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Formulas on preview and delayéd™> control

Akira Kojima, Member, IEEE Shintaro IshijimaMember, IEEE

Abstract—A generalized H> control problem, which covers Furthermore the approximation of the solution does not clarify
preview and delayed control strategies, is discussed based onthe solvability of problem.
a state-space approach. By introducing a Hamiltonian matrix, In this paper, we focus on a generalized class of delay

which is associated with a delay-free generalized plant, the t hich both ltiole i t del d .
analytic solution to the corresponding operator Riccati equation Systems, wnich COVers both multple Input aelay ana preview

is newly established. Based on the result obtained here, theCONtrol strategies, and derive explicit formulas ##f (LQ)
H® control problem is solved and, for typical control problems control problem by clarifying the solvability and the analytic

(e.g. #* and LQ control for multiple input delay systems, solution to the corresponding operator Riccati equation. The
gsmﬁﬁzvmtfﬁngyos?éffme interpretations are provided on the  ganerglized system enables us to discuss /itfé preview
' control, H*>° control with multiple input delays and, further,
Index Terms—H™ control, infinite-dimensional system, input provides analytic representation of LQ control law, which
delay system, preview control, operator Riccati equation. feature has not been clarified for multiple input delay systems.
The key point in this approach is that the analytic solution to
I. INTRODUCTION the operator Riccati equation is newly established based on
HE design method of7*> control law has been studiegthe stable eigenspace of Hamiltonian matrix. The Hamiltonian
for infinite-dimensional systems [6], [29], [11], [25] and matrix js dgfined With a delay-free system and 'enables us
especially for a class of time delay systems, explicit solutiof@ Provide intérpretations on the feature of resulting control
are obtained based on various approaches [22], [26], [17], [1§}I’St_er_ns. I_:urthe_rmore, in highlight with the received method
[20], [12], [13], [14]. Recently, by applying the approachegor f|n|te—d|men_s|onal systems [4], [9], the proposed approach
for delay systems, the effect of preview action is furthe#!SO characterizes the limitation of the#> performance,
investigated in terms of th&> performance [19], [27], [15], which !evel is not attained via causal or uncausal control
[16]. strategies. _ _

In the state-space approach for infinite-dimensional systems/t the first stage of attacking the problem, we derive a
the abstract system theory has been discussed for a clas§§gessary and sufficient condition on the existence of sta-
systems (Pritchard-Salamon systems, e.g. [24], [2]) and, if tRiizing solution to an indefinite operator Riccati equation.
plant is in this class, the typical control problems such d4'€ condition is completely characterized by nonsingularity
H> (LQ) control or the estimation problems are characteriz&@] & matrix, which is defined with the system parameters,
via corresponding operator representations [8], [10], [29]. Fgpd, if exists, the anal_ytlc SQ|UtI0n is cons_tr_ucted with _|r_1tegral
general infinite-dimensional systems, it should be also not@gerators. Then we investigate the additional condition for
that we will face with the difficulties at the first stage tdhe positive sem|_—def|n|teness of the stabilizing soluthn and
check whether the plant is in the Pritchard-Salamon systerfii2borate the design method &f* control law. By employing
For time delay systems, a function-space representation'i§ advantage of state-space approach, the featufe-ofLQ)
established for general retarded delay systems, which invofRtrol law is clarified from the property of the closed-loop
distributed and point delays in the control, the state, affyStem- _ _ _
the output, and it is clarified that the representation falls Th€ paper is organized as follows. In Section II, tHe®
into the class of Pritchard-Salamon systems [23]. These fufntrol problem is defined for the system with preview and
damental frameworks enable us to deal with a broad cldiglayed strategies. Then we prepare preliminaries for a class
of control problems with delayed/preview strategies beyorfi infinite-dimensional systems (Pritchard-Salamon systems)
the apparent system representation and, further, have a g¢l and describe the generalized plant on an appropriate
tential to provide an insight on the underlying property dtnction-space [23]. The.desc.rlptlon |s.further transformed
resulting systems. However, in the paradigmi#® control 0 an aux_|I|ary fqrm, which yields a S|_mple structure for_
synthesis, the advantage of the state-space abstract thdfy @nalytic solution to the corresponding operator Riccati
is not brought out because, even if we can employ finit€duation. In Section Ill, by employing the auxiliary system
dimensional approximation, we are faced with a huge Siggscrlptlon, the solvability of the operator Riccati equation

of finite-dimensional calculation in the repetitive procedurdS completely characterized based on a Hamiltonian matrix,
which is associated with the delay-free generalized plant. The
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considerably simplified. Some remarks are also provided previewable reference signals and those in the control define
the behavior of the resulting system. After describing all proofke H*° control problem for input delay systems. Typical
in Section V, the preview and delayéddl> control problems control problems are illustrated by Example 1-4.

are illustrated with numerical examples (Section VI). Example 1. H*° preview control: DefineX with B = [B,y, 0],
Notation and terminology: LefX and Y be real Hilbert D = [Dy, D], 0= hy < hy = L and describe the uncertainty
spaces with normg - ||x, || - [[y and inner product:,-)x, and the previewable reference signal Bywy(t), Diw;(t —

(-,-)y, respectively. Let be dense inX andZ* be the adjoint 1), respectively. Rewriting the reference signal by(t) =
space. The adjoint pairing betweghe Z andg € Z* will  r (¢t + L), the problem is equivalently given as follows:
be denoted by(f, g) z,z«. The space of Lebesgue measurable

functions [a,b] — R™, which are square integrable, will #(t) = Ax(t) + Dowo(t) + D1r1(t) + Bou(t)
be denoted bng(a,b; Rn) Let E(X, Y) denote the set yprev . Z(t) :Fl‘(t)—FFQU(t) (2)
of bounded linear operators : X — Y. The adjoint of (t)

I' e £(X,Y) will be denoted byl € L£(Y*, X*). When

X =Y, we write £(X) instead of£(X,Y). A self-adjoint y(t) = u;‘)@)L
operatorl’ will be written T' > 0 if (z,Tz)x > 0 for all n(t+1L)
we X andl'>01if (z,Tz)x >0,z #0. As the future reference signak (¢ + L) is included in the
measurementy(¢t), we can deal with the preview control
Il. FORMULATION AND PRELIMINARIES problem in the formulation (1). A simple cas®{ = 0) is
A. Problem Formulation discussed by [15]. ]

Define a full information control problem (Fl-problem)Example 2. 1> control with input delays: The H> control
by the generalized plant with delays in the control and tHioblem for multiple input delay systems is defined with=

disturbance: [Bo, B1,---,Bag], D = [Dy,0,---,0]. It broadens the class
d d of problems where analytic solutions are clarified. A related
i(t) = Ax(t) + Z Dyw;(t — h;) + Z Bjui(t — hy) problem is independently discussed by [18]. ]
i—0 i=0 Example 3. LQ control with input delays: Define an LQ
Y 2(t) = Fa(t) + Fou(t) (1) control problem byD = 0 with the cost-functional
v = o) ~
w(t) J= / (T (O)Qa(t) + T (Hut)} dt, Q= FTF.  (3)
0
wo(t) uo ()
wi (t) z uy (t) . The formulation (1) naturally covers LQ (of) control
w(t) = : €R, u(t) = €R™, problem and enables us to solve the LQ control problem for
wd.(t) ud.(t) multiple input delay systems. The LQ (éf;) control problem
L . with multiple input delays is independently considered in [21],
wi(t) € RY, w;t) e R™ (i=0,1,---,d) [31], [32] by employing the specific structure which lies in
z(t) € R, y(t) e R"*, 2(t) e RP the problem. In [21], the control law is obtained based on

where z, w, u, z, y are the state, the disturbance, théhe fundamental property such that the impulse response is

: cl}aracterized with the series of delay-free control problems.
control input, the regulated output, and the measurement”q [31], [32]. the LQ control problem is solved via delay-free
the system respectively. The matricds F, Fy, and B := ' ' P Y

