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Abstract

This paper presents the free vibration analysis of isotropic thick rectangular plates, based on higher order shear
deformation theory (HSDT). The plate theory ensures a zero shear-stress condition at the top and bottom
surfaces of the plate, and do not requires a shear correction factor. The model requires inter-element C1
continuity for the transverse displacement. To overcome this hindrance, a new hierarchical p-element with six
degrees of freedom per node is developed and used to find natural frequencies of thick plates. Convergence
studies and comparison have been carried out for with different boundaries conditions. It is shown that the

present element enables rapid convergence.
Keywords: Free vibration; Thick isotropic plates; hierarchical finite element method; third order C1 HSDT.
1. Introduction

Thick plates are extensively used in many fields of engineering, including aerospace, civil structures, hydraulic
structures, etc. For plates analysis different theories exists, the classical plates theory (CPT) is adopted for thin
plates, where the effect of shear deformation is neglected [1]. The Reissner. Mindlin plate theory is used for
moderately thick plates, known as the first order shear deformation theory (FSDT), in which the effect of shear
deformation is considered by using a proper choice of a shear correction factor which depend on loading and
boundary conditions [2]. The simplifying assumptions made in CPT and FSDT are reflected by the high
percentage errors in the results of thick plates analysis. For these plates, higher-order shear deformation theories
(HSDT) are required. The HSDT ensure a zero shear-stress condition on the top and bottom surfaces of the

plate, and do not require a shear correction factor, which is a major feature of these theories.
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Nelson and Lorch [3], the authors in [4] presented a HSDT for laminated plates however the displacement field
does satisfy the shear-stress free condition on the top and bottom surfaces of the plate. Lewinson [5], Murthy
[6], and Reddy [7] presented a new higher order shear deformation theories considered as an extension of
hencky’s theory, which include a realistic displacement field satisfying the conditions of zero transverse shear-
stress and/or strains, known as Reddy’s third-order theory. This model requires C1 inter element continuity
requirement. Phan and Reddy developed a non conforming rectangular element with seven degrees of freedom
per node, based on C1l Reddy’s third order theory to analyze laminated composites plates. Kant and his
colleagues [8] investigate the free and transient vibration analysis of composites and sandwich plates based on a
refined theory by using the finite element method and analytical solution. The authors in [9,10] investigate the
free vibration and transient response of composite sandwich plates by using two CO assumed strain finite
element based on Reddy’s third-order theory. Sheikh and Chakrabarti [11] used a triangular element based on
Reddy’s higher order shear deformation plate theory. Batra and his colleagues . [12] used a HSDT and the finite
element method to analyze free vibrations and stress distribution in tick isotropic plate. Kulkarni and Kapuria

[13] used a discrete Kirchoff quadrilateral element based on the third order theory for composite plates.

Because Reddy’s third-order theory requires inter element C1 continuity on the transverse displacement. The
conclusion can be made from the literature review, that a very few conforming element based on this plate
theory are developed. To overcome this hindrance, the hierarchical finite element method can be used. In the
hierarchical finite element method the mesh keeps unchanged and the polynomial degree of the shape functions

is increased. See for instance Szabo and Sahrmann [14], Szabo and Babuska [15] and Hamza-Cherif [16].

In this paper we address these above-mentioned points. The new approach with hierarchical finite element
method is formulated for thick plates vibration analysis. A new hierarchical p-element with six degrees of
freedom per node is developed, based on the C1 higher order shear deformation theory. The continuity along the
inter-element boundary is not required in the model. To demonstrate the convergence and accuracy of the
proposed method, present results are compared with existing data available from other analytical and numerical
methods. Then, natural frequencies of rectangular plates under different boundary conditions are tabulated for a

wide range of aspect ratios and thickness to length ratios.

2. Formulation

1.1. Energy formulation

Consider an homogeneous, isotropic, thick plate bounded by 0 <x<a, 0 <y <b,and —h/2 <z <h/2, as

show in Fig. 1.

