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Abstract 

In this paper, three-dimensional flow of a second grade fluid along a horizontal infinite plate which is subjected to 

a transverse sinusoidal suction velocity distribution is studied. Due to variable suction velocity distribution the 

flow becomes three-dimensional and for constant suction the problem becomes two-dimensional. The free stream 

velocity is uniform and for small perturbation approximation, analytic technique is applied to obtain the 

expressions for velocity field and components of skin friction. The effect of second-grade parameter, Reynolds 

number and suction parameter on the velocity in the direction of main flow and on the stress components is 

investigated with the help of graphs. The existence of backflow is observed and it is noted that the Reynolds 

number and suction parameter are controlling parameters for the backflow. 

Keywords: Differential type fluids; Three-dimensional flows; Periodic suction; Regular perturbation method; 

Series solutions. 
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1. Introduction 

The research area of laminar flow control has received attention of many investigators in recent years and this 

research area is continuously growing. One of the important applications of laminar flow is the calculation of 

friction drag of bodies in a flow i.e. the drag of a plate at zero incidences, an airfoil and the friction drag. The main 

purpose is to reduce drag and hence to improve the vehicle power by a considerable amount. The transition from 

laminar to turbulent flow which results the drag coefficient to increase, may be prevented or deferred by the 

suction of fluid and heat transfer from boundary layer to the wall [1]. Gersten et al. Reference [2] have 

investigated the effect of transverse sinusoidal suction velocity on flow and heat transfer along an infinite porous 

wall. Singh et al. Reference [3] investigated the flow of viscous incompressible fluid along an infinite porous plate 

when the transverse sinusoidal suction velocity distribution fluctuating with time is applied. Also Singh et al. 

Reference [4] have examined the effect of buoyancy forces on three-dimensional flow and heat transfer along with 

porous vertical plate. Singh [5] extended this idea by applying transverse sinusoidal suction velocity in the 

presence of viscous dissipative heat. Singh et al. Reference [6] studied the effects of magnetic field on the 

three-dimensional flow past a porous plate. Transient three-dimensional viscous fluid flow along a porous plate 

has been studied by Singh et al. Reference [7] while Guria et al. Reference [8] have presented hydrodynamics 

effect on the three-dimensional flow past a vertical porous plate. Gupta et al. Reference [9] observed MHD effect 

on the three-dimensional flow past a porous plate. 

All the above problems have been investigated in viscous fluid. Although the Navier--Stokes equations can 

manage the flows of viscous fluids but such equations are not adequate to describe the properties of 

non-Newtonian fluids. Other than viscous fluids there is not a single model which can describe the properties of all 

non-Newtonian fluids. Therefore, several constitutive relationships of non-Newtonian fluids have been proposed. 

Generally, non-Newtonian fluids have been classified into three main categories namely the differential, rate and 

integral types. Second-grade fluid is the simplest subclass of differential type fluids. The aim of present study is to 

discuss three-dimensional flow of a second-grade fluid along a plane wall which is subjected to the sinusoidally 

varying velocity distribution. A constant suction velocity at the wall leads to two-dimensional asymptotic suction 

solution [10], however, due to variation of suction velocity in transverse direction on wall the problem becomes 

three-dimensional. The regular perturbation method is employed for the solution of the present problem. The 

results obtained are evaluated for different values of dimensionless parameters such as non-Newtonian elastic 

parameter ,K  Reynolds number eR  and suction parameter  The article is organized as follows: Section 2 

presents the problem description, Section 3 describes the formulation of the problem, Section 4 gives perturbation 

solutions, Section 5 incorporates results and discussion, while Section 6 includes conclusion. 

Description of the problem 

Consider the three-dimensional laminar flow of an incompressible second-grade fluid past an infinite plane wall. 

