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Formulas on preview and delayedH∞ control
Akira Kojima, Member, IEEE,Shintaro Ishijima,Member, IEEE

Abstract—A generalized H∞ control problem, which covers
preview and delayed control strategies, is discussed based on
a state-space approach. By introducing a Hamiltonian matrix,
which is associated with a delay-free generalized plant, the
analytic solution to the corresponding operator Riccati equation
is newly established. Based on the result obtained here, the
H∞ control problem is solved and, for typical control problems
(e.g. H∞ and LQ control for multiple input delay systems,
H∞ preview control), some interpretations are provided on the
resulting control system.

Index Terms—H∞ control, infinite-dimensional system, input
delay system, preview control, operator Riccati equation.

I. I NTRODUCTION

T HE design method ofH∞ control law has been studied
for infinite-dimensional systems [6], [29], [11], [25] and,

especially for a class of time delay systems, explicit solutions
are obtained based on various approaches [22], [26], [17], [18],
[20], [12], [13], [14]. Recently, by applying the approaches
for delay systems, the effect of preview action is further
investigated in terms of theH∞ performance [19], [27], [15],
[16].

In the state-space approach for infinite-dimensional systems,
the abstract system theory has been discussed for a class of
systems (Pritchard-Salamon systems, e.g. [24], [2]) and, if the
plant is in this class, the typical control problems such as
H∞ (LQ) control or the estimation problems are characterized
via corresponding operator representations [8], [10], [29]. For
general infinite-dimensional systems, it should be also noted
that we will face with the difficulties at the first stage to
check whether the plant is in the Pritchard-Salamon systems.
For time delay systems, a function-space representation is
established for general retarded delay systems, which involve
distributed and point delays in the control, the state, and
the output, and it is clarified that the representation falls
into the class of Pritchard-Salamon systems [23]. These fun-
damental frameworks enable us to deal with a broad class
of control problems with delayed/preview strategies beyond
the apparent system representation and, further, have a po-
tential to provide an insight on the underlying property of
resulting systems. However, in the paradigm ofH∞ control
synthesis, the advantage of the state-space abstract theory
is not brought out because, even if we can employ finite-
dimensional approximation, we are faced with a huge size
of finite-dimensional calculation in the repetitive procedure.
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Furthermore the approximation of the solution does not clarify
the solvability of problem.

In this paper, we focus on a generalized class of delay
systems, which covers both multiple input delay and preview
control strategies, and derive explicit formulas forH∞ (LQ)
control problem by clarifying the solvability and the analytic
solution to the corresponding operator Riccati equation. The
generalized system enables us to discuss theH∞ preview
control,H∞ control with multiple input delays and, further,
provides analytic representation of LQ control law, which
feature has not been clarified for multiple input delay systems.
The key point in this approach is that the analytic solution to
the operator Riccati equation is newly established based on
the stable eigenspace of Hamiltonian matrix. The Hamiltonian
matrix is defined with a delay-free system and enables us
to provide interpretations on the feature of resulting control
systems. Furthermore, in highlight with the received method
for finite-dimensional systems [4], [9], the proposed approach
also characterizes the limitation of theH∞ performance,
which level is not attained via causal or uncausal control
strategies.

At the first stage of attacking the problem, we derive a
necessary and sufficient condition on the existence of sta-
bilizing solution to an indefinite operator Riccati equation.
The condition is completely characterized by nonsingularity
of a matrix, which is defined with the system parameters,
and, if exists, the analytic solution is constructed with integral
operators. Then we investigate the additional condition for
the positive semi-definiteness of the stabilizing solution and
elaborate the design method ofH∞ control law. By employing
the advantage of state-space approach, the feature ofH∞ (LQ)
control law is clarified from the property of the closed-loop
system.

The paper is organized as follows. In Section II, theH∞

control problem is defined for the system with preview and
delayed strategies. Then we prepare preliminaries for a class
of infinite-dimensional systems (Pritchard-Salamon systems)
[24] and describe the generalized plant on an appropriate
function-space [23]. The description is further transformed
to an auxiliary form, which yields a simple structure for
the analytic solution to the corresponding operator Riccati
equation. In Section III, by employing the auxiliary system
description, the solvability of the operator Riccati equation
is completely characterized based on a Hamiltonian matrix,
which is associated with the delay-free generalized plant. The
analytic solution to the equation is also established based
on integral operators and, from the viewpoint of the original
H∞ control problem, the design method of control law is
summarized. In Section IV, the typical control problems (H∞

preview or delayed control problems) are further discussed and
it is shown that the representation of the analytic solution is
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considerably simplified. Some remarks are also provided on
the behavior of the resulting system. After describing all proofs
in Section V, the preview and delayedH∞ control problems
are illustrated with numerical examples (Section VI).

Notation and terminology: LetX and Y be real Hilbert
spaces with norms∥ · ∥X , ∥ · ∥Y and inner product⟨·, ·⟩X ,
⟨·, ·⟩Y , respectively. LetZ be dense inX andZ∗ be the adjoint
space. The adjoint pairing betweenf ∈ Z and g ∈ Z∗ will
be denoted by⟨f, g⟩Z,Z∗ . The space of Lebesgue measurable
functions [a, b] → Rn, which are square integrable, will
be denoted byL2(a, b; Rn). Let L(X,Y ) denote the set
of bounded linear operatorsΓ : X → Y . The adjoint of
Γ ∈ L(X,Y ) will be denoted byΓ∗ ∈ L(Y ∗, X∗). When
X = Y , we write L(X) instead ofL(X,Y ). A self-adjoint
operatorΓ will be written Γ ≥ 0 if ⟨x,Γx⟩X ≥ 0 for all
x ∈ X andΓ > 0 if ⟨x,Γx⟩X > 0, x ̸= 0.

II. FORMULATION AND PRELIMINARIES

A. Problem Formulation

Define a full information control problem (FI-problem)
by the generalized plant with delays in the control and the
disturbance:

ẋ(t) = Ax(t) +

d∑
i=0

Diwi(t− hi) +

d∑
i=0

Biui(t− hi)

Σ : z(t) = Fx(t) + F0u(t) (1)

y(t) =

[
x(t)
w(t)

]

w(t) :=


w0(t)
w1(t)

...
wd(t)

 ∈ Rl, u(t) :=


u0(t)
u1(t)

...
ud(t)

 ∈ Rm,

wi(t) ∈ Rli , ui(t) ∈ Rmi (i = 0, 1, · · · , d)
x(t) ∈ Rn, y(t) ∈ Rn+l, z(t) ∈ Rp

where x, w, u, z, y are the state, the disturbance, the
control input, the regulated output, and the measurement of
the system respectively. The matricesA, F , F0, andB :=
[B0, B1, B2, · · · , Bd ], D := [D0, D1, D2, · · · , Dd ] are with
appropriate dimensions andhi (i = 0, 1, · · · , d) denote time
delays in the increasing order:0 := h0 < h1 < h2 < · · · <
hd =: L. We make following assumptions for the systemΣ:
A1) (A, B) is stabilizable.
A2) FT

0 [F F0 ] = [ 0 I ].

A3) rank

[
A− jωI B

F F0

]
= n+m, ∀ω ∈ R.

TheH∞ control problem is to design a feedback control law,
which causally depends ony, such that the resulting closed
loop system satisfies the following conditions:
C1) The closed loop system is internally stable;
C2) the resulting closed loop systemΣzw from the distur-

bancew to the regulated outputz satisfies∥Σzw∥∞ < γ
for a given constantγ > 0.

The generalized plant (1) describes a broad class ofH∞

control problems and covers preview and delayed control ac-
tions. The time delays in the disturbance equivalently describe

previewable reference signals and those in the control define
the H∞ control problem for input delay systems. Typical
control problems are illustrated by Example 1-4.
Example 1.H∞ preview control: DefineΣ with B = [B0, 0],
D = [D0, D1], 0 = h0 < h1 = L and describe the uncertainty
and the previewable reference signal byD0w0(t), D1w1(t −
L), respectively. Rewriting the reference signal byw1(t) =
r1(t+ L), the problem is equivalently given as follows:

ẋ(t) = Ax(t) +D0w0(t) +D1r1(t) +B0u(t)

Σprev : z(t) = Fx(t) + F0u(t) (2)

y(t) =

 x(t)
w0(t)

r1(t+ L)

 .
As the future reference signalr1(t + L) is included in the
measurementy(t), we can deal with the preview control
problem in the formulation (1). A simple case (D0 = 0) is
discussed by [15].
Example 2.H∞ control with input delays: TheH∞ control
problem for multiple input delay systems is defined withB =
[B0, B1, · · · , Bd], D = [D0, 0, · · · , 0]. It broadens the class
of problems where analytic solutions are clarified. A related
problem is independently discussed by [18].
Example 3. LQ control with input delays: Define an LQ
control problem byD = 0 with the cost-functional

J =

∫ ∞

0

{xT(t)Qx(t) + uT(t)u(t)} dt, Q := FTF. (3)

The formulation (1) naturally covers LQ (orH2) control
problem and enables us to solve the LQ control problem for
multiple input delay systems. The LQ (orH2) control problem
with multiple input delays is independently considered in [21],
[31], [32] by employing the specific structure which lies in
the problem. In [21], the control law is obtained based on
the fundamental property such that the impulse response is
characterized with the series of delay-free control problems.
In [31], [32], the LQ control problem is solved via delay-free
fixed-lag smoothing problem, which is dual to the original
problem. We will illustrate the LQ control along the general
H∞ control problemΣ and derive an alternative interpretation
on the feature of resulting control system (Section IV) as well
as the control law.