The displacement of the plate are decomposed into three orthogonal components, u, v and w parallel to the x-

axis ,y-axis and z-axis, respectively.

In accordance with the higher-order shear deformable theory [10,11], the displacements can be expressed as



American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2014) Volume 9, No 1, pp 1-19

u=z€x—f(z)(%+exj
OX

oW,
v=20,-f(z2) (a—y(’+9y) 1)
W= W,

47°

7)=——

In which (2) 3h? @)

Where wy, is the transverse displacement of middle plate components and 6,, 8, are the rotations of the normal

to the middle plane about the x-axis and y-axis respectively.

The linear strain-displacement relationships.
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The constitutive equations for linear elastic isotropic material are
{o} = [Cl{e} (4)

In the case of plane stress the stress vector can be written as

{o}={ox O Tz T Ty} ®)
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Here C;; are the material property coefficients, in which E, and v are the Young’s modulus and, Poisson’s ratio,
respectively.

The Kkinetic energy of a bending vibrating thick plate is given by

1 @l . 2
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Where p is the mass density per unit volume.

h/2 h/2 h/2

Pa = pdz, Po = pf (Z)z dz, Pr =J

s " p(f(z)z—sz(z)+ zz)dz (8,9, 10)

h/2

The strain energy of a thick plate is expressed as
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where
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F,= hj'z Ci'j(f(z)z—sz(z)+zz)dz Givj=h'/[2 Ci'j(f(z)z—Zf(z)+1)dz (14, 15)
~h/2 —h/2

Hi; = h_/f Ci,j(f(z)z—f(z))dz L= h_l[z Ci,j{(af(Z)Jz_zafa(zz)"‘l]dz (16, 17)
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Where (= x/a) and n(= y/b) are the non-dimensional coordinates.

2.1, Hierarchical finite element formulation

A fournode rectangular hierarchical finite element with six degrees of freedom per node (wg, dwy/0dx, dw,/dy,
dw, /0xy, 0., 6,) is developed on the basis of a third-order plate theory (See Fig. 2). Trigonometric hierarchical

functions are used as shape functions. The model requires C° continuity for 6, and 6, and C'continuity for wy.

The displacement and rotations of the rectangular plate p-element are expressed as

Py Py

W10 = D> Won (g (gn()

m=1n=1

Py Py

BEM = D D B OFu (D) (18)
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Where P,, and P, are the number of shape functions used in the model.

The firsts shape functions (f; f> and g;tog,) are commonly used in the finite element method. The functions
(fus2 and g, 44 )are the trigonometric shape functions and lead to zero transverse displacement, and zero slope
at each node. This feature is highly significant since these functions only give additional freedom to the edges

and the interior of the element.

The trigonometric hierarchical shape functions f; (&) for C° continuity and g, (¢)for C' continuity are given by
[24]

fl =1-¢

fz =&

f.., =sin(ar &) (19)
or=rr

r=12,3
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and

g, =1-3¢7 +2¢
E-28E%+¢
9, =3&7-2¢
g,=-&° g (20)
0., =57 |- §+(2+( Y )e? -+ (1) )&+ sin (57 )
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The displacement and rotationscan be expressed in matrix form

Wo
{gx} = [Nl{q} (21)

Oy

[N] is the matrix of the shape functions, given by

[N,] O 0
[NJ=| 0 [N, O (22)
0 0 [Ng]
where
Aw
{a} = {%x] (23)
4o,

Inwhich q,,, g5, and qo, € the generalized displacements.

The matrices of theshape functions are given by

[NJ=] (8:(6) 02(1), (:(8) 02 (1)), (84 (€) (1), (95, (&) 0. (), | @

wherek =1,...,P,, 1 =1,...,P,, and I = j+(i —1)P

w

and
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wherei =1,...,P,, j=1,...,P,,and m= j+(i—1) P,.

