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Abstract—It is inherent difficult to directly quantify the
structure of the social networks that describe human rela-
tions. The network resonance method was proposed to elu-
cidate the unknown Laplacian matrix representing social
network structure. This method gives information on the
eigenvalues and eigenvectors of the Laplacian matrix from
observations of the dynamics of a social network. If all
the eigenvalues and eigenvectors are known, the original
Laplacian matrix can be determined. One problem with the
network resonance method is that only limited information
about eigenvectors can be acquired, and only the absolute
values of the vector elements are available. Therefore, to
determine the Laplacian matrix, it is necessary to determine
the signs of each element of the eigenvectors; this task has
order of O(2n) given the combinations of n users for every
eigenvector. This paper proposes a method that determines
eigenvector element signs efficiently by running a sign de-
termination algorithm in parallel and uses only those with
fewer calculation amount. The proposal executes sign de-
termination in polynomial time. We also reduce the calcu-
lation overhead by applying compressed sensing; the com-
putational complexity of sign determination is reduced to
almost O(n2).

1. Introduction

The social network is intended to represent human rela-
tionships but it is inherently difficult to directly observe a
complete network because it is large and complicated. A
more practical approach is to indirectly estimate the struc-
ture of the network. One interesting candidate, the network
resonance method, derives information on eigenvalues and
eigenvectors of the Laplacian matrix from observations of
dynamics on the social network for an unknown Laplacian
matrix representing the social network structure [1, 2, 3].
This approach is valid because if all eigenvalues and eigen-
vectors are known, the original matrix can be determined.
Social networks have the characteristic being scale-free
[4, 5]. This means that there are few large-degree nodes
(here, nodes having a large the number of connected links),
while most nodes have few links. Therefore, the link struc-
ture of social networks is sparse. Utilizing this feature, ap-

plying the compressed sensing to a method for indirectly
estimating the structure of the social network is an attrac-
tive approach. We can expect to estimate the sparse link
structure of social networks from incomplete set of eigen-
values and eigenvectors.

The network resonance method can determine the struc-
ture of a social network indirectly; for this, it obtains
information on eigenvalues and eigenvectors of the un-
known Laplacian matrix describing the structure of a so-
cial network from observations of the network’s dynamics
[1, 2, 3]. Once all eigenvalues and eigenvectors are known,
the original Laplacian matrix can be determined. One is-
sue with the network resonance method is that only limited
information can be acquired about eigenvectors, and only
the absolute values of the vector elements can be known.
Therefore, to determine the Laplacian matrix, it is neces-
sary to determine signs of each element of the eigenvec-
tors. It is possible to determine signs from the orthogonal-
ity of eigenvectors, but this incurs significant computation
overhead. For a network with n nodes, the corresponding
Laplacian matrix is a square matrix of n × n, so we need
to determine the combination of signs of the n elements of
the n different eigenvectors. There are O(2n) combinations
of n users for every eigenvector. Therefore, calculating the
signs requires exponential time of O(n 2n) in the worst case.

In this paper, we propose a method that can efficiently
determine the signs of elements of the eigenvectors by
running multiple sign determination algorithms in parallel,
and by stopping the process at the time when the desired
number of vectors are obtained. We show that the pro-
posed method completes the process of sign determination
in polynomial time to n. In addition, since Laplacian ma-
trixes that describe social networks are sparse in general,
we also reduce the calculation amount by applying com-
pressed sensing; this reduces the computational complexity
of the sign determination to almost O(n2).

The rest of this paper is organized as follows. In Sec. 2,
we introduce a method that can efficiently determine the
sign of the absolute value of the elements of eigenvectors.
In Sec. 3, we evaluate the computational complexity of our
sign determination algorithm. Sec. 4 draws the conclusions
of this work.
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2. Proposed Method to Determine Signs of Eigenvector
Elements

In this section, we detail an algorithm that can de-
termine the signs of the elements of vector v+µ =

(|vµ(0)|, |vµ(1)|, . . . , |vµ(n − 1)|), which consists of the ab-
solute value of the eigenvector’s element estimated by the
network resonance method. First of all, we choose two
eigenvectors from among all eigenvectors and compute the
product for each pair of elements of the chosen two vectors
and sort the products in descending order, as follows

rµν := ( |v̄µ(0) v̄ν(0)|, |v̄µ(1) v̄ν(1)|, . . . , |v̄µ(n − 1) v̄ν(n − 1)| ).
(1)

The relative sign of the elements can be determined by us-
ing the orthogonality of the eigenvectors v+µ and v+ν , as in

vµ · vν = δµν,

where δµν is the Kronecker delta. The relative sign is pos-
itive if the corresponding elements of the two vectors are
the same sign, or negative otherwise. Let σµν be the vector
of relative signs associated with vector (1). Then, the sign
determination problem can be expressed as the problem of
finding σµν that minimizes ϕµν, as

ϕµν :=
∣∣∣rµν · σµν∣∣∣ =

∣∣∣∣∣∣∣
n−1∑
i=0

rµν(i)σµν(i)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
n−1∑
i=0

v̄µ(i) v̄ν(i)σµν(i)

∣∣∣∣∣∣∣ , σµν(i) = ±1.

