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non-linear term structure model that is able to capture the zero lower bound of interest

rates.

University Web Site URL Here (include http://)
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)
btkchung@gmail.com


Acknowledgements

I would like to express my sincere gratitude to my thesis supervisor, Professor Keiichi

Tanaka, for his patient guidance and continuous support during my doctoral study. I

have learnt greatly from Professor Tanaka’s mathematical rigor, succinct writing style

and diligent approach to tackle research problems. His teaching and guidance have

helped me greatly to understand many important concepts in probability theory and

financial engineering.

I would like to thank Professor Hirokuni Iiboshi for his teaching on Bayesian economet-

rics as well as the joint project on estimating non-linear term structure modelling as

an output. Professor Iiboshi is always kind to me. He is also extremely resourceful on

econometrics techniques as well as frontier macro-economics problems.

I have benefited greatly from the stimulating academic environment and strong network

of the TMU finance group. I would like to thank Professor Masaaki Kijima, Professor

Yukio Muromachi and Professor Takeshi Shibata for various supports as well as the

organization of conference and workshop. Professor Muromachi’s class on risk man-

agement and Professor Shibata’s class on contract theory have offered me an excellent

opportunity to broaden my knowledge in financial engineering beyond my research area.

Special thanks goes to Professor Kumiko Hattori at the Department of Mathematics

and Information Sciences for offering me to join her classes on probability theory.

My sincere gratitude also goes to Professor Yue-Kuen Kwok at the Hong Kong Univer-

sity of Science and Technology for encouraging me to pursue PhD study in Japan and

continue doing research on financial engineering. The chapters on equity-credit hybrid

modeling and pricing of contingent convertibles are composed from the collaboration

with Professor Kwok since I was studying the Master in Financial Mathematics in Hong

Kong.

I am grateful to the organization of the RTG Summer School in Financial Mathematics

at the Princeton University and the NUS-Santander Doctorate Workshop in Advanced

Financial Risk Management at the National University of Singapore. I also thank the

participants at the Quantitative Method in Finance (QMF) 2013, the 8-th Congress of

Bachelier Society as well as the 2014 TMU Finance Workshop for the discussions and

helpful comments.

I gratefully acknowledge the internship opportunities at the Hong Kong Institute for

Monetary Research (HKIMR) and the Mitsubishi Trust Investment Technology Co. Ltd

(MTEC), which offer me excellent environment to conduct research at the intersection

in between academic and industry.

ii



iii

I would like to thank all of my friends and colleagues for their continuous support

throughout my doctoral study in Japan.

The scholarship from the Asian Human Resources Fund granted by the Tokyo Metropoli-

tan Government is gratefully acknowledged.



Contents

Abstract i

Acknowledgements ii

List of Figures viii

List of Tables x

1 Introduction 1

1.1 Optimal Short-Covering of a Security . . . . . . . . . . . . . . . . . . . . . 2

1.2 Equity-Credit Hybrid Modeling . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Term Structure Modeling near the Zero Lower Bound . . . . . . . . . . . 8

1.4 Mathematical Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Copyrights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

I Decision Making 12

2 Optimal Timing for Short-Covering of an Illiquid Security 13

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Model Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Short-Seller’s Problem . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Active Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.1 The impact of loan fee rate and interest rate . . . . . . . . . . . . 26

2.4.2 The impact of recall risk . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.3 The impact of volatility . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.6.1 Proof of Lemma 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.6.2 Short-Seller’s Problem . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.6.3 Proof of Proposition 2.3 . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Optimal Short-Covering with Regime Switching 36

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

iv



Contents v

3.2 Regime Switching Stock Price Model . . . . . . . . . . . . . . . . . . . . . 36

3.2.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.2 Auxiliary problem and lower bounds . . . . . . . . . . . . . . . . . 38

3.3 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.1 Value function and optimal threshold . . . . . . . . . . . . . . . . 39

3.3.2 Smooth-fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4.1 Parameter calibration . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4.2 The impact of recall risk . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.3 The impact of transition intensity . . . . . . . . . . . . . . . . . . 47

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.6.1 Proof of Lemma 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.6.2 Proof of Proposition 3.2 . . . . . . . . . . . . . . . . . . . . . . . . 50

3.6.3 Condition (3.6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.6.4 Proof of (3.9) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

II Pricing 53

4 Equity-Credit Hybrid Modeling and its Application 54

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Affine Equity-Credit Modeling . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.1 Affine process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.2 Moment generating function . . . . . . . . . . . . . . . . . . . . . . 58

4.2.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Pricing of Defaultable European Options . . . . . . . . . . . . . . . . . . . 62

4.3.1 The transform analysis . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.2 European options and put-call parity . . . . . . . . . . . . . . . . . 63

4.4 Pricing of Capped Variance Swaps . . . . . . . . . . . . . . . . . . . . . . 65

4.4.1 The cap feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4.2 Continuous-monitoring . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4.3 Discrete-monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5 Numerical Illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.5.1 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.5.2 The impact of default risk . . . . . . . . . . . . . . . . . . . . . . . 75

4.5.3 Interaction between volatility risk and default risk . . . . . . . . . 76

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.7.1 Proof of Lemma 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.7.2 Proof of Theorem 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 Pricing Models of Contingent Convertibles 80

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2 Pricing of a CoCo Bond . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2.1 Recent development . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2.2 The structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84



Contents vi

5.3 An Enhanced Hybrid Modeling . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3.2 Conversion value . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4.1 A simple reduced-form model . . . . . . . . . . . . . . . . . . . . . 90

5.4.2 Brownian capital ratio . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.4.3 Mean-reverting capital ratio . . . . . . . . . . . . . . . . . . . . . . 94

5.4.4 State-dependent intensity . . . . . . . . . . . . . . . . . . . . . . . 95

5.5 Numerical Illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.5.1 The impact of correlation . . . . . . . . . . . . . . . . . . . . . . . 97

5.5.2 The impact of stock price volatility . . . . . . . . . . . . . . . . . . 98

5.5.3 The impact of intensity . . . . . . . . . . . . . . . . . . . . . . . . 98

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.7.1 First-passage-time problem for the bivariate process . . . . . . . . 100

5.7.2 Proof of Lemma 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.7.3 Proof of Lemma 5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.7.4 Proof of Proposition 5.4 . . . . . . . . . . . . . . . . . . . . . . . . 108

5.7.5 Proof of Proposition 5.5 . . . . . . . . . . . . . . . . . . . . . . . . 108

6 Asymptotic Expansion for Multifactor Heston Model 109

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.2 Multifactor Heston Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.2.1 Mathematical formulation . . . . . . . . . . . . . . . . . . . . . . . 112

6.2.2 Stochastic correlation and the term structure of volatility . . . . . 113

6.3 Asymptotic Expansion for Multifactor Heston Model . . . . . . . . . . . . 114

6.3.1 The perturbed multifactor Heston model . . . . . . . . . . . . . . 115

6.3.2 Asymptotic expansion . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.4 Numerical Illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.4.1 Constant model parameters . . . . . . . . . . . . . . . . . . . . . . 124

6.4.2 Time-dependent correlation . . . . . . . . . . . . . . . . . . . . . . 129

6.5 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.5.1 Data and the calibration procedure . . . . . . . . . . . . . . . . . . 131

6.5.2 S&P 500 index option . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.5.3 Nikkei 225 index option . . . . . . . . . . . . . . . . . . . . . . . . 138

6.5.4 Model-implied long-dated volatility . . . . . . . . . . . . . . . . . 141

6.5.5 Computational time . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.7.1 Preliminary results with Malliavin calculus . . . . . . . . . . . . . 143

6.7.2 Proof of (6.14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.7.3 Proof of (6.17) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.7.4 Proof of (6.23) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148



Contents vii

III Empirical Analysis 150

7 Non-linear Term Structure Modeling near Zero Lower Bound 151

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.2 Term Structure Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7.2.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7.2.2 Affine term structure model . . . . . . . . . . . . . . . . . . . . . . 155

7.2.3 Quadratic term structure model . . . . . . . . . . . . . . . . . . . 155

7.2.4 Estimation method . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.2.5 Data and factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.3 Estimation Results: Term Structure Models . . . . . . . . . . . . . . . . . 159

7.3.1 Model estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7.3.2 Prediction of macro factors and bond yields . . . . . . . . . . . . . 165

7.3.3 Robustness check . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7.4 Methods of Prediction Pooling . . . . . . . . . . . . . . . . . . . . . . . . 170

7.4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

7.4.2 Static prediction pooling . . . . . . . . . . . . . . . . . . . . . . . . 171

7.4.3 Markov-switching prediction pooling . . . . . . . . . . . . . . . . . 171

7.4.4 Dynamic prediction pooling . . . . . . . . . . . . . . . . . . . . . . 172

7.4.5 Comparison with Bayesian model averaging . . . . . . . . . . . . . 173

7.4.6 Estimation method . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

7.5 Estimation Results: Prediction Pooling . . . . . . . . . . . . . . . . . . . . 174

7.5.1 Prediction score . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

7.5.2 Static pooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

7.5.3 Markov-switching pooling . . . . . . . . . . . . . . . . . . . . . . . 176

7.5.4 Dynamic pooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

7.5.5 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

7.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

7.7.1 Bond pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

7.7.2 Bayesian estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 184

8 Conclusion 189

Bibliography 191



List of Figures

1.1 Mechanism of a short-selling transaction in the financial market. . . . . . 4

1.2 Implied volatility and CDS spread of Citibank around the Lehman crisis. 6

1.3 CoCo price and stock price of the Lloyds banking group since issuance. . 8

1.4 The US treasury bond yields including the Lehman financial crisis. . . . . 9

2.1 Graph of H for different values of k and l. . . . . . . . . . . . . . . . . . . 20

2.2 The lower bounds h0 and h∞ of the value function v. . . . . . . . . . . . 22

2.3 The active condition and optimal threshold for the put-type problem. . . 23

2.4 Investor’s active region. The origin on the (η, ρ)-plane corresponds to the
point (β, β − µ) on the (q, δ)-plane. . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Value function and optimal threshold for the put-type problem. . . . . . . 27

2.6 Value function and optimal threshold for the call-type problem. . . . . . . 28

2.7 Value function in an up-market with µ = 0.03. . . . . . . . . . . . . . . . 29

2.8 The impact of recall risk. . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.9 The impact of volatility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1 The Nikkei 225 index since early 1990s. The shaded area is the reces-
sion period as announced by the Economic and Social Research Institute
(ESRI) in Japan. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 The historical volatility of Nikkei 225 based on the EWMA method with
a decay factor of 0.06. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Value functions and optimal thresholds based on Table 3.1. . . . . . . . . 46

4.1 The distribution of the realized variance with continuous- and discrete-
monitoring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2 The excess probability of continuous-monitoring realized variance. . . . . 75

4.3 Fair strike of capped variance swap versus the hazard rate of default. . . . 76

4.4 Fair strike versus volatility when volatility interacts with hazard rate of
default. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.1 Historical time-series of tier-1 capital ratio, CoCo price, stock price and
CDS spread for the Lloyds Banking Group. All data are from Bloomberg. 84

5.2 Impact of correlation to the CoCo bond price. . . . . . . . . . . . . . . . . 98

5.3 Impact of stock price volatility to the CoCo bond price. . . . . . . . . . . 98

5.4 Impact of JtNV intensity to the CoCo bond price. . . . . . . . . . . . . . 99

6.1 The plot of the absolute approximation error in put option price with
1-year maturity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.2 Implied volatility surfaces in Example 6.3. . . . . . . . . . . . . . . . . . . 130

viii



List of Figures ix

6.3 The time-series dynamics of the estimated initial volatility and long-term
mean level in volatility points (computed as square-root of the estimates)
from monthly calibration. . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.4 SPX Index on 28 Apr 2010: the plot of the calibrated model-implied
volatility surface, calibration errors, and calibration result to the Bloomberg
theoretical term structure of variance swap. . . . . . . . . . . . . . . . . . 139

6.5 SPX Index on 26 May 2010: the plot of the calibrated model-implied
volatility surface, calibration errors, and calibration result to the Bloomberg
theoretical term structure of variance swap. . . . . . . . . . . . . . . . . 139

6.6 NKY Index on 30 Mar 2011: the plot of the calibrated model-implied
volatility surface, calibration errors, and calibration result to the Bloomberg
theoretical term structure of variance swap. . . . . . . . . . . . . . . . . 140

6.7 Model-implied volatility surface up to 10 years by using the calibrated
results for the SPX in Section 5.2.2. and the NKY in Section 5.3.2. . . . . 141

6.8 Model-implied term structure of variance swap rates up to 10 years by
using the calibrated results for the SPX in Section 5.2.2. and the NKY
in Section 5.3.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.1 Filtered macro factors and fitted bond yields by the ATSM . . . . . . . . 163

7.2 Filtered macro factors and fitted bond yields by the QTSM . . . . . . . . 164

7.3 Factor loadings an and bn for ATSM . . . . . . . . . . . . . . . . . . . . . 165

7.4 Factor loadings an, bn and cn for QTSM . . . . . . . . . . . . . . . . . . . 166

7.5 Forecasting of macro factors and bond yields (annualized) by the ATSM . 168

7.6 Forecasting of macro factors and bond yields (annualized) by the QTSM . 169

7.7 Log score comparison of the ATSM and QTSM . . . . . . . . . . . . . . . 175

7.8 Static prediction pool (4Q-ahead forecast) . . . . . . . . . . . . . . . . . . 176

7.9 Markov-switching prediction pool (4Q-ahead forecast) . . . . . . . . . . . 178

7.10 Dynamic prediction pool (4Q-ahead forecast) . . . . . . . . . . . . . . . . 180

7.11 Log score comparison (4Q-ahead forecast) . . . . . . . . . . . . . . . . . . 181



List of Tables

3.1 Model parameters for the two-state regime-switching model. . . . . . . . . 45

3.2 Impact of recall risk on the optimal thresholds and value functions. . . . . 47

3.3 Impact of transition intensity on the optimal thresholds (x∗1, x
∗
2). . . . . . 48

4.1 Basic model parameters for the three-factor hybrid model. . . . . . . . . . 73

4.2 Analytical and Monte-Carlo esimates of the defaultable realized variance. 74

6.1 Estimation of put option prices (in percentage of the spot price) for the
two-factor Heston model in Example 6.1. MC Error means the standard
error of the price by Monte-Carlo simulation. . . . . . . . . . . . . . . . . 126

6.2 Estimation of put option prices for the two-factor Heston model in Ex-
ample 6.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.3 Estimation of put option prices under the two-factor Heston model in
Example 6.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.4 Calibrated model parameters and absolute errors (in volatility points) for
the SPX market of the two-factor Heston model. The columns Vol. and
Corr. are the instantaneous volatility (square-root of the variance) and
instantaneous correlation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.5 Calibrated model parameters and absolute errors (in volatility points) for
the NKY market of the two-factor Heston model. . . . . . . . . . . . . . 140

7.1 Posterior estimates of the model parameters for ATSM. The reported
values for the parameters µ and (ΣΣT )ij are multiplied by 10,000. . . . . 161

7.2 Posterior estimates of the model parameters for QTSM. The reported
values for the parameters µ and (ΣΣT )ij are multiplied by 10,000. . . . . 162

7.3 Posterior estimates of the static prediction pool . . . . . . . . . . . . . . . 177

7.4 Posterior estimates of the Markov-switching prediction pool . . . . . . . . 179

7.5 Cumulative log scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

x



Chapter 1

Introduction

Since the seminal paper by Black and Scholes (1973), the family of financial engineering

models have been tested, challenged and improved throughout a number of crisis periods

and the ever-changing macro-financial environment. The recent Lehman financial crisis

in 2008 has highlighted the importance to model the market illiquidity, the interaction

of equity risk and credit risk, as well as the term structure of interest rates close to the

zero lower bound. Several important features of the Lehman crisis are the heightened

counterparty risk exposure, evaporation of market liquidity and freezing of the funding

and security lending market (for example, see Adrian et al., 2013; Brunnermeier, 2010;

Duffie, 2010). The impairment of financial intermediations in turn led to abrupt fluctu-

ations in asset prices, credit spreads and foreign exchange rates. Although it has been

almost a decade since the outbreak of Lehman crisis, its impact on the financial market

has been long lasting and has led to numerous reforms in the financial market structures

and regulations. Furthermore, both the academic researchers and market participants

have started looking for the next generation of financial engineering models that are

capable to work well under the new normal going forward.

This thesis is aimed to address several important issues in the financial market, including

the decision making for trading, the pricing of financial instruments and the empirical

analysis on bond yields. The topics are motivated by the new challenges in financial

engineering as emerged from the recent financial crisis of 2008. In the first part, I study

the optimal stopping problem for a short-selling strategy in an illiquid security lending

market. During a crisis period, a fund manager might find it very difficult to borrow

a security for short-selling in order to hedge against the portfolio’s market exposure.

The introduction of the broker’s recall is important when the depth and liquidity of

the security lending market is thin and the continuation of a stock borrowing is not

guaranteed. Moreover, as the borrowing cost increases due to the limited supply and

1
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liquidity, it is necessary to take into account the loan fee which constitutes the running

cost of holding a short position. These features make a short-selling very different from

a buy-and-hold long position and we find that the investor’s decision depends on the

delicate balance between the benefit and the cost of holding the short position.

In the second part, I study the equity-credit hybrid modeling and its application on the

pricing of financial products including defaultable European options, capped variance

swaps and contingent convertible bonds. Empirical evidences show that the spillover

and interaction in between equity risk and credit risk can be significant in particular

during a crisis period. A joint equity-credit modeling is therefore crucial for the pricing

of credit-sensitive equity derivatives and it allows one to develop a cross-asset class

hedging strategy. I also extend the equity-credit hybrid modeling approach to the pricing

of contingent convertible bond, which is a new financial instrument emerging after the

Lehman crisis. Furthermore, I study the asymptotic expansion approach to multifactor

Heston model and perform extensive calibration exercise to the S&P 500 and Nikkei

225 option markets in recent years. The mathematical models developed in this part

are useful for the valuation and risk management of complex derivatives trading in the

financial market.

In the third part, I estimate a non-linear term structure model when interest rates are

close to the zero lower bound in the Japanese government bond market. The realistic

modeling of the dynamics of bond yields under the zero interest rate policy is important

for policy makers to gauge reliable information from the term structure of interest rates.

In particular, I add in the macro-finance feature in order to explain the movements in

bond yields with a richer economic interpretation and potentially improve the predic-

tion of future bond yields by incorporating information beyond the bond market. The

empirical study is useful for policy makers to better understand the market expectation

and risk premium as embedded in the term structure of interest rates.

In the following, I review in more details the background and motivation for these topics.

1.1 Optimal Short-Covering of a Security

Background

The discussion on short-selling has been getting increasing attention among market

participants, policy makers and academic researchers, in particular after the short-sale

ban during the financial crisis in 2008 (Battalio and Schultz, 2011; Battalio et al., 2011).

Short-selling is generally viewed as the market mechanism to correct the short-term

deviation of security price from its fundamental value, and it plays an important role for
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price discovery as well as market efficiency (Boehmer and Wu, 2013; Diether et al., 2009).

In addition, short-selling has a wide range of applications in portfolio management,

relative trading and risk management. Fund managers who want to tailor their market

risk exposure often need to establish short positions to neutralize the portfolio’s volatility,

such as a market neutral strategy or a 130/30 long-short strategy. For relative trading

strategies, such as pair trading and index arbitrage, investors have to take short positions

in order to eliminate the unwanted common risk factors in the basket of stocks. For

derivatives trading, option dealers need to delta-hedge the risk exposure of their option

portfolio by maintaining dynamic short positions. In some applications for convertible

securities, one can strip out the embedded options by shorting the underlying equity.

It is estimated that short-selling trades constitute as much as 20% of New York Stock

Exchange trading volume and almost 75% of the short-sellers are institutional investors

(Diether et al., 2009).

In practice, a short-selling in the financial market can take two forms: the covered short-

selling and the naked short-selling. In the covered short-selling, the short-seller has to

borrow the security from a broker-dealer and sell it outright in the market. At some later

time, the short-seller has to buy back the security and return it to the broker in order to

close the position. On the other hand, a naked short-selling is often performed by market

makers or high-frequency traders who square their positions in a short period, such as

a daily basis (Battalio et al., 2011). As settlements usually take two to three business

days, these investors can sell the security without actually borrowing it by only keeping

the promise to deliver the security and square the position at the end of each trading

day. The liquidity of the security lending market is of a less concern for these investors

with a short-term horizon. In this thesis, we are interested in the optimal short-selling

strategy implemented by an investor who has a relatively long investment horizon in

terms of months or years. Moreover, the investor is intended to make a profit from a

decline in the stock price, instead of taking short-term arbitrage opportunity. Therefore,

we focus on the covered short-selling and assume that the investor must actually borrow

the security from a broker-dealer before selling it in the market.

As mentioned, the study is motivated by the illiquidity and frictions in the security lend-

ing market during a crisis period. The impacts of short-selling constraints on stock and

portfolio return has been well-documented in the empirical finance literature (Diether

et al., 2009; Jones and Lamont, 2002). However, there has been no formal mathematical

analysis on how various short-selling constraints might affect the decision making of a

short-seller. In this thesis, we formulate the short-selling strategy as an optimal stopping

problem and analysis how various short-selling constraints, including the recall risk from

broker, the loan fee payment and the interest rate rebate, influence the decision making

of a short-seller.
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Figure 1.1: Mechanism of a short-selling transaction in the financial market.

Market mechanism and risk profile

The features in the security borrowing/lending market makes a short-selling very dif-

ferent from a buy-and-hold long position. Figure 1.1 illustrates the transaction and

counterparties involved in a typical covered short-selling in the stock market. On the

right hand side, we have some passive long-bias institutional investors, such as mutual

funds, pension funds and tracker funds, who place the shares of stock into the broker-

dealer who acts as the custodian for these investors. The broker-dealer, who holds the

inventory of stocks, has the discretion to lend out the stock to other investors and earn

the loan fee. On the left hand side, the short-seller, such as a hedge fund manager who

implements a short-selling strategy, borrows the stock and sells it in the market. After

that, the short-seller’s objective is to “buy low, sell high” such that the stock is first

sold high and purchased later at a lower price. The buying back and returning of the

stock to the broker is called short covering. At the end, the short-seller makes a profit

from a price decline or a loss from a price rise of the stock.

There are several real-world complications involved in the implementation of a short-

selling strategy. A unique feature in a stock loan contract is that there is no guaranteed

maturity and it is effectively rolled over on a daily basis as documented in D’Avolio

(2002), Duffie et al. (2002) and Jones and Lamont (2002). Hence, the broker holds an

option to recall the stock borrowing at any time. At a recall, the short-seller is then

forced to cover the short position immediately, regardless of the mark-to-market profit or

loss. This means the short-seller faces an uncertain (random) investment horizon in an

illiquid security lending market in which replacing stocks are not immediately available.

The risk of such an involuntary termination of a short-selling strategy is called the recall

risk.

Besides the capital profit/loss associated with the recall risk, the short-seller also has to

take into account the running cost and benefit of holding the short position. The broker

charges the short-seller a loan fee, which is calculated as the loan fee rate times the

stock price times the length of the period. It is worth to note that the loan fee is settled

on a daily basis because both the short-seller and broker can effectively terminate the

borrowing agreement at any time. At the same time, the short-seller deposits the sale
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proceeds into a margin account, which generates interest income called the short interest

rebate. When the interest rate is high, the income may become one of the return drivers

of a short-selling strategy. Hence, the investor’s decision depends on the balance between

the benefit (interest income) and the cost (loan fee) of holding the short position.

1.2 Equity-Credit Hybrid Modeling

Background

The affine jump-diffusion (AJD) models have been widely used in the continuous time

modeling of stochastic evolution of asset prices, bond yields and credit spreads. Some of

the well known examples include the stochastic volatility (SV) model of Heston (1993),

stochastic volatility jump-diffusion models (SVJ) of Bates (1996) and Bakshi et al.

(1997), and stochastic volatility coherent jump model (SVCJ) of Duffie et al. (2000).

The AJD models possess flexibility to capture the dynamics of market prices in various

asset classes while admitting nice analytical tractability. For instance, the affine term

structure models, which fall into the family of AJD models, have been frequently used to

study the dynamics of bond yields and credit spreads (see Duffie and Singleton, 1999).

A number of studies have addressed the importance of including jump dynamics to

valuation and hedging of derivatives. In the modeling of equity derivatives, Bakshi et al.

(1997) illustrate that the stochastic volatility model augmented with the jump-diffusion

feature produces a parsimonious fit to stock option prices for both short-term and long-

term maturities. Empirical studies reported by Bates (1996), Pan (2002) and Erakar

(2004) show that the inclusion of jumps in the modeling of stock price is necessary to

reconcile the time series behavior of the underlying with the cross-sectional pattern of

option prices. In particular, Erakar (2004) concludes from his empirical studies that

simultaneous jumps in stock price and return variance are important in catering for

different volatility regimes.

While the AJD models have been successfully applied in the valuation of both equity

and credit derivatives, the joint modeling of equity and credit derivatives have not been

fully addressed in the literature. Recently, a growing literature has highlighted such

an interaction between equity risk (stock return and its variance) and credit risk (firm

default risk). While the risk neutral distribution of stock return is fully conveyed by

traded option prices of different strikes and maturities, the information of the arrival

rate of default can be extracted from the bond yield spreads or credit default swap

spreads. With the growing liquidity of the credit default swap (CDS) markets, the

CDS spreads provide more reliable and updated information about the credit risk of
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Figure 1.2: Implied volatility and CDS spread of Citibank around the Lehman crisis.

firms. Acharya and Johnson (2007) find that the CDS market contains forward looking

information on equity return, in particular during times of negative credit outlooks. For

equity options, Cremers et al. (2008), Zhang et al. (2009) and Cao et al. (2010) find that

the out-of-the-money put options, which depict the negative tail of the underlying risk

neutral distribution, are closely linked to yield spreads and CDS spreads of the reference

firm. Figure 1.2 shows the implied volatility of 1-year at-the-money option (in %) and

5-year CDS spread (in bps) of the Citibank around the Lehman financial crisis. The

strong empirical relationship motivates the joint modeling of equity and default risk, in

particular during periods of financial distress.

Variance swaps with default risk

The pricing of exotic derivatives under the equity-credit model remains rare because of

the loss in analytical tractability when path-dependent features are incorporated. For-

tunately, it is recently found that the pricing of variance swaps and volatility derivatives

can be made tractable by exploring the property of the characteristic function under

the affine modeling framework. Variance swap is a financial instrument actively traded

in the over-the-counter (OTC) market since last decade. At maturity, the buyer of a

variance swap receives the difference between the realized variance over the contractual

period and a fixed strike rate, which is called the variance swap rate. We refer the

readers to Zheng and Kwok (2014) for an excellent review as well as the general pricing

formula for a wide range of discretely-monitored exotic variance swaps, including the

corridor variance swap and conditional variance swap.
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The motivation of this work is to study the pricing of single-name variance swap in

the presence of default risk. While previous studies have demonstrated the quantitative

impact of stock price jumps (which are usually downside jumps) is significant to the

pricing of variance swaps, the modeling of default risk has not been explicitly taken into

account. It is well-known among market participants that single-name variance swap is

exposed to default risk of the reference company and variance swap has been used as

proxy instrument to hedge and trade credit risk - for example, to explore the arbitrage

opportunity in between equity implied volatility versus credit spread written on the same

company.1 Having said that, before the outbreak of the financial crisis in 2008, most

of the single-name variance swaps are referenced on high-grade companies in which the

default probabilities are perceived to be small. Consequently, the impact of default risk

has been largely ignored in the pre-crisis valuation of single-name variance swap.

Contingent convertibles

The contingent convertible bond (CoCo) is a hybrid fixed income security that provides

a loss-absorption mechanism when the capital of the issuing bank falls close to the

regulatory level as required by the Basel Committee on Banking Supervision. At a

triggering event, the bond is automatically converted into the equity of the issuing bank

(or an equivalent amount of cash). The conversion provides fresh capital to the issuing

bank and saves it from financial distress. As a result, this can help to mitigate the

chance of a systemic banking crisis while avoiding the use of taxpayer’s money to bail

out distressed financial institutions.

In principle, the pricing of CoCo is related to interest rate risk (due to the coupon and

principal payments), equity risk (if the bond is converted to equity at the trigger event)

and conversion/default risk. The conversion risk can be interpreted as the risk of an

unfavorable conversion to a declined equity price that wipes off the value of the bond.

The investment community typically considers the CoCo bond as a fixed income security

as long as the tier-one capital ratio of the reference bank remains at a healthy level. When

the capital ratio gets closer to the level of trigger such that the conversion probability is

high, the risk profile of a CoCo bond should resemble a long equity position (similar to

distressed fixed income security). Figure 1.3 shows that the CoCo price moves in tandem

with the stock price (in GBP pence) during the sample period and this demonstrate the

hybrid equity exposure of the CoCo bond. From a portfolio management perspective,

it is important to better understand the decomposition of a CoCo bond into its fixed

income and equity components.

1See: Variance swap: An introduction. Equity Derivative Strategy, Bear Stearn (2005) and Variance
Swap, European Equity Derivatives Research, JP Morgan (2006).
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Figure 1.3: CoCo price and stock price of the Lloyds banking group since issuance.

1.3 Term Structure Modeling near the Zero Lower Bound

Background

Since the Lehman crisis in 2008, the US Federal Reserve has adopted various uncon-

ventional monetary policy tools as the nominal policy rate has attained its zero lower

bound (ZLB). These policy tools include: (i) the large-scale asset purchases that aims

to directly affect the interest rates by reducing the supply of treasury bonds and (ii)

the forward guidance on the commitment of the duration of the zero interest rate policy

that indirectly affects the interest rates through the influence on market expectation

about the future path of the policy rate. A number of recent studies have examined the

effectiveness of these policy tools by looking at the term structure of interest rates. For

policy makers, it is crucial to extract the market expectation on future monetary policy

using term structure models in two aspects:

- Gauging the likely path of future interest rate, i.e., forecasting based on the term

structure model.

- Calculation of the term premium which allows one to disentangle from the yield

curve the expected future interest rate and the risk premium as required by in-

vestors in the bond market.

In terms of modeling, the two aspects are linked to each other because one can calculate

the term premium by subtracting the observed forward interest rate by the model-

implied expected interest rate (i.e., the expected path of interest rate). Therefore, the
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Figure 1.4: The US treasury bond yields including the Lehman financial crisis.

main concern is to compute the expected future interest rate under the physical prob-

ability measure instead of the risk-neutral measure as used for the no-arbitrage pricing

of risk-free bonds. Such an exercise is essentially related to an accurate prediction of

future bond yields and hence can be regarded as a forecasting problem. We demonstrate

that a class of non-linear term structure model, known as the quadratic Gaussian term

structure (QTSM) model, provides a highly flexible and analytical tractable framework

to tackle this issue when interest rates are close to the ZLB. By using the log prediction

score criteria as advocated by Geweke and Amisano (2011), we find that the QTSM

provides a more realistic description of the dynamics of bond yields when interest rates

are close to zero. The traditional Gaussian affine term structure model (ATSM) is inad-

equate to the modeling of interest rates near the ZLB. While we employ the Japanese

government bond dataset in the estimation, our empirical results shed light on the future

research on term structure modeling using the US treasury bond yield data.

In the literature, the modeling of the term structure of interest rates near the ZLB

poses two major empirical challenges. Firstly, because nominal interest rates cannot

fall below zero, the model has to preclude negative interest rates and generates an

asymmetric distribution of interest rate near the ZLB. We note that the goodness-of-fit

to the cross-sectional bond yields is not a guarantee of a good model because it may

fail to capture the historical variations of bond yields in the time-series dimension. To

this end, an appropriate model should also be able to capture the heteroscedasticity in

the conditional volatility of bond yield, such as the compression of yield volatility as

interest rates move towards the ZLB (Kim and Singleton, 2012). More importantly, the

model should be capable to generate the stickiness feature of short rate to reflect the
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persistence of zero interest rate monetary policy. For instance, the Japanese bond yields

have been staying very close to zero for almost two decades.

ATSM

The ATSM has been a popular choice in the modeling of yield curve given its analytical

tractable bond pricing formula as well as the linear dependence of the model-implied

bond yields to the underlying factors or state variables (Piazzesi, 2010). The simple

bond pricing formula and the linear structure of the model-implied bond yield makes the

Gaussian ATSM easy to implement and estimate using various econometrics techniques.

Nevertheless, both of the two aforementioned challenges cast doubt on the Gaussian

ATSM as an appropriate model near the ZLB. In particular, the Gaussian distributional

assumption of the ATSM near the ZLB suggests that its inferences on the expected path

of future interest rate as well as the term premium can be heavily biased.

QTSM

An alternative is the QTSM as advocated by Ahn et al. (2002) and Leippold and Wu

(2002), in which a lower bound of interest rates can be naturally imposed in the modeling

framework. Indeed, the quadratic models have been widely adopted in the finance

industry in the pricing and hedging of interest rate derivatives. It is important to

note that the QTSM carries the same level of analytical tractability as the ATSM in

which the bond pricing formula can be expressed in semi closed-form and involves only

the calculation of a recursive relationship. Unfortunately, it appears that this class of

model has been ignored by the academic literature and there is limited empirical study

about it. Until recently, Kim and Singleton (2012) demonstrate in great details that

the QTSM provides a good statistical description on Japanese bond yield under the

countrys prolonged zero interest rate policy. Andreasen and Meldrum (2013) shows that

the QTSM is able to capture the statistical feature of the US bond yields near the zero

lower bound since 2008.

1.4 Mathematical Tools

In this thesis, I demonstrate the application of various tools in financial mathematics and

financial econometrics, including optimal stopping theory, general affine process, credit

risk modeling, term structure modeling and Bayesian estimation. As for mathematical

technique, I make extensive use of stochastic calculus (Chapters 2-5) and specialized

use of Malliavin calculus in asymptotic expansion (Chapter 6). Moreover, standard
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mathematical analysis tools such as partial differential equations and ordinary differ-

ential equations are frequently employed during the solution procedure. For numerical

techniques, I make use of Fourier transform analysis (Chapter 4), the integral equation

approach (Chapter 5) and Markov Chain Monte Carlo technique (Chapter 7).

1.5 Copyrights

Several chapters in this thesis are based on published papers and I would like to ac-

knowledge the permissions to allow inclusion of the following published papers in this

thesis:

- Chapter 2 is published as [47]: Chung and Tanaka (2015) Optimal Timing for

Short-Covering of an Illiquid Security. Journal of the Operations Research Society

of Japan 58(2). The copyright of the paper is owned by the Operations Research

Society of Japan.

- Chapter 3 is published as [45]: Chung (2015) Optimal Short-Covering with Regime

Switching. To appear in Recent Advances in Financial Engineering 2014, edited

by Masaaki Kijima, Yukio Muromachi and Takashi Shibata. The copyright of the

paper is owned by the publisher World Scientific Publishing Co. Pte. Ltd.

- A small part (less than 20%) of the materials in Chapter 4 is published as [46]: Chung

and Kwok (2014) Equity-Credit Modeling under Affine Jump-diffusion Models

with Jump-to-Default. Journal of Financial Engineering 1(2). The copyright of

the paper is owned by the publisher World Scientific Publishing Company.2

- Chapter 6 is published as [106]: Nagashima, Chung, and Tanaka (2014) Asymptotic

Expansion Formula of Option Price under Multifactor Heston Model. Asia-Pacific

Financial Markets 21(4):351–396. The copyright of the paper is owned by the

publisher Springer Japan.

2Electronic version of an article published as [Journal of Financial Engineering, 1, 2,
2014, 25 pages][DOI: 10.1142/S2345768614500172][copyright World Scientific Publishing Com-
pany][http://www.worldscientific.com/worldscinet/jfe].
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Chapter 2

Optimal Timing for

Short-Covering of an Illiquid

Security

2.1 Introduction

Short-selling is the selling of a financial security that the investor does not own. The

trading provides an efficient means for investors to exploit the opportunity or hedge

against downside risk when they anticipate the overpricing of a security and speculate

its future decline in value. A typical situation involving short-selling transactions can

be described as follows. Some institutional investors are long biased and hence only

rebalance their portfolios on a quarterly or yearly basis. These institutional investors

are usually mutual funds, pension funds or tracker funds. They place their stocks with

the broker who acts as a custodian. The broker who holds the inventory of stocks has

the discretion to lend out the stock in order to earn a loan fee income. On the other side

is the short-seller (e.g., a hedge fund manager) who implements a short-selling position

by borrowing the stock (“stock loan”) from such a broker and selling it in the market.

After that, the short-seller’s objective is to “buy low, sell high” such that the stock is

first sold high and purchased later at a lower price. The buying back and returning of

the stock to the broker is called short covering. At the end, the short-seller makes a

profit from a price decline or a loss from a price rise of the stock.

There are a number of real-world complications involved in the implementation of a

short-selling strategy. A unique feature in a stock loan contract is that there is no

guaranteed maturity and it is effectively rolled over on a daily basis as documented in

D’Avolio (2002). Hence, the broker holds an option to recall the stock borrowing at any

13
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time. At a recall, the short-seller is then forced to cover the short position immediately,

regardless of a profit or loss, if replacing stocks are not found and placed with the broker.

The risk of such an involuntary termination of a short-selling strategy is called the recall

risk. Besides the capital profit/loss associated with the recall risk, the short-seller also

has to take into account the running cost of the strategy. The broker charges the short-

seller a loan fee, which is calculated as the loan fee rate times the stock price times the

length of the period. As noted in D’Avolio (2002), the loan fee rate varies dramatically

across different categories of stocks from 50 to 800 basis points. At the same time, the

short-seller deposits the sale proceeds into a margin account, which generates interest

income called the short interest rebate. When the interest rate is high, the income

may become one of the return drivers of a short-selling strategy. Hence, the investor’s

decision depends on the balance between the benefit (interest income) and the cost (loan

fee) of holding the short position.

The optimal trading rule of a long position has been formulated as an optimal stopping

problem in Peskir and Shiryaev (2005) and extended in Guo and Zhang (2005), in

which the investor initially holds a security and seeks the optimal timing to sell it in

order to maximize the expected discounted payoff. In this paper, we formulate a short-

selling strategy as an optimal stopping problem and seek the optimal timing of the short

covering in the presence of a recall risk, loan fee and interest income. The feature of the

random recall gives rise to an optimal stopping problem with a random time horizon.

We apply the resolvent operator to simplify the problem and derive the solution based

on the approach in Dayanik and Karatzas (2003). As such, we directly construct the

solution rather than guessing the form of the value function and stopping rule. One

of the interesting results is that, depending on the levels of loan fee and interest rates,

the optimal stopping problem is either of a put-type problem with a down-and-out

stopping rule or a call-type problem with an up-and-out stopping rule. We find that

the recall risk has a significant impact on the value function and the corresponding

optimal threshold. The value function may become negative because of the possibility

of a forced termination, and the short-seller is likely to stop earlier at the closer optimal

threshold to the entry price as a result of the random recall (the put-type problem) or

the relatively expensive net running cost of keeping the position (the call-type problem).

Given the closed-form solution, we characterize explicitly the investor’s active region in

terms of the loan fee rate and interest rate in several ways. We show that the active

region depends sensibly on the stock price volatility, expected return and recall intensity.
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2.2 Model Setup

We fix the filtered probability space (Ω,F , (Ft)t≥0,P) and assume a stock price to be a

one-dimensional diffusion process X = (Xt)t≥0 satisfying

dXt = µXtdt+ σXtdWt, X0 = x > 0. (2.1)

Here, (Wt)t≥0 is a standard Brownian motion, µ is the expected return of the stock and

σ is the volatility of the stock. The infinitesimal generator of the stock price process X

is given by

LX =
1

2
σ2x2 d

2

dx2
+ µx

d

dx
.

2.2.1 Short-Seller’s Problem

At time t = 0, an investor makes or keeps a short position of the stock whose sale

proceeds is K. For such a short position, we assume that there is a stock loan (or

securities lending) market to borrow/lend the stock against the loan fee, although the

liquidity may be limited1 in the sense that the loan contract is available only with a

specific broker because of the illiquidity of the stock loan market. The contract may be

automatically renewed instantaneously, although there is a chance that the broker will

not be able to find stock to replace. Hence, the lender does not renew the contract at the

broker’s recall time τR which is an exponential random variable Exp (λ) with parameter

λ ≥ 0 independent of the stock price process.2 Once the loan contract is terminated,

the short-seller has to cover the short position by buying stock at the market price.

We write FWt = σ(Ws; s ∈ [0, t]), FW =
(
FWt

)
t≥0

and F = (Ft)t≥0, and assume that

FWt ∨ σ(1{τR>t}) ⊂ Ft. We denote the expectation Ex [·] = E [ ·|X0 = x, τR > 0] under

P.

The loan fee is charged instantaneously based on the current stock price, i.e., the bor-

rower makes the loan fee payment δXtdt over a small time interval dt, where δ is the

constant loan fee rate. The short-seller deposits the initial proceeds K from selling the

stock into a margin account that pays interest continuously at a constant rate q. As a

result, the net cash outflow is given by (δXt − qK) dt over a time interval dt, which can

be positive or negative depending on the levels of the stock price, the loan fee rate and

1A repo contract is similar to a stock loan contract. They differ in terms of cash flow. In a stock loan
contract only the interest equivalent cash flow (loan fee) is paid to the lender instantaneously without
any payment of the notional amount.

2The exponential variable is a popular choice for the modeling of random arrival times in finance and
economics (see Guo and Liu, 2005; Pliska and Ye, 2007).
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the interest rate. The net cash flow δXt − qK is sometimes referred to as the effective

loan fee and can be interpreted as the net running cost of the short-selling strategy.

The short position of the investor is kept until she buys back at the market price either

at her own discretion or following a recall by the broker. K may or may not be equal to

X0 = x. She seeks the optimal timing of short covering at her own discretion. The short-

seller’s problem is to optimize the expected net profit discounted at her own discount

rate β > max(µ, 0)

v(x) = sup
τ∈A

Ex
[
e−β(τ∧τR) (K −Xτ∧τR)−

∫ τ∧τR

0
e−βs (δXs − qK) ds

]
, (2.2)

where A is the set of all FW -stopping times taking values in [0,∞]. Note that a higher

(lower) discount rate β indicates that an investor is less (more) patient.

For a strong Markov process Y , we denote the resolvent operator by

(
RYβ f

)
(x) = E

[∫ ∞
0

e−βsf (Ys) ds

∣∣∣∣Y0 = x

]
,

which is useful for the evaluation of the total cost of keeping the short-position (see

Rogers and Williams, 2000).

Lemma 2.1. (1) For any stopping time τ , it holds that

E
[∫ ∞

τ
e−βsf (Ys) ds

∣∣∣∣Y0 = x

]
= E

[
e−βτ

(
RYβ f

)
(Yτ )

∣∣∣Y0 = x
]
.

(2) Suppose that an exponentially distributed random variable U with parameter λ is

independent of Y . For any stopping time τ , it holds that

E
[
e−β(τ∧U)f (Yτ∧U )

∣∣∣Y0 = x
]

= E
[
e−(β+λ)τ (f − φ) (Yτ )

∣∣∣Y0 = x
]

+ φ (x) ,

where

φ (x) = Ex
[
e−βUf (YU )

∣∣∣Y0 = x
]
.

(3) Suppose that dYt = µYtdt+ σYtdWt and f (x) = kx+ l. When β > µ ,it holds that

(
RYβ f

)
(x) =

k

β − µ
x+

l

β
.

Proof. See Appendix A.
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By Lemma 2.1, we can re-write the short-seller’s problem as

v(x) = sup
τ∈A

Ex
[
e−(β+λ)τ (g − φ) (Xτ )

]
−
(
RXβ f

)
(x) + φ (x) , (2.3)

where

f(x) = δx− qK, g(x) = K − x+
(
RXβ f

)
(x) , φ(x) = λ

(
RXβ+λg

)
(x) .

See Appendix B for the derivation, where we used β > µ and β+λ > µ to calculate the

resolvent operators acting on f and g respectively. Here,

u(x) = sup
τ∈A

Ex
[
e−(β+λ)τ (g − φ) (x)

]
, (2.4)

is an infinite horizon problem with the linear payoff function

(g − φ) (x) =
β

β + λ

(
1− q

β

)
K − β − µ

β + λ− µ

(
1− δ

β − µ

)
x.

The coefficients ρ = 1 − δ

β − µ
and η = 1 − q

β
play important roles in our analysis. A

sufficiently low loan fee rate implies that the gain function g−φ is a decreasing function

of x, while in an expensive loan fee environment it is an increasing function. Hence, it

is not so straight-forward to reduce the problem to a perpetual American call or put

problem. Apparently, the investor’s optimal strategy depends on the magnitudes of the

loan fee rate and the interest rate via the signs of ρ and η, which lead to different signs

of the slope and intersection of the payoff function. A patient investor’s η tends to be

negative, while an impatient one’s η tends to be positive. η ≷ 0 is equivalent to q ≶ β

and ρ ≷ 0 is equivalent to δ ≶ β − µ.

2.2.2 Solution

We apply the results of Dayanik and Karatzas (2003) to obtain the solution of the

auxiliary problem (2.4). For the readers’ convenience, we briefly review the procedure

in Dayanik and Karatzas (2003) to solve an optimal stopping problem

V (x) = sup
τ∈A

Ex
[
e−ατh (Xτ )

]
, (2.5)

for a geometric Brownian motion X given by (2.1), the linear payoff h(x) = kx+ l and

α > µ. Let ψ and ϕ be the solutions of (LX − α)u = 0 on (0,+∞) such that (i) ψ is

a positive increasing function and (ii) ϕ is a positive decreasing function. Namely, they
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are

ψ(x) = xn, ϕ(x) = xm,

where n > 1 and m < 0 are the distinct roots of

p(x) =
1

2
σ2x(x− 1) + µx− α

since p(−∞) > 0, p(+∞) > 0, p(0) < 0 and p(1) < 0. Then, we take

F (x) =
ψ

ϕ
(x) = xθ, F−1(y) = y1/θ, θ = n−m > 1,

such that F is positive and increasing. It can be checked that

l0 = lim sup
x↓0

max(h(x), 0)

ϕ(x)
= 0, l∞ = lim sup

x↑+∞

max(h(x), 0)

ψ(x)
= 0.

Define the function H : [0,+∞)→ R as

H(y) =


h
(
F−1(y)

)
ϕ (F−1(y))

, when y > 0

l0, when y = 0

 = y−m/θ
(
ky1/θ + l

)
.

We denote by W : [0,+∞)→ R the smallest non-negative concave majorant of H. The

candidate stopping time is the first-passage-time defined as

τ∗ = inf {t ≥ 0;Xt ∈ Γ} , (2.6)

where Γ = {x ∈ R+ : V (x) = h(x)} is the stopping region. The solution to the optimal

stopping problem (2.5) can be constructed as follows.

Lemma 2.2 (Dayanik and Karatzas (2003): Prop. 5.10, 5.12, 5.13). (1) If l0, l∞ are

finite, the value function V is finite and continuous on R+ and it is given by

V (x) = ϕ(x)W (F (x)) .

(2) If h is continuous and l0 = l∞ = 0, the stopping time τ∗ of (2.6) is the optimal

stopping time.

The key of the result is the construction of the smallest non-negative concave majorant

W of H. To this end, we need to investigate the property of H on [0,+∞). When

l/k < 0, we see that

H(0) = H(y0) = 0, H ′(y1) = 0, H ′′(y2) = 0,
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where

y0 =

(
− l
k

)θ
, y1 =

(
− l
k

m

m− 1

)θ
, y2 =

(
− l
k

n

n− 1

m

m− 1

)θ
.

Note that y1 < y0 and y1 < y2. For different values of l and k, the analysis can be split

into four cases:

1. When k < 0 and l > 0, we have

- H(0) = 0, H(+∞) = −∞ and H ′(y)→ +∞ as y ↓ 0.

- H(y) > 0 for 0 < y < y0 and H(y) < 0 for y > y0.

- H is increasing concave on (0, y1), decreasing concave on (y1, y2) and decreas-

ing convex on (y2,+∞).

Hence, W can be constructed as

W (y) =

{
H(y), 0 ≤ y ≤ y1,

H(y1), y1 < y.

This corresponds to a put-type problem as shown in Figure 1(a).

2. When k > 0 and l < 0, we see

- H(0) = 0, H(+∞) = +∞ and H ′(y)→ −∞ as y ↓ 0.

- H(y) < 0 for 0 < y < y0 and H(y) > 0 for y > y0.

- H is decreasing convex on (0, y1), increasing convex on (y1, y2) and increasing

concave on (y2,+∞).

Hence, W is given by

W (y) =


H(y∗)

y∗
y, 0 ≤ y < y∗,

H(y), y∗ ≤ y,

where y∗ > y2 is determined by a tangent line of H from the origin such that

H(y∗) = y∗H ′(y∗), that is

y∗ =

(
− l
k

n

n− 1

)θ
.

This corresponds to a call-type problem as shown in Figure 1(b).

3. When k ≥ 0 and l ≥ 0 but (k, l) 6= (0, 0), we see that H is increasing concave on

(0,+∞). Hence, we take W (y) = H(y).

4. When k < 0 and l < 0, we have h(x) < 0 for all x and it is trivial to take τ =∞
(see Section 3 Dayanik and Karatzas, 2003).
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Figure 2.1: Graph of H for different values of k and l.

By applying Lemma 2.2, we obtain the following results.

Proposition 2.3. The auxiliary optimal stopping problem (2.4) has the solution:

Case (a) When ρ ≥ 0, η ≤ 0, u = 0, τ∗ =∞,

Case (b) When ρ > 0, η > 0, u = up, τ∗ = inf {t ≥ 0;Xt ≤ bp} , bp =
m

m− 1
aK,

Case (c) When ρ ≤ 0, η ≥ 0, u = g − φ, τ∗ = 0,

Case (d) When ρ < 0, η < 0, u = uc, τ∗ = inf {t ≥ 0;Xt ≥ bc} , bc =
n

n− 1
aK,

where

a =
β

β + λ

β + λ− µ
β − µ

η

ρ
, (2.7)

satisfying (g − φ) (aK) = 0, and

up(x) ,

 (g − φ)(bp)

(
x

bp

)m
, x ∈ (bp,∞) ,

(g − φ)(x), x ∈ (0, bp] ,

(2.8)

uc(x) ,


(g − φ)(x), x ∈ [bc,∞) ,

(g − φ)(bc)

(
x

bc

)n
, x ∈ (0, bc) .

(2.9)

Proof. See Appendix C.

By rearranging (2.3) and (2.4), we obtain the following main result.

Theorem 2.4. The value function v of the optimal stopping problem (2.2) is given by

v(x) = u(x) + φ(x)− g(x) +K − x, x ∈ R+.
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2.2.3 Discussion

From Proposition 2.3 and Theorem 2.4, v(x) has the two lower bounds: h0(x) = K −
x corresponding to τ∗ = 0 (immediate exercise) and h∞(x) = φ(x) − g(x) + K − x

corresponding to τ∗ = ∞ (wait and see). Figure 2.2 illustrates what is happening in

each case.

- Case (a): h∞(x) is always greater than h0(x) thanks to the cheap loan fee and the

high interest income. It is optimal to wait and see until the recall time (τ∗ =∞).

- Case (b): The net running cost of the short position is relatively cheap. It is

better to stop than wait when x is sufficiently small enough to satisfy at least

h∞(x) < h0(x). The optimal strategy is to cover the short position at the threshold

bp, i.e., τ∗ = inf {t ≥ 0;Xt ≤ bp}.

- Case (c): h0(x) is always greater than h∞(x) because of the expensive loan fee

and the low interest income. It is optimal to stop immediately and hence no entry

occurs (τ∗ = 0).

