
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 60, NO. 2, FEBRUARY 2015 1

H∞ Controller Design for Preview and
Delayed Systems

Akira Kojima, Member, IEEE

Abstract—TheH∞ control problem of general preview/delayed
systems is solved using analytic solutions of the corresponding
operator Riccati equations. The solution to the problem can
be applied to a broad range of input/output delayed systems
and enables the handling of preview/delayed control problems.
The solvability condition is characterized by the roots of the
transcendental equations and the control law for the general
problem is given based on a predictive compensation with
an integro-differential observer. Some interpretations of typical
control problems are presented based on the solvability condition
and the resulting control law.

Index Terms—H∞ control, preview control, delayed system,
state-space approach, operator Riccati equation.

I. I NTRODUCTION

T HE design method ofH∞ control laws for a broad range
of infinite-dimensional systems have been studied, and

the solvability conditions and control laws for preview tracking
and delayed control problems are established in an explicit
form [9], [10], [12], [18], [13], [25], [19], [17], [24], [16]. Full-
information (FI) and output feedbackH∞ control problems
of preview tracking were initially solved under the restricted
condition of the matrix Riccati equation having a stabilizing
solution [9], [10], and the limitation was subsequently relaxed
for general problems [12]. The fixed-lag smoothing problem,
which is a dual problem of preview tracking, has been solved
[18], and the results were later extended to the case of multiple
delays [13]. Alternative solutions of preview tracking and
fixed-lag smoothing problems have also been provided [25].
The H∞ control problems of delayed systems have been
discussed using various approaches (for e.g., see [4]), and
the solutions for typical input (or output) delayed systems are
characterized by the solution of the transcendental equations
or differential Riccati equations [28], [19], [17], [24]. The
multiple delay case has been clarified [16], and theH∞ control
problem with a generalized transmission element has also been
investigated [7]. Regarding the abstract formulation of a broad
range of infinite-dimensional systems, a method for designing
theH∞ control law for Pritchard-Salamon systems [21] has
been studied, and a state-space solution was developed based
on the abstract operator Riccati equations [26]. Approximation
methods for solving the operator Riccati equations have been
investigated [6], and fundamental approaches to the Hankel
norm optimization of general infinite-dimensional systems
have also been developed [22], [23], [1].
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A unified approach to both preview and delayedH∞

control problems has been discussed [12], and the FI control
problem has also been solved using the analytic solution
of the corresponding operator Riccati equation. The operator
Riccati equation approach has the advantage of dealing with
the preview/delayed strategies simultaneously. However, the
solvability condition is still complicated because it requires
the calculation of eigenvalues to guarantee the positive semi-
definiteness of the stabilizing solution, and numerical diffi-
culties are created if the eigenvalues are in the neighborhood
of the origin (see Remark 4). Although an extendingH∞

control problem [12] in an output feedback setting has been
discussed [11], the solvability condition inherits the limitation
of [12] and the structure of the general control law has not been
clarified. Control problems that deal with preview and delayed
strategies frequently arise in one-directional delayed systems.
For example, the control of disturbance attenuation in a wind
tunnel or rolling mill is formulated using a unilateral delayed
system [3] and the coordinated control of a wind farm is also
formulated using multi-path preview/delayed systems [14].
Thus, the solution of general preview/delayed control problems
enables to clarify the control laws for a broad range of systems,
and evaluate the performance achieved by preview/delayed
compensations.

In this study, we focused on a broad range ofH∞ pre-
view/delayed control problems and developed a solution for a
general setting. The solution to the problems can be applied
to multiple preview/delayed control actions based on the
possibility of delayed measurement, and enables the handling
of various control/filtering strategies in a unified manner.
Furthermore, we establish a new solvability condition for the
FI control problem, which allows input/output delays and
overcomes the limitation of [12]. The condition is directly
characterized by the maximal eigenvalue of the compact
operator and the corresponding operator Riccati equation is
analytically solved. The solvability condition for theH∞

output feedback control problem is clarified using the feature
of the analytic solution. A family of solvability conditions
is derived for typical preview/delayed control problems, and
some interpretations of the relevant results are also provided
[18], [13], [19], [17], [24].

