

1

 American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS)
ISSN (Print) 2313-4410, ISSN (Online) 2313-4402

© Global Society of Scientific Research and Researchers
http://asrjetsjournal.org/

Execution Speed up of Image Rotation Matrix Using

Parallel Technique

Dr. Fahraldeen Aldulaimia*, Hadeel Alshakargyb

a,bMosul University, Dept. of Computer Engineering, Erbil 44001, Iraq
aEmail: fhali_a@yahoo.com

bEmail: hadeelalshakargy@yahoo.com

Abstract

In computer graphic science rotating a vertex in an image around a specific point in any direction is a time

consuming mission. The rotation of a vertex depends on multiplying it's coordinates by graphic geometric

transformation matrices, this multiplication requires a considerable time. In this paper the acceleration of image

rotation is achieved by using parallel techniques such as using Multicore Core Central Processing Unit (CPU) or

General Purpose Graphic Processing Unit (GPGPU) or even both. The results show a significant increase in

computation speed when rotating a large number of vertices by using CPU. A considerable acceleration is

achieved when GPU is used to make image rotation. However the speedup is limited by the number of

processing units available for parallel processing.

Keywords: vertices; CPU; Central Processing Unit; GPGPU; General Purpose Graphic Processing Unit.

1. Introduction

Vertex rotation of a shape around any point in a direction specified by a rotation angle can be achieved by

applying a graphic geometric transformation matrix on its coordinates (x, y). This rotation depends on the

multiplication between the matrix of vertices and the graphic transformation matrix [1,2,12]. Typically a large

number of vertices contribute on the execution time. Many attempts are made to reduce execution time taken

for multiplication.

--

* Corresponding author.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by American Scientific Research Journal for Engineering, Technology, and Sciences...

https://core.ac.uk/display/235050056?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://asrjetsjournal.org/

American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2016) Volume 26, No 2, pp 1-17

2

Recently multicore and multithreaded CPUs with shared memory are a cost effective way of obtaining

significant increases in CPU performance. An exponential growth in performance was expected from more

hardware threads and cores per CPU [17]. In the other way there are some attempts to speeding the operation of

multiplication by Graphical Processing Unit (GPU) [6,10]. In image rotation the methods used for speeding up

is depending on the parallel matrix multiplication, rotate all vertices using the rotation matrix simultaneously by

assigning each group of vertices to each thread and multiplying them. In this paper accelerating the image

rotation is implemented by using core i3 processors and the GeForce GT 635M with 96 core. Most of the

nowadays laptops and pcs are provided with the above mentioned parallel platforms. The goals of this paper are

to investigate the acceleration of rotation using such platforms under popular parallel programming paradigm

MATLAB used in technical computing [11]. Keeping in mind if the performance of MATLAB is inadequate,

then there is a need to other programming language such as Visual Studio which may give better results for

reducing the execution.

2. Geometric transformation matrix

To rotate a vertex around any point in any direction its coordinates matrix must be multiplied by a combination

matrix consists of translation matrix and rotation matrix. Translation matrix is used to transform center of

rotation to origin. Rotation matrix contains the angle of rotation. After rotation the transformation matrix is

reversed using a third matrix [2,12].

2.1. Rotation matrix

Rotation matrix is one of the graphic geometric transformations applied to each individual vertex and repeated

to each of the vertices to achieve the required rotation. The rotation is applied to a vertex by repositioning it

along a circular path in (x, y) plane in clockwise or anti clockwise direction specified by an angle.

2.2. Translation matrix

Translation matrix is one of the graphic geometric transformations and is also applied to an individual vertex

and repeated to each of the vertices. It is applied to a vertex by repositioning it along a straight line path from

one coordinates to another, the translation is applied to each vertex adding the (tx to x) and (ty to y) so that

vertex coordinates are changed from V(x, y) to V'(x', y'), where tx and ty are moving distances.

3. Matrices representation

The general forms of rotation and translation matrices are represented as in the following articles.