The discretized system of equations of bending of free vibration of isotropic plate can be expressed as

M Jig}+[K ]{a}=0 (26)

Here [K] is the stiffness matrix of the p-element, determined from the strain energy
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[Kwey]T [Kexey]T [Koyey]

Where

=a D 62 N ] az[N ] 2D12 82[NW]T aZ[I\IW]_|_ %aZ[NW]T 52[NW]
o] [

0 a S on’ b*  on’ on’

(28)
4Dy [N O[N] Ry O[NJ O[N] Ry O[N] O[N] dedn
a’b? 0Fon 0fon &bl oF  0F  albl on o
K] =0] HZEM FINT AN | 26, FINT AN] , 26, FIN.T 0[N
0f a’b ot 0F  ab® ooy on
2F, [N, ] (29)
a P [Na]]dgdﬂ
aij' 28, 52 N ] o[N,] 26, *[N,J 2[N,]  4E, &*[N,] 2[N,]
Wey on b on® oy a’b oo O
L 2Fs a[N ] ANy ]}d(,‘dn (30)
a



American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2014) Volume 9, No 1, pp 1-19

ol [ 1Gu 2N 2[N] | Gy O[N] O[N] T

[Kexex]—abj‘oj‘o{az S O B AL O [T [, o 0 @
— r G a[Na]T a[Ne] Gy a[Na]T a[Ne] T

[K"Y”J_abjo..‘o{a_z e ak o oy g Nl N]jasdn 32

on ab on o¢

"' 26, 9[N,] 2[N,] 2G, 9[N,] 2[N,
[Kexey]=abLL[ab [ag] N ] ol ]]dfdﬂ (33)

[M]is themass matrix of the p-element,given by the following relation

[MWW] [Mwﬁx] [Mwey]
[M] = [MWGX]T [Mexex] [Mexey] (34)
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3. Numerical results and discussion

3.1. Convergence study

Tables 1 to 5 show that good convergence and accuracy of the solutions are obtained by increasing the number

of trigonometric shape functions, for all cases. It is seen that good results from thick plates are obtained by
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using, only six shape function in the case of SSSS plates, 14 shape functions in the case CCCC plates,12 shape

functions in the case of FFFF plates, and 17 shape functions in others cases.

2
Table 1.Convergence of frequency parameters Q = w :—2\/%}‘ for a thick plates (v = 0.3,a/b = 1,h/a = 0.5)

with SSSS boundary condition.

P, =P, 1 2 3 4 5
4 1.263 2.47 2.47 2.919 2.919
5 1.246 2.414 2.414 2.919 2.919
6 1.245 2.308 2.308 2.919 2.919
Converged
] 1.245 2.308 2.308 2.919 2.919
solution

2
Table 2.Convergence of frequency parameters ) = (1)2—2\/% for a thick plates (v = 0.3,a/b = 1,h/a = 0.5)

with CCCC boundary condition.

P, =P, 1 2 3 4 5

4 3.623 3.623 4.026 4557 5.069
5 1.662 3.617 3.617 3.965 4515
6 1.659 2.639 2.639 3.466 3.695
7 1.618 2.613 2.613 3.448 3.691
8 1.615 2.586 2.586 3.405 3.687
9 1.604 2.575 2.575 3.392 3.686
10 1.601 2.566 2.566 3.379 3.686
11 1.598 2.559 2.559 3.369 3.685
12 1.595 2.556 2.556 3.366 3.685
13 1.595 2.552 2.552 3.358 3.685
14 1.593 2.55 2.55 3.358 3.685
Converged

solution 1.593 2.55 2.55 3.358 3.685

2
Table 3.Convergence of frequency parameters Q = m:—z\/p;h for a thick plates (v = 0.3,a/b = 1,h/a = 0.5)

with FFFF boundary condition.