The control problemΣ provides a base to deal with more
complicated delay systems, where sub-systems are connected
with unilateral transmission delays. For example, a unilateral
delay system [7] which arises in the wind-tunnel or the tandem
connected processes is illustrated as follows.
Example 4.H∞ control of unilateral delay systems: Focus
on a unilateral delay system depicted by Fig.1(a), where sub-
systems:

Σi : ˙̌xi(t) = Ǎix̌i(t) + Ďiwi(t) + B̌iui(t) + Ěivi(t)

qi(t) = Čix̌i(t)

x̌i(t) ∈ Rni , wi(t) ∈ Rli , ui(t) ∈ Rmi ,

qi(t) ∈ Rpi (Ě2 = 0, v2 = 0, i = 0, 1, 2),
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Fig. 1. Example of a unilateral delay system (3 sub-systems)

are tandem connected with the transmission delays:v0(t) =
q1(t− h), v1(t) = q2(t− h). Rewriting the states by

xi(t) = x̌i(t− ih), i = 0, 1, 2,

the system Fig.1(a) is transformed to Fig.1(b) and defined by
Σ with the following matrices:

A :=

 Ǎ0 Ě0Č1 0
0 Ǎ1 Ě1Č2

0 0 Ǎ2

 ,
F :=

[ [
Č0 0 0

]
0m×m

]
, F0 :=

[
0p0×m

Im

]
,

[
D0 D1 D2

]
:=

 Ď0 0 0
0 Ď1 0
0 0 Ď2

 ,
[
B0 B1 B2

]
:=

 B̌0 0 0
0 B̌1 0
0 0 B̌2

 ,
m := m0 +m1 +m2

where z(t) := (q0(t), u(t)) and h0 = 0, h1 = h, h2 = 2h.
Thus, theH∞ performance of the unilateral delay system
Fig.1(a) is evaluated based on the system formulation(1).

In this paper, we will provide an explicit formula for the
generalizedH∞ control problemΣ, which covers Example
1-4, and characterize the solvability and the analytic solution
based on finite-dimensional operations. Before describing our
approach, we will prepare an abstract system description
developed by [23], [24] (Pritchard-Salamon systems) with the
relation to theH∞ control problemΣ we will solve.

B. Pritchard-Salamon Systems

Pritchard-Salamon systems describe a class of infinite-
dimensional systems, which coverΣ as well as parabolic/
hyperbolic systems, and have an advantage of characterizing
the LQ andH∞ control problems based on corresponding
operator representations. The detailed introduction is found in
([29], Chapter 2).

In the Pritchard-Salamon systems, the basic model is

ẋ(t) = Ax(t) +Bu(t), x(t0) = x0

y(t) = Cx(t), t0 ≤ t ≤ t1, (4)

whereu(·) ∈ L2(t0, t1;U), y(·) ∈ L2(t0, t1;Y) andU and
Y are Hilbert spaces.A is the infinitesimal generator of a
strongly continuous semigroupT(t) on a Hilbert spaceX. In
order to allow for unboundedness of the operatorsB andC,
it is assumed thatB ∈ L(U,V) andC ∈ L(W,Y) where
W,V are Hilbert spaces such that

W ⊂ X ⊂ V (5)

with continuous dense injections. (4) is interpreted in the mild
form

x(t) = T(t− t0)x0 +

∫ t

t0

T(t− σ)Bu(σ)dσ,

t0 ≤ t ≤ t1. (6)

In order to make sure that the trajectories are well defined
in all three spacesW,X,V, it is assumed thatT(t) is a
strongly continuous semigroup onW andV and the following
hypothesis are satisfied.

H1) There exists some constantb > 0 such that∥∥∥∥∫ t

t0

T(t− σ)Bu(σ)dσ

∥∥∥∥
W

≤ b∥u(·)∥L2(t0,t1;U) (7)

for all u(·) ∈ L2(t0, t1; U).
H2) There exists some constantc > 0 such that

∥CT(· − t0)x∥L2(t0,t1;Y) ≤ c∥x∥V (8)

for all x ∈ W.
H3) Z = DV(A) ⊂ W with continuous dense embedding

whereZ is endowed with the graph norm ofA regarded
as an unbounded closed operator onV.

By [23], it is shown that a class of time delay systems, which
involve delays in state, input, and output, are described in the
framework of the Pritchard-Salamon systems. We will solve
the H∞ control problemΣ based on the abstract system
description and provide explicit formulas on the solvability
and the solution (control law).

C. System Description on Function-Space

For the systemΣ, we first prepare a standard system
representation established by [23] and precisely describe the
system dynamics with the stored signals in the delay elements.
Then we introduce an auxiliary system description, which
preserves the solvability condition of theH∞ control problem
Σ.

Introduce a Hilbert spaceX := Rn × L2(−L, 0; Rl) ×
L2(−L, 0; Rm) endowed with the inner product:

⟨ψ, ϕ⟩ :=

ψ0Tϕ0 +

∫ 0

−L

ψ1T(β)ϕ1(β) dβ +

∫ 0

−L

ψ2T(β)ϕ2(β) dβ,

ψ = (ψ0, ψ1, ψ2) ∈ X , ϕ = (ϕ0, ϕ1, ϕ2) ∈ X , (9)
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and describe the systemΣ by the evolution equation [23].

˙̂x(t) = Ax̂(t) +Dw(t) + Bu(t)
Σ̂ : z(t) = F x̂(t) + F0u(t) (10)

ŷ(t) =

[
x̂(t)
w(t)

]
x̂(0) := Ξϕ, ϕ ∈ X (11)

The operatorA is an infinitesimal generator defined as fol-
lows:

Aϕ =

Aϕ0 +Dϕ1(−L) +Bϕ2(−L)
ϕ1

′

ϕ2
′

 ,
D(A) =

{
ϕ ∈ X :

[
ϕ1

ϕ2

]
∈W 1,2(−L, 0; Rl+m),[

ϕ1(0)
ϕ2(0)

]
= 0

}
(12)

whereW 1,2 denotes the Sobolev space ofRl+m-valued, abso-
lutely continuous functions with square integrable derivatives
on [−L, 0 ] (see e.g. [1], Chapter 2). The adjoint operator of
A is obtained as follows:

A∗ψ =

ATψ0

−ψ1′

−ψ2′

 ,
D(A∗) =

{
ψ ∈ X :

[
ψ1

ψ2

]
∈W 1,2(−L, 0; Rl+m),[

ψ1(−L)
ψ2(−L)

]
=

[
DT

BT

]
ψ0

}
. (13)

Extending the state-spaceX to V := D(A∗)
∗, DV(A) = X

holds and the Hilbert spacesX , V are with continuous, dense
injections satisfyingX ⊂ V [23]. Denoting the elementsϕ =
(ϕ0, ϕ1, ϕ2) ∈ X by

ϕ1 = (ϕ10, ϕ
1
1, · · · , ϕ1d), ϕ1i ∈ L2(−L, 0; Rli)

ϕ2 = (ϕ20, ϕ
2
1, · · · , ϕ2d), ϕ2j ∈ L2(−L, 0; Rmj )

(i, j = 0, 1, · · · d), (14)

input/output operatorsD, B, F are defined as follows:

D : Rl → V, D∗ϕ =



DT
0 ϕ

0

ϕ11(−L+ h1)
...

ϕ1i (−L+ hi)
...

ϕ1d(−L+ hd)


, ϕ ∈ V∗ (15)

B : Rm → V, B∗ϕ =



BT
0 ϕ

0

ϕ21(−L+ h1)
...

ϕ2j (−L+ hj)
...

ϕ2d(−L+ hd)


, ϕ ∈ V∗ (16)

F : X → Rp, Fϕ = Fϕ0, ϕ ∈ X . (17)

By [23], it is shown that the system̂Σ is in the Pritchard-
Salamon systems withW = X = X , V = V, A = A,
B = [ D̃, B̃ ], C = F .

The initial state, which corresponds to the systemΣ, is given
by (11) with the following operators.

Ξ =

 I 0 0
0 Ξ1 0
0 0 Ξ2

 ∈ L(X ) (18)

Ξ1 ∈ L(L2(−L, 0; Rl)), Ξ2 ∈ L(L2(−L, 0; Rm)) :

(Ξkϕ
k)(β) =



χ[−L,−L+h0](β) · ϕk0(β)
...

χ[−L,−L+hi](β) · ϕki (β)
...

χ[−L,−L+hd](β) · ϕkd(β)

 ,
−L ≤ β ≤ 0, k = 1, 2 (19)

where χ is a characteristic function defined byχA(β) ={
1 (β ∈ A)
0 (β ̸∈ A)

. It should be noted that the statex̂(t) (t ≥ 0),

which is driven by u and w, satisfies x̂(t) ∈ ΞX and
corresponds to the systemΣ in the following manner:

x̂(t) =

x(t)wt

ut

 , wt =


wt0

wt1

...
wtd

 , ut =


ut0
ut1
...
utd


wti(β) =

{
wi(t+ β + L− hi) −L ≤ β ≤ −L+ hi

0 −L+ hi ≤ β ≤ 0

utj(β) =

{
uj(t+ β + L− hj) −L ≤ β ≤ −L+ hj

0 −L+ hj ≤ β ≤ 0

(i, j = 0, 1, · · · , d). (20)

Remark 1:The restriction of initial state (11) does not affect
the stability condition of the system̂Σ. Even if the initial state
is defined by∀x̂(0) ∈ X , the trajectorŷx(t) driven by(w, u) ∈
L2(0, t; Rl+m) is bounded over[0, L] and x̂(L) ∈ ΞX holds.

Secondly, we prepare an auxiliary output delay system,
which is defined with bounded input operators. Introduce
a state-spaceXo := Rn × L2(−L, 0; Rp) and define an
infinitesimal generator as follows:

Aoϕ =

[
Aϕ0

ϕ1
′

]
, (21)

D(Ao) =
{
ϕ ∈ Xo : ϕ1 ∈W 1,2(−L, 0; Rp), Fϕ0 = ϕ1(0)

}
.