3.1. Rotation matrix about origin

�
𝑥𝑥′
𝑦𝑦′
1
� = �

𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 −𝑐𝑐𝑠𝑠𝑠𝑠 𝜃𝜃 0
𝑐𝑐𝑠𝑠𝑠𝑠 𝜃𝜃 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 0

0 0 1
� �
𝑥𝑥
𝑦𝑦
1
� (1)

American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2016) Volume 26, No 2, pp 1-17

3

3.2. Translation matrix

�
𝑥𝑥′
𝑦𝑦′
1
� = �

1 0 𝑡𝑡𝑥𝑥
0 1 𝑡𝑡𝑦𝑦
0 0 1

� �
𝑥𝑥
𝑦𝑦
1
� (2)

3.3. Concatenation between Rotation and Translation

Producing a general matrix form to rotate a vertex around any center of rotation can be achieved by multiplying

transformation matrix by rotation matrix and the by translation matrix again (See equation (3)).

The outcome of this multiplication is a single concatenation matrix which can be used to computes a new vertex,

by making a single matrix multiplication rather than three. The form of concatenation matrix is desecrated in

equation (4).

�
𝑥𝑥′
𝑦𝑦′
1
� = �

1 0 𝑡𝑡𝑥𝑥
0 1 𝑡𝑡𝑦𝑦
0 0 1

� �
𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 −𝑐𝑐𝑠𝑠𝑠𝑠 𝜃𝜃 0
𝑐𝑐𝑠𝑠𝑠𝑠 𝜃𝜃 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 0

0 0 1
� �

1 0 −𝑡𝑡𝑥𝑥
0 1 −𝑡𝑡𝑦𝑦
0 0 1

� �
𝑥𝑥
𝑦𝑦
1
� (3)

�
𝑥𝑥′
𝑦𝑦′
1
� = �

𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 −𝑐𝑐𝑠𝑠𝑠𝑠 𝜃𝜃 𝑡𝑡𝑥𝑥(1 − 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃) + 𝑡𝑡𝑦𝑦 𝑐𝑐𝑠𝑠𝑠𝑠 𝜃𝜃
𝑐𝑐𝑠𝑠𝑠𝑠 𝜃𝜃 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 𝑡𝑡𝑦𝑦(1 − 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃) − 𝑡𝑡𝑥𝑥 𝑐𝑐𝑠𝑠𝑠𝑠 𝜃𝜃

0 0 1
� �
𝑥𝑥
𝑦𝑦
1
� (4)

4. Implementation platforms

The CPU and GPU are chosen in this paper as platforms for implementing vertices rotation around any point for

sequential and parallel execution, a brief introduction of each platform is overstated.

4.1. Central Processing unit (CPU)

CPU architecture has only one processing unit in the chip (See figure (1)), for performing arithmetic or logic

operations. At any time only one operation can be performed [14].

Figure 1: CPU hardware architecture

American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2016) Volume 26, No 2, pp 1-17

4

4.2. CPU with multicore processor

A multicore processor is a system that comprises of two or more independent cores (or CPUs). The cores are

generally integrated onto one integrated circuit die (known as a chip multiprocessor), or they are integrated onto

multiple dies on a single chip package [17], (See figure (2)).

Figure 2: Multicore hardware architecture

4.3. Graphic Processing Unit (GPU)

GPU is viewed as a compute device operating as a coprocessor to the main processor (CPU host). A GPU is

implemented as an aggregation of multiple processor so it is called multiprocessors, which is consists of a

number of Single Instruction Multiple Data (SIMD) ALUs integrated as a network on a chip (See figure (3)).

According to the SIMD every processor within GPU must execute the same instruction at the same time, only

data can be varying [11,15,16].

Figure 3: GPU hardware architecture

Refer to figure (3), the orange color indicates the cache memories, the blue color indicates the control units and

American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2016) Volume 26, No 2, pp 1-17

5

the green color indicates the ALUs.