A Cartesian coordinate system with the wall lying on xz -plane and the y -axis normal to it is introduced. A 

suction velocity distribution [2] consisting of a basic steady distribution ( )00 >v  with a superimposed weak 

transversely varying distribution ( ),cos0 l
zv πε  where l  denotes the wave length of the periodic suction 
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velocity distribution and ε  the amplitude of the suction velocity variation, is taken. Thus,  

.cos1)( 0 





 +−=

l
zvzv πε                                    (1) 

The constant suction velocity  at the wall leads to the well-known two-dimensional asymptotic suction 

solution [10] while varying suction velocity distributions lead to a cross flow and hence to a three-dimensional 

flow over the surface. All the physical quantities will be independent of x because of the infinite length of the wall 

in the x -direction, of course, the flow remains three-dimensional due to variation of suction velocity. 

 

Figure 1: Geometry of the problem 

Formulation of the problem 

Consider the three-dimensional laminar flow of an incompressible second-grade fluid past an infinite wall, with 

the x -axis on the wall parallel to the direction of flow. We applied suction velocity distribution [2] of the form 

)cos1()( 0 l
zvzv πε+−=  , where ( )00 >v  , l  and ε  are the suction velocity, wave length of the periodic 

suction velocity distribution and amplitude of the suction velocity distribution. As we have considered asymptotic 

flow, therefore velocity field is independent of x . In case of constant suction we have well-known 

two-dimensional asymptotic suction solution and variable suction velocity distribution leads to cross-flow which 

results in three-dimensional flow. 

The constitutive expression for second-grade fluid model is 

,2
12211 AAAIT αα +++−= µp                                 (2) 

in which    ( )2,1=iiα denote the pressure  the identity tensor  the dynamic viscosity and material 
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constants respectively. The Rivlin-Ericksen tensors 1A  and 2A  are defined as 
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where ∇  is the operator, V  is the velocity field. For the model ( )2  required to be compatible with the 

thermodynamics in the sense that all motions satisfy the Clasius-Duhen inequality and assumption that the 

specific Helmholtz free energy is a minimum in equilibrium, then the material parameters must meet the following 

conditions [11] 

.0 and 0,0 211 =+≥≥ αααµ                                 (4) 

 

The laws of conservation of mass and momentum for the present flow problem are given by 
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with the boundary conditions [2]  

, as  ,0 , ,
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in which ∗∗ vu ,  and ∗w  denote the velocities in the ∗x -, ∗y - and ∗z -directions, respectively. 

We now introduce the following non-dimensional variables [9]: 
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and the boundary conditions take forms  
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Solution of the problem 

 Since ε  is very small, therefore we assume solution in such a way 
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,01 0
2
0

2

3
0

3

=+







−

dy
du

dy
ud

Rdy
udK

e

αα                   (18) 

subject to boundary conditions  
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The order of differential equation is increased from 2 to 3 due to presence of elasticity parameter. We are required 

three boundary conditions for unique solution of Eq. ( )18 . To remove this difficulty we assume the solution of 

the form 
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),( 2
01000 KOKuuu ++=                                    (20) 

Where K  is very small parameter. 

Using Eq. ( )20  in Eqs. ( )18 - ( )19  and comparing coefficients of )( 0KO  and )(KO , we get the following 

boundary value problems: 

( ) ( ) .1 ,00

,0

0000

00
2
00

2

=∞=

=+

uu
dy

duR
dy

ud
eα

                                      (21) 

( ) ( ) .0 ,00

,0

0101

01
2
01

2

3
00

3

=∞=

=−−

uu
dy

duR
dy

ud
dy

udR ee αα
                         (22) 

Solving the boundary value problems ( )21 ( )22−  to obtain 
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Therefore, in view of Eqs. ( )23  and ( ),24  Eq. ( )20  yields 
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When ,0≠ε  the solution of the problem is obtained by the perturbation method 
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Using Eqs. ( )26 - ( )28  into Eqs. ( )11 - ( )15  to obtain differential equations corresponding to first order terms 
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and the boundary conditions 
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The set of linear differential equations ( ) ( )3329 −  describe the three-dimensional flow. 

Cross flow Solution 

In this section the set of cross-flow solutions ),,(1 zyv  ),(1 zyw  and ),(1 zyp  are considered. This set of 

solution is independent of the main flow component u. The suction velocity consists of basic uniform distribution 

0v  with a superimposed weak sinusoidal distribution ( ),cos0 zv πε  therefore the velocity components 

),,(1 zyv  ),(1 zyw  and pressure ),(1 zyp  are also separated into main and small sinusoidal components. 

