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Abstract 

It is known that the classical technique for solving the linear regression problem of the geodetic transformation 

process is using least squares approach (LS). On the contrary, this research explores the application of total least 

squares (TLS) approach to solve linear regression with and without fuzzy multiple regression model in Bursa-

Wolf similarity transformation process. In this research two groups of data sets are used; the first group is the 
solution points which are used to compute the values of the transformation parameters. The second is the check 

points that were used to assess the accuracy of the applied methods (in terms of mean and Root Mean Squares 

Errors RMSE). The applied four solutions show how the accuracy of TLS is relatively better than LS. The 

weight has a better effect on improving the accuracy of both cases, LS and TLS; however, its effects are greater 
on TLS. By using the fuzzy multiple regression models, the results improved further and the need for accurate 

weights/confidence is eliminated. 

Keywords: Transformation; weighted least squares;  weighted total least squares; singular value decomposition; 

Linear Regression; Fuzzy Multiple Regression Model. 

1. Introduction 

Coordinate transformation is one of the most common applications in geodesy, photogrammetry, mapping, 

surveying engineering, and computer algebra.  
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The well-known technique for solving the transformation is the Least Squares Method (LS), where the 
coefficient matrix is assumed free of errors, and all errors come from the observation vector. However, both the 
coefficient matrix and observation vector may be contaminated by noise. Therefore; Total Least Squares (TLS) 

introduces the appropriate approach to solve this problem [1]. The authors in [2] are the first who formulated 

Weighted Total Least Squares (WTLS) adjustment by following the geodetic tradition using general non-

diagonal variance covariance matrices and introduced it to the geodetic science community.  

The author in [3] showed that the TLS solutions within an Error - In - Variables (EIV) model can also be 

identified as a special case of the method of least squares within an iteratively linearized Gauss- Helmart model 
where weight matrices can then be introduced without any limitations.  The authors in [4] formulated WTLS as 

a nonlinear adjustment model without constraints and further extended it to a partial EIV model. Recently, the 

author in [5] presented an improved WTLS method derived from a more generic case in which there is no 

proportionality assumption for the cofactor matrix of the EIV model and an improved constrained WTLS with 
application in the linear fitting and coordinate transformation. As well as, [6] reformulates the EIV model when 

all the observations are linear and propose new alternative WTLS algorithm that considered all the errors of 

observations in a more reasonable and direct way.  The results show that the relative bias is only 0.01% in 1000 

simulations of 3D coordinate transformation by TLS, and the more redundant observations, the more 

approximated is the estimated variance. For more details about TLS see [7, 8, 9, 10,11]. 

Fuzzy regression (FR) analysis is a possibility type of classical regression analysis. It is used in evaluating the 

functional relationship between the dependent and independent variables in a fuzzy environment. The Fuzzy 

regression model is firstly introduced by [12]. Recent researches such as [13, 14 and 15] used FR in their 

analysis. The FR expected to improve the results of solving the linear regression model using both least squares 

and total least squares methods. 

Herein, we are going to inspect the performance of total least squares on the geodetic coordinate transformation, 

and to assess the effect of applying fuzzy multiple regression model on both the least squares and total least 

squares adjustments. 

2. Methodology  

In this research, the Bursa-Wolf similarity transformation model is chosen to solve the 3D datum 

transformation. The mathematical equation of this model is given by [6]: 

�
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Yi`

Zi`
�

D2

 =     �
∆X
∆Y
∆Z
�+  (1 + S). RX(∝)RY(β)RZ(γ).�

Xi
Yi  
Zi 
�
D1

 (1) 

Where S is the scale factor, ΔΧ, ΔY, ΔZ are the translation parameters, [X Y Z]D1T , [X` Y` Z`]D2T  are the 

coordinate vectors of the ith station in  Datum1 and Datum2 respectively, RX(∝)RY(β)RZ(γ) are the rotation 
matrices consisting of α,β,ϒ rotation angles around X, Y, Z axis respectively, that formulated as follows 
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RX(∝) = �
1 0 0
0 cos ∝ sin ∝
0 −sin ∝ cos ∝

�,   

𝑅𝑅𝑌𝑌(𝛽𝛽) = �
𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽 0 −𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽

0 1 0
𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽 0 𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽

�,   𝑅𝑅𝑍𝑍(𝛾𝛾) = �
𝑐𝑐𝑐𝑐𝑐𝑐 𝛾𝛾 𝑐𝑐𝑠𝑠𝑠𝑠 𝛾𝛾 0
− 𝑐𝑐𝑠𝑠𝑠𝑠 𝛾𝛾 𝑐𝑐𝑐𝑐𝑐𝑐 𝛾𝛾 0

0 0 1
�, 

By considering that the rotation parameters and scale are very small, Eq. (1) can be rewritten as Eq. (2)  
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Solving the transformation parameters requires common points in both systems. Since the number of 
observations is larger than the number of unknowns; therefore, this redundancy obliges using the adjustment 

process. In order to estimate the best fitting of the transformation parameters, it is proposed both Least Squares 

and Total Least Squares techniques.  The least squares theory supposed to minimize the sum of squares of the 
vertical distances of the data points to the regression line, while the total least squares assumes to minimize the 

sum of squares of the orthogonal distances, Fig. (1), [3]. 

 

(a) Standard (Vertical) Regression   

 

(b) Orthogonal Regression 

Figure 1: Least Squares Vs. Total Least Squares 

In case of Least Squares (LS), the LS error equation which derived from Eq. (2) can be rewritten as follows [1] 
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Eq. (3) can be expressed shortly as Eq. (5) 
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v = AX−W (5) 

In case of weighted Least Square (WLS), the least square estimator of the parameters vector will be calculated 

according to Eq.(6), [16]  

X = (ATPA)−1 ∗ (ATPW) 

(6) 

Where P is the weight matrix, since the correlated weight matrix (variance-covariance matrix) is complicated, 

we designed a diagonal matrix that determined by the variance of  WXi  ,WYi ,WZi. 

Also, the variance component of the Least squares D is computed as Eq. (6), [17] 

 D = (ATPA)−1 (7) 

However, in the case of Total Least Squares (TLS) which assumes that all the elements of the data are 

erroneous, the equation will be as follows: [18] 

(A + ∆E)X = W + ∆W          (Rank(A) = m < n) (8) 

║ [A;  W] −  [A�; W� ] ║F           [Â ; W� ] ϵ R n(m+ 1) (9) 

Where ΔW is the error vector of observations, ΔE is the error matrix of design matrix A, m is the number of 

unknowns and n is the number of observations. From Eq.(9), ║  ║F denotes the Frobenius norm. The basic TLS 

problem can be solved using The Singular Value Decomposition (SVD). The SVD of the augmented matrix [A; 

W] can be computed according to Eq.(10), [19] 

[A; W]  =  UƩVT (10) 

Similarly to Least Squares, the Weighted Total Least Squares (WTLS) SVD of the augmented matrix is defined 

as follows, [1] 

[ATP−1A; ATP W] =  UƩVT (11) 

Where, 

U = [u1,1 , …,u1,n , ….un,1,….un,n]   ϵ Rnxn , 

V = [v1,1 ,….,v1,m+1, …. Vm,m+1 ,…., vm+1,m+1] ϵ R (m+1)(m+1)  and  

Ʃ = [σ1,1 , …,σ1,m+1, ….σm+1,m+1, …., σn,1,…., σn,m+1] ϵ R n(m+1)  matrix with diagonal elements. So, 

the matrix Ʃ will be as  

Ʃ = diag (σ1, … σm, σm+1)  

The solution of TLS is obtained after the rank reduced from (m+1) to (m) for Eq. (9), [20] 
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X =  
−1

Vm+1 ,m+1
  Vm+1 (12) 

The biased-corrected variance component estimator is computed as in Eq.(13) 

 σ02 =  (W−AX)T P (W−AX)
r

  (13) 

Where r denotes the redundancy and is equal to (m-n). The formula of approximately computing the mean 

standard error (D) that represents the unbiased variance-covariance matrix of TLS derived as in Eq. (14), [17] 

D =  σ02 (ATP−1A)−1 (14) 

WTLS algorithm is a linear regression where the target is to determine the best fitting line to 23 and 7   observed 

and check points. But the coordinates of points have not been measured with the same precision, [2]. 

Theoretically, the TLS technique exerts higher reliability as it considers both sides of the noise contamination 

problem – in terms of design matrix and observation vector – whereas the LS method considers only the 

observation vector (neglecting design matrix). 

One more important issue that affects the accuracy of the results is the data precision, that a general multiple 
linear regression with fuzzy technique is proposed based on each of the Least Squares and Total Least Squares 

in both weighted and equal weight approaches.  