4 0.905 1.354 1.693 1.939 1.939
5 0.905 1.266 1.514 1.805 1.805



American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2014) Volume 9, No 1, pp 1-19

6 0.895 1.266 1514 1.798 1.798
7 0.895 1.265 1511 1.793 1.793
8 0.893 1.265 1511 1.792 1.792
9 0.893 1.265 1511 1.79 1.790
10 0.892 1.265 1511 1.79 1.790
11 0.892 1.265 1.511 1.789 1.789
12 0.892 1.264 1.511 1.789 1.789
Converged

solLition 0.892 1.264 1511 1.789 1.789

2
Table 4. Convergence of frequency parameters Q0 = wz—z\/‘%for a thick plates(v = 0.3,a/b = 1,h/a =

0.5) with CFCF boundary condition.

P, =P, 1 2 3 4 5

4 2.883 3.378 3.45 3.56 3.792
5 1.139 1.248 1.947 2.721 3.369
6 1.137 1.241 1.944 2.261 2.450
7 1.114 1.213 1.913 2.252 2.439
8 1.112 1.209 1.91 2.226 2411
9 1.106 1.202 1.903 2.218 2.403
10 1.103 1.199 1.900 2.210 2.395
11 1.102 1.197 1.898 2.204 2.389
12 1.100 1.195 1.897 2.202 2.387
13 1.100 1.195 1.896 2.198 2.382
14 1.099 1.193 1.895 2.198 2.382
15 1.099 1.193 1.895 2.194 2.379
16 1.098 1.192 1.894 2.194 2.378
17 1.098 1.192 1.894 2.192 2.376
Converged

solution 1.098 1.192 1.894 2.192 2.376

2
Table 5.Convergence of frequency parameters Q = ‘*’z_z\/% for a thick plates (v = 0.3,a/b = 1,h/a = 0.5)

with CSCS boundary condition.

Py =P, 1 2 3 4 5
4 3.418 3.499 3.592 4.331 4.432
5 1.656 3.418 3.485 3.585 4.073
6 1.654 2.611 2.635 3.351 3.521

10
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7 1.612 2.580 2.610 3.343 3.517
8 1.609 2.554 2.583 3.304 3.514
9 1.599 2.542 2.572 3.295 3.513
10 1.595 2.533 2.563 3.284 3.513
11 1.593 2.526 2.556 3.276 3.512
12 1.590 2.523 2.553 3.273 3.512
13 1.590 2,519 2.549 3.267 3.512
14 1.587 2517 2.548 3.267 3.512
15 1.587 2514 2.545 3.263 3.512
16 1.586 2514 2.544 3.263 3.512
17 1.586 2512 2.542 3.260 3.512
Converged

solution 1.586 2512 2.542 3.260 3.512

3.2. Discussion

The results obtained for an isotropic plate by applying Higher-order using rectangular p-element, are compared
with those available in the literature. The linear natural frequencies of plates with free edges (FFFF), simply
supported (SSSS), fully clamped plates (CCCC), and combined boundary condition (CFCF), (SFSF) are
considered.

The frequency parameter of the plate is expressed as

b [ph
Q= wn—z %, (36)
Eh3 . I
Where D = ) is the flexural rigidity of the plate.

The first five frequency parameters Q for simply-supported (SSSS) square plates with different thickness-side
ratio h/b = 0.001, 0.1, 0.2, 0.5 computed using the present method are given in Table 6 and compared with
other published solutions, Leissa [17], Houmat [24], 3-D exact solution [18], Nayak [9], The authors in 1956
[2], Lim and his colleagues [18], Srinivas and his colleagues [19], Malik and Bert, 1998 [27], Zhou and his
colleagues [20], very good agreement can be observed, in the results with concealment compare of Nayak [9]
are obtained with 1245 DOF, or ours are obtained with 480 DOF Py = P,, = 19, in the example illustrated in

table 6, a very good accuracy is observed.

In table 7, good agreement is achieved by comparing the present results with those obtained by Wang [21],
Leissa [17], Lim and his colleagues [1], Liew and his colleagues [23], Wang [22], The first five frequency
parameters Q for fully clamped (CCCC) square plates with different thickness-side ratio
h/b =0.001,0.1,0.2,0.5.

