtain a demeaned log returned squared series log𝑅𝑅𝑡𝑡2 − �̂�𝜇. 

(2) Perform de-trending using Eq.(9). Get 𝑟𝑟𝑒𝑒𝑐𝑐𝐿𝐿𝑅𝑅𝑡𝑡. 

(3) Perform de-seasonalization on 𝑟𝑟𝑒𝑒𝑐𝑐𝐿𝐿𝑅𝑅𝑡𝑡 using Eq.(3). This gives log 𝑟𝑟𝑡𝑡∗
2 . 

(4) Perform normalization using Eq.(10). This gives 𝑧𝑧𝑡𝑡. 

(5) Estimate the LMSV parameters based on 𝑧𝑧𝑡𝑡.  

(6) Estimate the covariance function of 𝑧𝑧𝑡𝑡 based on an assumed ARFIMA model. 

(7) Perform one-step-ahead forecast �̂�𝑧𝑛𝑛+𝑗𝑗 , 𝑗𝑗 = 1, … ,𝑚𝑚 using linear predictor in Eq.(11).  

(8) Obtain the parameters of the Weibull fit to log 𝑟𝑟𝑡𝑡∗ 
2 distribution using Eq.(12). Take note of the 

adjustment for positive input. 

(9) Obtain the forecast of the pre-processed squared return �̂�𝑟(𝑛𝑛+𝑗𝑗)∗
2  using Eq.(14). 

(10) Obtain the forecast of the squared return 𝑅𝑅�𝑛𝑛+𝑗𝑗2  using Eq.(15). 

(11) Compute the forecast 𝑅𝑅𝑅𝑅��𝑛𝑛𝑚𝑚�+𝑖𝑖
 using the results from step (10). 

(12) Next estimation window is {𝑅𝑅𝑡𝑡2}𝑡𝑡=1+𝑚𝑚∗𝑖𝑖
𝑛𝑛+𝑚𝑚∗𝑖𝑖 . 

Repeat steps (1) – (12) until all the out-of-sample forecasts are sought. It can be seen that the proposed method 

is less demanding as it only requires the LMSV parameter estimation to be done on 𝑧𝑧𝑡𝑡  but the LMSV2 or 

LMSVc model needs twice the procedure, once on log 𝑟𝑟𝑡𝑡2 and another on log|𝑟𝑟𝑡𝑡|𝑐𝑐. Besides, the linear predictor is 

also simplified as the complexity of bivariate is avoided. The advantage of the proposed model is illustrated 

using the S&P500 and DAX data in the next section.  

4. Empirical Analysis 

We compare the volatility forecast performance of the proposed refined FDQML-LMSV with the competing 

models LMSV2, LMSVc, ABDL and the normalized-ABDL (ABDLn) of which Eq.(10) and Eq.(12) are used to 

normalize the log squared returns. The forecast horizons include the daily and weekly forecast of RV. In the first 

application, we consider the half hourly returns on the S&P500 indices spanning a period from 2/1/08 to 

19/7/13. The half-hourly returns are computed as 𝑟𝑟𝑡𝑡 = log(𝑃𝑃𝑡𝑡) − log(𝑃𝑃𝑡𝑡−1), where 𝑃𝑃𝑡𝑡 is the asset price at the 𝑡𝑡𝑡𝑡ℎ 

half hourly observation. There are 13 returns per day, computed from 9:30 a.m. to 3:30 p.m. We compute the 

sum of squares of 13 intra-day returns of a day as the corresponding RV for that day, thus generating a series of 
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RV. In the second application, we examine the same using DAX indices spanning a period from 2/1/08 to 

9/5/13. There are 18 returns per day from 3:00 a.m. to 11.30 p.m. The information regarding these data sets is 

detailed in Table 1. 

Table 1: Descriptive statistics for the full data set, S&P500 (2/1/08 – 19/7/13) and DAX (2/1/08 – 9/5/13) 

 S&P 500  DAX 

 𝑟𝑟𝑡𝑡 𝑅𝑅𝑅𝑅𝑡𝑡  𝑟𝑟𝑡𝑡 𝑅𝑅𝑅𝑅𝑡𝑡 

Mean 7.5238e-06 2.0345e-04  9.8656e-07 2.9055e-04 

Std dev 0.0040 4.2067e-04  0.0040 5.9095e-04 

Skewness -0.1165 6.0906  -0.3188 8.5049 

Kurtosis 22.4317 54.1799  35.5520 101.6352 

JB (p-value) 1 1  1 1 

Q20 (p-value) 1 1  1 1 

Note: JB is the Jarque-Bera statistic and Q20 is the 20th order of Ljung-Box test. 