- Case (d): The net running cost of the short position is relatively expensive. It

is better to stop than wait when x is sufficiently large enough to satisfy at least

h∞(x) < h0(x). The optimal strategy is to cover the short position at the threshold

bc, i.e., τ∗ = inf {t ≥ 0;Xt ≥ bc}.

In the put-type problem, the short covering at the threshold bp involves taking profit

while the short covering at bc in the call-type problem involves a loss cut in the capital3.

In either case, net interest income until the short covering depends on the historical path.

The mandatory short covering upon recall yields another opportunity of profit taking

or loss cut. Compared with a case without a random recall risk, the short-seller is likely

to stop earlier at an optimal threshold closer to the entry price because of the random

recall (an early profit taking on the put-type problem) or the relatively expensive net

running cost of keeping the position (an early loss cut on the call-type problem). Note

that in Cases (b) and (d), as illustrated in Figure 2.2, it holds that

Case (b) bp < aK, g(bp)− φ(bp) =
1

1−m
β

β + λ
ηK > 0,

Case (d) aK < bc, g(bc)− φ(bc) =
1

1− n
β

β + λ
ηK > 0,

3This is a voluntary loss cut in order to avoid the high running cost as the stock price increases.
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(a) When ρ ≥ 0 and η ≤ 0, the optimal strat-
egy is τ∗ =∞.

 

   

                     

           

          
   

(b) When ρ > 0 and η > 0, the optimal strat-
egy is τ∗ = inf {t ≥ 0;Xt ≤ bp}.

 

  

ℎ∞(x) = ϕ(𝑥) − 𝑔(𝑥) + 𝐾 − 𝑥  

ℎ0(x) = 𝐾 − 𝑥  

𝐾   0 
𝑥  

(c) When ρ ≤ 0 and η ≥ 0, the optimal strat-
egy is τ∗ = 0.

 

ℎ∞(x) = ϕ(𝑥) − 𝑔(𝑥) + 𝐾 − 𝑥  

ℎ0(x) = 𝐾 − 𝑥  

𝐾  aK  

𝑏𝑐 

 0 
𝑥  

(d) When ρ < 0 and η < 0, the optimal strat-
egy is τ∗ = inf {t ≥ 0;Xt ≥ bc}.

Figure 2.2: The lower bounds h0 and h∞ of the value function v.

because m < 0 and n > 1. It can be seen that

Case (b) up(x) = (g(bp)− φ(bp))

(
x

bp

)m
> 0, x ∈ (bp,∞),

Case (d) uc(x) = (g(bc)− φ(bc))

(
x

bc

)n
> 0, x ∈ (0, bc),

represent the value of the short-seller’s optionality to stop at a finite time. The quantities

(x/bp)
m and (x/bc)

n are the expected present values of one dollar when the stock price

hits the thresholds bp and bc, respectively, before the random recall. The corresponding

dollar amounts at the exercises are g(bp)− φ(bp) and g(bc)− φ(bc), respectively.

2.3 Active Condition

We need to consider the condition that the short-seller actually enters into a short

position. As Case (a) and Case (c) are trivial, let us restrict our attention to the put-

type problem (Case (b)) and the call-type problem (Case (d)). In order that the investor
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(a) When ρ > 0, η > 0 and a ≤ 1, then
bp < aK ≤ K always holds.

 

   

                     

           

   

    
   

   

(b) When ρ > 0, η > 0 and a > 1.
If a < (m − 1)/m then bp < K while K ≤ bp

in the case of a ≥ (m− 1)/m.

Figure 2.3: The active condition and optimal threshold for the put-type problem.

is active in the sense of waiting for the stock price’s passage over the thresholds obtained

in the previous subsection until the random recall, it is clear that K > bp on the put-type

problem and K < bc on the call-type problem must hold. They are rewritten in terms

of a,m and n in the next proposition.

Proposition 2.5. For the put-type problem (ρ > 0, η > 0), the active condition K > bp

is equivalent to the condition a < (m− 1)/m. For the call-type problem (ρ < 0, η < 0),

the active condition K < bc is equivalent to the condition a > (n− 1)/n.

Figure 2.3 illustrates the active condition for the put-type problem. When a < 1, we

see bp < aK < K and the active condition K > bp is always satisfied. When a > 1,

however, the active condition K > bp is satisfied only when a < (m − 1)/m. Clearly,

the active condition depends on the coefficients η, ρ and other model parameters. The

active region on the (η, ρ)-plane can be characterized explicitly as

ρ >


m

m− 1
γη, η ≥ 0,

n

n− 1
γη, η < 0,

where γ =
β

β + λ

β + λ− µ
β − µ

,

as shown in Figure 2.4(a). They can be converted on the (q, δ)-plane as

δ − (β − µ) <


n

n− 1

β + λ− µ
β + λ

(q − β), q > β,

m

m− 1

β + λ− µ
β + λ

(q − β), q ≤ β,

as in Figure 2.4(b). On the (q, δ)-plane, the boundaries of the two conditions in Proposi-

tion 2.5 are graphically represented by the two straight lines L1 and L2 in Figure 2.4(b).

The slopes M and N of L1 and L2, respectively, are represented solely by the roots n

and m, respectively, as in the next proposition, which also shows that a change of the
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model parameters leads to an expansion or a contraction of the active region as the two

lines rotate around (β, β − µ).

Proposition 2.6. (1) The slopes on the (q, δ)-plane

M =
m

m− 1

β + λ− µ
β + λ

, N =
n

n− 1

β + λ− µ
β + λ

have the following properties

N =
m− 1

m
, M =

n− 1

n
,

and

∂N

∂σ2
> 0,

∂N

∂µ
< 0,

∂N

∂λ
< 0,

∂M

∂σ2
< 0,

∂M

∂µ
< 0,

∂M

∂λ
> 0.

(2) The thresholds bp, bc have the following properties

∂bp
∂λ

> 0,
∂bc
∂λ

< 0.

Proof. n,m are solutions of the quadratic equation (1/2)σ2x(x−1)+µx−(β+λ) = 0.

Then it holds that
β + λ− µ
β + λ

=
(n− 1)(m− 1)

nm
,

and

∂m

∂σ2
> 0,

∂m

∂µ
< 0,

∂m

∂λ
< 0,

∂n

∂σ2
< 0,

∂n

∂µ
< 0,

∂n

∂λ
> 0.

Proposition 2.6 (1) implies that the active region expands as the stock volatility σ

increases (more opportunistic trade) and contracts as the recall intensity λ increases

(higher recall risk) when the loan fee rate δ and the interest rate q are fixed. The

separating lines rotate clockwise when µ increases. With an increase of λ, the thresholds

become closer to the original sales price so that the short-seller will close the position

more quickly and more conservatively.

Finally, to represent the active condition graphically in relation to L1 and L2, we rewrite

the definition of a in (2.7) as

δ − (β − µ) =
1

a

(n− 1)(m− 1)

nm
(q − β) ,



Optimal Short-Covering 25

  

     
   

   

Case (a)  

wait-and-see 

(active) 

Case (d1)  

call-type (active) 

Case (b1)  

put-type (active) 

Case (c)  

immediate exercise  

(no entry) 

Case (b2)  

put-type (no entry) 

Case (d2)  

call-type (no entry) 

(a) Active region on the (η, ρ)-plane.

  

  

   
   

   

Case (a)  Case (b1)  

Case (d1)  
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Case (c) 

Case (b2) Active region 

No-entry region 

L2: Slope = N 

L3: Slope = 
 

 

(   )(   )

  
 

(b) Active region on the (q, δ)-plane.

Figure 2.4: Investor’s active region. The origin on the (η, ρ)-plane corresponds to the
point (β, β − µ) on the (q, δ)-plane.

which is drawn as the dashed line L3 in Figure 2.4(b). In Case (b) on the domain q ≤ β
in the graph, the active condition a < (m− 1)/m is equivalent to the condition

1

a

(n− 1)(m− 1)

nm
>
n− 1

n
, (2.10)

which implies that the slope M (the RHS of (2.10)) of line L1 must be smaller than the

slope of L3 (the LHS of (2.10)). Similarly, for Case (d), a > (n − 1)/n is equivalent to

the condition that the slope N of line L2 is larger than the slope of L3. In other words,

the active condition is equivalent to the condition that the line L3 lies below the lines

L1 and L2.

2.4 Numerical Examples

In this section, we conduct a comparative analysis so as to understand the properties of

the decision making using numerical examples for various levels of recall intensity, loan

fee rate and interest rate. Unless otherwise stated, we assume the following parameter

values: the short-seller’s discount rate β = 0.05, the stock price volatility σ = 0.2, and

the recall intensity λ = 0.02. The expected return will be either µ = −0.03 (down-

market) or µ = 0.03 (up-market). The initial stock price and initial entry price are

taken to be x = K = 100. To illustrate, we focus on the put-type problem (Case (b))
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and the call-type problem (Case (d)). Recall that the thresholds are given by

bp =
m

m− 1
aK =

(
1 +

1

m− 1

)(
1− µ

β + λ

)
K̃, (2.11)

bc =
n

n− 1
aK =

(
1 +

1

n− 1

)(
1− µ

β + λ

)
K̃, (2.12)

K̃ =
β

β − µ
η

ρ
K =

β − q
β − µ− δ

K. (2.13)

2.4.1 The impact of loan fee rate and interest rate

First, we study the impact of the loan fee rate and interest rate in the short-seller’s

problem. The basic role of the two parameters in the decision making by the short-seller

is to determine h∞(x), one of the two lower bounds of the value function

h∞(x) = φ(x)− g(x) +K − x =

(
1− β

β + λ
η

)
K −

(
1− β − µ

β + λ− µ
ρ

)
x.

A different q gives a different intersection of the lower bound line via η and a different

δ gives a different slope via ρ. When q = δ = 0, we see η = ρ = 1, g(x) = K − x and

h∞(x) = φ(x).

Put-type problem (ρ > 0, η > 0)

As the loan fee rate δ increases, the coefficient ρ decreases so that the slope of h∞(x)

becomes steeper while maintaining the same intersection. This generates a smaller lower

bound and hence reduces the value function, as we show in Figure 2.5(a). On the other

hand, as q increases and hence η decreases, the intersection of h∞(x) increases while

maintaining the same slope. Hence, the lower bound is increased and this produces a

higher value function (Figure 2.5(b)). When x is close to the optimal threshold, it is

less obvious by simply looking at the formula to examine the impact of the loan fee and

interest income.

The impact of the loan fee rate and interest rate on the optimal threshold are shown in

Figure 2.5(c) and 2.5(d) in a very different manner, where µ is taken as µ = −0.03. The

optimal threshold (2.11) is an increasing hyperbolic function of the loan fee rate δ and a

decreasing linear function of the interest rate q. Figure 2.5(c) shows that the threshold

is highly sensitive to the loan fee rate that is less than but close to β − µ = 0.08. From

(2.11), we see that as δ ↑ β−µ (ρ ↓ 0), the threshold goes to infinity and we approach the

immediate exercise solution (no entry). Figure 2.5(d) shows that the threshold depends

linearly on the interest rate q. Similarly, as q ↑ β (η ↓ 0), the threshold goes to zero and

we recover the wait-and-see solution.
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(a) Value function with loan fee rate δ = 0,
0.02 and 0.04 and interest rate fixed at q =
0.02. The optimal thresholds are determined

as 26.8, 35.7 and 53.6, respectively.
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(b) Value function with interest rate q = 0,
0.02 and 0.04 and loan fee rate fixed at δ =
0.02. The optimal thresholds are determined

as 59.5, 35.7 and 11.9, respectively.
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(c) Optimal threshold versus loan fee rate δ
with interest rate fixed at q = 0.02.
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(d) Optimal threshold versus interest rate q
with loan fee rate fixed at δ = 0.02.

Figure 2.5: Value function and optimal threshold for the put-type problem.

Call-type problem (ρ < 0, η < 0)

Similar analysis with varying δ and q can be applied to the call-type problem as shown in

Figure 2.6(a) and 2.6(b). As the loan fee rate δ increases, the cost of holding the short

position is more expensive and the investor should stop earlier, as can be seen from

(2.12). Similar to the put-type problem, the optimal threshold is also highly sensitive

to the loan fee (Figure 2.6(c)). From (2.12), as δ ↓ β − µ (ρ ↑ 0), the threshold goes to

infinity and we have the wait-and-see solution (Figure 2.6(d)).

For completeness, we report in Figure 2.7 the value function in an up-market (µ = 0.03)

corresponding to Figures 2.5(a), 2.5(b), 2.6(a) and 2.6(b). A similar argument holds for

the case of an up-market.
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(a) Value function with loan fee rate δ = 0.10,
0.12 and 0.14 and interest rate fixed at q =
0.08. The optimal thresholds are determined

as 300, 150 and 100, respectively.
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(b) Value function with interest rate q = 0.06,
0.08 and 0.10 and loan fee rate fixed at δ =
0.12. The optimal thresholds are determined

as 50, 150 and 250, respectively.
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(c) Optimal threshold versus loan fee rate δ
with interest rate fixed at q = 0.08.
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(d) Optimal threshold versus interest rate q
with loan fee rate fixed at δ = 0.12.

Figure 2.6: Value function and optimal threshold for the call-type problem.

2.4.2 The impact of recall risk

The next objective is examining the impact of recall risk λ on the value function and

the optimal threshold. For the time being, let us assume the simple case of δ = q = 0

(equivalently, η = ρ = 1), which implies put-type problems and excludes the effects

of the loan fee and interest income. We saw in the previous subsection that δ and q

determine the location and the shape of the lower bound h∞(x). Thus, from the results

with δ = q = 0, one can easily understand the corresponding results with nonzero δ and

q by shifting vertically and rotating the line.

Figure 2.8(a) and 2.8(b) report the value functions v(x) and the optimal thresholds bp

for different values of recall intensity λ with µ = −0.03 (down-market, Figure 2.8(a))

and µ = 0.03 (up-market, Figure 2.8(b)), respectively, based on Proposition 2.3 and

Theorem 2.4. The corresponding optimal thresholds are calculated and marked for

illustrative purposes.
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(a) Value function with loan fee rate δ = 0,
0.005 and 0.01 and interest rate fixed at q =
0.02. The optimal thresholds are determined

as 58.4, 77.9 and 116.8, respectively.
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(b) Value function with interest rate q = 0,
0.02 and 0.04 and loan fee rate fixed at δ =
0.005. The optimal thresholds are determined

as 129.8, 77.9 and 26.0, respectively.
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(c) Value function with loan fee rate δ = 0.06,
0.08 and 0.10 and interest rate fixed at q =
0.08. The optimal thresholds are determined

as 110, 73.4 and 55.0, respectively.
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(d) Value function with interest rate q = 0.06,
0.08 and 0.10 and loan fee rate fixed at δ =
0.08. The optimal thresholds are determined

as 24.5, 73.4 and 122.3, respectively.

Figure 2.7: Value function in an up-market with µ = 0.03.

The value function v(x) has two lower bounds in this case, K − x and φ(x). When

λ = 0, we have φ(x) = 0 so that the value function is positive for all x in R+ (solid

line).4 As λ departs from zero, φ(x) slopes downward. Therefore, the value function

can also take negative values when x is large. This is demonstrated in the cases where

λ = 0.02 (dashed line) and λ = 0.05 (dotted line).

Comparing the two figures, the thresholds appear to be more sensitive to the recall

risk when µ > 0 (up-market) than when µ < 0 (down-market). As the result the

value functions do so. This phenomenon can be explained by taking a closer look at

the sensitivity of bp with respect to λ, which is positive by Proposition 2.6 (2). By

4This corresponds to a standard real option problem in an infinite horizon.
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(a) Value function in a down-market (µ =
−0.03) with recall intensity λ = 0, 0.02 and
0.05, δ = q = 0. The optimal thresholds
are determined as 43.4, 44.6 and 46.1, respec-

tively.
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(b) Value function in an up-market (µ = 0.03)
with recall intensity λ = 0, 0.02 and 0.05, δ =
q = 0. The optimal thresholds are determined

as 65.0, 97.3 and 125.0, respectively.
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(c) Value function in a down-market (µ =
−0.03) with recall intensity λ = 0, 0.02 and
0.05, δ = 0.12 and q = 0.08. The optimal
thresholds are determined as 173.0, 150 and

132.2, respectively.
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(d) Value function in an up-market (µ = 0.03)
with recall intensity λ = 0, 0.02 and 0.05,
δ = 0.12 and q = 0.08. The optimal thresholds
are determined as 46.2, 44.0 and 42.0, respec-

tively.
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(e) Optimal threshold versus recall intensity
λ with δ = q = 0.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
20

40

60

80

100

120

140

160

180

Recall Intensity (λ)

O
pt

im
al

 T
hr

es
ho

ld

 

 
µ = −0.03
µ = 0
µ = 0.03

(f) Optimal threshold versus recall intensity
λ with δ = 0.12 and q = 0.08.

Figure 2.8: The impact of recall risk.
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differentiating (2.11) with respect to λ, we see

∂bp
∂λ

=

[
∂m

∂λ

−1

(m− 1)2

(
1− µ

β + λ

)
+

(
1 +

1

m− 1

)
µ

(β + λ)2

)
K̃.

As in the proof of Proposition 2.6, we have ∂m/∂λ < 0. Hence, the first term in the

brackets is always positive while the sign of the second term is the same as the sign of

µ. It follows that they are cancelled out to some extent when µ is negative. This is

the reason for the higher sensitivity of the thresholds for positive µ (up-market) than

negative µ. Figure 2.8(e) confirms the claim: the optimal threshold increases strongly

with the intensity when µ = 0.03 (dotted line), while the corresponding impact is much

weaker when µ = 0 and µ = −0.03 (dashed line and solid line, respectively). It implies

that the short-seller has to be very nervous about the timing of taking capital profit

(short covering) from a stock price movement with a positive trend as the recall risk

increases, so that she will be satisfied with a smaller profit. On the other hand, in a

down-trending market, the short-seller does not need to modify the target price so much

in accordance with the magnitude of the recall risk.

As mentioned, for general δ, q (or η, ρ) leading to a put-type problem, similar analysis

and interpretations hold by shifting vertically and rotating the line of the lower bound

h∞(x) = φ(x)−g(x)+K−x. From its expression, we see that the intensity λ somewhat

dampens the effects of η and ρ on the lower bound h∞(x). This is because the recall

risk reduces the expected holding time of the short position and hence diminishes the

role of the running cost.

For the call-type problems, these impacts are opposite to the case of the put-type prob-

lems. By differentiating (2.12) with respect to λ, we see

∂bc
∂λ

=

[
∂n

∂λ

−1

(n− 1)2

(
1− µ

β + λ

)
+

(
1 +

1

n− 1

)
µ

(β + λ)2

]
K̃,

which is negative by Proposition 2.6. Moreover, we have ∂n/∂λ > 0 such that the first

term in brackets is always negative while the sign of the second term is the same as µ.

Hence, the sensitivity of the call-type threshold is higher for negative µ (down-market)

than positive µ (up-market). Figure 2.8(f) shows that the threshold decreases notably

against the intensity when µ = −0.03 (solid line), while the impact is as large when

µ = 0 and µ = 0.03 (dashed and dotted lines). As a consequence, the impact of recall

risk on the value function is more significant in a down-market than in an up-market for

a call-type problem (Figure 2.8(c) and 2.8(d)).
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2.4.3 The impact of volatility

We then turn our attention to how the optimal threshold depends on the stock price

volatility. Proposition 2.6 together with (2.11) imply that the put-type optimal thresh-

old is decreasing with the volatility because the volatility affects bp only through the

term m/(m − 1) in (2.11) and ∂m/∂σ2 > 0. Figure 2.9(a) shows that the threshold

decreases gradually with the stock price volatility under the assumption δ = q = 0. The

intuition is that the strategy is more opportunistic given a higher probability of the stock

price declining to below the entry price. In contrast, the call-type optimal threshold is

increasing with the volatility because of the term n/(n − 1) in (2.12) and ∂n/∂σ2 < 0

(Figure 2.9(c)).

Note that when λ = 0 (no recall risk) and δ = q = 0, we have bp = (m/(m− 1))K < K

such that the investor is active regardless of the market direction. In the presence of

recall risk with δ = q = 0, the sign of µ matters because of

a =

1 +
λ

β − µ

1 +
λ

β

,

by (2.7). When µ ≤ 0, the investor is always active (dashed and solid lines in Figure

2.9(a)) because in this case a ≤ 1 < (m − 1)/m. In contrast, when µ > 0, the investor

only trades when the volatility is high enough (dotted line in Figure 2.9(a)) so that the

derived value of m < 0 becomes large and satisfies a < (m− 1)/m.

For nonzero δ, q, the condition on µ for the active region (put type or call type) can be

obtained in accordance with the value of η/ρ. From (2.7), we see that the parameter

a is proportional to the ratio η/ρ. For a put-type problem, keeping η/ρ and a fixed,

the investor only trades when the volatility is high enough and m < 0 is large enough

to satisfy a < (m − 1)/m (see Figure 2.9(a) versus 2.9(b)). Similarly, for a call-type

problem, trade happens when the volatility is high enough such that n > 1 becomes

small enough to satisfy the condition a > (n− 1)/n (see Figure 2.9(c) versus 2.9(d)).

2.5 Summary

In this chapter, we studied the optimal stopping problem related to a short-selling strat-

egy in a financial market. In a short-selling transaction, the short-seller faces the pos-

sibility of a broker recall and the short-seller might be forced to stop the strategy in-

voluntarily and experience a loss. Our results show that, depending on the levels of the

loan fee and interest rate, the optimal stopping problem is either a put-type problem
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(a) Optimal threshold versus volatility σ with
δ = q = 0.
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(b) Optimal threshold versus volatility σ with
δ = 0.01 and q = 0.
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(c) Optimal threshold versus volatility σ with
δ = 0.10 and q = 0.08.
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(d) Optimal threshold versus volatility σ with
δ = 0.14 and q = 0.08.

Figure 2.9: The impact of volatility.

with a down-and-out stopping rule or a call-type problem with an up-and-out stopping

rule. The value function may become negative because of the possibility of a forced ter-

mination, and the short-seller is likely to stop earlier at the closer optimal threshold to

the entry price as a result of the random recall (the put-type problem) or the relatively

expensive net running cost of keeping the position (the call-type problem). The analysis

in this chapter will be sufficient for investors to make a short-selling decision in a simple

setting. The extension to nondiffusion-type stock price process will be discussed in the

next chapter.

2.6 Appendix

2.6.1 Proof of Lemma 2.1

In this action, we bravely write the conditional expectation E [ ·|Y0 = x] as Ex [·], which

will not make confusion, in order to save the space.
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(1) By the tower property and the strong Markov property, it is easy to see

Ex
[∫ ∞

τ
e−βsf (Ys) ds

]
= Ex

[
e−βτEYτ

[∫ ∞
τ

e−β(s−τ)f (Ys) ds

]]
= Ex

[
e−βτ

(
RYβ f

)
(Yτ )

]
.

This assertion is also viewed as a version of the Dynkin’s formula. See p. 253 in Rogers

and Williams (2000).

(2) By decomposing the event 1 = 1{τ>U} + 1{τ≤U}, we see that

Ex
[
e−β(τ∧U)f (Yτ∧U )

]
= Ex

[
e−βUf(XU )

]
−Ex

[
e−βUf(XU )1{τ≤U}

]
+Ex

[
e−βτf(Xτ )1{τ≤U}

]
.

The first term of the RHS is φ(x). For the second term, by the result of (1), it holds

that

Ex
[
e−βUf(XU )1{τ≤U}

]
= Ex

[∫ ∞
τ

e−βuf(Xu)λe−λudu

]
= λEx

[
e−(β+λ)τ (Rβ+λf) (Xτ )

]
= Ex

[
e−(β+λ)τφ(Xτ )

]
,

where on the last equality we used

φ(x) = Ex
[
e−βUf(XU )

]
= Ex

[∫ ∞
0

e−βuf(Xu)λe−λudu

]
= λ(Rβ+λf)(x).

The third term becomes

Ex
[
e−βτf(Xτ )1{τ≤U}

]
= Ex

[
e−βτf(Xτ )

∫ ∞
τ

λe−λudu

]
= Ex

[
e−βτf(Xτ )e−λτ

]
.

By summing these three terms the assertion holds.

(3) The result is straight-forward for a geometric Brownian motion.

2.6.2 Short-Seller’s Problem

We can simplify the short-seller’s problem as follows. By Lemma 2.1 (1), we have

Ex
[∫ τ∧τR

0
e−βs (δXs − qK) ds

]
= (RXβ f)(x)− Ex

[
e−β(τ∧τR)(RXβ f)(Xτ∧τR)

]
.

Then, by Lemma 2.1 (2), the objective function of the maximization problem (2.2) is

rewritten as

Ex
[
e−β(τ∧τR)g(Xτ )

(
X(τ∧τR)

)]
−(RXβ f)(x) = Ex

[
e−(β+λ)τ (g − φ) (Xτ )

]
−(RXβ f)(x)+φ(x).

The explicit expressions of g and φ can be obtained by Lemma 2.1 (3).
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2.6.3 Proof of Proposition 2.3

Take α = β + λ and h(x) = (g − φ)(x) = kx+ l where

k = − β − µ
β + λ− µ

ρ, l =
β

β + λ
ηK.

Note that l/k = −aK. The stopping region can be derived as Γ = F−1(Γ̂) where

Γ̂ , {y ∈ R+ : W (y) = H(y)} .

Then,

- Case (a) When ρ ≥ 0, η ≤ 0, we have k ≤ 0, l ≤ 0. Hence, τ∗ =∞ and u = 0.

- Case (b) When ρ > 0, η > 0, we have k < 0, l > 0. The optimal threshold is

bp = F−1(y1) = − l
k

m

m− 1
=

m

m− 1
aK.

Furthermore, H(F (bp)) = b−mp (kbp + l) and

W (F (x)) =

{
x−m(kx+ l), 0 ≤ x ≤ bp,
b−mp (kbp + l), bp < x.

Hence, by Lemma 2.2, ϕ(x)W (F (x)) = up(x) is the value function and τ∗ is given

by τ∗ = inf {t ≥ 0;Xt ≤ bp}.

- Case (c) When ρ ≤ 0, η ≥ 0, we have k ≥ 0, l ≥ 0. Hence, τ∗ = 0 and u = g − φ.

Note that ρ = η = 0 is included in Case (a) and Case (c).

- Case (d) When ρ < 0, η < 0, we have k > 0, l < 0. The optimal threshold is

bc = F−1(y∗) = − l
k

n

n− 1
=

n

n− 1
aK,

while the value function uc can be obtained in a similar manner as in Case (b).



Chapter 3

Optimal Short-Covering with

Regime Switching

3.1 Introduction

In this chapter, we extend the analysis in Chapter 2 and assume a regime-switching

stock price model to capture the transition in between the bull and bear markets. This

is important for the realistic modeling of a short-selling because the target price of short-

covering should be sensitive to the market trend of the stock price. As a random recall

with exponential distribution can be treated as a transition to an absorbing state, we

are able to derive the value function and the optimal stopping rule by solving a system

of differential equations along with the smooth-fit principle as in Guo and Zhang (2005).

3.2 Regime Switching Stock Price Model

3.2.1 Setup

We fix the filtered probability space (Ω,F , (Ft)t≥0,P). The stock price is a regime-

switching diffusion process X = (Xt)t≥0 satisfying

dXt = µJ(t)Xtdt+ σJ(t)XtdWt, X0 = x > 0,

which is modulated by a continuous-time Markov chain J = {J(t)} on a finite state

space E = {1, 2}. Here, µ = {µ1, µ2} are the expected return and σ = {σ1, σ2} with

σ1 < σ2 are the discrete volatilities at each state. Furthermore, we take µ1 ≥ 0, µ2 < 0

36
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in which state 1 can be interpreted as a bull market (low volatility, upward trend) while

state 2 as a bear market (high volatility, downward trend). The intensity matrix is

Q =

(
−λ1 λ1

λ2 −λ2

)
,

with λi > 0 for i = 1, 2. Denote

M =

(
µ1 0

0 µ2

)
, Θ (z) =

(
θ1 (z) 0

0 θ2 (z)

)
, Λ (z) =

(
l1 (z) λ1

λ2 l2 (z)

)
,

where

θi (z) =
1

2
σ2
i z

2 +

(
µi −

1

2
σ2
i

)
z, li (z) = θi (z)− r − λi,

in which θi (z) is the Levy exponent corresponding to the generator

Li =
1

2
σ2
i x

2 d
2

dx2
+ µix

d

dx
,

at each state i = 1, 2.

The random time of the broker’s recall is governed by an independent exponential ran-

dom variable τR ∼ Exp (λ0) with the parameter λ0 ≥ 0. We write FW,Jt = σ(Ws, J (s) ; 0 ≤
s ≤ t), FW,J =

(
FW,Jt

)
t≥0

and F = (Ft)t≥0, and assume that FW,Jt ∨ σ(1{τR>t}) ⊂ Ft.
We denote the expectation

Ex,i [·] = E [ ·| J(0) = i,X (0) = x] ,

under P.

In the following, we assume that the investor’s own discount rate r is a constant, while the

margin account interest rate and the loan fee rate are regime dependent as q = (q1, q2)>

and δ = (δ1, δ2)>. The short-seller is supposed to have already undertaken the short

position when the stock price was equal to K and to hold the position until she buys

back at the market price either at her own discretion or following a recall by the broker.

When the current state is observable as i, the short-seller’s problem is to optimize the

expected net profit

vi(x) = sup
τE∈A

Ex,i
[
e−r(τE∧τR) (K −XτE∧τR)−

∫ τE∧τR

0
e−rs

(
δJ(s)Xs − qJ(s)K

)
ds

]
,

(3.1)

for i = 1, 2. Here, A is the set of all FW,J -stopping times taking values in [0,∞]. We

assume that the subjective discount rate r is sufficiently high, compared with the growth

rate of the stock price: r > max(max (µ1, µ2) , 0).
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3.2.2 Auxiliary problem and lower bounds

Let us denote

αiδi = e>i (rI−M−Q)−1 δ, βiqi = e>i (rI−Q)−1 q,

for i = 1, 2. The following lemma will be useful for the calculation of the value function.

Lemma 3.1. Suppose that r > max(max (µ1, µ2) , 0). Then, for any stopping time t > 0

it holds that

E
[∫ ∞

t
e−ruδJ(u)Xudu

∣∣∣∣Ft] = e−rtαJ(t)δJ(t)Xt, E
[∫ ∞

t
e−ruqJ(u)du

∣∣∣∣Ft] = e−rtβJ(t)qJ(t),

and

Ex,i
[∫ t

0
e−ruδJ(u)Xudu

]
= αiδix− Ex,i

[
e−rtαJ(t)δJ(t)Xt

]
,

Ex,i
[∫ t

0
e−ruqJ(u)Kdu

]
= βiqiK − Ex,i

[
e−rtβJ(t)qJ(t)K

]
.

Proof. See Appendix.

By Lemma 3.1, the short-seller’s problem can be re-written as

vi(x) = ui(x) + (1− ηi)K − (1− ρi)x, (3.2)

with

ηi = 1− βiqi, ρi = 1− αiδi,

for i = 1, 2. The original problem is reduced to the auxiliary optimal stopping problem

ui(x) = sup
τE∈A

Ex,i
[
e−r(τE∧τR)

(
ηJ(τE∧τR)K − ρJ(τE∧τR)XτE∧τR

)]
, (3.3)

in which the gain function is regime dependent as

gi (x) = g (x, i) =

{
η1K − ρ1x, i = 1,

η2K − ρ2x, i = 2.
(3.4)

The coefficients η = (η1, η2)> and ρ = (ρ1, ρ2)> summarize the expected running reward

and cost when the interest rate and loan fee rate are regime dependent.
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The auxiliary optimal stopping problem has two lower bounds on each state i. The first

one is gi (x) which corresponds to τE = 0. The second one corresponds to τE = ∞ as

given below.

Proposition 3.2. The lower bound of the value function ui(x) corresponding to τE =∞
is

ψi(x) = aix+ bi, i = 1, 2, (3.5)

where

a = λ0 (M + Q− (r + λ0) I)−1 ρ, b = λ0K ((r + λ0) I−Q)−1 η,

with a = (a1, a2)> and b = (b1, b2)>.

Proof. See Appendix.

The two lower bounds gi and ψi determine the type of stopping rule of the optimal

stopping problem at each state. When there is no regime switching, in Chapter 2

we explicitly characterize the four possible types of (i) put-type problem, (ii) call-type

problem, (iii) immediate stop and (iv) wait forever, depending on the model parameters.

For simplicity, we shall focus only on the put-type problem in which the stopping rule

is of down-and-out type.1 This is consistent with the general views that a short-selling

strategy is to speculate a decline in the stock price. To this end, we can assume that q

and δ are sufficiently small as

qi
r
< 1 and

δi
r − µi

< 1 (3.6)

in order to ensure ηi > 0 and ρi > 0 for i = 1, 2 (see Appendix for details). In this case,

we can see that both the two lower bounds are decreasing with the stock price x, hence

it is natural to conjecture a down-and-out stopping rule.

3.3 Solution

3.3.1 Value function and optimal threshold

Since {Xt, Jt} is a joint Markov process, we can conjecture the threshold-type stopping

rule for the optimal stopping problem (3.3). Following Jobert and Rogers (2006), Guo

1In general, there can be a switching in between the put-type and call-type problems and one needs
to be more careful about the conjecture of the stopping rule.
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and Zhang (2005) and Tanaka (2012), the candidate of optimal stopping time is

τE = min
i=1,2

τi, τi = inf {t > 0;Xt ≤ xi, J (t) = i} , i = 1, 2, (3.7)

that is, the threshold is regime dependent. Let us assume the order

x2 < x1,

indicating that the threshold under state 2 (bear market) is lower than that under state

1 (bull market). The rationale is that the short-seller should be more aggressive and sets

a lower target price for short-covering under a bear market than that of a bull market.

Otherwise, we can rearrange the index and proceed similarly.

Case 1: when x ∈ (0, x2)

The short-seller stops immediately for all regimes. We have

u1(x) = η1K − ρ1x, u2(x) = η2K − ρ2x.

Case 2: when x ∈ [x2, x1)

The short-seller stops immediately for state 1 and continues for state 2. We have

u1(x) = η1K − ρ1x,

and u2 solves the differential equation

(L2 − r)u2(x) + λ2 (u1 (x)− u2 (x)) + λ0 (g2 (x)− u2 (x)) = 0.

The first term corresponds to the change in the value function u2 without regime switch-

ing, the second term is the change when there is a regime switch from state 2 to state

1, and the third term is the change when there is a broker’s random recall in state 2.

It is easy to see that the solution is

u2 (x) = C1x
γ1 + C2x

γ2 + φ (x) ,

in which γ1 > 1 and γ2 < 0 are the roots of 2

(r + λ0 + λ2)− 1

2
σ2

2z
2 −

(
µ2 −

1

2
σ2

2

)
z = G2(z) = 0,

2It can be checked that: G2(−∞) < 0, G2(0) > 0, G2(1) > 0 and G2(∞) < 0.



Short-Covering with Regime Switching 41

and φ is the special solution of the form

φ (x) =
λ2η1 + λ0η2

r + λ2 + λ0
K − λ2p1 + λ0ρ2

r − µ2 + λ2 + λ0
x.

The coefficients C1 and C2 are to be determined by the smooth-fit principle.

Case 3: when x ∈ [x1,∞)

The short-seller continues for both the two regimes. We have to solve the system of

differential equations(L1 − r)u1(x) + λ1 (u2 (x)− u1 (x)) + λ0 (g1 (x)− u1 (x)) = 0

(L2 − r)u2(x) + λ2 (u1 (x)− u2 (x)) + λ0 (g2 (x)− u2 (x)) = 0
.

Define Ai = Li − (r + λ0 + λi) and turn it into a matrix equation as(
A1 λ1

λ2 A2

)(
u1 (x)

u2 (x)

)
= −λ0

(
η1K − ρ1x

η2K − ρ2x

)
,

we are ready to apply the solution method in Guo and Zhang (2005). Let us focus on

the homogenous equation(
A1 λ1

λ2 A2

)(
f1 (x)

f2 (x)

)
=

(
0

0

)
. (3.8)

We can conjecture the solution to be the linear combination of the form

f1 (x) =

4∑
k=1

Akx
βk , f2 (x) =

4∑
k=1

Bkx
βk .

As shown in the Appendix, we need to solve a characteristic equation

G1 (β)G2 (β) = λ1λ2, (3.9)

with

G1 (β) = (r + λ0 + λ1)− 1

2
σ2

1β
2 −

(
µ1 −

1

2
σ2

1

)
β,

G2 (β) = (r + λ0 + λ2)− 1

2
σ2

2β
2 −

(
µ2 −

1

2
σ2

2

)
β,
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which has the four distinct roots β4 > β3 > 0 > β2 > β1. Moreover, the coefficients Ak

and Bk are related as

Bk = lkAk =
G1 (βk)

λ1
Ak =

λ2

G2 (βk)
Ak, k = 1, 2, 3, 4.

To ensure f1 (x) and f2 (x) are bounded as x→∞, we have to discard the positive roots

β3 and β4. The special solution is

ψi (x) = aix+ bi, i = 1, 2,

which is just the lower bound function as obtained in Proposition 3.2. As a result, the

value functions for x ∈ [x1,∞) are given by

u1 (x) = A1x
β1 +A2x

β2 + ψ1 (x) ,

u2 (x) = l1A1x
β1 + l2A2x

β2 + ψ2 (x) ,

in which the coefficients A1 and A2 are to be determined.

3.3.2 Smooth-fit

The solution for the 3 regions (0, x2), [x2, x1) and [x1,∞) is summarized as

u1 (x) =

η1K − ρ1x, if x ∈ (0, x1) ,

A1x
β1 +A2x

β2 + ψ1 (x) , if x ∈ [x1,∞) .
(3.10)

u2 (x) =


η2K − ρ2x, if x ∈ (0, x2) ,

C1x
γ1 + C2x

γ2 + φ (x) , if x ∈ [x2, x1) ,

l1A1x
β1 + l2A2x

β2 + ψ2 (x) , if x ∈ [x1,∞) .

(3.11)

Due to the exponential termination of broker’s recall, we see that the special solutions

appear in the value functions under all the continuation regions. The 6 unknown coeffi-

cients A1, A2, C1, C2, x1, x2 can be obtained by the smooth-fit principle as follows:

1. Matching of u2 (x) at x = x1 :

l1A1x
β1
1 + l2A2x

β2
1 + ψ2 (x1) = C1x

γ1
1 + C2x

γ2
1 + φ (x1) ,

β1l1A1x
β1
1 + β2l2A2x

β2
1 + x1ψ

′
2 (x1) = γ1C1x

γ1
1 + γ2C2x

γ2
1 + x1φ

′ (x1) .
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2. Matching of u1 (x) at x = x1 :

A1x
β1
1 +A2x

β2
1 + ψ1 (x1) = η1K − ρ1x1,

β1A1x
β1
1 + β2A2x

β2
1 + x1ψ

′
1 (x1) = −ρ1x1.

3. Matching of u2 (x) at x = x2 :

C1x
γ1
2 + C2x

γ2
2 + φ (x2) = η2K − ρ2x2,

γ1C1x
γ1
2 + γ2C2x

γ2
2 + x2φ

′ (x2) = −ρ2x2.

We can obtain a equation solving the thresholds (x1, x2) as(
x−γ1

1 0

0 x−γ2
1

)
F1 (x1) =

(
x−γ1

2 0

0 x−γ2
2

)
F2 (x2) , (3.12)

where F1(x1) and F2(x2) are given by

F1 (x1) =

(
1 1

γ1 γ2

)−1
( l1 l2

β1l1 β2l2

)(
1 1

β1 β2

)−1(
η1K − ρ1x1 − ψ1 (x1)

−ρ1x1 − x1ψ
′
1 (x1)

)

−

(
φ (x1)− ψ2 (x1)

x1φ
′ (x1)− x1ψ

′
2 (x1)

)]
,

F2 (x2) =

(
1 1

γ1 γ2

)−1(
η2K − ρ2x2 − φ (x2)

−ρ2x2 − x2φ
′ (x2)

)
.

Once (x1, x2) are obtained, we can solve (A1, A2) and (C1, C2) as

(
A1

A2

)
=

(
xβ1

1 xβ2
1

β1x
β1
1 β2x

β2
1

)−1(
η1K − ρ1x1 − ψ1 (x1)

−ρ1x1 − x1ψ
′
1 (x1)

)
, (3.13)

(
C1

C2

)
=

(
xγ1

2 xγ2
2

γ1x
γ1
2 γ2x

γ2
2

)−1(
η2K − ρ2x2 − φ (x2)

−ρ2x2 − x2φ
′ (x2)

)
. (3.14)

The optimality of the value functions and thresholds can be verified by following the

procedure in Guo and Zhang (2005). Lastly, it is worth to note that the derivation herein

works for a two-state regime switching model only. For multiple regimes with n > 2, we

refer the readers to Tanaka (2012) for the application of linear algebra techniques on a

general regime switching model.
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Figure 3.1: The Nikkei 225 index since early 1990s. The shaded area is the recession
period as announced by the Economic and Social Research Institute (ESRI) in Japan.

3.4 Numerical Examples

3.4.1 Parameter calibration

We obtain the daily closing prices of the Nikkei 225 index since early 1990s and iden-

tify the bull-bear market transition based on the business cycles as announced by the

Economic and Social Research Institute (ESRI) in Japan.3 The Nikkei 225 market is an

ideal venue to test our short-selling strategy because it has declined by more than 70%

since the burst of the financial bubble in early 1990s. Figure 3.1 reports the Nikkei 225

index from March 1991 to November 2012 which covers several business cycles of the

Japan’s economy. A recession (boom) starts at the peak (trough) of a business cycle

and ends at the trough (peak) as measured by the economic activity. As can be seen,

the stock market declines coincide with the ESRI recession periods, suggesting that it

is appropriate to determine the stock market trend based on the ESRI business cycles.

To be specific, we take a boom period and a recession period to be a bull market and a

bear market respectively. As such, we estimate that the average annualized log-returns

during a boom period and a recession period are about 3% and -20% respectively over

the sample period. Furthermore, we compute the historical volatility of Nikkei 225 us-

ing the exponentially weighted moving average (EWMA) method. As shown in Figure

3.2, the stock market volatility is usually higher during a recession period (around 30%

to 40%) than that of a boom period (around 15% to 25%). This demonstrates that a

regime-switching model provides a better description to the stock market dynamics than

the standard Black-Scholes model with constant parameters.

3See http://www.esri.cao.go.jp/jp/stat/di/140530hiduke.html (in Japanese). We are grateful to the
anonymous referee for the suggestion.
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Figure 3.2: The historical volatility of Nikkei 225 based on the EWMA method with
a decay factor of 0.06.

µ1 σ1 λ1 µ2 σ2 λ2

0.05 0.20 0.25 -0.10 0.40 0.75

Table 3.1: Model parameters for the two-state regime-switching model.

Based on the analysis, we calibrate the regime-switching model as in Table 3.1 which is

explained as follows. We take state 1 to be a bull market (low volatility, upward trend)

and state 2 to be a bear market (high volatility, downward trend). Conditional on the

regime state i, the log-return is normally distributed as

ln(Xt+∆t)− ln(Xt) ∼ N
(

(µi −
1

2
σ2
i )∆t, σ

2
i ∆t

)
,

where ∆t is the time interval. Plugging in the values in Table 3.1, we get µ1 − σ2
1/2 =

0.03 and µ2 − σ2
2/2 = −0.18, which match with the empirical data. To calibrate the

transition intensity, we note that on average a boom period lasts for 36 months while a

recession period lasts for 16 months as indicated by the ESRI business cycles. Because

the expected time to be spent on the state i is 1/λi, the transition intensities can be

chosen as

λ1 = 0.25 ≈ (1/36)× 12, and λ2 = 0.75 ≈ (1/16)× 12.

We set the recall intensity to be λ0 = 0.05 such that a recall is a rare event as noted in

D’Avolio (2002). Since the Japanese interest rates are close to zero during the sample

period, we take the rebate interest rates to be q1 = q2 = 0.01 and set δ1 = δ2 = 0.02 for

the loan fee rates. The short-seller’s subjective discount rate is taken to be r = 0.10,

while the initial stock price and entry price are normalized to be x = K = 100.

Figure 3.3 illustrates the value-matching and smooth-fit of the value functions v1 and
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Figure 3.3: Value functions and optimal thresholds based on Table 3.1.

v2 at the respective optimal thresholds (x∗1, x
∗
2) = (92.30, 38.91), obtained by solving

equation (3.12). The optimal threshold for short-covering in state 1 is much higher than

that in state 2, suggesting that the short-seller should set a higher target price and take

profit earlier under a bull market while being more aggressive in a bear market. The large

difference in the optimal thresholds (x∗1, x
∗
2) highlights the importance to incorporate

regime-switching into the short-seller’s problem and derive the corresponding regime-

dependent optimal stopping rule.

In contrast to a standard real option problem, the value functions can become negative

for large x due to the broker’s recall and running cost.4 This is illustrated more clearly by

plotting the lower bounds of the value functions, hi(x) = ψi(x) + (1− ηi)K − (1− ρi)x
for i = 1, 2, which represent the expected present values of the trading strategy when

the short-seller chooses to wait forever (τE = ∞). We find that the intersection of the

lower bound h1(x) and the payoff K−x, is quite close to x∗1 in state 1 but this is not the

case in state 2. Moreover, the difference v2(x)− h2(x) is also larger than v1(x)− h1(x).

This suggests that the optionality to stop at a finite time is more valuable in state 2

than that in state 1. Intuitively, this can be explained by the fact that a short-selling

strategy is more opportunistic when the stock price tumbles in a bear market. As the

value function in state 2 is quite different from that in state 1, a financial implication is

that a short-seller should book the net present value of a trade (P&L) according to the

current market regime.

4For a detailed comparative analysis for the short-seller’s problem, see Chung and Tanaka (2015).
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λ0 x∗1 x∗2 v1(100) v2(100)

0 77.68 38.04 6.25 16.08
0.02 84.37 38.51 2.74 13.12
0.05 92.30 38.91 0.59 10.87
0.1 102.25 39.30 0.00 9.16
0.2 116.06 39.77 0.00 7.71

Table 3.2: Impact of recall risk on the optimal thresholds and value functions.

3.4.2 The impact of recall risk

Table 3.2 reports the impact of recall risk on the optimal thresholds as the intensity λ0

varies. It can be seen that the impact of recall risk is higher in state 1 than that in

state 2. In a bull market, the stock price tends to go up and the broker’s recall is more

likely to lead to a trading loss. As a result, the short-seller has to be more careful about

the timing of taking profit (short covering) and she needs to modify the target price

accordingly as the recall risk increases. Furthermore, we note that the corresponding

optimal threshold x∗1 may go over K = 100, indicating that the short-seller should not

enter the trade in a bull market when the recall risk and stock price x are high.

3.4.3 The impact of transition intensity

We vary the transition intensities {λi, i = 1, 2} as 0.25, 0.50, 0.75 and 1.00 to study the

effect of regime-switchings to the optimal thresholds. From Table 3.3, we find that the

optimal threshold under state 1 is very sensitive to the intensities λ1 and λ2. As the

intensity λ1 increases, there is a higher probability to switch from state 1 to state 2.

This encourages the short-seller in state 1 to wait further for a transition to state 2

which is more opportunistic. When the intensity λ2 increases, state 2 becomes relatively

short-lived. The short-seller is more time constrained and has less chance to make a

good profit during a bear market. Consequently, the trade in state 1 also become less

opportunistic and the short-seller should cover the position earlier.

In contrast, the optimal threshold under state 2 is quite robust to the variation in

transition intensities. This can be explained as follows. When the current state is 2 and

x∗2 << x∗1, a regime switching (2 → 1) indicates a jump from the continuation region

under state 2 to the stopping region under state 1. This effectively leads to a forced

termination of the strategy and such a switching is similar to a random recall. When

the market is trending downward, such a forced termination is likely to lead to an early

profit taking which is not too harmful to the short-seller. This is consistent with the
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λ2

λ1 0.25 0.50 0.75 1.00

0.25 (77.26, 35.63) (85.54, 37.56) (92.30, 38.91) (97.92, 39.91)
0.50 (63.58, 35.18) (69.49, 37.03) (74.73, 38.44) (79.40, 39.52)
0.75 (57.35, 34.86) (61.93, 36.57) (66.13, 37.97) (69.98, 39.09)
1.00 (53.66, 34.61) (57.41, 36.20) (60.90, 37.54) (64.17, 38.67)

Table 3.3: Impact of transition intensity on the optimal thresholds (x∗1, x
∗
2).

analysis in Chung and Tanaka (2015) which explicitly show that the optimal threshold

is less sensitive to a forced termination in a down market.

3.5 Summary

In this chapter, we study the optimal stopping problem related to a short-selling strategy

in a financial market. We consider a two-state regime-switching stock price model and

derive the optimal stopping rule to the short-seller’s problem. When the random recall

is an independent exponential variable, we are able to obtain the closed-form solution

by extending the results (i.e., randomization) in Guo and Zhang (2005) and Tanaka

(2012). Although we focus on the put-type problem in herein, it would be interesting

to evaluate a short-selling strategy when there is a switch in between the put-type and

call-type problems. Moreover, the intensity of broker’s recall can also depend on the

regime. These are left for future research.

3.6 Appendix

3.6.1 Proof of Lemma 3.1

Note that

Λ (1) = − (rI−M−Q) , Λ (0) = − (rI−Q) ,

which will be useful in the derivation. For T ≥ t and a real number ξ, Proposition 2.2

in Asmussen (2003) gives

E
[
e−rT δJ(T )X(T )ξ1{J(T )=j}

∣∣∣ J(t) = i,X (t)
]

= e−rTX(t)ξ {exp [(Q + Θ (ξ)) (T − t)]}ij
= e−rtX(t)ξ {exp [Λ (ξ) (T − t)]}ij ,
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in which the second equality is due to Q + Θ (z) = Λ (z) + rI. Applying this result, we

have

E
[
e−rT δJ(T )X(T )ξ

∣∣∣ J(t) = i,X (t)
]

=
∑
j∈E

E
[
e−rT δJ(T )X(T )ξ1{J(T )=j}

∣∣∣ J(t) = i,X (t)
]

=
∑
j∈E

E
[
e−rTX(T )ξ1{J(T )=j}

∣∣∣ J(t) = i,X (t)
]
δj

= e−rtX(t)ξ
∑
j∈E
{exp [Λ (ξ) (T − t)]}ij δj

= e−rtX(t)ξe>i exp [Λ (ξ) (T − t)] δ.

Hence, we can compute

E
[∫ ∞

t
e−rtδJ(u)Xudu

∣∣∣∣ J(t) = i,X (t)

]
=

∫ ∞
t

E
[
e−rtδJ(u)Xu

∣∣ J(t) = i,X (t)
]
du

= e−rtX(t)e>i

∫ ∞
t

exp [Λ (1) (u− t)] δdu

= e−rtX(t)e>i

{∫ ∞
t

exp [− (rI−M−Q) (u− t)] du
}
δ

= e−rtX(t)e>i (rI−M−Q)−1 δ

= e−rtαiδiXt,

in which we denote αiδi = e>i (rI−M−Q)−1 δ. Similarly, we have

Ex,i
[∫ ∞

t
e−rtqJ(u)du

∣∣∣∣ J(t) = i,X (t)

]
= e−rte>i

∫ ∞
t

exp [Λ (0) (u− t)] qdu

= e−rte>i

{∫ ∞
t

exp [− (rI−Q) (u− t)] du
}

q

= e−rte>i (rI−Q)−1 q

= e−rtβiqi,

in which we denote βiqi = e>i (rI−Q)−1 q.