(2)

In the sign determination process, we initially set σµν(0)
to +1 or −1, and then determine the signs from σµν(1) until
σµν(n− 1). To find the optimal solution of the combination
of signs, we search depth-first by applying the branch and
bound method to the binary search tree that represents the
combination of elements of the σµν. In the search, we in-
troduce the following pruning and stopping rule to reduce
the calculation load.

1. If ϕµν = 0, the combination of signs has been found
whose inner product of two eigenvectors is 0; so the
algorithm is stopped.

2. If the sign of ϕµν changes, ϕµν will never be smaller
in that subtree, so all subsequent combinations are
pruned.

As an example, we search for the optimal combina-
tion of the σµν corresponding to rµν = (6, 4, 3, 2, 1). Let
σµν(0) = −1 and σµν = (−1,−1,−1,−1,−1) be the ini-
tial state. Figure 1 shows the binary search tree that rep-
resents the combinations of σµν. In this search, choosing
a left branch means that the corresponding element of σµν
is +1, while choosing a right branch means that the cor-
responding element of σµν is −1. At first, we choose the

Figure 1: An example of the binary search tree in the sign
determination algorithm

left branch, which means σµν(1) = +1, and so ϕµν = −8.
Similarly, if we again choose the left branch, which means
σµν(2) = +1, we have ϕµν = −2. We again choose the left
branch, which meansσµν(3) = +1, the value of ϕµν changes
from negative to positive ϕµν = +2. At this point, the prun-
ing rule stops branching and we backtrack and choose the
right branch, which means σµν(3) = −1. Next we choose
the left branch which means σµν(4) = +1 and ϕµν = 0, so
the stopping rule is triggered. This search determines that
σµν = (−1,+1,+1,−1,+1).

Next, we explain two efficient methods for determining
the sign of the elements of the n eigenvectors. The first
method executes multiple sign determination algorithms in
parallel, and use only the combinations that can be calcu-
lated more rapidly. There are n(n − 1)/2 pairs of different
vectors from n vectors v+µ (µ = 0, 1, . . . , n−1). Considering
two kinds of initial settings, that is, the case where the first
element has the same sign and the case where it has differ-
ent sign, there are n(n − 1) combinations. We run n(n − 1)
of sign determination algorithms in parallel, and stop all of
them when the signs of the first n different eigenvectors are
determined.

Fig.2 shows the relationship between the calculation
amount distribution of the sign determination algorithms
and the partial calculation amount of n different eigenvec-
tors that can be calculation earlier. In the worst case, a
sign determination calculation requires exponential time of
O(2n) with respect to the number of nodes n, but since
the actual calculation amount is varied, some will be com-
pleted more rapidly. Since Laplacian matrix estimation re-
quires only n different eigenvectors, by using most rapidly
obtained n eigenvectors, we might be able to stop the algo-
rithms in polynomial time, as indicated by the red line in 2.
Note that ratio of n to n(n − 1) decreases as n increases. To
achieve this approach, we execute n(n − 1) sign determina-
tion algorithms step by step in parallel.

The second method is to apply compressed sensing to
the estimation of the Laplacian matrix. Since the Laplacian
matrix of a social network is sparse, applying compressed
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Figure 2: Intuitive image of calculation load reduction

sensing can reduce the number of eigenvectors required in
estimating the Laplacian matrix [7]. By using this method,
the original Laplacian matrix can be estimated from a sub-
set of the eigenvalues and eigenvectors. The larger the
number of nodes is, the greater the sparseness of the Lapla-
cian matrix is, and thus the estimation efficiency increases.
To evaluate the efficiency of this method, we experimen-
tally examine how many eigenvalues and eigenvectors are
required to estimate a Laplacian matrix. Let α be the ra-
tio of the number of eigenvectors required for estimating a
Laplacian matrix with compressed sensing to the number
of all eigenvectors, n.