It is noted that both data sets are not normally distributed in their returns {𝑟𝑟𝑡𝑡} as well as realized volatility {𝑅𝑅𝑅𝑅𝑡𝑡}. 

Besides, these series portray strong autocorrelations, indicating possible existence of long memory. We compare 

the performance of the refined FDQML-LMSV model with the other competing models based on the daily and 

weekly RV forecasts. To avoid a huge difference in the number of out-of-sample forecasts, the daily and weekly 

RV forecast performances are examined based on 200 and 130 out-of-sample forecasts for S&P500, and 200 

and 150 out-of-sample forecasts for DAX. Consider an estimation window of 𝑛𝑛 = 9648 and a forecast horizon 

of 1 day for S&P500 as an example. Figure1 shows the autocorrelations for the log squared returns that are 

demeaned with sample mean, log𝑅𝑅𝑡𝑡2. Figure 1(a) depicts the autocorrelations up to a year. The extremely slow 

decay autocorrelation function indicates the existence of long memory. Meanwhile, from the “zoom in” 

autocorrelation function (see Figure 1(b)), we notice that there are periodic peaks at lags in the integer multiples 

of 13, supporting the LMSV model with seasonal adjustment.   

(a) 

 

(b) 

 

Figure 1: Autocorrelations for 𝑙𝑙𝑐𝑐𝑙𝑙 𝑅𝑅𝑡𝑡2 of S&P500 
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Besides seasonal component, Figure 2(a) shows that the distribution of log𝑅𝑅𝑡𝑡2 contains a cyclical trend that 

needs to be eliminated. We apply Eq.(9) to estimate the trend with the number of cycles per period 𝑘𝑘 = 2. This 

gives the trend equation 𝑇𝑇𝐿𝐿𝑅𝑅� 𝑗𝑗 = −0.5373sin �𝜔𝜔𝑛𝑛
2𝑗𝑗
� − 0.3034 cos �𝜔𝜔𝑛𝑛

2𝑗𝑗
� − 13.0122, 𝑗𝑗 = 0, 1. … ,𝑛𝑛 − 1 , 

represented by the black curve in Figure 2(a). Following Deo’s method, we estimate the seasonal component 

based on Fourier frequencies with indices that are integer multiples of 𝑛𝑛
13

 and their 60 Fourier frequencies to the 

left and right. The de-trended and de-seasonalized log squared returns log 𝑟𝑟𝑡𝑡∗ 
2 are shown in Figure 2(b). It can be 

seen that the de-trended series is less wavy and eventually log 𝑟𝑟𝑡𝑡∗ 
2 is more stationary around zero without 

significant peaks.   

 

Figure 2: Log squared returns and the pre-processed treatments 

As discussed in the literature, the pre-processed data with trend and seasonal elimination log 𝑟𝑟𝑡𝑡∗ 
2 do not follow a 

normal distribution. This is verified with the Jarque-Bera test and density plot in Figure 3. By using the 

normalization procedure with Eq.(10), the data is normalized giving the series {𝑧𝑧𝑡𝑡}𝑡𝑡=19648 . This allows us to 

proceed with the FDQML-LMSV model.  

 

Figure 3: Density plots of 𝑦𝑦𝑡𝑡∗ and the transformed data with normalization 𝑧𝑧𝑡𝑡 



American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2017) Volume 27, No  1, pp 213-233 

223 
 

Following the LMSV model, the normalized log squared returns can be written in the linear form 𝑧𝑧𝑡𝑡 = 𝜇𝜇 + ℎ𝑡𝑡 +

𝜉𝜉𝑡𝑡 as explained in Section 2. For simplicity, we assume ℎ𝑡𝑡 to follow an ARFIMA(1,𝑖𝑖, 0) process and 𝜀𝜀𝑡𝑡 to be 

standard normal. Using Eq.(4) and Eq.(5), the parameters are estimated as  𝜙𝜙� = 0.9667,𝜎𝜎�𝜂𝜂 = 0.0281,   𝜎𝜎�𝜉𝜉 = 𝜋𝜋
√2