By the strong Markov property of (X, J), we have

Ex,i
[∫ ∞

0
e−ruδJ(u)Xudu

]
= αiδix,

Ex,i
[∫ ∞

t
e−ruδJ(u)Xudu

]
= Ex,i

[
E
[∫ ∞

t
e−ruδJ(u)Xudu

∣∣∣∣Ft]] = Ex,i
[
e−rtαJ(t)δJ(t)Xt

]
,

such that

Ex,i
[∫ t

0
e−ruδJ(u)Xudu

]
= αiδix− Ex,i

[
e−rtαJ(t)δJ(t)Xt

]
.
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For the second identity, we have

Ex,i
[∫ ∞

0
e−ruqJ(u)Kdu

]
= βiqiK,

Ex,i
[∫ ∞

t
e−ruqJ(u)Kdu

]
= Ex,i

[
E
[∫ ∞

t
e−ruqJ(u)Kdu

∣∣∣∣Ft]] = Ex,i
[
e−rtβJ(t)qJ(t)K

]
,

such that

Ex,i
[∫ t

0
e−ruqJ(u)Kdu

]
= βiqiK − Ex,i

[
e−rtβJ(t)qJ(t)K

]
.

3.6.2 Proof of Proposition 3.2

The lower bound of ui corresponding to τE =∞ is

ψi(x) = Ex,i
[
e−rτRg (XτR)

]
=

∫ ∞
0

λ0e
−(r+λ0)uEx,i

[
ηJ(u)K

]
du−

∫ ∞
0

λ0e
−(r+λ0)uEx,i

[
ρJ(u)Xu

]
du,

since τR is exponentially distributed. By Proposition 2.2 in Asmussen (2003), we have∫ ∞
0

λ0e
−(r+λ0)uEx,i

[
ηJ(u)K

]
du =

∫ ∞
0

λ0Ke>i exp [− ((r + λ0) I−Q)u]ηdu

= λ0Ke>i ((r + λ0) I−Q)−1 η,

and∫ ∞
0

λ0e
−(r+λ0)uEx,i

[
ρJ(u)Xu

]
du =

∫ ∞
0

λ0xe>i exp [− ((r + λ0) I−M−Q)u]ρdu

= −λ0xe>i ((r + λ0) I−M−Q)−1 ρ.

Hence, we can express

ψi(x) = aix+ bi, i = 1, 2,

where

a = λ0 (M + Q− (r + λ0) I)−1 ρ, b = λ0K ((r + λ0) I−Q)−1 η,

with a = (a1, a2)> and b = (b1, b2)>.

3.6.3 Condition (3.6)

We can compute the coefficients αiδi and βiqi explicitly and show that the condition

(3.6) implies a put-type problem with ρi > 0 and ηi > 0, for i = 1, 2.
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1. αiδi = e>i (rI−M−Q)−1 δ. Note that

(rI−M−Q)−1 =
1

det (rI−M−Q)

(
r + λ2 − µ2 λ1

λ2 r + λ1 − µ1

)
,

where det (rI−M−Q) = (r + λ1 − µ1) (r + λ2 − µ2)− λ1λ2. We have

α1δ1 =
(r + λ2 − µ2) δ1 + λ1δ2

(r + λ1 − µ1) (r + λ2 − µ2)− λ1λ2
,

α2δ2 =
(r + λ1 − µ1) δ2 + λ2δ1

(r + λ1 − µ1) (r + λ2 − µ2)− λ1λ2
.

Under the condition δi/(r − µi) < 1 for i = 1, 2 from (3.6), we see that

0 < (r + λ2 − µ2) δ1 + λ1δ2 < (r + λ2 − µ2) (r − µ1) + λ1 (r − µ2)

= (r + λ1 − µ1) (r + λ2 − µ2)− λ1λ2,

with r > max(max (µ1, µ2) , 0), λi > 0 and δi > 0. By rearranging the terms, we

can show that α1δ1 < 1 and ρ1 = 1 − α1δ1 > 0. Similarly, we can show that

α2δ2 < 1 and ρ2 = 1− α2δ2 > 0.

2. βiqi = e>i (rI−Q)−1 q. Note that

(rI−Q)−1 =
1

det (rI−Q)

(
r + λ2 λ1

λ2 r + λ1

)
,

where det (rI−Q) = (r + λ1) (r + λ2)− λ1λ2. We have

β1q1 =
(r + λ2) q1 + λ1q2

(r + λ1) (r + λ2)− λ1λ2
,

β2q2 =
(r + λ1) q2 + λ2q1

(r + λ1) (r + λ2)− λ1λ2
.

Under the condition qi/r < 1 for i = 1, 2 from (3.6), we see that

0 < (r + λ2) q1 + λ1q2 < (r + λ2) r + λ1r

= (r + λ1) (r + λ2)− λ1λ2,

with r > 0, λi > 0 and qi > 0. By rearranging the terms, we can show that

β1q1 < 1 and η1 = 1 − β1q1 > 0. Similarly, we can show that β2q2 < 1 and

η2 = β2q2 > 0.
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3.6.4 Proof of (3.9)

Re-write the homogenous equation (3.8) asA1f1(x) + λ1f2(x) = 0

A2f2(x) + λ2f1(x) = 0
.

We can solve f2(x) as a function of f1(x) from the first equation and substitute it into

the second equation, which gives

A2A1f1(x) = λ1λ2f1(x).

Similarly, we can solve f1(x) as a function of f2(x) and obtain

A1A2f2(x) = λ1λ2f2(x).

Take the solution form

f1 (x) =
4∑

k=1

Akx
βk , f2 (x) =

4∑
k=1

Bkx
βk ,

we have G1 (βk)G2 (βk)Akx
βk = λ1λ2Akx

βk

G1 (βk)G2 (βk)Bkx
βk = λ1λ2Bkx

βk
,

which holds for k = 1, 2, 3, 4. Hence, we need to solve the characteristic equation

G1 (β)G2 (β) = λ1λ2,

for the roots βk with k = 1, 2, 3, 4. It can be shown that the four roots are distinct by

checking the quartic equation

p (β) = G1 (β)G2 (β)− λ1λ2,

which has the properties: p (−∞) > 0, p
(
β

(1)
1

)
< 0, p (0) > 0, p

(
β

(2)
1

)
< 0, p (∞) > 0,

where β
(2)
1 > 1 and β

(1)
1 < 0 are the two distinct roots of G1 (β) = 0.

Furthermore, by a direct substitution we see that the coefficients Ak and Bk are related

as

Bk = lkAk =
G1 (βk)

λ1
Ak =

λ2

G2 (βk)
Ak,

for k = 1, 2, 3, 4.
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Chapter 4

Equity-Credit Hybrid Modeling

and its Application

4.1 Introduction

The affine jump-diffusion (AJD) models have been widely used in continuous time mod-

eling of stochastic evolution of asset prices, bond yields and credit spreads. Some of the

well known examples include the stochastic volatility (SV) model of Heston (1993),

stochastic volatility jump-diffusion models (SVJ) of Bates (1996) and Bakshi et al.

(1997), and stochastic volatility coherent jump model (SVCJ) of Duffie et al. (2000).

The AJD models possess flexibility to capture the dynamics of market prices in various

asset classes, while also admit nice analytical tractability. The affine term structure

models, which fall into the family of AJD models, have been frequently used to study

the dynamics of bond yields and credit spreads (see Duffie and Singleton, 1999).

A number of studies have addressed the importance of including jump dynamics to

valuation and hedging of derivatives. In the modeling of equity derivatives, Bakshi et al.

(1997) illustrate that the stochastic volatility model augmented with the jump-diffusion

feature produces a parsimonious fit to stock option prices for both short-term and long-

term maturities. Empirical studies reported by Bates (1996), Pan (2002) and Erakar

(2004) show that the inclusion of jumps in the modeling of stock price is necessary to

reconcile the time series behavior of the underlying with the cross-sectional pattern of

option prices. In particular, Erakar (2004) concludes from his empirical studies that

simultaneous jumps in stock price and return variance are important in catering for

different volatility regimes.

54
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While the AJD models have been successfully applied in valuation of both equity and

credit derivatives, the joint modeling of equity and credit derivatives have not been

fully addressed in the literature. Recently, a growing literature has highlighted such

an interaction between equity risk (stock return and its variance) and credit risk (firm

default risk). While the risk neutral distribution of stock return is fully conveyed by

traded option prices of different strikes and maturities, the information of the arrival

rate of default can be extracted from the bond yield spreads or credit default swap

spreads. With the growing liquidity of the credit default swap (CDS) markets, the

CDS spreads provide more reliable and updated information about the credit risk of

firms. Acharya and Johnson (2007) find that the CDS market contains forward looking

information on equity return, in particular during times of negative credit outlooks. For

equity options, Cao et al. (2010); Cremers et al. (2008); Zhang et al. (2009) show that

the out-of-the-money put options, which depict the negative tail of the underlying risk

neutral distribution, are closely linked to yield spreads and CDS spreads of the reference

firm.

Carr and Linetsky (2006) propose an equity-credit hybrid model in which the stock price

is sent to a cemetery state upon the arrival of default of the reference company. Carr and

Wu (2009) introduce another equity-credit hybrid model which incorporates jump-to-

default in which the equity price drops to zero given the default arrival. Carr and Madan

(2010) consider a local volatility model enhanced by jump-to-default. Mendoza-Arriaga

et al. (2010) and Bayraktar and Yang (2011), respectively, propose a flexible modeling

framework to unify the valuation of equity and credit derivatives using the time-changed

Markov process and multiscale stochastic volatility. Cheridito and Wugalter (2012)

propose a general framework under affine models with possibility of default for the

simultaneous modeling of equity, government bonds, corporate bonds and derivatives.

4.2 Affine Equity-Credit Modeling

In this section, we demonstrate how to incorporate the realized variance (continuous-

sampling) process in the equity-credit hybrid framework of Cheridito and Wugalter

(2012). The main result is the joint moment generating function (MGF) in Proposition

4.1 which includes the realized variance as one of the Markov state variables.

4.2.1 Affine process

We fix the state space of the form D = Rm+ ×Rn−m with the integers m ≥ 0 and n > 0,

and consider the regular affine process in Keller-Ressel et al. (2011) as:
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1. X = (Xt,Px)t≥0,x∈D is a n-dimensional, time-homogenous Markov process;

2. Take the index set I = {1, ..,m} and J = {m+ 1, ..., n} correspond to the first

m-components and the last (n−m)-components of the Markov process X such

that Xt = {XI,t, XJ ,t}.

The Markov process X is also known as the Markov state vector, and the components

{Xi,t; i = 1, 2, ..n} are called the Markovian factors. The first m-components of X, as

denoted by XI , contains the factors that are positive. These factors are useful for the

modeling of interest rate, hazard rate of default and the stochastic variance of asset

price which are non-negative in nature. For example, the factors in XI can be taken

as the square-root process so as to preclude negative values (Cox et al., 1985; Heston,

1993). On the other hand, the Markovian factors in XJ allows negative values, which

are useful for the modeling of the log stock price or the Guassian-type models for interest

rate. These factors can be modelled by the class of Ornstein-Unlenbeck process (Vasicek,

1977).

Denote 〈α, β〉 ,
∑n

k=1 αkβk as the Euclidean scalar product and Ex [·] = E [ ·|x] as

the expectation with respect to the measure Px. For a regular affine process, the joint

moment generating function (MGF) of the Markov process X can be obtained as

Ex [exp (〈u, Xt〉)] = exp (φ (t,u) + 〈ψ (t,u) , x〉) , (4.1)

in which the functions φ (t,u) and ψ (t,u) solve a coupled system of generalized Riccati

differential equation (Duffie et al., 2003).

Next, we discuss the flexibility of affine process to jointly model interest rate risk, credit

risk and volatility risk in a unified manner. The key idea is that we can specify the

instantaneous interest rate, hazard rate of default and stochastic variance as a linear

combination of the Markovian factors.

Cumulative Interest Rate and Money Market Account

The instantaneous risk-free rate r = (rt)t≥0 is specified as

rt = r0 + 〈r1, XI,t〉 , for r0 ∈ R+ and r1 ∈ Rm+ , (4.2)

which is a linear function on the positive component XI,t of the Markov process X.

Furthermore, we take

Rt =

∫ t

0
rudu, (4.3)

as the cumulative interest rate process. The money market account N = (Nt)t≥0 is given

by Nt = exp (Rt), which serves as the standard numeraire for the pricing of derivatives.
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It is important to note that R = (Rt)t≥0 and N = (Nt)t≥0 are Markov processes of finite

variations.

The default process

The instantaneous hazard rate of default λ = (λt)t≥0 is specified as

λt = λ0 + 〈λ1, XI,t〉 , for λ0 ∈ R+ and λ1 ∈ Rm+ , (4.4)

which is a linear function on the positive component XI,t of the Markov process X.

Furthermore, we take

Λt =

∫ t

0
λudu, (4.5)

as the cumulative hazard rate function, such that Λ = (Λt)t≥0 is a Markov process

of finite variation. With the definition of the cumulative hazard rate, we are ready

to incorporate a jump-to-default feature to the affine process. The jump-to-default is

generated by a doubly-stochastic process to be defined in the same state space D, with

the first jump time denoted by τ as

τ = inf {t ≥ 0 : Λt ≥ e} (4.6)

where e is a standard exponential random variable independent of X (see Lando, 1998).

In the presence of default, we need to extend the state-space as D ∪ {∆} , where ∆ is

a cemetery state outside of D in which the Markov process X is sent to at the time of

default.

The realized variance

Lastly, the instantaneous variance process v = (vt)t≥0 is specified as

vt = v0 + 〈v1, XI,t〉 , for v0 ∈ R+ and v1 ∈ Rm+ , (4.7)

which is similar to the specification of the interest rate and hazard rate processes. When

there is no jump in the stock price, the continuous-monitoring realized variance is given

by

It =

∫ t∧τ

0
vudu, (4.8)

such that we evaluate the realized variance until the default time. It can be seen that

I = (It)t≥0 is a Markov process of finite variation. When the stock price has finite-

activity jumps, the realized variance is modified as

It =

∫ t∧τ

0
vudu+ (JS)2Nt∧τ , (4.9)
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where JS is the jump size and Nt is an independent Poisson counter. The incorporation

of jumps in the stock price and other Markov factors are possible under the general

affine framework, although it might affect the analytical tractability to different extents.

For exposition purpose, we shall consider the case without stock price jumps such that

the realized variance is a simple integral of variance process.

The modeling of the interest rate, hazard rate and stochastic variance under the general

affine framework can be summarized as

Instantaneous process Integrated process Examples in Modeling

rt = r0 + 〈r1, XI,t〉, Rt =
∫ t

0 rtdu, Money market account: Nt = exp (Rt),

λt = λ0 + 〈λ1, XI,t〉, Λt =
∫ t

0 λudu, Default time: τ = inf {t ≥ 0 : Λt ≥ e},
vt = v0 + 〈v1, XI,t〉, It =

∫ t
0 vudu, Variance Swap: K = Ex [It].

Hence, by choosing appropriately the loading coefficients r1, λ1 and v1 one can achieve a

fairly high flexibility on the joint modeling of interest rate risk, credit risk and volatility

risk. Note that the incorporation of the continuous-sampling realized variance is parallel

to the incorporation of stochastic interest rate and hazard rate of default.

4.2.2 Moment generating function

Cheridito and Wugalter (2012) consider an extended Markov process (X,R,Λ) that in-

cludes the cumulative interest rate R = (Rt)t≥0 and cumulative hazard rate Λ = (Λt)t≥0

as Markovian factors, and introduce the possibility of a jump-to-default in the general

affine framework of Duffie et al. (2003). They derive the corresponding infinitesimal

generator for the extended Markov process (which is also a regular affine process), and

apply Theorem 2.7 in Duffie et al. (2003) to obtain the pre-default MGF as

Ex
[
exp (〈u, Xt〉+ w1Rt + w2Λt) 1{τ>t}

]
= exp (A (t,u, w1, w2) + 〈B (t,u, w1, w2) , x〉) ,

in which A (t,u, w1, w2) and B (t,u, w1, w2) solve a system of generalized Riccati equa-

tions.

In the following, we generalize their results by including the realized variance I = (It)t≥0

as one of the Markovian factors. We take Y = (R,Λ, I) ∈ R3
+ to be a Markov state

vector that collects the integrated Markovian factors in (4.3), (4.5) and (4.8). It is easy

to see that the extended Markov process Z = (X,Y ) takes value in the enlarged state

space D̃ = Rm+ × Rn−m × R3
+. Hence, Z forms an n + 3 dimensional time-homogenous

Markov process which is also a regular affine process under the definition in Keller-Ressel
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et al. (2011). Following Lemma 3.1 in Cheridito and Wugalter (2012), the pre-default

MGF for the extended Markov process Z is given in the next proposition.

Proposition 4.1 (Pre-default MGF). For some u ∈ Cn and w ∈ C3, we have

Φx,t (u,w) = Ex
[
exp (〈u, Xt〉+ 〈w, Yt〉) 1{τ>t}

]
= exp [A (t,u,w) + 〈B (t,u,w) , x〉] ,

in which A (t,u,w) and B (t,u,w) are the solutions to the coupled system of generalized

Riccati equations

∂tA (t,u,w) = G0 (B (t,u,w) , w) , A (0,u,w) = 0,

∂tBi (t,u,w) = Gi (B (t,u,w) , w) , Bi (0,u,w) = ui,

Bj (t,u,w) = exp
(
βTjjt

)
uj ,

for i ∈ I and j ∈ J , with

G0 (ξ, w) = 〈aξ, ξ〉+ 〈b, ξ〉+ r0w1 + h0 (w2 − 1) + v0w3,

Gi (ξ, w) = 〈αiξ, ξ〉+
n∑
k=1

〈βki, ξk〉+ r1,iw1 + h1,i (w2 − 1) + v1,iw3,

in which a, α, b and β are the coefficients that specify the affine process and satisty the

admissibility restrictions in Duffie et al. (2003).

Proof. See Lemma 3.1 in Cheridito and Wugalter (2012).

Note that the integrated factors Y = (R,Λ, I) do not directly enter the MGF due to the

special form of the infinitesimal generator and the fact that Y0 = (0, 0, 0). Indeed, these

factors enter the system of Riccati equations through the inclusion of the constant terms

r0w1+h0w2+v0w3 for G0 (ξ, v, w) and r1,iw1+h1,iw2+v1,iw3 for Gi (ξ, v, w) respectively.

As a result, the analytical tractability is nicely perserved with the additional the Markov

factor Y .

The pre-default MGF is useful for the joint pricing of standard financial instruments

such as defaultable bonds, credit default swaps and equity options. The extension herein

further facilities the pricing of derivatives that are sensitive to both interest rate, credit

risk and volaitlity risk. A nice example is the pricing of capped variance swap with

default risk.
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4.2.3 Examples

Black-Scholes model enhanced by a jump-to-default

For illustration, let us consider the Black-Scholes model enhanced by a jump-to-default

dSt = St− [(r0 + λ0) dt+ v0dWt] ,

where r0 is the risk-free interest rate, λ0 is the hazard rate of default and v0 is the

stock price volatility, which are all assumed to be constant. To put this model under

the affine process framework, we take a single-factor time-homogenous Markov process

(Xt)t≥0,x∈D with D = R1 as

dX1
t = −1

2
v0dt+

√
v0dW

1
t .

It is well-known that the infinitesimal generator for the Markov process X is given by

L = 1
2σ

2
[
∂2
x − ∂x

]
. Hence, we simply take a = 1

2σ
2, b = −1

2σ
2 and α = β = 0. The

system of Riccati equation has the solution

A (t, u,w) =

[
1

2
u (u− 1) v2

0 + r0w1 + λ0 (w2 − 1) + v0w3

]
t, B (t, u,w) = u.

(4.10)

A three-factor hybrid model

We take a three-factor time-homogenous Markov process X = (Xt)t≥0,x∈D with the

state space D = R2
+ × R1 as

dX1
t = κ1

(
θ1 −X1

t

)
dt+ σ1

√
X1
t dW

1
t ,

dX2
t = κ2

(
θ2 −X2

t

)
dt+ σ2

√
X2
t dW

2
t ,

dX3
t = −1

2
X1
t dt+

√
X1
t dW

3
t ,

in which XI,t =
(
X1
t , X

2
t

)
are square-root processes and XI,t =

(
X3
t

)
. The stock price

process S = (St)t≥0 can be taken as

St = exp [st +Rt + Λt] 1{τ>t},

in which the log stock price (st) , stochastic volatility (νt) and hazard rate of default

(λt) are to be built on the Markov process X as

st = X3
t , νt = v0 + v1,1X

1
t + v1,2X

2
t , λt = λ0 + λ1,1X

1
t + λ1,2X

2
t . (4.11)
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For simplicity, we assume the interest rate to be constant, i.e., rt = r0 with r1 = (0, 0).

Furthermore, the correlation structure for W =
(
W 1,W 2,W 3

)
is specified as

1 0 ρ

0 1 0

ρ 0 1


in order to maintain analytical tractability of the affine structure.

We are ready to derive the solution for the system of generalized Riccati equations

corresponding to the three-factor model. Take a = 0, b = (κ1θ1, κ2θ2, 0) , and

α1 =
1

2


σ2

1 0 ρσ1

0 0 0

ρσ1 0 1

 , α2 =
1

2


0 0 0

0 σ2
2 0

0 0 0

 , β =
1

2


−κ1 0 0

0 −κ2 0

−1/2 0 0

 ,

(4.12)

Then, we can explicitly write down the system of equations for A (t) = A (t,u,w) and

B (t) = B (t,u,w) with u = (u1, u2, u3) and w = (w1, w2, w3) as

∂tA(t) = κ1θ1B1(t) + κ2θ2B2(t) + r0w1 + λ0 (w2 − 1) + v0w3,

∂tB1(t) =
1

2
σ2

1B
2
1(t) + (ρσ1B3 (t)− κ1)B1(t) +

1

2
B3 (t) (B3(t)− 1) + λ1,1 (w2 − 1) + v1,1w3,

∂tB2(t) =
1

2
σ2

2B
2
2(t)− κ2B2(t) + λ1,2 (w2 − 1) + v1,2w3,

B3(t) = u3,

for t ≥ 0 and A (0) = 0 and B (0) = (u1, u2, u3). Note that B3 (t) = u3 is a trivial

solution and the two equations for B1 (t) and B2 (t) can be recasted as standard Riccati

equations:

∂tB1 (t) = q0 + q1B1 (t) + q2B
2
1 (t) ,

∂tB2 (t) = p0 + p1B2 (t) + p2B
2
2 (t) ,

where

q0 =
1

2
u3 (u3 − 1) + λ1,1 (w2 − 1) + v1,1w3, q1 = ρσ1u3 − κ1, q2 =

1

2
σ2

1,

p0 = λ1,2 (w2 − 1) + v1,2w3, p1 = −κ2, p2 =
1

2
σ2

2,

with B1 (0) = u1 and B2 (0) = u2.
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By direct integration, the system of generalized Riccati has the closed-form solution

A (t) = (r0w1 + λ0 (w2 − 1) + v0w3) t

+κ1θ1

{
r−t−

1

q2
ln

[
1− g exp [−dt]

1− g

]}
+κ2θ2

{
s−t−

1

p2
ln

[
1− h exp [−kt]

1− h

]}
,

B1 (t) =
r− − r+g exp [−dt]

1− g exp [−dt]
, B2 (t) =

s− − s+h exp [−kt]
1− h exp [−kt]

, B3 (t) = u3,

with

g =
r− − u2

r+ − u2
, d =

√
q2

1 − 4q0q2, r± =
1

2q2
[−q1 ± d] ,

h =
s− − u3

s+ − u3
, k =

√
p2

1 − 4p0p2, s± =
1

2p2
[−p1 ± k] .

In the case that the system of equations governing A (t) and B (t) has non-linear terms,

we may not be able to arrive closed-form solution and one has to resort numerical method

for ordinary differential equations such as the fourth-order Runga-Kutta method. Given

the complicated expression of the closed-form solution, it is often useful to compute the

numerical solution as a benchmark to check the implementation.

4.3 Pricing of Defaultable European Options

4.3.1 The transform analysis

Consider a defaultable European contingent claim which pays P (XT ) when no default

occurs before maturity and zero payoff upon default (zero recovery). Given that the

payoff depends only on the terminal stock price St = exp (xt) , the time-t value of the

contingent claim is given by

P (Xt, t) = EQ
[

exp

(
−
∫ T

t
rsds

)
P (xT ) 1{τd>T}

∣∣∣∣Ft]
= 1{τd>t}E

Q

[
exp

(
−
∫ T

t
(rs + λs)ds

)
P (xT )

∣∣∣∣Gt] ,
where rs + λs is the risk-adjusted discount rate at time s. Let P̃ (ω) denote the Fourier

transform of the terminal payoff with respect to xT , where

P̃ (ω) =

∫ ∞
−∞

eiωxTP (xT ) dxT ,
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the terminal payoff can be expressed in the following representation as a generalized

Fourier transform integral:

P (xT ) =
1

2π

∫ iε+∞

iε−∞
e−iωxT P̃ (ω) dω.

Here, the parameter ε = Im ω denotes the imaginary part of ω which falls into some reg-

ularity strip, ε ∈ (a, b) , such that the generalized Fourier transform exists Lord and Kahl

(2007). By virtue of Fubini’s theorem, we obtain the following integral representation

of the time-t value of the contingent claim

P (Xt, t) =
1

2π

∫ iε+∞

iε−∞
Ψ (−ω) P̃ (ω) dω, (4.13)

where

Ψ (ω) = 1{τd>t}E
Q

[
exp

(
−
∫ T

t
(rs + λs)ds

)
exp (iωxT )

∣∣∣∣Gt] .
This is just the pre-default discounted first-component marginal characteristic function.

If there is a fixed recovery payment Rp to be paid on the maturity date upon earlier

default, the present value of this recovery payment is given by

PR (Xt, t) = Rp

{
EQ
[

exp

(
−
∫ T

t
rsds

)∣∣∣∣Gt]
− 1{τd>t}E

Q

[
exp

(
−
∫ T

t
(rs + λs)ds

)∣∣∣∣Gt]} . (4.14)

All these can be readily computed using the joint MGF in Proposition 4.1.

4.3.2 European options and put-call parity

European call option

Consider a call option which pays (ST −K)+ at maturity when there is no default prior

to the maturity date T and zero otherwise, so the terminal payoff function is given by

(ST −K)+ 1{τd>T} = (exT −K)+ 1{τd>T},

where xT = lnST . The Fourier transform of the above terminal payoff function is

C̃ (ω) =

∫ ∞
−∞

eiωxT (exT −K)+ dxT = −Ke
iω lnK

ω2 − iω
,

for ε = Im ω ∈ (1, εmax) . The upper bound of ε, as denoted by εmax, can be determined

by the non-explosive moment condition Ψ (−iε) <∞ (Carr and Madan, 1999). The call
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option price has the following Fourier integral representation

C (Xt, t) =
1

2π

∫ iε+∞

iε−∞
Ψ (−ω)

[
−Ke

iω lnK

ω2 − iω

]
dω

=
K

π

∫ ∞
0

Re

{
ei(ζ+iε) lnKΨ (− (ζ + iε))

i (ζ + iε)− (ζ + iε)2

}
dζ, ω = ζ + iε. (4.15)

It is worth noting that along the contour ω = a + ib for b ∈ (1, εmax), there is no

singularity in the integrand and one can perform numerical integration without much

difficulty.

It can be shown by replacing k = lnK, ζ = −v and ε = α + 1 that the expression in

4.15 is equivalent to the pricing formulation in Carr and Madan (1999), where

C (Xt, t) =
e−αk

π

∫ ∞
0

Re

{
e−ivkΨ (v − i (α+ 1))

− (v − iα) [v − i (α+ 1)]

}
dv.

In other words, one would obtain the same analytic expression of the Fourier integral

representation no matter whether one considers the transform with respect to the log-

stock price or log-strike price.

European put option

Suppose a put option pays at maturity the following payoff: (K − ST )+ 1{τd>T} =

(K − exT )+ 1{τd>T} when there is no default prior to maturity, and a recovery pay-

ment RP1{τd≤T} to be paid at maturity when default occurs during the contractual

period. The Fourier transform of the payoff of the non-default component of the put

option is given by

P̃0 (ω) =

∫ ∞
−∞

eiωxT (K − exT )+ dxT = −Ke
iω lnK

ω2 − iω
,

for ε = Im ω ∈ (−εmax, 0) . Inside the regularity strip where the above Fourier transform

is well defined, the non-default component has the following integral representation

P0 (Xt, t) =
1

2π

∫ iε+∞

iε−∞
Ψ (−ω)

(
−Ke

iω lnK

ω2 − iω

)
dω

=
K

π

∫ ∞
0

Re

{
ei(ζ+iε) lnKΨ (− (ζ + iε))

i (ζ + iε)− (ζ + iε)2

}
dζ, ω = ζ + iε.

It is interesting to find that the Fourier transform of the terminal payoff function for the

put option and the call option counterpart both have the same integral representation,

though subject to different constraints on the regularity strip. Note that Im ω ∈ (1, εmax)

for the call option and Im ω ∈ (−εmax, 0) for the put option.
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The recovery payment can be obtained similar to PR (Xt, t) in the evaluation of a de-

faultable bond. The defaultable European put option price is then given by

P (Xt, t) = P0 (Xt, t) + PR (Xt, t) .

Put-call parity relation under jump-to-default

Take the recovery payment to be Rp = K. In the presence of jump-to-default, a portfolio

of a long call and a short put has the terminal payoff

(ST −K)+ 1{τd>T} −
[
(K − ST )+ 1{τd>T} +K1{τd≤T}

]
= (ST −K) 1{τd>T} −K1{τd≤T}.

Hence, the difference of defaultable European call and put prices is given by

C (Xt, t)− P (Xt, t) = 1{τd>t}St −KBf (t, T ) ,

where Bf (t, T ) is defined before. The put-call parity relation in the presence of jump-

to-default is seen to be the same as the standard relation. This is consistent with the

model-free property of the put-call parity relation.

4.4 Pricing of Capped Variance Swaps

Denote the contractual period of the variance swap to be [0, T ] with the monitoring

dates 0 < t1 < ... < ti... < tN = T , where N is the total number of monitoring dates.

Denote K to be fair strike of the variance swap contract that equates its initial entry

cost to be zero. It is well-known that the pricing of variance swap is related to the

realized variance of the stock price over the contractual period as

I (0, T ;N) =
A

N

N∑
i=1

[
ln
(
Sti/Sti−1

)]2
, (4.16)

where St is the stock price and A = N/T is the annualized factor. When there is no

default risk, the payoff of a variance swap at maturity is given by I (0, T ;N)−K such

that the fair strike is K = Ex [I (0, T ;N)] .
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Denote τ to be the default time, S̃ =
(
S̃t

)
0≤t≤τ

to be the pre-default stock price process

and the cemetery state as∆. The defaultable stock price process can be defined as

St =

S̃t, τ > t,

∆, τ ≤ t.

Suppose that the default time occurs in between two monitoring dates such that τ ∈
(tn−1, tn] for n = 1, 2, ...N , we can decompose the realized variance into three terms as

N∑
i=1

[
ln
(
Sti/Sti−1

)]2
=

n−1∑
i=1

[
ln
(
Sti/Sti−1

)]2
+
[
ln
(
Stn/Stn−1

)]2
+

N∑
i=n+1

[
ln
(
Sti/Sti−1

)]2
=

n−1∑
i=1

[
ln
(
Sti/Sti−1

)]2
+
[
ln
(
∆/Stn−1

)]2
in which we set the last term to zero because Sti−1 = ∆ for i = n+1, ..., N . Furthermore,

let us send ∆ arbitrarily close to zero, the log-return ln
(
∆/Stn−1

)
and corresponding

squared-return become infinite due to the default time τ . In view of this, we have to

formulate

I (0, T ;N) =


A

N

∑N
i=1

[
ln
(
Sti/Sti−1

)]2
, τ > T,

∞, τ ≤ T,
(4.17)

as the defaultable realized variance. Next, we discuss the pricing of capped variance

swap based on the defaultable realized variance.

4.4.1 The cap feature

In the aftermath of the Lehman financial crisis, it has become standard to set a cap

to single-name variance swap to limit the risk exposure of the underwriter (Alexander

and Leontsinis, 2012). For a capped variance swap, the payoff pT (K) at the maturity

is given by

pT (K) = min [I (0, T ;N) , c]−K (4.18)

in which I (0, T ;N) is the defaultable realized variance, and the cap is specified as

c = mcapK,

in which mcap is a pre-determined multiplier that is usually set to be 2.52 times of the

fair strike. Decompose the default event 1 = 1{τ≤T} + 1{τ>T}, we see that

min [I (0, T ;N) , c] = min [I (0, T ;N) , c] 1{τ>T} + min [I (0, T ;N) , c] 1{τ≤T}

= min [I (0, T ;N) , c] 1{τ>T} + c1{τ≤T},
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in which the second identity follows from the fact that the cap is hit immediately

upon the default event due to (4.17). Furthermore, apply the identity min (a, b) =

min (a− b, 0) + b, we can express the first term as

min [I (0, T ;N) , c] 1{τ>T} = min [I (0, T ;N)− c, 0] 1{τ>T} + c1{τ>T},

such that

pT (K) = min [I (0, T ;N)− c, 0] 1{τ>T} + (c−K) .

The payoff of a capped variance swap can be splitted into the following 3 cases:

1. When there is no default (i.e. 1{τ>T} = 1) and I (0, T ;N) ≤ c, we have

pT (K) = I (0, T ;N)−K,

which is the payoff of a standard variance swap.

2. When there is no default (i.e. 1{τ>T} = 1) and I (0, T ;N) > c, we have

pT (K) = (c−K) ,

that is, the capped payoff is attained due to the accumulation of realized variance.

3. When there is default (i.e. 1{τ>T} = 0), we have I (0, T ;N) =∞ and hence

pT (K) = (c−K) ,

that is, the capped payoff is attained due to explosion in the realized variance at

a default.

Alternatively, we can rewrite

pT (K) = (c−K)−max [c− I (0, T ;N) , 0] 1{τ>T},

by min (−a, 0) = −max (a, 0). This shows that the pricing of a capped variance swap

can be decomposed into a constant payoff c−K plus a correction term which is related

to a defaultable variance put option with strike c. Buehler (2010) and Cheridito and

Wugalter (2012) assume that the cap is hit only at the time of default. Chen (2012)

discusses the pricing of capped volatility swap under Heston model and derive a closed-

form formula using Laplace transform of the continuous-monitoring realized variance.
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4.4.2 Continuous-monitoring

Take N →∞, on the event {τ > T} the continuous-monitoring limit of realized variance

is given by

lim
N→∞

I (0, T ;N) = IT =

∫ T

0
vudu,

such that

pT (K) = (c−K)−max [c− IT , 0] 1{τ>T}, (4.19)

with It is the continuous-monitoring realized variance as defined in (4.8). Thanks to the

analytical tractability for It as one of the Markovian factor in the affine process, it is

possible to derive the formula for the capped variance swap using the marginal MGF of

It.

Marginal MGF and variance put

From the joint MGF Φx,t (u,w) for the extended Markov process Z = (X,Y ), the

marginal MGF ΦI
t (·) for the realized variance I can be obtained by taking u = 0n =

(0, , ..., 0) and w = (0, 0, ζ) as

Ex
[
exp (ζIt) 1{τ>t}

]
= Φx,t (0n, (0, 0, ζ)) . (4.20)

Make use of the integral representations for (c− x)+ = max [c− x, 0] as

(c− x)+ =
1

2πi

∫ ∞
0

e−cz

z2
ezxdz =

1

π

∫ ∞
0

Re

{
e−c(ε+iy)

(ε+ iy)2 e
(ε+iy)x

}
dy,

for x ≥ 0 and ε < 0. The defaultable variance put can be obtained as (Kallsen et al.,

2010)

Ex
[
(c− IT )+ 1{τ>T}

]
=

1

π

∫ ∞
0

Re

{
e−c(ε+iy)

(ε+ iy)2 Φx,t (0n, (0, 0, ε+ iy))

}
dy, (4.21)

in which T is the maturity of the option.

Probability of hitting the cap

Buehler (2010) and Cheridito and Wugalter (2012) assume that the cap is attained only

at the time of jump-to-default. This gives the approximation

pT (K) = [I (0, T ;N)−K] 1{τ>T} + c1{τ≤T}, (4.22)
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which ignores the probability of hitting the cap before the occurence of a jump-to-default.

The validity of the approximation is equivalent to assuming that the following excess

probability is close to zero:

Pr {I (0, T ;N) ≥ c} ≈ 0.

In the continuous-monitoring limit, it is possible to compute the excess probability

explicitly using the transform approach. From the marginal MGF for It

Ex
[
exp (ζIt) 1{τ>t}

]
= Φt,x (0n, (0, 0, ζ)) , (4.23)

we can compute the excess probability as

Pr {IT ≥ c} =
1

2
+

1

π

∫ ∞
0

Re

[
e−iycΦx,t (0n, (0, 0, iy))

iy

]
dy,

based on the well-known Levy inversion formula (Gil-Pelaez, 1951).

4.4.3 Discrete-monitoring

We would like to explore the analytical tractability in the case of discrete-monitoring.

It is known that the pricing of variance option with discrete-monitoring requires one to

resort to approximations or numerical methods. To this end, let us assume that the

excess probability of the realized variance over the cap c = mcapK to be negligible as

Pr {I (0, T ;N) ≥ c} ≈ 0,

such that we can approximate the payoff of a capped variance swap using

pT (K) = [I (0, T ;N)−K] 1{τ>T} + c1{τ≤T}.

In that case, we have

Ex
[
I (0, T ;N) 1{τ>T}

]
= K

(
Ex
[
1{τ>T}

]
−mcapEx

[
1{τ≤T}

])
(4.24)

such that the fair strike K of discrete-monitoring capped variance swap is obtained as

K =
Ex
[
I (0, T ;N) 1{τ>T}

]
Ex
[
1{τ>T}

]
−mcapEx

[
1{τ≤T}

] . (4.25)
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From the expression, it is suffice to evaluate of the expectation with respect to the

pre-default realized variance as Ex
[
I (0, T ;N) 1{τ>T}

]
. To this end, we see that

Ex
[
I (0, T ;N) 1{τ>T}

]
=
A

N

N∑
i=1

Ex
[(

ln
(
Sti/Sti−1

))2
1{τ>T}

]
=
A

N

N∑
i=1

ρ (ti−1, ti;T ) ,

in which we take

ρ (ti−1, ti;T ) = Ex
[(

ln
(
Sti/Sti−1

))2
1{τ>T}

]
(4.26)

as the pre-default squared-return.

Let us further specify the stock price process using the Markov process X. We construct

the risk-neutral dynamics of the defaultable stock price process S = (St)t≥0 as

St = exp [ξt +Rt + Λt] 1{τ>t},

ξt = 〈δ1, Xt〉 , for δ1 ∈ Rn,

in which ξ = (ξt)t≥0 is the factor driving the stock price process. We further define the

log stock price process s = (st)t≥0

st = ξt +Rt + Λt,

which will be useful for the derivation.

Now, we are ready to the pricing of capped variance swap with discrete-monitoring.

In the following, we take 0n and 03 to denote a zero vector of the dimension n and 3

respectively. The functions A (t, u, w) and B (t, u, w) should be known as the solution

to the system of generalized Riccati equations in (4.10).

Lemma 4.2. For any t ∈ [0, T ] and any measurable function πt with respect to σ (Xu|u ≤ t),
then

Ex
[
πt1{τ>T}

]
= Ex

[
dt,Tπt1{τ>t}

]
,

where dt,T is given by

dt,T = E
[
1{τ>T}

∣∣Xt,1{τ>t}
]

= exp [A (T − t,0n,03) + 〈B (T − t,0n,03) , Xt〉] ,

with A (t, u, w) and B (t, u, w) are the solution to the system of generalized Riccati equa-

tions in (4.10).

Proof. See Appendix.
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To proceed, we resort to the identity from Zheng and Kwok (2014) as

[
ln
(
Sti/Sti−1

)]2
=

∂2

∂φ2
exp

[
φ
(
sti − sti−1

)]∣∣∣∣
φ=0

.

By Lemma 4.2 and the Fubini’s theorem, we can express the pre-default squared-return

as

ρ (ti−1, ti;T ) = Ex
[[

ln
(
Sti/Sti−1

)]2
1{τ>T}

]
=

∂2

∂φ2
Ψx (φ; ti−1, ti, T )

∣∣∣∣
φ=0

where

Ψx (φ; ti−1, ti, T ) = Ex
[
exp (A1 + 〈B1, Xti〉) exp

(
φ
(
sti − sti−1

))
1{τ>ti}

]
with A1 and B1 given in the next Theorem.

Theorem 4.3 (Pre-default Squared-Return). For 0 ≤ ti−1 < ti ≤ T , the pre-default

squared-return in (4.26) can be evaluated as

ρ (ti−1, ti;T ) =
∂2

∂φ2
Ψx (φ; ti−1, ti, T )

∣∣∣∣
φ=0

, (4.27)

where

Ψx (φ; ti−1, ti, T ) = exp

(
3∑
i=1

Ai + 〈B3, x〉

)
,

with

A1 = A (T − ti,0n,03) , A2 = A
(
ti − ti−1, B1 + φδ1,wφ

)
, A3 = A (ti−1, B2 − φδ1,03)

B3 = B (ti−1, B2 − φδ1,03) , B2 = B
(
ti − ti−1, B1 + φδ1,wφ

)
, B1 = B (T − t,0n,03) ,

in which A (t,u,w) and B (t,u,w) are solution to the Riccati equations in Proposition

4.1.

Proof. See Appendix.

We note that the computation of the pre-default squared-return ρ (ti−1, ti;T ) is related

to three random variables: S (ti) , S (ti−1) and 1{τ>T}. The calculation of the successive

iterated expectations is made possible given the exponential form of the MGF under

affine models.

Denote the default probability as p = Ex
[
1{τ≤T}

]
. When the conditionmcap < (1/p− 1)

holds, the fair strike of discrete-monitoring capped variance swap can be approximated
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as

K =

[
A

N

N∑
i=1

ρ (ti−1, ti;T )

]
1

γ (x, T )
(4.28)

where γ = 1− (1 +mcap)p. It is interesting to note the properties of the formula:

1. Denote p as the default probability. Evidently, we need to impose the restriction

mcap < (1/p− 1), for 0 ≤ p < 1, in order to keep the fair strike of variance swap

to be non-negative. This means the cap multiplier mcap cannot be set too high

when the default probability is not small. The intuition is that when the cap level

is high, the buyer of the variance swap will be rewarded a decent payoff at the case

of default. The issuer of the variance swap would be unable to solve a fair strike

to compensate the default-cap payoff when the default probability is not small.

2. The market practice is to set mcap = 2.52. In our model, such a multiplier is valid

only when default probability p is less than 13.8%. Consider a one-year variance

swap contract. This corresponds to a CDS spread of around 890 bps with a flat

term structure1

3. We see that the fair strike is increasing with default probability. This provides

an explanation on why the fair strike of variance swap is trading at a premium

over its theoretical value using the replication approach, when the probability of

default for most companies were not negligible during the recent financial crisis of

2008.

It would be helpful to see how this theoretical result applies on a simple model. For the

case of defaultable Black-Scholes model, we have

Ψx (φ; ti−1, ti, T ) = e(
1
2
v0φ2+(r0+λ0− 1

2
v0)φ)(ti−ti−1)−λ0T , (4.29)

such that the pre-default squared-return is given by

ρ (ti−1, ti;T ) = e−λ0T v0 (ti − ti−1) .

Hence, we can compute the realized variance and adjustment factor γ explicitly as

A

N

N∑
i=1

ρ (ti−1, ti;T ) =
A

N

N∑
i=1

e−λ0T v0 (ti − ti−1) = v0e
−λ0T ,

1Take a constant default intensity, we have p = 1 − e−λ0T and the CDS spread is approximately
given by s = λ0 (1−R), where R is the recovery rate. Plugging in T = 1, p = 1/ (1 +m), m = 2.52 and
R = 40%, we obtain s = 890 bps.
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Stochastic Volatility (X1
t ) ρ κ1 θ1 σ1 x1

0

−0.3 5 0.12 0.2 0.09
Latent Factor (X2

t ) κ2 θ2 σ2 x2
0

0.5 0.05 0.2 0.02
Jump-to-default (λt) λ0 λ1,1 λ1,2

0 0 1

Table 4.1: Basic model parameters for the three-factor hybrid model.

and

γ = Ex
[
1{τ>T}

]
−mcapEx

[
1{τ≤T}

]
= e−λ0T −mcap

(
1− e−λ0T

)
,

respectively. Therefore, the fair-strike of capped variance swap can be approximated by

K =
v0e
−λ0T

e−λ0T −mcap (1− e−λ0T )
≈ v0 +mcapv0

(
eλ0T − 1

)
. (4.30)

It is interesting to see that the fair strike is adjusted by a term mcapv0

(
eλ0T − 1

)
,

which represents the expected payoff from hitting the cap level at mcapv0 with default

probability
(
eλ0T − 1

)
.

4.5 Numerical Illustration

This section presents the numerical illustration on the pricing of capped variance swap

using the three-factor equity-credit hybrid model. The base model parameters of the

three-factor model are given in Table 4.1. For the model parameters, we assume the

stochastic volatility has a faster mean-reversion speed (half-life of 0.2 year) than the

latent factor of default intensity (half-life of 2 years). For the default intensity, we

assume an initial hazard rate of 0.02 which implies an CDS spread of around 100− 150

bps. Furthermore, we take the constant interest rate to be 2% and the current stock

price to be 100. The time horizon of the variance swap contract is taken to be one-year,

in which we consider daily monitoring (252 days), weekly monitoring (52 days) and

monthly monitoring (12 days).

4.5.1 Simulation study

First of all, we check our analytical results against the Monte-Carlo simulation by eval-

uation the accumulation of variance in the presence of jump-to-default. To focus on the

impact of default risk, we take the interest rate to be zero. As for the Monte-Carlo simu-

lation, we apply a simple Euler discretization to the three-factor model, with the number

of trials is 100,000 and the time-step size kept at 0.001. The estimates reported in Table
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Monitoring frequency Exact MC Simulation Std. Errors

Quarterly 36.07 36.06 0.05
Monthly 35.98 35.96 0.03
Weekly 35.94 35.91 0.02
Daily 35.93 35.93 0.02

Table 4.2: Analytical and Monte-Carlo esimates of the defaultable realized variance.

4.2 demonstrate that the closed-form solution based on the forward MGF approach is

efficient and numerically consistent with the Monte-Carlo simulation.

Next, we investigate the probability of the realized variance of hitting the cap without

through its distribution. In particular, we want to verify the assumption

Pr {I (0, T ;N) > c| τ > T} ≈ 0,

that is, the excess probability that the realized variance is larger than the cap conditional

on no default before time T . If this assumption holds well for a wide range of model

parameters, then it is effective to compute the fair strike based on the procedure in

Section 4.4. Recall that the our stochastic volatility factor is given by:

dX1
t = κ1

(
θ1 −X1

t

)
dt+ σ1

√
X1
t dW

1
t ,

we can compute the distribution the continuous-monitoring realized variance based on

the fourier inversion of the marginal MGF of IT . As a benchmark check, we simulate

the realized variance with daily-monitoring based on Monte-Carlo technique with 10,000

iterations, time step of 1/10 per day and 252 days in a year. The default event can be

simulated by computing the cumulative hazard rate and generating an independent

exponential variable as in (4.6). Then, we can compute the marginal distribution of IT

conditional on no default by discarding the defaulted paths, and generate the histogram

after normalizing the number of counts with the remaining paths.

From Figure 4.1, we see that the continuous-monitoring realized variance is a good proxy

of the discrete realized variance when the monitoring frequency is daily. It is noted that

the approximation accuracy deteriorates somewhat when the volatility-of-volatility is

small. This is because a smaller volatility-of-volatility implies a slower time-scale of

the variance dynamics with respect to the monitoring frequency. Having said that, it

appears that the continuous-monitoring is good enough for practical purpose because

almost all variance swaps in the market are calculated on daily-monitoring basis.

Figure 4.2 illustrates more clearly the cap-hitting probability Pr {IT > c| τ > T} under

continuous-monitoring. As can be seen, the probability of hitting the cap level at 0.2 or



Equity-Credit Modeling 75

0 0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

10

12

14

16

18

20

Realized Variance (I
T
)

(a) σ1 = 0.5.

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

5

6

7

8

9

10

Realized Variance (I
T
)

(b) σ1 = 1.0.

Figure 4.1: The distribution of the realized variance with continuous- and discrete-
monitoring.
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Figure 4.2: The excess probability of continuous-monitoring realized variance.

beyond is negligible under reasonable volatility-of-volatility parameters such as σ1 = 0.2,

0.5 and 1.0. In particular, these parameters are chosen to satisfy the Feller condition

as 2κ1θ1 > σ2
1 which is an important restriction on the square-root volatility model (see

Chapter 6 for details). Given that the expected variance is 0.12 (the long-term mean

for factor X1
t ), this suggests that the assumption holds well when the multiplier mcap is

set to be 1.52 or beyond. This guides our analysis on the capped variance swap below,

including the impact of the cap multiplier and the pricing behavior of capped variance

swap in the presence of interaction between volatility risk and default risk.

4.5.2 The impact of default risk

Figure 4.3 plots the fair-strike of variance swap against the hazard rate of default (λ)

with various levels of the multiplier as 1.52, 22, 2.52 and 32. In the illustration, when the
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Figure 4.3: Fair strike of capped variance swap versus the hazard rate of default.

default intensity λ is set at 2%, the fair strike without default is
√
K = 37.7% in terms

of volatility points. Suppose we approximate the add-on to the fair-strike in terms of

variance by p × (mcapK)2, we obtain an estimate of 39.2%, which is very close to the

theoretical value of 39.1%. The rule-of-thumb of adding a small premium to take into

account the cap appears to be a good compromise when the default probability is small.

Let us see what happens when the default cap multiplier is set higher to be 32 (i.e.,

the cap is at (3K)2). In this case, the fair strike is very sensitive to the hazard rate

of default. The fair strike increases in a non-linearly manner as the hazard rate goes

beyond 5%. This is because the variance swap seller has to set a higher fair strike in

order to compensate the risk of a decent payoff at a default event. In contrast, when the

multiplier is set lower at 2, the fair strike increases almost linearly. This suggests that the

credit risk sensitivity of a capped variance swap depends critically on the choice of the

multiplier. In the presence of a high multiplier, a sharp increase in default probability

could lead to a significant loss of the variance swap seller. The non-linear sensitivity

suggests that one has to be cautious in the basis-risk of constructing a cross-hedging

using capped variance swaps and credit default swaps.

4.5.3 Interaction between volatility risk and default risk

Lastly, we illustrate the impact of the interaction between stochastic volatility and haz-

ard rate of default. In particular, we want to examine the sensitivity of the fair strike

of capped variance swap with respect to various degrees of volatility-credit interaction.

To this end, we take λ1,0 = λ1,2 = 0, and gradually increase the loading coefficient λ1,1,

in order to generate different levels of interaction. Since we set λ1,2 = 0, our focus is
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Figure 4.4: Fair strike versus volatility when volatility interacts with hazard rate of
default.

on the default risk that is driven purely by the stochastic volatility factor X1
t (business

risk).

Figure 4.4 plots the fair strike against the instantaneous volatility X1
0 = ν0 at different

level of volatility-credit interaction as captured by λ1,1. In general, we find that the

impact of the volatility-credit interaction is mild to the pricing of capped variance swap.

The impact of endogenous jump-to-default can be quantitative significant only when the

volatility-credit interaction is strong and the multiplier is beyond 2.52.

4.6 Summary

The joint modeling of equity risk and credit exposure is important in any state-of-the-

art option pricing models of credit-sensitive equity derivatives. Our proposed equity-

credit models attempt to perform pricing of equity and credit derivatives under a unified

framework. We have demonstrated the robustness of adding the jump-to-default feature

in the popular affine jump-diffusion models for pricing defaultable European claims and

credit default swaps. By assuming the hazard rate to be affine, analytic tractability in

typical affine jump-diffusion models is maintained even with the inclusion of the jump-

to-default feature. Once the analytic formula is available for the characteristic function

of the joint equity-credit price dynamics, numerical valuation of the derivative prices can

be performed easily using a standard numerical integration quadrature or Fast Fourier

transform algorithm.