In this paper the image rotation is implemented using laptop of an Intel® Core™ i3-3011 CPU @ 2040 GHZ

(4CPUS), ~2.4GHZ, 4MB memory.

And the GPU is GeForce GT 635m version 2, which has 96 cores or shadier processing units (SP), and two

streaming multiprocessor units (SM),with 2GB memory. The MATLB and Visual Studio environment have

been used to implement software for sequential and parallel of execution. The architecture of GeForce GT 635m

in terms of how blocks and threads are arranged as shown in figure (4).

Figure 4: GeForce GT 635m hardware architecture

Refer to figure (4), the two streaming multiprocessor have been represented in SM0 and SM1. The shadier

processing units are represented in SPs which represents blocks in software and also represents cores in

hardware. The number of shadier processing units is 96 distributed on two streaming multiprocessor units each

SM has 48 shadier units as shown in figure (4).

 Each SM has a shared memory and multithread instruction unit, each block have a set of threads from t0 to tm

in GeForces GT 635m the optimum number of threads has been conclude to be 256 threads per block.

5. Execution and Results

Explain each MATLAB and Visual Studio results on different sets of data.

5.1. MALAB experiment results

These results explain the time of CPU with serial execution and GPU with parallel execution and show the

speed factor between them. If the number of vertices exceeds the number of blocks and threads of GPU the time

begins to increase exponentially as shown in figure (5) and table (1).

American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2016) Volume 26, No 2, pp 1-17

6

Table 1: Contains the vertices and GPU execution time in second

Vertices Tile=1 Tile=10 Tile=50 Tile=100 Tile=500 Tile=1000

10 0.0059 0.0059

50 0.0059 0.0059 0.0059

100 0.0059 0.0059 0.0059 0.0059

500 0.006 0.0059 0.0059 0.0059 0.0059

1000 0.0061 0.0059 0.0059 0.0059 0.0059 0.0059

5000 0.0072 0.006 0.0059 0.0059 0.0059 0.0059

10000 0.0083 0.006 0.006 0.0059 0.0061 0.0059

50000 0.0139 0.0071 0.0072 0.007 0.0071 0.007

100000 0.0075 0.0075 0.007 0.0071 0.0071

500000 0.0111 0.0111 0.0081 0.0093 0.0088

1000000 0.0154 0.0099 0.0117 0.0109

5000000 0.023 0.0324 0.0278

10000000 0.0588 0.0495

50000000 0.3655

Tile means the number of vertices per block, threads per block is (Tile*2) because each vertex consists of (2*1)

matrix for x and y coordinates, and blocks per grid is (vertices /Tile). The results are shown that when Tile =1

this means that only one vertex in each block where the execution time is increased when the number of

vertices exceeds 100 because the number of blocks in software represents the number of cores in hardware

which is equals to 96 core. So when Tile=10 this means that each block contains 10 vertices, from figure (5) the

execution time is stabled until 1000 vertex, because 100 blocks each with 10*2 threads are used and this in the

range of GPU capacity, and when exceeding this capacity the execution time increases exponentially. And so on

for all tiles.

Figure 5: Represents table (1)

0.005

0.01

0.02

0.04

0.08

0.16

0.32

10 1000 100000 10000000

Tile=1

Tile=10

Tile=50

Tile=100

Tile=500

Tile=1000

American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2016) Volume 26, No 2, pp 1-17

7

Tentatively conclude from these results, when the number of blocks exceeds 100 the number of threads per

block exceeds 100 the execution time begins to increase as the number of vertices increase. Then conclude from

table (1) that the number of threads per block occurs between 100 to 500 threads. The result shown above does

not give the optimum exploitation of GPU, and does not explain the maximum number of threads per block for

GeForce GT 635m.

5.2. MATLAB results to determine the actual number of blocks and threads of GeForce GT 356m

As the number of cores in GeForce GT 635m is 96 so multiples of 96 are used in this result to find the number

of threads per block. Note that the number of blocks is equals to the number of cores. See table (2) and figure

(6).