,

�̂�𝑖 = 0.49. This indicates that the series is close to non-stationarity.  As the correlation structure changes with 

time, literature [19]–[21] reported that only recent data should be taken into consideration for the estimation of 

the future covariance matrix. Hence, we truncate the lagged observations in the one-step ahead linear predictor 

in Eq.(11) such that lag terms that are distant and insignificant are discarded. Figure 4 shows the size of 

coefficients 𝐴𝐴𝑗𝑗  in the linear predictor for both S&P500 and DAX. It can be seen that the coefficient drops 

drastically as the lag increases, and it is almost a zero after lag-250. As such, for these data, the linear predictor 

is defined up to a truncation lag at 𝑗𝑗 = 250.  

(a) 

 

(b) 

 

Figure 4: Coefficients in the linear predictor for the first set of day-ahead forecast of RV for (a) S&P500          

(b) DAX 

To obtain  𝑅𝑅�96502 , the one-step ahead predictor is repeated with the observation set 𝑈𝑈1 = {𝑧𝑧𝑡𝑡}𝑡𝑡=29648 ∪ {�̂�𝑧9649}. 

These procedures are to be repeated 13 times to give 𝑅𝑅𝑅𝑅��964813 �+1 = ∑ 𝑅𝑅�𝑡𝑡29662
𝑡𝑡=9649 = 2.66 ∗ 10−5 . The actual 

realized volatility 𝑅𝑅𝑅𝑅�964813 �+1 is computed as 3.92 ∗ 10−5 based on the squared returns observed on 𝑡𝑡 = 9649 till 

9662. To obtain the next one-step ahead RV, the estimation window is rolled over to {𝑟𝑟𝑡𝑡} 𝑡𝑡=149662, and the entire 

procedure is repeated. 

The same data set is also used for the volatility modelling and forecasting following the approach of LMSV2, 

LMSVc, the linear long-memory model of ABDL, and the ABDL model with normalization (ABDLn). For 

ABDL model, we first calculate the sum of squared returns in blocks of 13 as the daily RV values. The first 742 

daily log𝑅𝑅𝑅𝑅  are used to fit the estimation model with ARFIMA(1,𝑖𝑖, 0) , and the one-step ahead RV is 

forecasted based on it. Next, we rotate the estimation window forward by 1 day, that is, {𝑅𝑅𝑅𝑅𝑡𝑡}𝑡𝑡=2743 , and the 

procedures to estimate the parameters of ARFIMA(1,𝑖𝑖, 0) and the forecast of day ahead RV are repeated. 

ABDLn is similar to ABDL except that log𝑅𝑅𝑅𝑅𝑡𝑡 is normalized following the approach in Eq.(10) and Eq.(12). 

The procedure to estimate the parameters of ARFIMA(1,𝑖𝑖, 0) and the forecast of day ahead quantity are done 
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based on the normalized log𝑅𝑅𝑅𝑅𝑡𝑡. This quantity is then back-transformed by the inverse of Weibull cumulative 

distribution to give the forecast of day ahead RV following the approach outlined in Section 3.  

In the second application, the normalized de-trended and de-seasonalized log squared returns are close to a pure 

long memory process. The average of the parameter estimates are 𝜙𝜙�� = 0.0205,𝜎𝜎��𝜂𝜂 = 0.9192,𝜎𝜎��𝜉𝜉 = 𝜋𝜋
√2

  and 

�̅̂�𝑖 = 0.3894.  

To compare the forecast performance of these volatility models, we adopt the measures used in [10], namely (i) 

the mean squared error (MSE), (ii) the mean absolute deviation (MAD), (iii) the mean absolute percentage 

deviation (MAPD), (iv) the 𝑅𝑅2 from the regression of log𝑅𝑅𝑅𝑅 on the forecast, log𝑅𝑅𝑅𝑅� , and (v) the 𝑅𝑅2 from the 

regression of √𝑅𝑅𝑅𝑅 on the forecast, �𝑅𝑅𝑅𝑅� . The results for each combination of forecasting model and horizon for 

S&P500 and DAX are summarized in Table 2. The best model in the respective performance measure per 

forecasting horizon is set forth in bold. 