[Bo, By, By, . Bal, D := [ Dy, Dy, Day--- , Dy] are with fixed-lag smoot_hmg problem, which is dual to the original
i . : ; . problem. We will illustrate the LQ control along the general
appropriate dimensions arid (: = 0,1,--- ,d) denote time " . L .
. . . i H® control problemX and derive an alternative interpretation
delays in the increasing orded::= hg < h) < hy < -+ <

hg =: L. We make following assumptions for the syst&in on the feature of resulting control system (Section 1V) as well
A . bilizabl as the control law. ]
2;) %T’ ?F's sia (')Iia € The control problem®: provides a base to deal with more
) Fo [ Fol iy 0.1, complicated delay systems, where sub-systems are connected
A—jwl B . . e .
A3) rank r | =n +m, VYweR. with unilateral transmission delays. For example, a unilateral
0

The H> control problem is to design a feedback control IaV\(ljelay system [7] which arises in the wind-tunnel or the tandem

. . connected processes is illustrated as follows.
which causally depends om such that the resulting closedE le 4. [ trol of unilateral del ) F
loop system satisfies the following conditions: Xampie 4. controf ot uniiatéral delay Systems: Focus

C1) The closed loop system is intemally stable: on a unilateral delay system depicted by Fig.1(a), where sub-

C2) the resulting closed loop systek,, from the distur- systems:

banceu_; to the regulated output satisfies||X., || < v St #a(t) = Auis() + Dywi(t) + Byua(t) + Evoi(?)
for a given constant > 0. .
The generalized plant (1) describes a broad clas# &f 6i(t) = Cii(t)
control problems and covers preview and delayed control ac- Ei(t) € R™, wi(t) € R uy(t) € R™,
tions. The time delays in the disturbance equivalently describe qi(t) € RPi (Ey =0,v9 =0,i=0,1,2),
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In the Pritchard-Salamon systems, the basic model is

(t) = Ax(t) + Bu(t), z(to) = xo
% y(t) = Ca(t), to<t<t, (4)

whereu(-) € La(to,t1;U), y(-) € La(to,t1;Y) and U and
Y are Hilbert spacesA is the infinitesimal generator of a
strongly continuous semigrouP(¢) on a Hilbert spacé&. In
order to allow for unboundedness of the operaBrand C,
it is assumed thaB € £(U,V) andC € £L(W,Y) where

% 1 5 S W,V are Hilbert spaces such that
WcCcXcV (5)
K i “o with continuous dense injections. (4) is interpreted in the mild
(b) Auxiliary form form

Fig. 1. Example of a unilateral delay system (3 sub-systems) t
2(8) = Tt — to)mo +/ T(t - 0)Bu(o)do,

to
are tandem connected with the transmission delay&:,) = to <t <t. (6)

q1(t = h), v(t) = g2(t — h). Rewriting the states by In order to make sure that the trajectories are well defined

wi(t) = F5(t —ih), i=0,1,2 in all three spacedW,X,V, it is assumed thaWl'(¢) is a
’ ’ ’ T strongly continuous semigroup 8¥ andV and the following
the system Fig.1(a) is transformed to Fig.1(b) and defined Bypothesis are satisfied.

> with the following matrices: H1) There exists some constant- 0 such that
Ay EoCy 0 / !
) S T(t—0)B d < bl|u(- . 7
a0 A e | | Tt =o)Bu(@)io|  <bluC)lzawne) ()
0 . 0 A2 for all U() € Lg(t(),tl; U)
o= { [ Co 00 ] ] Fy = { Op;wn } H2) There exists some constant- 0 such that
' Ome ’ ' m ’
Dy 0 0 ICT(: = t0) || La(to.tr5v) < cllzllv 8
[ Do D1 Dy ]e=| 0 Dy 0 1, for all z € W.
0 0 D, H3) Z = Dyv(A) C W with continuous dense embedding
B, 0 0 whereZ is endowed with the graph norm & regarded
[ By, B Bs } = 0 B 0 , as an unbounded closed operatordn
0 0 B By [23], it is shown that a class of time delay systems, which
m:=mgy+ mq + mso involve delays in state, input, and output, are described in the

framework of the Pritchard-Salamon systems. We will solve
where z(t) = (qo(t),u(t)) andho = 0,h1 = h,ha = 2h. the H> control problemX based on the abstract system

Thus, the 7> performance of the unilateral delay systemgescription and provide explicit formulas on the solvability
Fig.1(a) is evaluated based on the system formulation B and the solution (control law).

In this paper, we will provide an explicit formula for the
generalizedH*° control problem, which covers Example
1-4, and characterize the solvability and the analytic soluti
based on finite-dimensional operations. Before describing ourFor the systemX, we first prepare a standard system
approach, we will prepare an abstract system descriptitgpresentation established by [23] and precisely describe the
developed by [23], [24] (Pritchard-Salamon systems) with trgystem dynamics with the stored signals in the delay elements.

&1 System Description on Function-Space

relation to theH>° control problemX we will solve. Then we introduce an auxiliary system description, which
preserves the solvability condition of tli&> control problem
3.

B. Pritchard-Salamon Systems Introduce a Hilbert spacel := R™ x Ly(—L,0; RY) x

Pritchard-Salamon systems describe a class of infinite2(—L,0; R™) endowed with the inner product:
dimensional systems, which covél as well as parabolic/ b, B) =
hyperbolic systems, and have an advantage of characteriziné R

0 0
the LQ and H* control problems based on corresponding ¢,0T¢0 +/ ¢1T(5)¢1(5) d5+/ ¢2T([3)¢2(5) ds,
operator representations. The detailed introduction is found in -L L

([29], Chapter 2). ="y e X, ¢o=(¢"¢',¢") X, (9)
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and describe the systelm by the evolution equation [23].

(t) = A(t) + Dw(t) + Bu(t)
S:oz(t) = Fi() + Fou(t) (10)
X &(t)
(t) = [ w(t) :|
(0) = B¢, X (11)

The operatorA4 is an infinitesimal generator defined as fol-

lows:

oV
¢

D(A) = {d) S X N [i;] = W172(_L70; ]Rl-‘rrn)7

0] =0} 0

whereV 2 denotes the Sobolev spaceRif-valued, abso-

Ag

A¢® + D¢'(~L) + B¢2(L)]

lutely continuous functions with square integrable derivatives

By [23], it is shown that the syster® is in the Pritchard-
Salamon systems witlW = X = X, V = V, A = A,
B=[D, B],C=F.

The initial state, which corresponds to the systenis given
by (11) with the following operators.

1
=10
0

21 € L(Ly(~L,0; RY), Z, € L(La(—L,0; R™)) :

o O

(1]

=, € L(X) (18)

0
0

[1]

2

X[—L,—L+ho] (5) : ¢]5(5)
=65 (8) = | et ring(B) - 68| |

X[fL,fL#»hd.] (5) : ¢]§(5)

_L<B<0, k=1,2 (19)

on[—L,0] (see e.g. [1], Chapter 2). The adjoint operator of

A is obtained as follows:

AT¢O
A%—{—w’,
_¢2’
,lpl
D(A*) = {w €EX: LA € Wh2(—L,0; RH™),

] =[]} w0

Extending the state-spack to V := D(A*)", Dy(A) = X

holds and the Hilbert spaces, V are with continuous, dense

injections satisfyingt’ C V [23]. Denoting the elements =
(¢°, 9", ¢%) € X by

¢t = (¢0: ¢1,- - da)s &; € La(—=L,0; R")
¢2 = (d)gadﬁv e 7¢(21)5 ¢32 S LQ(_Laov Rm])
input/output operator®, 15, F are defined as follows:
[ Dg¢® ]
¢1(—=L + h)
. l * *
D:R =V, D¢= 6L (=L +hi) | ¢ € V" (19)
| $4(—L + ha) |
[ Bi¢® ]
¢3 (=L + h1)
B:R™ =V, B'¢= S2(-L+h) | peV* (16)
L ¢3(—L + ha) |
F:X > RP, Fop=F¢°, peX. (17)

where x is a characteristic function defined by ()

1 (BeA)
{ 0 (B¢ A) It should be noted that the statét) (¢ > 0),

which is driven by and w, satisfiesi(t) € =ZX and
corresponds to the systemin the following manner:

w0 Uto
x(t) Wi Ug1
)= we |, we=1| . |, = .
uy : :
Wtd Utd
oy Jwit+B+L—h) —L<B< L+ h;
wyi (B) = 0 —L+h;<B<0
(8) = uj(t+B+L—hj) —L<<—-L+h;
Ui\ = 0 —L+h;<B<0
(i,j=0,1,--- ,d). (20)

Remark 1The restriction of initial state (11) does not affect
the stability condition of the systeii. Even if the initial state
is defined byvz(0) € X, the trajectoryi(t) driven by(w, u) €
L(0,t; R*™) is bounded ovefo, L] andi(L) € ZX holds.