For application, we study the pricing of capped variance swap which is standard contrac-

tual feature of single-name variance swap trading in the over-the-counter market, in par-

ticular after the Lehman crisis. Our numerical example shows that the impact of default
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risk on the fair strike of variance swap can be highly non-linear when jump-to-default

risk is high. Our results indicate that pricing models that ignore the jump-to-default

risk is inadequate for the valuation and risk management of single-name variance swap.

4.7 Appendix

4.7.1 Proof of Lemma 4.2

For t ∈ [0, T ], we have 1{τ>T} = 1{τ>t}1{τ>T}. By the tower property of conditional

expectation

Ex
[
πt1{τ>T}

]
= Ex

[
πt1{τ>t}EXt

[
1{τ>T}

∣∣1{τ>t}]]
= Ex

[
dt,Tπt1{τ>t}

]
,

in which dt,T is the forward survival probability from t to T given by

dt,T = E
[
1{τ>T}

∣∣Xt,1{τ>t}
]

= exp [A (T − t,0,0) + 〈B (T − t,0,0) , Xt〉] ,

where we apply Proposition 4.1 by noting that X is a homogenous Markov process.

4.7.2 Proof of Theorem 4.3

From the identity

[
ln
(
Sti/Sti−1

)]2
=

∂2

∂φ2
exp

[
φ
(
sti − sti−1

)]∣∣∣∣
φ=0

,

by Lemma 4.2 and the Fubini’s theorem, we have

ρ (ti−1, ti;T ) = Ex
[[

ln
(
Sti/Sti−1

)]2
1{τ>T}

]
= Ex

[
∂2

∂φ2
exp

[
φ
(
sti − sti−1

)]∣∣∣∣
φ=0

1{τ>T}

]

=
∂2

∂φ2
Ψx (φ; ti−1, ti, T )

∣∣∣∣
φ=0

with

Ψx (φ; ti−1, ti, T ) = Ex
[
exp (A1 + 〈B1, Xti〉) exp

(
φ
(
sti − sti−1

))
1{τ>ti}

]
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where A1 = A (T − t,0n,03) and B1 = B (T − t,0n,03) are solution to the Riccati

equation in Proposition 4.1.

To compute the expectation, we substitute the definition of the log-stock price process

st = 〈δ1, Xt〉+Rt + Λt for t = ti and t = ti−1 such that

Ψx (φ; ti−1, ti, T )

= Ex
[
e〈B1+φδ1,Xti〉+φ(Rti−Rti−1)+φ(Λti−Λti−1)eA1−φδ1Xti−1 1{τ>ti}

]
= Ex

[
eA1−φδ1Xti−1 1{τ>ti−1}E

[
e〈B1+φδ1,Xti〉+φ(Rti−Rti−1)+φ(Λti−Λti−1)1{τ>ti}

∣∣∣Xti−1 ,1{τ>ti−1}

]]
,

in which we use the tower property of conditional expectation in the second line. Define

R̃t = Rt − Rti−1 and Λ̃t = Λt − Λti−1 for t ≥ ti−1, such that Xt and Ỹt =
(
R̃t, Λ̃t

)
are

joint Markov process and Ỹti−1 = 0. By the Markov property, we can apply Proposition

4.1 and the inner expectation becomes

E
[
e〈B1+φδ1,Xti〉+φ(Rti−Rti−1)+φ(Λti−Λti−1)1{τ>ti}

∣∣∣Xti−1 ,1{τ>ti−1}

]
= eA2+〈B2,Xti−1〉,

with

A2 = A
(
ti − ti−1, B1 + φδ1,wφ

)
, B2 = B

(
ti − ti−1, B1 + φδ1,wφ

)
,

with wφ = (φ, φ, 0). As a result, we have

Ψx (φ; ti−1, ti, T ) = Ex
[
eA1−φδ1Xti−1eA2+〈B2,Xti−1〉1{τ>ti−1}

]
.

Finally, by using Proposition 4.1 once again, the expectation can be computed as

eA1+A2Ex
[
e〈B2−φδ1,Xti−1〉1{τ>ti−1}

]
= eA1+A2+A3e〈B3,x〉,

with

A3 = A (ti−1, B2 − φδ1,03) , B3 = B (ti−1, B2 − φδ1,03) .



Chapter 5

Pricing Models of Contingent

Convertibles

5.1 Introduction

The contingent convertible bond (CoCo) is a hybrid fixed income security that provides

a loss-absorption mechanism when the capital of the issuing bank falls close to the

regulatory level as required by the Basel Committee on Banking Supervision (BCBS).

At a triggering event, the bond is automatically converted into the equity of the issuing

bank (or an equivalent amount of cash). The conversion provides fresh capital to the

issuing bank and saves it from financial distress. As a result, this can help to mitigate

the chance of a systemic banking crisis while avoiding the use of taxpayer’s money to

bail out distressed financial institutions.

Since the first issuance of Enhanced Capital Notes by the Lloyds Banking Group in

December 2009, there has been active discussion on the triggering mechanism and loss-

absorption design of a CoCo bond. There are three possible triggering mechanisms of a

CoCo bond: accounting trigger, market trigger and regulatory trigger. In an accounting

trigger, the capital ratio is chosen as the indicator on a bank’s financial health. For

example, when the tier-1 capital ratio falls below a certain level, the bond is converted

into the equity in order to boost the bank’s capitalization. In a market trigger, the

stock price is proposed as a forward-looking indicator on the financial health of a bank.

When the stock price falls below a pre-defined barrier level, the CoCo bond is triggered

automatically. Finally, in a regulatory trigger, sometimes called the point of non-viability

(PONV) trigger, the banking supervisory authority holds the discretion to judge whether

a bank is insolvent or not, and determine accordingly whether a conversion should

be activated. Having said that, it appears that the financial market has chosen the

80



Pricing Contingent Convertibles 81

accounting trigger as the de-facto mechanism as noted in a recent survey by Avdjiev

et al. (2013).

There are a number of papers that address the pricing and risk management of a CoCo

bond using various modeling approaches. The structural approach starts with the mod-

eling of a bank’s balance sheet dynamics which allows one to analyze the impact of the

issuance of contingent convertibles on the capital structure (Albul et al., 2010; Brigo

et al., 2013; Glasserman and Nouri, 2012; Pennacchi, 2011). Cheridito and Xu (2014)

apply the reduced-form approach, commonly used for the pricing of credit derivatives,

to the evaluation of CoCo bonds. The reduced-form approach has the great flexibility

to match the market prices of CoCo bonds and can be extended to perform calibra-

tion with the credit default swap (CDS) spreads. Meanwhile, Spiegeleer and Schoutens

(2012) propose an easy-to-use equity derivative approach by approximating the account-

ing trigger of the capital ratio by the first-passage-time of the stock price process to an

implied barrier level. Along this line, Corcuera et al. (2013) pursue a smile conforming

model that assumes the stock price follows a Levy process. Gupta et al. (2013) discuss

the treatment on various contractual features of CoCo bonds and resort to numerical

methods for the pricing of CoCo bonds with a mean-reverting capital ratio. Wilkens and

Bethke (2014) report the empirical assessment of aforementioned approaches and find

that the equity derivative approach implies a hedging ratio that is practically useful, in

view of the risk management of CoCo bonds during the sample period of 2011.

The modeling of the capital ratio is essential to respect the contractual design of a CoCo

bond with accounting ratio trigger. Hence, the structural modeling approach provides

a natural starting point to the pricing of CoCos since the capital ratio is after all a

balance sheet quantity. The structural approach, however, does not usually possess the

flexibility for the calibration to traded security prices and fails to generate a reasonable

shape of the credit spread. Furthermore, as equity is priced as a contingent claim, the

joint dynamics of the stock price and capital ratio is not tractable under the structural

framework. It is also not straight-forward to incorporate a jump in the stock price, which

further restricts its ability to reflect the potential write-down of the CoCo bond value

upon a conversion. On the other hand, the reduced-form approach is efficient for the

pricing of CoCos and it only requires one to specify the conversion intensity and the size

of the stock price jump at the conversion time. The approach is expected to work well

when the capital ratio is far away from the triggering threshold. In this case, the CoCo

bond is mainly consisted of a straight bond component while the equity component is

only a residual. As such, the conversion can be treated as a rare event which can be

approximated by a single Poisson jump. A criticism on the reduced-form approach is

that it completely ignores the contractual feature of an accounting trigger and is silent

about the interaction in between stock price and capital ratio.
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In this chapter, we propose a bivariate modeling of the stock price and the capital ratio

which is enhanced by a jump-to-non-viability (JtNV) feature. We follow the notion in

Kijima et al. (2009a) in which the stock price is interpreted as a marker process which

is correlated to the capital ratio. Such a joint modeling is particularly important to the

pricing of CoCos because the conversion value depends on both the first-passage-time of

the capital ratio towards the triggering threshold and the stock price at the conversion.

Since we directly model the two most important quantities for the pricing of CoCos,

the parametrization is much easier than a bottom-up structural model which requires a

judious choice of the proxy conversion epoch as linked to other balance sheet quantities

(Brigo et al., 2013; Pennacchi, 2011). We demonstrate that the equity derivative ap-

proach proposed by Spiegeleer and Schoutens (2012) can be recast under our proposed

bivariate framework when the stock price and the capital ratio are perfectly correlated.

This provides the justification to the equity derivative approach that replicates of CoCo

components using barrier options. Furthermore, we add in the reduced-form feature

that is important to capture a JtNV which can be related to a sudden insolvency of

the bank leading to a trigger. In the aftermath of the Lehman financial crisis, it is not

uncommon to see substantial write downs by major investment banks due to unexpected

trading losses and bleaching of regulation, which might erode a significant part of the

bank’s capital. In summary, the proposed approach that integrates the reduced-form

approach and structural approach is natural for the pricing of a CoCo bond since it is a

hybrid financial product that has multiple sources of risk.

We remark that the proposed framework is an extension of the equity-credit hybrid

modeling framework in Chapter 4 which allows one to model the interaction between

equity risk and credit risk (Carr and Linetsky, 2006; Carr and Wu, 2009; Cheridito and

Wugalter, 2012; Chung and Kwok, 2014). For the sake of practical implementation, we

illustrate models that are easy-to-implement yet flexible enough to calibrate with the

market prices of CoCos. When the capital ratio follows a simple lognormal process, we

manage to derive the closed-form pricing formula which can be seen as an extension to

Black and Cox (1976) on a new class of corporate security. When the capital ratio is

mean-reverting, we can express the pricing formula in terms of the Laplace transform

based on standard results on the first-passage-time density of an OU process. In ad-

dition, we demonstrate the usage of a simple numerical algorithm known as the Fortet

method, which has been employed in Longstaff and Schwartz (1995), Collin-Dufresne

and Goldstein (2001) and Coculescu et al. (2008). While it is possible to extend to more

sophisticated dynamics of stock price and capital ratio such as those with stochastic

volatility and jump diffusion, the infrequent observation and the lack of historical data

of the capital ratio make it difficult to justify the pursue of these advanced models.
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5.2 Pricing of a CoCo Bond

5.2.1 Recent development

In this section, we take the Lloyds banking group (LBG) as an example because its

issued CoCo bonds have the longest historical data and have been actively traded in the

market. Figure 5.1 reports the historical time-series of the tier-1 capital ratio, CoCo

bond price, stock price and 5-year CDS spread for the LBG. The CoCo bond is the LBG

7.8673% enhanced capital note with the maturity on 17 December 2019 and a tier-1

capital ratio trigger at 5% (ISIN: XS0459086749). Since its first issuance, the bank’s

tier-1 capital ratio has been gradually increasing and staying at a healthy level away

from the 5% triggering level, with the CoCo bond price increased by more than 30%.

Interestingly, the capital ratio does not co-move perfectly with the stock price and they

might diverge from time-to-time. The pairwise correlation in between the stock price

and the capital ratio is estimated to be 0.43 (using quarterly log-returns from 2009Q1

to 2014Q2). Hence, the correlation is less than perfect and this does not support the

notion of replacing an accounting trigger by a stock price trigger in the equity derivative

approach.

Meanwhile, we find that the CoCo bond price depicts strong co-movements with the

stock price and the CDS spread, with the pairwise correlations estimated to be 0.51

and -0.70 respectively (using quarterly log-returns from 2009Q1 to 2014Q2). This is not

surprising given the hybrid nature of a CoCo bond with exposure to both equity risk

and default risk. When the CDS spread escalated to the level of 300 bps during August

2011 as the European debt crisis unfolded, we see that both the CoCo bond price and

stock price tumbled together although the capital ratio remained strong at a level of

12%. This suggests that market participants might have anticipated the possibility of

a sudden insolvency of the bank that could trigger the conversion of the CoCo bond

during these distress periods albeit the apparently strong capital adequacy. Moreover,

the empirical relationship of the CoCo bond price with the CDS spread suggests that it

might be effective to hedge a CoCo bond using credit instruments.

Since late 2012, the CoCo bond price appears to move into a fixed income regime close to

its bond ceiling: the capital ratio is distant from the trigger (at a level of 14%) and the

equity nature of the CoCo bonds is largely ignored in which a conversion being considered

as a rare event. It is reportedly that market participants have perceived a CoCo bond

primarily as a straight bond paying juicy coupons with a small probability of a large

write-down due to a conversion. Most of the issued CoCo bonds have been invested by

fixed income fund managers who are seeking for high yields rather than equity exposure.

It is expected that the equity component will become more important when the capital
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Figure 5.1: Historical time-series of tier-1 capital ratio, CoCo price, stock price and
CDS spread for the Lloyds Banking Group. All data are from Bloomberg.

ratio moves closer to the triggering level in the future. In that scenario, an appropriate

modeling on the joint dynamics of the capital ratio and stock price becomes essential.

In summary, the CoCo bond price shows strong empirical relationship to the capital

ratio, stock price and CDS spreads, and its risk exposure appears to change overtime

when the capital ratio is at different levels. This motivates the proposal of an unified

framework to incorporate these empirical features.

5.2.2 The structure

The typical structure of a CoCo bond can be described as follows:

1. Bond component: coupon payments (ci)i=1,2,...n and principal payment F at the

maturity T .

2. Conversion component: at a trigger event, the bond is converted into either shares

of equity or cash.

In an equity conversion, the bond is converted into G shares of equity and this introduces

the equity exposure to the CoCo bond. For a cash conversion, the bond converts into G
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units of the currency and hence there is no direct equity exposure. In general, the pricing

of CoCos is related to interest rate risk (due to the coupon and principal payments),

equity risk (if the bond is converted to equity at the trigger event) and conversion/default

risk. The conversion risk can be interpreted as the risk of an unfavorable conversion to a

declined stock price that wipes off the value of the bond. We emphasize that the pricing

of CoCos is indirectly related to default risk because a conversion always happens before

a bank’s default. In particular, we only need the knowledge of the stock price up to the

conversion time for the pricing of CoCos.

Denote the conversion time to be τ and the stock price process to be S = (St)t≥0, and

assume a constant interest rate r. Under the risk-neutral measure Q, the no-arbitrage

price of a CoCo can be decomposed as

PCoCo = PC + PF + PE

with following components:

1. Coupon payment PC :

PC =

n∑
i=1

ciEQ
[
e−rti1{τ>ti}

]
=

n∑
i=1

cie
−rti [1−Q (τ ≤ ti)] ,

which is the sum of coupon payments before the conversion time τ .1

2. Face value PF :

PF = FEQ
[
e−rT1{τ>T}

]
= Fe−rT [1−Q (τ ≤ T )] ,

in which F is the principal payment when there is no conversion until maturity.

3. Conversion value PE : at the conversion, the CoCo is converted into G-shares of

the underlying equity

PE = GEQ
[
e−rτSτ1{τ≤T}

]
.

Therefore, we need to compute the conversion probability to evaluate the bond com-

ponent consisted of the coupon payments and face value, while resorting to the joint

density of the stock price and the conversion time in order to compute the conversion

value PE . Hence, the key to the pricing of a CoCo bond is the joint modeling of the

conversion time τ and stock price St. For the conversion-into-cash, we only need to

replace the term GSτ by a constant cash payment G and this is an easier problem.

1Note that we ignore the interest accrual when a conversion happens in between two coupon payment
dates which is expected to be negligible.
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5.3 An Enhanced Hybrid Modeling

5.3.1 Setup

We take the stock price to be St = exp (xt) and capital ratio to be Ht = exp (yt), where

Xt = (xt, yt) follows a bivariate process under the risk-neutral measure Q as

dxt =

(
r − q − 1

2
σ2

)
dt+ σdW 1

t + γ (dNt − λtdt) , x0 = x,

dyt = κ (θ − yt) dt+ η
(
ρdW 1

t +
√

1− ρ2dW 2
t

)
, y0 = y, (5.1)

in which W 1
t and W 2

t are independent Brownian motions. The stock price is a jump

diffusion process with the constant jump size γ and the intensity λt in order to capture

the write-down in the stock price upon a sudden insolvency. The capital ratio is modelled

as an exponential Ornstein-Unlenbeck (OU) process which naturally incorporates mean

reversion. This is because banks usually actively manage the amount of regulatory

capital in response to the changing market values of asset and liability, and they have

the incentives to maintain a healthy level of capital ratio in order to avoid any regulatory

bleach.

Following the notion in Kijima et al. (2009a) and Siu and Kijima (2014), the stock price

process xt is taken to be an observable marker process which is correlated to the latent

capital ratio process yt. To illustrate the idea, let us take the equivalent parameters

by setting η = ρη and ε = η
√

1− ρ2. The dynamics of the latent process yt can be

expressed as

dyt = κ (θ − yt) dt+ ηdW 1
t + εdW 2

t ,

in which the second diffusion term εdW 2
t can be interpreted as the noise due to the

latent feature of yt. When ρ = 1, we have ε = 0 and the dynamics of yt is known once

we know the path of xt. When ρ decreases from 1 to zero, we have a higher degree of

noisy information about the latent factor yt. We can perform the pricing of financial

instruments since the joint law of the bivariate process (xt, yt) under the risk-neutral

measure Q is well-specified by (5.1).2

The accounting trigger is defined as the first-passage-time of the log capital ratio yt to

a lower threshold yB as

τB = inf {t ≥ 0; yt = yB} ,
2Another notion of latent process can be found in Duffie and Lando (2001) and Coculescu et al.

(2008) which involve a more sophisticated characterization of the information structure available to the
investors. Nevertheless, these models are less tractable in the pricing of complicated financial instruments
and we left this for future research.
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where HB = exp(yB) is the contractual threshold for an accounting trigger. On the other

hand, we introduce the JtNV feature by using the first jump of the Poisson process Nt

with the intensity parameter λt = λ (Xt) as

τR = inf {t ≥ 0; Λt ≥ e} , Λt =

∫ t

0
λ (Xu) du,

in which e is an independent standard exponential variable. Hence, the conversion time

is taken to be the earlier of the first-passage-time τB or the JtNV time τR as

τ = τB ∧ τR.

Without loss in generality, we assume that Pr (τB = τR) = 0, i.e., the two random times

are different almost surely.

It is worth to make a remark on the change in stock price upon a conversion. At the

accounting trigger τ = τB, the stock price is continuous so that Sτ = Sτ− . The rationale

is that the stock price should have gradually taken into account the possibility of such

a conversion. At the regulatory trigger τ = τR, there is a fixed jump in stock price as

Sτ = (1 + γ)Sτ− , where γ ∈ (−1,∞). Hence, we have the following three cases:

1. Jump-to-default when γ = −1;

2. Jump-to-partial-default when −1 < γ ≤ 0;

3. Jump-to-recover when γ > 0.

In practice, it is not easy to determine the parameter γ because it is not sure whether

the sudden conversion is a good news or bad news to the equity holders. A conversion

reduces the liability of the bank by canceling the coupon and principal payments of the

bond, which in turn boosts the capital adequacy and leads to a stronger balance sheet

and stock price. On the other hand, the conversion into shares of stock causes dilution

to existing equity holders which should be reflected by a weakened stock price. The

actual effect of the conversion will only become clear when there is an actual conversion

event in the future.3 Lastly, note that we have made no assumption about the change

of the capital ratio after the JtNV as this is not related to the pricing.

The next lemma gives the risk-neutral conversion probability Q (τ ≤ t) under the en-

hanced hybrid modeling framework. The complicated forms of the formula results from

the convolution of the two stopping times τB and τR.

3We note that it is not meaningful to take γ = −1, i.e., jump-to-default. This is because (i) that
implies the regulatory-triggered conversion completely wipes off the value of equity, and (ii) the CoCo
conversion is designed to absorb loss and prevent default of the bank.
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Lemma 5.1. For a fixed t ≥ 0, the conversion probability is given by

Q (τ ≤ t) =

∫ t

0
EQ
[
λ (Xu) e−

∫ u
0 λ(Xs)ds1{τB>u}

]
du+ EQ

[
e−
∫ τB
0 λ(Xu)du1{τB≤t}

]
.

Proof. See Appendix.

From Lemma 5.1, it is noted that

1. When there is no JtNV trigger by setting λ (Xt) = 0, we have

Q (τ ≤ t) = EQ
[
1{τB≤t}

]
,

and the conversion is only due to an accounting trigger.

2. When the capital ratio is far away from the triggering threshold or the intensity

λ(·) is sufficiently large, we can approximate

Q (τ ≤ t) ≈
∫ t

0
EQ
[
λ (Xu) e−

∫ u
0 λ(Xs)ds

]
du

= EQ
[∫ t

0
λ (Xu) e−

∫ u
0 λ(Xs)dsdu

]
= EQ

[
1{τR≤t}

]
,

and the conversion is only due to a JtNV jump. Moreover, this is rendered to a

reduced-form model.

3. When the intensity is constant, the conversion probability can be expressed as

Q (τ ≤ t) =

∫ t

0
λe−λu [1−Q (τB ≤ u)] du+ EQ

[
e−λτB1{τB≤t}

]
= 1− e−λtQ (τB > t) ,

in which the second equality follows from an integration-by-part.

5.3.2 Conversion value

To explore the analytical tractability of the proposed framework, let us further assume

that the JtNV intensity λ is a constant. The key to the CoCo pricing problem is the

computation of the conversion value as

PE = GEQ
[
e−rτSτ1{τ≤T}

]
, τ = τB ∧ τR,

that is, the expected value when the CoCo is converted into shares of the underlying

equity. It is not straight-forward to compute this expectation because the stock price
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may experience a jump at τ = τB ∧ τR due to the JtNV trigger. To this end, it is

useful to apply a change-of-measure that simplifies the pricing formula by removing the

dependence on the stock price S (Cheridito and Xu, 2014). Define the adjusted stock

price process as

S̃t = Ste
−(r−q)t

= S0 exp

(∫ t

0
σdW 1

s −
∫ t

0

1

2
σ2ds− γΛt

)
(1 + γ)Nt , t ≥ 0.

It is readily to see that S̃ =
(
S̃t

)
t≥0

is a positive martingale under the risk-neutral

measure Q. Hence, we can take S̃t to construct a change-of-measure as

Zt =
dQ∗

dQ

∣∣∣∣
Ft

=
S̃t

S̃0

=
e−(r−q)tSt

S0
,

where Q∗ can be interpreted as the stock price measure.

Lemma 5.2. Under the stock price measure Q∗, the bivariate process evolves as

dxt =

(
r − q − 1

2
σ2

)
dt+ σdB1

t + γ (dNt − λdt) , x0 = x,

dyt = (κ (θ − yt) + ρση) dt+ ηdB2
t , y0 = y,

where
〈
dB1

t , dB
2
t

〉
= ρdt. The adjusted conversion intensity is given by

λ∗ = (1 + γ)λ.

Proof. See Appendix.

Now, we can apply the change-of-measure to evaluate the conversion value as

EQ
[
e−rτSτ1{τ≤T}

]
= S0EQ

[
e−qτ

e−(r−q)τSτ
S0

1{τ≤T}

]
= S0EQ

∗ [
e−qτ1{τ≤T}

]
,

with τ = τB ∧ τR. As a result, we only need to compute a discounted conversion

probability under the stock price measure Q∗. The next two propositions provide the

formula to compute the relevant expectation.

Proposition 5.3. Denote λ∗ = (1 + γ)λ. The conversion value is given by

PE = GS0

{∫ T

0
λ∗e−(λ∗+q)u (1−Q∗ (τB ≤ u)) du+ EQ

∗
[
e−(λ∗+q)τB1{τB≤T}

]}
.

Proof. By Lemma 5.2, we only need to replace λ by λ∗ = (1 + γ)λ and take the expec-

tation under the stock price measure Q∗. The rest is similar to Lemma 5.1.
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By integration-by-part, we can obtain an alternative representation of the conversion

value which is easier to compute. A similar exercise has been performed in Campi et al.

(2009) on the equity-credit hybrid modeling using a CEV process.

Proposition 5.4. When λ∗ + q > 0, the conversion value can be expressed as

PE = GS0

{
λ∗

λ∗ + q

(
1− e−(λ∗+q)TQ∗ (τB > T )

)
+

q

λ∗ + q
EQ

∗
[
e−(λ∗+q)τB1{τB≤T}

]}
.

Proof. See Appendix.

By Propositions 5.3 and 5.4, we have effectively reduce a two-dimensional problem into

a one-dimensional problem using the change-of-measure formula. The key to the pricing

of CoCo bond is the evaluation of the first-passage-time probability Q∗ (τB ≤ t) and the

associated truncated Laplace transform

I = EQ
∗
[
e−(λ∗+q)τB1{τB≤T}

]
. (5.2)

In the next section, we discuss several specific models that are practically implementable.

5.4 Examples

5.4.1 A simple reduced-form model

First-of-all, let us briefly review the reduced-form approach which is a nested case of

the enhanced hybrid approach. Suppose that the conversion intensity is constant and

assume zero dividend (q = 0), we have a simple pricing formula

PCoCo =
n∑
i=1

cie
−(r+λ)ti + Fe−(r+λ)T +GS0

(
1− e−(1+γ)λT

)
, (5.3)

which resembles the pricing formula of a defaultable bond (first two terms) with a

recovery payment (the last term). Given the contractual setup of the CoCo bond (ci, F

and G), the remaining model parameters are the conversion intensity λ and the jump

size γ for the write-down of stock price upon conversion. The intensity parameter λ has

the conventional meaning of credit spread which takes into account the cancellation of

coupons and principal payment upon conversion. The jump size γ determines the size

of the recovery payment which is the expected value of the stock price at a conversion.

As for the consistent pricing of a CoCo bond, it is useful to calibrate the model param-

eters using financial instruments in other asset classes, such as CDS spreads and deep
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out-of-the-money (DOOM) put options. For instance, one can estimate the implied

default intensity from the CDS spread using the rule-of-thumb as

λCDS =
c

1−R

where c is the market CDS spread and R is the recovery rate usually set to be 40%. As

the CoCo conversion always occurs before the default of a company (as loss absorption

mechanism), we can interpret the CDS implied intensity as a lower bound of the CoCo

conversion intensity. Alternatively, one might estimate the default intensity from the

DOOM put option using the defaultable put option price formula:

p (S, τ) = Ke−(r+λ)τN (−d2)− SN (−d1) , τ = T − t,

where K is the strike price, and

d1 =

ln(S/K) +

(
r + λ+

1

2
σ2

)
τ

σ
√
τ

, d2 = d1 − σ
√
τ .

Note that the defaultable put option formula is simply the standard Black-Scholes for-

mula by replacing the riskfree interest rate r by the risk-adjusted discount rate r + λ.

5.4.2 Brownian capital ratio

When κ = 0, we have the Brownian capital ratio model. It would be more convenient

to write down the pre-conversion dynamics of the bivariate process (xt, yt) as

dxt = βdt+ σdW 1
t , x0 = x,

dyt = αdt+ η
(
ρdW 1

t +
√

1− ρ2dW 2
t

)
, y0 = y.

with α = 0 and β = r − q − 1
2σ

2 − λγ, so that we can recast it as the bivariate model

in Kijima et al. (2009a). Before the conversion event, the stock price evolves as a

lognormal process following the Black-Scholes model while the log capital ratio follows

a Brownian motion in order to avoid an exponential growth. The Brownian model is

highly analytically tractable and leads to simple pricing formula.

Perfect correlation

Take ρ = 1, the capital ratio process is perfectly correlated to the stock price process.

In this case, the event “capital ratio hitting a lower threshold” is equivalent to the event
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“the stock prices hitting a down barrier”.4 Denote the first-passage-times of the capital

ratio process and stock price process as

τB = inf {t ≥ 0; yt = yB} and τS = inf {t ≥ 0; xt = xB}

respectively, where yB = lnHB and xB = lnSB. It can be shown that the two stopping

times τB and τS are equal in distribution for a certain implied threshold xB = lnSB.

Furthermore, suppose that we switch off the JtNV feature by setting λ = 0. We can

proxy the conversion probability by the first-passage-time distribution of stock price to

the implied threshold SB = exp(xB) as

Q (τS ≤ t) = N

[
xB − x0 − βt

σ
√
t

]
+ exp

[(
2β

σ2

)
(xB − x0)

]
N

[
xB − x0 + βt

σ
√
t

]
,

where N (·) is the standard cumulative normal distribution. By appropriate rearrange-

ment, we can recover the pricing formula under the equity derivative approach as pro-

posed by Spiegeleer and Schoutens (2012).

Imperfect correlation

When −1 < ρ < 1, one cannot fully proxy the dynamics of the capital ratio by using

the stock price process. We need the knowledge of the first-passage-time τB defined as

τB = inf {t ≥ 0; yt = yB} .

We have the following useful quantities:

1. The density for τB:

Q {τB ∈ dt} = g (t; yB) dt =
y0 − yB√

2πη2t3
exp

[
−(yB − y0 − αt)2

2η2t

]
dt, (5.4)

for y0 > yB (i.e., down-and-out passage time).

2. The distribution for τB:

Q (τB ≤ t) = N

[
yB − y0 − αt

η
√
t

]
+ exp

[(
2α

η2

)
(yB − y0)

]
N

[
yB − y0 + αt

η
√
t

]
.

(5.5)

4The other case of perfect correlation with ρ = −1 would implies an equivalent up-and-out hitting
time for the stock price which is not economically meaningful.



Pricing Contingent Convertibles 93

The derivation can be found in the Appendix. The corresponding density and distribu-

tion under the stock price measure Q∗ are readily obtained by replacing α by α+ ρησ.

The truncated Laplace transform in (5.2) related to the calculation of the conversion

value can be obtained in closed-form.

Proposition 5.5. Take ζ = λ∗ + q > 0, the truncated Laplace transform in (5.2) can

be obtained in closed-form as

I = EQ
∗
[
e−ζτB1{τB≤T}

]
= eδ

−(yB−y0)N

[
yB − y0 −

√
α̃2 + 2ζη2t

η
√
t

]
+ eδ

+(yB−y0)N

[
yB − y0 +

√
α̃2 + 2ζη2t

η
√
t

]
,

where

α̃ = α+ ρση, and δ± =
α̃±

√
α̃2 + 2ζη2

η2
.

Proof. See Appendix.

Remark 5.6. We note that the dividend q enters into the pricing formula in a more

subtle way than that in Spiegeleer and Schoutens (2012) who derive the pricing formula

based on a replication portfolio using barrier options.

When λ = 0 and q = 0, the conversion value can be expressed as

PE = GS0Q
∗ (τB ≤ T ) ,

where

Q∗ (τB ≤ T ) = N

[
yB − y0 − (α+ ρση) t

η
√
t

]
+ exp

(
2(α+ ρση)

η2
(yB − y0)

)
N

[
yB − y0 + (α+ ρση) t

η
√
t

]
, (5.6)

is the first-passage-time distribution under the stock price measure Q∗. In this case, we

have a simple closed-form CoCo pricing formula

PCoCo =
n∑
i=1

cie
−rti [1−Q (τB ≤ ti)]+Fe−rT [1−Q (τB ≤ T )]+GS0Q

∗ (τB ≤ T ) , (5.7)

where Q (τB ≤ ti) and Q∗ (τB ≤ T ) are given by Eqs. (5.5) and (5.6) respectively. When

the current stock price S0 is known, the conversion value

GS0Q
∗ (τB ≤ T )
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depends on the conversion probability under the stock price measure Q∗ in which the

drift of the capital-ratio dynamics is adjusted by ρση. In particular, when ρ = 0 the

conversion probability is the same under Q and Q∗. This means that the conversion

value is independent to the future stock price dynamics when the correlation is zero.

5.4.3 Mean-reverting capital ratio

The pricing of a CoCo bond can be performed analytically using the standard results

on the first-passage-time of an OU process. Recall that the marginal dynamics of the

capital ratio follows the exponential OU process as

dyt = κ (θ − yt) dt+ ηdW̃ 2
t , y0 = y.

Denote the infinitesimal generator of the OU process as

L =
1

2
η2 d

2

dy2
+ κ (θ − y)

d

dy
.

Let F and G be the two fundamental solutions of Lu(y) = αu(y) for y ∈ R such that

(i) F is a positive increasing function and (ii) G is a positive decreasing function. It is

known that (see, Borodin and Salminen, 2002)

F (y) = F (y;α) =

∫ ∞
0

uα/κ−1e

√
2κ(y−θ)
η2 −α2/2

du,

G(y) = G(y;α) =

∫ ∞
0

uα/κ−1e

√
2κ(θ−y)

η2 −α2/2
du.

The Laplace transform of the first-passage-time τB = inf (t ≥ 0; yt = yB) under the

Q-measure is

EQ
[
e−ατB

]
=


F (y)

F (yB)
, when y ≤ yB,

G(y)

G(yB)
, when y ≥ yB.

As a result, we can express (Davydov and Linetsky, 2001)

EQ
[
1{τB≤t}

]
= L−1

t

{
1

α
EQ
[
e−ατB

]}
,

EQ
[
e−ζτB1{τB≤t}

]
= L−1

t

{
1

ζ + α
EQ
[
e−(ζ+α)τB

]}
,

which is related to the computation of the conversion probability and the conversion

value in Section 5.3. Note that the relevant expectations under the stock price measure

Q∗ can be obtained similarly by replacing θ by θ+ ρησ/κ. As a result, the evaluation of
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the CoCo bond can be performed by inverting the Laplace transform numerically. For

practical implementation, we propose the use of the Fortet method which is easy-to-

program and efficient in computation. The Fortet method can be extended to compute

the joint density of the stock price and the first-passage-time (xτ , τ), which is useful

when we need to tackle floored payoff or other additional features.

Fortet Method

The Fortet method can be summarized as follows: we discretize the time into n equal

intervals with tj = jT/n = j∆t for j = 1, 2, ..., n. The relevant quantities for the pricing

of CoCo can be obtained as:

Q (τB ≤ tj) =

j∑
i=1

qi, EQ
[
e−ζτB1{τB≤tj}

]
=

j∑
i=1

e−ζtiqi, (5.8)

where

qi = P (τ ∈ (ti−1, ti]) , i = 1, 2, ..., n,

are obtained by the following recursion

q1 = N [a (t1)] , qi = N [a (ti)]−
i−1∑
j=1

qjN [b (ti, tj)] ,

a (t) =
yB −M (t, 0)

S (t, 0)
, b (t, s) =

yB −M (t, s)

S (t, s)

∣∣∣∣
ys=yB

,

with

M (t, s) = yse
−κ(t−s) + θ

(
1− e−κ(t−s)

)
, S2 (t, s) =

η2

2κ

(
1− e−2κ(t−s)

)
.

The same procedure applies to the calculation of the relevant quantities under the stock

price measure Q∗. Since the idea of the Fortet method is to solve an integral equation by

discretizing the time interval, we note that different choices of the approximation scheme

that may lead to different forms of the recursive formula. Here, we follow Coculescu

et al. (2008) and present the right-point scheme although one can adopt alternative

discretization schemes in order to achieve higher convergence (see Appendix).

5.4.4 State-dependent intensity

Under the general hybrid modeling framework, it is possible to incorporate a state-

dependent intensity. It is expected that the likelihood of the JtNV should be inversely
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related to the stock price or the capital ratio. One popular choice of an intensity speci-

fication, as borrowed from credit risk modelings, is

λ (S) = a+ bS−β,

where a, b, β > 0 and S is the stock price. More examples can be found in Dyrssen et al.

(2014) on the pricing equations in jump-to-default models. When the intensity depends

on the stock price, it is less straight-forward to reduce the two-dimensional problem into

a one-dimension problem. To this end, we can resort to simulation methods to compute

the relevant expectations.

To be specific, we can apply a conditional simulation approach here: (i) simulate the

log-stock price path (xt)t≥0 and compute the cumulative hazard rate function: (ii) con-

ditional on the stock price process, we can compute the first-passage-time density by

using the joint density of (xτ , τ) as approximated by the two-dimensional Fortet method

(see Appendix).

5.5 Numerical Illustration

Given the contractual setup of the CoCo bond (ci, F and G), we need to calibrate the

following model parameters for the bivariate model:

• The stock price volatility (σ) can be estimated from historical time-series data or

using implied volatility of equity option.

• Because the capital ratio is only observed on an infrequent basis, we can preset

the current capital ratio y0 and roughly estimate the correlation ρ from historical

data.

• The long-term mean level θ and mean-reversion speed κ can be estimated from

the historical data of the capital ratio. Gupta et al. (2013) mention that major

banks disclose the short-term and long-term targets of the tier-1 capital ratio and

suggest one to calibrate a mean-reverting model to this information.

• We can calibrate the pricing model to the market price and estimated the market-

implied capital ratio volatility η. In particular, the implied capital ratio volatility

can be used to quantify how much conversion risk the traders have priced in.

In this comparative analysis, we adopt the bivariate model with a mean-reverting capital

ratio enhanced by a JtNV feature. We set the following model parameters: r = 0.02,
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q = 0.01, σ = 0.4, η = 0.3, θ = ln(0.10), κ = 0.2 and ρ = 0.75. We assume that the

JtNV intensity is λ = 0.05 with the jump size is γ = −0.9, indicating a large write-

down in stock price upon a sudden conversion. We consider a CoCo bond with the

following specification: 5-year maturity, 10% coupon with the face value of $100, and

the conversion shares is set to be 200 which implies the conversion price is $0.5. The

accounting triggering level is set to be 5% which means yB = ln(0.05). The current log

stock price is x0 = 0.5 and log capital ratio is taken to be y0 = ln(0.06) or y0 = ln(0.10).

First-of-all, we recall that the risk-neutral conversion probability under Q depends only

on the first-passage-time of the capital ratio, i.e., the marginal dynamics of the capital

ratio. The correlation and stock price volatility enter into the pricing formula through

the adjustment to the capital ratio dynamics under the stock price measure Q∗ when

we evaluate the conversion value PE . This means that the correlation and stock price

volatility have no direct impacts on the bond components PC and PF .5 From Lemma

5.2, we see that the conversion value PE is related to conversion probability under the

stock price measure Q∗. When the correlation is positive (ρ > 0), the capital ratio

dynamics has a higher mean-reverting level due to the adjustment term ρση > 0. This

implies a smaller conversion probability under Q∗ and hence a smaller conversion value

PE .

5.5.1 The impact of correlation

Figure 5.2 shows that the CoCo bond price declines as the correlation moves from -1

to 1 under the bivariate framework. When the correlation is positive, the capital ratio

moves in tandem with the stock price. This means that the stock price is likely to be

cheap when the capital ratio falls and bleaches the accounting threshold, which in turn

generates a smaller conversion value PE . The effect is more prominent when the current

capital ratio is close to the threshold as shown in the left panel of Figure 5.2. Conversely,

when the correlation is negative, the capital ratio moves in an opposite direction to the

stock price. As such, the stock price is likely to be more expensive at an accounting

triggered conversion and this implies a higher expected conversion value PE . The latter

phenomenon is more prominent when the current capital ratio is far away from the

trigger as shown in the right panel of Figure 5.2.

5This is unlike the equity derivative approach in which the conversion time is proxied by the first-
passage-time of the stock price to an implied threshold, in which the stock price volatility affects directly
the CoCo bond price through the conversion probability.
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Figure 5.2: Impact of correlation to the CoCo bond price.
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Figure 5.3: Impact of stock price volatility to the CoCo bond price.

5.5.2 The impact of stock price volatility

Figure 5.3 shows that the CoCo bond price is decreasing with the stock price volatility

at different levels of positive correlation as ρ = 0.25, ρ = 0.5 and ρ = 1.0. When the

stock price volatility is high, the CoCo bond is likely to be converted when the stock

price declines much below than its current value. As expected, the sensitivity to stock

price volatility is higher when the correlation is closer to one. We see that the CoCo

bond price is more sensitive to the stock volatility when the capital ratio is near the

triggering threshold, suggesting that there is a significant equity component of the CoCo

bond.

5.5.3 The impact of intensity

Figure 5.4 reports the sensitivity of the CoCo bond price to the level of JtNV intensity

λ at different size of the stock price jump at conversion. We vary the jump size as γ
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Figure 5.4: Impact of JtNV intensity to the CoCo bond price.

= -0.3, -0.5, -0.9, which means that the write-down due to a JtNV is assumed to be

30%, 50% and 90%, respectively. When the capital ratio is far away from the triggering

threshold (right panel), most of the conversion risk of a CoCo bond lies at the possibility

of a JtNV with the corresponding write down of the stock price. This can be captured

by the added JtNV feature which reduces the value of a CoCo bond as the intensity

increases. From a modeling perspective, the added JtNV feature is useful to build in the

risk premium of a CoCo bond when the conversion probability generated by the capital

ratio diffusion is too small.

It is intriguing to look closer to the case of γ = −0.3 in the left panel of Figure 5.4. When

the capital ratio is close to the triggering threshold, a sudden jump to the non-viability

state may actually improves the value of a CoCo bond if the stock price write-down is

not large. This is because a sudden JtNV conversion well before the stock price declining

to a low value might actually provide a higher recovery which is beneficial to the CoCo

bond investor. The non-monotonic sensitivity to the JtNV intensity suggests that one

should be careful in setting the jump size when calibrate to the market prices of CoCo

bonds.

5.6 Summary

In this chapter, we study the pricing of contingent convertibles based on an equity-

credit hybrid approach. We propose a bivariate modeling of the stock price and the

tier-1 capital ratio which is suitable for the pricing of contingent convertible bonds with

an accounting trigger. Furthermore, we introduce an enhanced jump-to-non-viability

feature to incorporate a more realistic scenario in which a CoCo bond is triggered by a

rare event such as a large capital write-down of the issuance bank. In the model imple-

mentation, we derive the closed-form pricing formula when the log capital-ratio follows
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a driftless Brownian motion and we demonstrate the application of the Fortet method

to compute the first-passage-time distribution for the mean-reverting process. The nu-

merical example shows that the bivariate model enhanced by a jump-to-non-viability

feature provide a rich and flexible framework for the pricing and risk-management of

CoCo bonds.

5.7 Appendix

5.7.1 First-passage-time problem for the bivariate process

For the ease of exposition, we use the notation P (ξ ∈ dx) , Pr (ξ ∈ [x, x+ dx)) for a

random variable ξ. Take Xt = (xt, yt) to be a bivariate Gaussian process taking values

in R2, with xt is the observable marker process and yt is the latent process. We are

interested in the first-passage-time (FPT) of the latent process to a lower threshold

yB < y0 as

τ = inf (t ≥ 0; yt = yB) .

On the event {τ ∈ dt}, by continuity we see that yt = yB. Hence, we only need to

compute the joint density of (xτ , τ) instead of (yτ , xτ , τ). The joint density of (xτ , τ)

can be formulated as

P (xτ ∈ dx, τ ∈ dt) = q (x, t) dxdt.

In terms of distribution, we have

P (xτ ≤ x, τ ≤ t) =

∫ t

0

∫ x

−∞
q
(
x′, t′

)
dx′dt′.

By sending x→∞, we obtain the FPT distribution

P (τ ≤ t) =

∫ t

0

∫ ∞
−∞

q
(
x′, t′

)
dx′dt′.

Moreover, the FPT density can be formulated as

P (τ ∈ dt) = g(t)dt.

By conditional probability, we see that

P (xτ ∈ dx, τ ∈ dt) = P (xτ ∈ dx| τ ∈ dt)P (τ ∈ dt) ,

and

P (xτ ∈ dx| τ ∈ dt) =
P (xτ ∈ dx, τ ∈ dt)

P (τ ∈ dt)
,
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which is the conditional distribution of xt when the hitting time is at t = τ . A similar bi-

variate first-passage-time problem with one-side threshold has been tackled in Longstaff

and Schwartz (1995), Collin-Dufresne and Goldstein (2001) and Coculescu et al. (2008)

for structural credit risk modeling, and Bernard et al. (2008) for exotic barrier option

pricing. Next, let us review the closed-form solution for the case of Brownian model and

the numerical method for the case of mean-reverting model.

Brownian model

This exposition follows Kijima et al. (2009a). For t ≥ 0, the bivariate process can be

equivalently written as

xt = x0 + βt+ ρσW 1
t + σ

√
1− ρ2W 2

t ,

yt = y0 + αt+ ηW 1
t ,

in which W 1
t and W 2

t are independent Brownian motions. We can see that

P (xt ∈ dx, τ ∈ dt) = P (xt ∈ dx| τ ∈ dt)P (τ ∈ dt)

= P
(
x0 + βt+ ρσW 1

t + σ
√

1− ρ2W 2
t ∈ dx

∣∣∣ τ ∈ dt)P (τ ∈ dt) .

On the event {τ ∈ dt}, we have yt = yB such that W 1
t = (yB − y0 − αt) /η, and hence

P
(
x0 + βt+ ρσW 1

t + σ
√

1− ρ2W 2
t ∈ dx

∣∣∣ τ ∈ dt)
= P

(
x0 + βt+

ρσ

η
(yB − y0 − αt) + σ

√
1− ρ2W 2

t ∈ dx
∣∣∣∣ τ ∈ dt)

= P
(
x0 + βt+

ρσ

η
(yB − y0 − αt) + σ

√
1− ρ2W 2

t ∈ dx
)
,

in which the second equality follows from the fact that W 2
t and τ are independent.

In this case, it is straight-forward to reduce the two-dimensional FPT problem into a

one-dimensional problem. Indeed, we can express the joint density of (xτ , τ) as

q (x, t) = π (x, t) g (t) ,

where

π (x, t) =
1√

2π (1− ρ2)σ2t
exp

{
− 1

2 (1− ρ2)σ2t

(
x− x0 − βt− ρ

σ

η
(yB − y0 − αt)

)}
,

and

g(t) =
y0 − yB√

2πη2t3
exp

[
−(yB − y0 − αt)2

2η2t

]
,
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are the Gaussian density and the inverse Gaussian density respectively. Then, it is easy

to show that

P (τ ≤ t) =

∫ t

0

∫ ∞
−∞

q
(
x′, t′

)
dx′dt′

= N

[
yB − y0 − αt

η
√
t

]
+ e

2β

η2 (yB−y0)
N

[
yB − y0 + αt

η
√
t

]
,

which is just the standard FPT distribution as in Black and Cox (1976).

Mean-reverting model

The joint dynamics of (xt, yt) conditional on the information up to s < t is

xt = xs + α (t− s) +

∫ t

s
ρσdW 1

u +

∫ t

s
σ
√

1− ρ2dW 2
u ,

yt = yse
−κ(t−s) + θ

(
1− e−κ(t−s)

)
+

∫ t

s
ηe−κ(t−u)dW 1

u .

In the following, we demonstrate the integral equation approach, known as the Fortet

method, to compute the relevant quantities for a mean-reverting process.

One-dimensional Fortet method.

Firstly, let us focus on the marginal dynamics of the capital ratio yt. Denote the tran-

sitional probability density for the process yt conditional on s < t as

P
{
yt ∈ dy| ys ∈ dy′

}
= f

(
y, t; y′, s

)
dy.

By the continuity of the process, we have

f (y, t; y0, 0) =

∫ t

0
g (s) f (y, t; yB, s) ds.

Integrate y on both side over (−∞, yB], we arrive the Fortet’s equation as

N

[
yB − µ (t, 0)

Σ (t, 0)

]
=

∫ t

0
g (s) N

[
yB − µ (t, s)

Σ (t, s)

]∣∣∣∣
ys=yB

ds, (5.9)

where

µ (t, s) = yse
−κ(t−s) + θ

(
1− e−κ(t−s)

)
, Σ (t, s) =

η2

2κ

(
1− e−2κ(t−s)

)
.

By taking

a (t) =
yB − µ (t, 0)

Σ (t, 0)
, b (t, s) =

yB − µ (t, s)

Σ (t, s)

∣∣∣∣
ys=yB

,
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we can express (5.9) as

N [a (t)] =

∫ t

0
g (s)N [b (t, s)] ds,

which can be seen as a Volterra integral equation of the first kind. To solve the equation

numerically, let us apply the right-point scheme and evaluate the integral on the discrete

time intervals t → tj = j∆t, j = 1, ...,m, with ∆t is the uniform grid size. Hence, we

have

N [a (tj)] =

j∑
h=1

qhN [b (tj , th)]

with the approximation

qj = P (τ ∈ (tj−1, tj ]) ≈ g (tj) ∆t, j = 1, 2, ...,m.

Then, we can derive the recursive relationship

q1 = N [a (t1)] ,

qj = N [a (t2)]−
j−1∑
h=1

qhN [b (tj , th)] , j = 2, 3, ...,m.

This is the formula as presented in Longstaff and Schwartz (1995) and Coculescu et al.

(2008). Coculescu et al. (2008) mention that adopting the right-point scheme means

that default (conversion) may only occur at the ends of the subperiods. Hence, the

right-point scheme delivers a clearer probabilistic interpretation of the term qi which

makes the extension to higher dimensional problem more straight-forward.

To achieve higher convergence, one can adopt a composite trapezium rule to solve the

integral equation. By similar arguments, it can be shown that

q1 = 2N [a (t1)] ,

qj = 2

{
N [a (t2)]−

j−1∑
h=1

qhN [b (tj , th)]

}
, j = 2, 3, ...,m,

with the approximation qj ≈ g (tj) ∆t for j = 0, 1, 2, ...,m and noting that q0 = 0. In

this case, the probability interpretation of qi is less clear although it provides a better

estimate of g(ti). Linz (1969) discusses several numerical discretization for solving the

integral equation and the accuracy of the rectangular scheme, trapezoidal scheme and

mid-point scheme.
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Two-dimensional Fortet method.

The one-dimensional Fortet method is very efficient when the first-passage-time of yt

is concerned. In some applications, we are interested to compute the joint density of

(xτ , τ) as

P {xτ ∈ dx, τ ∈ dt} = q (x, t) dxdt.

Denote the transitional probability density for the bivariate process (yt, xt) conditional

on s < t as

P
{
yt ∈ dy, xt ∈ dx| ys ∈ dy′, xs ∈ dx′

}
= f

(
y, x, t; y′, x′, s

)
dydx.

By the continuity of the process (yt, xt), we have

f (y, x, t; y0, x0, 0) =

∫ t

0

∫ ∞
−∞

g
(
x′, s

)
f
(
y, x, t; yB, x

′, s
)
dx′ds.