Therefore, assume the following forms for ),,(1 zyv  ),(1 zyw  and ),(1 zyp  : 

,cos)(),( 111 zyvzyv π=                                                   (34) 

,sin)(1),( 111 zyvzyw π
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.cos)(),( 111 zypzyp π=                                                (36) 

In Eq. ( )35  the dash ՛ denotes differentiation with respect to y. We note that the velocity components 

( ) ( )3534 −  identically satisfy the continuity equation ( ).29  Substituting Eqs. ( )34 - ( )36  in Eqs. ( )31  and 

( )32  , we have 
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and the boundary conditions are      .0)0(,)0( 1111 =−=
′
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On eliminating the pressure  from Eqs. ( )37  and ( )38  we get the following differential equation: 
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using Eq. ( )41  in Eq. ( )40  and solving resulting equation, we get the following solutions: 
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Substituting Eqs. ( )44  and ( )45  in Eqs. ( )34 - ( )36  , we get 
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(48) 

The Eqs. ( )46  and ( )47  present the cross-flow velocity distribution and pressure in Eq. ( )48  provide the 

input for the solution to the axial velocity. The viscous results [2] are recovered when  

Main flow solution 

The solution for the Eq. ( )30  can be expressed as 

.cos)(),( 111 zyuzyu π=                                      (49) 

The corresponding boundary conditions ( )33  are reduced to 
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Further we assume that 
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Then the boundary conditions ( )50  yield  
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Using Eqs. ( ),25  ( )46  and Eqs. ( )49 - ( )52  in Eq. ( )30  , we get 
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where  
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Substituting Eqs. ( )25  and ( )53  in Eq. ( ),26  we get
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It should be noted that the limiting velocity 1u  as 0→K , differs from that computed by Gersten and Gross [2]. 

This is due to some calculation mistake in their work. 

Shear stress components 

The expressions for the shear stress components in the x -direction and z -direction can be expressed as follows: 
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The functions )(1 eRF  and )(2 eRF  are given by 
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It is worth mentioning that the skin friction factor ( )eRF1  when 0→K  reduces to steady state value of [7]. It 

is also indicated that limiting result as 0→K  differs from that found by Gersten and Gross [2]. This happens 

due to some calculation mistake in their work. 
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The limiting result of )(2 eRF  as 0→K  is identical to that obtained by Gersten and Gross [2] and steady 

state value presented by Singh et al. [7]. 

2. Results and discussion 

The effects of dimensionless parameters such as elastic parameter K , Reynolds number eR  and suction 

parameter α  on velocity component u are shown in Figures 2-4 Skin friction factors ),(1 eRF  )(2 eRF  are 
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presented graphically in figures 5-8. Figure 2 shows that the velocity component u  decreases with the increase 

of dimensionless parameter K  which was expected naturally. For a particular value of K, the velocity 

component u increases gradually to attain maximum value equal to unity. The figure 3 shows the effect of 

Reynolds number eR  on the main flow velocity component u. It is observed from this figure that velocity is 

increasing function of .eR  However, velocity decreases in the vicinity of the plate. Moreover, backflow is 

observed for .30>eR  The influence of suction parameter α  on the velocity component u is demonstrated in 

figure 4 The main flow velocity component u  increases as the suction parameter α  increases which was 

expected naturally. However, it decreases near the plate and then increases exponentially. Backflow near the plate 

is observed for 3.0>α . Furthermore, 1→u  as .∞→y   

The effect of dimensionless parameters K  and α  on the shear stress component )(1 eRF  is depicted in 

Figures 5 and 6 respectively. The figure 5 shows that the shear stress component )(1 eRF  increases with an 

increase in .K  It decreases as eR  increases from zero to some value (depending upon K) of ,eR  then 

increases exponentially and tends to infinity. Similar effect of α  on 1F  is noted in figure 6 Of course, 1F  

tends to be linearized as .1.0→α  Moreover, 1)(1 →eRF  as .0→eR  

 