[ |

Secondly, we prepare an auxiliary output delay system,
which is defined with bounded input operators. Introduce
a state-space¥, R™ x Ly(—L,0; R?) and define an
infinitesimal generator as follows:

Ag°

Ao¢ = l: ¢1/ :| )
D(A,) ={p€X,: ¢' € W'?(—L,0; RP), F¢’ = ¢'(0)} .

(21)

On the subspac®/, := D(A,), Dy (A;) = &, holds and the
spacesV,, X, are with continuous, dense injections satisfying
W, C X, [23]. We will define an auxiliary system with the
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operatorsg € L(X, X,), G* € L(X,, X): SoAod + A5S0p — SoBoBBSo¢
{ (G9)° } + S DDSop+ FiFop =0, ¢ €W, (30)
f =
(G6)*(€) 0 ) the H*° control problems are characterized by the following
eAL¢O+/ Ny { ¢2(5) ]dﬂ propositions. N |
L ) ¢*(B) Proposition P: The H* control problem: is solvable iff
1 ) il i *
A(€4+L) 40 A(E—B) o' (B) (29) has a stabilizing solutio& > 0 (S € £(V,V*)) such
Fe o+ F/_Le D B] { »*(B) dp that A — BB*S + % - DD*S generates exponentially stable

CL<E<0, ¢=(4° o, ¢?) € X (22) Semigroups orv.! Furthermore, if solvable, ah/> control
law, which stabilizes: on X, is given by

[ (Gy)° .
N t) = —B*Si(t). 31
G (B) | = u(t) = —B"Si(t) (31)
L (G*¢)%(8) n
[ T O i Proposition P,: The H® control problems, is solvable iff
A A L) T, /1
eyl + /7L€ EHDETYL(E) de (30) has a stabilizing solutios, > 0 (S, € L(X,)) such that
T A5 o 0 AT (6—g) T /1 A, — B,B:S, + $ -D,D:S, generates exponentially stable
D (6 By +/ e Frp(€) di) ; semigroups o, If solvable, anH> control law, which
%o stabilizesY:, on X, is given by
BT —ATB,0 / AT(£—,B)FT 1 d )
o (s [ veEe) | u(t) = —B3Suiolt). (32
—L S ﬂ S 03 w = (wovwl) € XO7 (23) [ ]
which satisfy the following properties. For the operator Riccati equations (29),(30), it is noted that
Lemma 2:G € L(X,W,) andG € L(V, A,). B there exists at most one stabilizing solution in like manner
Proof: Section V-A. m as finite-dimensional case ([29], Lemma 2.33). Finally, we
Introduce an evolution equation. will verify that the H°° control problems for¥ and X, are
: . equivalent.
Fo(t) = Aoo(t) + Dowl(t) + Boult) qLemma "
o 2(t) = Foio(t) FRul) @8 gy s, > 0(S, € £(,)) is a stabilizing solution to (30),
Uo(t) = [%(t)] the stabilizing solutionS > 0 (S € L(V,V*)) to (29) is
i w(t) given byS = G*S,G.
20(0) :=GE¢, p€X (25 (b) The H* control problemy: is solvable iff the problem
The operatorA, is defined by (21) and the inputioutput o IS solvable. u
operators are given as follows: Proof: Section V-C. [ |
. m In the sequel, we pose the following problem and derive a
B, :=GB € L(R™, &) (26) design method off>° control law for the generalized plant
D, :=GD € L(R", X,) 7 x»

Fo € LOW,,R?) : Fop = ¢*(—=L), ¢€W,. (28) Problem P, : For the operator Riccati equation (30), provide
a necessary and sufficient condition such that there exists
a stabilizing solutionS, > 0 (S, € L(X,)). If it exists,
construct the stabilizing solutios, > 0 analytically. In
saying the stabilizing solutioss,, we mean that the operator
A, — B,B:S, + % -D,D:S, generates exponentially stable
semigroups on,. [ |

As follows from Lemma 4(b), the solution t®, provides

a necessary and sufficient condition on the solvability of the
H* control problems:. Furthermore, théZ> control (31) is
given by

Between the systemﬁ and3,, the following properties are
preserved.
Lemma 3:

@ LetW =W, X =V = X, and A = A,
B = [D,, B,], C = F, in (4),(5), thenZ, is in the
Pritchard-Salamon systems.

(b) Let £(0) € X and,(0) = G&(0) € W, be the initial
states of the systems, 3, respectively, ther,(t) =
G#(t) (t > 0) holds for any(w,u) € Ly(0,t; RH+™).

(c) For any(w,u) € Ly(0,t; RH+™), the systems: with
#(0) = 0 and 3, with ,(0) = 0 generate the same u(t) = —B*G*S,Gi(t) = —B:S,Gi(t) (33)
outputz € Ly(0,t; RP). . . .

Proof: Section V-B. with the stabilizing §o|ut|or80 2 0 (Lemma 4(a) and (31)).
For the Pritchard-Salamon systems, the solvabilityHoP In the next section, we will solve the proble, by
control problem can be described with the corresponding dkPloring the analytic solution to (30) and elaborate the design
erator Riccati equations ([29], Theorem 4.4). For the systeff¢thod of 7> control law form the viewpoint of the original

3, 3, with the operator Riccati equations: problemX..

* _ * IFor the operatoS € £(V,V*), the positive definiteness is defined by
SA$+ A'S¢ - SBB S¢ Vo €V : (¢p,S¢)y, v+ > 0. The condition holds iffS > 0 on X. See e.g.
+55  SDD*Sp+ F*Fp=0, ¢€k, (29)  [29], Section 2.5.
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[1l. MAIN RESULT is nonsingular wheré ,(-) is a fundamental solution to

Let us derive explicit formulas for the probled®, and the differential equation

provide a design method df>° control law forX. The key Uu(0)=1
point in our approach is that the stabilizing solution to (30) ﬁ\p D= U (DI —Lth <t<—L+h
is newly established based on a Hamiltonian matrix, which is dt alt) alt)Ji"s TS TS =L i,
defined with the delay-free system of (1) & 0). We first i
state a qualitative property of the Hamiltonian matrix. J, = A > (& -D;Df - B;B})
Lemma 5:For a giveny > 0, the H> control problem% P 3=0 AT
is solvable only if the Hamiltonian matrix B -
(i=0,1,2,--- ,d—1). (40)
A -BBT + %5 - DDT . . L
H:= _FTR —AVT (34) If the stabilizing solution exists, it is given as follows:
,_ * -1
does not have eigenvalues on the imaginary axis. [] So 1=V (V1 + GG V,) . (41)
Proof: Section V-D. ] ]

Lemma 5 guarantees the fact that, if (30) has a stabilizifigne properties of the operators (36),(41) are noted as follows.
solution S, € L(X,), there exists a column full-rank matrix Remark 7:The operator (36) is further represented by
V € R2"*n defined as follows: Vi—I 0

V1+QHQV2:I+[ 0 0

} + GIIG*V,
X_(H):=ImV: HV =VA, A: stable matrix

Vo= [ Vi }, Vi, Vo € R™*™. (35) Where{ Vlo_‘r 8
since II, V, are bounded and the operatgr € L(X,X,)