On the subspaceWo := D(Ao), DW∗
o
(A∗

o) = Xo holds and the
spacesWo, Xo are with continuous, dense injections satisfying
Wo ⊂ Xo [23]. We will define an auxiliary system with the
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operatorsG ∈ L(X ,Xo), G∗ ∈ L(Xo,X ):[
(Gϕ)0

(Gϕ)1(ξ)

]
= eALϕ0 +

∫ 0

−L

e−Aβ [DB]

[
ϕ1(β)
ϕ2(β)

]
dβ

FeA(ξ+L)ϕ0 + F

∫ ξ

−L

eA(ξ−β) [DB]

[
ϕ1(β)
ϕ2(β)

]
dβ

 ,
−L ≤ ξ ≤ 0, ϕ = (ϕ0, ϕ1, ϕ2) ∈ X (22) (G∗ψ)0

(G∗ψ)1(β)
(G∗ψ)2(β)

 =


eA

TLψ0 +

∫ 0

−L

eA
T(ξ+L)FTψ1(ξ) dξ

DT

(
e−ATβψ0 +

∫ 0

β

eA
T(ξ−β)FTψ1(ξ) dξ

)
BT

(
e−ATβψ0 +

∫ 0

β

eA
T(ξ−β)FTψ1(ξ) dξ

)


,

−L ≤ β ≤ 0, ψ = (ψ0, ψ1) ∈ Xo, (23)

which satisfy the following properties.
Lemma 2:G ∈ L(X ,Wo) andG ∈ L(V,Xo).

Proof: Section V-A.
Introduce an evolution equation.

˙̂xo(t) = Aox̂o(t) +Dow(t) + Bou(t)

Σ̂o : z(t) = Fox̂o(t) + F0u(t) (24)

ŷo(t) =

[
x̂o(t)
w(t)

]
x̂o(0) := GΞϕ, ϕ ∈ X (25)

The operatorAo is defined by (21) and the input/output
operators are given as follows:

Bo := GB ∈ L(Rm,Xo) (26)

Do := GD ∈ L(Rl,Xo) (27)

Fo ∈ L(Wo,Rp) : Foϕ = ϕ1(−L), ϕ ∈ Wo. (28)

Between the systemŝΣ and Σ̂o, the following properties are
preserved.

Lemma 3:
(a) Let W = Wo, X = V = Xo and A = Ao,

B = [Do, Bo ], C = Fo in (4),(5), thenΣ̂o is in the
Pritchard-Salamon systems.

(b) Let x̂(0) ∈ X and x̂o(0) = Gx̂(0) ∈ Wo be the initial
states of the systemŝΣ, Σ̂o, respectively, then̂xo(t) =
Gx̂(t) (t ≥ 0) holds for any(w, u) ∈ L2(0, t; Rl+m).

(c) For any (w, u) ∈ L2(0, t; Rl+m), the systemŝΣ with
x̂(0) = 0 and Σ̂o with x̂o(0) = 0 generate the same
outputz ∈ L2(0, t; Rp).
Proof: Section V-B.

For the Pritchard-Salamon systems, the solvability ofH∞

control problem can be described with the corresponding op-
erator Riccati equations ([29], Theorem 4.4). For the systems
Σ̂, Σ̂o with the operator Riccati equations:

SAϕ+A∗Sϕ− SBB∗Sϕ
+ 1

γ2 · SDD∗Sϕ+ F∗Fϕ = 0, ϕ ∈ X , (29)

SoAoϕ+A∗
oSoϕ− SoBoB∗

oSoϕ

+ 1
γ2 · SoDoD∗

oSoϕ+ F∗
oFoϕ = 0, ϕ ∈ Wo, (30)

theH∞ control problems are characterized by the following
propositions.
Proposition P: The H∞ control problemΣ̂ is solvable iff
(29) has a stabilizing solutionS ≥ 0 (S ∈ L(V,V∗)) such
that A − BB∗S + 1

γ2 · DD∗S generates exponentially stable
semigroups onV.1 Furthermore, if solvable, anH∞ control
law, which stabilizeŝΣ on X , is given by

u(t) = −B∗Sx̂(t). (31)

Proposition Po: TheH∞ control problemΣ̂o is solvable iff
(30) has a stabilizing solutionSo ≥ 0 (So ∈ L(Xo)) such that
Ao − BoB∗

oSo +
1
γ2 · DoD∗

oSo generates exponentially stable
semigroups onXo. If solvable, anH∞ control law, which
stabilizesΣ̂o on Xo, is given by

u(t) = −B∗
oSox̂o(t). (32)

For the operator Riccati equations (29),(30), it is noted that
there exists at most one stabilizing solution in like manner
as finite-dimensional case ([29], Lemma 2.33). Finally, we
will verify that the H∞ control problems forΣ̂ and Σ̂o are
equivalent.

Lemma 4:

(a) If So ≥ 0 (So ∈ L(Xo)) is a stabilizing solution to (30),
the stabilizing solutionS ≥ 0 (S ∈ L(V,V∗)) to (29) is
given byS = G∗SoG.

(b) TheH∞ control problemΣ̂ is solvable iff the problem
Σ̂o is solvable.

Proof: Section V-C.
In the sequel, we pose the following problem and derive a
design method ofH∞ control law for the generalized plant
Σ.
Problem Po : For the operator Riccati equation (30), provide
a necessary and sufficient condition such that there exists
a stabilizing solutionSo ≥ 0 (So ∈ L(Xo)). If it exists,
construct the stabilizing solutionSo ≥ 0 analytically. In
saying the stabilizing solutionSo, we mean that the operator
Ao − BoB∗

oSo +
1
γ2 · DoD∗

oSo generates exponentially stable
semigroups onXo.
As follows from Lemma 4(b), the solution toPo provides
a necessary and sufficient condition on the solvability of the
H∞ control problemΣ̂. Furthermore, theH∞ control (31) is
given by

u(t) = −B∗G∗SoGx̂(t) = −B∗
oSoGx̂(t) (33)

with the stabilizing solutionSo ≥ 0 (Lemma 4(a) and (31)).
In the next section, we will solve the problemPo by

exploring the analytic solution to (30) and elaborate the design
method ofH∞ control law form the viewpoint of the original
problemΣ.

1For the operatorS ∈ L(V,V∗), the positive definiteness is defined by
∀ϕ ∈ V : ⟨ϕ,Sϕ⟩V,V∗ ≥ 0. The condition holds iffS ≥ 0 on X . See e.g.
[29], Section 2.5.
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III. M AIN RESULT

Let us derive explicit formulas for the problemPo and
provide a design method ofH∞ control law forΣ. The key
point in our approach is that the stabilizing solution to (30)
is newly established based on a Hamiltonian matrix, which is
defined with the delay-free system of (1) (L = 0). We first
state a qualitative property of the Hamiltonian matrix.

Lemma 5:For a givenγ > 0, theH∞ control problemΣ
is solvable only if the Hamiltonian matrix

H :=

[
A −BBT + 1

γ2 ·DDT

−FTF −AT

]
(34)

does not have eigenvalues on the imaginary axis.
Proof: Section V-D.

Lemma 5 guarantees the fact that, if (30) has a stabilizing
solutionSo ∈ L(Xo), there exists a column full-rank matrix
V ∈ R2n×n defined as follows:

X−(H) := ImV : HV = V Λ, Λ : stable matrix,

V :=

[
V1
V2

]
, V1, V2 ∈ Rn×n. (35)

In other words, the Hamiltonian matrixH hasn-dimensional
stable eigenspaceX−(H) [4], [9] only if the H∞ control
problemΣ is solvable.

Based on Lemma 5, we first derive a necessary and suffi-
cient condition on the existence of the stabilizing solution to
(30). Then we clarify the additional condition such that the
stabilizing solution turns positive semi-definite. The existence
of stabilizing solution is clarified as follows.

Theorem 6:For a givenγ > 0, suppose there exists a
column full-rank matrixV ∈ R2n×n defined by (35). Then,
the following statements (a),(b),(c) are equivalent.

(a) The operator Riccati equation (30) has a stabilizing
solutionSo ∈ L(Xo).

(b) The operator

V1 + GΠG∗V2 ∈ L(Xo) (36)

has a bounded inverse where the operatorsV1,V2 ∈
L(Xo), Π ∈ L(X ) are defined as follows:

V1 :=

[
V1 0
0 I

]
, V2 :=

[
V2 0
0 I

]
, (37)

Π =

 0 0 0
0 −γ−2 ·Π1 0
0 0 Π2

 ∈ L(X ) :

(Πkϕ
k)(β) =



χ[−L+h0,0](β) · ϕk0(β)
...

χ[−L+hi,0](β) · ϕki (β)
...

χ[−L+hd,0](β) · ϕkd(β)

 , k = 1, 2. (38)

(c) The matrix

U0 := V TΨd(−L)
[
I
0

]
(39)

is nonsingular whereΨd(·) is a fundamental solution to
the differential equation{

Ψd(0) = I
d

dt
Ψd(t) = Ψd(t)J

T
i , −L+ hi ≤ t ≤ −L+ hi+1,

Ji :=

 A

i∑
j=0

( 1
γ2 ·DjD

T
j −BjB

T
j )

−FTF −AT


(i = 0, 1, 2, · · · , d− 1). (40)

If the stabilizing solution exists, it is given as follows:

So := V2 (V1 + GΠG∗V2)
−1
. (41)

The properties of the operators (36),(41) are noted as follows.
Remark 7:The operator (36) is further represented by

V1 + GΠG∗V2 = I +

[
V1 − I 0

0 0

]
+ GΠG∗V2

where

[
V1 − I 0

0 0

]
is finite-rank andGΠG∗V2 is compact

since Π, V2 are bounded and the operatorG ∈ L(X ,Xo)
defined by (22) is given by the sum of compact (finite-
rank, Fredholm, and Volterra) operators. Thus, the condition
Theorem 6(b) holds iff (36) does not have any eigenvalue at
origin.