This paper is organized as follows. In Section II, a gen-
eralizedH∞ preview/delayed control problem is formulated
and typical control problems are illustrated. In Section III,
the solutions of FI and output feedback control problems are
provided. Furthermore, a family of solvability conditions for
preview/delayed control problems is presented. In Section IV,
typical control problems are discussed and some interpreta-
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tions of relevant results are given. Subsequent to a description
of all proofs in Section V, the feature of preview/delayed
H∞ control problems is illustrated using numerical examples
(Section VI). The conclusion of this paper is presented in
Section VII.

Notation and terminology: LetX and Y be real Hilbert
spaces with norms∥ · ∥X , ∥ · ∥Y and inner product⟨·, ·⟩X ,
⟨·, ·⟩Y , respectively. LetZ be dense inX andZ∗ be the adjoint
space. The adjoint pairing betweenf ∈ Z andg ∈ Z∗ will be
denoted by⟨f, g⟩Z,Z∗ . LetL(X,Y ) denote the set of bounded
linear operatorsΓ : X → Y . The adjoint ofΓ ∈ L(X,Y ) will
be denoted byΓ∗ ∈ L(Y ∗, X∗). WhenX = Y , we write
L(X) instead ofL(X,Y ). A self-adjoint operatorΓ will be
written Γ ≥ 0 if ⟨x,Γx⟩X ≥ 0 for all x ∈ X and Γ > 0
if ⟨x,Γx⟩X > 0, x ̸= 0. The characteristic functionχ[a,b] is

defined byχ[a,b](β) :=
{

1 (β ∈ [a, b])
0 (β ̸∈ [a, b]) .

II. PROBLEM FORMULATION

Define a generalized plant with multiple input/output delays:

Σ : ẋ(t) = Ax(t)

+

d∑
i=0

Bi
1w(t− hi) +

d∑
i=0

Bi
2u(t− hi) (1a)

z(t) =
ℓ∑

j=0

Cj
1x(t− ȟj) +D12u(t) (1b)

y(t) =

ℓ∑
j=0

Cj
2x(t− ȟj) +D21w(t) (1c)

where x(t) ∈ Rn, w(t) ∈ Rm1 , u(t) ∈ Rm2 , z(t) ∈ Rp1 ,
y(t) ∈ Rp2 are the state, disturbance, control input, regulated
output, and measurement of the system, respectively. The
system matrices are with appropriate dimensions and the time
delayshi (i = 0, 1, . . . , d), ȟj (j = 0, 1, . . . , ℓ) are denoted
in ascending order:0 =: h0 < h1 < h2 < · · · < hd := L,
0 =: ȟ0 < ȟ1 < ȟ2 < · · · < ȟℓ := Ľ. We prepare the
auxiliary matrices:

Ac := A−B2D
+
12C1, Af := A−B1D

+
21C2,

B :=
[
B1 B2

]
, B1 :=

d∑
i=0

Bi
1, B2 :=

d∑
i=0

Bi
2,

Bi :=
[
Bi

1 Bi
2

]
(i = 0, 1, . . . , d),

C :=
[
CT

1 CT
2

]T
, C1 :=

ℓ∑
j=0

Cj
1 , C2 :=

ℓ∑
j=0

Cj
2 ,

Cj :=
[
CjT

1 CjT
2

]T
(j = 0, 1, . . . , ℓ),

D+
12 := (DT

12D12)
−1DT

12, D
+
21 := DT

21(D21D
T
21)

−1,

Rc :=
[
−γ2 · Im1 0

0 DT
12D12

]
, Rf :=

[
−γ2 · Ip1 0

0 D21DT
21

]
,

Nc := I −D12D
+
12, Nf := I −D+

21D21 (2)

and make the following assumptions for the systemΣ:

(H1) (C2, A,B2) is detectable and stabilizable,
(H2) D12 is full column rank andD21 is full row rank,

(H3) rank
[
A− jωI B2

C1 D12

]
= n+m2,

rank
[
A− jωI B1

C2 D21

]
= n+ p2, ∀ω ∈ R,

(H4) the following conditions hold:

Bi
1B

jT
1 = 0, Bi

2(D
T
12D12)

−1BjT
2 = 0,

CiT
1 Cj

1 = 0, CiT
2 (D21D

T
21)

−1Cj
2 = 0 (i ̸= j), (3a)

Bi
1NfB

jT
1 = 0 (i ̸= j),

Bi
1D

+
21C

j
2 = 0 (i ̸= 0 orj ̸= 0), (3b)

CiT
1 NcC

j
1 = 0 (i ̸= j),

Bi
2D

+
12C

j
1 = 0 (i ̸= 0 orj ̸= 0). (3c)