The advantage of this technique is to detect the outlier points that are outside the usual range, and reduce their 

effects.  On the other hand, there are some limitations that must be addressed when applying fuzzy linear 

regression such as using small data, which is inadequate, or when the outliers’ data set is large and misleads the 
trend of the fuzzy regression, or if there is imprecision between the dependent and independent variables, or if 

there is distortion introduced by linearization [21]. 

Fuzzy linear regression takes the following form: [22]  

Yi =   B0 + B1 Zi1 + B2 Zi2 +⋯  + Bm Zin (15) 

Where Zij   ϵ R, Yi is the fuzzy response, Bo is a fuzzy intercept,  B1, B2,……….Bm are fuzzy coefficients. 

The rule of determining regression parameters is to calculate the root mean square errors until it reach the 

minimum, where the error is the resultant of residuals in X, Y, and Z coordinates. This will be applied to both 

the least squares and total least squares methods [23]. 

Accordingly, an iterative algorithm that uses the initial weight for the above mentioned approaches is applied. 
This iteration method is applied for (T) times, at every time the weight is re-evaluated based on multiple fuzzy 

linear regression and stopped when Root Mean Squares Errors (RMSE) is minimized.  
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In this paper, the transformation parameters using Bursa-Wolf model are calculated based on Least Squares 

adjustments. The solutions are designed to examine the performance of least squares and total least squares for 
both weighted and equal weight as well as the efficiency of fuzzy multiple linear regression on the different 

solutions.  The modeling of these solutions is implemented using MATLAB. Fig. (2) Represents the conceptual 

applied methodology.  

 

Figure 2: Conceptual Methodology 

The data used in this research are the local geodetic coordinates of first order triangulation stations known in the 
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Egyptian datum (Helmert 1906), where 23 stations belong to Network I and the other 7 stations belong to 

Network II. The precision of the stations of Network I is taken 1:100,000 and that the stations of Network II is 
taken 1: 50,000 based on an error analysis applied in [24]. The global geodetic coordinates of the above 

mentioned 30 stations defined in WGS-84, where 16 stations belong to the Egyptian High Accurate Reference 

Network (HARN) with precision 1:10,000,000 [25]. Another 3 stations belong to the Egyptian Aviation project 

with precision 1: 7000,000, [26]. The other 11 stations belong to National Agricultural Cadastral Network 
(NACN) with precision 1:1000, 000, [27]. To achieve the target of the research, the coordinates of the above 

mentioned 30 stations defined in the local Egyptian datum (D1) and global WGS-84 (D2) are used in the 

solutions, where twenty three (23) represents the solution points and the rest seven (7) points are the check 

points as shown in Fig.(3).  

 

Figure 3: Map of Egypt representing the solution points and check points in the study area 

The comparison between eight hybrids scenarios were applied with different solutions, where the seven 
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transformation parameters are computed using 23 stations, and by using these parameters the residuals of the 

solution stations and the 7 check points are calculated 

These scenarios are dividing into 4 solutions that described as follows: 

• Solution 1: Assessment of Least Squares (LS) versus Total Least Square (TLS), this is applied for 

equal weight mode and linear regression modeling.   

• Solution 2:  Checking the performance of Weighted Least Squares (WLS) versus Weighted Total Least 

Square (WTLS), here in the weight influence exist and similar to solution 1; the linear regression 
modeling is applied.   

• Solution 3:  Same as solution 1; however, the fuzzy multiple linear regression is applied instead of 

linear regression.   

• Solution 4:  Similar to solution 2, the fuzzy multiple linear regression is applied instead of linear 

regression.   

The assessment of the accuracy is based on calculating Errors (E), Mean, and root mean square error (RMSE) of 

the results using Eq. (15), Eq. (16), and Eq. (17). 

Ei = �ΔXi2 + ΔYi2 +  ΔZi2 (15) 

 Where ΔXi ,ΔYi ,ΔZ are the residuals (the difference between the given coordinates and the computed one) in X, 

Y and Z coordinates respectively.  

Mean =  �
Ei
N

N

i=1

 (16) 

Where N is the number of stations. 

RMSE = ��
Ei2

N

N

i=1

 (17) 

3. Results and Analysis 

The proposed methodology is applied on the above mentioned solutions. The seven transformation parameters 

are calculated in each case. The residuals are computed at the solution points as well as the check points.  

The mean of absolute residuals and root mean square error are computed for the different solutions. The results 

of the solutions are tabulated and discussed below. The obtained seven transformation parameters in each case 

of the 4 solutions are presented in Table (1). 