It can be seen that the refined FDQML-LMSV model is doing very well if MSE is used as the performance 

measure. Indeed, it is marked as the best or close to the best model in other performance measures. For S&P500 

data set, the proposed model shows the best results in 3 and 4 out of 5 measures for daily and weekly horizons 

respectively. Although it is not identified as the best model in most of the measures for DAX weekly forecasting 

horizon, its performances on these measures are rather close to the respective best model. 

In line with the findings in [10], we find the ABDL model does an impressive job by just fitting an 

ARFIMA(1,𝑖𝑖, 0) model to the log squared returns. Interestingly, Table 2 shows that ABDLn does slightly 

better than ABDL especially when MAPD or 𝑅𝑅2 from the regression of log𝑅𝑅𝑅𝑅 is used.  

This suggests that the normalization procedure adopted in this study can be a good tool to pre-process data when 

normality assumption is required. Figures below show the out-of-sample forecast results of various models 

compared to the daily RV for S&P500 (Figure 5) and weekly RV for DAX (Figure 6).  

As a whole, we note that the proposed method is more sensitive to the dynamic of the RV series, and hence 

producing better forecasts.  

To identify the overall best performing model, we additionally run the superior predictive ability (SPA) test 

([22], which examines the null hypothesis that the benchmark model is not inferior to any of its competing 

models. Let’s assume that there are 𝑛𝑛𝑓𝑓 out-of-sample forecasts for the comparison of ℓ + 1 models. The test 

statistic is deduced from the loss function differential 𝑖𝑖𝑖𝑖,𝑘𝑘 = 𝐿𝐿𝑖𝑖,0 − 𝐿𝐿𝑖𝑖,𝑘𝑘, 𝑖𝑖 = 1,⋯ ,𝑛𝑛𝑓𝑓, 𝑘𝑘 = 1,⋯ , ℓ, where 𝐿𝐿𝑖𝑖,0 

and 𝐿𝐿𝑖𝑖,𝑘𝑘 are the loss variables of the benchmark model and the competing model-𝑘𝑘 at time 𝑖𝑖 respectively.  

Under the assumption of the null hypothesis and that 𝑖𝑖𝑖𝑖,𝑘𝑘  is stationary, we expect that on average, the loss 

variable of the benchmark model is not bigger than any of the competing model 𝑘𝑘, that is, H0 : max𝑘𝑘=1,⋯,ℓ�𝜇𝜇𝑘𝑘 =

𝐸𝐸�𝑖𝑖𝑖𝑖,𝑘𝑘�� ≤ 0. The test statistic is given below. 
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Tnf
SPA = 𝑚𝑚𝑎𝑎𝑒𝑒 � 𝑚𝑚𝑎𝑎𝑒𝑒

k=1,⋯,ℓ

√nfE�di,k�
ω�k

, 0� 
(16) 

where 𝜔𝜔�𝑘𝑘 is a consistent estimator of 𝜔𝜔𝑘𝑘 = 𝑐𝑐𝑎𝑎𝑟𝑟(�𝑛𝑛𝑓𝑓𝜇𝜇𝑘𝑘). For details of the SPA method, readers may refer to 

[22]. The test statistic 𝑝𝑝-values are then estimated using stationary bootstrap of Politis and Romano [23] as 

follows: 

p�SPA = �
I�Tb,nf

SPA∗ > Tnf
SPA�

B

B

b=1

 
(17) 

 where 𝑇𝑇𝑏𝑏,𝑛𝑛𝑓𝑓
𝑆𝑆𝑆𝑆𝐴𝐴∗ is the SPA test statistic in the bootstrap world and 𝐵𝐵 is the bootstrap size.  