11
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2
Table 6.Comparison of frequency parameters Q. = m%\/% of a SSSS square plate (v = 0.3).

h/a Solution methods 1 2 3 4 5
0.001  Present (P6=Pw=19) 2,000 5,003 5,003 8,004 10,017
CPT-exact [17] 2,000 5,000 5,000 8,000 10,000
0.1 Present (480 dofs) 1,932 4,609 4,609 7.074 8.622

HSDT FEM [9] (1245 dofs) 1,931 4,614 4,614 7.085 8.657

MindlinTheory [2] 1,931 4,605 4,605 7.064 8.607
HSDT [18] 1,932 4,609 4,609 7.073 8.617
3-D exact [19] 1,934 4,622 4,622 7.103 8.662
0.2 Present (PO=Pw=12) 1,768 3.870 3.870 5.599 6.619
MindlinTheory [2] 1,766 3.858 3.858 5.573 -
3-D exact [19] 1,756 3.899 3.899 5.653 -
05 Present (PO=Pw=6) 1,245 2.308 2.308 2.919 2.919
HSDT [18] 1,245 2.308 2.308 2.917 2.917
3-D exact [19] 1,259 - - - -
3-D Ritz [20] 1,259 2.331 2.331 - -

2
Table 7.Comparison of frequency parameters (0 = w% /% of a CCCC square plate (v = 0.3).

h/a Solution methods 1 2 3 4 5
0.001  Present (P6=Pw=24) 3.674 7.506 7.506 11.162 13.488
CPT Ritz (S wang) [21] 3,646 7,436 7,436 10,945 13,332
CPT Ritz [17] 3,647 7,438 7,438 10,970 13,338
0.1 Present (PO=Pw=22) 3.306 6.323 6.323 8.879 10.477
HSDT [18] 3,303 6,311 6,311 8,858 10,446
3-D Ritz [22] 3,322 6,346 6,346 8,903 10,498
0.2 Present (P6=Pw=22) 2.720 4.786 4.786 6.451 7.384
MindlinTheory [23] 2,681 4,675 4,675 - -
0.5 Present (P6=Pw=14) 1.593 2.550 2.550 3.358 3.685

12
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HSDT [18] 1,587 2.536 2.536 3.337 3.684

3-D Ritz [22] 1,550 2,515 2,515 3,193 3.654

In table 8, good agreement is achieved by comparing the present results with those obtained by, Liew and his
colleagues . [23] and Lim and his colleagues [18], The first five frequency parameters Q for combined
boundary condition (CFCF) square plates with tree different thickness-side ratio h/b = 0.01, 0.1, 0.5.

2
Table 8.Comparison of frequency parameters Q = "0:_2\/% of a CFCF square plate (v = 0.3).

h/b Solution methods 1 2 3 4 5
0.01 Present (PO=Pw=22) 2.245 2.673 4.410 6.189 6.795
3-D Ritz [22] 2.248 2.674 4.408 6.197 6.799
0.1 Present (PO=Pw=22) 2.095 2441 3920 5366  5.813
HSDT [18] 2.093 2438 3913 5357 5.802
3-D Ritz [22] 2.105 2.449 3.923 5.386 5.827
0.5 Present (PO=Pw=17) 1.098 1.192 1.894 2.192 2.376
HSDT [18] 1.095 1.189 1.891 2.185 2.369
3-D Ritz [22] 1.072 1.193 1.871 2.193 2.325

In table 9, shows a comparison of results for square thin and thick plates by, Houmat [24], and Lim and his
colleagues [18], The first five frequency parameters Q for free edges (FFFF) square plates with different
thickness-side ratio h/b = 0.001, 0.1, 0.5.