American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2016) Volume 25, No  1, pp 36-50 

44 
 

Table 1: Seven transformation parameters 

 Solution 1 Solution 2 Solution 3 Solution 4 

 LS TLS WLS WTLS FLS FTLS FWLS FWTLS 

ΔX (m) 
-104.81 

± 8.65 

-178.17  

± 8.65 

-89.22  

± 11.03 

-105.88  

± 11.03 

-99.89  

± 16.28 

-92.61  

± 16.69 

-95.17  

± 29.32 

-94.51 

±19.67 

ΔY (m) 
-11.90  

± 9.81 

120.45  

± 9.81 

-38.77  

± 12.00 

-1.79  

± 12.00 

-14.08  

± 17.67 

-44.51 
±18.07 

-22.09  

± 36.14 

-16.84 
±26.29 

ΔZ (m) 
-6.20  

± 6.47 

61.25 

 ± 6.47 

-4.52  

± 8.54 

-11.95  

± 8.54 

-14.30  

± 12.41 

16.79 

±13.19 

-14.67  

± 17.87 

18.73 

±11.22 

𝑹𝑹𝑿𝑿 (sec) 
1.26  

± 0.17 

0.06  

± 0.17 

1.22  

± 0.22 

1.19  

± 0.22 

1.28  

± 0.31 

1.11 

±0.34 

1.28  

± 0.49 

0.68  

±0.33 

𝑹𝑹𝒀𝒀 (sec) 
-3.90  

± 0.35 

0.26  

± 0.35 

-4.60  

± 0.43 

-3.44  

± 0.43 

-4.06  

± 0.64 

-5.08 
±0.65 

-4.30  

± 1.28 

-4.30 
±0.91 

𝑹𝑹𝒁𝒁(sec) 
-0.34  

± 0.25 

-3.29 

 ± 0.25 

0.03  

± 0.33 

-0.04  

± 0.33 

-0.07  

± 0.49 

-0.91 

±0.51 

0.04  

± 0.77 

-0.89 

±0.47 

S (ppm) 
5.31  

± 0.94 

0.94 

 ±0.61  

8.83  

± 1.15 

5.65  

± 1.15 

4.86  

± 1.67 

7.91 

±1.79 

5.61  

± 2.98 

6.72  

±2.20 

 

It is obvious that the three translation parameters of solutions 1, 2 are totally different in both cases of LS and 

TLS; however, the other four parameters for the same solutions are not much different.  On the other hand, all 

the seven parameters in solutions 3, 4 are close to each other in both cases.  

The residuals of the solution points of the resultant (E) in meter for each case of the 4 solutions are computed. 

Moreover, the mean error and RMSE are also calculated. Table (2) illustrates the values of the results.   

Within the different applied solutions techniques, it is noticeable that the values of the residuals in total least 

squares are less than their corresponding values in least squares techniques.  

Regarding the linear regression (Solution 1, 2), the WTLS gives relatively the best results. On the other hand, 

the fuzzy multiple linear regression improved the results of total least squares cases.  

FTLS gives the minimum RMSE (4.59 m) and this indicates that fuzzy multiple linear regressions can substitute 
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the weight in both least squares and total least squares solutions. However, it is slightly more suitable in case of 

TLS as it minimizes the overall residuals of the solution points. Fig. (4), (5) show the residuals of the solution 
points for linear regression and fuzzy multiple linear regression respectively that confirms the above mentioned 

analysis. 

Table 2: Residuals of the resultant at solution points (m) 