The H∞ control problem is to design a feedback control
law such that the resulting system satisfies the following
conditions:

(C1) the closed-loop system is internally stable,
(C2) the transfer functionΣzw from w to z satisfies

∥Σzw∥∞ < γ for a prescribedγ > 0.
For the systemΣ, the assumptions (H1)-(H3) are standard

and, in the delay-free case (L = 0, Ľ = 0), they enable
to solve the problem based on matrix Riccati equations (see
e.g. [27]). The assumption (H4) is additionally introduced to
impose a structural condition on the delayed input/output chan-
nels. The condition (3a) requires that the differently delayed
input/output channels are decoupled under the normalized
setting (DT

12D12 = Im2 , D21D
T
21 = Ip2 )1. The conditions

(3b), (3c) are extension of the orthogonal conditions and
enable to formulate some tracking or estimation problems.
Typical problems are illustrated by Examples 1-3.

Example 1 (Preview tracking):A preview tracking problem
is formulated byΣ with (H4):

Σprev : ẋ(t) = Ax(t) +B1,0w0(t) +B1,1w1(t− L) +B2u(t)

z(t) = C1x(t) +D12u(t)

y(t) =
[
ỹ(t)
w1(t)

]
=
[
C̃2

0

]
x(t) +

[
D̃21 0
0 I

][
w0(t)
w1(t)

]
(4)

wherew(t) := [wT
0 (t) w

T
1 (t) ]

T, B0
1 := [B1,0 0 ], B1

1 :=

[ 0 B1,1 ], C2 := [ C̃T
2 0 ]T, D21 :=

[
D̃21 0
0 I

]
, and w0,

w1 denote the system uncertainty and previewable reference
respectively. Replacing byw1(t) = r(t+L), it is observed that
the future informationr(t+L) is included in the measurement.

Example 2 (Fixed-lag smoothing):A fixed-lag smoothing
problem is formulated with (H4):

Σfl : ẋ(t) = Ax(t) +B1w(t)

zk(t) = C1,kx(t− ȟk)− uk(t) (k = 0, 1, 2, . . . , ℓ)

y(t) = C2x(t) +D21w(t) (5)

where z(t) = [ zT0 (t) z
T
1 (t) · · · zTℓ (t)]T, u(t) = [uT0 (t)u

T
1 (t)

· · ·uTℓ (t)]T, C1 := [CT
1,0 C

T
1,1 · · ·CT

1,ℓ]
T, D12 := I, anduk(t)

stands for the estimation ofC1,kx(t− ȟ). The solution of the
H∞ problemΣfl has been clarified by [18], [13].

Example 3 (Input/output delays):An output feedback prob-
lem with input/output delays is formulated byΣ with Bi

1 = 0

1The condition (3a) derivesBiR−1
c BjT = 0, CiTR−1

f Cj = 0 (i ̸= j),
∀γ > 0. These equalities are also employed.
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(i = 1, 2, . . . , d), Cj
1 = 0 (j = 1, 2, . . . , ℓ). This problem

has been solved by [16] and a preliminary result was also
reported by [11]. The formulationΣ enables to elaborate the
results along [11] and, further, deal with preview strategies
simultaneously.

In case that the delayed signals are imposed on the channels
of (w, u) or (z, y), we are faced with broadH∞ control
problems whose solutions have not yet established. Such
general structure frequently arises in the one-directional delay
systems and, for example, the coordination control of wind
tunnel, rolling mill, and wind farm systems are formulated
along Σ [3], [14]. The problemΣ enables to clarify the
H∞ performance attained by preview/delayed strategies and
provide a design method of the control law.

In the sequel, we first solve a full-information (FI) control
problemΣFI which is defined by (1a), (1b) with the measure-
menty(t) = [xT(t) wT(t)]T. The results are utilized to solve
the general problemΣ.

III. M AIN RESULTS

In this section, we provide solutions for theH∞ control
problemsΣFI andΣ. The key point in our approach is that
the corresponding operator Riccati equation is analytically
solved and, further, the positive semi-definiteness of the sta-
bilizing solution is characterized using the expression of the
analytic solution. In the following, we discuss the essential
part of our approach and clarify that typical conditions for
preview/delayed control problems are also derived. Details
on the operator Riccati equation approach and the proofs are
described in Section V (A-D).