2
Table 9.Comparison of frequency parameters Q = w i_z\/%h of a FFFF square plate (v = 0.3).

h/a Solution methods 1 2 3 4 5
0.001  Present (PO=Pw=20) 1,365 1,986 2460 3,529 6,199
HFEM [24] 1,365 1,986 2,459 3,526 6,190
0.1 Present (P6=Pw=20) 1,291 1,919 2,363 3,239 3,239
HSDT [18] 1,289 1,919 2,363 3235 3235
0.5 Present (P6=Pw=12) 0,892 1,264 1,511 1.789 1.789
HSDT [18] 0,891 1,264 1,511 1.788 1.788

13
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In table 10, good agreement has been achieved. The attained accuracy is also confirmed by comparing our
results, Leissa [17], Hosseini and his colleagues [25,26], Malik [27], Liew and his colleagues [23], The first

five frequency parameters Q = w a?,/ph/D for combined boundary condition (SFSF) square plates with
different thickness-side ratio h/b = 0.001, 0.1,0.2, 0.5.

Table 10.Comparison of frequency parameters Q = w a%,/ph/D of a SFSF square plate (v = 0.3).

h/a Solution methods 1 2 3 4 5
0.001 Present (P6=Pw=17) 9.638 16.142 36.730 39.027 46.860
CPT-exact [17] 9,631 16,135 36,726 38,945 46,738
HSDT Exact [25] 9,631 16,131 36,716 38,943 46,732
0.1 Present (PO=Pw=20) 9,442 15,401 33,896 36,367 42,821
Exact FSDT [26] 9,446 15405 33,916 36,425 42,887
3-D DQM [27] 9,446 15,400 33,911 36,437 42,887
3-D Ritz [22] 9,446 15,400 33,913 36,438 42,887
HSDT Exact [25] 9,446 15,392 33,868 36,349 42,801
0.2 Present (PO=Pw=20) 8,984 14,104 29,170 31,296 36,006
Exact FSDT [26] 9,000 14,134 29,256 31,434 36,165
3-D DQM [27] 9,001 14,123 29,263 31,472 36,173
3-D Ritz [22] 9,001 14,122 29,263 31,472 36,173
HSDT Exact [25] 8,984 14,101 29,162 31,293 35,999
0.5 Present (PO=Pw=20) 7,121 10,070 18,196 19,470 21,628
3-D Ritz [22] 7,166 10,100 18,210 19,613 21,652
HSDT Exact [25] 7,121 10,069 18,194 19,469 21,626

In table 11 and 12, in has to study the effect of the boundary conditions, thickness ratio and rapport a/b on
frequency parameters €, These tabulated frequency parameters should be useful as benchmark solutions for
researchers who are developing numerical techniques and software for solving isotropic HSDT plate vibration

problems.
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2
Table 11.Frequency parameter Q = w :—Z\/% (v = 0.3) of FFFF, CCCC and CFCF plates.

B.C alb h/a 1 2 3 4 5

FFFF 05 0.1 2.096 2.439 5.172 5.466 7.850
0.2 1.917 2.090 4.219 4.477 6.220
0.5 1.201 1.365 2.278 2.408 2.772
0.1 1.291 1.919 2.363 3.239 3.239
1 0.2 1.187 1.763 2.148 2.798 2.798
0.5 0.892 1.264 1.511 1.789 1.789
0.1 0.865 0.948 1.963 2.166 2.463
1.5 0.2 0.809 0.906 1.766 1.978 2.196
0.5 0.630 0.731 1.243 1.402 1.451
0.1 0.538 0.646 1.409 1.467 2.149
2 0.2 0.524 0.609 1.293 1.367 1.962
0.5 0.538 0.646 1.409 1.467 2.149
0.5 0.1 7.872 9.913 13.323 17.15 17.739
0.2 5.569 6.925 9.039 10.885 11.631
0.5 2.863 3.510 4.331 4541 4.959
0.1 3.306 6.323 6.323 8.879 10.477
1 0.2 2.720 4.786 4.786 6.451 7.384
0.5 1.593 2.550 2.550 3.358 3.685
0.1 2.531 3.811 5.767 5.858 6.831
1.5 0.2 2.140 3.111 4.407 4553 5.149
0.5 1.303 1.804 2.363 2.508 2.755
0.1 2.314 2.960 4.086 5.599 5.632
2 0.2 1.968 2.478 3.331 4.287 4.435
0.5 1.203 1.493 1.939 2.298 2.476
0.5 0.1 2.080 3.152 5.328 6.852 9.214
0.2 1.782 2.473 4.098 5.074 6.851
0.5 1.095 1.253 2.186 2.513 3.434
0.1 2.095 2.441 3.920 5.366 5.813
0.2 1.793 2.036 3.194 4.120 4.430