No. 
Solution 1 Solution 2 Solution 3 Solution 4 

LS TLS WLS WTLS FLS FTLS FWLS FWTLS 

1 7.72 2.74 7.73 5.45 8.51 5.50 7.78 5.61 

2 5.55 4.30 5.42 2.36 5.24 1.14 5.26 1.41 

3 7.93 4.79 7.88 4.52 6.92 1.85 7.62 2.84 

4 6.86 4.10 6.77 3.56 6.00 1.65 6.52 2.36 

5 2.69 1.43 2.56 2.06 1.41 0.96 2.30 1.71 

6 13.31 9.68 13.44 9.93 12.02 7.78 13.26 9.64 

7 5.11 3.97 4.96 2.42 4.73 1.09 4.79 1.39 

8 14.17 14.07 14.49 10.54 14.15 9.49 14.55 11.78 

9 2.42 1.46 2.40 2.35 1.59 1.45 2.29 2.16 

10 11.33 12.71 11.44 3.84 10.56 7.41 11.20 5.20 

11 9.41 2.65 9.57 9.31 10.47 7.48 9.70 9.00 

12 8.14 4.60 8.06 2.42 9.14 5.34 8.29 2.88 

13 3.11 1.92 3.14 3.90 4.48 3.72 3.33 4.04 

14 2.62 2.79 2.67 1.56 1.73 1.47 2.50 2.08 

15 3.97 3.09 4.09 4.88 5.48 4.04 4.36 4.87 

16 6.74 7.55 6.74 4.70 8.10 5.44 7.02 5.29 

17 5.41 4.26 5.27 2.72 4.99 1.08 5.09 1.66 

18 8.34 4.67 8.26 2.47 9.34 5.45 8.49 2.93 

19 6.43 2.44 6.32 1.56 7.30 4.80 6.54 1.42 

20 2.37 1.62 2.47 1.10 2.81 1.24 2.61 1.33 

21 6.22 8.33 6.02 1.93 7.61 4.64 6.30 1.31 

22 3.30 1.90 3.14 1.30 2.77 0.73 2.92 0.37 

23 4.42 2.35 4.35 1.17 5.27 3.50 4.56 0.41 

         
Mean 6.42 4.67 6.40 3.74 6.55 3.79 6.40 3.55 

RMSE 7.20 5.79 7.22 4.61 7.36 4.59 7.22 4.64 

 

Similarly, Table (3) illustrates the values of the resultant residuals of the check points in meter for each case of 

the 4 solutions. Moreover, the mean error and RMSE are also presented.   
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Figure 4: Computational accuracy comparison of LS, TLS, WLS, and WTLS solutions at solution points 

 

Figure 5: Computational accuracy comparison of FLS, FTLS, FWLS, and FWTLS solutions at solution points 
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Table 3: Residuals at check points (m) 

 Solution 1 Solution 2 Solution 3 Solution 4 

 
LS TLS WLS WTLS FLS FTLS FWLS FWTLS 

1 3.15 8.25 3.08 3.32 3.86 3.32 3.26 3.19 

2 6.94 3.87 6.88 2.32 6.02 4.71 7.13 2.79 

3 5.54 8.95 5.27 4.02 5.19 2.61 5.12 3.46 

4 5.44 3.25 5.30 2.72 4.71 0.90 5.06 1.58 

5 4.10 11.90 3.91 8.44 3.38 9.38 3.77 7.56 

6 2.43 2.02 2.48 1.72 1.59 1.22 2.34 1.99 

7 2.66 2.68 2.61 0.85 3.31 2.14 2.79 0.60 

         
Mean 4.32 5.85 4.22 3.34 4.01 3.47 4.21 3.02 

RMSE 4.60 6.83 4.49 4.05 4.23 4.39 4.49 3.66 

 

On the contrary to the trend of solution points, TLS is worse than LS. The best results comes from the FWTLS; 

however, FTLS results still in range and accepted that confirm the same trend of solution points that fuzzy 

multiple linear regression can be an alternative to the weight influence. Figure (6), (7) represent the check 

points, the residuals for linear regression and fuzzy multiple linear regression respectively. 

 

Figure 6: Computational accuracy comparison of LS, TLS, WLS, and WTLS solutions at check points 
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Figure 7: Computational accuracy comparison of FLS, FTLS, FWLS, and FWTLS solutions at check points 

4. Conclusions and Recommendations 

This research applied different regression models on estimating the geodetic transformation parameters. Four 

different solutions are designed to examine the performance of least squares and total least squares for both 

weighted and equal weight as well as the efficiency of fuzzy linear regression. Through the results of the applied 

solutions, the following remarks can be concluded: 

• The total least squares approach is a suitable approach for solving many surveying engineering 

problems where it assumes the presence of the noise in both coefficient matrix and observations vector. 

• The weighted total least squares gives results better than weighted least squares; however, applying the 

total least squares without weight is not usually better than its corresponding of least squares. 

• The fuzzy linear regression improved the accuracy of the TLS results and it can eliminate the need for 

accurate weights/confidence; however, using large outliers’ data set can mislead the precision of the 

fuzzy linear regression. 

Finally, it is recommended to apply further studies for the data density and distribution, to test multiple methods 
of solving total least squares instead of SVD, to assess other methods for solving geodetic transformation such 

as Moldensky, and to evaluate the supplementary investigation on other surveying problems. 
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