A. Full Information Problem

Introduce a Hamiltonian matrix and a differential equation:

H :=
[

Ac −BR−1
c BT

−CT
1 NcC1 −AT

c

]
, (6)

Φλ(0) = I,

d

dt
Φλ(t) = Hj(λ)Φλ(t), −L+ hj ≤ t ≤ −L+ hj+1,

Hj(λ) :=

[
Ac −

j∑
i=0

BiR−1
c BiT

− 1
λ
· CT

1 NcC1 −AT
c

]
(j = 0, 1, 2, . . . , d− 1), (7)

the full-information (FI) control problemΣFI is solved by the
following theorem.

Theorem 1:For a givenγ > 0, the FI problemΣFI is
solvable iff (a) is satisfied.

(a) The Hamiltonian matrix (6) has no eigenvalues on
the imaginary axis. Furthermore,

Vs := [ I 0 ]Φ1(−L)V (8)

is nonsingular and the maximal root of

detVp(λ) = 0,

Vp(λ) := [ I 0 ]Φλ(−L)
{
(λ− 1) · [ I 0 ]T + V V T

2

}
(9)

satisfiesλmax ≤ 1 where V ∈ R2n×n is a full
column rank matrix defined by

V = [V T
1 V T

2 ]T, V1, V2 ∈ Rn×n,

HV = V Λc, Λc : stable matrix. (10)

If (a) holds, anH∞ control law is given by

u(t) = −D+
12

ℓ∑
j=0

Cj
1x(t− ȟj)− (DT

12D12)
−1

d∑
i=0

BiT
2 vi(t)

vi(t) = G(−L+ hi,−L)x(t)

+
d∑

k=0

∫ 0

−hk

G(−L+ hi,−L+ hk + β)Bk
[
w(t+ β)
u(t+ β)

]
dβ,

(11)
G(ξ, β) = [ 0 I ]Φ1(ξ)V

#
s (ξ, β)Φ−1

1 (β)[ I 0 ]T,

V #
s (ξ, β) =

{
V R
s , ξ > β

V R
s − I, ξ ≤ β

,

V R
s := V V −1

s [ I 0 ]Φ1(−L). (12)

For the FI problemΣFI, it is shown that the solvability
is generally characterized by the root of the transcendental
equation (9). A control law is given by (11) and some
compensation terms are included for the delayed control and
the previewable disturbance. The key point in the derivation
is that the stabilizing solution of the corresponding Riccati
equation is expressed as

S = G∗V2(V1 + GΠG∗V2)−1G ∈ L(X ) (13)

V1 :=
[
V1 0
0 I

]
, V2 :=

[
V2 0
0 Θ

]
∈ L(X o),

(Θϕ1)(ξ) :=
ℓ∑

j=0

χ[−L−ȟj ,0]
(ξ) · CjT

1 NcC
j
1ϕ

1(ξ),

ϕ1 ∈ L2(−L− Ľ, 0; Rn), −L− Ľ ≤ ξ ≤ 0 (14)

Π :=

[
0 0 0
0 Π1 0
0 0 0

]
∈ X ,

(Π1ϕ
1)(ξ) :=

d∑
i=0

χ[−L+hi,0](ξ) ·B
iR−1

c BiTϕ1(ξ),

ϕ1 ∈ L2(−L, 0; Rn), −L ≤ ξ ≤ 0 (15)

Gϕ := ((Gϕ)0, (Gϕ)1), ϕ = (ϕ0, ϕ1, ϕ2) ∈ X (16)

(Gϕ)0 := eAcLϕ0 +

∫ 0

−L

e−Acβϕ1(β) dβ

(Gϕ)1(ξ) :=


eAc(ξ+L)ϕ0 +

∫ ξ

−L

eAc(ξ−β)ϕ1(β) dβ

(−L ≤ ξ ≤ 0)
ϕ2(ξ + L) (−L− Ľ ≤ ξ ≤ −L)

,

X := Rn × L2(−L, 0; Rn)× L2(−Ľ, 0; Rn),

X o := Rn × L2(−L− Ľ, 0;Rn).

Thus investigating the positive semi-definiteness of (13), the
solvability condition (a) is clarified.

The expression (13) also yields concise conditions for
preview tracking (Bi

2 = 0, i = 1, 2, · · · d) or delayed control
(Bi

1 = 0, i = 1, 2, · · · d) problems. For the case of pre-
view trackingBi

1 = 0 (i = 1, 2, · · · d), the positive semi-
definiteness of (13) is directly verified by the stability of
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the resulting closed loop system. The following condition is
obtained as the closed loop system withw = 0 is finite-
dimensional (Theorem 1).