Remark 8:The stabilizing solution (41) is self-adjoint. The
equality

(V1 + GΠG∗V2)
∗ So (V1 + GΠG∗V2)

= V∗
1V2 + V∗

2GΠG∗V2

=

[
V T
1 V2 0
0 I

]
+ V∗

2GΠG∗V2 (42)

follows from (41) and, further

V T
1 V2 = V T

2 V1 (43)

holds for the stable eigenspace (35) ([30], Theorem 13.3).
Hence (41) is self-adjoint if the stabilizing solution exists.

Proof of Theorem 6:Section V-E.
By Theorem 6(c), it is shown that the operator Riccati

equation (30) has a stabilizing solution iff the matrix (39) is
nonsingular.

In the derivation of Theorem 6, it is noted that the auxiliary
system description̂Σo yields a following equality:[

Ao −BoB∗
o + 1

γ2 · DoD∗
o

−F∗
oFo −A∗

o

] [
V1 + GΠG∗V2

V2

]
ϕ

=

[
V1 + GΠG∗V2

V2

]
AΛoϕ, ϕ ∈ D(AΛo) (44)

whereAΛo defined by

AΛoϕ =

[
Λϕ0

ϕ1
′

]
, D(AΛo) ={

ϕ ∈ Xo : ϕ1 ∈W 1,2(−L, 0; Rp), FV1ϕ
0 = ϕ1(0)

}
Λ : stable matrix defined by (35)

(45)

generates exponentially stable semigroups onXo. Therefore,
in like fashion of finite-dimensional systems, the stabilizing
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solution (41) is constructed iff the operatorV1 + GΠG∗V2 is
invertible.

Remark 9:The auxiliary system̂Σo has the advantage of
yielding an operator Hamiltonian representation (44), which
expresses the stabilizing solution by (41). Similar approach
is not available with the system̂Σ because the corresponding
solution is given byS = G∗SoG and the operatorG is compact
(Lemma 4(a); see also Remark 7).

Employing the analytic solution (41), 1) the condition of
positive semi-definiteness (So ≥ 0) and, 2) the representation
of the H∞ control for Σ, are clarified by Theorems 10 and
11.

Theorem 10 (Condition ofSo ≥ 0): Define a fundamental
solution to the differential equation Ψ̃d(0) = I

d

dt
Ψ̃d(t) = Ψ̃d(t)J̃

T
i , −L+ hi ≤ t ≤ −L+ hi+1

,

J̃i :=

 A
i∑

j=0

( 1
γ2 ·DjD

T
j −BjB

T
j )

− 1
1−µ · FTF −AT

 ,
(i = 0, 1, 2, · · · , d− 1) (46)

with a scalar parameterµ ̸= 1. The stabilizing solution (41)
is positive semi-definite(So ≥ 0) iff the matrix

Ũ(µ) := V T

[
I 0

−µ · I I

]
Ψ̃d(−L)

[
I
0

]
(47)

is nonsingular for anyµ < 0.
Proof: Section V-F.

Theorem 11 (Control law):If the H∞ control problemΣ
is solvable, anH∞ control forΣ is given as follows:

uj(t) = −BT
j W

j
0U

−1
0 ×(

U1(−L)x(t) +
d∑

i=1

∫ −L+hi

−L

U1(τ){Diwi(t+ τ + L− hi)

+Biui(t+ τ + L− hi)}dτ
)

+ BT
j ×(

W j
1 (−L)x(t) +

d∑
i=1

∫ −L+min(hi,hj)

−L

W j
1 (τ){Diwi(t+ τ + L− hi)

+Biui(t+ τ + L− hi)}dτ
)

(j = 0, 1, · · · , d) (48)

U0 := V TΨd(−L)
[
I
0

]
, (49a)

U1(t) := V TΨd(t)

[
0
I

]
, (49b)

W j
0 :=

[
I 0
]
Ψj(−L)

[
I
0

]
, (49c)

W j
1 (t) :=

[
I 0
]
Ψj(t)

[
0
I

]
, (j = 1, 2, · · · , d) (49d)


Ψj(−L+ hj) = I
d

dt
Ψj(t) = Ψj(t)J

T
i ,

−L+ hi ≤ t ≤ −L+ hi+1 (i = 0, 1, · · · , j − 1)

(49e)

W 0
0 := I, W 0

1 (−L) := 0, (49f)

whereΨd(·) is defined by (40) in Theorem 6.
Proof: Section V-G.

Based on Theorems 6,10,11, the solvability and the solution
to theH∞ control problem are summarized by the following
theorem.

Theorem 12 (Main result):For a givenγ > 0, the H∞

control problem forΣ is solvable iff the following conditions
(a),(b) are satisfied.
(a) The Hamiltonian matrix (34) does not have eigenvalues

on the imaginary axis.
(b) The matrix (47) is nonsingular for anyµ ≤ 0.
If the problem is solvable, anH∞ control for Σ is given by
(48),(49a)-(49f).
In the statement (b), the conditions obtained by Theorem 6(c)
and 10 are merged asU0 = Ũ(0) holds.

IV. D ISCUSSIONS ANDINTERPRETATIONS

In this section, the results stated in Section III are further
discussed and, for the typical control problems (Examples 1-
3), it is shown that the representation of analytic solution is
considerably simplified. Some interpretations are also provided
on the feature of the resulting closed-loop system.

The condition of solvability for the typical control problems
(Example 1-3) are obtained as follows.

Corollary 13 (H∞ preview control):Define Σ with B =
[B0, 0, · · · , 0]. For a givenγ > 0, theH∞ control problem
is solvable iff the condition Theorem 6(c) holds and the
following matrix is stable:

A−B0B
T
0 U

−1
0 U1(−L) (50)

whereU1(−L) is defined by (49b).
Proof: Section V-H.

Remark 14:Focus on anH∞ preview control problem with
B = [B0, 0], D = [D0, D1], h0 = 0, h1 = L. In this case, the
resulting control law is figured based on a predictive action
associated with a fictitious Hamilton system.

u0(t) = −BT
0 U

−1
0 V Te−JT

0 Lp(t) (51)

p(t) =

[
0
I

]
x(t) +

∫ 0

−L

eJ
T
0 (τ+L)

[
0
I

]
D1w1(t+ τ) dτ

(52)

The control law (51),(52) is an extension of theH∞ preview
control [15] and enables to treat both previewable references
and disturbances. The output feedback case is obtained along
with [16].

Next, we will investigate the conditions for the problem
with input delays. It is noted that theH∞ control problem for
the input delay system (D = [D0, 0, · · · , 0]) is solvable only
if the problem for the delay-free system (D = [D0, 0, · · · , 0],
h0 = h1 = · · · = hd = 0) is solvable. In other words, the
H∞ control law

u = Ky (53)
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for the input delay system always provides anH∞ control
law for the delay-free system by

u = K̃y, K̃(s) :=

block diag{e−sh0Im0 , e
−sh1Im1 , · · · , e−shdImd

}K(s) (54)

whereK(s) and K̃(s) denote the transfer functions ofK,
K̃ respectively. Without loss of generality, we assume the
existence of stabilizing solutionM = V2V

−1
1 ≥ 0 to the

following matrix Riccati equation2 [9]:

MA+ATM −MBBTM + 1
γ2 ·MDDTM + FTF = 0,

(55)

which is a necessary and sufficient condition on the solvability
of the delay-freeH∞ control problemΣ (D = [D0, 0, · · · , 0],
h0 = h1 = · · · = hd = 0). The Riccati equation (55) enables
us to characterize the solvability of input-delayH∞ control
problem from the viewpoint of spectral radius condition and,
further, clarifies a special structure of resulting control law.

Corollary 15 (H∞ control with delays):DefineΣ with D =
[D0, 0, · · · , 0]. For a givenγ > 0, theH∞ control problem is
solvable iff the maximal root of the following transcendental
equation satisfiesλmax < 1:

λ : det [Ǔ(λ)] = 0,

Ǔ(λ) :=
[
λ · I −M

]
Ψ̌d(−L)

[
I
0

]
(56)

whereM ≥ 0 is the stabilizing solution to (55) anďΨd(·) is
the solution to the differential equation{

Ψ̌d(0) = I
d

dt
Ψ̌d(t) = Ψ̌d(t)J̌

T
i , −L+ hi ≤ t ≤ −L+ hi+1

J̌i :=

 A 1
γ2 ·D0D

T
0 −

i∑
j=0

BjB
T
j

−λ−1 · FTF −AT


(i = 0, 1, 2, · · · , d− 1), (57)

which depends on a scalar parameterλ.
Proof: Section V-I.

Remark 16:Focus on anH∞ control problem withB =
[B0, B1], D = [D0, 0], h0 = 0, h1 = L. By Theorem 11, the
resulting control law is figured based on a predictive action
associated with a Hamilton system

u0(t) = K0q(t) (58)

u1(t) = K1q(t) (59)

q(t) =

[
0
I

]
x(t) +

∫ 0

−L

eJ
T
0 (τ+L)

[
0
I

]
B1u1(t+ τ) dτ

(60)

K0 = −BT
0 U

−1
0 V Te−JT

0 L,

K1 = BT
1

[
I 0
](

I − e−JT
0 L

[
I
0

]
U−1
0 V T

)
e−JT

0 L.

(61)

2The stabilizing solution means thatA−BBTM + 1
γ2 ·DDT is stable.

Furthermore, if a conditionFAkB1 = 0 (k = 0, 1, · · · ) is im-
posed which arises in robust stabilization problems (e.g.[12]),
the following equality is obtained by employing the relation

(JT
0 )k

[
0
B1

]
=

[
0

(−A)kB1

]
(k = 0, 1, · · · ).

q(t) =

[
0
I

]
r(t),

r(t) = x(t) +

∫ 0

−L

e−A(τ+L)B1u1(t+ τ) dτ (62)

Thus, it is observed that the control law (58)-(61) yields
nominal state prediction [5], [28] for specified problems.