. . o defined by (22) is given by the sum of compact (finite-
stable eigenspacé’_(H) [4], [9] only if the 1> control 0 “Fredholm, and Volterra) operators. Thus, the condition

problemX: is solvable. i ) Theorem 6(b) holds iff (36) does not have any eigenvalue at
Based on Lemma 5, we first derive a necessary and sug‘}-I in. -

cient condition on the existence of the stabilizing solution to po 14k 8 The stabilizing solution (41) is self-adjoint. The

v ] is finite-rank andG11G*V, is compact
2

In other words, the Hamiltonian matrii¥ hasn-dimensional

(30). Then we clarify the additional condition such that thSquaIity
stabilizing solution turns positive semi-definite. The existence .
of stabilizing solution is clarified as follows. (V1 + GG V)™ S, (V1 + GIIG™Vs)
Theorem 6:For a giveny > 0, suppose there exists a = ViV + V3 GIG*V,
column full-rank matrixV € R2"*" defined by (35). Then, VIV, 0 § .
the following statements (a),(b),(c) are equivalent. = [ 0 T } + VGGV, (42)
€) The.operator Riccati equation (30) has a stabilizinfgnowS from (41) and, further
solutionS, € L(X,).
(b) The operator VitVe = V3t (43)
Vi + GIIG* Vs € L(X,) (36) holds for th_e stable_e_ige_nspace (3_)5)_ ([30], T_heore_m 13.3).
Hence (41) is self-adjoint if the stabilizing solution exist®
has a bounded inverse where the operaddrs), € Proof of Theorem 6:Section V-E. [ |
L(X,), Il € L(X) are defined as follows: By Theorem 6(c), it is shown that the operator Riccati
Vi 0 Vo 0 equation (30) has a stabilizing solution iff the matrix (39) is
Y, = { 1 7 ] V- [ 2 7 } ’ (37) nonsingular.
0 0 In the derivation of Theorem 6, it is noted that the auxiliary
system descriptiorx, yields a following equality:
0 0 O * 1 *
0 _BOB 2’ DOD *
M=|0 — 2.1, 0 |€L(X): A* o3 o | [ Vi HoUGTY
~F3Fo —A Vs
0 0 HQ o o
YV, + GIIG* V.
X001 (5) - 35(5) = [ VO L, oeDn) @9
: where A,, defined by
(Ik6")(B) = | X(—L4ni0)(B) - $F(B) |, k=1,2. (38) Ag
AAO(b: |: ¢1’ :| ) D(AAO) =
4k
X[—L+hg,0] (6) d)d(ﬂ) {¢ cEX,: ¢1 c W1’2<—L,O; RP),FV1¢O _ ¢1(0)} (45)
(c) The matrix A : stable matrix defined by (35)
T I generates exponentially stable semigroupsign Therefore,
Up :=V " Wa(=L) [ 0 ] (39) in like fashion of finite-dimensional systems, the stabilizing
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solution (41) is constructed iff the operatdf + GIIG*V; is Ui(=L+h;)=1

invertible. i\llj(t) =0,(t)J}, (49)
Remark 9:The auxiliary systen®, has the advantage of dt_L Fhi<t<—L4hi (i=01,--,j—1)
yielding an operator Hamiltonian representation (44), which o o v o o
expresses the stabilizing solution by (41). Similar approach Wo =1, Wy(-L):=0, (490
is not available with the systed because the correspondingvhere W ,(-) is defined by (40) in Theorem 6. ]
solution is given byS = G*S,G and the operatdy is compact Proof: Section V-G. ]

(Lemma 4(a); see also Remark 7). ]

Based on Theorems 6,10,11, the solvability and the solution

Employing the analytic solution (41), 1) the condition ofo the H> control problem are summarized by the following
positive semi-definitenessS{ > 0) and, 2) the representationtheorem.
of the H> control for ¥, are clarified by Theorems 10 and Theorem 12 (Main result)For a giveny > 0, the H*°

11.

control problem forX is solvable iff the following conditions

Theorem 10 (Condition of, > 0): Define a fundamental (&),(b) are satisfied.

solution to the differential equation

{\i/() Uyt)JF, —L4+h; <t < —L+hiyy

> (5= D;DJ = B;BJ)
i=0 ’
_AT

(i=0,1,2,--- ,d

- A

71_1

~1) (46)

with a scalar parametgr # 1. The stabilizing solution (41)
is positive semi-definitéS, > 0) iff the matrix

=y or| I 0|sz 1
o=, Y]uen|g] @
is nonsingular for any: < 0. [ |
Proof: Section V-F. ]

Theorem 11 (Control law)lf the H* control problem
is solvable, anf*° control for ¥ is given as follows:

u; (1)

(- +z/

~BIWUy " x

L+h
T Dyw;(t+ 7+ L —h;)
—|—Biui(t +7+ L — hl)}dT)
+ B} x

(i +z/

L+m1n(h hj)
{D wi(t+7+L—hy)

+Buui(t+7+ L — hi)}dT)

(j=0,1,---,d) (48)

o=V a(-1) [ g]. (492)
Ua(0) = V0, (0) m (49b)
Wi = [10]0;(~L) H (49¢)
W) = [10],0) 9], G =120 .0) 490)

(a) The Hamiltonian matrix (34) does not have eigenvalues
on the imaginary axis.

(b) The matrix (47) is nonsingular for any < 0.

If the problem is solvable, ai/>® control for X is given by

(48),(49a)-(49f). [ |

In the statement (b), the conditions obtained by Theorem 6(c)

and 10 are merged d% = U(0) holds.

IV. DISCUSSIONS ANDINTERPRETATIONS

In this section, the results stated in Section Il are further
discussed and, for the typical control problems (Examples 1-
3), it is shown that the representation of analytic solution is
considerably simplified. Some interpretations are also provided
on the feature of the resulting closed-loop system.

The condition of solvability for the typical control problems
(Example 1-3) are obtained as follows.

Corollary 13 (H* preview control): Define 3 with B =
[Bo,0,---,0]. For a giveny > 0, the H> control problem
is solvable iff the condition Theorem 6(c) holds and the
following matrix is stable:

A— ByBiU; U (L) (50)
whereU; (—L) is defined by (49b). ]
Proof: Section V-H. ]

Remark 14Focus on arHH > preview control problem with
B = [By,0], D = [Dy, D1], hg =0, hy = L. In this case, the
resulting control law is figured based on a predictive action
associated with a fictitious Hamilton system.

uo(t) = =BT UG 'WTe o Lp(t) (51)

s =[¢]ew+ [ e [§] e ryan
N 52

The control law (51),(52) is an extension of thE® preview
control [15] and enables to treat both previewable references
and disturbances. The output feedback case is obtained along
with [16]. [ |

Next, we will investigate the conditions for the problem
with input delays. It is noted that thE>° control problem for
the input delay systemI{ = [D,,0,--- ,0]) is solvable only
if the problem for the delay-free system (= [D,,0, - , 0],
ho = hy = --- = hq = 0) is solvable. In other words, the
H*® control law

u= Ky (53)
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for the input delay system always provides &f° control Furthermore, if a conditiof"A*B;, =0 (k= 0,1,---) is im-
law for the delay-free system by posed which arises in robust stabilization problems (e.g.[12]),
. . the following equality is obtained by employing the relation
u= Ky, K(s):= (JT)E 0] 0 (h=0.1.-)
block diage " I,,,,, e " I, -+ e ML, YK (s) (54) 0/ | Bi | | (mA)FB S

where K(s) and K(s) denote the transfer functions df, g(t) = [0] r()
K respectively. Without loss of generality, we assume the ’
existence of stabilizing solutiod/ = V,V; ' > 0 to the

following matrix Riccati equatioh[9]: r(t)

0
x(t) + / e ATt DB (t+1)dr (62)
-L

MA+ A" —MBB'M + &5 - MDD™M + FTF =0,  Thus, it is observed that the control law (58)-(61) yields
(55) nominal state prediction [5], [28] for specified problemsm
Remark 17:In the case ofD = 0, v = oo, Theorem 11
which is a necessary and sufficient condition on the solvabiligtovides an LQ control law for (3). In the general setting, it
of the delay-freel/> control problem® (D = [Dy,0,---,0], is observed that the nominal state prediction does not work as
ho = hy = --- = hg = 0). The Riccati equation (55) enablesoptimal control strategy. If we focus on a simple ca3e=
us to characterize the solvability of input-del&™ control [0, B,], by = 0, h; = L, the representation (48) yields nominal
problem from the viewpoint of spectral radius condition angtate prediction:
further, clarifies a special structure of resulting control law.
Corollary 15 (H> control with delays)DefineX with D = ui(t) = =B Mr(t), r(t): defined by (62) (63)
[Dy,0, - ,0]. For a giverry > 0, the H*> control problem is

. . . . o T —ATL
solvable iff the maximal root of the following transcendenta\ivhICh is obtained by employing the facty = Vy e '