Integrating y on both sides over (−∞, yB], we arrive the extended Fortet’s equation as

Φ (x, t) =

∫ t

0

∫ ∞
−∞

g
(
x′, s

)
ψ
(
x, t;x′, s

)
dx′ds, (5.10)

where

Φ (x, t) =

∫ yB

−∞
f (y, x, t; y0, x0, 0) dy,

ψ
(
x, t;x′, s

)
=

∫ yB

−∞
f
(
y, x, t; yB, x

′, s
)
dy,

are available in closed-form for a bivariate Gaussian process. Since y0 > yB, it can be

checked that

lim
t→0

Φ (x, t) = 0, lim
t→s

ψ
(
x, t;x′, s

)
= δ

(
x− x′

)
, (5.11)

where δ (·) is the Dirac-delta function. In order to solve the two-dimensional integral

equation (5.10), we discretize the domain for x and t using rectangular grids with the

right-point scheme as:

xi = xlb + i∆x, i = 1, 2, ..., n,

tj = j∆t, j = 1, 2, ...,m,

so that we can express

Φ (xi, tj) =

j∑
h=1

n∑
k=1

q (xk, th)ψ (xi, tj ;xk, th) ,
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by taking the approximation

q (xi, tj) = P (x ∈ (xi−1, xi], τ ∈ (tj−1, tj ])

≈ g (xi, tj) ∆x∆t.

For j = 1, we see that

Φ (xi, t1) =
n∑
k=1

q (xk, t1)ψ (xi, t1;xk, t1) = (∆x)−1 q (xi, t1) ,

by applying the property in (5.11). Hence, we have

q (xk, t1) = ∆xΦ (xi, t1) .

For j > 1, we can re-write

Φ (xi, tj) =

n∑
k=1

q (xk, tj)ψ (xi, tj ;xk, tj) +

j−1∑
h=1

n∑
k=1

q (xk, th)ψ (xi, tj ;xk, th) .

By (5.11), the first term on the RHS gives (∆x)−1 q (xi, tj). As a result, we have

q (xi, tj) = ∆x

[
Φ (xi, tj)−

j−1∑
h=1

n∑
k=1

q (xk, th)ψ (xi, tj ;xk, th)

]
,

which results in a recursive relationship for j = 2, 3, ...,m. Note that the composite

trapezium rule can be incorporated by a similar modification as in the case of one-

dimensional Fortet method.

We also need the closed-form expression for Φ and ψ. To this end, we see thatyt|xt,Fs ∼
N
(
µ (t; s) ,Σ2 (t; s)

)
is Gaussian in which the conditional moments can be obtained by

the projection theorem as

µ (t; s) , Es [yt|xt] = Es [yt] +
Covs (yt, xt)

V ars [xt]
[xt − Es [xt]] ,

Σ2 (t; s) , V ars [yt|xt] = V ars [yt]−
Covs (yt, xt)

2

V ars [xt]
,

in which the moments are readily obtained as

Es [xt] = xs + α (t− s) , Es [yt] = yse
−κ(t−s) + θ

(
1− e−κ(t−s)

)
,

V ars [xt] = σ2 (t− s) , V ars [yt] =
η2

2κ

(
1− e−2κ(t−s)

)
,

Covs (yt, xt) = ρση

(
1− e−κ(t−s)

κ

)
.
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By conditional probability, we have

f (yt, xt, t; ys, xs, s) = f (xt, t;xs, s) f (yt, t; ys, xs, s|xt) ,

where

f (xt, t;xs, s) =
1√

2πσ2 (t− s)
exp

(
−(xt − xs − α (t− s))2

2σ2 (t− s)

)
,

f (yt, t; ys, xs, s|xt) =
1√

2πΣ2 (t; s)
exp

(
−(yt − µ (t; s))2

2σ2Σ2 (t; s)

)
.

By direct integration, we obtain the closed-form expression for Φ (x, t) and ψ (x, t;x′, s)

as

Φ (x, t) = f (xt, t;x0, 0)N

[
yB − µ (t; 0)

Σ (t; 0)

]
,

ψ
(
x, t;x′, s

)
= f (xt, t;xs, s)N

[
yB − µ (t; s)

Σ (t; s)

]∣∣∣∣
ys=yB

.

This completes the algorithm. Finally, one can check the numerical consistency of the

extended Fortet method and the one-dimensional Fortet method by integrating out x

(i.e., summing up the index i) and compute the FPT density or distribution.

5.7.2 Proof of Lemma 5.1

Decompose the event {τB > τR} and {τR > τB}, we have

Q (τ ≤ T ) = EQ
[
1{τB∧τR≤T}

]
= EQ

[
1{τR≤T}1{τB>τR}

]
+ EQ

[
1{τB≤T}1{τR>τB}

]
.

The first term represents the conversion probability when the regulatory trigger occurs

before the accounting trigger, which can be computed by iterated expectation as

EQ
[
1{τR≤T}1{τB>τR}

]
= EQ

[
EQ
[
1{τR≤T}1{τB>τR}

∣∣ τR = u
]]

=

∫ T

0
EQ
[
λ (Xu) e−

∫ u
0 λ(Xs)ds1{τB>u}

]
du.

The second term represents the conversion probability when the accounting trigger oc-

curs before the regulatory trigger, which is obtained as

EQ
[
1{τR≤T}1{τR>τB}

]
= EQ

[
EQ
[
1{τB≤T}1{τR>τB}

∣∣ τB = u
]]

= EQ
[
e−
∫ τB
0 λ(Xu)du1{τB≤T}

]
.
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5.7.3 Proof of Lemma 5.2

The proof follows from Lemma 11.6.1 and Theorem 11.6.2 in Shreve (2008). From the

adjusted stock price process S̃t, we can decompose the Radon-Nikodym density as

Zt = ZctZ
J
t ,

where

Zct = exp

(∫ t

0
σdW 1

s −
∫ t

0

1

2
σ2ds

)
, ZJt = exp (−γΛt) (1 + γ)Nt ,

correspond to the change-of-measure for the continuous path and jump path respectively.

As the Brownian motion is only affected by the change-of-measure Zct , by the Girsanov

theorem we have

dB1
t = dW 1

t − σdt,

and hence

dyt = α (yt) dt+ η
(√

1− ρ2dW⊥t + ρdW 1
t

)
= [α (yt) + ρση] dt+ ηdB2

t ,

by taking dB2
t =

√
1− ρ2dW⊥t + ρdB1

t with
〈
dB1

t , dB
2
t

〉
= ρdt.

On the other hand, the Poisson process is affected only by the change-of-measure ZJt as

ZJt = exp (−γΛt) (1 + γ)Nt = e(λ−λ∗)t

(
λ∗

λ

)Nt
,

in which the second equality comes from the change-of-measure for a Poisson process

with constant intensity (Shreve, 2008). Hence, we can take

λ∗ = (1 + γ)λ

as the intensity under the stock price measure Q∗.
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5.7.4 Proof of Proposition 5.4

We can perform the integration-by-part as∫ T

0
λ∗e−(λ∗+q)uQ∗ (τB > u) du = − λ∗

λ∗ + q

∫ T

0
Q∗ (τB > u) d

(
e−(λ∗+q)u

)
=

λ∗

λ∗ + q

[
1− e−(λ∗+q)TQ∗ (τB > T )

]
+

λ∗

λ∗ + q

∫ T

0
e−(λ∗+q)u

[
−∂Q

∗

∂u
(τB > u)

]
du,

since gQ
∗

(t; yB) = −∂tQ∗ (τB > t) is the density of τB, we have∫ T

0
e−(λ∗+q)u

[
−∂Q

∗

∂u
(τB > u)

]
du = EQ

∗
[
e−(λ∗+q)τB1{τB≤T}

]
,

Hence, we have

EQ
∗ [
e−qτ1{τ≤T}

]
=

λ∗

λ∗ + q

[
1− e−(λ∗+q)TQ∗ (τB > T )

]
+

q

λ∗ + q
EQ

∗
[
e−(λ∗+q)τB1{τB≤T}

]
.

5.7.5 Proof of Proposition 5.5

For ζ ≥ 0, we have

EQ
∗
[
e−ζτ1{τ≤T}

]
=

∫ T

0
e−ζtgQ

∗
(t; yB) dt,

where

gQ
∗

(t; yB) =
y0 − yB√

2πη2t3
exp

[
−(yB − y0 − α̃t)2

2η2t

]
,

with α̃ = α + ρση is the first-passage-time density under the stock price measure Q∗.

By completing square we see that

EQ
∗
[
e−ζτ1{τ≤T}

]
= e

α̃−Γ

η2 (yB−y0)
∫ T

0

y0 − yB√
2πη2t3

exp

[
−(yB − y0 − Γt)2

2η2t

]
dt,

where Γ =
√
α̃2 + 2ζη2. By direct integration, we have

I = eδ
−(yB−y0)N

[
yB − y0 − Γt

η
√
t

]
+ eδ

+(yB−y0)N

[
yB − y0 + Γt

η
√
t

]
,

where δ± =
α̃± Γ

η2
.



Chapter 6

Asymptotic Expansion for

Multifactor Heston Model

6.1 Introduction

For the last two decades, the stochastic volatility model of Heston (1993) has been one

of the most popular choices in the modeling of price dynamics of various asset classes,

including equity price, foreign exchange rate, and interest rate. In the Heston model,

one assumes that the asset price follows a stochastic volatility model in which the vari-

ance term of the stock price is driven by a Cox-Ingersoll-Ross (CIR) process and can

be correlated with the asset price itself. The Heston model provides a succinct descrip-

tion to a number of important empirical features in the dynamics of asset price, such

as the leverage effect, the mean-reversion nature and the clustering of volatility. In

terms of derivatives pricing, the model has gained popularity on trading desks, given

its ability to manage the implied volatility smile and its good analytical tractability in

the pricing of standard European-type options. Nevertheless, the one-factor dynamics

of volatility in Heston (1993) has a number of drawbacks. Firstly, it does not provide

enough flexibility to model both the short-term and long-term implied volatility smile

simultaneously. Thus, the level and slope of the smile generated by the model cannot

be independently determined. This fact often forces analysts to adapt two different sets

of model parameters to separately price and risk-manage the short-term and long-term

options. Such a remedy could misprice exotic derivatives that are sensitive to the real-

ized path of volatility. On the other hand, the assumption of constant model parameters

implies certain restrictions on the shape of the model-implied volatility surface. For ex-

ample, when the correlation between the asset price and stochastic volatility is constant,

the term structure of the volatility skew is governed by the speed of mean-reversion of
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the volatility process. This restricts the implied volatility surface to flattenning out in

the long-run, making it difficult to capture the market scenario in which the long-term

skewness is persistent. Some hedge funds have reportedly taken advantage of such mis-

pricing in long-term options and generated significant profits during the recent financial

crisis. These shortcomings of the Heston model have raised the question of whether a

more realistic description of the volatility dynamics could be obtained by increasing the

number of factors of the variance process, or by relaxing the assumption of constant

model parameters.

In view of these concerns, there are a growing number of papers that consider the

multifactor extension of the Heston model in derivatives pricing. In one such paper,

Fonseca et al. (2008) propose a multifactor Heston model based on the Wishart process,

wherein they consider the option pricing in the foreign exchange market. Meanwhile,

Christoffersen et al. (2009) show that a two-factor Heston model performs much better

than a one-factor model in capturing the dynamics of the implied volatility of the S&P

500 index options. This is because the two-factor model allows for flexible modeling

of the volatility surface, such that the level and slope of the volatility smile can be

independently determined with the additional degree of freedom. They also find that

the estimated variance factors can be identified as a strongly mean-reverting short-term

variance factor and a slowly mean-reverting long-term factor. In addition, Li and Zhang

(2010) use a non-parametric approach to analyze the index option dataset and verify

the conclusion in Christoffersen et al. (2009). They find that one needs to use at least

two factors in order to sufficiently capture the dynamics of implied volatility in both the

time-series and cross-sectional dimensions. In fact, in proposing a class of no-arbitrage

variance curve models with multiple stochastic volatility factors, Buehler (2006) finds

that one needs a two-factor model to sufficiently capture the term structure of variance

swaps written on major stock market indices. These observations are also consistent

with the series of works by Fouque et al. (2000, 2003, 2004), which propose the multi-

scale nature of stochastic volatility. Fouque and Lorig (2011) propose an extension to

the one-factor Heston model by adding an additional fast mean-reverting component.

Their results also show that such an extension allows a significant improvement in the

fitting of volatility smile for index options. Meanwhile, Bergomi (2008) highlights the

fact that the one-factor Heston model could lead to the mispricing of exotic deriva-

tives, such as forward-starting options, cliquets and variance swaps. He suggests that

a properly designed volatility smile model for the pricing and risk management of ex-

otic derivatives should have separate controls of (i) the term structure of volatility, (ii)

short-term volatility skew, and (iii) the correlation between the spot price and volatility.

As a mathematical analysis tool to study the behavior of volatilities under various dy-

namical assumptions, a number of papers have adopted asymptotic approaches based
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on perturbations and Malliavin calculus. For short-dated options, for example, Ha-

gan et al. (2003) apply singular perturbations to obtain the asymptotic formula of the

SABR model, while Henry-Labordere (2005) employs a heat-kernel expansion to the

mean-reverting SABR model. On the other hand, Alós et al. (2007) use Malliavin cal-

culus to study the short-term behavior of implied volatility for jump-diffusion models

with stochastic volatility. These expansions prove to be accurate and useful for short-

term (near expiry) options. The asymptotic expansion approach can also be applied to

study implied volatility of longer maturity. Using a partial differential equation (PDE)

approach, Fouque et al. (2000) propose a singular perturbation with respect to a fast

mean-reverting parameter of the stochastic volatility and, in a later study, Fouque et al.

(2004) extend the approach to the case of time-periodic coefficients that capture the

maturity cycles. Fukasawa (2011) also derives several well-known results of regular and

singular perturbations on stochastic volatility models using the martingale expansion

techniques. Meanwhile, Antonelli and Scarlatti (2009) consider an expansion with re-

spect to the correlation coefficient and develop a power series formula for option prices.

Now, for small volatility expansion, Osajima (2007) applies Malliavin calculus and the

large deviation theory to study a dynamic SABR model in which the parameters are

time-dependent, while Takahashi and Yamada (2012) develop the asymptotic expan-

sion around the Black-Scholes model for a general class of multi-dimensional stochastic

volatility model with jump diffusion. Asymptotic expansion has also been found to be

very efficient in other areas of derivatives pricing. For example, Tanaka et al. (2010)

use the Gram-Charlier expansion to derive asymptotic approximation for interest rate

derivatives, Papageorgiou and Sircar (2009) use singular perturbations to price single-

name and multi-name credit derivatives under a stochastic volatility environment, and

more recently, Bayraktar and Yang (2011) use similar techniques for equity-credit hy-

brid modeling. Benhamou et al. (2010) employ Malliavin calculus to develop a fast and

accurate approximation formula of option prices under the one-factor Heston model with

time-dependent parameters. By the asymptotic expansion with respect to the volatility

of volatility, they show that the European put option price can be approximated by the

Black-Scholes formula, with a number of correction terms related to the Greeks of the

option.

In this chapter, we extend the results of Benhamou et al. (2010) in a simple way and,

thus, develop the approximation formula under the general multifactor Heston model

with time-dependent parameters. Our aim is to model the implied volatility surface

more realistically, but, with reasonable computational intensities. We demonstrate the

ability of the multifactor model to reproduce various shapes of the implied volatility

surface through the numerical illustration and the calibration. The contributions are

twofold: the theoretical expansion of the literature and the numerical analysis. In the
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theoretical aspect, we find that the expansion terms can be expressed as a sum of the

expansion terms obtained in Benhamou et al. (2010) plus a new term that captures the

interaction between different variance factors. The approximation formula allows one to

study the effect of multifactor extension and time-dependent parameters in a simple and

unified framework. The formula under constant parameters can be explicitly computed

and the incorporation of time-dependent parameters is straightforward. Thus, it can

also be shown that the approximation formula is fast and efficient and significantly

reduces the computational time for calibration to market data. A fast and efficient

approximation formula is useful when one has to compute a large number of option

prices, such as econometrics estimation using option data and evaluation of large-scale

portfolio risk. For the numerical analysis, we study the accuracy of the formula under

different parameter settings and calibrate the two-factor model to the real data of index

options and variance swaps for the S&P 500 and the Nikkei 225 index. We find that it

is possible to distinguish a short-term and long-term variance factor from the implied

volatility surface and variance swap rates on these indices. Moreover, the two-factor

model is able to reproduce the shapes of the implied volatility surface during various

market scenarios.

6.2 Multifactor Heston Model

6.2.1 Mathematical formulation

We fix a maturity date T and a filtered probability space (Ω,F , (Ft)0≤t≤T ,P), where P
denotes the risk-neutral measure with a deterministic interest rate rt. We assume that

on the filtered probability space, n-pairs of correlated Brownian motions

{(
W 1
t , B

1
t

)
,
(
W 2
t , B

2
t

)
, ..., (Wn

t , B
n
t )
}
,

are equipped with a correlation structure

d〈W i,W j〉t = d〈Bi, Bj〉t = δijdt, d〈W i, Bj〉t = δijρitdt, i, j ∈ {1, 2, ..., n},

where δij is the Kronecker delta, and the σ-algebra Ft is generated by these Brownian

motions up to time t. Xt is the log-forward price with a fixed maturity T of a security.

Xt and the variance factors υit, i = 1, 2, ..., n, are supposed to satisfy the following
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system of stochastic differential equations (SDEs)

Xt = x0 +
n∑
i=1

[∫ t

0

√
υisdW

i
s −

1

2

∫ t

0
υisds

]
,

υit = υi0 +

∫ t

0
κi(θis − υis)ds+

∫ t

0
ξis
√
υisdB

i
s, (6.1)

where κi is the mean-reversion speed, θis is the mean-reversion level and ξis is the

volatility-of-volatility (Vol-of-Vol) of the i-th variance factor. For each variance factor

υit, we assume that the parameters (κi, υi0) are positive constants, while we allow the

parameters (θit, ξit, ρit) to be time-dependent (deterministic). We write υt =
∑n

i=1 υit.

In order to guarantee the positivity of the variance factors and the nondegeneracy of Xt,

we set out the following assumptions on the model parameters throughout the derivation

in Sections 6.2 and 6.3.

Assumption I

inf
t∈[0,T ]

ξit > 0, sup
t∈[0,T ]

|ρit| < 1, inf
t∈[0,T ]

(
2κiθit
ξ2
it

)
≥ 1, for all i = 1, 2, ..., n.

In particular, the last assumption can be considered as the generalization of the Feller

condition in the case of time-dependent parameters. Christoffersen et al. (2009) consider

a two-factor Heston model in (6.1) with n = 2 and constant model parameters. They

note that the multifactor Heston model illustrates independence between the level and

the slope of volatility smile curves (moneyness1 effect) and stochastic correlation (term

structure effect), by regarding the first factor υ1t and the second factor υ2t as the short-

term and long-term variance factors, respectively. As a result, the model is able to

provide a rich structure of volatility surfaces that can be observed in the index option

market.

6.2.2 Stochastic correlation and the term structure of volatility

We then present some basic properties of the model. In the multifactor Heston model,

the instantaneous variances of dXt and dυt, and the instantaneous covariance between

dXt and dυt are given by

Var[dXt] =

n∑
i=1

υitdt, Var[dυt] =

n∑
i=1

ξ2
i υitdt, Cov[dXt, dυt] =

n∑
i=1

ξiρiυitdt. (6.2)

1We consider moneyness of a put option under zero interest rate environment in the numerical analysis
later. In this case, the moneyness is defined by K/S, where K is the strike price and S is the current
stock price.
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The level of implied instantaneous volatility is primarily determined by Var[dXt], while

the volatility skew (i.e. the slope of the implied volatility smile) is determined by

Cov[dXt, dυt]. On the other hand, the time-variation of the implied volatility skew

can be generated by the stochastic correlation

Corr[dXt, dυt] =
Cov[dXt, dυt]√

Var[dXt]
√

Var[dυt]
. (6.3)

Under the multifactor Heston model, it is straightforward to compute the expected

variance in the case of constant model parameter as

E [υs| Ft] =
n∑
i=1

[
θi

(
1− e−κi(T−t)

)
+ υi,0e

−κi(T−t)
]
.

Hence, the fair strike of a continuously-monitoring variance swap for the contract period

[t, T ] can be readily obtained as

V S (t, T ) = E
[

1

T − t

∫ T

t
υsds

∣∣∣∣Ft] =
n∑
i=1

[
θi + (υi,0 − θi)

(
1− e−κi(T−t)

)
κi (T − t)

]
. (6.4)

For the pricing of variance swaps under a discrete monitoring, the reader may refer to

Zheng and Kwok (2014) and the references therein. As shown in Christoffersen et al.

(2009), the multifactor Heston model can generate a rich flexibility for the term structure

of implied volatility. Similar multifactor volatility models have been considered in the

pricing of volatility derivatives (ee, for example, Bergomi, 2008; Buehler, 2006). It is

worth noting that given the model parameters (θi, κi) for i = 1, 2, ..., n, one can explicitly

back out the instantaneous variance υi,0 for i = 1, 2, ..., n from n observed market quotes

of variance swaps.

6.3 Asymptotic Expansion for Multifactor Heston Model

In this section, we develop an asymptotic expansion for the put option price under the

multifactor Heston model with the spirit of Benhamou et al. (2010) who studied the

one-factor Heston model.
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6.3.1 The perturbed multifactor Heston model

The perturbed processes Xε
t and υεiit of (6.1) are parameterized by

ε = {εi ∈ [0, 1], i = 1, 2, ..., n} and are defined as the solution of SDEs

Xε
t = x0 +

n∑
i=1

[∫ t

0

√
υεiisdW

i
s −

1

2

∫ t

0
υεiisds

]
, (6.5)

υεiit = υi0 +

∫ t

0
κi(θis − υεiis)ds+ εi

∫ t

0
ξis

√
υεiisdB

i
t.

It is clear that when εi = 0, the perturbed variance process υ0
it is deterministic

υi0,t , υ0
it = e−κit

(
υi0 +

∫ t

0
eκisκiθisds

)
,

while, when εi = 1, υ1
it coincides with υit, the original variance process. It is noted that

under Assumption I, each variance factor υεiit is guaranteed to be positive. Our aim is

to obtain an asymptotic expansion of the discounted expectation g(ε) defined by

g(ε) = e−
∫ T
0 rtdtE

[(
K − e

∫ T
0 (rt−qt)dt+Xε

T

)
+

]
, (6.6)

where K is the strike price, T is the expiry, rt is the deterministic risk-free rate and qt

is the deterministic dividend yield. When we set ε = 1n, i.e. εi = 1 for all i = 1, 2, ..., n,

the discounted expectation gives the put option pricing formula under the multifactor

Heston model.

As the Brownian motions W i
t are correlated with Bi

t, it is convenient to rewrite (6.5) as

Xε
t = x0 +

n∑
i=1

[∫ t

0

√
υεiisρisdB

i
s +

∫ t

0

√
υεiis

√
1− ρ2

itdZ
i
s

]
− 1

2

n∑
i=1

∫ t

0
υεiisds (6.7)

with another set of mutually independent Brownian motions Zit satisfying d〈Bi, Zj〉t = 0

for all i and j 2. We denote by FBT the σ-algebra generated by the Brownian motions Bi
t

(i = 1, 2, . . . , n) up to time T . It is easy to see that Xε
T conditional on FBT is Gaussian

2 An alternative transformation of (6.5) is given by

Xε
t = x0 +

n∑
i=1

∫ t

0

√
υεiisρisdB

i
s +

∫ t

0

√√√√ n∑
i=1

υεiis (1− ρ2
it)dZ

0
s −

1

2

n∑
i=1

∫ t

0

υεiisds,

where Z0 is a Brownian motion which is independent of Bi (i = 1, 2, . . . , n). This expression may be a
more efficient transformation of (6.5) than (6.7) though (6.7) is easier to understand intuitively. For our
analysis, the outcoming results will be same whichever is applied.
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distributed. Therefore, we can express the discounted expectation as

g(ε) = E
[
e−
∫ T
0 rtdtE

[(
K − e

∫ T
0 (rt−qt)dt+Xε

T

)
+

∣∣∣∣FBT ]] = E [P (x (ε) , y (ε))] , (6.8)

where

x (ε) , x0 +
n∑
i=1

[∫ T

0
ρit

√
υεiitdB

i
t −

1

2

∫ T

0
ρ2
itυ

εi
itdt

]
,

y (ε) ,
n∑
i=1

∫ T

0

(
1− ρ2

it

)
υεiitdt, (6.9)

and P (x, y) is the Black-Scholes formula for put option

P (x, y) , Ke−reqTN (d)− exe−qeqTN (d−√y), (6.10)

where d =
1
√
y

ln

[
Ke−reqT

exe−qeqT

]
+

1

2

√
y, req =

1

T

∫ T

0
rtdt, qeq =

1

T

∫ T

0
qtdt,

and N (·) is the standard cumulative normal distribution.

6.3.2 Asymptotic expansion

To expand g(ε) around ε = 0n asymptotically, let us rewrite (6.8) as

g(ε) = E[P (x′ + ∆x (ε) , y′ + ∆y (ε))] (6.11)

by decomposing (6.9) as x (ε) = x′ + ∆x (ε) and y (ε) = y′ + ∆y (ε), in which the two

terms

x′ , x(0n) = x0 +

n∑
i=1

[∫ T

0
ρit
√
υi0,tdB

i
t −

1

2

∫ T

0
ρ2
itυi0,tdt

]
,

y′ , y(0n) =

n∑
i=1

∫ T

0

(
1− ρ2

it

)
υi0,tdt

represent the values of X0n
T conditional on FBT and Var(X0n

T

∣∣FBT ), respectively, at the

origin of the expansion, ε = 0n, and the rests

∆x (ε) =

n∑
i=1

ΓεiiT , with ΓεiiT ,
∫ T

0
ρit(
√
υεiit −

√
υi0,t)dBit −

∫ T

0

1

2
ρ2
it(υ

εi
it − υi0,t)dt,

∆y (ε) =

n∑
i=1

ΞεiiT , with ΞεiiT ,
∫ T

0
(1− ρ2

it)(υ
εi
it − υi0,t)dt (6.12)
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capture the perturbed change of Xε
T | FBT and Var(Xε

T | FBT ), respectively, with respect

to ε. To proceed, we introduce the multivariate Taylor expansion residual with respect

to ε for a process {Y ε
t } as

RY
ε

`,t = R`,t [Y ε] , Y ε
t −

∑̀
m=0

1

m!

(
n∑
i=1

hi
∂

∂εi

)m
Y ε
t

∣∣∣∣∣
ε=0n,{hi}={εi}

.

When ε is a single variate ε = εi1i, the above definition for a process {Y εi
t } is equivalent

to the case of one-factor in Benhamou et al. (2010)

RY
εi

`,t = Y εi
t −

∑̀
m=0

εmi
m!
Y εi
m,t , Y εi

m,t ,
∂mY εi

t

∂εmi

∣∣∣∣
εi=0

.

With these notations, we see that the second order expansion of the variance factors are

given by

υεiit = υi0,t + εiυi1,t +
1

2!
ε2i υi2,t +R

υ
εi
i

2,t ,√
υεiit =

√
υi0,t + εi

υi1,t

2(υi0,t)1/2
+

1

2!
ε2i

(
υi2,t

2(υi0,t)1/2
− (υi1,t)

2

4(υi0,t)3/2

)
+R

√
υ
εi
i

2,t ,

with

υi0,t = e−κit
(
υi0 +

∫ t

0
eκisκiθisds

)
, υi1,t = e−κit

∫ t

0
eκisξis

√
υi0,sdB

i
s,

υi2,t = e−κit
∫ t

0
eκisξis

υi1,s

(υi0,s)1/2
dBi

s. (6.13)

As a result, the second order expansion for ΓεiiT and ΞεiiT , defined in (6.12), are given by

ΓεiiT = Γi0,T + εiΓi1,T +
1

2
ε2iΓi2,T +R

Γ
εi
i

2,T

with

Γi0,T = Γ0
iT = 0, Γi1,T =

∫ T

0
ρit

υi1,t

2(υi0,t)1/2
dBi

t −
∫ T

0

ρ2
it

2
υi1,tdt,

Γi2,T =

∫ T

0
ρit

[
υi2,t

2(υi0,t)1/2
− (υi1,t)

2

4(υi0,t)3/2

]
dBi

t −
∫ T

0

ρ2
it

2
υi2,tdt,

and

ΞεiiT = Ξi0,T + εiΞi1,T +
1

2
ε2iΞi2,T +R

Ξ
εi
i

2,T

with

Ξi0,T = Ξ0
iT = 0, Ξi1,T =

∫ T

0
(1− ρ2

it)υi1,tdt, Ξi2,T =

∫ T

0
(1− ρ2

it)υi2,tdt.
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These expansion terms will be used in the following derivation.

Now it is ready to expand (6.11) with respect to ε. By the application of the chain rule

for the formal derivatives of the parameterized stochastic processes ΓεiiT and ΞεiiT with

respect to ε = (εi)i, up to the second order, we arrive at the following expansion formula

g(ε) = E
[
P (x′, y′)

]
+ E

[
∂P (x′, y′)

∂x

n∑
i=1

∆Γ1
i

]
+ E

[
∂P (x′, y′)

∂y

n∑
i=1

∆Ξ1
i

]

+
1

2
E

∂2P (x′, y′)

∂x2

(
n∑
i=1

∆Γ2
i

)2
+

1

2
E

∂2P (x′, y′)

∂y2

(
n∑
i=1

∆Ξ2
i

)2


+E

[
∂2P (x′, y′)

∂x∂y

(
n∑
i=1

∆Ξ2
i

)(
n∑
i=1

∆Γ2
i

)]
+ ε̃n, (6.14)

where

∆Γ1
i , εiΓi1,T +

ε2i
2

Γi2,T

=

∫ T

0
ρit

[
εi

υi1,t

2(υi0,t)1/2
+

1

2!
ε2i

(
υi2,t

2(υi0,t)1/2
− (υi1,t)

2

4(υi0,t)3/2

)]
dBi

t

−
∫ T

0

1

2
ρ2
it

(
εiυi1,t +

1

2
ε2i υi2,t

)
dt,

∆Γ2
i , εiΓi1,T =

∫ T

0
ρitεi

υi1,t

2(υi0,t)1/2
dBi

t −
∫ T

0

1

2
ρ2
itεiυi1,tdt, (6.15)

∆Ξ1
i , εiΞi1,T +

ε2i
2

Ξi2,T =

∫ T

0

(
1− ρ2

it

)(
εiυi1,t +

1

2
ε2i υi2,t

)
dt,

∆Ξ2
i , εiΞi1,T =

∫ T

0

(
1− ρ2

it

)
εiυi1,tdt,

for i = 1, 2, ..., n, and ε̃n is the expansion error. The detailed derivation of (6.14) is

found in the Appendix.

By expanding the quadratic terms in the expectations, (6.14) is rewritten as

g (ε) = E
[
P
(
x′, y′

)]
+

n∑
i=1

{
E
[
∂P

∂x
∆Γ1

i

]
+ E

[
∂P

∂y
∆Ξ1

i

]
+

1

2
E
[
∂2P

∂x2

(
∆Γ2

i

)2]
+

1

2
E
[
∂2P

∂y2

(
∆Ξ2

i

)2]
+ E

[
∂2P

∂x∂y
∆Γ2

i∆Ξ2
i

]}
+

n∑
i=2

i−1∑
j=1

{
E
[
∂2P

∂x2
∆Γ2

i∆Γ2
j

]
+ E

[
∂2P

∂y2
∆Ξ2

i∆Ξ2
j

]

+E
[
∂2P

∂x∂y
∆Γ2

i∆Ξ2
j

]
+ E

[
∂2P

∂x∂y
∆Γ2

j∆Ξ2
i

]}
+ε̃n, (6.16)
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where the term ∂k+lP/∂xk∂yl in the expectation is evaluated at (x′, y′). The expec-

tations involving the cross terms ∆Γ2
i∆Γ2

j ,∆Ξ2
i∆Ξ2

j , ∆Γ2
i∆Ξ2

j , and ∆Γ2
j∆Ξ2

i in (6.16)

are new terms that appear in the case of the multifactor Heston model. Although they

include the Ito integrals inside the expectation, each of the Ito integral terms can be

replaced with some Lebegue-Stieltjes integral thanks to Malliavin calculus. Our interest

is the evaluation at ε = 1n. It is summarized in the following Proposition, which is a

natural extension of Proposition 2.1 in Benhamou et al. (2010) in the case of multifactor

model.

Proposition 6.1. When ε = 1n, the put option price (6.6) is given by

g (1n) = E
[
P (x′, y′)

]
+ E

[
∂P

∂y
(x′, y′)

n∑
i=1

∫ T

0
(υi1,t + υi2,t) dt

]

+
1

2
E

∂2P

∂y2
(x′, y′)

(
n∑
i=1

∫ T

0
υi1,tdt

)2
+ ε̃n.

Proof. One can show that the summation of terms on the second line and the third one

of (6.16) is equal to

n∑
i=1

E
[
∂P

∂y
(x′, y′)

∫ T

0
(υi1,t + υi2,t) dt

]
+

n∑
i=1

1

2
E

[
∂2P

∂y2
(x′, y′)

(∫ T

0
υi1,tdt

)2
]

in a similar way as in Proposition 2.1 in Benhamou et al. (2010) by applying Lemma 6.11

shown in the Appendix. Similarly, when ε = 1n, the summation inside the parenthesis

of the cross terms on the fourth line and the fifth one of (6.16) can be expressed as

Φi,j
T , E

[
∂2P

∂x2
∆Γ2

i∆Γ2
j

]
+ E

[
∂2P

∂y2
∆Ξ2

i∆Ξ2
j

]
+ E

[
∂2P

∂x∂y
∆Γ2

i∆Ξ2
j

]
+E

[
∂2P

∂x∂y
∆Γ2

j∆Ξ2
i

]
= E

[
∂2P

∂y2
(x′, y′)

∫ T

0

[∫ t

0
υi1,sds

]
υj1,tdt

]
+E

[
∂2P

∂y2
(x′, y′)

∫ T

0

[∫ t

0
υj1,sds

]
υi1,tdt

]
, (6.17)

whose proof is postponed to the Appendix. Then, by applying the identity(∫ T

0
ftdt

)(∫ T

0
gtdt

)
=

∫ T

0

[∫ t

0
fsds

]
gtdt+

∫ T

0

[∫ t

0
gsds

]
ftdt,

we have

Φi,j
T = E

[
∂2P

∂y2
(x′, y′)

(∫ T

0
υi1,tdt

)(∫ T

0
υj1,tdt

)]
. (6.18)
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It follows that

g (1n) = E
[
P (x′, y′)

]
+

n∑
i=1

E
[
∂P

∂y
(x′, y′)

∫ T

0
(υi1,t + υi2,t) dt

]

+

n∑
i=1

1

2
E

[
∂2P

∂y2
(x′, y′)

(∫ T

0
υi1,tdt

)2
]

+
n∑
i=2

i−1∑
j=1

E
[
∂2P

∂y2
(x′, y′)

(∫ T

0
υi1,tdt

)(∫ T

0
υj1,tdt

)]
+ ε̃n (6.19)

which is equivalent to the desired expression.

An asymptotic expansion formula of the put option price is obtained by the calculation

of each expectation in (6.19). For the derivation under the multifactor Heston model,

we need the following preliminary results in the one-factor model from Benhamou et al.

(2010). In addition, we keep the index i of the single variance factor in the Lemma for

later use in the case of the multifactor Heston model.

Lemma 6.2 (The One-factor Model). Suppose that Assumption I holds and take n = 1,

i = 1, i.e. the one-factor Heston model with time-dependent parameters. Then the put

option pricing formula is given by

g (1) = P
(
x0, var

i
T

)
+ P i1

(
x0, var

i
T

)
+ ε̃1,

where variT =
∫ T

0 υi0,sdt is the total variance,

P i1 (x, y) =

2∑
k=1

aik,T
∂k+1

∂xk∂y
P (x, y) +

1∑
k=0

bi2k,T
∂2k+2

∂x2k∂y2
P (x, y)

is the expansion term of the one-factor Heston model when x = x0, y = variT , and the

expansion coefficients aik,T and bi2k,T are given by

ai1,T =

∫ T

0
φi0 (s)φi1 (s) ds

∫ T

s
φ−1
i0 (u) du,

ai2,T =

∫ T

0
φi0 (s)φi1 (s) ds

∫ T

s
φi3 (t) dt

∫ T

t
φ−1
i0 (u) du,

bi0,T =

∫ T

0
φ2
i0 (s)φi2 (s) ds

∫ T

s
φ−1
i0 (t) dt

∫ T

t
φ−1
i0 (u) du,

bi2,T =
1

2

(
ai1,T

)2
, (6.20)

with

φi0(s) = eκis, φi1(s) = ρisξisυi0,s, φi2(s) = ξ2
isυi0,s, φi3(s) = ρisξis.
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Proof. See Benhamou et al. (2010).

In our multifactor setting, there are interacted terms between different variance factors

in (6.19)
n∑
i=2

i−1∑
j=1

E
[
∂2P

∂y2
(x′, y′)

(∫ T

0
υi1,tdt

)(∫ T

0
υj1,tdt

)]
,

which leads to additional terms P i,j2 (x0, varT ) in the approximation formula as indicated

in the following Theorem, which is the main contribution in the theoretical part of this

work.

Theorem 6.3 (The Multifactor Model). The put option price (6.6) under the multifac-

tor Heston model is given by

g (1n) = P (x0, varT ) +
n∑
i=1

P i1 (x0, varT ) +
n∑
i=2

i−1∑
j=1

P i,j2 (x0, varT ) + ε̃n, (6.21)

where varT =
n∑
i=1

variT =
n∑
i=1

∫ T
0 υi0,tdt,

P i,j2 (x0, varT ) = ci,jT
∂4P

∂x2y2
(x0, varT ) , ci,jT = C (i, j) + C (j, i) ,

and

B (i, j, t, T ) =

∫ T

t
φ−1
i0 (u)

(∫ T

u
φ−1
j0 (w)dw

)
du+

∫ T

t
φ−1
j0 (u)

(∫ T

u
φ−1
i0 (w)dw

)
du,

C (i, j) =

∫ T

0
φi0(s)φi1(s)

(∫ T

s
φj0(t)φj1(t)B (i, j, t, T ) dt

)
ds

+

∫ T

0
φi0(s)φi1(s)

(∫ T

s
φ−1
i0 (t)

(∫ T

t
φj0(u)φj1(u)

(∫ T

u
φ−1
j0 (w)dw

)
du

)
dt

)
ds,

(6.22)

with

φi0(s) = eκis, φi1(s) = ρisξisυi0,s.

Proof. By following the discussion of proof of Lemma 2, it is straightforward to check

that it holds that P (x0, varT ) = E [P (x′, y′)] and

P i1 (x0, varT )

= E
[
∂P

∂y
(x′, y′)

∫ T

0
(υi1,t + υi2,t) dt

]
+

1

2
E

[
∂2P

∂y2
(x′, y′)

(∫ T

0
υi1,tdt

)2
]
,
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by making use of Lemma 6.11 and Lemma 6.14 in the Appendix. The sum of these terms

corresponds to the first and the second line on the right-hand side of (6.19). Therefore,

it remains to calculate the terms (6.18) or (6.17) when ε = 1n. Due to the functional

form of the Black-Scholes formula P (x, y), we observe that

E
[
∂`+m

∂x`∂ym
P
(
x′, y′

)]
=

∂`+m

∂x`∂ym
P (x0, varT ) .

Then, as shown in the Appendix, by applying the Malliavin calculus and the Fubini The-

orem, the stochastic integrals within the two expectations in (6.17) can be transformed

as

Φi,j
T = ci,jT

∂4P

∂x2∂y2
(x0, varT ) , (6.23)

which is P i,j2 (x0, varT ).

Theorem 6.3 states that the option price is decomposed into three terms plus an error: (i)

the Black-Scholes pricing formula P (x0, varT ) with the total variance, (ii) an adjustment

term P i1 (x0, varT ) within a specific variance factor, and (iii) an interacting adjustment

P i,j2 (x0, varT ) by the two different variance factors.

When the parameters are constant, the relevant quantities are calculated explicitly as

shown in the following Corollaries.

Corollary 6.4. When all the model parameters are constant, the variance variT and the

expansion coefficients ai1,T , a
i
2,T , and bi0,T in Lemma 6.2 can be explicitly computed as

variT = mi0υi0 +m1θi,

ai1,T = ρiξi (pi0υi0 + pi1θi) ,

ai2,T = (ρiξi)
2 (qi0υi0 + qi1θi) ,

bi0,T = ξ2
i (ri0υi0 + ri1θi) ,

with

mi0 = zmi
(
eκiT − 1

)
,

mi1 = T − zmi
(
eκiT − 1

)
,

pi0 = zpi
(
−κiT + eκiT − 1

)
,

pi1 = zpi
(
κiT + eκiT (κiT − 2) + 2

)
,

qi0 = zqi
(
−κiT (κiT + 2) + 2eκiT − 2

)
,

qi1 = zqi
(
2eκiT (κiT − 3) + κiT (κiT + 4) + 6

)
,

ri0 = zri
(
−4eκiTκiT + 2e2κiT − 2

)
,

ri1 = zri
(
4eκiT (κiT + 1) + e2κiT (2κiT − 5) + 1

)
,
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and

zmi = e−κiT /(κi), zpi = e−κiT /(κ2
i ), zqi = e−κiT /(2κ3

i ), zri = e−2κiT /(4κ3
i ).

Corollary 6.5. When all the model parameters are constant, the expansion coefficients

ci,jT in Theorem 6.3 can be explicitly computed as

ci,jT = ρiρjξiξj (y0υi0υj0 + y1υi0θj + y2υj0θi + y3θiθj) ,

where κ(i, k) = κiT + k, zy = e−(κi+κj)T /(κiκj)
2, and

y0 = zy
(
eκiT − κ(i, 1)

) (
eκjT − κ(j, 1)

)
,

y1 = zy
(
eκiT − κ(i, 1)

) (
eκjTκ(j,−2) + κ(j, 2)

)
,

y2 = zy

[
e(κi+κj)Tκ(i,−2) + eκjTκ(j, 2)− eκiTκ(i,−2)κ(j, 1)− κ(i, 2)κ(j, 1)

]
,

y3 = zy
(
eκiTκ(i,−2) + κ(i, 2)

) (
eκjTκ(j,−2) + κ(j, 2)

)
.

Remark 6.6. As shown in Theorem 6.3, the new expansion terms capture the interaction

between different variance factors when the driving Brownian motions W i and Bi are

correlated. In the case of constant parameters, the interaction is related to the covari-

ance as ρiρjξiξj . In other words, the interaction between two variance factors i and j

are induced from its correlation to the underlying process Xt, as given by ρi and ρj

respectively. As the expansion term is linked to ∂4P (x0, varT ) /∂x2∂y2, the interaction

term is most important for at-the-money-option when the sensitivity in Delta and Vega

are significant.

When W i and Bi are independent, it is observed that ρit ≡ 0 yields φi1(t) ≡ 0 and

C (i, j) = 0. Furthermore, when C (i, j) = C (j, i) = 0, we see P i,j2 (x0, varT ) = 0.

Remark 6.7. One may be interested in how the error term ε̃n behaves as a function of

T . Benhamou et al. (2010) shows in Theorem 2.3 that the approximation error for the

case of the one-factor Heston model is bounded by |ε̃1| ≤ C
(

supt∈[0,T ] ξi(t)
)3
T 2 with a

generic constant3 C, which depends on other parameters including T in a nondecreasing

way. A similar expression for our multifactor model can be obtained as well. However,

the identification of such generic constants as a function of T seems impossible in the

derivation process and it is also not so meaningful for the purpose of error estimation,

because the generic constants themselves involve T implicitly. Hence, we do not pursue

a theoretical evaluation of the error herein. Alternatively, we investigate the errors

numerically for several cases in next section.

3The precise definition of generic constants is found on p.306 of Benhamou et al. (2010).
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Remark 6.8. It is important to note that the approximation formula is derived under the

Assumption I. In particular, we impose the Feller condition to be held for all the variance

factors. Nevertheless, in practice, when the Heston-type stochastic volatility model is

calibrated to market option prices, it is usually found that the Feller condition does not

hold. If the Feller condition is imposed during the optimization procedure, the model

could give poor fit to the market implied volatility surface. When the Feller condition

does not hold, we are not able to guarantee that the approximation formula would

produce non-negative option prices which satisfy the no-arbitrage bounds. To resolve

this issue, we set the option value to be its intrinsic value when the approximation

formula breaches those bounds during the calculation in the calibration section.

6.4 Numerical Illustration

In this section, we study the accuracy of the approximation formula, that is (6.21) by

discarding the error term, for the multifactor Heston model. For illustration purposes, we

consider the case of n = 2, i.e. the case of a two-factor Heston model as in Christoffersen

et al. (2009). We consider a couple of scenarios, such as when the model parameters are

constant or the correlation coefficients are allowed to be time-dependent.

6.4.1 Constant model parameters

In the multifactor Heston model, the parameter κi controls the mean-reversion speed of

the i-th variance factor and governs its impact on the term structure of implied volatility.

Since the expected variance is given by

E
[∫ T

t
υisds

∣∣∣∣Ft] = θi

(
1− e−κi(T−t)

)
+ υi,0e

−κi(T−t),

the i-th variance factor could affect the term structure of implied volatility for the time-

to-maturity range that is characterized by the half-life (approximately 1/κi) of the mean-

reversion process. The intuition is that variance factors with different κi correspond to

the different time-scales of the stochastic volatility process. In the following, we assume

that κ2 > κ1, such that υ1t can be regarded as a long-term variance factor with a slow

mean-reversion, while υ2t can be regarded as a short-term variance factor with a fast

mean-reversion.

Accuracy of the approximation formula

To study the accuracy of the approximation formula for the two-factor Heston model, we

compute the put option prices in three ways: (i) the characteristic function approach as
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the exact price, (ii) the approximation formula derived in Section 3, and (iii) the Monte-

Carlo simulation. For the characteristic function approach, we employ the adaptive

integration routines in Matlab (with relative tolerance of 1e-08) to numerically invert

the Fourier integral. For the Monte Carlo simulation, we apply the Euler scheme to the

simulation of the log-stock price and variance factors, and then adopt the full truncation

scheme when the simulated variance path approaches zero. To achieve high convergence,

the simulation is repeated 1,000,000 times, while the time-step is kept at 0.01. We take

the spot price to be 100 (i.e. x0 = ln (100)), and consider the range of moneyness

between 80% and 120%, with the time-to-maturity of options at 3-, 6-month and 1-, 2-,

3-, 5-, 7-, and 10-year. For simplicity, we assume the interest rate and dividend yield to

be zero.

Example 6.1 (Zero Correlation). We assume the model parameters to be constant as

follows:

ρ1 κ1 θ1 ξ1 υ10 ρ2 κ2 θ2 ξ2 υ20

0.0 0.5 0.10 0.25 0.10 0.0 5.0 0.05 0.5 0.05

In Example 6.1, there are no correlations between the stock price and the variance

factors. For the model parameters, the first variance factor has a half-life of around 2

years (i.e. κ1 = 0.5), while the second variance factor has a half-life of 0.2 year (i.e.

κ2 = 5.0). We set the mean levels of the long-term and short-term variance factors to be

θ1 = 0.10 and θ2 = 0.05, respectively (i.e.
√

0.10 = 31.6% and
√

0.05 = 22.4% in terms

of volatility points, where 1 volatility point = 1%). For simplicity, we set the initial

variance (υ10 and υ20) of each factor to its corresponding mean level. The Vol-of-Vol

for the two variance factors are ξ1 = 0.25 and ξ2 = 0.5. As such, the Feller conditions

are given by 1.6 and 2.0, respectively, for the two factors. The parameter setting here

is considered to be a moderate market scenario.

In Example 6.1, the approximation formula can be simplified due to zero correlations,

resulting in ai1,T = ai2,T = bi2,T = ci,jT = 0. The estimation of the put option prices (as

a percentage of the spot price) at various moneyness and time-to-maturity is shown in

Table 6.1. We also report the approximation error which is computed by subtracting the

exact closed-form price from the approximation price. From Table 6.1, it is found that

the approximation formula is very accurate for short-term options, such as the 3-month

and 6-month options, in which the approximation errors are between 0 to 0.13 bps (1 bp

= 0.0001). The approximation errors for 1-year and 2-year are in the order-of-magnitude

of 1 bp and those for longer maturity are, at most, 5 bp. Considering that a typical

over-the-counter option is quoted in bp, the approximation formula for short to medium

term options are considered to be extremely accurate.
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Table 6.1: Estimation of put option prices (in percentage of the spot price) for the
two-factor Heston model in Example 6.1. MC Error means the standard error of the

price by Monte-Carlo simulation.

Moneyness 80 90 100 110 120 80 90 100 110 120

Time-to-Maturity = 3M Time-to-Maturity = 6M

Exact Solution 1.0731 3.3592 7.6739 14.0291 21.9643 2.8353 6.0373 10.8106 17.0469 24.4779
Approximation 1.0731 3.3588 7.6735 14.0286 21.9640 2.8343 6.0363 10.8099 17.0458 24.4765

Approximation Error 0.0000 0.0004 0.0004 0.0005 0.0003 0.0010 0.0010 0.0008 0.0011 0.0013
Monte-Carlo 1.0703 3.3506 7.6660 14.0206 21.9552 2.8380 6.0412 10.8153 17.0543 24.4861

MC Error 0.0035 0.0066 0.0101 0.0133 0.0158 0.0066 0.0101 0.0137 0.0170 0.0199

Time-to-Maturity =1Y Time-to-Maturity = 2Y

Exact Solution 5.9343 9.9852 15.1998 21.4538 28.5809 10.7735 15.6212 21.3036 27.7153 34.7488
Approximation 5.9313 9.9822 15.1970 21.4506 28.5772 10.7629 15.6087 21.2901 27.7014 34.7352

Approximation Error 0.0030 0.0030 0.0029 0.0032 0.0037 0.0106 0.0126 0.0136 0.0139 0.0137
Monte-Carlo 5.9400 9.9992 15.2213 21.4816 28.6140 10.7789 15.6266 21.3099 27.7252 34.7651

MC Error 0.0108 0.0145 0.0181 0.0216 0.0246 0.0160 0.0198 0.0234 0.0269 0.0301

Time-to-Maturity =3Y Time-to-Maturity = 5Y

Exact Solution 14.6067 19.9174 25.9048 32.4787 39.5553 20.7034 26.6173 33.0395 39.8994 47.1362
Approximation 14.5865 19.8936 25.8790 32.4522 39.5294 20.6698 26.5789 32.9981 39.8568 47.0937

Approximation Error 0.0202 0.0238 0.0258 0.0265 0.0259 0.0336 0.0384 0.0413 0.0426 0.0425
Monte-Carlo 14.6404 19.9587 25.9540 32.5337 39.6144 20.7507 26.6734 33.1032 39.9689 47.2094

MC Error 0.0193 0.0231 0.0268 0.0303 0.0335 0.0235 0.0273 0.0309 0.0344 0.0377

Time-to-Maturity =7Y Time-to-Maturity = 10Y

Exact Solution 25.5808 31.9130 38.6593 45.7612 53.1698 31.5315 38.3300 45.4556 52.8616 60.5096
Approximation 25.5426 31.8702 38.6135 45.7137 53.1219 31.4946 38.2893 45.4123 52.8165 60.4636

Approximation Error 0.0382 0.0428 0.0458 0.0474 0.0479 0.0369 0.0407 0.0433 0.0450 0.0460
Monte-Carlo 25.6291 31.9705 38.7222 45.8277 53.2390 31.5624 38.3602 45.4845 52.8892 60.5377

MC Error 0.0260 0.0298 0.0334 0.0369 0.0402 0.0284 0.0321 0.0356 0.0390 0.0423

Example 6.2 (Negative Correlation). We assume constant model parameters and neg-

ative correlations between the stock price and the variance factors with ρ2 < ρ1 < 0.

ρ1 κ1 θ1 ξ1 υ10 ρ2 κ2 θ2 ξ2 υ20

−0.25 0.5 0.10 0.25 0.10 −0.5 5.0 0.05 0.5 0.05

The negative correlation generates the implied volatility skew due to the leverage effect.