Table 2: Forecasting results for S&P500 and DAX 

Model Horiz

on 

S&P 500 DAX 

  MSE MAD MAPD 𝑅𝑅log(𝑅𝑅𝑅𝑅)
2  𝑅𝑅√𝑅𝑅𝑅𝑅

2  MSE MAD MAPD 𝑅𝑅log(𝑅𝑅𝑅𝑅)
2  𝑅𝑅√𝑅𝑅𝑅𝑅

2  

Refined 

F-L 

 

 

daily 

3.64e-08 8.19e-05 0.6718 0.5896 0.5498 1.88e-08 7.3e-05 0.8356 0.2943 0.3229 

LMSV2 4.17e-08 1.321e-04 2.18 0.4535 0.4161 2.2e-08 9.15e-05 1.0456 0.1263 0.1624 

LMSVc 3.9e-08 8.22e-05 0.7311 0.5789 0.5351 2.6e-08 8.27e-05 0.6253 0.2648 0.2824 

ABDL 3.71e-08 8e-05 0.7513 0.5619 0.5563 2.01e-08 7.44e-05 0.8844 0.2604 0.2851 

ABDLn 3.85e-08 8.01e-05 0.6942 0.5706 0.5533 1.98e-08 7.41e-05 0.8099 0.2776 0.3066 

            

Refined 

F-L  

 

 

weekl

y 

2.07e-07 2.12e-04 0.4124 0.5815 0.6483 6.55e-07 4.05e-04 0.4019 0.5944 0.6171 

LMSV2 6.84e-07 6.21e-04 2.3414 0.3109 0.3702 1.36e-06 8.64e-04 1.44 0.1794 0.1449 

LMSVc 2.67e-07 2.34e-04 0.4432 0.5338 0.574 1.24e-06 5.61e-04 0.4206 0.5879 0.5991 

ABDL 2.24e-07 2.13e-04 0.4304 0.5827 0.6221 7.37e-07 3.94e-04 0.3365 0.6515 0.6539 

ABDLn 2.32e-07 2.15e-04 0.417 0.5907 0.622 7.38e-07 3.97e-04 0.3344 0.6557 0.6518 

Note: Refined F-L is the refined FDQML-LMSV model.  

In this study, we take the loss variables (𝐿𝐿𝑖𝑖,0 and 𝐿𝐿𝑖𝑖,𝑘𝑘) as the squared error between the forecast and the realized 

volatility.  

The bootstrap 𝑝𝑝-value is generated based on 2000 number of bootstrap resamples. Table 3 shows the results of 

the SPA-test for the daily and weekly realized volatility forecasts for both S&P500 and DAX indices. It is clear 

that when the refined FDQML-LMSV model is set as the benchmark, none of the competing model has a 

smaller squared error, and hence, the null hypothesis is not rejected.  

The refined model consistently performs the best across the forecasting horizons for both stock indices. 
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Figure 5: Daily RV and the out-of-sample forecasts of various volatility models on S&P500 

 

Figure 6: Weekly RV and the out-of-sample forecasts of various volatility models on DAX 

 

4.1 Economic evaluation of forecasts  

As statistical superiority does not necessarily translate to economic benefits, we include the economic evaluation 
of the forecasts in this study. Value-at-risk (VaR) has been widely used by practitioners and regulators as a 
measurement of the market risk of financial assets. It is a quantile forecast, of which 𝑅𝑅𝑎𝑎𝑅𝑅𝛼𝛼 is the 𝛼𝛼𝑡𝑡ℎ quantile of 
the conditional returns.  As volatility forecastability is relevant for short time horizons (such as daily trading) 
and day ahead forecast bears the greatest practical interest [7], [8], we concentrate on the daily VaR forecast that 
can be written in the equation below. 
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Table 3: SPA-test results for the competing models 

 SPA-test (p-value) 

 daily  weekly 

 S&P 500 DAX  S&P 500 DAX 

Refined F-L 0 

(0.8685) 

 

0 

(0.9390) 

 0 

(0.7985) 

0 

(0.7640) 

LMSV2 1.0739 

(0) 

 

4.1802 

(0) 

 3.8848 

(0) 

6.4132 

(0) 

LMSVc 1.6144 

(0) 

 

2.3150 

(0) 

 1.8094 

(0) 

1.9612 

(0) 

ABDL 0.2172 

(0) 

 

1.2917 

(0) 

 0.5884 

(0) 

0.7866 

(0) 

ABDLn 1.6994 

(0) 

1.4366 

(0) 

 0.6825 

(0) 

0.8682 

(0) 

Note: The number in the parenthesis is the p-value corresponding to the SPA test statistic. 