Lemma 2 (Preview tracking case):SupposeBi
2 = 0 (i =

1, 2, · · · d) holds. Then (a) and (aw) are equivalent.

(aw) The Hamiltonian matrix (6) has no eigenvalues on
the imaginary axis. Furthermore, the matrix (8) is
nonsingular andAc−B2(D

T
12D12)

−1BT
2 G(−L,−L)

is stable.

For the case of delayed controlBi
1 = 0 (i = 1, 2, · · · d), the

solution (13) is expressed as

S = G∗M(I + GΠG∗M)−1G,

M := V2V−1
1 =

[
S 0
0 Θ

]
≥ 0 (17)

whereS ≥ 0 is the stabilizing solution of the matrix Riccati
equation

SAc +AT
c S − SBR−1

c BTS + C∗
1NcC1 = 0. (18)

Since the positive semi-definitenessM ≥ 0 is preserved in
(17), the conditionS ≥ 0 is clarified by investigating the
eigenvalue ofI + GΠG∗M.

Lemma 3 (Input delay case):SupposeBi
1 = 0 (i =

1, 2, · · · d) holds. Then (a) and (au) are equivalent.

(au) The equation (18) has a stabilizing solutionS ≥ 0
such thatAc−BR−1

c BTS is stable. Furthermore the
maximal root of

det Ṽp(λ) = 0,

Ṽp(λ) := [ I 0 ]Φλ(−L)[ I λ−1 · S ]T (19)

satisfiesλmax < 1.
Remark 4:For theH∞ control problemΣFI, a preliminary

caseĽ = 0 is discussed [12]. However, the solvability condi-
tion is still complicated because it characterizes the condition
S ≥ 0 by calculating the minimal eigenvalue of (13). Since
(13) involves a compact operator and has an accumulating
point of eigenvalues at origin, the numerical calculation of
λmin(S) is prohibitive in some cases. To avoid such difficul-
ties, the condition (9) is newly derived by transforming the
condition to a maximal eigenvalue problem of an auxiliary
operator (Theorem 18 in Section V-B).

B. Output Feedback Problem

In addition to (6), (7), introduce a Hamiltonian matrix and
differential equations:

J :=

[
AT

f −CTR−1
f C

−B1NfB
T
1 −Af

]
(20)

Ψµ(0) = I,

d

dt
Ψµ(t) = Jj(µ)Ψµ(t), −Ľ+ ȟj ≤ t ≤ −Ľ+ ȟj+1,

Jj(µ) :=

[
AT

f −
j∑

i=0
CiTR−1

f Ci

− 1
µ
·B1NfB

T
1 −Af

]
(j = 0, 1, . . . , ℓ− 1), (21)

Φ̌σ(0) = I,

d

dt
Φ̌σ(t) = Ȟj(σ)Φ̌

σ(t), −L+ hj ≤ t ≤ −L+ hj+1,

Ȟj(σ) :=

[
Ac −

j∑
i=0

BiR−1
c BiT +

d∑
i=j+1

1
σ2 ·Bi

1NfB
iT
1

−CT
1 NcC1 −AT

c

]
(j = 0, 1, . . . , d− 1), (22)

Ψ̌σ(0) = I,

d

dt
Ψ̌σ(t) = J̌T

j (σ)Ψ̌σ(t), −ȟj+1 ≤ t ≤ −ȟj ,

J̌j(σ) :=

[
AT

f −
j∑

i=0
CiTR−1

f Ci +
ℓ∑

i=j+1

1
σ2 · CiT

1 NcCi
1

−B1NfB
T
1 −Af

]
(j = 0, 1, . . . , ℓ− 1). (23)

The output feedback problemΣ is solved by the following
theorem.

Theorem 5:For a givenγ > 0, theH∞ control problemΣ
is solvable iff (a) in Theorem 1 and (b), (c) are satisfied.