In Example 6.2, we allow the correlations between the stock price process and the two

variance factors to contrast with those of Example 6.1. As shown in Table 6.2, the ap-

proximation errors are generally larger since the underlying dynamics are more complex

in the presence of the leverage effect. Nevertheless, the approximation formulae for short-

term options up to 1-year remain very accurate with error of less than 1 bp. Meanwhile,

in the case of longer-term options, the approximation errors remain well-controlled at

the level of, at most, 10 bps.

It is expected that the approximation accuracy could deteriorate sharply in the case of

high volatility. To further study the accuracy of the approximation formula, we focus on

the 1-year time-horizon, then gradually increase the Vol-of-Vol parameter (ξ2) for the

short-term variance factor (υ2t) at different mean-reversion speeds (κ2), while keeping

other parameters the same as in Example 6.1 (zero correlation).
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Table 6.2: Estimation of put option prices for the two-factor Heston model in Example
6.2.

Moneyness 80 90 100 110 120 80 90 100 110 120

Time-to-Maturity = 3M Time-to-Maturity = 6M

Exact Solution 1.1831 3.4418 7.6476 13.8943 21.7878 2.9960 6.1177 10.7520 16.8510 24.1929
Approximation 1.1863 3.4422 7.6466 13.8922 21.7836 2.9977 6.1159 10.7500 16.8487 24.1878

Approximation Error 0.0032 0.0003 0.0009 0.0021 0.0042 0.0018 0.0018 0.0020 0.0023 0.0051
Monte-Carlo 1.1770 3.4311 7.6350 13.8831 21.7756 2.9950 6.1159 10.7490 16.8478 24.1876

MC Error 0.0038 0.0069 0.0104 0.0136 0.0161 0.0071 0.0105 0.0141 0.0174 0.0203

Time-to-Maturity =1Y Time-to-Maturity = 2Y

Exact Solution 6.0998 10.0250 15.0789 21.1755 28.1763 10.8630 15.5549 21.0656 27.3108 34.1972
Approximation 6.0960 10.0191 15.0744 21.1722 28.1714 10.8501 15.5381 21.0479 27.2926 34.1776

Approximation Error 0.0039 0.0060 0.0045 0.0033 0.0049 0.0129 0.0168 0.0177 0.0182 0.0196
Monte-Carlo 6.1008 10.0325 15.0925 21.1892 28.1887 10.8590 15.5536 21.0646 27.3100 34.1961

MC Error 0.0114 0.0150 0.0187 0.0221 0.0252 0.0166 0.0203 0.0240 0.0275 0.0308

Time-to-Maturity =3Y Time-to-Maturity = 5Y

Exact Solution 14.5993 19.7455 25.5608 31.9687 38.8944 20.5169 26.2650 32.5213 39.2221 46.3109
Approximation 14.5760 19.7146 25.5250 31.9293 38.8517 20.4733 26.2095 32.4562 39.1492 46.2316

Approximation Error 0.0234 0.0309 0.0358 0.0394 0.0427 0.0436 0.0555 0.0650 0.0728 0.0793
Monte-Carlo 14.6282 19.7775 25.5991 32.0127 38.9424 20.5601 26.3138 32.5763 39.2794 46.3678

MC Error 0.0198 0.0237 0.0274 0.0309 0.0342 0.0240 0.0278 0.0315 0.0350 0.0384

Time-to-Maturity =7Y Time-to-Maturity = 10Y

Exact Solution 25.2502 31.4212 38.0091 44.9595 52.2261 31.0393 37.6852 44.6628 51.9275 59.4421
Approximation 25.1937 31.3520 37.9292 44.8705 52.1293 30.9751 37.6095 44.5770 51.8328 59.3396

Approximation Error 0.0565 0.0692 0.0800 0.0891 0.0968 0.0642 0.0758 0.0859 0.0947 0.1025
Monte-Carlo 25.3074 31.4817 38.0691 45.0177 52.2807 31.0655 37.7093 44.6859 51.9489 59.4623

MC Error 0.0265 0.0303 0.0340 0.0375 0.0409 0.0288 0.0325 0.0361 0.0396 0.0430

Fig. 6.1 plots the approximation errors for each Vol-of-Vol parameter (from 0.1 to 1.0)

with a couple of values of moneyness (80%, 100%, 120%) and mean-reversion speed

(κ2 = 5, 4, 3, 2). As the figure shows, the error increases with the Vol-of-Vol parameter.

Additionally, error values for at-the-money options (moneyness of 100%) are, in general,

higher than those of other moneyness options. As a higher mean-reversion speed damp-

ens the stochastic movements of the variance process, the approximation error decreases

when the mean-reversion speed is high.

Implied volatility surface

Example 6.3. We show the implied volatility surfaces generated by the following four

model parameter settings.

ρ1 κ1 θ1 ξ1 υ10 ρ2 κ2 θ2 ξ2 υ20

Scenario 1 −0.5 0.5 0.10 0.5 0.05 −0.8 5.0 0.04 1.0 0.02

Scenario 2 −0.5 0.5 0.10 0.5 0.05 −0.8 5.0 0.01 1.0 0.02

Scenario 3 0.0 0.5 0.10 0.5 0.05 −0.8 5.0 0.01 1.0 0.02

Scenario 4 0.5 0.5 0.10 0.5 0.05 −0.8 5.0 0.01 1.0 0.02

Scenario 1 is regarded as the set of baseline parameters. Thence, we change the values

of the mean-level for the short-term variance factor (θ2) and the correlation parameter
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Figure 6.1: The plot of the absolute approximation error in put option price with
1-year maturity.

for the long-term factor (ρ1) in Scenarios 2 to 4. This is in order to produce various

shapes of the implied volatility surface. The baseline parameter setting is motivated by

the calibration results to the S&P500 index data in Section 5.

• Scenario 1. As shown in top-left panel of Fig. 6.2, the implied volatility sur-

face exhibits an moderate upward-sloping term structure because of θ1 > υ10 and

θ2 > υ20. Given the negative correlation of the two factors ρ1 and ρ2, the short-

term skewness is prominent and decays gradually with the time-to-maturity. It

should be noted that this is the class of implied volatility surface that is commonly

observed in the index option market. This is also the case in which a one-factor

Heston model is able to provide a good fit.

• Scenario 2. To study the impact of the mean levels on the term structure,

we change the value of θ2 from 0.04 to 0.01. This generates a hump-shaped term

structure as shown in the top-right panel of Fig. 6.2. The generation of this hump-

shaped term structure can be explained based on the variance swap pricing formula

(6.4): the instantaneous variance swap rate is given by limT→t V S (t, T ) = υ10+υ20;

if τ = T − t is τ ≈ 1/κ2 but τ << 1/κ1, i.e. in the short-to-medium terms, we

have V S (T, t) ≈ υ10 + θ2. Hence, the slope of the term structure at the short-end
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can be approximated by V S (t, T )− V S (t, t) ≈ θ2 − υ20. In a similar fashion,

if τ ≈ 1/κ1 and τ >> 1/κ2, the term structure at medium-to-long term can be

approximated as θ1−υ10. As a result, by tuning the parameters θ1 and θ2 relative

to υ10 and υ20, one can generate a rich variation of the term structure of implied

volatility. Moreover, it is worth noting that the change in θ2 has minimal impact

on the 1-month skewness because, in this case, the short-term variance factor takes

roughly 3 months to mean-revert.

• Scenario 3. Then, we change the long-term correlation ρ1 from −0.5 to slightly

positive at 0.25, while keeping the short-term correlation the same. In this case,

the long-term skew flattens out much faster due to the positive leverage effect

of the long-term variance factor. This indicates that the long-term skew may

be controlled by adjusting the long-term factor. However, the change in ρ1 also

reduces the short-term skewness, indicating that its impact on the short-term smile

is not entirely separable.

• Scenario 4. Finally, we combine Scenarios 2 and 3 in such a way that a hump-

shaped implied volatility surface with a positive skew in long time-to-maturity

can be generated. Such a shape of the implied volatility surface is possible when

market participants are expecting a medium-term recovery, while perceiving the

possibility of a sudden market crash in the near term. Alternatively, it is often

observed in the foreign exchange market in which the implied volatility surface is

usually more symmetric, with its short-term and long-term smiles to be separately

driven by short-term market expectations and long-term macroeconomics factors,

respectively.

6.4.2 Time-dependent correlation

In this subsection, we illustrate the modeling of time-dependent correlation under the

multifactor Heston model. Given the approximation formula, the put option price under

the multifactor Heston model can be easily obtained by a direct numerical integration

of (6.20) and (6.22). To compute the iterated integrals, we break down them into nested

integrals and apply the trapezoidal rule to convert them into multiple sums. For the

characteristic function approach, we numerically solve the system of ordinary differential

equations (ODEs) by using the fourth-order Runge-Kutta method and then invert the

Fourier transform accordingly. It is worth noting that in the characteristic function

approach, for each strike price K, one needs to solve the system of ODEs repeatedly at

different grid points during the numerical inversion of the Fourier integral. In contrast,

because the expansion coefficients of the approximation formula are independent of the
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Figure 6.2: Implied volatility surfaces in Example 6.3.

strike price, one only needs to compute the expansion coefficients once for a given time-

to-maturity to price option at an arbitrary strike.

Example 6.4. We assume that the correlation of the i-th variance factor with the log

stock price starts from ρi0 = αi + χi and decays exponentially toward χi with the deter-

ministic dynamics of

ρit = αie
−βit + χi,

where

|ρi0| < 1, βi ≥ 0, |χi| ≤ 1, |αi| ≤ 1 + |χi|.

The parameter βi governs the convergence speed of the time-dependent correlation to a

long-term level of χi.

This functional form of the time-dependent correlation is simple and captures the salient

fact that the correlation between stock price and volatility decouples with longer time-to-

maturity. Alternatively, the specification can be used to produce a persistent long-term

skew by setting a high level of χi. The time-dependent correlation function allows for

greater flexibility in separately modelling the short-term and long-term implied volatility

smile.
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Table 6.3: Estimation of put option prices under the two-factor Heston model in
Example 6.4.

Moneyness 80 90 100 110 120 80 90 100 110 120

Time-to-Maturity = 3M Time-to-Maturity = 6M

Numerical ODE 1.1716 3.4341 7.6517 13.9097 21.8071 2.9716 6.1072 10.7644 16.8856 24.2415
Approximation 1.1744 3.4345 7.6514 13.9086 21.8040 2.9730 6.1060 10.7636 16.8848 24.2383

Approximation Error 0.0028 0.0004 0.0003 0.0012 0.0031 0.0014 0.0012 0.0008 0.0008 0.0032
Monte-Carlo 1.1652 3.4232 7.6395 13.9000 21.7962 2.9712 6.1067 10.7633 16.8843 24.2393

MC Error 0.0038 0.0068 0.0104 0.0136 0.0160 0.0070 0.0104 0.0140 0.0174 0.0202

Time-to-Maturity = 1Y Time-to-Maturity = 2Y

Numerical ODE 6.0672 10.0196 15.1082 21.2389 28.2670 10.8410 15.5735 21.1297 27.4193 34.3453
Approximation 6.0647 10.0154 15.1051 21.2363 28.2628 10.8310 15.5592 21.1132 27.4013 34.3253

Approximation Error 0.0024 0.0041 0.0031 0.0026 0.0043 0.0100 0.0143 0.0165 0.0180 0.0200
Monte-Carlo 6.0689 10.0288 15.1251 21.2598 28.2877 10.8395 15.5744 21.1307 27.4210 34.3490

MC Error 0.0113 0.0149 0.0185 0.0220 0.0251 0.0164 0.0202 0.0238 0.0273 0.0306

Time-to-Maturity = 3Y Time-to-Maturity = 5Y

Numerical ODE 14.6021 19.7975 25.6649 32.1236 39.0955 20.5855 26.3939 32.7108 39.4701 46.6136
Approximation 14.5819 19.7698 25.6321 32.0868 39.0558 20.5531 26.3524 32.6621 39.4158 46.5547

Approximation Error 0.0202 0.0277 0.0328 0.0367 0.0397 0.0324 0.0415 0.0487 0.0544 0.0589
Monte-Carlo 14.6315 19.8304 25.7032 32.1695 39.1477 20.6268 26.4441 32.7677 39.5328 46.6793

MC Error 0.0197 0.0235 0.0272 0.0307 0.0340 0.0238 0.0276 0.0313 0.0348 0.0382

Time-to-Maturity = 7Y Time-to-Maturity = 10Y

Numerical ODE 25.3877 31.6251 38.2786 45.2921 52.6180 31.2883 38.0133 45.0702 52.4142 60.0072
Approximation 25.3513 31.5817 38.2296 45.2386 52.5610 31.2429 37.9576 45.0029 52.3331 59.9102

Approximation Error 0.0364 0.0434 0.0490 0.0535 0.0570 0.0454 0.0557 0.0673 0.0811 0.0970
Monte-Carlo 25.4392 31.6823 38.3400 45.3547 52.6807 31.2943 38.0097 45.0544 52.3836 59.9570

MC Error 0.0263 0.0301 0.0338 0.0373 0.0406 0.0286 0.0323 0.0359 0.0394 0.0427

We set the parameters as follows, such that the initial correlation is consistent with

Example 6.2 (i.e. ρ10 = −0.25 and ρ20 = −0.5).

α1 β1 χ1 α2 β2 χ2

−0.15 0.5 −0.1 −0.25 5.0 −0.25

Table 6.3 shows the accuracy of the approximation formula when correlation coefficients

are time-dependent. It is found that the approximation formula remains very accurate

even in the case of time-dependent parameters. In fact, the errors are roughly similar

to those in Example 6.2. Hence, the approximation formula is still effective in this case.

6.5 Calibration

6.5.1 Data and the calibration procedure

To obtain the risk-neutral model parameters, we perform the daily calibration of the

two-factor Heston model using the approximation formula to the cross-sectional market

data of index option prices and variance swap rates. We obtain from Bloomberg the in-

terpolated data of implied volatilities of index options for the S&P 500 index (SPX) and

Nikkei 225 index (NKY), with fixed maturities of 1-, 2-, 3-, 6-, 12-, 18-, and 24-month
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and across moneyness of 80%, 90%, 95%, 97.5%, 100%, 102.5%, 105%, 110%, and 120%.

While index options are exchange-traded contracts such that their expiration dates are

on fixed calendar days and the strike prices are on standardized grids, Bloomberg inter-

polates the option implied volatilities and convert into constant maturities and relative

moneyness to the spot index level on each trading day. In addition, we obtain variance

swap rates for fixed maturities of 1-, 2-, 3-, 6-, 12-, and 24-month on each trading day,

which is calculated from the Bloomberg implied volatility using the CBOE VIX index

methodology. Hence, the variance swap rates are considered to be theoretical quotes.

We also obtain the overnight-index-swap interest rate for the corresponding maturities,

which is considered to be a good proxy for the risk-free interest rate in the post-crisis

scenario. The dividend yield is assumed to be zero. With these data, we compute the

corresponding put option price (referred to as the Bloomberg quoted price) by using the

Black-Scholes formula.

As noted in Christoffersen et al. (2009), the calibration of the multifactor Heston model

involves the joint-identification of the structural parameters (ρi, θi, κi, ξi) and the unob-

served initial variance υi0. They adopt an iterative two-step procedure that separately

estimates the structural parameter and the initial variance. Gauthier and Rivaille (2009)

note that the initial variance and the mean-reverting level have similar impact on the

implied volatility smile. They also suggest that one should avoid the joint-identification

of the two parameters during the optimization procedure. Cont and Tankov (2004),

meanwhile, discuss the challenges involved in the calibration of an option pricing model

to a finite set of market prices as an ill-posed problem. They, in turn, suggest the use

of a regularization function to improve the stability of the calibration across different

trading days. The slight loss in precision due to the regularization function is justified

by the existence of bid-ask spreads, discrete tick in price quote and measurement er-

rors of illiquid options. Against this background, we implement the following two-step

procedure to calibrate the model parameters for the two-factor Heston model.

Step 1: Calibration to the term structure of variance swap

As shown in (6.4), the fair strike of variance swap depends only on the structural param-

eters {θ1, θ2, κ1, κ2} and the two unobserved initial values of variance factor {υ10, υ20}.
Hence, Θt = {θ1, θ2, κ1, κ2, υ10, υ20} are the estimated parameters for Step 1. We cali-

brate these 6 parameters using the variance swap rates by minimizing the sum-of-square

(quadratic) pricing errors as

Θ̂t = arg min

[
1

m

m∑
k=1

(V Sk,t (Θt)− V Sk,t)2 + g (Θt)

]
,
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where t denotes the trading day, V Sk,t (Θt) and V Sk,t are the model-implied and Bloomberg

quotes of variance swap rate (in volatility, for example, the fair strike of 20% is taken

to be 0.2 in the calibration) for the k-th time-to-maturity respectively. Here, g (Θt) =

α
(
Θt −ΘInt

t

)2
is the penalty function that is used to regularize the optimization, where

ΘInt
t is the initial guess and α is the loading coefficient of the penalty function (Cont

and Tankov, 2004). It is worth noting that the penalty function is incorporated to

produce stable estimates for some parameters that are difficult to identify, such as the

mean levels {θ1, θ2} and the mean-reversion speed {κ1, κ2} . We take the initial guess:

κ1 = 0.5, κ2 = 5.0, θ1 = υ10 = 0.10, and θ2 = υ20 = 0.05. These values are motivated

by the average estimates from the trial calibrations which discard the penalty function.

From this calibration step, we can identify 6 out of the 10 parameters in the two-factor

Heston model.

Step 2: Calibration to option orice and term structure of variance swap

In Step 2, we include the Bloomberg quoted prices of put options and calibrate the

two-factor Heston model by minimizing the quadratic pricing error as

̂̃
Θt = arg min

[ 1

n

n∑
j=1

ωj

(
Pj,t

(
Θ̃t

)
− Pj,t

)2

+
1

m

m∑
k=1

(
V Sk,t

(
Θ̃t

)
− V Sk,t

)2
+ g

(
Θ̃t

)]
, (6.24)

where Pj,t

(
Θ̃t

)
is the model-implied price for the j-th put option, and Pj,t is the

Bloomberg quoted price for the j-th put option. Here, the option price is normal-

ized by the spot price. For the calibration of option price, we select the weighting ωj to

be (1/V egaj)
2, where V egaj is the Black-Scholes Vega normalized by the spot price

as computed using the Bloomberg implied volatility. To avoid giving too much weight

to deep in-the-money and out-of-the-money options with very small Vega, we impose a

lower bound of V egaj by 0.01. As noted in Cont and Tankov (2004) and Christoffersen

et al. (2009), such a weighting scheme, by using the inverse of Black-Scholes Vega, ef-

fectively converts the pricing error in option price into error in implied volatility. In our

case, this makes the pricing errors for options and variance swaps to become the same

order of magnitude.

Following the suggestion in Gauthier and Rivaille (2009), we exclude the initial values

υ10 and υ20 of variance factors in the calibration in Step 2 and fix them as the estimated

values in Step 1. As such, we calibrate the remaining 8 structural parameters Θ̃t =

{ρ1, θ1, κ1, ξ1, ρ2, θ2, κ2, ξ2} in Step 2. For the initial guess, we take: ρ1 = ρ2 = −0.5, ξ1 =

0.5 and ξ2 = 1.0. We, then, use the estimated parameter in Step 1 as the initial values

for θ1, θ2, κ1, and κ2. For the optimization algorithm, we use the Levenberg-Marquardt
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Figure 6.3: The time-series dynamics of the estimated initial volatility and long-term
mean level in volatility points (computed as square-root of the estimates) from monthly

calibration.

algorithm to minimize the quadratic pricing error as a non-linear least-square problem.

We carry out the two step calibration once and do not iterate as in Christoffersen et al.

(2009).

Remark 6.9. For the penalty function, one has to set a loading coefficient α that balances

the stability and precision of the parameter estimates. Cont and Tankov (2004) propose

the use of the Morozov discrepancy principle, which authorizes the loss of precision in

the optimization procedure that is of the same order of magnitude as the model error

when applied to a given data set. In particular, Cont and Tankov (2004) suggest that

one can first estimate a priori error level e0 for the optimization problem (6.24) with

α = 0. Then, we need to choose the value of α for the penalty function such that the

calibration error is slightly better but close to the case when α = 0 (i.e., no penalty).

Following the procedure, we perform a number of trial calibrations by taking different

values of α. Specifically, we take α = 0.02 for the SPX market and α = 0.04 for the

NKY market as reasonable parameters that meet the criteria.

6.5.2 S&P 500 index option

Calibration results

Table 6.4 presents the estimated model parameters from the monthly calibration of the

implied volatility surface and the variance swap rates for the sampling period from Jan

2010 to Dec 2012. The instantaneous variance and correlation based on (6.2) and (6.3)

are also included as the reference. We calibrate the model at the last Wednesday of each

month so as to minimize the month-end liquidity effect that may influence the implied

volatility surface. We also report the corresponding calibration errors for the implied

volatility surface in terms of volatility points.
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Table 6.4: Calibrated model parameters and absolute errors (in volatility points) for
the SPX market of the two-factor Heston model. The columns Vol. and Corr. are the

instantaneous volatility (square-root of the variance) and instantaneous correlation.

Factor 1 Factor 2 Error
Date ρ1 κ1 θ1 ξ1 υ10 ρ2 κ2 θ2 ξ2 υ20 Vol. Corr. Mean Min Max

Year 2010

Jan -0.54 0.52 0.069 0.59 0.035 -0.61 5.00 0.025 1.11 0.015 22.3 -0.54 1.27 0.05 3.82
Feb -0.57 0.46 0.056 0.60 0.024 -0.52 5.00 0.034 0.98 0.010 18.3 -0.53 1.18 0.06 3.21
Mar -0.61 0.43 0.065 0.56 0.016 -0.52 5.01 0.031 0.86 0.007 15.5 -0.56 1.26 0.07 3.16
Apr -0.59 0.50 0.087 0.63 0.026 -0.56 5.00 0.029 1.02 0.011 19.1 -0.56 1.49 0.11 3.30
May -0.55 0.53 0.214 0.77 0.058 -0.80 4.99 0.015 1.45 0.059 34.2 -0.68 1.88 0.03 6.82
Jun -0.65 0.56 0.207 0.91 0.075 -0.72 4.99 0.020 1.27 0.035 33.3 -0.67 2.16 0.00 5.67
Jul -0.65 0.44 0.110 0.85 0.031 -0.56 5.00 0.056 1.12 0.012 20.8 -0.61 1.90 0.10 5.14
Aug -0.73 0.46 0.132 0.83 0.041 -0.61 4.99 0.061 1.09 0.016 23.9 -0.69 1.63 0.00 4.84
Sep -0.68 0.38 0.124 0.84 0.024 -0.52 5.01 0.062 1.00 0.010 18.4 -0.63 1.78 0.04 5.81
Oct -0.63 0.37 0.091 0.76 0.020 -0.47 5.01 0.051 0.94 0.008 16.9 -0.58 1.52 0.02 5.08
Nov -0.63 0.28 0.127 0.69 0.019 -0.51 4.99 0.043 0.94 0.008 16.2 -0.58 1.69 0.00 4.53
Dec -0.70 0.34 0.083 0.77 0.011 -0.52 5.04 0.053 0.83 0.005 12.6 -0.64 1.79 0.08 5.44

Year 2011

Jan -0.64 0.38 0.085 0.66 0.011 -0.50 5.02 0.035 0.81 0.005 12.7 -0.59 1.62 0.05 4.36
Feb -0.63 0.50 0.097 0.66 0.028 -0.59 5.00 0.020 1.04 0.012 20.1 -0.60 1.71 0.10 3.72
Mar -0.69 0.38 0.074 0.64 0.014 -0.55 5.02 0.036 0.85 0.006 14.1 -0.63 1.58 0.05 4.53
Apr -0.66 0.37 0.091 0.65 0.009 -0.49 5.03 0.034 0.74 0.004 11.4 -0.60 1.57 0.11 4.97
May -0.67 0.43 0.109 0.60 0.014 -0.52 5.01 0.025 0.84 0.007 14.5 -0.60 1.40 0.00 3.96
Jun -0.67 0.41 0.080 0.65 0.012 -0.53 5.01 0.039 0.82 0.005 13.4 -0.62 1.63 0.10 4.53
Jul -0.65 0.52 0.110 0.55 0.026 -0.62 5.01 0.011 0.99 0.021 21.6 -0.61 1.22 0.02 4.14
Aug -0.57 0.56 0.133 0.76 0.066 -0.79 4.99 0.010 1.32 0.038 32.2 -0.65 2.04 0.01 5.67
Sep -0.63 0.58 0.169 0.83 0.096 -0.93 4.99 0.006 1.47 0.065 40.1 -0.76 2.08 0.01 6.87
Oct -0.72 0.58 0.105 0.83 0.053 -0.73 4.99 0.042 1.22 0.021 27.2 -0.71 1.90 0.04 4.27
Nov -0.66 0.50 0.054 0.86 0.045 -0.59 5.00 0.073 1.15 0.017 24.9 -0.63 1.99 0.20 4.62
Dec -0.67 0.46 0.091 0.74 0.034 -0.57 5.00 0.049 1.05 0.013 21.6 -0.63 1.65 0.02 3.97

Year 2012

Jan -0.67 0.39 0.081 0.74 0.014 -0.54 5.02 0.048 0.93 0.006 14.1 -0.62 1.85 0.07 4.92
Feb -0.67 0.40 0.126 0.73 0.014 -0.50 5.01 0.039 0.90 0.006 14.4 -0.61 1.98 0.12 4.93
Mar -0.69 0.39 0.099 0.69 0.007 -0.51 5.04 0.038 0.73 0.004 10.3 -0.62 1.80 0.06 4.91
Apr -0.71 0.44 0.133 0.66 0.014 -0.55 5.01 0.027 0.86 0.007 14.4 -0.64 1.65 0.02 4.22
May -0.64 0.52 0.138 0.74 0.035 -0.61 4.99 0.025 1.11 0.015 22.4 -0.61 1.93 0.06 4.97
Jun -0.66 0.39 0.135 0.69 0.021 -0.51 5.00 0.035 0.92 0.009 17.2 -0.60 1.73 0.06 4.49
Jul -0.64 0.44 0.121 0.65 0.022 -0.51 5.00 0.029 0.93 0.009 17.6 -0.58 1.61 0.01 4.48
Aug -0.67 0.44 0.113 0.65 0.014 -0.53 5.01 0.036 0.87 0.006 14.0 -0.61 1.53 0.00 4.43
Sep -0.64 0.45 0.137 0.56 0.015 -0.51 5.01 0.015 0.83 0.007 14.8 -0.58 1.46 0.01 3.82
Oct -0.63 0.47 0.122 0.54 0.020 -0.52 5.00 0.009 0.88 0.010 17.3 -0.56 1.35 0.02 3.42
Nov -0.58 0.46 0.090 0.49 0.014 -0.48 5.01 0.016 0.80 0.007 14.6 -0.52 1.22 0.03 3.35
Dec -0.63 0.50 0.108 0.49 0.020 -0.56 5.01 0.008 0.90 0.014 18.4 -0.56 1.16 0.02 3.64

Summary ρ1 κ1 θ1 ξ1 υ10 ρ2 κ2 θ2 ξ2 υ20 Vol. Corr. Mean Min Max

Mean -0.64 0.45 0.110 0.690 0.028 -0.57 5.00 0.033 0.988 0.014 19.3 -0.61 1.645 0.049 4.556
Median -0.65 0.45 0.109 0.675 0.021 -0.53 5.00 0.034 0.935 0.010 17.5 -0.61 1.641 0.040 4.508

Min -0.73 0.28 0.054 0.490 0.007 -0.93 4.99 0.006 0.732 0.004 10.3 -0.76 1.162 0.003 3.163
Max -0.54 0.58 0.214 0.908 0.096 -0.47 5.04 0.073 1.467 0.065 40.1 -0.52 2.165 0.201 6.867

1. Initial values of variance factors: The left panel in Fig. 6.3 shows the time

series of υ10 and υ20, based on the month-end calibration. Given the two-step

procedure, the identification of the values of variance factors is very robust with

respect to different initial guess and the penalty’s loading coefficient. This suggests

that the term structure of the variance swap contains rich information about the

variance process. The two variance factors can be distinguished as a long-term

variance factor with a mean-reversion speed κ1 of 0.3−0.6 (i.e. a half-life of around

2 to 3 years), and a short-term variance factor with a mean-reversion speed κ2 of

5.0 (i.e. a half-life of around 2 to 3 months) as shown in Table 6.4.
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2. Volatility-of-volatility and correlation: It is well-known that the Vol-of-Vol

parameters ξ1 and ξ2 capture the level and curvature of the implied volatility

surface, while the correlation coefficients ρ1 and ρ2 control the skew of the smile.

Therefore, the magnitudes of these parameters are expected to be higher during

stressed market scenarios. The short-term Vol-of-Vol experiences a sharp increase

during the periods of Apr 2010 through Jun 2010, and Jul 2011 through Sep

2011, which correspond to the outbreak of the European debt crisis and the stock

market crash amidst the US debt ceiling concerns. In contrast, the long-term Vol-

of-Vol remains relatively stable, which reflects the dynamics of a slower timescale.

Similar to the dynamics of the Vol-of-Vol parameters, the short-term correlation

ρ2 becomes highly negative at −0.8 and −0.9 during the periods of Apr 2010

through Jun 2010 and Jul 2011 through Sep 2011, respectively. This reflects

the steepening of the short-term implied volatility skew when market participants

perceive a higher downside risk during a distress market.

3. Mean level and mean-reversion speed: As shown in the right panel of Fig.

6.3, the mean levels θ1 and θ2 move in tandem (with θ1 > θ2), reflecting the parallel

shift of the implied volatility surface with an upward sloping term structure. It is

interesting to note that the two parameters move in opposite directions during the

periods of Apr 2010 through Jun 2010 and Jul 2011 through Sep 2011, in which

the short-term mean level θ2 experiences a drop, while the long-term mean θ1 rises.

This indicates its freedom to separately control the short-end and long-end of the

level of implied volatility surface. Indeed, when we compare the estimated mean

levels θ1 and θ2 with the variance swap rates of different tenors, we notice that

the mean level θ1 (the long-term factor) is closely linked to the long-term variance

swap rate (e.g. the 12-month rate), while the mean level θ2 appears to control

slope of the term structure (e.g. the 12-month rate minus the 1-month rate). On

the other hand, the mean-reversion speed parameters κ1 and κ2 are very stable

across time and are very close to the initial values, when the penalty function is

imposed. In fact, the estimates of other model parameters are robust with respect

to alternative choices for the initial guess of κ1 and κ2. This indicates that the

cross-sectional data of option prices at a single trading day do not contain enough

information to identify the value of mean-reversion speed. In practice, the mean-

reversion speed parameters should be estimated using historical data (e.g. using

econometrics techniques) and fixed during the daily calibration exercise.

4. Calibration errors: We compute the calibration error, which is the model im-

plied volatility with the calibrated parameters less the Bloomberg implied volatil-

ity. As we noted in Remark 6.8, the approximation formula could give an option
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value that breaches the no-arbitrage condition for some parameter range and can-

not be inverted to the corresponding Black-Scholes implied volatility. Therefore,

the model-implied volatility is calculated by using the characteristic function ap-

proach, instead of the approximation formula, based on the calibrated parameters.

The average calibration error, in terms of implied volatility, ranges from 1% to 2%

on different trading days, with the maximum calibration errors ranging from 5%

to 7%. It is worth noting that the calibration error is primarily contributed by

the pricing error for options in extreme strikes, whereas the average calibration

error for around at-the-money options are less than 0.5%, indicating an excellent

fit to the implied volatility surface. The poor fit to deep moneyness options can

be explained by the model restrictions of the stochastic volatility model and the

approximation formula: (i) it is known that the short-term skewness at extreme

strikes can be best explained by a model with jumps in asset price, such as a

jump-diffusion or jump-to-default model; (ii) the approximation formula is less

accurate for extreme strikes (in percentage terms), making it difficult to fit the

implied volatility for these options.

Implied volatility surface

Fig. 6.4 and Fig. 6.5 depict the implied volatility surface of the two consecutive month-

end calibration during Apr 2010 and May 2010, which corresponds to the outbreak of

the European debt crisis. The calibrated model parameters are as follows.

ρ1 κ1 θ1 ξ1 υ10 ρ2 κ2 θ2 ξ2 υ20

28 Apr 2010 −0.59 0.50 0.087 0.63 0.026 −0.56 5.00 0.029 1.02 0.011

26 May 2010 −0.55 0.53 0.214 0.77 0.058 −0.80 4.99 0.015 1.45 0.059

On 28 Apr 2010 the instantaneous volatility is relatively low (19.1%) while it spiked on

26 May 2010 to 34.1%.

1. The leverage effect: Fig. 6.4 shows the calibration result for 28 Apr 2010. The

implied volatility surface shows a steep short-term skewness, with the 1-month

implied volatility going from 15% at 105% moneyness to 30% at 80% moneyness.

As the results show, the two-factor Heston model is able to reproduce the short-

term skewness with moderate leverage effect, with the instantaneous correlation

of -0.56. In terms of the calibration quality, the pricing errors are overall within

1-2%, with the discrepancy being more significant for short-term and long-term

deep in-the-money put options.

2. The short-term and long-term smile: Fig. 6.5 shows the calibration result

for 26 May 2010. In comparison with the upward-sloping term structure in Fig.
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6.4, this latter term structure of implied volatility shows an inverted hump-shape

with a significant short-term skewness. This indicates that market participants

are expecting a decline of the debt crisis in the medium-term to long-term, while

perceiving the possibility of a market crash in the near-term, which can be caused

by a sudden change in central bank policy. On the other hand, the short-term

skewness decays much faster than in the case of Fig. 6.4. This is because the

short-term variance factor υ2t reverts to a lower mean-level θ2, such that the short-

term leverage effect is suppressed. This market scenario corresponds to Fig. 6.3

(right panel), when the mean levels of the two variance factors move in opposite

directions.

In terms of the model flexibility, the calibrated implied volatility surface shows

that the two-factor model is able to separately control the short-term and long-

term term structure and volatility smile during these stress market scenarios. In

particular, it should be noted that the two-factor model is able to generate the

hump-shaped term structure of variance swap, which is not feasible in the case of

the one-factor model. This indicates the necessity to adopt multifactor modeling

in order to consistently price European options and volatility derivatives, such as

variance swaps.

6.5.3 Nikkei 225 index option

We perform similar monthly calibration using the NKY market data obtained from

Bloomberg. In contrast to the SPX option market, the NKY option market is less liquid

in deep out-of-the money and long-maturity options (Fukasawa et al., 2011). Thus, we

note that the poor liquidity of long-term options in the NKY market may render the

interpolation procedure by Bloomberg unreliable. Therefore, one should be cautious in

interpreting the calibrated results in these cases. Fortunately, in the presence of the

regularization procedure, the calibrated estimates are not very sensitive to the outliers.

As a result, we include only the options with moneyness 90%, 95%, 97.5%, 100%, 102.5%,

105%, and 110% in the calibration. The parameter settings and procedures are similar

to the case of the SPX options.

Calibration results

The monthly calibration result for the NKY data is presented in Table 6.5. As the

implied volatility surface is more flat, the estimate of the short-term mean level θ1 is

found to be small, reflecting that the term structure at the short-term is usually inverted

or moderately upward. In comparison with the SPX market, the estimated correlations

are negative but closer to zero (with the average instantaneous correlation of −0.48),
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Figure 6.4: SPX Index on 28 Apr 2010: the plot of the calibrated model-implied
volatility surface, calibration errors, and calibration result to the Bloomberg theoretical

term structure of variance swap.
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Figure 6.5: SPX Index on 26 May 2010: the plot of the calibrated model-implied
volatility surface, calibration errors, and calibration result to the Bloomberg theoretical

term structure of variance swap.

suggesting the NKY implied volatility surface is more flat. On the other hand, the time-

series variations of other model parameters are similar to those of the SPX calibration.

Implied volatility surface

Fig. 6.6 shows the calibrated implied volatility surface on 30 Mar 2011, which captures

the stress market after the 2011 Tohoku earthquake. The calibrated model parameters

are as follows.

ρ1 κ1 θ1 ξ1 υ10 ρ2 κ2 θ2 ξ2 υ20

30 Mar 2011 −0.52 0.54 0.100 0.47 0.041 −0.70 5.01 0.001 1.21 0.072

The overall fit of the two-factor model for around at-the-money and medium time-to-

maturity options are excellent. It is able to capture the inverted term structure and some

of the skew of implied volatility. Nevertheless, the model has a difficulty in reproducing
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the short-term skew of deep moneyness options, which may be captured more suitably

by a jump-diffusion model, given its disaster nature.

Table 6.5: Calibrated model parameters and absolute errors (in volatility points) for
the NKY market of the two-factor Heston model.

Factor 1 Factor 2 Error
Date ρ1 κ1 θ1 ξ1 υ10 ρ2 κ2 θ2 ξ2 υ20 Vol. Corr. Mean Min Max

Year 2011

Jan -0.48 0.51 0.054 0.48 0.016 -0.50 5.00 0.040 1.01 0.006 14.6 -0.45 0.93 0.02 4.07
Feb -0.46 0.52 0.066 0.49 0.030 -0.50 5.00 0.016 1.03 0.013 20.6 -0.45 1.18 0.02 4.58
Mar -0.52 0.54 0.100 0.47 0.041 -0.70 5.01 0.001 1.21 0.072 33.6 -0.62 1.96 0.14 6.86
Apr -0.56 0.53 0.093 0.56 0.038 -0.58 5.00 0.014 1.08 0.016 23.1 -0.54 1.33 0.00 4.24
May -0.57 0.55 0.105 0.52 0.038 -0.62 5.00 0.001 1.11 0.018 23.6 -0.55 1.61 0.00 5.15
Jun -0.48 0.53 0.104 0.58 0.040 -0.56 5.00 0.002 1.08 0.018 24.1 -0.49 1.76 0.10 4.17
Jul -0.40 0.50 0.060 0.53 0.030 -0.46 5.00 0.024 1.02 0.012 20.7 -0.41 1.59 0.00 4.73
Aug -0.72 0.57 0.141 0.81 0.063 -0.60 5.00 0.001 1.11 0.023 29.3 -0.67 2.57 0.44 9.74
Sep -0.60 0.49 0.116 0.80 0.079 -0.62 5.01 0.006 1.16 0.048 35.8 -0.60 3.40 0.10 6.89
Oct -0.57 0.48 0.135 0.75 0.049 -0.54 5.00 0.022 1.06 0.021 26.5 -0.55 1.89 0.27 4.53
Nov -0.59 0.53 0.154 0.71 0.063 -0.60 5.00 0.005 1.11 0.032 30.8 -0.58 2.26 0.13 5.72
Dec -0.47 0.55 0.036 0.45 0.030 -0.53 4.99 0.043 1.05 0.009 19.7 -0.46 1.84 0.08 7.94

Year 2012

Jan -0.43 0.51 0.058 0.50 0.029 -0.47 5.00 0.027 1.03 0.012 20.2 -0.42 1.17 0.13 3.45
Feb -0.44 0.43 0.180 0.85 0.027 -0.43 5.00 0.019 1.00 0.011 19.6 -0.44 2.28 0.28 5.63
Mar -0.44 0.46 0.069 0.64 0.023 -0.44 5.00 0.031 1.01 0.009 17.8 -0.43 1.50 0.01 4.31
Apr -0.48 0.47 0.057 0.63 0.025 -0.48 5.00 0.033 1.03 0.010 18.8 -0.47 1.30 0.14 2.92
May -0.35 0.41 0.227 0.99 0.037 -0.43 5.00 0.016 1.01 0.017 23.3 -0.38 3.30 0.16 8.26
Jun -0.55 0.44 0.100 0.80 0.025 -0.48 5.00 0.037 1.04 0.010 18.5 -0.52 2.14 0.17 4.43
Jul -0.51 0.48 0.101 0.72 0.031 -0.52 4.99 0.021 1.06 0.012 20.9 -0.51 2.01 0.07 4.49
Aug -0.37 0.48 0.108 0.65 0.021 -0.41 4.99 0.022 1.01 0.008 17.1 -0.38 1.67 0.04 4.05
Sep -0.37 0.45 0.133 0.76 0.019 -0.37 4.99 0.021 0.99 0.008 16.5 -0.37 2.32 0.31 6.41
Oct -0.40 0.44 0.134 0.67 0.020 -0.44 5.00 0.011 1.00 0.012 17.8 -0.41 1.70 0.00 4.77
Nov -0.32 0.48 0.058 0.50 0.021 -0.37 5.00 0.019 0.96 0.009 17.2 -0.32 1.67 0.05 3.99
Dec -0.48 0.48 0.101 0.63 0.029 -0.49 5.00 0.021 1.02 0.012 20.2 -0.47 1.34 0.02 4.18

Summary ρ1 κ1 θ1 ξ1 υ10 ρ2 κ2 θ2 ξ2 υ20 Vol. Corr. Mean Min Max

Mean -0.48 0.49 0.104 0.645 0.034 -0.51 5.00 0.019 1.051 0.017 22.1 -0.48 1.865 0.112 5.230
Median -0.48 0.48 0.101 0.638 0.030 -0.49 5.00 0.020 1.029 0.012 20.4 -0.46 1.728 0.089 4.558

Min -0.72 0.41 0.036 0.451 0.016 -0.70 4.99 0.001 0.963 0.006 14.6 -0.67 0.931 0.000 2.915
Max -0.32 0.57 0.227 0.991 0.079 -0.37 5.01 0.043 1.211 0.072 35.8 -0.32 3.396 0.439 9.739
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Figure 6.6: NKY Index on 30 Mar 2011: the plot of the calibrated model-implied
volatility surface, calibration errors, and calibration result to the Bloomberg theoretical

term structure of variance swap.
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6.5.4 Model-implied long-dated volatility

So far we have calibrated the model parameters based on the SPX and NKY market

data up to maturity of 2 years. However, one may be interested in the model-implied

volatilities for maturities of longer than 2 years. Fig. 6.7 and 6.8 depict the model-

implied volatility surface and the model-implied term structure of variance swap rates,

respectively, up to 10 years by using the two-factor Heston model and the calibrated

results for the SPX in Section 5.2.2. and the NKY in Section 5.3.2. Each of the resulting

term structures seems reasonable although there is no way to verify the accuracy due to

the current lack of actual markets.
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Figure 6.7: Model-implied volatility surface up to 10 years by using the calibrated
results for the SPX in Section 5.2.2. and the NKY in Section 5.3.2.
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Figure 6.8: Model-implied term structure of variance swap rates up to 10 years by
using the calibrated results for the SPX in Section 5.2.2. and the NKY in Section 5.3.2.

6.5.5 Computational time

In terms of computational time, the calibration using the approximation formula is very

efficient. For example, when we perform the calibration using the Matlab routine for
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Levenberg-Marquardt algorithm (running on a laptop with an Intel(R) Core(TM) i7-

3520 CPU at 2.90 GHz), and set the convergence tolerance of the objective function

to 1e-05, the total computational time to calibrate the 36 snapshots of end-of-month

implied volatility surface is around 100-150 seconds. In contrast, when the characteristic

function is used to compute the exact option price, the corresponding computational

time is 2000 to 2500 seconds. Thus, the computational speed improves significantly by

a factor of 20. Indeed, the calibration to a snapshot of the implied volatility surface is

almost instantaneous when the approximation formula is used. In addition, we find that

the calibration using the approximation formula gives more stable estimated parameters

across time. This can be explained by the fact that the computation of the exact option

price using the characteristic function approach may encounter numerical instability

during the calibration process at different parameter ranges (e.g. the selected contour for

Fourier inversion may not be suitable for some extreme parameter ranges). In practice,

it is difficult for the researcher to ensure the numerical stability of the Fourier inversion

at every single iteration of the optimization procedure. The ease of implementation

of the approximation formula suggests that the calibration can be done and visualized

even on an excel spreadsheet environment. Moreover, given the gain in computation

efficiency, the approximation formula is useful for econometrics estimation, back-testing

of the model, as well as evaluation of portfolio risk (e.g. calculation of Value-at-Risk or

counterparty exposure), in which one has to evaluate a large number of option prices

while precision is of less concern.

6.6 Summary

In this chapter, we develop an asymptotic approach to the multifactor Heston option

pricing model under time-dependent model parameters. The expansion terms under

constant parameters are explicitly computed, while the incorporation of time-dependent

parameters can be achieved in a straightforward manner. For illustration, we calibrate

a two-factor Heston model to the option price and term structure of the variance swap

of the S&P 500 index. The calibration results show that it is possible to distinguish

a short-term and a long-term variance factor with different mean-reversion speeds and

levels. In particular, the two-factor model provides the flexibility to separately control

the short-end and long-end of the implied volatility, in order to fit to various shapes

of the implied volatility surface during stress market scenarios. Moreover, in terms of

computational time, the approximation formula speeds up the calibration procedure by

at least a factor of 20 relative to the case when the characteristic function approach is

used to compute the model prices. As the approximation formula allows one to compute

option prices under the Heston model with multifactor extension and time-dependent
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parameters in a unified framework, it would be interesting to perform an empirical

study that compares the goodness-of-fit of these extensions. Finally, it is worth noting

that the asymptotic approach developed in this chapter can be readily applied to other

multifactor models, such as a jump-to-default model with stochastic default intensity,

or a mixture stochastic volatility model, in which one factor is driven by a Brownian

motion and another factor is driven by a fractional Brownian motion. These extensions

are left for further research.

6.7 Appendix

6.7.1 Preliminary results with Malliavin calculus

We set out the following definitions and lemmas by following Benhamou et al. (2010)

for proofs of some formula in what follows.

Definition 6.10. (Integral Operator)

1. For any real number k and any integrable function l on [0, T ], we denote

ω
(k,l)
t,T ,

∫ T

t
ekul (u) du,

for t ∈ [0, T ] .

2. For any real numbers (k1, k2, ..., kn) and any integrable functions (l1, l2, ..., ln) on

[0, T ], we denote the n-times iterated integral as

ω
(k1,l1),(k2,l2),...,(kn,ln)
t,T , ω

(
k1,l1ω

(k2,l2),...,(kn,ln)
·,T

)
t,T ,

for t ∈ [0, T ] .

Lemma 6.11. Suppose that a random variable is given in a form of G (VT ) ∈ D1,∞ (Ω) ,

where G is a smooth function, VT =
n∑
i=1

∫ T
0 ρit

√
υi0,tdB

i
t, and Bi are independent stan-

dard Brownian motions for i = 1, 2, ..., n. Let γ be a square integrable and predictable

process. Then we have

E
[
G (VT )

∫ t

0
γsdB

α
s

]
= E

[
G(1) (VT )

∫ t

0
γsραt

√
υα0,tds

]
,

for all α = 1, 2, ..., n, where G(k) is the k-th derivative of G.

Proof. See Proposition 1.2.3 in Nualart (2006).
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Lemma 6.12. For any deterministic integrable function f on [0, T ] and any continuous

semimartingale Z with Z(0) = 0, we have∫ T

0
f (t)Z (t) dt =

∫ T

0
ω

(0,f)
t,T dZ (t) .

Proof. See Benhamou et al. (2010).

Lemma 6.13. Let P = P (x, y) to be the Black-Scholes formula (6.10) of a put option.

Then it holds that [
∂

∂y
− 1

2

[
∂2

∂x2
− ∂

∂x

]]
P (x, y) = 0,

for all x ∈ R and y ∈ R+.

Proof. This can be proved by direct differentiation of the Black-Scholes formula.

The following Lemma is an extension of Lemma 5.5 in Benhamou et al. (2010).

Lemma 6.14. Let G (VT ) = G

(
n∑
i=1

∫ T
0 ρit

√
υi0,tdB

i
t

)
∈ D1,∞ (Ω) as in Lemma 6.11, h

be a deterministic function which is integrable, and υi1,t = e−κit
∫ t

0 e
κisξis

√
υi0,sdB

i
s as

defined in (6.13) for i = 1, 2, ..., n. Then, we have

E
[
G (VT )

∫ T

0
h (t) υα1,tdt

]
= ω

(κα,φα1),(−κα,h)
0,T E

[
G(1) (VT )

]
,

E
[
G (VT )

∫ T

0
h (t) υα1,tυβ1,tdt

]
= ω

(κα,φα1),(κβ ,φβ1),(−(κα+κβ),h)
0,T E

[
G(2) (VT )

]
+ω

(κβ ,φβ1),(κα,φα1),(−(κα+κβ),h)
0,T E

[
G(2) (VT )

]
,

α 6= β,

where

φα1(s) = ραsξαsυα0,s, φβ1(s) = ρβsξβsυβ0,s.

Proof. The proof is similar to Lemma 5.5 in Benhamou et al. (2010) by using Lemma

6.11 and hence is omitted.

6.7.2 Proof of (6.14)

Recall that the put option price under the perturbed Heston model is given by

g(ε) = E
[
e−
∫ T
0 rtdtE

[(
K − e

∫ T
0 (rt−qt)dt+Xε

T

)
+

∣∣∣∣FBT ]] = E[P (x′ + ∆x (ε) , y′ + ∆y (ε))].
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Now, we expand P (x′ + ∆x (ε) , y′ + ∆y (ε)) with respect to ε around ε = 0n up to the

second order,

P (x′ + ∆x (ε) , y′ + ∆y (ε)) = P (x′, y′) +
n∑
i=1

εi
∂P

∂εi
(x (ε) , y (ε))

∣∣∣∣
ε=0n

+
1

2

n∑
i=1

n∑
j=1

εiεj
∂2P

∂εi∂εj
(x (ε) , y (ε))

∣∣∣∣
ε=0n

+ ε,(6.25)

where ε is the expansion error. The partial derivatives are given by chain rules as

∂P

∂εi
(x (ε) , y (ε)) = Px∂ix+ Py∂iy,

∂2P

∂ε2i
(x (ε) , y (ε)) = Pxx(∂ix)2 + Px∂

2
i x+ Pyy(∂iy)2 + Py∂

2
i y + 2Pxy(∂ix)(∂iy),

∂2P

∂εi∂εj
(x (ε) , y (ε)) = Pxx (∂ix) (∂jx) + Pxy (∂ix) (∂jy) + Pyy (∂iy) (∂jy) + Pxy (∂jx) (∂iy) ,

with the notation Px = ∂P
∂x (x′, y′), ∂ix = ∂x(ε)

∂εi

∣∣∣
ε=0n

and ∂i∂jx = ∂2x(ε)
∂εi∂εj

∣∣∣
ε=0n

, where we

have used the relationship ∂i∂jx (ε) = ∂i∂jy (ε) = 0 due to the form of (6.9). Substituting

these derivatives in the expansion formula (6.25), we have

P (x′ + ∆x (ε) , y′ + ∆y (ε))

= P (x′, y′) +
n∑
i=1

[
Px

(
εi∂ix+

1

2
ε2i ∂

2
i x

)
+ Py

(
εi∂iy +

1

2
ε2i ∂

2
i y

)]

+
1

2

n∑
i=1

n∑
j=1

εiεj [Pxx(∂ix)(∂jx) + Pyy(∂iy)(∂jy) + 2Pxy(∂ix)(∂jy)] + ε.

By noting that

∂ix (ε) = ∂iΓ
εi
iT = Γi1,T , ∂2

i x (ε) = ∂2
i ΓεiiT = Γi2,T ,

∂iy (ε) = ∂iΞ
εi
iT = Ξi1,T , ∂2

i y (ε) = ∂2
i ΞεiiT = Ξi2,T ,
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the expansion is written as

P (x′ + ∆x (ε) , y′ + ∆y (ε))

= P (x′, y′) +
n∑
i=1

[
Px

(
εiΓi1,T +

ε2i
2

Γi2,T

)
+ Py

(
εiΞi1,T +

ε2i
2

Ξi2,T

)]

+
1

2

n∑
i=1

n∑
j=1

εiεj [PxxΓi1,TΓj1,T + PyyΞi1,TΞj1,T + 2PxyΓi1,TΞj1,T ] + ε,

= P (x′, y′) + Px

n∑
i=1

(
εiΓi1,T +

ε2i
2

Γi2,T

)
+ Py

n∑
i=1

(
εiΞi1,T +

ε2i
2

Ξi2,T

)

+
1

2

Pxx( n∑
i=1

εiΓi1,T

)2

+ Pyy

(
n∑
i=1

εiΞi1,T

)2

+ 2Pxy

(
n∑
i=1

εiΓi1,T

)(
n∑
i=1

εiΞi1,T

)+ ε.