Table 2: Contains the vertices and the GPU execution time in second

Vertices Tile=1 Tile=2 Tile=4 Tile=8 Tile=16 Tile=32 Tile=64 Tile=128 Tile=256

12 0.0059 0.0059 0.0059

24 0.0059 0.0059 0.0059 0.0059

48 0.0059 0.0059 0.0059 0.0059 0.0059

96 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059

192 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059

384 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059

768 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059

1536 0.0059 0.0059 0.0059 0.0059 0.0059

3072 0.0059 0.0059 0.0059 0.006

6144 0.0059 0.0059 0.0062

12288 0.006 0.007

24576 0.0075

Figure 6: Represents table (2)

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

12 96 768 6144

Tile=1

Tile=2

Tile=4

Tile=8

Tile=16

Tile=32

Tile=64

Tile=128

American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2016) Volume 26, No 2, pp 1-17

8

From this result it is concluded that the number of blocks is 96 which is equal to the number of GPU cores, and

the number of threads per block is 256 and possible to extend to 512 threads.

5.3. visual studio results

This result explains the capacity of GPU (blocks and threads) as shown in figure (7) and table (3).

The same set of vertices in table (1) is used to find the results with Visual Studio.

Table 3: Contains the vertices and the GPU execution time in millisecond

 Vertices Tile=10 Tile=50 Tile=100 Tile=500 Tile=1000

10 0.011936

50 0.013056 0.012608

100 0.013152 0.013056 0.0126

500 0.026976 0.013824 0.013472 0.015264

1000 0.041632 0.019456 0.0152 0.015456 0.012

5000 0.161472 0.04944 0.044257 0.046592 0.049472

10000 0.314144 0.08928 0.077344 0.085664 0.091232

50000 1.589888 0.405632 0.351392 0.40216 0.43656

100000 3.17184 0.799008 0.692864 0.869606 0.862652

500000 15.812 3.944736 3.419872 4.004646 4.28912

1000000 7.880192 6.82928 8.6916 8.588

5000000 34.10 40.2046 42.88314

10000000 86.9606 85.99

50000000 428.8314

Figure 7: Represents table (3)

0
50

100
150
200
250
300
350
400
450
500

10 1000 100000 10000000

Tile=10

Tile=50

Tile=100

Tile=500

Tile=1000

American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2016) Volume 26, No 2, pp 1-17

9

5.4. The actual number of blocks and threads in GeForce GT 635m are determined from these results

Table 4: Contains vertices and GPU execution time in millisecond

Vertices Tile=1 Tile=2 Tile=4 Tile=8 Tile=16 Tile=32 Tile=64 Tile=128 Tile=256

12 0.012032 0.012 0.011872

24 0.016864 0.0127 0.011267 0.011808

48 0.02148 0.016576 0.012544 0.012416 0.011776

96 0.02231 0.021952 0.017152 0.012544 0.012416 0.012384

192 0.036128 0.022172 0.017216 0.012576 0.012608 0.012544

384 0.036384 0.022144 0.017248 0.012768 0.012768 0.012864

768 0.03648 0.022208 0.017728 0.014016 0.013664 0.014112

1536 0.036448 0.02336 0.019232 0.016768 0.016832

3072 0.038112 0.028032 0.02624 0.025982

6144 0.04688 0.044672 0.044384

12288 0.080384 0.08352

24576 0.156224

Refer to figure (8) and table (4), it became obvious that the number of blocks in GeForce GT 635m is 96 blocks

per grid and the number of threads is 256 threads per block.

Execution time begins to increase exponentially when exceeding this boundary.

 Figure 8: Represents table (4)

0.0078125

0.015625

0.03125

0.0625

0.125

0.25

0.5

1

12 96 768 6144

Tile=1

Tile=2

Tile=4

Tile=8

Tile=16

Tile=32

Tile=64

Tile=128

Tile=256

American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2016) Volume 26, No 2, pp 1-17

10

5.5. Comparison between CPU and GPU in execution times using MATLAB

CPU execution time in MATLAB is shown in table (5) and figure (9) which is sequential execution.