The experimental conditions are as follows. We define
the estimation as having succeed if the values of all el-
ements of the Laplacian matrix estimated by compressed
sensing are less than 0.01 from the true values. Ratio α is
obtained from the smallest number of eigenvectors when
the estimation is successful, and we investigate the depen-
dency of α on n. In the experiment, we use a network model
generated by the Barabási-Albert model (BA model) [8];
it well reflects the scale-free nature of social networks. In
addition, there are three initial nodes in BA model and each
additional node has three links; all link weights are 1. Fig-
ure 3 shows the experiment’s result. The n dependency of
α is given by

α = −0.047 log n + 0.73 (n ≥ 50) (3)

Therefore, the Laplacian matrix can be estimated more ef-
ficiently as the number of nodes increases. Note that we do
not need to determine the sign of all n eigenvectors. Since
the determination process of the sign of elements of eigen-
vectors is terminated when the computation for the first

Figure 3: n dependency of the ratio α

[α n] (α < 1) of the eigenvectors is completed, the com-
putational complexity can be further reduced.

Finally, after calculating relative signs of distinct n (or
[α n]) eigenvectors, we determine the sign of each eigen-
vector. The first element, vµ(0) (µ = 0, 1, . . . , n − 1), of
each eigenvector can be set positive. Since it is known that
the signs of the element of the eigenvector associated with
the zero eigenvalue v0 is the same, the sign of the elements
of vµ can be determined from the relative sign σ0µ of the
product of elements (v0, vµ). By repeating the procedure,
we can determine the sign of the n (or [α n]) eigenvectors.

3. Experimental Evaluation of the Proposed Method

In this section, we evaluate the computational complex-
ity of the proposed method. In this experiment, we use a
network model generated by the BA model; the details are
the same as shown in the previous section. The number
of computation steps counted is the total number of search
nodes of the binary search tree that represents the combi-
nations of each element of relative sign. The number of
computation steps is the number of steps in the process of
sign determination of n(n−1) combinations of vectors until
the time of terminate the process.

The comparison uses three different sign determination
algorithms, and evaluates their computational complexity.
The first is to determine the signs for the n eigenvectors
using the proposed method. The second is to determine
the signs only for the [α n] eigenvectors using the proposed
method based on compressed sensing. The third is the sim-
ple approach of applying the sign determination algorithm
sequentially to the pairs (v0, vµ) (µ = 0, 1, . . . , n − 1) of the
eigenvectors.

Figure 4 shows the results. In determining the signs of
the n (α = 1) eigenvectors, the computational complexity
is roughly O(n3) when n is sufficiently large. When us-
ing the n dependency of α in the compressed sensing based
method, the calculation complexity is almost O(n2) when n
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Figure 4: The calculation complexity of the sign determi-
nation algorithm

is sufficiently large (n ≥ 450). Finally, we explain the re-
sult of calculating the sign determination algorithm of the
n pairs without using the proposed method. In this case,
it is impossible to avoid the huge numbers of calculations,
some values were greater than 231 − 1. From these compar-
isons, we can recognize that as the proposed method takes
polynomial time with respect to n it is the preferred choice.

4. Conclusion

In this paper, in the situation that the absolute values of
the elements of the eigenvectors are known, we proposed
an efficient method for determining their signs and evalu-
ated its computational complexity. For eigenvectors with n
elements, there are 2n combinations of signs. Therefore, it
takes exponential time in n in the worst case to identify the
correct combinations of signs. To ease this complexity, we
proposed the following two methods. The first method con-
ducts sign determination calculations for n(n − 1) different
pairs for n eigenvectors in parallel. By using only the n pair
that were calculated first, the solution could be achieved
in the polynomial time of O(n3). The second method ap-
plies compressed sensing to Laplacian matrix estimation
because the Laplacian matrix for social networks is, in gen-
eral, sparse. By using this method, in the case that n is
sufficiently large, the computational complexity of the sign
determination algorithm is reduced to almost O(n2). Our
results show that we the structure of social networks can
be efficiently estimated from the eigenvalues and absolute
values of elements of the eigenvectors that can be observed
by applying the network resonance method.
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mechanics of complex networks,” Rev. Mod. Phys.,
vol. 74, pp. 47–97, Jan 2002.

[6] Yoshiyuki Kabashima, “Statistical-mechanical ap-
proach to compressed sensing,” The Brain & Neural
Networks, vol. 17, no. 2, pp. 70–78, 2010.

[7] Shun Sugimoto and Masaki Aida, “Estimating the
structure of social networks from incomplete sets of
observed information by using compressed sensing,”
In proc. IEEE Latin-Americal Conference on Commu-
nications (IEEE LATINCOM 2017), 2017.
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