- o ) 1 T, eATT %
equation satisfied ., < 1: M=VoV ", elo™ = 0 oA [
A: det[U(N)] =0, Let us provide an interpretation on the feature of resulting
3 5 I control system. Recall the Hamiltonian representation (44)
UN) = [X-1—M]¥y(-L) [ ] (56) L
0 A, —BoB; + 55 - Do Dy V1 + GIIG*V,
- —FrF A Va ¢
where M > 0 is the stabilizing solution to (55) anti,(-) is ov e o .
the solution to the differential equation = { Vit %1219 vV } Apro®, ¢ € D(Ano) (64)
{ Ty(0) =1
d . . .
—W,(t) = Wa(t) S}, —L+h; <t<-—L+h; Ag°
dt d( ) d( ) 7 + -7 = - + +1 AAO¢: |: ¢?/ :| s D(AA()) =
F o A % - DoD§ = B;Bf {¢€X,: o' € WH(=L,0; R?), FV1¢" = ¢'(0)}  (65)
1 i—0
A L. FTF _ATJ which is employed in Theorem 6, and investigate the property
(i=0,1,2,--,d—1), (57) of the resulting control system. If (30) has a stabilizing solu-
T ’ tion S, € L£(X,) or, equivalently, the operatar; + GIIG*V,
which depends on a scalar parameter m s invertible (Theorem 6(b)), we have the following equality
Proof: Section V-I. ] A —BES +L.DDS G* B
Remark 16:Focus on anH> control problem withB = (Ao = BoB;So + 57 - DoDgSo) (V1 + GLIGV2) ¢ =
[Bo, B1], D = [Dy,0], hg = 0, hy = L. By Theorem 11, the (V1 + GG V) Apod, ¢ € D(Axo)  (66)

resulting control law is figured based on a predictive

actiofgr the system
associated with a Hamilton system Y

l;’o(t) = (-Ao - 608280 + 7% : DOD:So)io(t) (67)

up(t) = Koq(t) (58)
up(t) = K1q(t) (59) which is obtained by applying (32) and(t) = %-Dzso:f:o(t)
o 0 0 J[;F(TJ,-L) -O to EO.
q(t) = [1] ””“”/_Le | Bt r)dr If the stabilizing solution holdsS, > 0, w(t) = 2 -

(60) D;S,Z.(t) plays as the worst-case disturbance for fiie
control system and (67) is equivalently transformed to a
fictitious form

To(t) = Apodio(t), o€ D(An,) (68)

Ko=—BIU; 'WTe 0L,
Ky =B [10] <1 el {é Uo—lvT) e L.
' (61)

where A, is defined by (45). Denoting the state by(t) :=
®The stabilizing solution means that — BBTM + ;- DD is stable.  (z0(1),vt) € Xo, v¢(B) := v(t+ B)(—L < B < 0), the system
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(68) is further described as follows: 3, satisfies H2),H3) as the corresponding operators are not
. perturbed. Thug, are in the Pritchard-Salamon systems.
To(t) = Awo(t) (b) We first prepare the following equalities far and 3,,.
vlf) = FVizo(t) (69) A,Gb = GAb, ¢€X 73)
ve(B) :==v(t+5), —L<p<0. ° ’
FoGop=Fop, ¢p€X (74)

Thus, for the generalized plants with any multiple time .

delays, the worst-case system (67) yields identical pole co1|—1r-]e equality (73) follows from

figuration as far as thé/> control exists. For the LQ control (1), A,Go)x, = (A*G*Y,d)x, Yo € X,,0 € X,  (75)
problem (D = 0), this property provides the pole configuration

of the resulting closed loop system. which is verified by straightforward calculation with

Corollary 18 (LQ control): Define an LQ control problem (13),(21),(22),(23). While (74) is obtained with (17),(22),(28).
by D = [Dy, D1, Ds,---,Dy4]| = 0 with the cost-functional By (26).(27).(73).(74), the states B, 3%, satisfy

(3), the pole configuration of the resulting closed loop system To(t) = Ga(t), Z(t) € X. (76)
coincides with the eigenvalues a&f which is defined by (35).
In other words, the value of time delayig < hy < --- < hy

does not affect the pole configuration of the resulting clos

Thus, for (w,u) € Ly(0,t; R'*™), the mild solutions ofy:
ith #(0) € X and, with Z,(0) = GZ(0) satisfies (76).
C) SinceFi(t) = Foi,o(t) by (74) and (b) holds, the systems

loop system. . .
b sy 3 with £(0) = 0 and X, with Z,(0) = 0 generate the same
outputz € Lo(0,¢; RP) for any (w, u) € Ly(0,t; RH™), m
V. PROOES p 2( ) y ( ) 2( )
A. Proof of Lemma 2 C. Proof of Lemma 4

We first deriveG € L(X,W,). For¢ € X, itis verified that (a) Let S, > 0 be the stabilizing solution to (30), then the
Go € W, = D(A,) holds since(Gp)! € WH2(—L,0; R?)  system
andF(Go)? = (Go)1(0) are satisfied by (22). Furthermoge _
in W, depends continuously ahe X. HenceG € L(X, W,). To(t) = (Ao — BoB;S, + 5 - DoDZSo) Zo(1),

Based on (23), we will derivg* € L(X,,V*), whereV* = io(0) = G2, p€ X (77)
D(A*) is defined by (13). For € X,, G*1) € V* = D(A*)
holds since ((G*), (G*¢)?) € WL2(~L,0; R*™) and ©f
(G ) (~L) = DT, (G"¢)*(-L) = B"" are satisfied Fo(t) = Aoo(t) + Dow(t) + Boul(t),
by (23). FurthermoreG*y in V* depends continuously on 3.(0) = GEo, de X (78)
Y € X,. HenceG* € L(X,,V*) is derived. ’

w(t) = 25 - DySoito(t), ul(t) = —B3Soio(t)

B. Proof of Lemma 3 is exponentially stable ot¥,, and the following inequalities

(a) We first note that a part of operators, which describe trbe? Id for k> 0:
kt

system3.,, shares a similar structure to output delay systems. ||@,(t)||lx, < c1- e, |Jw(t)||p < - ™%,

Introduce alternative input operators [u()|[rm < c5-e ¥t (c1,c2,c5 > 0). (79)
D, € L(R', X,): Dov = [ Dow } . weR (70) In order to verify (a), we will show that the system
i i Bu (t) = A (t) + Dw(t) + Bu(t), (0) = E¢, 6 € X (80)
B, € [,(Rm7.)(o) : Bou = [ 0 :| , u€R™ (71) w(t) — % D*Sx( ) u(t) _ —B*Si(t), S =G*S,G
and define an evolution equation as follows: is exponentially stable. Since (26),(27) and Lemma 3(b) yield
Got) = Agiio(t) + Dow(t) + Bou(t) w(t) = 35 - D*Si(t) = 55 - DySotolt) (81)
S 2(t) = Fodolt) + Fou(t)  (72) u(t) = =B*Si(t) = —B;SoZ0(t) (82)
%,(0) :=GZ¢, ¢ X. for the systems (78) and (80), the following inequality is
. . obtained by Lemma 3(b).
The system®! describes the output delay system .
G |lx, = |To®)|la, <cp-e ™ 83
#(t) = Ax(t) + Dw(t) + Bu(t) IG&(#)]lx .|| ( )”f ! (83)
2(t) = Fa(t — L) + Fou(t) By (20),(22),(79), the inequalities
. i >
and, by [23], it is shown thak! belongs to the Pritchard- 1G2®)]lx, = 0
Salamon systems with&W = W,, X =V = &,, A = A,, eALx(t)Jr/ e 4% [D B] [ w(B) } B (84)
B = [D,, B,], C = F,. In other words, Z’ satisfies the —L u(8B) R
conditions H1)-H3). Since both the operatdbg BO in 0 _4p we(B) e
andD,, B, in 3, are bounded, H1) still holds fox,. While H/ D B] { u () } dap RWS ca- e (ca > 0) (85)
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are obtained. Hence, by triangle inequality with (83),(84),(85), Hro € LW, x X,, Xp x W) :

the following inequality is derived. _ * 1 *
i, g q y HLO — |: ‘;.4*0‘7 BLOBLO +J;{i DLODLO (92a)
e 2 (t)|lrn 0”0 0
A 0 wi(B) A¢O
< |leMta(t) + / e~ A8 [DB]{ t ] dp Aro® =1 41 | D(Aro) = {0 € o
L ut(ﬁ) R