Remark 17:In the case ofD = 0, γ = ∞, Theorem 11
provides an LQ control law for (3). In the general setting, it
is observed that the nominal state prediction does not work as
optimal control strategy. If we focus on a simple caseB =
[0, B1], h0 = 0, h1 = L, the representation (48) yields nominal
state prediction:

u1(t) = −BT
1 Mr(t), r(t) : defined by (62) (63)

which is obtained by employing the factsU0 = V T
1 e

−ATL,

M = V2V
−1
1 , eJ

T
0 τ =

[
eA

Tτ ∗
0 e−Aτ

]
.

Let us provide an interpretation on the feature of resulting
control system. Recall the Hamiltonian representation (44)[

Ao −BoB∗
o + 1

γ2 · DoD∗
o

−F∗
oFo −A∗

o

] [
V1 + GΠG∗V2

V2

]
ϕ

=

[
V1 + GΠG∗V2

V2

]
AΛoϕ, ϕ ∈ D(AΛo) (64)

AΛoϕ =

[
Λϕ0

ϕ1
′

]
, D(AΛo) ={

ϕ ∈ Xo : ϕ1 ∈W 1,2(−L, 0; Rp), FV1ϕ
0 = ϕ1(0)

}
(65)

which is employed in Theorem 6, and investigate the property
of the resulting control system. If (30) has a stabilizing solu-
tion So ∈ L(Xo) or, equivalently, the operatorV1 + GΠG∗V2

is invertible (Theorem 6(b)), we have the following equality

(Ao − BoB∗
oSo +

1
γ2 · DoD∗

oSo)(V1 + GΠG∗V2)ϕ =

(V1 + GΠG∗V2)AΛoϕ, ϕ ∈ D(AΛo) (66)

for the system

˙̂xo(t) = (Ao − BoB∗
oSo +

1
γ2 · DoD∗

oSo)x̂o(t) (67)

which is obtained by applying (32) andw(t) = 1
γ2 ·D∗

oSox̂o(t)

to Σ̂o.
If the stabilizing solution holdsSo ≥ 0, w(t) = 1

γ2 ·
D∗

oSox̂o(t) plays as the worst-case disturbance for theH∞

control system and (67) is equivalently transformed to a
fictitious form

˙̂xo(t) = AΛox̂o(t), x̂o ∈ D(AΛo) (68)

whereAΛo is defined by (45). Denoting the state byx̂o(t) :=
(xo(t), vt) ∈ Xo, vt(β) := v(t+β)(−L ≤ β ≤ 0), the system
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(68) is further described as follows:

ẋo(t) = Λxo(t)

v(t) = FV1xo(t) (69)

vt(β) := v(t+ β), −L ≤ β ≤ 0.

Thus, for the generalized plantsΣ with any multiple time
delays, the worst-case system (67) yields identical pole con-
figuration as far as theH∞ control exists. For the LQ control
problem (D = 0), this property provides the pole configuration
of the resulting closed loop system.

Corollary 18 (LQ control):Define an LQ control problem
by D = [D0, D1, D2, · · · , Dd ] = 0 with the cost-functional
(3), the pole configuration of the resulting closed loop system
coincides with the eigenvalues ofΛ, which is defined by (35).
In other words, the value of time delaysh0 < h1 < · · · < hd
does not affect the pole configuration of the resulting closed
loop system.

V. PROOFS

A. Proof of Lemma 2

We first deriveG ∈ L(X ,Wo). Forϕ ∈ X , it is verified that
Gϕ ∈ Wo = D(Ao) holds since(Gϕ)1 ∈ W 1,2(−L, 0; Rp)
andF (Gϕ)0 = (Gϕ)1(0) are satisfied by (22). FurthermoreGϕ
in Wo depends continuously onϕ ∈ X . HenceG ∈ L(X ,Wo).

Based on (23), we will deriveG∗ ∈ L(Xo,V∗), whereV∗ =
D(A∗) is defined by (13). Forψ ∈ Xo, G∗ψ ∈ V∗ = D(A∗)
holds since((G∗ψ)1, (G∗ψ)2) ∈ W 1,2(−L, 0; Rl+m) and
(G∗ψ)1(−L) = DTψ0, (G∗ψ)2(−L) = BTψ0 are satisfied
by (23). FurthermoreG∗ψ in V∗ depends continuously on
ψ ∈ Xo. HenceG∗ ∈ L(Xo,V∗) is derived.

B. Proof of Lemma 3

(a) We first note that a part of operators, which describe the
systemΣ̂o, shares a similar structure to output delay systems.
Introduce alternative input operators

D̃o ∈ L(Rl,Xo) : D̃ov =

[
Dw
0

]
, w ∈ Rl (70)

B̃o ∈ L(Rm,Xo) : B̃ou =

[
Bu
0

]
, u ∈ Rm (71)

and define an evolution equation as follows:

˙̂xo(t) = Aox̂o(t) + D̃ow(t) + B̃ou(t)

Σ̂′
o : z(t) = Fox̂o(t) + F0u(t) (72)

x̂o(0) := GΞϕ, ϕ ∈ X .

The systemΣ̂′
o describes the output delay system

ẋ(t) = Ax(t) +Dw(t) +Bu(t)

z(t) = Fx(t− L) + F0u(t)

and, by [23], it is shown that̂Σ′
o belongs to the Pritchard-

Salamon systems withW = Wo, X = V = Xo, A = Ao,
B = [ D̃o, B̃o ], C = Fo. In other words,Σ̂′

o satisfies the
conditions H1)-H3). Since both the operatorsD̃o, B̃o in Σ̂′

o

andDo, Bo in Σ̂o are bounded, H1) still holds for̂Σo. While

Σ̂o satisfies H2),H3) as the corresponding operators are not
perturbed. ThuŝΣo are in the Pritchard-Salamon systems.
(b) We first prepare the following equalities for̂Σ and Σ̂o.

AoGϕ = GAϕ, ϕ ∈ X (73)

FoGϕ = Fϕ, ϕ ∈ X (74)

The equality (73) follows from

⟨ψ,AoGϕ⟩Xo = ⟨A∗G∗ψ, ϕ⟩X , ∀ψ ∈ Xo, ϕ ∈ X , (75)

which is verified by straightforward calculation with
(13),(21),(22),(23). While (74) is obtained with (17),(22),(28).

By (26),(27),(73),(74), the states of̂Σ, Σ̂o satisfy

x̂o(t) = Gx̂(t), x̂(t) ∈ X . (76)

Thus, for (w, u) ∈ L2(0, t; Rl+m), the mild solutions ofΣ̂
with x̂(0) ∈ X and Σ̂o with x̂o(0) = Gx̂(0) satisfies (76).
(c) SinceF x̂(t) = Fox̂o(t) by (74) and (b) holds, the systems
Σ̂ with x̂(0) = 0 and Σ̂o with x̂o(0) = 0 generate the same
outputz ∈ L2(0, t; Rp) for any (w, u) ∈ L2(0, t; Rl+m).

C. Proof of Lemma 4

(a) Let So ≥ 0 be the stabilizing solution to (30), then the
system

˙̂xo(t) =
(
Ao − BoB∗

oSo +
1
γ2 · DoD∗

oSo

)
x̂o(t),

x̂o(0) = GΞϕ, ϕ ∈ X (77)

or

˙̂xo(t) = Aox̂o(t) +Dow(t) + Bou(t),

x̂o(0) = GΞϕ, ϕ ∈ X (78)

w(t) = 1
γ2 · D∗

oSox̂o(t), u(t) = −B∗
oSox̂o(t)

is exponentially stable onXo and the following inequalities
hold for k > 0:

∥x̂o(t)∥Xo ≤ c1 · e−kt, ∥w(t)∥Rl ≤ c2 · e−kt,

∥u(t)∥Rm ≤ c3 · e−kt (c1, c2, c3 > 0). (79)

In order to verify (a), we will show that the system

˙̂x(t) = Ax̂(t) +Dw(t) + Bu(t), x̂(0) = Ξϕ, ϕ ∈ X (80)

w(t) = 1
γ2 · D∗Sx̂(t), u(t) = −B∗Sx̂(t), S = G∗SoG

is exponentially stable. Since (26),(27) and Lemma 3(b) yield

w(t) = 1
γ2 · D∗Sx̂(t) = 1

γ2 · D∗
oSox̂o(t) (81)

u(t) = −B∗Sx̂(t) = −B∗
oSox̂o(t) (82)

for the systems (78) and (80), the following inequality is
obtained by Lemma 3(b).

∥Gx̂(t)∥Xo = ∥x̂o(t)∥Xo ≤ c1 · e−kt (83)

By (20),(22),(79), the inequalities

∥Gx̂(t)∥Xo ≥∥∥∥∥eALx(t) +

∫ 0

−L

e−Aβ [DB]

[
wt(β)
ut(β)

]
dβ

∥∥∥∥
Rn

(84)∥∥∥∥∫ 0

−L

e−Aβ [DB]

[
wt(β)
ut(β)

]
dβ

∥∥∥∥
Rn

≤ c4 · e−kt (c4 > 0) (85)
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are obtained. Hence, by triangle inequality with (83),(84),(85),
the following inequality is derived.

∥eALx(t)∥Rn

≤
∥∥∥∥eALx(t) +

∫ 0

−L

e−Aβ [DB]

[
wt(β)
ut(β)

]
dβ

∥∥∥∥
Rn

+

∥∥∥∥−∫ 0

−L

e−Aβ [DB]

[
wt(β)
ut(β)

]
dβ

∥∥∥∥
Rn

≤ (c1 + c4) · e−kt (86)

As follows from (79),(86),∥x̂(t)∥X ≤ c5 ·e−kt (c5 > 0) holds
for the system (80).
(b) (⇒) Suppose theH∞ control problemΣ̂ is solvable and
anH∞ control law is given by (31). Then the system

˙̂x(t) = (A+ BK)x̂(t) +Dw(t),
K := −B∗S, x̂(0) = Ξϕ, ϕ ∈ X (87)

z(t) = (F + F0K)x̂(t)

is exponentially stable and defines the mild solution as follows:

x̂(t) = TK(t)Ξϕ+

∫ T

0

TK(t− σ)Dw(σ) dσ (88)

whereTK(t) is the strongly continuous semigroup generated
by A+ BK. It follows from Lemma 3(b),(c) that a control

u(t) = K

(
TK(t)Ξϕ+

∫ T

0

TK(t− σ)Dw(σ) dσ

)
, (89)

which is causal of̂yo(t), exponentially stabilizeŝΣo and the
resulting system provides equivalent mapping to (87). Hence
anH∞ control exists forΣ̂o.