(b) The Hamiltonian matrix (20) has no eigenvalues on
the imaginary axis. Furthermore,

Us := [ I 0 ]Ψ1(−Ľ)U (24)

is nonsingular and the maximal root of

detUp(µ) = 0,

Up(µ) := [ I 0 ]Ψµ(−Ľ)
{
(µ− 1) · [ I 0 ]T + UUT

2

}
(25)

satisfiesµmax ≤ 1 where U ∈ R2n×n is a full
column rank matrix defined by

U := [UT
1 UT

2 ]T, U1, U2 ∈ Rn×n,

JU = UΛf , Λf ∈ Rn×n : stable matrix. (26)

(c) Maximal root of

detW (σ) = 0,

W (σ) := UTΨ̌σ(−Ľ)
[
σ · I 0
0 −σ−1 · I

]
Φ̌σ(−L)V

(27)

satisfiesσmax < γ.

If (a), (b), (c) hold, anH∞ control law is given by

u(t) = −(DT
12D12)

−1
d∑

k=0

BkT
2 fk(t)−D+

12

ℓ∑
k=0

Ck
1 f̌k(t)

(28a)
fk(t) = K1(−L+ hk,−L)x(t)

+

d∑
i=0

∫ 0

−hi

K1(−L+ hk, α− L+ hi)B
i
[
D+

21y(t+ α)
u(t+ α)

]
dα

+
ℓ∑

j=0

∫ 0

−ȟj

K2(−L+ hk, β)C
jT
1 NcC

j
1x(t, β) dβ (28b)

f̌k(t) = x(t,−ȟk) + Ǩ1(−ȟk,−L)x(t)

+

d∑
i=0

∫ 0

−hi

Ǩ1(−ȟk, α− L+ hi)B
i
[
D+

21y(t+ α)
u(t+ α)

]
dα

+
ℓ∑

j=0

∫ 0

−ȟj

Ǩ2(−ȟk, β)CjT
1 NcC

j
1x(t, β) dβ (28c)
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ẋ(t) = Afx(t)

+

d∑
i=0

Bi
[
D+

21y(t− hi)
u(t− hi)

]
−

ℓ∑
j=0

F (0,−ȟj)gj(t) (28d)

x(t, β) = x(t+ β)

−
ℓ∑

j=0

∫ 0

β

F (β − ξ,−ȟj)gj(t+ ξ) dξ (28e)

gj(t) = CjTR−1
f

(
Cjx(t,−ȟj) +

[
D12u(t)
−y(t)

])
(28f)

whereKi, Ǩi (i = 1, 2) andF are given as follows:

K1(ξ, β) = [ 0 I ]Φ̌γ(ξ)W#
s (ξ, β)Φ̌γ−1(β)[ I 0 ]T,

W#
s (ξ, β) =

{
WR

s , ξ ≥ β
WR

s − I, ξ < β
,

K2(ξ, β) = [ 0 I ]Φ̌γ(ξ)WR
s Φ̌γ−1(−L)Γ−1Φ̌γ−1(β)[ 0 I ]T,

WR
s = VW−1

s UTΨ̌γ(−Ľ)ΓΦ̌γ(−L),
Ǩ1(ξ, β) =

1
γ2 · [ I 0 ]Ψ̌γ(ξ)(W̌R

s − I)Γ
× Φ̌γ(−L)Φ̌γ−1(β)[ I 0 ]T,

Ǩ2(ξ, β) =
1
γ2 · [ I 0 ]Ψ̌γ(ξ)W̌#

s (ξ, β)Ψ̌γ−1(β)[ 0 I ]T,

W̌#
s (ξ, β) =

{
W̌R

s , ξ ≥ β
W̌R

s − I, ξ < β
,

W̌R
s = ΓΦ̌γ(−L)VW−1

s UTΨ̌γ(−Ľ),

Ws = UTΨ̌γ(−Ľ)ΓΦ̌γ(−L)V, Γ =
[
γ2 · I 0
0 −I

]
F (ξ, β) = [ 0 I ]Ψ1(−ξ − Ľ)U#

s (ξ, β)

×Ψ−1
1 (−β − Ľ)[ I 0 ]T,

U#
s (ξ, β) =

{
UR
s , ξ < β

UR
s − I, ξ ≥ β

,

UR
s := UU−1

s [ I 0 ]Ψ1(−Ľ). (29)

By Theorem 5, theH∞ control law forΣ is given based
on the predictive compensation law (28a), (28b), (28c) and
the observer (28d), (28e), (28f) whose structure arises in the
estimation of delayed systems [2]. In the general problemΣ,
an extended observer (28e), (28f) is embedded in the control
law which updates the distributed state based on the integro-
differential equations.