0 Ye Wh3(—L,0; R?), FV1¢4° = ¢'(0)} (92b)
. —AB w () ¢
o= fLewnn] o

. D1, = GD; € L(R™, X,), (92¢)
<(c14cq)-e ™ (86) Bro =GB € LR, X,), (92d)
my . * _ 1 *

As follows from (79),(86)/¢ (1)l x < cs-¢** (c; > 0) holds D& € LBV D=0 (0), w e v (92e)
for the system (80). ) Br € LR™,V): By =4¢°(0), v €V (92f)
(b) (=) Suppose théZ> control problemX: is solvable and \yhere A is a stable matrix defined by (35). [ ]
an H* control law is given by (31). Then the system Proof: It is noted that the operatof3;.,, B, are explic-

aé(t) = (A+ BK)i(t) + Duw(t), itly given based on (92c)-(92f),(23).
K:=-B*S, #(0)=Z¢, ¢ X (87) Di, ¢ =D; Gy = (G*)'(0) = DT, ¢ € X, (93a)
) = (F + Fk)i(t) Duw=| B | e 2 werm (93b)

is exponentially stable and defines the mild solution as follows:
ponemiEly A By, = BiG"0 = (G")*(0) = BTy, v e X, (930)
o0 =TelZo+ [ Telt-o)Dulo)ds  (88)  Byu- { Bu ] X, ueR™ (930)
0

where T (¢) is the strongly continuous semigroup generate@ order to derive (91), we verify the following equalities.
by A + BK. It follows from Lemma 3(b),(c) that a control
Y ®© AV + (“BroBi, + & - Dy,Dy Vad = Vidno (94)

T
u(t) = K (T;C(t)Eqﬁ +/ Tic(t — o)Dw (o) dO’) . (89) —FrFo V19 — AiVad = Vo Apr,d, ¢ € D(Ap,) (95)
0 By (34),(35),(93a)-(93d) with the fadti € D(A,) = W,
which is causal ofj,(t), exponentially stabilizex, and the (¢ € D(Axo)), (94) is obtained as follows:

resulting system provide§ equivalent mapping to (87). Hence AVio + (—BroBi, + & - DpoD% )Vao
an H*° control exists forX,. T 71 T o

(<) proved by (a). n _ {(Avl —BB'V2+ 55 - DD V)4

¢1
ViA@°

D. Pr9of of Lemmg 5 _ { 1 1/¢ ] VA, 6 € D(Ar). (96)

Define a generalized plant ¢

z(t) = Az(t) + Dw(t — L) + Bu(t) \(/g/g;le, we have following equalities on the left hand side of
S o2(t) = Fa(t) + Fou(t) (90) '
(1) (W, —FiF V1 — AVad)w, s
y(t) = {wa)] = (Foth, F ) — (Aot Va0,
0

associated with the system (1). Then té° control problem = —p'T(=L)¢" (-L) — <{Alf } , [Vﬂfo}> ’
3} is solvable only if the problenX is solvable since all control L ¢ X,
delays are removed from control channels and maximal delays e D(A,) =W,, ¢eD(Ay,) (97)
are imposed on the disturbancesdfin other words, anyd > 0 - . 0 - "
control for ¥ can be applied t& by including fictitious input /L¢ (B (8)dB = */L Y (B)g (B)dB
delays in the control. By Theorem 1 [15], it is shown that the a 1T/ 1 1T, 1
H*° control problem. is solvable only if the matrix (34) does - +7f’ (0)¢0(T()) ; ¥ (O_L)‘b (=L) (98)
not have eigenvalues on the imaginary axis. Thus Lemma 5is ¢ (0)¢ (0) = ¢~  F~ FV1¢ (99)
proved. B Hence, by (97),(98),(99) and (35), the following equality is

obtained fory) € D(A,) =W, ¢ € D(Ax,):
E. Proof of Theorem 6

,—FaF V1 — AXV .
We first prepare some operator equalities, which enable to W El*fFV 2@;\}%
solve the operator Riccati equation (30). = <¢7 [<_ 'y 2)¢ }>
Lemma 19:The following equality holds fob);, Vs: ¢ W, Wi

VoA
Hio| Vo= | V' | Ave, 0eD(AN) (1) =<w,[ 2 D — (4, Vo od)w,w; - (100)
Va Va ¢ Wo, W
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Thus (95) holds. m are obtained from (15),(16),(92e),(92f) where the components
In Lemma 19, it should be noted that the operatht, of %, ¢ are denoted along (14). Hence, by (105)-(108), (104)

generates exponentially stable semigroupsXnsince the holds.

structure of A,, is same as (21) and the matrix defined Next, applying an invertible operator

by (35) is stable. Based on Lemma 19, an Hamiltonian 7 GIG*

representation for (30) is obtained as follows. 0 T
Lemma 20:For the operator Riccati equation (30), the

J = { } € L(X,, W) (109)

Hamiltonian representatlon

% T1G* V. V [nGg*y
", 1+ GGV, 6= 1+ GGV, Apodh
VQ VZ
¢ € D(Ax,) (101)
Ho € LW, X Xy, X x W3 2
A, —B,B: + L - D, D
— o 0% o
Ho : { _FF, e ] (102)
holds. ]
Proof: We first verify the following equalities.
Fllp =0, ¢pe X (103)
LAY + AllY + = - (DD* — DD} )¢
—(BB* —BrB;)y =0, ¢ eV* (104)

Equation (103) is obtained by (17),(38). On the left hand side

of (104), we have a following equality.

(), {TLA" + All + 2 - (DD* — D D;)
—(BB* — BLB1) M)y v
A + <A*z/?,Hw>

<DL1/%DL1/)>RM1 + 5z <D*1/~)7D*U’>R’"1

+(By 0, By rma — <B*¢, B*wmmz, P, € V* (105)

= (I, A
5

By (12),(13),(38), some terms in (105) are calculated as

follows:

i=0 Y/ —L+hi
. d 0 72T 2/ 72T’ 2
> @ZT(B)wE (B) + ¥ (B)WE(B)) dB
i—0 Y —L+h;
a3 [reee)
o= = rns
d . 3=0 5
S [ETEEe)| L deeyt (108)
i=0 - *
and, further, the equalities
— (D}, Dy )rms + 25 - (D, D*)rma
d 5=0
S 1T
S ;[w (B)v} (ﬁ)}ﬂz_w, (107)
<BZZ;?BZZ/)>R7"2 - <B*'(/~)78*¢>Rm2
d r. B=0 y
=Y [FErEwre)] . dwev o9
i=0 N ¢

to (91), we will show that

THLoT T { v ] ¢=J { }j; ] Ao, ¢ € D(Ap,(110)

yields (101). The equality7 ([
holds and, by (73),(74),(92c), 92d) (103),(104),

THioT P =He € LW, x Xo, X, x W) (111)

is verified directly. Thus (101),(102) are obtained. ]
Proof of Theorem 6:

(a) & (b): (=) Applying [ —S,, Z] to (101), then using (30),

we have

V1 + GIIG*
Va

LT+ TArd =0, ¢€D(Ap,), (112a)
T =8,V — Vo + S,GIIG*V,, (112b)
Aso = A, — BB:S, + 712 -D,D:S,.  (112c)

Since Ag, and Ay, generate exponentially stable semigroups
on X, the Lyapunov equation (112a) requifés= 0 ([3],[29],
Lemma 2.32). By Remark 7, there exists a bounded inverse of
(36) iff it does not have any eigenvalue at origin. We verify
by contradiction that the operatdt + GIIG*V, is invertible.
Suppose thav; + GIIG*V, has an eigenvalueé and

(V1 + GIIG*Va)v = 0 (113)
holds forv = (v°,v!) # 0. Then the equalities
Tv= —Vov = O, Viv =20 (114)

hold by (112b) and (113). Furthermore (114), (37) imply that
there exist® € R™ such that

1%l
g
holds forv = (v°
V=[W
derived.
(<) Since (101),(102) hold and (b) assumes the existence of

bounded inverse foy; + GIIG*V,, (41) is one of the bounded
solution to (30). Applying[Z, 0] to (101), we have

Aso(V1 + GG V3) ¢ = (V1 + GIIG* V) Ano o,
(,25 S D(AAO)

where 4,, generates exponentially stable semigroupsign
Thus Ag, generates exponentially stable semigroupsign
and (41) provides the stabilizing solution.