(⇐) proved by (a).

D. Proof of Lemma 5

Define a generalized plant

ẋ(t) = Ax(t) +Dw(t− L) +Bu(t)

Σ̃ : z(t) = Fx(t) + F0u(t) (90)

y(t) =

[
x(t)
w(t)

]
associated with the system (1). Then theH∞ control problem
Σ̃ is solvable only if the problemΣ is solvable since all control
delays are removed from control channels and maximal delays
are imposed on the disturbances ofΣ̃. In other words, anyH∞

control forΣ can be applied tõΣ by including fictitious input
delays in the control. By Theorem 1 [15], it is shown that the
H∞ control problemΣ̃ is solvable only if the matrix (34) does
not have eigenvalues on the imaginary axis. Thus Lemma 5 is
proved.

E. Proof of Theorem 6

We first prepare some operator equalities, which enable to
solve the operator Riccati equation (30).

Lemma 19:The following equality holds forV1, V2:

HLo

[
V1

V2

]
ϕ =

[
V1

V2

]
AΛoϕ, ϕ ∈ D(AΛo) (91)

HLo ∈ L(Wo ×Xo,Xo ×W∗
o ) :

HLo :=

[
Ao −BLoB∗

Lo +
1
γ2 · DLoD∗

Lo

−F∗
oFo −A∗

o

]
(92a)

AΛoϕ =

[
Λϕ0

ϕ1
′

]
, D(AΛo) = {ϕ ∈ Xo :

ϕ1 ∈W 1,2(−L, 0; Rp), FV1ϕ
0 = ϕ1(0)

}
(92b)

DLo := GDL ∈ L(Rm1 ,Xo), (92c)

BLo := GBL ∈ L(Rm2 ,Xo), (92d)

DL ∈ L(Rm1 ,V) : D∗
Lψ = ψ1(0), ψ ∈ V∗ (92e)

BL ∈ L(Rm2 ,V) : B∗
Lψ = ψ2(0), ψ ∈ V∗ (92f)

whereΛ is a stable matrix defined by (35).
Proof: It is noted that the operatorsDLo, BLo are explic-

itly given based on (92c)-(92f),(23).

D∗
Loψ = D∗

LG∗ψ = (G∗ψ)1(0) = DTψ0, ψ ∈ Xo (93a)

DLow =

[
Dw
0

]
∈ Xo, w ∈ Rm1 (93b)

B∗
Loψ = B∗

LG∗ψ = (G∗ψ)2(0) = BTψ0, ψ ∈ Xo (93c)

BLou =

[
Bu
0

]
∈ Xo, u ∈ Rm2 (93d)

In order to derive (91), we verify the following equalities.

AoV1ϕ+ (−BLoB∗
Lo +

1
γ2 · DLoD∗

Lo)V2ϕ = V1AΛoϕ (94)

−F∗
oFoV1ϕ−A∗

oV2ϕ = V2AΛoϕ, ϕ ∈ D(AΛo) (95)

By (34),(35),(93a)-(93d) with the factV1ϕ ∈ D(Ao) = Wo

(ϕ ∈ D(AΛo)), (94) is obtained as follows:

AoV1ϕ+ (−BLoB∗
Lo +

1
γ2 · DLoD∗

Lo)V2ϕ

=

[
(AV1 −BBTV2 +

1
γ2 ·DDTV2)ϕ

0

ϕ1
′

]
=

[
V1Λϕ

0

ϕ1
′

]
= V1AΛoϕ, ϕ ∈ D(AΛo). (96)

While, we have following equalities on the left hand side of
(95).

⟨ψ,−F∗
oFoV1ϕ−A∗

oV2ϕ⟩Wo,W∗
o

= −⟨Foψ,FoV1ϕ⟩Rp − ⟨Aoψ,V2ϕ⟩Xo

= −ψ1T(−L)ϕ1(−L)−
⟨[

Aψ0

ψ1′

]
,

[
V2ϕ

0

ϕ1

]⟩
Xo

,

ψ ∈ D(Ao) = Wo, ϕ ∈ D(AΛo) (97)∫ 0

−L

ψ1T′
(β)ϕ1(β) dβ = −

∫ 0

−L

ψ1T(β)ϕ1
′
(β) dβ

+ψ1T(0)ϕ1(0)− ψ1T(−L)ϕ1(−L) (98)

ψ1T(0)ϕ1(0) = ψ0TFTFV1ϕ
0 (99)

Hence, by (97),(98),(99) and (35), the following equality is
obtained forψ ∈ D(Ao) = Wo, ϕ ∈ D(AΛo):

⟨ψ,−F∗
oFoV1ϕ−A∗

oV2ϕ⟩Wo,W∗
o

=

⟨
ψ,

[
(−FTFV1 −ATV2)ϕ

0

ϕ1
′

]⟩
Wo,W∗

o

=

⟨
ψ,

[
V2Λϕ

0

ϕ1
′

]⟩
Wo,W∗

o

= ⟨ψ,V2AΛoϕ⟩Wo,W∗
o
. (100)
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Thus (95) holds.
In Lemma 19, it should be noted that the operatorAΛo

generates exponentially stable semigroups onXo since the
structure ofAΛo is same as (21) and the matrixΛ defined
by (35) is stable. Based on Lemma 19, an Hamiltonian
representation for (30) is obtained as follows.

Lemma 20:For the operator Riccati equation (30), the
Hamiltonian representation

Ho

[
V1 + GΠG∗V2

V2

]
ϕ =

[
V1 + GΠG∗V2

V2

]
AΛoϕ,

ϕ ∈ D(AΛo) (101)

Ho ∈ L(Wo ×Xo,Xo ×W∗
o ) :

Ho :=

[
Ao −BoB∗

o + 1
γ2 · DoD∗

o

−F∗
oFo −A∗

o

]
(102)

holds.
Proof: We first verify the following equalities.

FΠϕ = 0, ϕ ∈ X (103)

ΠA∗ψ +AΠψ + 1
γ2 · (DD∗ −DLD∗

L)ψ

−(BB∗ − BLB∗
L)ψ = 0, ψ ∈ V∗ (104)

Equation (103) is obtained by (17),(38). On the left hand side
of (104), we have a following equality.

⟨ψ̃, {ΠA∗ +AΠ+ 1
γ2 · (DD∗ −DLD∗

L)

−(BB∗ − BLB∗
L)}ψ⟩V∗,V

= ⟨Πψ̃,A∗ψ⟩X + ⟨A∗ψ̃,Πψ⟩X
− 1

γ2 · ⟨D∗
Lψ̃,D∗

Lψ⟩Rm1 + 1
γ2 · ⟨D∗ψ̃,D∗ψ⟩Rm1

+⟨B∗
Lψ̃,B∗

Lψ⟩Rm2 − ⟨B∗ψ̃,B∗ψ⟩Rm2 , ψ̃, ψ ∈ V∗ (105)

By (12),(13),(38), some terms in (105) are calculated as
follows:

⟨Πψ̃,A∗ψ⟩X + ⟨A∗ψ̃,Πψ⟩X

= 1
γ2 ·

d∑
i=0

∫ 0

−L+hi

(ψ̃1T
i (β)ψ1′

i (β) + ψ̃1T′

i (β)ψ1
i (β)) dβ

−
d∑

i=0

∫ 0

−L+hi

(ψ̃2T
i (β)ψ2′

i (β) + ψ̃2T′

i (β)ψ2
i (β)) dβ

= 1
γ2 ·

d∑
i=0

[
ψ̃1T
i (β)ψ1

i (β)
]β=0

β=−L+hi

−
d∑

i=0

[
ψ̃2T
i (β)ψ2

i (β)
]β=0

β=−L+hi

, ψ̃, ψ ∈ V∗ (106)

and, further, the equalities

− 1
γ2 · ⟨D∗

Lψ̃,D∗
Lψ⟩Rm1 + 1

γ2 · ⟨D∗ψ̃,D∗ψ⟩Rm1

= − 1
γ2 ·

d∑
i=0

[
ψ̃1T
i (β)ψ1

i (β)
]β=0

β=−L+hi

, (107)

⟨B∗
Lψ̃,B∗

Lψ⟩Rm2 − ⟨B∗ψ̃,B∗ψ⟩Rm2

=
d∑

i=0

[
ψ̃2T
i (β)ψ2

i (β)
]β=0

β=−L+hi

, ψ̃, ψ ∈ V∗ (108)

are obtained from (15),(16),(92e),(92f) where the components
of ψ̃, ψ are denoted along (14). Hence, by (105)-(108), (104)
holds.