 

𝑅𝑅𝑎𝑎𝑅𝑅𝑡𝑡𝑑𝑑+1,𝑗𝑗
𝛼𝛼 = �̂�𝜇𝑡𝑡𝑑𝑑+1,𝑗𝑗 + 𝜎𝜎�𝑡𝑡𝑑𝑑+1,𝑗𝑗𝐹𝐹𝜚𝜚−1(𝛼𝛼),   𝑡𝑡𝑑𝑑 = �

𝑛𝑛
𝑚𝑚
� ,⋯ ,𝑛𝑛𝑓𝑓 − 1 (18) 

where �̂�𝜇𝑡𝑡𝑑𝑑+1,𝑗𝑗  and 𝜎𝜎�𝑡𝑡𝑑𝑑+1,𝑗𝑗 are the 𝑗𝑗𝑡𝑡ℎ model’s day ahead conditional mean and conditional volatility forecasts 

respectively, and 𝐹𝐹𝜚𝜚−1 is the inverse cumulative distribution function of the innovations, 𝜚𝜚𝑡𝑡𝑑𝑑 =  
𝑟𝑟𝑡𝑡𝑑𝑑−𝜇𝜇𝑡𝑡𝑑𝑑
𝜎𝜎𝑡𝑡𝑑𝑑

. From 

Table 1, we note that both returns series display similar statistical properties; they are skewed and exhibit fat 

tails. Here, we estimate the 𝛼𝛼𝑡𝑡ℎ  quantile of the 𝜚𝜚𝑡𝑡𝑑𝑑  process using the parametric method based on skewed 

student distribution, that is, 𝜚𝜚𝑡𝑡𝑑𝑑~𝑖𝑖𝑖𝑖𝑖𝑖 𝑐𝑐𝑘𝑘𝑐𝑐𝑡𝑡(0,1, 𝜉𝜉, 𝜈𝜈), where 𝜉𝜉 > 0 is the asymmetry parameter and 𝜈𝜈 > 2 is the 

degree of freedom. The quantity 𝐹𝐹𝜚𝜚−1(𝛼𝛼) is replaced with 𝑐𝑐𝛼𝛼,𝜈𝜈,𝜉𝜉
𝑠𝑠𝑘𝑘𝑠𝑠𝑡𝑡  defined in Eq.(19). 
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𝑐𝑐𝛼𝛼,𝜈𝜈,𝜉𝜉
𝑠𝑠𝑘𝑘𝑠𝑠𝑡𝑡 =

⎩
⎨

⎧ (𝜉𝜉−1𝑐𝑐𝜏𝜏,𝜈𝜈
𝑠𝑠𝑡𝑡 − 𝑚𝑚)/𝑐𝑐, 𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒  𝜏𝜏 =

𝛼𝛼
2

(1 + 𝜉𝜉2), 𝑖𝑖𝑓𝑓 𝛼𝛼 <
1

1 + 𝜉𝜉2
 

(−𝜉𝜉𝑐𝑐𝜏𝜏,𝜈𝜈
𝑠𝑠𝑡𝑡 − 𝑚𝑚)/𝑐𝑐, 𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒  𝜏𝜏 =

1 − 𝛼𝛼
2

(1 + 𝜉𝜉−2), 𝑖𝑖𝑓𝑓 𝛼𝛼 ≥
1

1 + 𝜉𝜉2

 

(19) 

where 

 𝑐𝑐𝜏𝜏,𝜈𝜈
𝑠𝑠𝑡𝑡  = the quantile function of the standardized Student-t density function 

𝑚𝑚 =
Γ�𝜐𝜐−12 �√𝜐𝜐−2

√𝜋𝜋Γ�𝜐𝜐2�
�𝜉𝜉 − 1

𝜉𝜉
�  

𝑐𝑐 = ��𝜉𝜉2 + 1
𝜉𝜉2
− 1� − 𝑚𝑚2   

For detailed explanation on the skewed student density function, readers may refer to [7], [24]. To compare the 

realized volatility models with the economic evaluation, we plug the volatility forecasts into Eq.(18) and 

compute 5% VaR for both long and short positions. The VaR forecasts compared to the returns series for 

S&P500 are illustrated in Figure 7. The estimated ex ante VaRs are rather close to each other, and the adequacy 

of each model needs to be validated. This is done with an evaluation strategy that consists of two steps. First, we 

examine the statistical accuracy. To verify the null hypothesis that 𝛼𝛼� = 𝛼𝛼, we apply the conditional coverage 

test [25] with the likelihood ratio (LR) given below, of which LR follows an asymptotic 𝜒𝜒2(1) distribution.  