(b)=(c): By contraposition, we will show that the operator
V1 +GIIG*V, has an eigenvalugiff the matrix Uy is singular.
By the equality(V; + GIIG*V,)v = 0, V1 + GIIG*)V;, has an
eigenvalue iff there existsv # 0 such that

Viv=Gu, —u=IIG"Vyv

]UOZO, 0 #£0, 01 =0 (115)

v1). This contradicts the fact that the matrix
€ R2"*n is column full-rank. Thus (b) is

(116)

(117)
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hold. In the following, we first show that the matriX, is We first verify that\ =: u=! # 0 is an eigenvalue o8, iff
singular ifu # 0, v # 0 exist. Introducing auxiliary variables there existsf # 0 such that

o 0 T — . = — = *
p(8) = —e‘Aqﬁngo—/ ATEB Tyl (¢) de (118a) Vi —p-Vo)f =Gg, —g=1G"V,f (125)
) B ) hold. Letv # 0 be the corresponding eigenvector&f and
0(6) = A [ e p ) %0 aparen) Mo = VoV + GTIGV) o (126)

we haydolds. Thenf = (V; + GUG* Vo) v # 0, g = —IIG*V, f
satisfy (125). Hencef # 0 exists. Conversely, lef # 0
exists for (125). Then we have an equality

MWaf = Vo(V1 + GUG* Vy) Vo f (127)

T ) from (125). If Vo f = 0, (125) requires/; f = 0 and, further,
(B8) = Xi-L+h.0/(B) - By p(B) (i=0,1,---,d)(119¢) f=0sinceV,f =V f =0 for f = (f!,f?) € &, yields

)

u; (B)

P(B) = —ATp(B) + F'v'(8), —L<B<0  (119d) [VITVE|TfO =0, f! =0, whereV = [V;TV;E]T defined by
)
0

to the right and left equalities in (117) respectively,
the following relations:

ud =0 (119a)
= —%2 “Xi=L+hs,0/(B) - Dip(B) (119b)

p(0) = —V32° (119¢) (35) is column full-rank. Hence the eigenvector= V, f # 0
exists for (126).

‘?v = a(0) (1191) For the eigenvalug = ! # 0,1 of S,, we will show that

v (§) = Fq(¢) (1199) there existsf # 0 to (125) iff U(u) is singular. Introducing

q' (&) = Aq(€) + Du' (&) + Bu?(¢), —L < ¢ <((119h) auxiliary variables
q(—L) =u’. (119i) it e
§9) =~ P - [ ATEDET G de (128
Combining the conditions (119b),(119c¢),(119d),(119g),(119h), B

h 3 1

we have G(€) 1= eAEHL) g Jr/ A €A D B {92(5)} d/3(128b)
[p/(f)] _ _gT {p(f)] —L+4+h; <{L< L+ hz‘+1(120) -L 9°(B)

q' (&) *la©)]” (i=0,1,---,d—1) to the right and left equalities in (125) respectively, then
and, further, (120) and (119a),(119e),(119f),(119i) yield tHePmbining the relations along the manipulation in the proof
following conditions of Theorem 6 (bj>(c), we have

15/(5)} T [ﬁ(ﬂ)} —L+h <B<—L+hi
0 ~L o =—Jr 20 , 129
20| =0 27| cenl 1) Rl i e v i
- p(0) | _ & p(=L)
ViITp(0) + Vi'q(0) =0, q(~L)=0 (122 ie. {13( }:xp -L [ 130
1 p(0) + V5 q(0) q(—L) ( ) (0 a(—L) G(—L) ( )
where (43) is imposed in (122). By (121),(122), we finallgng the following equalities:
obtain the equality:
@ =0 (131a)
1 -
VIV al-D) || o= 1) = Uup(-L) =0. (129 7(0) = 13 f° (131b)
_ (Vi — uV2) f° = (0) (131c)
If p(—p) =0, (122),(120) y|e|dp(-) =0, q() = 0 and, (j(—L) _ go. (131d)
further with (119f),(118a),(119g), we have
T T 0 L Since (131b),(131c),(43) and (131a)(131d) yield the boundary
(Vi Vo' [To" =0, v" =0 (124)  conditions
for v = (v°, v!), whereV = [V;¥ V;I'|T is column full-rank (Vi — uVa) 5(0) + V,EG(0) =0, G(—L) =0, (132)
by (35). Hence it is shown that= 0 if p(—L) = 0. In other , , L
words, the matrix/, must be singular if, + GIIG*V, has We finally obtain an equality:
an eigenvalue). Next we will showv # 0 if p(—L) # 0 T I 0] = Il . L
exists in (123). Suppose = 0 holds even ifp(—L) # 0. 4 {—M'II] Va(-L) {0] p(=L) = U(u)p(=L) =0
Then (119d),(119e) derive(-) = 0. Hence, by contradiction, (133)

v #0if p(—L) #0.

Thus, V; + GIIG*V, does not have any eigenvalue at origiffom (130),(132) foru = A~*.
iff the matrix Uy is nonsingular. The representation (41) is f P(—L) = 0, (132),(129) yieldp(-) = 0, ¢(-) = 0, and
obtained in the proof (ax(b). m further with (131b),(131c), we have

VIV 2 =0, f1=0 (134)

F. Proof of Theorem 10 for f = (f1, f2), whereV = [V;T V1T is column full-
Based on Remark 8, we will show th&t > 0 holds for rank by (35). Hencev = 0 if p(—L) = 0. In other words,

the operator (41) iff the matrix (47) is nonsingular for< 0.  U(u) must be singular if there exists an eigenvalue: p—!.



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 51, NO. 12, DECEMBER 2006 13

Next we will show f # 0 if p(—L) # 0 exists in (133). Pre-multiplying eitherl/ 0] or V'T to both sides of (138), we
Supposef = (f°, f!) = 0 holds even ifp(—L) # 0. Then obtain the equalities:
(128a) derivess(-) = 0. Hence, by contradictionf # 0 if .
B(—L) # 0. P(=L+hy) = Wéﬁ( ~L)g"

Thus, for a givenu # 0,1, U(u) is singular iff f # 0 —L+min(hi, h
exists for (125). Since\ = p~! is( ezn eigenvalue of (41) iff +Z/ /3)(Di9i1(5) + Big; (8)) dB, (142)
U(u) is singular, it is shown that the stabilizing solution (41) =!
is positive semi-definite iff/ (1) is nonsingular for. < 0. m yd)

L)+ Wi(

(j:Oala
0 = Uop(— L)+U1( L)g°

+Z /
In order to provide a representation of the control law
u(t) = —B:S,Gi(t) = —B*G*S,G1(t), we first define the re- Hence, eliminatingg(—L+ h;) andp(—L) in (141)-(143), the
lationsu = —B*f, f = G*S,G=g, g := #(t) = (x(t),ws,u;) control law is obtained by (48),(49a)-(49f). [ |
(u € R™ f,g € X) and elaborate the representation wof
Based on (20),(41), the equalify= G*S,G=g is equivalently

—L+h1

G. Proof of Theorem 11 (Dig} (B) + BigZ(B)) dB. (143)

given by following relations:

=6V, Viv=G(Eg—1IIf). (135)

Eliminating the variablev, we will derive the representation

(48), (49a)-(49f). Definer! € Lo(—L,0; RY) and 7?2 €
Lo(=L,0; R™) (i =0,1,--- ,d):

ri(6) = {gAf%) IihZgeg" asea)
(LS oo

then introducing auxiliary variables

0
P(B) = —e A PV — / ATERA T (6)d¢ (137a)
B

q(§) = e &L g0

3
+ / eAlé
-L

to the left and right equalities in (135), we have
p(§) 1, _v|0] o
2] —e@en) [ ]

+2d:/mm(£ —L+h; 25) ( )[ ]

+ Biri (B)) dp

d
D> (Dir}(B)

=0

(137b)

+ B(E)D

—L

=1

x(Dig} (B) + Bigi (B))dB  (138)

o0) =1
D)= ITR(t). ~L+h <1< Lty (139)

(i=0,1,---,d—1)
with the following equalities:

Vi'p(0) + V5'4(0) = 0 (140)
uj =B p(=L+h;) (j=0,1,---,d). (141)

H. Proof of Corollary 13

Since the solvability of the operator Riccati equations (29)
and (30) are equivalent (Lemma 4(b)), we first characterize
the solvability of (30) in terms of the stability of the closed
loop system.