Table 5: CPU execution time in second

Vertices Time in sec

10 0.0112

50 0.0121

100 0.0127

500 0.0286

1000 0.0394

5000 0.0591

10000 0.2284

50000 0.6266

100000 1.0518

500000 3.6754

1000000 8.8356

5000000 35.1301

10000000 68.0995

50000000 390.7681

Figure 9: Represents table (5)

CPU execution times for another set of data see table (6) and figure (10).

0

50

100

150

200

250

300

350

400

450

Time in sec

American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2016) Volume 26, No 2, pp 1-17

11

Table 6: CPU execution time in second

Vertices Time in second

12 0.0112

24 0.0113

48 0.0121

96 0.0286

192 0.0394

384 0.0591

768 0.0723

1536 0.0852

3072 0.1526

6144 0.2123

12288 0.4261

24576 0.5482

Figure 10: Represents table (6)

GPU execution time in second is taken from table (2).

5.6. Comparison between CPU and GPU in execution times using Visual Studio

CPU sequential execution time using Visual Studio is shown in table (7) and figure (12).

GPU execution time in millisecond has been taken from table (4). See table (8) and figure (13).

0

0.1

0.2

0.3

0.4

0.5

0.6

Time in second

American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2016) Volume 26, No 2, pp 1-17

12

Table 7: CPU execution time in millisecond

Vertices Time millisecond

12 10

24 10

48 16

96 16

192 47

384 156

768 234

1536 308

3072 483

6144 842

12288 1513

24576 2964

Figure 11: Represents GPU execution time when all bocks and threads have been exploited

Figure 12: Represents table (7)

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

GPU time

10

510

1010

1510

2010

2510

3010

3510

Time in millisecond

American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2016) Volume 26, No 2, pp 1-17

13

Table 8: GPU execution time in millisecond

Figure 13: Represents table (8) GPU execution time in visual studio when all blocks and threads are exploited

5.7. Speed up

Speed up is the ratio between the sequential execution time to the parallel execution time.

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑢𝑢𝑆𝑆 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑒𝑒𝑆𝑆𝑒𝑒𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝑆𝑆 𝑆𝑆𝑆𝑆𝑡𝑡𝑆𝑆
𝑃𝑃𝑆𝑆𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑒𝑒𝑆𝑆𝑒𝑒𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝑆𝑆 𝑆𝑆𝑆𝑆𝑡𝑡𝑆𝑆

 (5)

5.7.1. MATLAB speed up

Speed up has been represented in figure (14) is taken from the ratio between table (6) and figure (11).

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

Time in millisecond

Vertices Time in millisecond

12 0.011872

24 0.011808

48 0.011776

96 0.012384

192 0.01254

384 0.012864

768 0.013664

1536 0.016768

3072 0.02624

6144 0.044672

12288 0.080384

24576 0.156224

American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2016) Volume 26, No 2, pp 1-17

14

Figure 14: Speed-up of GPU in comparison to CPU using MATLAB

5.7.2. Visual Studio speed up

Speed up has been represented in figure (15). It is calculated from the ratio of table (7) to table (8).

Figure 15: Speed-up of GPU in comparison to CPU using Visual Studio

Note that the CPU has been used in all the results above is Core i3, three cores is used together to perform

sequential execution of vertices rotation.

5.8. Comparison between CPU single core and multicore using MATLAB.

As shown table (9), when a single core processor is used for a small set of vertices, the execution time is smaller

than using multicore for the same set of vertices, because the time required to initializes cores and the

communications among cores dominants over the benefits acquired from the parallelization when dealing with

small set of vertices. And when increasing the number of vertices the multicore processor gives smaller

execution time than single core. And the speed-up represents the performance of each of them. (See figure (16)).