Then, by taking the expectations on the both sides and denoting ε̃ = E[ε], we obtain

the result.

6.7.3 Proof of (6.17)

From the expansion formula, it is easy to verify that when ε = 1n, take i = α and j = β

such that α 6= β, we have

Φα,β
T = E

[
∂2P

∂x2
HαTHβT

]
+E

[
∂2P

∂y2
LαTLβT

]
+E

[
∂2P

∂x∂y
HαTLβT

]
+E

[
∂2P

∂x∂y
HβTLαT

]
,

where

Hαt =

∫ t

0
ραs

υα1,s

2(υα0,s)1/2
dBα

s −
1

2

∫ t

0
ρ2
αsυα1,sds, Lαt =

∫ T

0

(
1− ρ2

αs

)
υα1,sds.

By the application of Ito’s Lemma and the independence of
{
Bi
t : i = 1, 2, ..., n

}
, we can

express

Φα,β
T = E

[
∂2P

∂x2

∫ T

0
HαtdHβt

]
+ E

[
∂2P

∂x2

∫ T

0
HβtdHαt

]
+ E

[
∂2P

∂y2

∫ T

0
LαtdLβt

]
+E

[
∂2P

∂y2

∫ T

0
LβtdLαt

]
+ E

[
∂2P

∂x∂y

∫ T

0
HαtdLβt

]
+ E

[
∂2P

∂x∂y

∫ T

0
LβtdHαt

]
+E

[
∂2P

∂x∂y

∫ T

0
HβtdLαt

]
+ E

[
∂2P

∂x∂y

∫ T

0
LαtdHβt

]
.

Let us denote the k-th term on the right-hand side by Ik. It is observed that the following

pair of terms are symmetric in α and β : I1&I2, I3&I4, I5&I7, and I6&I8. We make use

of Lemma 6.11 and Lemma 6.13 repeatedly in what follows in order to transform the
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terms of the partial derivatives with respect to x and y inside the expectations above,

to the partial derivatives with respect to y only.

We show the derivation for I1 and I2 below. Noting that dHβt = ρβt
υβ1,t

2(υβ0,t)1/2dB
β
t −

1
2ρ

2
βtυβ1,tdt, we have

I1 , E
[
∂2P

∂x2

∫ T

0
HαtdHβt

]
= E

[
∂2P

∂x2

∫ T

0
Hαtρβt

υβ1,t

2(υβ0,t)1/2
dBβ

t

]
− E

[
∂2P

∂x2

∫ T

0
Hαtρ

2
βt

υβ1,t

2
dt

]
.

By applying Lemma 6.11 on the first term and then Lemma 6.13, we have

I1 = E
[(

∂3

∂x3
− ∂2

∂x2

)
P

∫ T

0
Hαtρ

2
βt

υβ1,t

2
dt

]
= E

[
∂2P

∂x∂y

∫ T

0
Hαtρ

2
βtυβ1,tdt

]
.

To further simplify, the substitution of the definition of Hαt yields

I1 =
1

2
E
[
∂2P

∂x∂y

∫ T

0
ρ2
βtυβ1,t

(∫ t

0
ραs

υα1,s

(υα0,s)1/2
dBα

s

)
dt

]
−1

2
E
[
∂2P

∂x∂y

∫ T

0
ρ2
βtυβ1,t

(∫ t

0
ρ2
αsυα1,sds

)
dt

]
.

By applying the Fubini Theorem and Lemma 6.11, the first term is equal to

1

2
E
[
∂3P

∂x2∂y

∫ T

0
ρ2
βtυβ1,t

(∫ t

0
ρ2
αsυα1,sds

)
dt

]
.

Finally, by Lemma 6.13 we have

I1 = E
[
∂2P

∂y2

∫ T

0
ρ2
βtυβ1,t

(∫ t

0
ρ2
αsυα1,sds

)
dt

]
.

As I1 and I2 is symmetric in (α, β), we have

I2 = E
[
∂2P

∂x2

∫ T

0
HβtdHαt

]
= E

[
∂2P

∂y2

∫ T

0
ρ2
αtυα1,t

(∫ t

0
ρ2
βsυβ1,sds

)
dt

]
.
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Other terms I3 through I8 can be obtained in a similar manner and all terms are given

by

I1 = E
[
∂2P

∂y2

∫ T

0
ρ2
βtυβ1,t

(∫ t

0
ρ2
αsυα1,sds

)
dt

]
,

I2 = E
[
∂2P

∂y2

∫ T

0
ρ2
αtυα1,t

(∫ t

0
ρ2
βsυβ1,sds

)
dt

]
,

I3 = E
[
∂2P

∂y2

∫ T

0

(
1− ρ2

βt

)
υβ1,t

(∫ t

0

(
1− ρ2

αs

)
υα1,sds

)
dt

]
,

I4 = E
[
∂2P

∂y2

∫ T

0

(
1− ρ2

αt

)
υα1,t

(∫ t

0

(
1− ρ2

βs

)
υβ1,sds

)
dt

]
,

I5 = E
[
∂2P

∂y2

∫ T

0

(
1− ρ2

βt

)
υβ1,t

(∫ t

0
ρ2
αsυα1,sds

)
dt

]
,

I6 = E
[
∂2P

∂y2

∫ T

0
ρ2
αtυα1,t

(∫ t

0

(
1− ρ2

βs

)
υβ1,sds

)
dt

]
,

I7 = E
[
∂2P

∂y2

∫ T

0

(
1− ρ2

αt

)
υα1,t

(∫ t

0
ρ2
βsυβ1,sds

)
dt

]
,

I8 = E
[
∂2P

∂y2

∫ T

0
ρ2
βtυβ1,t

(∫ t

0

(
1− ρ2

αs

)
υα1,sds

)
dt

]
.

Summing up these terms then gives the result (6.17).

6.7.4 Proof of (6.23)

Take i = α and j = β such that α 6= β. We observe that the two terms in Φα,β
T of (6.17)

are symmetric in (α, β). Hence, (6.17) is equivalent to

Φα,β
T = γ (α, β) + γ (β, α) ,

where

γ (α, β) = E
[
∂2P

∂y2

∫ T

0

[∫ t

0
υα1,sds

]
υβ1,tdt

]
= E

[
∂2P

∂y2

∫ T

0
e−κβt

[∫ t

0
υα1,sds

]
eκβtυβ1,tdt

]
.

By applying Lemma 6.12 with f (t) = e−κβt and Z (t) =
(∫ t

0 υα1,sds
)
eκβtυβ1,t we have

γ (α, β) = E
[
∂2P

∂y2

∫ T

0

(∫ T

t
e−κβsds

)
eκβtυα1,tυβ1,tdt

]
︸ ︷︷ ︸

I1

+E
[
∂2P

∂y2

∫ T

0

(∫ T

t
e−κβsds

)(∫ t

0
υα1,udu

)
eκβtξβt

√
υβ0,tdB

β
t

]
︸ ︷︷ ︸

I2

.
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For I1, we can directly apply the second equality in Lemma 6.14 by taking h (t) =(∫ T
t e−κβsds

)
eκβt = eκβtω

(−κβ ,1)
t,T , and readily obtain

I1 =

(
ω

(κα,φα1),(κβ ,φβ1),(−κα,1),(−κβ ,1)
0,T + ω

(κβ ,φβ1),(κα,φα1),(−κα,1),(−κβ ,1)
0,T

)
E
[

∂4P

∂x2∂y2

]
because

ω
(−(κα+κβ),h)
t,T =

∫ T

t
e−(κα+κβ)u

(∫ T

u
e−κβsds

)
eκβudu = ω

(−κα,1),(−κβ ,1)
t,T .

For the second term I2, we apply Lemma 6.11 along with the Fubini Theorem, and then

by Lemma 6.12, we have

I2 = E
[
∂3P

∂x∂y2

∫ T

0
ω

(−κβ ,1)
t,T eκβtρβtξβtυβ0,t

(∫ t

0
υα1,udu

)
dt

]
= E

[
∂3P

∂x∂y2

∫ T

0

(∫ t

0
eκβtφβ1(t)ω

(−κβ ,1)
t,T dt

)
υα1,udu

]
= E

[
∂3P

∂x∂y2

∫ T

0
ω

(κβ ,φβ1),(−κβ ,1)
t,T υα1,tdt

]
.

Then, we make use of the first equality in Lemma 6.14 by taking h (t) = ω
(κβ ,φβ1),(−κβ ,1)
t,T .

Since it holds that by definition

ω
(−κα,h)
t,T =

∫ T

t
e−καuω

(κβ ,φβ1),(−κβ ,1)
u,T du = ω

(−κα,1),(κβ ,φβ1),(−κβ ,1)
t,T ,

we see

I2 = ω
(κα,φα1),(−κα,1),(κβ ,φβ1),(−κβ ,1)
0,T E

[
∂4P

∂x2∂y2

]
.

As a result, we obtain

γ (α, β) = C (α, β)E
[

∂4P

∂x4∂y2

]
,

where

C (α, β) = ω
(κα,φα1),(κβ ,φβ1),(−κα,1),(−κβ ,1)
0,T + ω

(κβ ,φβ1),(κα,φα1),(−κα,1),(−κβ ,1)
0,T

+ω
(κα,φα1),(−κα,1),(κβ ,φβ1),(−κβ ,1)
0,T .

Combining the results, we are able to arrive at (6.23) in Theorem 6.3.
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Chapter 7

Non-linear Term Structure

Modeling near Zero Lower Bound

7.1 Introduction

The Gaussian affine term structure model (ATSM) has been a popular choice in the

modeling of yield curve given its analytical tractable bond pricing formula as well as the

linear dependence of the model-implied bond yields to the underlying factors or state

variables (Piazzesi, 2010). The model allows one to summarize the complex movements

of bond yields into a small number of factors while imposing the no-arbitrage restrictions

among bond yields with different maturities. Traditionally, these factors are regarded

as latent and are usually related to the first three principal components of bond yields,

including the level, slope and curvature factors. From an economic perspective, bond

yields should interact closely with the macroeconomy and it is very tempting to relate

these factors driving bond yields to various macroeconomic variables such as measures

of inflation, real activity and monetary stance. This exercise of linking bond yields to

macroeconomic variables, called the macro-finance term structure modeling, allows re-

searchers to explain the movements in bond yields with a richer economic interpretation

and potentially improve the prediction of future bond yields by incorporating informa-

tion beyond the bond market. There have been a number of papers that explore the

role of macroeconomic variables in the arbitrage-free term structure modeling. Ang and

Piazzesi (2003) employ two measures of inflation and real activity and find that these

macroeconomic factors explain up to 85% of the time-series variation of bond yields.

Diebold et al. (2006) study the dynamic interaction between the macroeconomy and

the yield curve. They find that macro variables strongly affect future movements in

the yield curve with a feedback from the yield curve to the macroeconomy. Ang et al.

151



Non-linear Term Structure Modeling 152

(2006) explore the Taylor rule interpretation of a macro-finance model by taking the

inflation rate and output gap as the state variables. Li et al. (2013) extend the idea

to model a time-varying Taylor rule by incorporating regime-dependent policy response

coefficients. The monograph Diebold and Rudebusch (2013) provide a succinct summary

on the recent development in term structure modeling with macro-finance features.

Despite its popularity in the macro-finance literature, there is one major shortcoming of

the Gaussian ATSM: it does not constraint the interest rate to be non-negative.1 This

may be problematic for the prediction of future bond yields when interest rates are very

close to the zero lower bound, such as the cases of the Japanese government bond (JGB)

yields since 1995 and the US treasury yields after the financial crisis of 2008. Against this

background, an alternative is the quadratic term structure model (QTSM) as advocated

by Ahn et al. (2002) and Leippold and Wu (2002), which naturally accommodates non-

negative interest rates. Indeed, the quadratic models have been widely adopted by

market participants in the pricing and hedging of interest rate derivatives given its nice

analytical tractability and the guarantee of non-negative model-implied interest rates

(Andersen and Piterberg, 2010; Kijima et al., 2009b). However, there have been very

few formal empirical studies on the QTSM in particular its performance under the

zero interest rate policy. Until recently, using a two-factor yield-only model, Kim and

Singleton (2012) and Andreasen and Meldrum (2013) demonstrate the strength of the

QTSM model in the statistical description of the yield curve data for the JGB yields

and the US treasury yields, respectively.

In this chapter, we study the pooling prediction of the future bond yields (term struc-

ture) of the Gaussian ATSM and QTSM with macro-finance features. The exposition is

divided into two parts. Firstly, we estimate the two macro-finance term structure mod-

els using the Bayesian Markov Chain Monte Carlo (MCMC) procedure as in Ang et al.

(2011). The procedure is suitable for the estimation of a non-linear state space model

as in the case of QTSM due to the quadratic dependence of the bond yields to the state

variables. The main objective is to compare the empirical performance, both in terms

of the cross-sectional fitting of bond yields and in-sample forecasting performance, of

the two macro-finance term structure models under the zero interest rate policy in the

JGB market. To our knowledge, this is the first empirical study to compare the ATSM

and the QTSM under the macro-finance setting and the low interest rate environment

simultaneously. In the second part, we study the optimal pooling of the two models and

attempt to derive a better forecast of the term structure by combining the advantages

of the two models on hand. The idea of optimal prediction pool is pioneered by Geweke

1It is noted that another class of ATSM built on the square root process (Cox et al., 1985) is not
suitable for macro-finance modelings because the state variables are positive by construction. This is in
contrast to the fact that most of the macroeconomic variables can take negative values (e.g., inflation
and output gap).
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and Amisano (2011, 2012) in which potentially misspecified models are pooled together

in order to improve the prediction accuracy using a log score criteria. In particular, the

authors assume that neither of the two competing models are correctly specified. In the

context of this chapter, the two term structure models are potentially misspecified due

to the following structural reasons:

1. The Gaussian ATSM is naturally linked to the macroeconomic variables in a linear

fashion and empirical studies have shown that it provides a good-fit to the macroe-

conomic variables and bond yields simultaneously in normal times. However, the

model does not constraint non-negative interest rates which can be problematic

when the zero lower bound is binding.

2. The QTSM naturally precludes negative interest rates. However, it is not clear

whether the enforced non-linear mapping of the bond yields to the macroeconomic

variables would provide a good fit to the data and being able to generate a rea-

sonable prediction density.

We adopt three different novel approaches, with increasing complexity, in modeling the

weighting coefficient that pools the bond yield prediction densities of the two models.

In particular, the two later approaches equipped with time-varying weighting coefficient

allows us to investigate the relative goodness in forecasting of the ATSM and QTSM

during different sample periods (Negro et al., 2014; Waggoner and Zha, 2012). A related

paper to ours is Eo and Kang (2014) who consider the model combination of the dynamic

Nelson-Siegel model (DNSM) and ATSM using only latent factors.2 We differ from Eo

and Kang (2014) in focusing on the macro-finance interaction as well as the combination

of two class of models in which the prediction densities are substantially different when

interest rates are near the zero lower bound.

Our estimation results show that the QTSM dominates in its forecasting performance

when interest rates are close to zero, while the ATSM provides a better fitting of the

bond yields and macro factors simultaneously in other periods. It is worth to note that

the ATSM predicts negative interest rate with almost 40% to 50% of the probability

when the JGB yields are close to zero since late 1995. This indicates the importance

to take into account the zero lower bound when interest rates are low. As both the

ATSM and QTSM with macro-finance features can be potentially misspecified, it is

recommended that one should use a combination of the two models in the prediction of

future bond yields. Although we focus on the JGB data, the empirical results shed light

on the future research on macro-finance modeling using the US data given the Federal

Reserve’s zero interest rate policy since December 2008.

2The DNSM can be described as a sub-class of the Gaussian ATSM with certain parameter restric-
tions.



Non-linear Term Structure Modeling 154

7.2 Term Structure Models

7.2.1 Setup

We adopt a discrete time setting for the macro-finance term structure modeling. All the

data are of quarterly frequency and hence we can interpret a single period to be one

quarter. The key ingredient in the term structure modeling is the linkage between the

short-rate rt and the Gaussian state vector Xt taking values in RM as

rt = φ (Xt) ,

Xt+1 = µQ + ΦQXt + Σεt+1,

with εt ∼ N (0, IM×M ), µQ is a M × 1 vector and ΦQ is a M ×M matrix. The notation

Q denotes the risk-neutral probability measure. Without much loss of generality, we can

specify the market price of risk as

λt = λ0 + λ1Xt,

where λ0 is a M × 1 vector and λ1 is a M ×M matrix. Hence, the real-world dynamics

of the state vector is given by

Xt+1 = µP + ΦPXt + Σεt+1,

with

µQ = µP − Σλ0, ΦQ = ΦP − Σλ1,

where P denotes the real-world measure (Wright, 2011; Ang et al., 2011). The corre-

sponding pricing kernel has the form

ξt+1 = exp

(
−rt +

1

2
λTt λt − λTt εt+1

)
ξt,

and the time−t price of a n-period zero-coupon bond can be formulated as

Pnt = EPt
[
ξt+1

ξt
Pn−1
t

]
= EQt

[
exp

(
−
n−1∑
i=0

rt+i

)]
.

We can also compute the n-period bond yield as

ynt = − 1

n
logPnt .

Under the ATSM or the QTSM specification of the short rate function rt = φ (Xt), it

is possible to derive the bond pricing formula in terms of a recursive relationship. In
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continuous-time modeling, this corresponds to a system of ordinary differential equation

that determines the bond prices. We refer the readers to Piazzesi (2010) for continuous-

time affine model and Ahn et al. (2002) for continuous-time quadratic Gaussian model.

7.2.2 Affine term structure model

The Gaussian ATSM is specified as

rt = δ0 + δT1 Xt, (7.1)

i.e., the one-period short rate is a linear function to the selected factors. As the state

variable Xt is Gaussian, there is no guarantee that the short rate to be non-negative.

The bond pricing formula follows from Duffie and Kan (1996) as

Pnt = exp
(
An +BT

nXt

)
, (7.2)

where An is a scalar and Bn is a M × 1 vector satisfying the recursive relationship

An = −δ0 +An−1 +BT
n−1µ

Q +
1

2
Bn−1ΣΣTBT

n−1,

BT
n = −δT1 + ΦQBT

n−1, (7.3)

for n = 1, 2, ..., N with A1 = −δ0 and B1 = −δ1. As a result, the model-implied bond

yield is a linear function to the state variable Xt as

ynt = − 1

n
logPnt = an + bTnXt, (7.4)

by taking an = −An/n and bn = −Bn/n as the factor loadings.

7.2.3 Quadratic term structure model

The QTSM is specified as

rt = α0 + βT0 Xt +XT
t Ψ0Xt, (7.5)

i.e., the one-period short rate is a quadratic function to the selected factors. To ensure

non-negative interest rates, one need to set the initial loadings α, β and Ψ appropriately.

The n-period zero coupon bond price can be formulated as

Pnt = exp
(
An +BT

nXt +XT
t CnXt

)
, (7.6)
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where An is a scalar, Bn is a M × 1 vector and Cn is a M ×M matrix satisfying the

recursive relationship

An = −α0 +An−1 +BT
n−1µ

Q + µTCn−1µ
Q − 1

2
det
(
I− 2ΣTCn−1Σ

)
+

1

2

(
ΣTBn−1 + 2ΣTCn−1µ

Q
)T (

I− 2ΣTCn−1Σ
)−1 (

ΣTBn−1 + 2ΣTCn−1µ
)
,

BT
n = −βT0 +BT

n−1ΦQ + 2µCn−1ΦQ

+2
(
ΣTBn−1 + 2ΣTCn−1µ

)T (
I− 2ΣTCn−1Σ

)−1
ΣTCn−1ΦQ,

Cn = −Ψ0 +
(
ΦQ
)T
Cn−1ΦQ + 2

(
ΣTCn−1ΦQ

)T (
I− 2ΣTCn−1Σ

)−1 (
ΣTCn−1ΦQ

)
,(7.7)

for n = 1, 2, ..., N with A1 = −α0, B1 = −β0 and C1 = −Ψ0. As a result, the model-

implied bond yield can be expressed as

ynt = − 1

n
logPnt = an + bTnXt +XT

t cnXt (7.8)

by taking an = −An/n, bn = −Bn/n and cn = −Cn/n as the factor loadings. Note

that even when we set the initial loadings as α0 = 0 and β0 = 0M , the bond yield has a

constant term loading and a linear term loading as an and bn respectively.

7.2.4 Estimation method

Given the bond pricing formula that relates the model-implied bond yields to the selected

state variables, we can formulate our estimation procedure in terms of a non-linear state-

space model as follows:

• Measurement Equation

The measurement equation describes the evolution of the observed bond yields ŷnt

as

ŷnt = an + bTnXt +XT
t cnXt + ωn,t, (7.9)

with n = 1, 2, ..., N and ωn,t are the measurement errors which are i.i.d. nor-

mals. Moreover, we assume that the selected state variables are observed with

measurement errors ωX,t as

X̂t = Xt + ωX,t, (7.10)

where X̂t is the observed state variables and ωX,t are i.i.d. normals.

• State Equation
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The state equation is given by the evolution of the latent state vector Xt under

the real-world measure P as

Xt+1 = µP + ΦPXt + Σεt+1, (7.11)

which is a standard VAR(1) system.

Therefore, (7.9), (7.10) and (7.11) together form a non-linearity state space model with

N + M observables (N observed bond yields and M observed state variables) and M

latent factors. In the Appendix, we present the Bayesian MCMC procedure to estimate

the model parameters. In the estimation, it is important to calibrate the size of the

measurement errors for state variables and bond yields. After a number of trial runs, we

set the measurement errors to be 2.5 bps for our quarterly data which can be translated

to 10 bps for annualized data.

7.2.5 Data and factors

We use the bond yield data in Wright (2011) for the JGB market during the sample

period from 1990Q1 to 2008Q3. The JGB yield curve data is obtained from Datastream

and the author’s calculation based on the Svensson interpolation methodology. In order

to keep the consistency with previous macro-finance studies, we use the JGB yields of

the 1, 4, 8, 12, 16 and 20 quarters. We construct the term structure model with one

yield-curve factor and two macroeconomic factors, including

1. The level factor (Lt): this is proxied by the short-term interest rate using the Bank

of Japan’s collateralized overnight call rate.

2. Measure of real activity (gt): based on the exponentially weighted moving average

of quarterly GDP growth.

3. Measure of inflation (πt): based on the exponentially weighted moving average of

quarterly inflation.

The overnight call rate is obtained from the Bank of Japan’s website, while the last

two macroeconomic variables are obtained from the dataset of Wright (2011). The two

selected marco variables Xt = (yt, πt) are widely taken to be a set of fundamentals that

capture the macroeconomic dynamics. A similar set of marcoeconomic variables have

been employed in Ang and Piazzesi (2003) and Bernanke et al. (2004).

Recent empirical studies find that it is important to incorporate the yield curve factor in

order to capture both the time-series and cross-sectional variations of the term structure
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dynamics (Diebold et al., 2006; Joslin et al., 2013, 2014). Indeed, the seminal macro-

finance model that imposes the Taylor-rule mechanism in which the short-rate is a linear

function of output and inflation, is found to be insufficient in capturing simultaneously

the time-series and cross-sectional variations of the bond yields, unless a time-varying

Taylor rule is allowed (Ang et al., 2011; Li et al., 2013). In our estimation, we find that

the incorporation of the yield-curve level factor significantly improve the bond yield

fitting quality while allowing us to maintain the model dimensionality to be less than

three. Moreover, as the short-term interest rate is taken as a proxy to the level factor,

it also bears the macro-economic information on the central bank’s monetary stance as

noted in Bernanke et al. (2004).

We assume that the instantaneous short-rate depends only on the yield-curve level fac-

tor but not the macro-economic factors, that is rt = φ(Lt). There are several practical

reasons for this specification. Firstly, in the case of ATSM we can simply take δ0 = 0 and

δ1 = (1, 0, 0). This avoids the need to estimate the loading coefficients of the short-rate

function which is prone to identification problem when measurement errors are included.

This is also a common setup adopted in previous studies such as Bernanke et al. (2004)

and Ang et al. (2011). Secondly, in the case of QTSM, this allows an easier parameter-

ization of the short-rate function in order to avoid non-negative interest rate, because

imposing a second-order polynomial to be non-negative can be done analytically and

is easy-to-visualize.3 Thirdly, this allows a fair comparison in between the ATSM and

QTSM because the short-rate function under QTSM has a larger number of free pa-

rameters (13 loading coefficients) than the ATSM (4 loading coefficients). Furthermore,

our estimated results confirms that the specifications with parameter restrictions on the

loadings are flexible enough to provide a high quality on the fitting of bond yields.

We make a remark that even though there is no interaction in between the instantaneous

short-rate rt and the macro-economic factors gt and πt, the macro-economic factors can

still influence the medium to longer term bond yields through the VAR-dynamics under

the risk-neutral measure Q. To be specific, recall that the model-implied bond yields

under ATSM and QTSM are given by ynt = an + bTnXt and ynt = an + bTnXt + XT
t cnXt

respectively. As long as the relevant entries in an, bn and cn are non-zero, the model-

implied bond yield are to be affected by the macro-economic factors under the risk-

neutral measure Q.

To facilitate the understanding of the estimation results, let us review briefly the Bank

of Japan’s monetary policy since the 1990s. The Bank of Japan started to ease the

base interest rate (the uncollateralized overnight call rate) in the early 1990s, which

3It becomes more difficult to visualize the short-rate function as the dimensionality increases. For
example, to ensure the non-negativity condition when the short-rate is loaded to two factors, one needs
to calibrate a quadratic surface over the zero plane.
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is subsequently lowered down to 0.5 percent and 0.25 percent in 1995Q4 and 1998Q4

respectively. To further stimulate the economy, the Bank of Japan adopted the zero

interest rate policy (ZIRP) during the period from 1999Q1 to 2000Q3 by keeping the

base interest rate effectively to zero. After a short-term recovery in early 2000s, the

Japan economy returned to a recession against the backdrop of the internet bubble,

which led to the introduction of the quantitative monetary easing policy (QMEP) in

order to combat the deflationary pressure. Since then, the Japanese base interest rate

has been kept very close to the zero lower bound. Baba (2006) provides a comprehensive

review of the Bank of Japan monetary policy and the JGB market development over

the sample period.

7.3 Estimation Results: Term Structure Models

7.3.1 Model estimation

First-of-all, we look at the filtered factors and model-implied bond yields to investigate

the goodness-of-fit of the Gaussian ATSM and QTSM. Table 7.1 reports the summary

statistics of the posterior estimations of the ATSM parameters, while Figure 7.1 shows

the posterior distributions of the filtered factors and the model-implied bond yields.

These estimations are obtained by 10,000 draws of MCMC samplings after discarding

the first 5000 burn-in draws based on the Bayesian methods described in the Appendix.

The solid blue line and the dashed red represent actual values and fitted values, respec-

tively, the dashed blue line represents discrepancy between them, and the shaded grey

band represents 90% confidence interval of the distribution. It can be seen that macro

factors track quite closely to the actual data and the fitting of the bond yields are rea-

sonably good across maturities. Apparently, the ATSM is adequate to model the joint

dynamics in macro factors and bond yields. Nevertheless, it is noted that the posterior

distributions of the model-implied bond yields often bleach the zero lower bound with

a noticeable probability of negative interest rates during the sample periods after late

1995. This generates a large degree of pricing errors when the actual short-term bond

yields are effectively zero under the ZIRP.

Table 7.2 and Figure 7.2 report the corresponding results for the QTSM which imposes

non-negative interest rates and introduces a non-linear mapping in between the factors

and the bond yields. In Figure 7.2, we see that the filtered output and inflation factors

also track closely to the actual data. Furthermore, as the model-implied bond yields

of QTSM are guaranteed to be positive, it is able to provide a better fit to the very

short-term bond yields near the zero lower bound (1Q and 4Q). However, the fitting to
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long-term bond yields (16Q and 20Q) is less satisfactory in the case of QTSM, which

suggests that the quadratic mapping in between the factors and the bond yields maybe

prone to misspecification.

To better understand how the term structure model predicts the responses of bond yields

to shocks in the underlying macro variables (i.e., impulse response), it is important to

take a closer look at the estimated factor loadings. Figure 7.3 reports the factor loadings

of the estimated Gaussian ATSM using the recursive relationship (7.3) and the posterior

means under Q-measure as reported in Table 7.1. Recall that the short-term interest

rate is taken as one of the state variables and we have imposed the initial loading of

the inflation and output factors: δ1,2 and δ1,3 to be zero as in Ang et al. (2011). For

the ATSM, we see that the output and inflation loadings: b2 and b3, are positive for all

maturities, which is consistent with the economic implications of the Taylor rule. For

example, a positive shock to the output gap induces an upward shift and a steepening of

the yield curve, which reflects that the slope of yield curve is highly related to economic

outlook (Diebold and Rudebusch, 2013). As expected, the loading to the yield-curve

level factor: b1, is less than one. This indicates that the transmission effect of the short-

term interest rate (monetary stance) to the long-end of the yield curve is imperfect as

can be seen from Figure 7.3.

Figure 7.4 reports the factor loadings of the estimated QTSM using the recursive rela-

tionship (7.7) and the posterior means under Q-measure in Table 7.2. In contrast to the

ATSM which only has 4 factor loadings, the QTSM provides in total 10 loading combi-

nations to the three factors, including 4 loadings through the linear terms: a, b1, b2, b3,

and 6 loadings through the quadratic terms : c11, c22, c33, c12, c13, c23.4 As discussed,

we set the initial loadings to the output and inflation factors: Φ22 and Φ33, and other

off-diagonal elements in (7.5), to zero as reflected in Figure 7.4(b). Firstly, it is worth

to take a look at the diagonal elements of the factor loading cn, which captures most of

the variation in the yield curve. As expected, the loading to the quadratic terms of the

inflation and output factors: c22 and c33, are positive, indicating that investors demand a

higher bond yields when inflation uncertainty and output uncertainty (second moments)

are high as shown in Figure 7.4(b). In addition, the QTSM allows a flexible interaction

in between different factors through the cross terms (i.e., the off-diagonal elements in

the factor loading cn). Diebold and Rudebusch (2013) note that the negative interac-

tion in between factors can play an important role to model interest rates near the zero

lower bound. In our case, the factor loadings for the cross terms of (ft, πt) and (gt, πt)

: c13 and c23, are estimated to be negative, which indicate the enhanced flexibility of

the QTSM in relating bond yields to the selected macro factors. We can argue that it

4Note that the factor loading cn is symmetric by construction. Accordingly, c12 = c21, c13 = c31, and
c23 = c32.
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Table 7.1: Posterior estimates of the model parameters for ATSM. The reported
values for the parameters µ and (ΣΣT )ij are multiplied by 10,000.

Mean 90 Percentile 10-Percentile Std. Dev.

VAR(1)-system under P-measure

Φ11 0.8672 0.9196 0.8128 0.0428
Φ12 0.0438 0.1318 -0.0457 0.0696
Φ13 0.1014 0.2287 -0.0246 0.1000
Φ21 0.1210 0.2150 0.0326 0.0716
Φ22 0.5443 0.7098 0.3652 0.1333
Φ23 -0.1947 0.0048 -0.3901 0.1593
Φ31 0.0397 0.1141 -0.0312 0.0572
Φ32 0.0565 0.2055 -0.1206 0.1271
Φ33 0.5287 0.6922 0.3699 0.1257
µ1 -0.6343 2.6977 -3.9661 2.5966
µ2 12.1554 19.1896 5.6553 5.2071
µ3 1.0896 8.0413 -4.4578 4.9450

VAR(1)-system under Q-measure

Φ11 0.9383 0.9674 0.9080 0.0230
Φ12 0.0691 0.0833 0.0538 0.0107
Φ13 0.0138 0.0182 0.0093 0.0033
Φ21 0.1336 0.1685 0.1105 0.0213
Φ22 0.8502 0.9220 0.7832 0.0521
Φ23 -0.0329 0.1774 -0.2265 0.1671
Φ31 0.1347 0.1586 0.1132 0.0173
Φ32 0.0825 0.1017 0.0642 0.0146
Φ33 0.4517 0.5255 0.3747 0.0570
µ1 -0.3371 -0.0775 -0.5338 0.1782
µ2 8.7984 9.8244 7.6819 0.8208
µ3 -2.2497 -1.7340 -2.9599 0.4368

Variance Matrix

(ΣΣT )11 0.0155 0.0201 0.0114 0.0034
(ΣΣT )12 -0.0051 -0.0001 -0.0106 0.0041
(ΣΣT )13 -0.0018 0.0031 -0.0073 0.0041
(ΣΣT )21 -0.0051 -0.0001 -0.0106 0.0041
(ΣΣT )22 0.0370 0.0476 0.0272 0.0082
(ΣΣT )23 -0.0001 0.0073 -0.0078 0.0060
(ΣΣT )31 -0.0018 0.0031 -0.0073 0.0041
(ΣΣT )32 -0.0001 0.0073 -0.0078 0.0060
(ΣΣT )33 0.0296 0.0442 0.0145 0.0116

Notes:

1. The first 5,000 draws of MCMC sampling are discarded (burn-in) to guarantee convergence and
then the next 10,000 draws are used for calculating the posterior means, the standard deviations
(Std. Dev.), as well as the 10 and 90 percentiles.

2. The posterior mean is computed by averaging the MCMC draws.

3. Std. Dev. is computed as the sample standard deviation of the MCMC draws.



Non-linear Term Structure Modeling 162

Table 7.2: Posterior estimates of the model parameters for QTSM. The reported
values for the parameters µ and (ΣΣT )ij are multiplied by 10,000.

Mean 90 Percentile 10-Percentile Std. Dev.

VAR(1)-system under P-measure

Φ11 0.8131 0.8934 0.7320 0.0640
Φ12 0.0568 0.1696 -0.0544 0.0872
Φ13 0.2270 0.3758 0.0794 0.1173
Φ21 0.0169 0.1213 -0.0911 0.0827
Φ22 0.6470 0.7770 0.5121 0.1035
Φ23 0.0068 0.2000 -0.1789 0.1462
Φ31 0.0670 0.1666 -0.0133 0.0719
Φ32 0.0590 0.1544 -0.0387 0.0774
Φ33 0.7496 0.9090 0.5348 0.1463
µ1 2.2411 6.3008 -1.8670 3.2158
µ2 7.3223 12.0844 2.6005 3.7285
µ3 -2.4398 0.8460 -6.0533 2.8044

VAR(1)-system under Q-measure

Φ11 0.9942 0.9993 0.9892 0.0039
Φ12 0.0392 0.0484 0.0333 0.0057
Φ13 0.0187 0.0215 0.0162 0.0021
Φ21 0.0951 0.1243 0.0718 0.0203
Φ22 0.7553 0.8453 0.6581 0.0732
Φ23 -0.2717 -0.2504 -0.2947 0.0165
Φ31 0.1105 0.1302 0.0922 0.0132
Φ32 0.0671 0.0952 0.0479 0.0166
Φ33 0.4003 0.4472 0.3493 0.0372
µ1 -1.2593 -1.0521 -1.3488 0.1056
µ2 7.4830 7.9915 6.9087 0.4519
µ3 -2.4335 -2.1773 -2.7327 0.2461

Variance Matrix

(ΣΣT )11 0.0310 0.0407 0.0225 0.0072
(ΣΣT )12 0.0027 0.0110 -0.0055 0.0065
(ΣΣT )13 -0.0043 0.0011 -0.0101 0.0044
(ΣΣT )21 0.0027 0.0110 -0.0055 0.0065
(ΣΣT )22 0.0393 0.0553 0.0268 0.0116
(ΣΣT )23 -0.0070 -0.0002 -0.0141 0.0054
(ΣΣT )31 -0.0043 0.0011 -0.0101 0.0044
(ΣΣT )32 -0.0070 -0.0002 -0.0141 0.0054
(ΣΣT )33 0.0201 0.0349 0.0097 0.0097

Notes:

1. The first 5,000 draws of MCMC sampling are discarded (burn-in) to guarantee convergence and
then the next 10,000 draws are used for calculating the posterior means, the standard deviations
(Std. Dev.), as well as the 10 and 90 percentiles.

2. The posterior mean is computed by averaging the MCMC draws.

3. Std. Dev. is computed as the sample standard deviation of the MCMC draws.
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Figure 7.1: Filtered macro factors and fitted bond yields by the ATSM

(a) Macro factors (in quarter)
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(b) Bond yields (in quarter)
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Notes:

1. The solid blue line and the dashed red represent actual values and fitted values respectively, the
dashed blue line represents discrepancy between them, and the shaded grey band represents 90%
confidence interval of the distribution.

2. These estimations are obtained by 10,000 draws of MCMC samplings after discarding the first
5000 burn-in draws based on the Bayesian estimation described in the Appendix.
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Figure 7.2: Filtered macro factors and fitted bond yields by the QTSM

(a) Macro factors (in quarter)
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(b) Bond yields (in quarter)
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Notes:

1. The solid blue line and the dashed red represent actual values and fitted values respectively, the
dashed blue line represents discrepancy between them, and the shaded grey band represents 90%
confidence interval of the distribution.

2. These estimations are obtained by 10,000 draws of MCMC samplings after discarding the first
5000 burn-in draws based on the Bayesian estimation described in the Appendix.
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Figure 7.3: Factor loadings an and bn for ATSM
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Notes: The factor loadings of the estimated Gaussian ATSM are calculated using the recursive
relationship and the posterior means under Q-measure in Table 7.1.

is the negative loadings of the cross terms that generate the off-setting effects such that

the QTSM is able to capture the persistent and sticky short-term bond yields under the

ZIRP, e.g., see the fitting of the 1Q yield in Figure 7.2(b).

7.3.2 Prediction of macro factors and bond yields

In this subsection, we study the in-sample forecasting performance of the macro factors

and bond yields to analyse the models. For a more consistent explanation of the results,

let us view the yield-curve level factor (short-term interest rate) as the monetary stance

factor similar to the interpretation in Bernanke et al. (2004) and Diebold et al. (2006).

We calculate the posterior prediction distributions of the macro factors and the JGB

yields of the two models using 10,000 draws of posterior estimates over the full sample as

shown in Tables 7.1 and 7.2. Figure 7.5 shows the ATSM prediction of the macro factors

and the JGB yield curve across 6 maturities for the following two forecasting periods:

(i) 1992Q4 - 1998Q1 and (ii) 2003Q4 - 2008Q3. The solid black line represents actual

values, the solid red line represents the median of posterior prediction distributions

and the shaded blue band represents 90% confidence interval of the distribution. In

the period of 1992Q4 - 1998Q1, in which monetary policy has not stand under ZIRP

yet, the bond yields are quite far away from the zero lower bound as in Figure 7.5(a).
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Figure 7.4: Factor loadings an, bn and cn for QTSM

(a) Factor loadings an and bn
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Note: The factor loadings of the estimated QTSM are calculated using the recursive relationship and
the posterior means under Q-measure in Table 7.2.
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Although the median forecast fits well to the actual data, the ATSM predicts negative

bond yields when the forecasting horizon is beyond 4 to 8 quarters. When the Bank of

Japan adopted the ZIRP and the QMEP in 2003Q4, the prediction of bond yields by

the ATSM is even more unrealistic: as the short-term bond yields are close to the zero

lower bound, the model predicts with almost half of the probability that the bond yields

are negative as in Figure 7.5(b). Even for the 5-year bond yield, there is a substantial

probability of bleaching the zero lower bound when the forecasting horizon is beyond 4

quarters. This reflects that the Gaussian ATSM is very unreliable for the prediction of

bond yields when interest rates are close to zero.

Figure 7.6 shows the QTSM prediction of the macro factors and the bond yields during

the corresponding two forecasting periods. For the in-sample prediction in 1992Q4 -

1998Q1, the QTSM produces a less accurate forecast as with the ATSM model as in

Figure 7.6(a). Moreover, the prediction density is positively skewed because the bond

yields are bounded below by zero due to the imposition of non-negative short rate in

QTSM. The strength of the QTSM is found to be prominent during the period of 2003Q4

- 2008Q3 when the zero lower bound is binding: the prediction produces only positive

bond yields even though the short-term interest rate is extremely close to zero as in

Figure 7.6(b). From the fan chart of the QTSM predictive density, we can observe

that the probability mass near zero is significant even for medium-term to long-term

forecasting horizons. This reflects the stickiness nature of the QTSM which allows one

to capture the prolonged zero interest rate policy in Japan.

7.3.3 Robustness check

We perform two robustness checks on the sample period used for the estimation: i.)

we extend the sample period before the burst of the Japan economy bubble in early

1990s by including the sample data from 1985Q1; ii.) we extend the sample period after

the Lehman financial crisis by including the data until 2009Q1. In both cases, we find

that the simultaneous fitting of the macro factors and the bond yields deteriorate in

certain degrees. This can be explained by the structural breaks in the data set in which

the time-series dynamics of the macro factors and the term structure are different under

these extended sample periods. It is therefore advised to pursue a regime-switching term

structure model in order to capture the structural changes in the data. Nevertheless,

adding a regime-switching feature leads to a more sophisticated bond pricing formula

and one has to resort to analytical approximation. To this end, we refer the readers to

Li et al. (2013) for a recent empirical study on regime-switching term structure model.



Non-linear Term Structure Modeling 168

Figure 7.5: Forecasting of macro factors and bond yields (annualized) by the ATSM

(a) Periods: 1992Q4 - 1998Q1 (under non-ZIRP).
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(b) Periods: 2003Q4 - 2008Q3 (under ZIRP).
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Note: The posterior prediction distributions of the macro factor and the JGB yields of the ATSM
models are calculated using 10,000 draws of posterior estimates over the full sample as shown in Table
7.1.
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Figure 7.6: Forecasting of macro factors and bond yields (annualized) by the QTSM

(a) Periods: 1992Q4 - 1998Q1 (under non-ZIRP).
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(b) Periods: 2003Q4 - 2008Q3 (under ZIRP).
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Note: The posterior prediction distributions of the macro factor and the JGB yields of the QTSM
models are calculated using 10,000 draws of posterior estimates over the full sample as shown in Table
7.2.
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7.4 Methods of Prediction Pooling

In this section, we discuss the idea of optimal prediction pooling as advocated in Geweke

and Amisano (2011) and present the pooling schemes adopted in this study.

7.4.1 Motivation

From a Bayesian perspective, the marginal likelihood is commonly used as a criteria of

model choice because it is interpreted as the prediction distribution after integrating

the prior density with respect to the model parameters. Let us denote yt a vector time

series, and its history as Y O
t−1 = {yh, ..., yt−1} where h ≤ 1 is a starting date and the

superscript “O” denotes the observed data. The marginal likelihood (ML) is given by

pML
(
yt|Y O

t−1,M
)

=

∫
p
(
yt|Y O

t−1, Θ,M
)
p(Θ|M)dΘ, (7.12)

where M is a prediction model, p (yt|Yt−1, Θ,M) and p(Θ|M) denote the likelihood

function and the prior density of parameters Θ on a specified modelM, respectively. If

we regard the marginal likelihood as a prior prediction distribution as noted in Geweke

(2010), we can generalize and propose a posterior prediction distribution by replacing

the prior density p(Θ|M) using the posterior density p(Θ|Yt−1,M) as

pPost
(
yt|Y O

t−1,M
)

=

∫
p
(
yt|Y O

t−1, Θ,M
)
p(Θ|Y O

t−1,M)dΘ,

where p(Θ|Yt−1,M) is the posterior density of parameters conditional on a specified

model M. Following Geweke and Amisano (2011), we use the posterior prediction dis-

tribution to construct a log prediction scoring rule in order to evaluate the forecasting

performances using individual models as well as the calculation of the optimal weights

when two models are combined for forecasting. We set up the prediction score of obser-

vation yOt at period t by using the posterior prediction density as

p(yOt ; Y O
t ,M)︸ ︷︷ ︸

prediction score

= pPost
(
yOt |Y O

t−1,M
)
,

and regard it as the key element of the following all prediction pooling methods. The

aim of this study is to examine various model choices and combinations in terms of

the macro-finance term structure modeling using this new model selection criteria. We

conduct three recent approaches of prediction pool which we explain as follows.
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7.4.2 Static prediction pooling

Firstly, we discuss the static pooling based on a constant weighting as in Geweke and

Amisano (2011). Given two prediction models M1 and M2, the pool of the prediction

density can be constructed as the convex combination

p
(
yOt ;Y O

t−1,M
)

= λp
(
yOt ;Y O

t−1,M1

)
+ (1− λ) p

(
yOt ;Y O

t−1,M2

)
, 0 ≤ λ ≤ 1,

withM = (M1,M2) is the collection of models and p
(
yOt ;Y O

t−1,Mi

)
= p

(
yOt ;Y O

t−1, Θ̂i

)
is the prediction density with the posterior estimates Θ̂i of the modelMi. The optimal

prediction pooling is then obtained by maximizing the cumulative log prediction score

LPSSP as

LPSSP (λ) ≡
T∑
t=1

log
[
λp
(
yOt ;Y O

t−1,M1

)
+ (1− λ) p

(
yOt ;Y O

t−1,M2

)]
(7.13)

by choosing λ∗ = arg max LPSSP (λ). An important assumption as noted in Geweke

and Amisano (2011) is that the two candidate prediction models have to be substantially

different in terms of the functional form of their predictive densities (i.e., non-nested

models). In our case, the Gaussian ATSM generates a prediction density of bond yield

close to a normal distribution, while the QTSM generates an asymmetric prediction

density which is bounded explicitly from zero (Kim and Singleton, 2012). Under the

Bayesian framework, we can estimate the pooling scheme based on the random walk

Metropolis-Hastings (MH) algorithm and sample the posterior distribution of the con-

stant weighting λ.

7.4.3 Markov-switching prediction pooling

Waggoner and Zha (2012) extend the static prediction pool by allowing the weighting

coefficient λt to be dependent on a regime variable st following a Markov chain as

λt = λ (st) =

{
λ1, st = 1

λ2, st = 2
,

in which the transition matrix Q for st is given by

Q =

[
q11 q12

q21 q22

]
,
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where qij = Pr (st = j| st−1 = i) with q11 + q12 = 1 and q21 + q22 = 1. Conditional on

the state st, the pool of the prediction density can be expressed as

p
(
yOt ; Y O

t−1,M, st
)

= λ (st) p
(
yOt ;Y O

t−1,M1

)
+ (1− λ (st)) p

(
yOt ;Y O

t−1,M2

)
,

with M = (M1,M2). Hence, integrating out the unobservable regime st, we can for-

mulate the pooled prediction density as

pMS
(
yOt ;Y O

t−1,M
)

=
2∑

st=1

p
(
yOt ;Y O

t−1,M, st
)
p (st| st−1) p

(
st−1|Y O

t−1,M
)
,

where p (st| st−1) is the transition probability of the Markov chain. To estimate the

Markov-switching weighting, we follow the single-move algorithm as proposed in Albert

and Chib (1993) which is discussed in the Appendix. The log prediction score of Markov-

switching prediction pooling with two regimes is

LPSMS(λ1, λ2) ≡
T∑
t=1

log pMS
(
yOt ;Y O

t−1,M
)
. (7.14)

An advantage of using the Markov-switching modeling for the weighting coefficient is

that we can identify the relative importance of the models during different sample pe-

riods. Waggoner and Zha (2012) show that the DSGE model plays an important role

relative to a BVAR model only in the late 1970s and the early 1980s.

We emphasize that we do not assume any regime-switching in the interest rate dynam-

ics under the bond pricing model. Because our estimation is divided into two stages,

the Markov-switching of st reflects only the prediction densities of the two models as

estimated in stage 1, which in turns depend implicitly on the observed dataset Y O
T . As

a consequence, the regime st only indicates the particular times of history in which the

model dominates in terms of its prediction ability but not the structural change in the

interest rate dynamics.

7.4.4 Dynamic prediction pooling

Finally, we adopt the dynamic prediction pooling scheme as proposed in Negro et al.

(2014). The idea is to generate a smooth time-varying weighting coefficient, λt ∈ [0, 1],

based on a probit transformation of a AR(1) process of a latent variable xt with the

autocorrelation coefficient ρ as

λt = N (xt) ,

xt = ρxt−1 +
√

1− ρ2εt,
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where N(·) is the cumulative density function of standard normal distribution, the dis-

turbance term follows εt ∼ N (0, 1) and the initial value takes x0 ∼ N (0, 1). The

autocorrelation coefficient ρ captures how smooth the weighting coefficient can change

over time. When ρ = 1, the model reduces to the case of static prediction pooling in

Geweke and Amisano (2011) by taking λt = λ. When ρ = 0, it indicates that λt are

serially-independent and follows a random walk. Denote ΛT = (λ1, ..., λT ), we have the

log score of dynamic prediction pooling as

LPSDP (ΛT ) ≡
T∑
t=1

log
[
λt p

(
yOt ;Y O

t−1,M1

)
+ (1− λt) p

(
yOt ;Y O

t−1,M2

)]
. (7.15)

We follow Negro et al. (2014) and fix the parameter ρ as 0.9. Then, we can estimate the

time-varying weighting coefficient λt as a nonlinear state space model (due to the probit

transformation) using particle filtering. We refer the readers to Johannes and Polson

(2009) for a survey on the application of particle filtering in financial econometrics.

7.4.5 Comparison with Bayesian model averaging

A related concept of the optimal prediction pooling is the Bayesian model averaging

(BMA) method, in which one of the competing models is correctly specified but the

econometrician does not know which one is the true model. Under BMA, the predictive

distribution for observation yOt is obtained by averaging a set of m competing models,

that is

pBMA
(
yOt |Y O

t−1

)
=

m∑
i=1

p
(
yOt ;Y O

t−1,Mi

)
p
(
Mi|Y O

t−1,Θ
)
,

in which p
(
Mi|Y O

t−1,Θ
)

is called the posterior model probability or weight. The key

idea in BMA is that the posterior model probability is derived based on the marginal

likelihood as

p (Mk|Yt−1,Θ) =
pML

(
yOt |Y O

t−1,Mk

)∑m
i=1 p

ML
(
yt|Y O

t−1,Mi

) ,
where pML(·) is given by (7.12). Since the objective of BMA is for model selection,

the computation of model probability often produces extreme weighting on a particular

model. This is not practically useful when such a weighting is used to do pooled fore-

casting because some of the models are simply ignored. We refer the readers to Hoeting

et al. (1999) for a throughout discussion.
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7.4.6 Estimation method

We adopt a two-stage procedure in which the posterior parameters are saved from the

individual model estimation, and then are used for the forecasting and computation

of the prediction density/score. In the first stage, posterior estimates of parameters,

p(Θ|Y O
t−1,M), under the prediction models, M = (M1,M2), are obtained using the

MCMC method based on the full sample period in order to obtain the prediction scores

p
(
yOt ;Y O

t−1,M
)

of the three methods. For each set of posterior estimate of the predic-

tion macro-finance models M, we then compute the forecast and prediction density by

simulation technique in order to make use of the entire joint posterior distribution. To

be more specific, we compute the prediction scores as

p(yOt ;Y O
t−1,M1) = p

(
yOt ;Y O

t−1,ΘQTSM

)
,

p(yOt ;Y O
t−1,M2) = p

(
yOt ;Y O

t−1,ΘATSM

)
,

in order to evaluate the log-score criteria. In the second stage, we estimate the optimal

combination using the log scores from the individual prediction models (ATSM and

QTSM) obtained in the previous step, based on the aforementioned three prediction

pooling methods, i.e., (7.13), (7.14) and (7.15). We adopt the Bayesian MCMC approach

for the static and Markov-switching approaches, and resort to the particle filtering for

the dynamic prediction pool with a fixed parameters ρ (see Appendix).