1
CFCF 0.5 1.098 1.192 1.894 2192 2.376
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15 0.1 2.101 2.264 2.907 4.225 5.381
0.2 1.798 1.915 241 3.446 413
0.5 1.099 1.150 1.443 1.990 2.198
0.1 2.105 2.198 2.555 3.265 4.400
2 0.2 1.800 1.867 2.140 2.703 3.589
0.5 1.100 1.131 1.285 1.619 2.084

2
Table 12.Frequency parameter Q = w :—Z\/% (v = 0.3) of CFFF, CSCS and SFSF plates.

B.C a/b h/a 1 2 3 4 5
CFFF 05 0.1 1.367 1.997 3.658 6.611 7.332
0.2 1.257 1.730 3.018 5.120 5.321
0.5 0.908 1.120 1.834 2.339 2.499
1 0.1 0.348 0.818 2.038 2.586 2.868
0.2 0.339 0.747 1.790 2.282 2.435
0.5 0.296 0.531 1.125 1.502 1.523
15 0.1 0.155 0.502 0.941 1.666 2.294
0.2 0.152 0.467 0.879 1.490 2.057
0.5 0.142 0.346 0.649 1.023 1.380
2 0.1 0.087 0.360 0.534 1.161 1.471
0.2 0.086 0.337 0.513 1.062 1.349
0.5 0.082 0.256 0.417 0.766 0.958
CSCS 05 0.1 7.867 9.898 13.297 17.142 17.7G6
0.2 5.565 6.913 9.023 10.87 11.616
0.5 2.859 3.504 4.319 4.535 4.898
1 0.1 3.302 6.312 6.314 8.854 10.461
0.2 2.710 4.769 4.770 6.412 7.358
0.5 1.586 2.512 2.542 3.260 3.512
15 0.1 2.528 3.804 5.762 5.848 6.814
0.2 2.132 3.093 4.395 4.533 5.115
0.5 1.295 1.779 2.359 2.491 2.728
2 0.1 2.313 2.955 4.078 5.596 5.622
0.2 1.962 2.462 3.310 4.279 4413
0.5 1.194 1.470 1.917 2.294 2.453
SFSF 0.5 0.1 0.945 2.527 3.641 5.716 7.698
0.2 0.900 2.155 3.137 4.575 6.006
0.5 0.718 1.202 1.963 2414 2.611
1 0.1 0.957 1.560 3.434 3.685 4.338
0.2 0.910 1.429 2.955 3.171 3.648
0.5 0.722 1.020 1.844 1.973 2.191
15 0.1 0.964 1.274 2.204 3.702 3.777
0.2 0.917 1.188 1.977 3.185 3.225
0.5 0.726 0.892 1.343 1.945 1.98
2 0.1 0.968 1.153 1.721 2.655 3.711
0.2 0.921 1.085 1.576 2.349 3.193
0.5 0.729 0.831 1.124 1.540 1.984
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4, Conclusion

An hierarchical finite element formulation is presented based on an Higher-order shear plates theory for
homogeneous thick plates, a computer program is developed, A p-version, hierarchical finite element was
presented and applied to thick plate with trigonometric hierarchical shape functions.

1- Based on the Reddy’s higher-order theory, these elements have been implemented with a very simple and
understandable mathematical framework and are easily programmed.

2- High accuracy, stable numerical computation and rapid convergence have been observed in the analysis.

3- The results are compared with other shear deformation theories and exact elasticity solutions. Good
agreement may be noted.

Several examples are solved. The effect of boundary condition and ratio a/b and h/a the analyzes is also studied.
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