Figure 2: Variation of u at α=0.1, Re=10, ε=0.1 and z=0 for different values of K 



American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2016) Volume 18, No  1, pp 153-170 
 

 

166 
 

The )(2 eRF and its asymptotic limits are shown in Figures 7 and 8 . In figure 7 the dimensionless parameter α  

is fixed and K  is varied. In figure 8 the role of these dimensionless parameters is interchanged. Figure 7 shows 

great influence of elastic parameter on )(2 eRF   which is decreasing function of elastic parameter K . Moreover, 

2F  increases as eR  increases from zero to some value ( )Kupon  depending  of ,eR  then decreases for 

higher values. It is shown in figure 8 that )(2 eRF  initially increases and then decreases for any fix value of .α  

Also, it can be perceived that 2F  tends to linearized as 1.0→α . The figure 9 demonstrates that the transverse 

wall shear stress, which results from the secondary flow normal to the main flow direction, disappears due to 

symmetry at the points of maximum and minimum suction velocity. The effect of elastic parameter K and suction 

parameter α  on the velocity component 1w  are tabulated in Table 1. It is observed that 1w  increases as α  

increases. However an opposite effect of K  on 1w  is noted. It also decreases in the y-direction. 

 

Figure 3: Variation of u at α=0.1, K=0.1, ε=0.1 and z=0 for different values of Re 

 

Figure 4: Variation of u at K=0.1, Re =10, ε=0.1 and z=0 for different values of α
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Figure 5: Variation of F₁(Re) at α=0.1 for different values of K 

 

Figure 6: Variation of F₁(Re) at K=0.1 for different values of α 

 

Figure 7: Variation of F₂(Re) at α=0.1  for different values of K 
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Figure 8: Variation of F₂(Re) at K=0.1 for different values of α 

 

Figure 9: Flow streamlines on the surface of the flat plate for K=0.1 and α=0.1 

Table 1: Effects of K and α  on transverse velocity component w for ,1.0=ε  5.0−=z  and   . 

y 
K=0.1, 

α=0.1 

K=0.1, 

3.0=α  

K=0.1, 

5.0=α  

K=0.5, 

1.0=α  

K=0.5, 

3.0=α  

K=0.5, 

5.0=α  

0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.4 0.007656 0.02290 0.03796 0.007200 0.01869 0.02597 
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0.8 0.004250 0.01205 0.01887 0.003993 0.00973 0.01238 

1.2 0.001769 0.00475 0.00701 0.001660 0.00379 0.00437 

1.6 0.000654 0.00166 0.00230 0.000613 0.00131 0.00135 

2.0 0.000227 0.00054 0.00070 0.000212 0.00042 0.00038 

 

3. Conclusion 

The three-dimensional incompressible laminar flow of a second grade fluid past a wall is analyzed. A suction with 

a slightly sinusoidal transverse suction velocity distribution at the wall is employed. Approximate solutions for 

main flow, cross flow and pressure are presented. For the asymptotic flow condition far downstream the 

components of the wall shear stress are computed. The major findings of the present study are as follow: 

• When K  increases the main flow velocity u  decreases. In the limiting case, when ,∞→y  it 

( ) velocityflowmain  approaches to unity 

• When eR  increases the main flow velocity u  also increases  

• Shear stress components tend to be linearized as 1.0→α   

• The shear stress components in the direction of main flow )(1 eRF  and the function )(2 eRF  which 

characterizes the wall shear stress in the z -direction, strongly depend upon both elastic parameter K  

and suction parameter α   

• Reynolds number eR  and suction parameter α  provide a mechanism to control the backflow 

• When ,0→K  the viscous results for cross flow [2] are recovered 

• The limiting main flow velocity u  when 0→K  differs from that obtained by Gersten and Gross [2] 

due to some calculation mistake in their work 

• The steady state value of skin friction factor in main flow direction [7] is recovered when .0→K  It, 

however, differs from that obtained by Gersten and Gross due to some computational mistake in their 

work 

• The limiting result of )(2 eRF  as 0→K  is identical to that obtained by Gersten and Gross [2] and 

steady state value presented by Singh et al [7]. 
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