Lemma 21:0n the stabilizing solutios € L(V,V*), the
following statements are equivalent.

(a) The stabilizing solution to the equation (30) is positive
semi-definite § > 0).

(b) The operatotd — BB*S generates exponentially stable
semigroups onY.

(c) The matrixA — BBTU; 'U,(—L) is stable. ]
Proof: (a)=(b): By Lemma 4 and Propositioi3, P,, it

is shown that the stabilizing solution to (30) is positive semi-

definite (¢ > 0) iff the stabilizing solution to (29) is positive

semi-definite. Suppose the stabilizing solut®> 0 exists to

(29), then theH>° control law (31) exponentially stabiliz&s

on X. Hence (b) holds. Suppose (b) holds. By rewriting (29),

we have an operator Lyapunov equation

S(A—BB*S)¢+ (A—BB*S)*Sp+ Qp =0, ¢ € X,

Q:=S8BB'S+ 5 SDD*S + F*F >0,  (144)

where A — BB*S generates exponentially stable semigroups
on X. Hence, by [3], there exists a stabilizing solutiSr> 0.
(b)<(c): Focus on the closed-loop system

i(t) = (A — BB*S)i(t),

#(0) € D(A). (145)

The solutionz(t) is bounded over the interval< ¢ < L and,
after the timet = L, the behaviori(¢) is reduced to

&(t) = (2(1),0,0) € X,

i(t) = (A— BBYU; U, (~L))z(2). (146)
Thus the closed loop system (146) is exponentially stable iff
(c) holds. ]

By Lemma 21, it is shown that the stabilizing solution to (29)
is positive semi-definite iff the condition (c) holds. Hence the
H*® control problem By = [By, 0, -, 0]) is solvable iff the
conditions stated in Corollary 13 holds. ]
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I. Proof of Corollary 15

By using the solutionM = V5V ' > 0, the stabilizing ’
solution (41) is represented as follows:

-1
s[4 0 (rome [4 2]) e

Hence the stabilizing solution is fositive semi-definite iff the

T
6.430

5.408
5.021

M 0

maximal eigenvalue of := GIIG* is smaller than

0 7

1. In the following, we will show that the nonzero eigenvalues
of Q are given by the roots of the transcendental equation (56).
By the relations

M O o 0‘2 0‘4 0‘6 D‘E 1 1‘2 1‘4 1‘6 1‘8 2
0 I :| 1}, (148) h unit-time

Fig. 2. h-~ in preview control
A is an eigenvalue of) iff there existsv # 0 such that the
equalities (148) hold. Introducing auxiliary variables

0 i,
P(B) = —e A B — / ATER T (€ de (149a) L
B

A =—Gu, u=-IIG" [

22 e ” O Zl

Z['} 4

2 =dp Uy ]

G(€) = eAEFD0 4 /jLeA(g—B) [D B] [Z;Egﬂ d[3(149b)

to the right and left equalities in (148) respectively,
PB) | _ s p(B)
[ 7(9) } =) [ i) } ’
—L+h; <B<—L+hyyy (i=0,1,---,d—1)

we hav%ig. 3. A unilateral delay system (3 sub-systems)

wherew; is h unit-time previewable reference ang, is the
uncertainty which affect the information of previewable signal

- pO) | _ g 7y | P(=D) (see also (1),(2)). We will investigate the relation between the
ie. g =Wu(-L)| =~ (150) ) , .
q(0) q(—L) preview timeh and the optimal performance,,. (k).
with the boundary conditions Based on Theorem 12 (or Corollary 13), the relation be-
3 3 3 tweenh and~y,p¢ (k) for the casesl = 0, 0.4, 0.8 are obtained
Ap(0) = Mq(0) =0, ¢(—L)=0. (151) by Fig.2. For example in the casé = 0, the optimal
By (150) and (151), the equality value y,,¢(h) decreases monotonically as the preview tite

increases and reaches the performance hmit(h) = 0.243.
1 ]p(—L) =0 (152) Therefore, by employing previewable information, thE™
0 performance is improved from,p:(0) = 5.021 t0 Yiow =
is obtained. Therefore, by employing the same approach as th243 (95.1% reduced). In the cased = 0.4,0.8, where
proof of Theorem 6 (Section V-E), the stabilizing solution (41the previewable information involves uncertainty, the relation
is positive semi-definite iff the maximal root to (56) satisfiebetweenh and ~,.(h) are similarly depicted in Fig.2. For
Amax < 1. m d=0.4,0.8, the H> norm betweenv andz are reduced by
62.8% and 37.5% respectively. Thus it is observed that the
VI. ILLUSTRATIVE EXAMPLES effect of preview strategy decreases as the uncertainty in the

Based on the results stated in Section IIlIvV, we wilnformation increases. o .
illustrate the achievabl& > performance for preview control  BY [19], it is shown via dual filtering problem that thé
and unilateral delay systems. The relation between the eff@EgView performance typically reaches the optimal vajug

of preview/delayed action and the resultifig® performance N finite preview time. In Fig.2, the casé = 0 corresponds
is discussed. to this result. Similar phenomena are observed in the cases

(AT -M }xbd(—L)[

d=0.4,0.8.
A. Preview Control System
Define anH > preview control problem: B. Unilateral Delay System
) [10] [d| 1 Focus on the unilateral delay system depicted by Fig.3. In
t) = t t t—h . . . -
2(?) |14 () + 10| wot) + {0} wi ) this system, the control input:,,u;) is applied to the sub-
[0 systemsXy, 3o and the disturbance is applied toX;. We
+ 1| w®) define the sub-systems by
2(t) = [01] x(t) + 0] u(t), d=0,0.4,0.8, (153) ¥i(s) = 1 (i=0,1,2)
00| 1] Ts+1 Y
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0.7

T=0.2

05

gamma

06

2.0

L L L
15 2 25 3

h unit-time

Fig. 4. h-v in unilateral control system

L L
0 0.5 1

(4]

(5]

(6]

(7]
(8]
El

(10]

(11]

and investigate the relation between the transmission delay

and the optimal performance,,:(h) in the full-information
problem. Transforming the unilateral system Fig.3 to t

auxiliary form Fig.1(b), then applying Theorem 12, the relation

betweenh and -y, (k) for T'=0.2,0.5,1.0,2.0 are obtained
by Fig.4.

(13]

In this example, the relation is rather complicated than they

preview control problem (Section VI-A) and the resultifg®

performance depends on the trade-off between the strengt
preview action inu, and the limitation of delayed action in

up. In the casel’ = 2.0, the optimal valuey,,:(h) decreases
slightly over0 < h < 1.5 and turns to increase arourd=
T ~ 2.0. For the case% = 0.2,0.5, 1.0, it is observed that the

hagf

(16]

(17]

optimal values turn to increase around the delay time, which

meets the time constant of sub-systems.

VII. CONCLUSION

(18]

(19]

A generalizedH > control problem, which covers preview[2o]
and delayed control strategies, is discussed based on a state-review of some problem-oriented methods, IMA J. Math. Contr. Inform.

space approach. By introducing a Hamiltonian matrix, which j

[21]

defined with a delay-free system, the analytic solution to corre-
sponding operator Riccati equation is newly established. Based

on the results obtained here, explicit formulas are derived

o

the H°° control problem and, further, some interpretations
are provided on the property of the resulting control systemss]

The solution to the output feedback problem is obtained

by

introducing a solution to filtering Riccati equation (e.qg. [16])[.24]
In the formulation of the generalized plant, the orthonormal
condition A2) plays a key role to establish an analytic solution

tion is relaxed or the term of disturbance is included in the
regulated output, the analytic representation is not trivial. TIs]
generalization of formulation is a direction of future research.
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