1.5
11.5
21.5
31.5
41.5
51.5
61.5
71.5
81.5
91.5

101.5

12 96 768 6144

Speed up

800
2800
4800
6800
8800

10800
12800
14800
16800
18800
20800

12 96 768 6144

Speed up

American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2016) Volume 26, No 2, pp 1-17

15

Table 9: CPU single core VS CPU three cores and speed-up

Vertices Time in sec

(Single Core)

Time in sec

(Three Core)

Speed-up

10 0.0044 0.0112 0.357142

100 0.0055 0.0127 0.43307

1000 0.0077 0.0394 0.177664

10000 0.1227 0.2284 0.53721

100000 8.313 1.0518 7.9035

1000000 77.809 8.8356 8.80630

10000000 839.5970 68.0995 12.3289

Figure 16: Represents speed-up between Single Core Processor and Multicore Processor

6. Discussion

 Both MATLAB and Visual Studio have been used in this paper. Serial execution for vertices rotation has been

achieved by using CPU, parallel execution for vertices rotation has been achieved by using GPU. From the

results it can concluded that the Visual Studio give better result than MATLAB in terms of speed, GPU

execution time using visual studio is lower than GPU execution time using MATLAB because access time to

GPU's memory is different from one program to another. CPU Core i3 is used to compare between execution

times require to rotate a set of vertices using three cores and single core. CUDA is a programing language that

has been used and NVIDIA CUDA 7.5 is used for GPU driving.

0.1

1

10

100

10 100 1000 10000 100000 1000000 10000000

Speed-up

American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2016) Volume 26, No 2, pp 1-17

16

7. Conclusion

One of the important notes is the speed of execution. This speed has been measured using different sets of

vertices in terms of the time taken for translation and rotation. The execution acceleration is the most important

feature of real time graphic applications. In this paper a general way for image rotation is achieved by using

MATLAB and Visual Studio. From the results that have been discussed previously, MATLAB consumes more

time than the Visual Studio to perform the same task in both serial and parallel execution. Figure (5) for

MATLAB and figure (7) for Visual Studio explain that when the number of vertices exceeds the capacity, in

terms of the blocks and threads, of the GPU. The execution time begins to increase exponentially with

increasing the vertices. The aim of figure (5) and figure (7) is to find the size of GPU grid in terms of the

numbers of blocks and threads, these figures show increasing of execution time when exceeding its capacity.

The testing of GPU capacity is begin from Tile=1 (only one vertex in each block) until Tile=1000 (1000 vertex

in each block). The results represent that the number of blocks equal to 100 which is close to the number of

GPU cores, and the number of threads is in the range between (100, 500). Figure (6) for MATLAB and figure

(8) for Visual Studio explains the actual number of blocks and threads using another set of vertices which has

been chosen depending on partitioning the GPU to 96 block and changing Tiles number to find the actual

number of threads which is concluded to be 256 threads. Figure (10) for MATLAB and figure (12) for Visual

Studio present serial execution time for CPU. Visual Studio is faster than MATLAB in serial and parallel

executions. Figure (14) for MATLAB and figure (15) for Visual Studio represent the speed up of GPU

compared with CPU, the figures explain that Visual Studio is better than MATLAB to exploit the GPU to

perform matrix multiplication and image rotation using parallel techniques. And concludes from these results

that the single core processor is faster than the multicore processor in small set of vertices, and the multicore

processor is faster than the single core for large number of vertices due to the time required to communicate and

distribute data among processors when using small set of vertices.

References

[1] Sahin, Ibrahim. "A 32-bit floating-point module design for 3D graphic transformations". Scientific

Research and Essays Journal, Vol.5, pp 3070-3081, 18 October 2010.

[2] Salomon, David. "Computer graphics and geometric modeling". Computers and Mathematics with

Application Journal, Vol.38, pp. 289-298, 1999.

[3] Paeth, Alan W. "A fast algorithm for general raster rotation". Canadian Information Processing

Society, 1986, pp. 77-81.