𝐿𝐿𝑅𝑅 = 2[log(1 − 𝛼𝛼�)𝑛𝑛0𝛼𝛼�𝑛𝑛1 − log(1 − 𝛼𝛼)𝑛𝑛0𝛼𝛼𝑛𝑛1] (20) 

where 𝑛𝑛0 is the proportion of failures, 1 − 𝛼𝛼� = 𝑛𝑛0
𝑛𝑛𝑓𝑓

 , and 𝑛𝑛1 = 𝑛𝑛𝑓𝑓 − 𝑛𝑛0.  

Next, the models that survive the first step are further evaluated in terms of capital efficiency. We examine this 

aspect using two popular firm’s loss functions, namely FABL [26] and GK [27]. These functions (for long 

positions) are given below in Eq.(21) and Eq.(22).  

𝐹𝐹𝐴𝐴𝐵𝐵𝐿𝐿𝑡𝑡𝑑𝑑+1,𝑗𝑗 = �
�𝑅𝑅𝑎𝑎𝑅𝑅𝑡𝑡𝑑𝑑+1,𝑗𝑗

𝛼𝛼 − 𝑟𝑟𝑡𝑡𝑑𝑑+1�
2,       𝑖𝑖𝑓𝑓 𝑟𝑟𝑡𝑡𝑑𝑑+1 < 𝑅𝑅𝑎𝑎𝑅𝑅𝑡𝑡𝑑𝑑+1,𝑗𝑗

−𝑐𝑐�𝑟𝑟𝑡𝑡𝑑𝑑+1 − 𝑅𝑅𝑎𝑎𝑅𝑅𝑡𝑡𝑑𝑑+1,𝑗𝑗
𝛼𝛼 �,   𝑖𝑖𝑓𝑓 𝑟𝑟𝑡𝑡𝑑𝑑+1 ≥ 𝑅𝑅𝑎𝑎𝑅𝑅𝑡𝑡𝑑𝑑+1,𝑗𝑗

 
(21) 

where 𝑐𝑐 is the firm’s cost of capital. 

𝐺𝐺𝐺𝐺𝑡𝑡𝑑𝑑+1,𝑗𝑗 = (𝛼𝛼 − 𝐼𝐼(𝑟𝑟𝑡𝑡𝑑𝑑+1 < 𝑅𝑅𝑎𝑎𝑅𝑅𝑡𝑡𝑑𝑑+1,𝑗𝑗
𝛼𝛼 ))(𝑟𝑟𝑡𝑡𝑑𝑑+1 − 𝑅𝑅𝑎𝑎𝑅𝑅𝑡𝑡𝑑𝑑+1,𝑗𝑗

𝛼𝛼 ) (22) 

where 𝐼𝐼(∙) is the indicator function.  

The results are further confirmed with the SPA test (see Table 4). Interestingly, it is noted that the normalization 

procedure in this paper does a good job to improve the accuracy as well as the efficiency in the VaR forecasting. 

All of the results are tested at 5% significance level, except for S&P500 5% VaR that are examined at 1% 
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significance level due to the marginal adequacy of all of the models. Altough LMSVc is marked as the best 

model with FABL loss function for the 5% VaR of DAX, this model is also seen as susceptible to inadequacy in 

other occasions. However, with the proposed improvement, the refined FDQML-LMSV model is robust. It is 

adequate across all the occasions, and it is identified as the best volatility model that generate efficient VaR in 3 

out of 8 efficiency measures. Indeed ABDLn has a higher frequency (4 out of 8); but it leads to inadequate 5% 

VaR forecasting for S&P500. 