Next, applying an invertible operator

J :=

[
I GΠG∗

0 I

]
∈ L(Xo,W∗

o ) (109)

to (91), we will show that

JHLoJ−1J
[

V1

V2

]
ϕ = J

[
V1

V2

]
AΛoϕ, ϕ ∈ D(AΛo)(110)

yields (101). The equalityJ
[

V1

V2

]
=

[
V1 + GΠG∗

V2

]
holds and, by (73),(74),(92c),(92d),(103),(104),

JHLoJ−1 = Ho ∈ L(Wo ×Xo,Xo ×W∗
o ) (111)

is verified directly. Thus (101),(102) are obtained.
Proof of Theorem 6:

(a) ⇔ (b): (⇒) Applying [−So, I ] to (101), then using (30),
we have

A∗
SoT ϕ+ T AΛoϕ = 0, ϕ ∈ D(AΛo), (112a)

T := SoV1 − V2 + SoGΠG∗V2, (112b)

ASo := Ao − BoB∗
oSo +

1
γ2 · DoD∗

oSo. (112c)

SinceASo andAΛo generate exponentially stable semigroups
onXo, the Lyapunov equation (112a) requiresT = 0 ([3],[29],
Lemma 2.32). By Remark 7, there exists a bounded inverse of
(36) iff it does not have any eigenvalue at origin. We verify
by contradiction that the operatorV1 + GΠG∗V2 is invertible.
Suppose thatV1 + GΠG∗V2 has an eigenvalue0 and

(V1 + GΠG∗V2)v = 0 (113)

holds forv = (v0, v1) ̸= 0. Then the equalities

T v = −V2v = 0, V1v = 0 (114)

hold by (112b) and (113). Furthermore (114), (37) imply that
there existsv0 ∈ Rn such that[

V1
V2

]
v0 = 0, v0 ̸= 0, v1 = 0 (115)

holds forv = (v0, v1). This contradicts the fact that the matrix
V = [V T

1 V T
2 ]T ∈ R2n×n is column full-rank. Thus (b) is

derived.
(⇐) Since (101),(102) hold and (b) assumes the existence of

bounded inverse forV1+GΠG∗V2, (41) is one of the bounded
solution to (30). Applying[ I, 0 ] to (101), we have

ASo(V1 + GΠG∗V2)ϕ = (V1 + GΠG∗V2)AΛoϕ,

ϕ ∈ D(AΛo) (116)

whereAΛo generates exponentially stable semigroups onXo.
Thus ASo generates exponentially stable semigroups onXo

and (41) provides the stabilizing solution.
(b)⇔(c): By contraposition, we will show that the operator
V1+GΠG∗V2 has an eigenvalue0 iff the matrixU0 is singular.
By the equality(V1 + GΠG∗V2)v = 0, V1 + GΠG∗V2 has an
eigenvalue0 iff there existsv ̸= 0 such that

V1v = Gu, −u = ΠG∗V2v (117)
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hold. In the following, we first show that the matrixU0 is
singular ifu ̸= 0, v ̸= 0 exist. Introducing auxiliary variables

p(β) := −e−ATβV2v
0 −

∫ 0

β

eA
T(ξ−β)FTv1(ξ) dξ (118a)

q(ξ) := eA(ξ+L)u0 +

∫ ξ

−L

eA(ξ−β) [DB]

[
u1(β)
u2(β)

]
dβ (118b)

to the right and left equalities in (117) respectively, we have
the following relations:

u0 = 0 (119a)

u1i (β) = − 1
γ2 · χ[−L+hi,0](β) ·DT

i p(β) (119b)

u2i (β) = χ[−L+hi,0](β) ·B
T
i p(β) (i = 0, 1, · · · , d)(119c)

p′(β) = −ATp(β) + FTv1(β), −L ≤ β ≤ 0 (119d)

p(0) = −V2v0 (119e)

V1v
0 = q(0) (119f)

v1(ξ) = Fq(ξ) (119g)

q′(ξ) = Aq(ξ) +Du1(ξ) +Bu2(ξ), −L ≤ ξ ≤ 0(119h)

q(−L) = u0. (119i)

Combining the conditions (119b),(119c),(119d),(119g),(119h),
we have[

p′(ξ)
q′(ξ)

]
= −JT

i

[
p(ξ)
q(ξ)

]
,
−L+ hi ≤ ξ ≤ −L+ hi+1

(i = 0, 1, · · · , d− 1)
(120)

and, further, (120) and (119a),(119e),(119f),(119i) yield the
following conditions[

p(0)
q(0)

]
= Ψd(−L)

[
p(−L)
q(−L)

]
(121)

V T
1 p(0) + V T

2 q(0) = 0, q(−L) = 0 (122)

where (43) is imposed in (122). By (121),(122), we finally
obtain the equality:[

V T
1 V T

2

]
Ψd(−L)

[
I
0

]
p(−L) = U0p(−L) = 0. (123)

If p(−L) = 0, (122),(120) yieldp(·) ≡ 0, q(·) ≡ 0 and,
further with (119f),(118a),(119g), we have

[V T
1 V T

2 ]Tv0 = 0, v1 = 0 (124)

for v = (v0, v1), whereV = [V T
1 V T

2 ]T is column full-rank
by (35). Hence it is shown thatv = 0 if p(−L) = 0. In other
words, the matrixU0 must be singular ifV1 + GΠG∗V2 has
an eigenvalue0. Next we will show v ̸= 0 if p(−L) ̸= 0
exists in (123). Supposev = 0 holds even ifp(−L) ̸= 0.
Then (119d),(119e) derivep(·) ≡ 0. Hence, by contradiction,
v ̸= 0 if p(−L) ̸= 0.

Thus,V1+GΠG∗V2 does not have any eigenvalue at origin
iff the matrix U0 is nonsingular. The representation (41) is
obtained in the proof (a)⇐(b).

F. Proof of Theorem 10

Based on Remark 8, we will show thatSo ≥ 0 holds for
the operator (41) iff the matrix (47) is nonsingular forµ < 0.

We first verify thatλ =: µ−1 ̸= 0 is an eigenvalue ofSo iff
there existsf ̸= 0 such that

(V1 − µ · V2)f = Gg, −g = ΠG∗V2f (125)

hold. Let v ̸= 0 be the corresponding eigenvector ofSo and

λv = V2(V1 + GΠG∗V2)
−1v (126)

holds. Thenf = (V1 + GΠG∗V2)
−1v ̸= 0, g = −ΠG∗V2f

satisfy (125). Hencef ̸= 0 exists. Conversely, letf ̸= 0
exists for (125). Then we have an equality

λV2f = V2(V1 + GΠG∗V2)
−1V2f (127)

from (125). If V2f = 0, (125) requiresV1f = 0 and, further,
f = 0 sinceV1f = V2f = 0 for f = (f1, f2) ∈ Xo yields
[V T

1 V
T
2 ]Tf0 = 0, f1 = 0, whereV = [V T

1 V
T
2 ]T defined by

(35) is column full-rank. Hence the eigenvectorv = V2f ̸= 0
exists for (126).

For the eigenvalueλ = µ−1 ̸= 0, 1 of So, we will show that
there existsf ̸= 0 to (125) iff Ũ(µ) is singular. Introducing
auxiliary variables

p̃(β) := −e−ATβV2f
0 −

∫ 0

β

eA
T(ξ−β)FTf1(ξ) dξ (128a)

q̃(ξ) := eA(ξ+L)g0 +

∫ ξ

−L

eA(ξ−β) [DB]

[
g1(β)
g2(β)

]
dβ(128b)

to the right and left equalities in (125) respectively, then
combining the relations along the manipulation in the proof
of Theorem 6 (b)⇔(c), we have[
p̃′(β)
q̃′(β)

]
= −J̃T

i

[
p̃(β)
q̃(β)

]
,
−L+ hi ≤ β ≤ −L+ hi+1

(i = 0, 1, · · · , d− 1)
(129)

i.e.

[
p̃(0)
q̃(0)

]
= Ψ̃d(−L)

[
p̃(−L)
q̃(−L)

]
(130)

and the following equalities:

g0 = 0 (131a)

p̃(0) = −V2f0 (131b)

(V1 − µV2)f
0 = q̃(0) (131c)

q̃(−L) = g0. (131d)

Since (131b),(131c),(43) and (131a)(131d) yield the boundary
conditions

(V1 − µV2)
Tp̃(0) + V T

2 q̃(0) = 0, q̃(−L) = 0, (132)

we finally obtain an equality:

V T

[
I 0

−µ · I I

]
Ψ̃d(−L)

[
I
0

]
p̃(−L) = Ũ(µ)p̃(−L) = 0

(133)

from (130),(132) forµ = λ−1.
If p̃(−L) = 0, (132),(129) yieldp̃(·) ≡ 0, q̃(·) ≡ 0, and

further with (131b),(131c), we have

[V T
1 V T

2 ]Tf0 = 0, f1 = 0 (134)

for f = (f1, f2), whereV = [V T
1 V T

2 ]T is column full-
rank by (35). Hencev = 0 if p(−L) = 0. In other words,
Ũ(µ) must be singular if there exists an eigenvalueλ = µ−1.
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Next we will show f ̸= 0 if p̃(−L) ̸= 0 exists in (133).
Supposef = (f0, f1) = 0 holds even ifp̃(−L) ̸= 0. Then
(128a) derives̃p(·) ≡ 0. Hence, by contradiction,f ̸= 0 if
p̃(−L) ̸= 0.

Thus, for a givenµ ̸= 0, 1, Ũ(µ) is singular iff f ̸= 0
exists for (125). Sinceλ = µ−1 is an eigenvalue of (41) iff
Ũ(µ) is singular, it is shown that the stabilizing solution (41)
is positive semi-definite iffŨ(µ) is nonsingular forµ < 0.