[4] Huang, Beilei. Edmund M-K. Lai, and A. P. Vinod. "Image resizing and rotation based on the

consistent resampling theory". International Symposium on Intelligent Signal Processing and

Communications Systems, Fep 2009, pp 1-4.

[5] Nickolls, John and Buck, Ian and Garland, Michael and Skadron, Kevin. "Scalable parallel

programming with CUDA". Queue Journal. Vol.6, pp.40-53, 1/ March 2008.

[6] Karas, Pavel. "Gpu acceleration of image processing algorithms". PhD, Masarykova univerzita, Fakulta

informatiky, 2011.

[7] Liu, Zhi Yuan, and Xue Zhang Zhao. "Research and Implementation of Image Rotation Based on

American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2016) Volume 26, No 2, pp 1-17

17

CUDA" In Advanced Materials Research Organization, Vol.216, Yuhang Yang, Xilong Qu, Yiping

Luo and Aimin Yang, Ed. switzerland: Trans Tech Publications, 2011, pp. 708-712.

[8] Minhas, Umar Ibrahim, Samuel Bayliss, and George A. Constantinides. "GPU vs FPGA: A

comparative analysis for non-standard precision" In Reconfigurable Computing: Architectures, Tools,

and Applications, 10th, Vol.8405, Diana Goehringer, Marco Domenico Santambrogio, João M.P.

Cardoso, Koen Bertels,Ed. Portugal, Springer International Publishing, 2014, pp. 298-305.

[9] Hochberg, Robert. "Matrix Multiplication with CUDA-a basic introduction to the CUDA programming

model." Internet": http://www.shodor.org/media/content/petascale/materials/UPModules

/matrixMultiplication/moduleDocument.pdf, [August 11 2012].

[10] Jang, Byunghyun, "Evaluation and enhancement of memory efficiency targeting general-purpose

computations on scalable data-parallel GPU architectures.'' PhD, Northeastern University Department

of Electrical and Computer Engineering, United States–Massachusetts, ProQuest Dissertations

Publishing , 2010.

[11] Neelap, Akash Kiran. "Performance analysis of GPGPU and CPU on AES Encryption." Advanced

level (degree of Master (Two Years)), School of Electrical Engineering Blekinge Institute of

Technology, Karlskrona Sweden, 2014.

[12] Ali, Fakhrulddin H. Dawod, Amar I. "FPGA Based Implementation Of Concatenation Matrix". Al-

Rafidain Engineering Journal, Vol. 18, pp. 15-31, 21/ June 2009.

[13] Ali, Fakhrulddin H. "Transformation Matrix for 3D computer Graphics Based on FPGA". Al-Rafadain

Engineering Journal, Vol. 20, pp. 1-15, 1/Oct 2012.

[14] Olukotun, Kunle, Basem A. Nayfeh, Lance Hammond, Ken Wilson, and Kunyung Chang. "The case

for a single-chip multiprocessor". The ACM Seventh International Conference on Architectural

Support for Programming Languages and Operating Systems. 1996, pp. 2-11.

[15] R. Bittner, and E. Ruf, "Direct GPU/FPGA Communication via PCI Express". 2012 41st International

Conference on Parallel Processing Workshops, on IEEE, Sep 2012, pp.135-139.

[16] M. Hulkkonen,"Graphics Processing Unit Utilization in CircuitSimulation", PhD diss, school of

electrical engineering, Aalto University, 2011.

[17] Sodan, A.C., Machina, J., Deshmeh, A. Macnaughton, K., Esbaugh, B. "Parallelism via Multithreaded

and Multicore CPUs". Computer Journal, pp. 24-32, March 2010.

http://www.shodor.org/media/content/petascale/materials/UPModules%20/matrixMultiplication/moduleDocument.pdf
http://www.shodor.org/media/content/petascale/materials/UPModules%20/matrixMultiplication/moduleDocument.pdf
http://www.acm.org/