 

(a) 

 

(b) 

Figure 7: S&P500 Daily returns and the respective VaR forecasts for (a) 5% long positions                               

(b) 5% short positions 
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Table 4: VaR results for S&P500 and DAX indices 

 S&P 500 DAX 
 Statistical accuracy Capital efficiency Statistical accuracy Capital efficiency 
 LR 

(p-value) 
𝛼𝛼� FABL#  

(e-07) 
SPA test 
(p-value) 

GK#  
(e-06) 

SPA test 
(p-value) 

LR 
(p-value) 

𝛼𝛼� FABL# 

(e-06) 
𝑇𝑇𝑆𝑆𝑆𝑆𝐴𝐴  
(p-value) 

GK# 

(e-06) 
𝑇𝑇𝑆𝑆𝑆𝑆𝐴𝐴 

 (p-value) 
5% VaR             
Refined 

F-L 
5.502 

(0.019*) 
0.09 7.979 0 

(0.5905) 
1.302 0 

(0.5015) 
1.9537 

(0.1622) 
0.03 1.07 9.4823 

(0) 
1.22 2.3062 

(0) 
 

LMSV2 
 

7.0309 
(0.008) 

- - - - - 0.1088 
(0.7416) 

0.045 1.07 5.6544 
(0) 

1.36 2.1208 
(0) 

 
LMSVc 

 
5.502 

(0.019*) 
0.09 8.024 0.3075 

(0) 
1.325 0.34 

(0) 
0.3968 

(0.5287) 
0.06 0.835 0 

(0.9255) 
1.16 0.0265 

(0) 
 

ABDL 
 

6.8237 
(0.009) 

- - - - - 1.9537 
(0.1622) 

0.03 1.07 10.4712 
(0) 

1.16 0.5816 
(0) 

 
ABDLn 6.8237 

(0.009) 
- - - - - 0.4507 

(0.502) 
0.04 1.03 7.0661 

(0) 
1.15 0 

(0.9465) 
             

95% VaR             
Refined 

F-L 
0 

(1) 
0.95 8.75 1.0508 

(0) 
1.15 1.5771 

(0) 
1.9537 

(0.1622) 
0.97 1.09 2.7063 

(0) 
1.14 0 

(0.8705) 
 

LMSV2 
 

1.9537 
(0.1622) 

0.97 12.54 8.2739 
(0) 

1.39 4.3673 
(0) 

3.2316 
(0.0722) 

0.92 1.09 1.1921 
(0) 

1.36 2.6647 
(0) 

 
LMSVc 

 
0.1088 

(0.7416) 
0.955 8.77 

 
1.7075 

(0) 
1.13 1.1012 

(0) 
4.3025 

(0.0381) 
 

- - - - - 

ABDL 
 

1.0537 
(0.3047) 

0.965 8.71 4.1125 
(0) 

1.08 0.2695 
(0) 

1.0537 
(0.3047) 

0.965 1.09 4.4767 
(0) 

1.17 1.3833 
(0) 

 
ABDLn 

 
0.4507 
(0.502) 

0.96 8.51 0 
(0.928) 

1.077 0 
(0.9295) 

0.4507 
(0.502) 

0.96 1.05 0 
(0.821) 

1.16 0.9343 
(0) 

 

Note: 

#  FABL and GK are the average values of the firm’s loss functions.  

*The bold faced p-values denote rejection of null hypothesis at 0.05 level of significance (except for S&P 500 

5%VaR, which are tested at 0.01 level of significance). 

5. Conclusion 

Modelling high frequency returns using LMSV model has been proposed by [10], but its advantage over the 

ABDL model is marginal. Focusing on S&P500 and DAX indices, we propose a procedure to eliminate the 

cyclical trend prior to the de-seasonalization of Deo’s method. Besides, we suggest a parsimonious 

normalization procedure that makes use of the Gaussian cumulative distribution. To allow a back-

transformation, the pre-processed data is fitted with Weibull distribution. The empirical results show that the 

refined FDQML-LMSV method performs best in MSE across all forecasting horizons and stock indices. 

Consistent with Deo’s findings, ABDL method is very impressive given that it is a much simpler model. Yet, we 

note that the model can be further improved with the normalization procedure adopted in this paper. In addition 

to the statistical superiority, the refined FDQML-LMSV model is also an excellent volatility model to be used 

with a parametric skewed student distribution in VaR forecasting. The results presented here should be of 
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interest to financial institutions. A risk manager who emphasizes VaR efficiency without disregarding VaR 

accuracy may focus on the use of refined FDQML-LMSV model as the realized volatility model. However, the 

proposed model does not consider the financial series that contains a structural break. It would be interesting to 

see what adjustment to be adapted to the LMSV model to improve the volatility and subsequently the VaR 

forecasting. 
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