G. Proof of Theorem 11

In order to provide a representation of the control law
u(t) = −B∗

oSoGx̂(t) = −B∗G∗SoGx̂(t), we first define the re-
lationsu = −B∗f , f = G∗SoGΞg, g := x̂(t) = (x(t), wt, ut)
(u ∈ Rm, f, g ∈ X ) and elaborate the representation ofu.
Based on (20),(41), the equalityf = G∗SoGΞg is equivalently
given by following relations:

f = G∗V2v, V1v = G(Ξg −Πf). (135)

Eliminating the variablev, we will derive the representation
(48), (49a)-(49f). Definer1i ∈ L2(−L, 0; Rli) and r2i ∈
L2(−L, 0; Rmi) (i = 0, 1, · · · , d):

r1i (β) =

{
g1i (β) −L ≤ β ≤ −L+ hi

γ−2 · f1i (β) −L+ hi ≤ β ≤ 0
(136a)

r2i (β) =

{
g2i (β) −L ≤ β ≤ −L+ hi
−f2i (β) −L+ hi ≤ β ≤ 0

(136b)

then introducing auxiliary variables

p̄(β) = −e−ATβV2v
0 −

∫ 0

β

eA
T(ξ−β)FTv1(ξ) dξ (137a)

q̄(ξ) = eA(ξ+L)g0

+

∫ ξ

−L

eA(ξ−β)
d∑

i=0

(Dir
1
i (β) +Bir

2
i (β)) dβ (137b)

to the left and right equalities in (135), we have[
p̄(ξ)
q̄(ξ)

]
= Φ(ξ)Φ−1(−L)

[
0
I

]
g0

+ Φ(ξ)Φ−1(−L)
[
I
0

]
p̄(−L)

+
d∑

i=1

∫ min(ξ,−L+hi)

−L

Φ(ξ)Φ−1(β)

[
0
I

]
×(Dig

1
i (β) +Big

2
i (β)) dβ (138)


Φ(0) = I
d

dt
Φ(t) = −JT

i Φ(t), −L+ hi ≤ t ≤ −L+ hi+1

(i = 0, 1, · · · , d− 1)

(139)

with the following equalities:

V T
1 p̄(0) + V T

2 q̄(0) = 0 (140)

uj = BT
j p̄(−L+ hj) (j = 0, 1, · · · , d). (141)

Pre-multiplying either[I 0] or V T to both sides of (138), we
obtain the equalities:

p̄(−L+ hj) =W j
0 p̄(−L) +W j

1 (−L)g0

+

d∑
i=1

∫ −L+min(hi,hj)

−L

W j
1 (β)(Dig

1
i (β) +Big

2
i (β)) dβ, (142)

(j = 0, 1, · · · , d)
0 = U0p̄(−L) + U1(−L)g0

+
d∑

i=1

∫ −L+hi

−L

U1(β)(Dig
1
i (β) +Big

2
i (β)) dβ. (143)

Hence, eliminatinḡp(−L+hj) andp̄(−L) in (141)-(143), the
control law is obtained by (48),(49a)-(49f).

H. Proof of Corollary 13

Since the solvability of the operator Riccati equations (29)
and (30) are equivalent (Lemma 4(b)), we first characterize
the solvability of (30) in terms of the stability of the closed
loop system.

Lemma 21:On the stabilizing solutionS ∈ L(V,V∗), the
following statements are equivalent.

(a) The stabilizing solution to the equation (30) is positive
semi-definite (S ≥ 0).

(b) The operatorA − BB∗S generates exponentially stable
semigroups onX .

(c) The matrixA−BBTU−1
0 U1(−L) is stable.

Proof: (a)⇔(b): By Lemma 4 and PropositionsP, Po, it
is shown that the stabilizing solution to (30) is positive semi-
definite (S ≥ 0) iff the stabilizing solution to (29) is positive
semi-definite. Suppose the stabilizing solutionS ≥ 0 exists to
(29), then theH∞ control law (31) exponentially stabilizeŝΣ
on X . Hence (b) holds. Suppose (b) holds. By rewriting (29),
we have an operator Lyapunov equation

S(A− BB∗S)ϕ+ (A− BB∗S)∗Sϕ+Qϕ = 0, ϕ ∈ X ,
Q := SBB∗S + 1

γ2SDD∗S + F∗F ≥ 0, (144)

whereA − BB∗S generates exponentially stable semigroups
onX . Hence, by [3], there exists a stabilizing solutionS ≥ 0.
(b)⇔(c): Focus on the closed-loop system

˙̂x(t) = (A− BB∗S)x̂(t), x̂(0) ∈ D(A). (145)

The solutionx̂(t) is bounded over the interval0 ≤ t ≤ L and,
after the timet = L, the behavior̂x(t) is reduced to

x̂(t) = (x(t), 0, 0) ∈ X ,
ẋ(t) = (A−BBTU−1

0 U1(−L))x(t). (146)

Thus the closed loop system (146) is exponentially stable iff
(c) holds.

By Lemma 21, it is shown that the stabilizing solution to (29)
is positive semi-definite iff the condition (c) holds. Hence the
H∞ control problem (B0 = [B0, 0, · · · , 0]) is solvable iff the
conditions stated in Corollary 13 holds.
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I. Proof of Corollary 15

By using the solutionM = V2V
−1
1 ≥ 0, the stabilizing

solution (41) is represented as follows:

So :=

[
M 0
0 I

](
I + GΠG∗

[
M 0
0 I

])−1

. (147)

Hence the stabilizing solution is positive semi-definite iff the

maximal eigenvalue ofQ := GΠG∗
[
M 0
0 I

]
is smaller than

1. In the following, we will show that the nonzero eigenvalues
of Q are given by the roots of the transcendental equation (56).
By the relations

λv = −Gu, u = −ΠG∗
[
M 0
0 I

]
v, (148)

λ is an eigenvalue ofQ iff there existsv ̸= 0 such that the
equalities (148) hold. Introducing auxiliary variables

p̌(β) := −e−ATβMv0 −
∫ 0

β

eA
T(ξ−β)FTv1(ξ) dξ (149a)

q̌(ξ) := eA(ξ+L)u0 +

∫ ξ

−L

eA(ξ−β) [DB]

[
u1(β)
u2(β)

]
dβ (149b)

to the right and left equalities in (148) respectively, we have[
p̌′(β)
q̌′(β)

]
= −J̌T

i (µ)

[
p̌(β)
q̌(β)

]
,

−L+ hi ≤ β ≤ −L+ hi+1 (i = 0, 1, · · · , d− 1)

i.e.

[
p̌(0)
q̌(0)

]
= Ψ̌d(−L)

[
p̌(−L)
q̌(−L)

]
(150)

with the boundary conditions

λp̌(0)−Mq̌(0) = 0, q̌(−L) = 0. (151)

By (150) and (151), the equality[
λ · I −M

]
Ψ̌d(−L)

[
I
0

]
p̌(−L) = 0 (152)

is obtained. Therefore, by employing the same approach as the
proof of Theorem 6 (Section V-E), the stabilizing solution (41)
is positive semi-definite iff the maximal root to (56) satisfies
λmax < 1.

VI. I LLUSTRATIVE EXAMPLES

Based on the results stated in Section III,IV, we will
illustrate the achievableH∞ performance for preview control
and unilateral delay systems. The relation between the effect
of preview/delayed action and the resultingH∞ performance
is discussed.

A. Preview Control System

Define anH∞ preview control problem:

ẋ(t) =

[
1 0
1 4

]
x(t) +

[
d
0

]
w0(t) +

[
1
0

]
w1(t− h)

+

[
0
1

]
u(t)

z(t) =

[
0 1
0 0

]
x(t) +

[
0
1

]
u(t), d = 0, 0.4, 0.8, (153)
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Fig. 2. h-γ in preview control

Fig. 3. A unilateral delay system (3 sub-systems)

wherew1 is h unit-time previewable reference andw0 is the
uncertainty which affect the information of previewable signal
(see also (1),(2)). We will investigate the relation between the
preview timeh and the optimal performanceγopt(h).

Based on Theorem 12 (or Corollary 13), the relation be-
tweenh andγopt(h) for the casesd = 0, 0.4, 0.8 are obtained
by Fig.2. For example in the cased = 0, the optimal
valueγopt(h) decreases monotonically as the preview timeh
increases and reaches the performance limitγlow(h) = 0.243.
Therefore, by employing previewable information, theH∞

performance is improved fromγopt(0) = 5.021 to γlow =
0.243 (95.1% reduced). In the casesd = 0.4, 0.8, where
the previewable information involves uncertainty, the relation
betweenh and γopt(h) are similarly depicted in Fig.2. For
d = 0.4, 0.8, theH∞ norm betweenw andz are reduced by
62.8% and 37.5% respectively. Thus it is observed that the
effect of preview strategy decreases as the uncertainty in the
information increases.

By [19], it is shown via dual filtering problem that theH∞

preview performance typically reaches the optimal valueγlow
in finite preview time. In Fig.2, the cased = 0 corresponds
to this result. Similar phenomena are observed in the cases
d = 0.4, 0.8.

B. Unilateral Delay System

Focus on the unilateral delay system depicted by Fig.3. In
this system, the control input(ua, ub) is applied to the sub-
systemsΣ0, Σ2 and the disturbancew is applied toΣ1. We
define the sub-systems by

Σi(s) :=
1

Ts+ 1
(i = 0, 1, 2)
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and investigate the relation between the transmission delayh
and the optimal performanceγopt(h) in the full-information
problem. Transforming the unilateral system Fig.3 to the
auxiliary form Fig.1(b), then applying Theorem 12, the relation
betweenh andγopt(h) for T = 0.2, 0.5, 1.0, 2.0 are obtained
by Fig.4.

In this example, the relation is rather complicated than the
preview control problem (Section VI-A) and the resultingH∞

performance depends on the trade-off between the strength of
preview action inua and the limitation of delayed action in
ub. In the caseT = 2.0, the optimal valueγopt(h) decreases
slightly over 0 ≤ h ≤ 1.5 and turns to increase aroundh =
T ≃ 2.0. For the casesT = 0.2, 0.5, 1.0, it is observed that the
optimal values turn to increase around the delay time, which
meets the time constant of sub-systems.

VII. C ONCLUSION

A generalizedH∞ control problem, which covers preview
and delayed control strategies, is discussed based on a state-
space approach. By introducing a Hamiltonian matrix, which is
defined with a delay-free system, the analytic solution to corre-
sponding operator Riccati equation is newly established. Based
on the results obtained here, explicit formulas are derived for
the H∞ control problem and, further, some interpretations
are provided on the property of the resulting control systems.
The solution to the output feedback problem is obtained by
introducing a solution to filtering Riccati equation (e.g. [16]).

In the formulation of the generalized plant, the orthonormal
condition A2) plays a key role to establish an analytic solution
to the operator Riccati equation and, in case when the condi-
tion is relaxed or the term of disturbance is included in the
regulated output, the analytic representation is not trivial. The
generalization of formulation is a direction of future research.
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