7.5 Estimation Results: Prediction Pooling

7.5.1 Prediction score

We report the combination of the ATSM and QTSM in the prediction of bond yields

using the optimal prediction pooling as described in Section 7.4, following Geweke and

Amisano (2011), Waggoner and Zha (2012) and Negro et al. (2014). To begin, it is

useful to look at the comparison of the predictive densities of the two individual models

based on the log-score criteria. While we have performed the comparison using both

one-quarter-ahead and four-quarter-ahead forecasts, we only report the charts of four-

quarter-ahead forecasts for illustration purpose. As shown in Figure 7.7, the ATSM

(dashed red line) dominates the QTSM (solid blue line) for the sampling period from

1990Q1 - 1995Q4 while the QTSM dominates the ATSM when the JGB bond yields are

close to zero since 1996Q1. This suggests that one can potentially improve the predictive

density by combining appropriately the two models which appear to perform better in
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Figure 7.7: Log score comparison of the ATSM and QTSM
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model such as the QTSM and the ATSM.

different sample periods, i.e., the two models capture different properties of the joint

movements of the macro factors and bond yields.

Before we report the results on prediction pooling, let us recall the definition of the

log-score function: LPS(yt;Yt−1,Pool), that is a convex combination of the prediction

density at the time-t observation of the ATSM and QTSM as

LPS(yt;Yt−1,Pool) = log
[
λtp
(
yOt ;Y O

t−1,ΘQTSM

)
+ (1− λt) p

(
yOt ;Y O

t−1,ΘATSM

)]
,

in which we take λt as the weighting assigned to the QTSM while 1−λt as the weighting

assigned to the ATSM, and ΘQTSM and ΘATSM are the posterior estimates of the QTSM

and ATSM parameters over the full sample period, respectively.

7.5.2 Static pooling

Figure 7.8 reports the posterior density and corresponding trace plot of the weighting

coefficient λ for the static pooling scheme as (7.13). This coefficient is estimated with

MCMC simulation and obtained from 10,000 MCMC draws after discarding the first

5000 draws as burn-in. For the four-quarter-ahead forecast, the posterior distribution of

λ is skewed to the left, indicating that the parameter restriction of λ ≤ 1 is binding and

one should over-weight the QTSM model and under-weight the ATSM. Table 7.3 reports

the posterior mean of the pooling coefficient as λ = 0.8627 for the four-quarter-ahead
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Figure 7.8: Static prediction pool (4Q-ahead forecast)
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Note: Static pooling model is calculated from (7.13). The weighting coefficient on QTSM, λ, is
estimated with MCMC simulation and obtained from 10,000 draws after discarding the first 5000
burn-in draws.

forecast. We also compute the simulation inefficiency statistics as in Kim et al. (1998)

and show that MCMC draws of the parameter λ are efficient.

7.5.3 Markov-switching pooling

Figure 7.9 reports the estimation for the Markov-switching pooling scheme, (7.14), in

which the extra model parameters include the transition matrix of the Markov chain

and the corresponding weighting coefficients λ1 and λ2 under the two regimes st = 1

and st = 2. Figure 7.9(a) shows the regime variable st and the time-varying weight

λt calculated from st.
5 The solid black and red lines denote their posterior means and

medians, respectively, while the blue shaded area represents their 90% credible interval.

The right panel of Figure 7.9(a) also shows that the posterior density of the MCMC

draws of λ1 and λ2 are concentrated around 0 and 1 respectively, which means that we

can clearly distinguish the two regimes for model combination. Figure 7.9(b) shows the

histograms and traces of the MCMC draws of the both parameters λ1 and λ2. Again,

these posterior estimates are also obtained from MCMC 10,000 draws after discarding

the first 5000 draws as burn-in. As shown in Table 7.4, the posterior means of the

weighting coefficients are λ1 = 0.1305 and λ2 = 0.9451 for four-quarter-ahead forecast.

This indicates that st = 1 corresponds to the regime in which the ATSM dominates

while st = 2 corresponds to regime in which the QTSM dominates as the right panel of

5The draws of the time-varying weight λt are conducted based on the following equation. λt =
λ1 × Prob(st = 1) + λ2 × Prob(st = 2).
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Table 7.3: Posterior estimates of the static prediction pool

(a) One-quarter-ahead forecast

Parameter Mean 90 Percentile 10 Percentile Std. Dev. Inefficiency

λ 0.2982 0.5466 0.0615 0.1480 8.22

(b) Four-quarter-ahead forecast

Parameter Mean 90 Percentile 10 Percentile Std. Dev. Inefficiency

λ 0.8627 0.9886 0.6631 0.1014 8.22

Notes:

1. λ denotes the constant weighting coefficient determined in the following optimal prediction pool:

p (yt;Yt−1,M) = λp (yt;Yt−1,M1) + (1− λ) p (yt;Yt−1,M2) , 0 ≤ λ ≤ 1,

where M1 = QTSM M2 = ATSM, and p (yt;Yt−1,M1) denotes log prediction score.

2. The coefficient λ is estimated with MCMC simulation and obtained from 10,000 draws after
discarding the first 5000 draws. And the posterior means, the standard deviations (Std. Dev.),
and the percentiles are derived from the sampled draws.

3. The simulation inefficiency statistic is a useful diagnostic for measuring how well the chain
mixes according to Kim, Shephard, Chib (1998). The statistic is derived from:

R̂BM = 1 +
2BM
BM − 1

BM∑
i=1

K(
i

BM
)ρ̂(i),

where p̂(i) is an estimate of the autocorrelation at lag i of MCMC sampler, BM represents the
bandwidth and K the Parzen Kernel.

Figure 7.9(a). We can also look at the conditional probability for a regime j = 1, 2 as

P (st = j|S−t, YT ) =
g (st = j|S−t, YT )∑2
j=1 g (st = j|S−t, YT )

,

where g (st|S−t, YT ) is the posterior distribution of st related to the pooled prediction

density (see Appendix). The left panel of Figure 9(a) shows that the probability of

regime 2 is close to one since 1996 as the JGB yields continued to move towards the zero

lower bound amid the Bank of Japan’s interest rate cuts. In particular, it is interesting

to look closer to the posterior distribution of λ1: as the model switches gradually from

the ATSM to QTSM in the early 1990s, the dispersion of λ1 is large, indicating that

both the two models might useful in explaining the bond yields; as the Bank of Japan

adopts the ZIRP from 1999Q1 to 2000Q3, the distribution of λ1 is concentrated around

1, indicating that the QTSM model captures much better the joint dynamics of bond

yields and the macroeconomy under the ZIRP.
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Figure 7.9: Markov-switching prediction pool (4Q-ahead forecast)
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1. Markov-switching pooling model is calculated from (7.14). The weighting coefficients on QTSM,
λi, are estimated with MCMC simulation and obtained from 10,000 draws after discarding the
first 5000 burn-in draws.

2. The solid black and red lines denote their posterior means and medians, respectively, and the
blue shaded area represents their 90% confidence interval.
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Table 7.4: Posterior estimates of the Markov-switching prediction pool

(a) One-quarter-ahead forecast

Parameter Mean 90 Percentile 10 Percentile Std. Dev. Inefficiency

λ1 0.0899 0.2670 0.0039 0.0831 8.22
λ2 0.9014 0.9951 0.7142 0.0906 15.44

(b) Four-quarter-ahead forecast

Parameter Mean 90 Percentile 10 Percentile Std. Dev. Inefficiency

λ1 0.1305 0.3733 0.0070 0.1167 8.22
λ2 0.9451 0.9970 0.8395 0.0507 15.44

Notes:

1. λ1 and λ2 denote the regime switching weighting coefficient determined by regime variables st in
the following optimal prediction pool:

p (yt; Yt−1,M, st) = λ (st) p (yt;Yt−1,M1) + (1− λ (st)) p (yt;Yt−1,M2) ,

where M1 = QTSM,M2 = ATSM and

λt = λ (st) =

{
λ1, st = 1
λ2, st = 2

,

2. The coefficient λ is estimated with MCMC simulation and obtained from 10,000 draws after
discarding the first 5000 draws, and the posterior means, the standard deviations (Std. Dev.),
and the percentiles are derived from the sampled draws.

3. The simulation inefficiency statistic is a useful diagnostic for measuring how well the chain
mixes according to Kim, Shephard, Chib (1998). The statistic is derived from:

R̂BM = 1 +
2BM
BM − 1

BM∑
i=1

K(
i

BM
)ρ̂(i),

where p̂(i) is an estimate of the autocorrelation at lag i of MCMC sampler, BM represents the
bandwidth and K the Parzen Kernel.

7.5.4 Dynamic pooling

Figure 7.10 shows the estimation for the dynamic pooling scheme which imposes a

smooth transition in between the two selected models as described in (7.15). The solid

black line denotes the posterior means of the time varying weighting coefficients while

the blue shaded area represents their 90% credible interval. The estimation is obtained

from 5000 draws of particle filter with constant autocorrelation coefficient ρ fixed as 0.9

following Negro et al. (2014), which constraints the time-variation of the weighting to

be relatively slow-moving. Similar to the Markov-switching pooling, the weighting to

QTSM increases after 1995Q1 and keep dominating the ATSM afterwards. However,

the dispersion of the posterior distribution of λt appears to be large with the median

fluctuating around 0.3 to 0.8 for the four-quarter-ahead forecasts. In contrast to the

Markov-switching pooling, the dynamic pooling scheme does not allow us to obtain a

clear cut in between QTSM and ATSM.
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Figure 7.10: Dynamic prediction pool (4Q-ahead forecast)
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Notes:

1. Dynamic pooling model is calculated from ((7.15)). The time-varying coefficient is obtained
from 5000 draws of particle filter with constant autocorrelation coefficient ρ fixed as 0.9
following Del Negro et al (2013).

2. The solid black line denotes their posterior means and the blue shaded area represents their 90%
confidence interval.

7.5.5 Comparison

Lastly, let us compare the performance of different models and pooling schemes in terms

of the log score of prediction density. Table 7.5 summarizes the corresponding cumula-

tive log score performance for the one-quarter-ahead and four-quarter-ahead forecasts.

Figure 11 shows the time series of the log score of the three pooling schemes as well as

those of the two individual models. As can be seen in Table 7.5, the Markov-switching

(MS) pooling scheme produces the best cumulative log score: this is because it allows

one to combine the ATSM and QTSM efficiently by switching from the ATSM be-

fore 1995 to the QTSM after 1995 as depicted in Figure 7.11. Interestingly, the static

pooling scheme only marginally improve the cumulative log-score performance for the

four-quarter-ahead forecast, although it may improve the prediction density in certain

sub-sample periods. On the other hand, the two time-varying pooling schemes produce

a better improvement over individual models. In particular, the Markov-switching pool-

ing scheme appears to be more effective than the dynamic pooling scheme in capturing

the abrupt change in bond yield movements when the monetary policy switches at late

1995. This suggests that an appropriate pooling scheme is important for one to achieve

an overall improvement (in terms of the log-score criteria) in the prediction of future

bond yields when models are combined.
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Table 7.5: Cumulative log scores

(a) One-quarter-ahead forecast

Component Models Model Pooling

Model Log Score Methods Log Score

ATSM 2006.85 Static 2008.38
QTSM 1987.93 Markov Switching 2018.13

Dynamic 2013.82

(b) Four-quarter-ahead forecast

Component Models Model Pooling

Model Log Score Methods Log Score

ATSM 1909.20 Static 1922.78
QTSM 1923.03 Markov Switching 1930.92

Dynamic 1925.87

Notes:

1. The predictive densities for the ATSM and QTSM are obtained by simulation using the MCMC
draws of the posterior model parameters.

2. The cumulative log score is computed as

T∑
t=1

log [λtp (yt;Yt−1,M1) + (1− λt) p (yt;Yt−1,M2)]

where M1 = QTSM,M2 = ATSM.

Figure 7.11: Log score comparison (4Q-ahead forecast)
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7.6 Summary

In this chapter, we study the optimal prediction pool of the Gaussian ATSM and QTSM

with macro-finance features using the JGB data from 1990Q1 to 2008Q3 that cover the

zero interest rate policy in Japan. Our estimation results show that the QTSM provides a

more realistic description of bond yields when the zero lower bound is binding, although

the ATSM appears to provide a better fit to bond yields and macroeconomic variables

simultaneously. This suggests that one should combine the two models for the prediction

of future bond yields under different market scenarios. In particular, we find that the

Markov-switching pooling is the most effective in capturing the abrupt change in bond

yield movements as the monetary policy switches.

For future research, it is instructive to explore a wider combination of macroeconomic

variables, such as unemployment rate, M2 growth and credit-to-GDP ratio. Moreover,

it is interesting to repeat the exercise using the US treasury yield data since the financial

crisis of 2008, although the history may be limited for a robust statistical identification.

A potential remedy is to use macroeconomic variables with higher frequency such as

monthly data. An alternative is to use the estimation technique with mixing frequency

data such as the one proposed in Camacho and Perez-Quiros (2010).

7.7 Appendix

7.7.1 Bond pricing

For notational convenience, we will take µQ = µ and ΦQ = Φ as the risk-neutral param-

eters and all expectations are under the risk neutral measure Q.

ATSM

The n-period zero coupon bond price can be formulated as

Pnt = Et
[
e−rtPn−1

t+1

]
= Et

[
exp

(
−rt +An−1 +BT

n−1Xt+1

)]
,

where rt = δ0 + δT1 Xt and Xt follows the VAR dynamics Xt+1 = µ+ ΦXt + Σεt+1 with

εt ∼ N (0, I). We can substitute the expression of Xt+1 such that

Pnt = Et
[
exp

(
−rt +An−1 +BT

n−1Xt+1

)]
= exp

(
−rt +An−1 + µ+BT

n−1ΦXt

)
Et
[
exp

(
BT
n−1Σεt+1

)]
.
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Then, we can make use of the moment generating function of ε ∼ N (0, I) to compute

the expectation as

Et
[
exp

(
BT
n−1Σε

)]
= exp

[
1

2
Bn−1ΣΣTBT

n−1

]
.

by collecting separately the constant terms and linear terms in Xt, we obtain the recur-

sive relationship for ATSM.

QTSM

The n-period zero coupon bond price can be formulated as

Pnt = Et
[
e−rtPn−1

t+1

]
= Et

[
exp

(
−rt +An−1 +BT

n−1Xt+1 +XT
t+1Cn−1Xt+1

)]
,

where rt = α0 + βT0 Xt +XT
t Ψ0Xt and Xt follows the VAR dynamics Xt+1 = µ+ ΦXt +

Σεt+1 with εt ∼ N (0, I). Similarly, we substitute the expression of Xt+1 such that

(µ+ ΦXt + Σεt+1)T Cn−1 (µ+ ΦXt + Σεt+1) = 2 (µ+ ΦXt)
T Cn−1Σεt+1,

and hence

Pnt = exp
(
−rt +An−1 +BT

n−1µ+ ΦXt + (µ+ ΦXt)
T Cn−1 (µ+ ΦXt)

)
×Et

[
exp

(
ΓT0 εt+1 + εTt+1Γ1εt+1

)]
,

where

ΓT0 = BT
n−1Σ + 2 (µ+ ΦXt)

T Cn−1Σ, Γ1 = ΣTCn−1Σ.

In this case, we can make use of the (exponential) quadratic-form expectation for ε ∼
N (0, I) as

Et
[
exp

(
ΓT0 ε+ εTΓ1ε

)]
= exp

[
−1

2
det (I− 2Γ1) +

1

2
Γ0 (I− 2Γ1)−1 Γ0

]
.

See, for example, Chapter 12 in Andersen and Piterberg (2010). Therefore,

Et
[
exp

(
ΓT0 εt+1 + εTt+1Γ1εt+1

)]
= exp

(
−1

2
det
(
I− 2ΣTCn−1Σ

))
× exp

((
BT
n−1Σ + 2 (µ+ ΦXt)

T Cn−1Σ
) (

I− 2ΣTCn−1Σ
)−1

(
BT
n−1Σ + 2 (µ+ ΦXt)

T Cn−1Σ
)T)

,
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collecting separately the constant terms, linear terms in Xt and quadratic terms in

Xt, we obtain the recursive relationship for QTSM. We calibrate the initial loadings of

QTSM model as: α0 = 0, β0 = 0 and Ψ0 = diag(50, 0, 0) in order to match with the

range of the bond yields data.

7.7.2 Bayesian estimation

State space formulation

We discuss the Bayesian estimation procedure in more details. First-of-all, it is useful

to re-write the state space model in Section 3.4 as follows:

• Measurement equation. Factor loadings an, bn, and cn are derived from the recur-

sive relationship as described in Section 3.3. The measurement equations for the

observable bond yields ŷnt and macro factors X̂t are related to the latent factors

Xt as

X̂t = Xt + ωX,t,

and

ŷnt = an + bTnXt +XT
t cnXt + ωn,t.

• State equation. The state equation with the parameters µP and ΦP is given by

Xt+1 = µP + ΦPXt + Σεt+1,

which is a standard VAR(1) system.

MCMC algorithm

In the estimation, we need to tackle a non-linear state space model due to the complicated

form of the measurement equations. By following the procedure in Ang et al. (2011),

we adopt Metropolis-Hastings (MH) within Gibbs with a single-move sampler for the

unobservable variables Xt = (Lt, gt, πt). For notational convenience, we denote m

to be the m-th draw or m-th iteration of the MCMC procedure. Moreover, we use

εm ∼ N(0, s2) to denote a draw from a i.i.d. normal with a variance s2, which is tuned

for each random-walk MH sampling procedure employed in various steps.

The algorithm of MCMC is consisted of the following five steps. Note that step 2 and

step 3 are implemented as a standard Bayesian VAR with Minnesota prior.

• Step 1: Drawing the latent factor Xt = (Lt, gt, πt). We adopt the single-

move sampler and generate the latent factors using random walk MH with the
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conditional posterior density:

P (Xt|Xt−1, Ỹ,Θ) ∝ P (Xt|Xt−1)P (Ỹt|Xt, Θ)P (Xt+1|Xt)

where

P (Xt|Xt−1, Θ) ∝ exp(−1

2
(Xt − µP − ΦPXt−1)T (ΣΣT )−1(Xt − µP − ΦPXt−1) )

and

P (Ỹt|Xt, Θ) ∝

(
−1

2

∑
n

[(
ỹnt −

(
an + bTnXt +XT

t cnXt

))2
σ2
n

])

where Ỹt is observable variables including yields and macro variables and Θ collects

the parameters. The standard deviation of the random walk MH step is taken to

be 0.0001 (i.e., 1 bps).

• Step 2: Drawing µP and Φp under the real-world measure P . We use the

Gibbs sampler to draw µP and Φp with the conditional posterior density

P (µP ,ΦP |Θ−, X, Ỹ ) ∝ P (X|µP ,ΦP ,Σ)P (µP ,ΦP )

where P (X|µP ,ΦP ,Σ) is the likelihood function and P (µP ,ΦP ) is the prior as in

Negro and Schorfheide (2010).

• Step 3: Drawing ΣΣ′, the variance of state equation. We take the inverse

Wishart distribution as the prior and sample from the proposal density

q(ΣΣ′) = P (X|µ,Φ, Σ)P (ΣΣ′),

where P (X|µ,Φ, Σ) and P (ΣΣ′) are the likelihood function and prior, respectively.

• Step 4: Drawing µQand ΦQ under the risk-neutral measure Q. We use

the random walk MH algorithm and sample µQand ΦQ from a proposal draw using

the random walk process xm+1 = xm + εm. The proposal draw is then accepted

with the probability

α = min

{
P (Ỹ |(µQ,ΦQ)m+1, Θ−,X)

P (Ỹ |(µQ,ΦQ)m, Θ−,X)
, 1

}
,

where P (Ỹ |(µQ,ΦQ)m+1, Θ−,X) is the likelihood function or the posterior density

as we assume a flat prior as in Ang et al. (2011). The standard deviation of

the random walk MH step is taken to be 0.1% of the magnitude of the initial

parameters.
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• Step 5: Drawing the variance of measurement error (σu). We take the

inverted Gamma distribution as prior with IG(0, 0.00252) in order to sample σu.

We note that it is possible to estimate the non-linear state space model using the particle

filter as in Andreasen et al. (2013). However, we find that one needs to spend an

extensive computational time to estimate our 3-factor QTSM when the filter is used

along with the Bayesian estimation. The comparison of the two approaches are left for

further research.

Optimal pooling

Next, we discuss the estimation procedures as related to the three optimal pooling

schemes. The main idea is that we can treat the pooled prediction density as the like-

lihood of the corresponding model parameters for the proposed pooling scheme. Then,

we can derive and sample the posterior distributions of relevant parameters based on

standard Bayesian MCMC techniques.

Static prediction pooling

To estimate the constant weighting λ, we adopt the random walk MH algorithm to

sample its posterior distribution with a flat prior. To be specific, we generate a proposal

draw λm+1 = λm + εm, compute the likelihood

p(λm+1) =

T∑
t=1

log
[
λm+1p

(
yOt ;Y O

t−1,M1

)
+
(
1− λm+1

)
p
(
yOt ;Y O

t−1,M2

)]
,

and accept the draw with the probability

α = min

{
p(λm+1))

p(λm)
, 1

}
.

Markov-switching prediction pooling

By following by Albert and Chib (1993), we use a MH within Gibbs algorithm consisted

of the following three steps.

1. The regime st at period t is sampled by a single-move algorithm with backward

recursion;

2. The regime-dependent weighting λj for j = 1, 2 are sampled in a block by random-

walk MH;

3. The transitional probabilities q11 and q22 are sampled directly using conjugate

priors (beta distribution).
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Denote S−t = (s1, ..., st−1, st+1, ..., sT ) and YT = (y1, ..., yT ). The single-move algorithm

draws the regime state based on a backward recursion for t = T, T − 1, ..., 1 with the

conditional probability

P (st = j|S−t, YT ) =
g (st = j|S−t, YT )∑2
j=1 g (st = j|S−t, YT )

,

where g ( ·|S−t, YT ) is the posterior distribution of st given by

g (st|S−t, YT ) ∝ p (st+1| st) f
(
yOt
∣∣ st) p (st| st−1) ,

in which

f
(
yOt
∣∣ st) = λmstp

(
yOt ;Y O

t−1,M1

)
+
(
1− λmst

)
p
(
yOt ;Y O

t−1,M2

)
,

is the pooled prediction density at regime st, and

p (st+1| st) and p (st| st−1)

are the transitional probabilities of the Markov chain. Since st is a Bernoulli random

variable, we can easily draw st and accept it with the probability p (st = j|S−t, YT ).

In step 2, the corresponding weighting λm1 and λm2 are sampled in a block based on the

random-walk MH procedure as(
λm+1

1

λm+1
2

)
=

(
λm1

λm2

)
+

(
εm1

εm2

)
, εmi ∼ i.i.d. N(0, s2),

with the likelihood

p(λm+1
1 , λm+1

2 ) =
T∑
t=1

log


2∑
j=1

[
λm+1
j p

(
yOt ;Y O

t−1,M1

)
+
(

1− λm+1
j

)
p
(
yOt ;Y O

t−1,M2

)] .

We then accept the draw with the probability

α = min

{
p(λm+1

1 , λm+1
2 )

p(λm1 , λ
m
2 )

, 1

}
.

In step 3, the transitional probabilities can be sampled by using the beta distribution

as conjugate prior such that (Albert and Chib, 1993)

q11| s1:T ∼ β (u11 + n11, u12 + n12) ,

q22| s1:T ∼ β (u22 + n22, u21 + n21) ,
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where β(α0, α1) ∝ zα0−1 (1− z)α1−1 is the beta distribution and nij is the number of

transition from state i to j as counted from the samples of s1:T . We set the prior hyper-

parameters u11 = 9, u12 = 1, u22 = 9 and u21 = 1, indicating that the prior means of

q11 and q11 are α0/(α0 + α1) = 0.1, and hence a transition is relatively rare.

Dynamic prediction pooling

We follow closely the procedure in Del Negro et al. (2014) to estimate the dynamic

prediction pooling. In particular, we implement the particle filter for {xt}1:T based on

the standard sampling importance resampling (SIR) algorithm:

1. To initialize, we sample the particles xi1 for i = 1, 2, ..., I from i.i.d. N(0, s2) and

assign the equal weighting ωi1 = 1.

2. For t = 2, 3, .., T , propagate of particles by the AR(1) dynamics

xit = ρxit−1 +
√

1− ρ2εit, εit ∼ N(0, s2),

and obtain the sample λit = N
(
xit
)

based on the probit transformation.

3. Compute the likelihood using the pooled prediction density as

ωit = λitp
(
yOt ;Y O

t−1,M1

)
+
(
1− λit

)
p
(
yOt ;Y O

t−1,M2

)
,

and then compute normalized likelihood (weighting) as ωit = ωit/
∑I

i=1 ω
i
t.

4. Resample the particles xit by using the normalized weighting ωit and then return

to Step 2.

We set the autocorrelation coefficient ρ to be a constant as ρ = 0.9 and employ 5,000

particles to achieve a good approximation to the true distribution.



Chapter 8

Conclusion

In this thesis, I address several important issues of the financial market in the aftermath

of the Lehman crisis from the perspective in financial engineering, including the decision

making for a trading strategy, the pricing of financial instruments and the empirical

analysis of bond yields data near the zero lower bound. The topics are motivated by

the new practical and theoretical challenges as emerged from the recent financial crisis

of 2008.

In the first part, I study the optimal stopping problem related to a short-selling strat-

egy and derive the optimal timing for a short-covering under the setting of geometric

Brownian motion and regime-switching stock price process. I show that the type of the

stopping rule depends on the benefit and cost of holding the short position and I con-

duct detailed comparative analysis on the model parameters. For practical application,

I calibrate the regime-switching model to actual data of the Nikkei 225 stock market

and highlight the importance of developing a regime-dependent stopping rule.

In the second part, I investigate several problems related to the pricing of financial

instruments, including European options, capped variance swaps and contingent con-

vertibles. I adopt an equity-credit hybrid modeling approach and study the pricing of

capped variance swaps in the presence of a jump-to-default feature. The pricing formula

are obtained in closed-form for continuous-monitoring and in terms of an approximation

for discrete-monitoring. I then extend the equity-credit hybrid modeling approach to

the pricing of contingent convertible bond, which is a relatively new financial instrument

emerging after the Lehman crisis. An integral equation approach is employed to tackle

the first-passage-time problem for a bivariate Gaussian process as related to the pricing

of contingent convertibles. Furthermore, I study the asymptotic expansion approach

for the multifactor stochastic volatility model of Heston (1993) and perform extensive

calibration exercise to the market data of the S&P 500 and Nikkei 225 option markets.

189
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In the third part, I conduct the empirical study of non-linear term structure model

with macro-finance feature using the Bayesian MCMC method. I study the model

performances of the Gaussian affine and quadratic term structure models under the zero

interest rate policy of Japan since the early 1990s. I investigate the pooled prediction of

bond yields using a log-score criteria and compare the empirical performance of affine and

quadratic term structure models. The result shows that the quadratic model provides a

more realistic description of bond yields when interest rates are close to the zero lower

bound.

With the strong focus on practical relevancy, I hope that the mathematical models

and analysis developed in this thesis will be useful not only for academic researchers in

financial engineering, but also for market participants and policy makers in the banking

and finance industry.
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[7] Alós, E., Leòn, J. A., and Vives, J. (2007). On the short-time behavior of the implied

volatility for jump-diffusion models with stochastic volatility. Finance and Stochastics,

11(4):571–589.

[8] Andersen, L. and Piterberg, V. (2010). Interest Rate Modeling. Volume 2: Term

Structure Models. Atlantic Financial Press.

[9] Andreasen, M. and Meldrum, A. (2013). Likelihood inference in non-linear term

structure models: the importance of the lower bound. Bank of England Working

Paper No. 481.

[10] Ang, A., Boivin, J., Dong, S., and Loo-Kung, R. (2011). Monetary policy shifts

and the term structure. Review of Economic Studies, 78:429–457.

191



Bibliography 192

[11] Ang, A. and Piazzesi, M. (2003). A no-arbitrage vector autoregression of term

structure dynamics with macroeconomic and latent variables. Journal of Monetary

Economics, 50(4):745–787.

[12] Ang, A., Piazzesi, M., and Wei, M. (2006). What does the yield curve tell us about

gdp growth? Journal of Econometrics, 131:745–787.

[13] Antonelli, F. and Scarlatti, S. (2009). Pricing options under stochastic volatility: a

power series approach. Finance and Stochastics, 13(2):269–303.

[14] Asmussen, S. (2003). Applied Probabilities and Queues. Springer.

[15] Avdjiev, S., Kartasheva, A., and Bogdanova, B. (2013). Cocos: a primer. BIS

Quarterly Review.

[16] Baba, N. (2006). Financial market functioning and monetary policy: Japan’s ex-

perience. Monetary and Economic Studies, 24:39–71.

[17] Bakshi, G., Cao, C., and Chen, Z. (1997). Empirical performance of alternative

option pricing models. Journal of Finance, 52(5):2003–2049.

[18] Bates, D. (1996). Jumps and stochastic volatility: Exchange rate processes implicit

in deutsche mark options. Review of Financial Studies, 9(1):69–107.

[19] Battalio, R., Mehran, H., and Schultz, P. (2011). Market declines: Is banning short

selling the solution? Federal Reserve Bank of New York Staff Reports, no. 518.

[20] Battalio, R. and Schultz, P. (2011). Regulatory uncertainty and market liquidity:

The 2008 short sale ban’s impact on equity option markets. Journal of Finance,

66(6):2013–2053.

[21] Bayraktar, E. and Yang, B. (2011). Unified framework for pricing credit and equity

derivatives. Mathematical Finance, 21(3):493–517.

[22] Benhamou, E., Gobet, E., and Miri, M. (2010). Time dependent heston model.

SIAM Journal on Financial Mathematics, 1(1):289–325.

[23] Bergomi, L. (2008). Dynamic properties of smile models. In Cont, R., editor,

Frontiers in Quantitative Finance: Volatility and Credit Risk Modeling. John Wiley

& Sons, USA.

[24] Bernanke, B., Reinhart, V., and Sack, B. (2004). Monetary policy alternatives at

the zero bound: An empirical assessment. Brookings Papers on Economic Activity,

2:1–100.



Bibliography 193

[25] Bernard, C., Courtois, Q. L., and Quittart-Pinon, F. (2008). Pricing derivatives

with barriers in a stochastic interest rate environment. Journal of Economic Dynamics

and Control, 32:2903–2938.

[26] Black, F. and Cox, J. (1976). Valuing corporate securities: some effects of bond

indenture provisions. Journal of Finance, 31:351–367.

[27] Black, F. and Scholes, M. (1973). The pricing of options and corporate liabilities.

Journal of Political Economy, 81(3):637–654.

[28] Boehmer, E. and Wu, J. (2013). Short selling and the price discovery process.

Review of Financial Studies, 26(2):287–322.

[29] Borodin, A. N. and Salminen, P. (2002). Handbook of Brownian Motion. Birkhauser,

Boston, MA.

[30] Brigo, D., Garcia, J., and Pede, N. (2013). Coco bonds valuation with equity- and

credit-calibrated first passage structural models. Journal of Banking and Finance.

[31] Brunnermeier, M. (2010). Deciphering the liquidity and credit crunch 2007-2008.

Journal of Economic Perspectives, 23:77–100.

[32] Buehler, H. (2006). Consistent variance curve model. Finance and Stochastics,

10(2):178–203.

[33] Buehler, H. (2010). Volatility and dividends - volatility modelling with cash divi-

dends and simple credit risk. Working Paper.

[34] Camacho, M. and Perez-Quiros, G. (2010). Introducing the euro-sting: Short-term

indicator of euro area growth. Journal of Applied Econometrics, 25:663–694.

[35] Campi, L., Polbennikov, S., and Sbuelz, A. (2009). Systematic equity-based credit

risk: a cev model with jump to default. Journal of Economic Dynamics and Control,

33:93–108.

[36] Cao, C., Yu, F., and Zhong, Z. (2010). The information content of option-implied

volatility for credit default swap valuation. Journal of Financial Markets, 13(3):321–

343.

[37] Carr, P. and Linetsky, V. (2006). A jump to default extended cev model: An

application of bessel processes. Finance and Stochastics, 10:303–330.

[38] Carr, P. and Madan, D. (1999). Option valuation using the fast fourier transform.

Journal of Computational Finance, 2(4):61–73.



Bibliography 194

[39] Carr, P. and Madan, D. (2010). Local volatility enhanced by a jump to default.

SIAM Journal on Financial Mathematics, 1(1):2–15.

[40] Carr, P. and Wu, L. (2009). Stock options and credit default swaps: A joint

framework for valuation and estimation. Journal of Financial Econometrics, 8(4):1–

41.

[41] Chen, T. (2012). Volatility swap pricing with term heston. Bloomberg Technical

Note.

[42] Cheridito, P. and Wugalter, A. (2012). Pricing and hedging in affine models with

possibility of default. SIAM Journal on Financial Mathematics, 3(1):328–350.

[43] Cheridito, P. and Xu, Z. (2014). A reduced form coco model with deterministic

conversion intensity. Journal of Risk.

[44] Christoffersen, P., Heston, S., and Jacobs, K. (2009). The shape and term structure

of the index option smirk: Why multifactor stochastic volatility models work so well.

Management Science, 55(12):1914–1932.

[45] Chung, T. (2015). Optimal short-covering with regime switching. Recent Advances

in Financial Engineering 2014, editied by Massaki Kijima, Yukio Muromachi and

Takashi Shibata.

[46] Chung, T. and Kwok, Y. (2014). Equity-credit modeling under affine jump-diffusion

models with jump-to-default. Journal of Financial Engineering, 1(2).

[47] Chung, T. and Tanaka, K. (2015). Optimal timing for short-covering of an illiquid

security. Journal of the Operations Research Society of Japan, 58(2).

[48] Coculescu, D., Geman, H., and Jeanblanc, M. (2008). Valuation of default-sensitive

claims under imperfect information. Finance and Stochastic, 12:195–218.

[49] Collin-Dufresne, P. and Goldstein, R. (2001). Do credit spreads reflect stationary

leverage ratios? Journal of Finance, 56(5):1929 – 1957.

[50] Cont, R. and Tankov, P. (2004). Non-parametric calibration of jump-diffusion

option pricing models. Journal of Computational Finance, 7(3):1–50.

[51] Corcuera, J. M., Spiegeleer, J. D., Ferreiro-Castilla, A., Kyprianou, A., Madan, D.,

and Schoutens, W. (2013). Pricing of contingent convertibles under smile conform

models. Journal of Credit Risk, 9(3):121–140.

[52] Cox, J., Ingersoll, J., and Ross, S. (1985). A theory of the term structure of interest

rates. Econometrica, 53:385–408.



Bibliography 195

[53] Cremers, M., Driessen, J., Maenhout, P., and Weinbaum, D. (2008). Individual

stock option prices and credit spreads. Journal of Banking and Finance, 32:2706–

2715.

[54] D’Avolio, G. (2002). The market of borrowing stocks. Journal of Financial Eco-

nomics, 26:271–306.

[55] Davydov, G. and Linetsky, V. (2001). Pricing and hedging path-dependent options

under the cev process. Management Science, 47(7):949–965.

[56] Dayanik, S. and Karatzas, I. (2003). On the optimal stopping problem for one-

dimensional diffusions. Stochastic Processes and Their Applications, 107:173–212.

[57] Diebold, F. and Rudebusch, G. (2013). Yield Curve Modeling and Forecasting: A

Dynamic Nelson-Siegel Approach. Princeton University Press.

[58] Diebold, F., Rudebusch, G., and Aruoba, B. (2006). The macroeconomy and the

yield curve: A dynamic latent factor approach. Journal of Econometrics, 131:309–338.

[59] Diether, K. B., Lee, K., and Werner, I. M. (2009). Short-sale strategies and return

predictability. Review of Financial Studies, 22(2):575–607.

[60] Duffie, D. (2010). The failure mechanics of dealer banks. Journal of Economic

Perspectives, 24(1):51–72.

[61] Duffie, D., Filipovic, D., and Schachermayer, W. (2003). Affine processes and

applications in finance. Annals of Applied Probability, 13(3):984–1053.

[62] Duffie, D., Garleanu, N., and Pedersen, L. H. (2002). Securities lending, shorting

and pricing. Journal of Financial Economics, 66:307–339.

[63] Duffie, D. and Kan, R. (1996). A yield-factor model of interest rates. Mathematical

Finance, 6:379–406.

[64] Duffie, D., Pan, J., and Singleton, K. (2000). Transform analysis and asset pricing

for affine jump-diffusions. Econometrica, 68:1343–1376.

[65] Duffie, D. and Singleton, K. (1999). Modeling term structures of defaultable bonds.

Review of Financial Studies, 12:687–720.

[66] Dyrssen, H., Ekstrom, E., and Tysk, J. (2014). Pricing equations in jump-to-default

models. International Journal of Theoretical and Applied Finance, 17(3).

[67] Eo, Y. and Kang, K. (2014). Forecasting the term structure of interest rates with

potentially mis-specified models. Working Paper.



Bibliography 196

[68] Erakar, B. (2004). Do stock prices and volatility jump? reconciling evidence from

spot and option prices. Journal of Finance, 59(3):1367–1403.

[69] Fonseca, J. D., Grasselli, M., and Tebaldi, C. (2008). A multifactor volatility heston

model. Quantitative Financ, 8(6):591–604.

[70] Fouque, J. and Lorig, M. (2011). A fast mean-reverting correction to heston’s

stochastic volatility model. SIAM Journal on Financial Mathematics, 2(1):221–254.

[71] Fouque, J., Papanicolaou, G., and Sircar, R. (2000). Derivatives in Financial Mar-

kets with Stochastic Volatility. Cambridge University Press.

[72] Fouque, J., Papanicolaou, G., Sircar, R., and Solna, K. (2003). Multiscale stochastic

volatility asymptotics. Multiscale Modeling & Simulations, 2(1):22–42.

[73] Fouque, J., Papanicolaou, G., Sircar, R., and Solna, K. (2004). Maturity cycles in

implied volatility. Finance and Stochastics, 8(4):451–477.

[74] Fukasawa, M. (2011). Asymptotic analysis for stochastic volatility: martingale

expansion. Finance and Stochastics, 15(4):635–654.

[75] Fukasawa, M., I, I., Maghrebi, N., Oya, K., Ubukata, M., and Yamazaki, K. (2011).

Model-free implied volatility: from surface to index. International Journal of Theo-

retical and Applied Finance, 14(4):433–463.

[76] Gauthier, P. and Rivaille, P. (2009). Fitting the smile, smart parameters for sabr

and heston. Working Paper.

[77] Geweke, J. and Amisano, G. (2011). Optimal prediction pools. Journal of Econo-

metrics, 164:130–141.

[78] Geweke, J. and Amisano, G. (2012). Prediction with misspecified models. American

Economic Review, 102(3):482–486.

[79] Gil-Pelaez, J. (1951). Note on the inversion theorem. Biometrika, 38:481–482.

[80] Glasserman, P. and Nouri, B. (2012). Contingent capital with a capital-ratio trigger.

Management Science, 58:1816–1833.

[81] Guo, X. and Liu, J. (2005). Stopping at the maximum of geometric brownian

motion when signals are received. Journal of Applied Probability, 42:826–838.

[82] Guo, X. and Zhang, Q. (2005). Optimal selling rules in a regime-switching model.

IEEE Transactions on Automatic Control, 50:1450–1455.



Bibliography 197

[83] Gupta, A., Akuzawa, T., and Nishiyama, Y. (2013). Quantitative evaluation of

contingent capital and its applications. North American Journal of Economics and

Finance, 26:457–486.

[84] Hagan, P., Kumar, D., Lesniewski, A., and Woodward, D. (2003). Managing smile

risk. Wilmott Magazine, pages 84–108.

[85] Henry-Labordere, P. (2005). A general asymptotic implied volatility for stochastic

volatility models. Working Paper.

[86] Heston, S. (1993). Closed-from solution for options with stochastic volatility with

application to bond and currency options. Review of Financial Studies, 6(2):327–343.

[87] Hoeting, J., Madigan, D., Raftey, A., and Volinsky, C. (1999). Bayesian model

averaging. Statistical Science, 14:382–401.

[88] Jobert, A. and Rogers, L. (2006). Option pricing with markov-modulated dynamics.

SIAM Journal on Control and Optimization, 44:2063–2078.

[89] Johannes, M. and Polson, N. (2009). Particle Filtering, Handbook of Financial

Time Series. Springer-Verlag Berlin Heidelberg.

[90] Jones, C. M. and Lamont, O. A. (2002). Short-sale constraints and stock returns.

Journal of Financial Economics, 66:207–239.

[91] Joslin, S., Le, A., and Singleton, K. (2013). Why gaussian macro-finance term struc-

ture models are (nearly) unconstrained factor-vars. Journal of Financial Economics,

109(3):604–622.

[92] Joslin, S., Priebsch, M., and Singleton, K. (2014). Risk premiums in dynamic term

structure models with unspanned macro risks. Journal of Finance, 69(3):1197–1233.

[93] Kallsen, J., Muhle-Karbe, J., and Vob, M. (2010). Pricing options on variance in

affine stochastic volatility models. Mathematical Finance, 21(4):627–641.

[94] Keller-Ressel, M., Schachermayer, M., and Teichmann, J. (2011). Affine processes

are regular. Probability Theory and Related Fields, 151:591–611.

[95] Kijima, M., Suzuki, T., and Tanaka, K. (2009a). A latent process model for the

pricing of corporate securities. Mathematical Method for Operation Research, 69:439–

455.

[96] Kijima, M., Tanaka, K., and Wong, T. (2009b). A multi-quality model of interest

rates. Quantitative Finance, 9(2):133–145.



Bibliography 198

[97] Kim, D. and Singleton, K. (2012). Term structure models and the zero bound: an

empirical investigation of japanese yields. Journal of Econometrics, 170:32–49.

[98] Lando, D. (1998). On cox processes and credit risky securities. Review of Derivatives

Research, 2:99–120.

[99] Leippold, M. and Wu, L. (2002). Asset pricing under the quadratic class. Journal

of Financial and Quantitative Analysis, 37(2):271–295.

[100] Li, G. and Zhang, C. (2010). On the number of state variables in option pricing.

Management Science, 56(11):2058–2075.

[101] Li, H., Tao, L., and Yu, C. (2013). No-arbitrage taylor rules with switching regimes.

Management Science, 59(10):2278–2294.

[102] Linz, P. (1969). Numerical methods for volterra integral equations of the first

kind. The Computer Journal, 12(4):393–397.

[103] Longstaff, F. A. and Schwartz, E. S. (1995). A simple approach to valuing risky

fixed and floating rate debt. Journal of Finance, 50(3):789–819.

[104] Lord, R. and Kahl, C. (2007). Optimal fourier inversion in semi-analytical option

pricing. Journal of Computational Finance, 10(4):1–30.

[105] Mendoza-Arriaga, R., Carr, P., and Linetsky, V. (2010). Time-changed markov

processes in unified credit-equity modeling. Mathematical Finance, 20(4):527–569.

[106] Nagashima, K., Chung, T., and Tanaka, K. (2014). Asymptotic expansion for-

mula of option price under multifactor heston model. Asia-Pacific Financial Markets,

21:351–396.

[107] Negro, M. D., Hasegawa, R., and Schorfheide, F. (2014). Dynamic prediction pools:

an ingestigation of financial frictions and forecasting performance. NBER Working

Paper No. 20575.

[108] Negro, M. D. and Schorfheide, F. (2010). Bayesian Macroeconometrics. Handbook

of Bayesian Econometrics.

[109] Nualart, D. (2006). The Malliavin calculus and related topics. Springer.

[110] Osajima, Y. (2007). The asymptotic expansion formula of implied volatility for

dynamic sabr model and fx hybrid model. Working Paper.

[111] Pan, J. (2002). The jump-risk premia implicit in options: Evidence from an

integrated time-series study. Journal of Financial Economics, 63:3–50.



Bibliography 199

[112] Papageorgiou, E. and Sircar, R. (2009). Multiscale intensity models and name

grouping for valuation of multi-name credit derivatives. Applied Mathematical Fi-

nance, 16(4):353–383.

[113] Pennacchi, G. (2011). A structural model of contingent bank capital. Federal

Reserve Bank of Cleveland Working Paper 10-04.

[114] Peskir, G. and Shiryaev, A. (2005). Optimal Stopping and Free-Boundary Prob-

lems. Birkhauser Verlag.

[115] Piazzesi, M. (2010). Affine Term Structure Models, Handbook of Financial Econo-

metrics. North Holland, Elsevier.

[116] Pliska, S. and Ye, J. (2007). Optimal life insurance purchase and consumption/in-

vestment under uncertain lifetime. Journal of Banking and Finance, 31:1307–1319.

[117] Rogers, L. and Williams, D. (2000). Diffusions, Markov Processes, and Martin-

gales. Volume 1: Foundations. Cambridge University Press.

[118] Spiegeleer, J. D. and Schoutens, W. (2012). Pricing contingent convertibles: A

derivatives approach. Journal of Derivatives, 20(2):27–36.

[119] Takahashi, A. and Yamada, T. (2012). An asymptotic expansion with push-down

of malliavin weights. SIAM Journal on Financial Mathematics, 3(1):95–136.

[120] Tanaka, K. (2012). Irreversible investment with regime switching: Revisit with

linera algebra. Working Paper, Tokyo Metropolitan University.

[121] Tanaka, K., Yamada, T., and Watanabe, T. (2010). Applications of gram-charlier

expansion and bond moments for pricing of interest rates and credit risk. Quantitative

Finance, 10(6):645–662.

[122] Vasicek, O. (1977). An equilibrium characterization of the term structure. Journal

of Financial Economics, 5:177–188.

[123] Waggoner, D. and Zha, T. (2012). Confronting model misspecification in macroe-

conomics. Journal of Econometrics, 171:167–184.

[124] Wright, J. (2011). Term premia and inflation uncertainty: Empirical evidence

from an international panel dataset. American Economic Review, 101:1514–1534.

[125] Zhang, B., Zhou, H., and Zhu, H. (2009). Explaining credit default swap spreads

with the equity volatility and jump risks of individual firms. Review of Financial

Studies, 22(12):5099–5131.

[126] Zheng, W. and Kwok, Y. (2014). Closed form pricing formulas for discretely

sampled generalized variance swaps. Mathematical Finance, 24(4):855–881.


	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Optimal Short-Covering of a Security
	1.2 Equity-Credit Hybrid Modeling
	1.3 Term Structure Modeling near the Zero Lower Bound
	1.4 Mathematical Tools
	1.5 Copyrights

	I Decision Making
	2 Optimal Timing for Short-Covering of an Illiquid Security
	2.1 Introduction
	2.2 Model Setup
	2.2.1 Short-Seller's Problem
	2.2.2 Solution
	2.2.3 Discussion

	2.3 Active Condition
	2.4 Numerical Examples
	2.4.1 The impact of loan fee rate and interest rate
	2.4.2 The impact of recall risk
	2.4.3 The impact of volatility

	2.5 Summary
	2.6 Appendix
	2.6.1 Proof of Lemma 2.1
	2.6.2 Short-Seller's Problem
	2.6.3 Proof of Proposition 2.3


	3 Optimal Short-Covering with Regime Switching
	3.1 Introduction
	3.2 Regime Switching Stock Price Model
	3.2.1 Setup
	3.2.2 Auxiliary problem and lower bounds

	3.3 Solution
	3.3.1 Value function and optimal threshold
	3.3.2 Smooth-fit

	3.4 Numerical Examples
	3.4.1 Parameter calibration
	3.4.2 The impact of recall risk
	3.4.3 The impact of transition intensity

	3.5 Summary
	3.6 Appendix
	3.6.1 Proof of Lemma 3.1
	3.6.2 Proof of Proposition 3.2
	3.6.3 Condition (3.6)
	3.6.4 Proof of (3.9)



	II Pricing
	4 Equity-Credit Hybrid Modeling and its Application
	4.1 Introduction
	4.2 Affine Equity-Credit Modeling
	4.2.1 Affine process
	4.2.2 Moment generating function
	4.2.3 Examples

	4.3 Pricing of Defaultable European Options
	4.3.1 The transform analysis
	4.3.2 European options and put-call parity

	4.4 Pricing of Capped Variance Swaps
	4.4.1 The cap feature
	4.4.2 Continuous-monitoring
	4.4.3 Discrete-monitoring

	4.5 Numerical Illustration
	4.5.1 Simulation study
	4.5.2 The impact of default risk
	4.5.3 Interaction between volatility risk and default risk

	4.6 Summary
	4.7 Appendix
	4.7.1 Proof of Lemma 4.2
	4.7.2 Proof of Theorem 4.3


	5 Pricing Models of Contingent Convertibles
	5.1 Introduction
	5.2 Pricing of a CoCo Bond
	5.2.1 Recent development
	5.2.2 The structure

	5.3 An Enhanced Hybrid Modeling
	5.3.1 Setup
	5.3.2 Conversion value

	5.4 Examples
	5.4.1 A simple reduced-form model
	5.4.2 Brownian capital ratio
	5.4.3 Mean-reverting capital ratio
	5.4.4 State-dependent intensity

	5.5 Numerical Illustration
	5.5.1 The impact of correlation
	5.5.2 The impact of stock price volatility
	5.5.3 The impact of intensity

	5.6 Summary
	5.7 Appendix
	5.7.1 First-passage-time problem for the bivariate process
	5.7.2 Proof of Lemma 5.1
	5.7.3 Proof of Lemma 5.2
	5.7.4 Proof of Proposition 5.4
	5.7.5 Proof of Proposition 5.5


	6 Asymptotic Expansion for Multifactor Heston Model
	6.1 Introduction
	6.2 Multifactor Heston Model
	6.2.1 Mathematical formulation
	6.2.2 Stochastic correlation and the term structure of volatility

	6.3 Asymptotic Expansion for Multifactor Heston Model
	6.3.1 The perturbed multifactor Heston model
	6.3.2 Asymptotic expansion

	6.4 Numerical Illustration
	6.4.1 Constant model parameters
	6.4.2 Time-dependent correlation

	6.5 Calibration
	6.5.1 Data and the calibration procedure
	6.5.2 S&P 500 index option
	6.5.3 Nikkei 225 index option
	6.5.4 Model-implied long-dated volatility 
	6.5.5 Computational time

	6.6 Summary
	6.7 Appendix
	6.7.1 Preliminary results with Malliavin calculus
	6.7.2 Proof of (6.14)
	6.7.3 Proof of (6.17)
	6.7.4 Proof of (6.23)



	III Empirical Analysis
	7 Non-linear Term Structure Modeling near Zero Lower Bound
	7.1 Introduction
	7.2 Term Structure Models
	7.2.1 Setup
	7.2.2 Affine term structure model
	7.2.3 Quadratic term structure model
	7.2.4 Estimation method
	7.2.5 Data and factors

	7.3 Estimation Results: Term Structure Models
	7.3.1 Model estimation
	7.3.2 Prediction of macro factors and bond yields
	7.3.3 Robustness check

	7.4 Methods of Prediction Pooling
	7.4.1 Motivation
	7.4.2 Static prediction pooling
	7.4.3 Markov-switching prediction pooling
	7.4.4 Dynamic prediction pooling
	7.4.5 Comparison with Bayesian model averaging
	7.4.6 Estimation method

	7.5 Estimation Results: Prediction Pooling
	7.5.1 Prediction score
	7.5.2 Static pooling
	7.5.3 Markov-switching pooling
	7.5.4 Dynamic pooling
	7.5.5 Comparison

	7.6 Summary
	7.7 Appendix
	7.7.1 Bond pricing
	7.7.2 Bayesian estimation


	8 Conclusion
	Bibliography