Along Lemma 2, the condition (b) is further simplified in
the fixed-lag smoothing (Cj

2 = 0, j = 1, 2, · · · ℓ) (Example 2)
and output delay (Cj

1 = 0, j = 1, 2, · · · ℓ) cases.
Remark 6 (Fixed-lag smoothing/output delay cases):Sup-

poseCj
2 = 0 (j = 1, 2, · · · ℓ) holds. Then the condition (b) is

equivalent to (bz):

(bz) The Hamiltonian matrix (20) has no eigenvalues on
the imaginary axis. Furthermore, the matrix (24) is
nonsingular andAf − F (0, 0)CT

2 (D21D
T
21)

−1C2 is
stable.

SupposeCj
1 = 0 (j = 1, 2, · · · ℓ) holds. Then the condition

(b) is equivalent to (by):

(by) The matrix Riccati equation:

AfP + PAT
f − PCTR−1

f CP +B1NfB
T
1 = 0 (30)

has a stabilizing solutionP ≥ 0 such thatAf −
PCTR−1

f C is stable. Furthermore the maximal root

of

det Ũp(µ) = 0,

Ũp(µ) := [ I 0 ]Ψµ(−Ľ)[ I µ−1 · P ]T (31)

satisfiesµmax < 1.

IV. SPECIAL CASES AND DISCUSSION

By Section III, general solutions for theH∞ control prob-
lemsΣFI, Σ are clarified and some concise conditions (aw),
(au), (bz), (by) are also obtained (Lemmas 2, 3, Remark 6).
In this section, we first focus on the one-side delay systems
(Σ with Ľ = 0 or L = 0) and derive an alternative condition
which simplifies the design procedure. Furthermore, for the
preview tracking and the input/output delay problems, the
connection to the relevant results [18], [13], [19], [24], [17]
is investigated and generalized. The proofs are described in
Section V (E-G).

A. One-side Delay Case

For the one-side delay system defined byΣ with Ľ = 0, we
clarify an alternative solvability condition which merges (a)
and (c) (Theorems 1, 5). Complementary condition forL = 0
is obtained by applying the result to the transposed system
(see (72)).

Lemma 7:For a givenγ > 0, theH∞ control problemΣ
with Ľ = 0 is solvable iff (b0), (ac) are satisfied.

(b0) The equation (30) has a stabilizing solutionP ≥ 0
such thatAf − PCTR−1

f C is stable.
(ac) For a givenγ > 0, the following full-information

problem defined by

Σ
(AC)
FI : ẋ(t) = Ãcx(t) +

d∑
i=0

B̃i
1w(t− hi)

+

d∑
i=0

B̃i
2u(t− hi)

z(t) = C1x(t) +D12u(t) (32)

Ãc := Ã− B̃2D
+
12C1, Ã := A+ 1

γ2 · PCT
1 C1,

B̃0
1 := (B0

1D
T
21 + PCT

2 )(D21D
T
21)

− 1
2 ,

B̃0
2 := B0

2 + 1
γ2 · PCT

1 D12,

B̃i
1 := Bi

1D
T
21(D21D

T
21)

− 1
2 ,

B̃i
2 := Bi

2 (i = 1, 2, . . . , d), B̃2 :=
d∑

i=0

B̃i
2

is solvable.

The solvability ofΣ(AC)
FI is verified by applying Theorem 1

or Lemmas 2, 3.

B. Preview Tracking Case

For the fixed-lag smoothing problem [18], [13] which is a
dual problem of preview tracking, the solvability condition
has been fairly characterized based on the operation of a
Hamiltonian matrix. For the multiple preview tracking problem
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Σ with Bi
2 = 0 (i = 1, 2, . . . , d), a direct connection is

established between Lemma 2 and [18], [13].
Lemma 8:SupposeBi

2 = 0 (i = 1, 2, . . . , d) holds forΣ.
Then the conditions (aw) in Lemma 2 and (̃aw) are equivalent2.

(ãw) Φ1(−L)HΦ−1
1 (−L) ∈ dom(Ric),

X(−L) := Ric(Φ1(−L)HΦ−1
1 (−L)) ≥ 0.

For the preview tracking problemΣprev (Example 1), the
feature of the resulting control law is observed by the follow-
ing example.

Example 4 (Preview tracking (contd.)):Applying Theorem
5, theH∞ control law forΣprev is obtained as follows:

u(t) = −(D+
12C1 + K̃(−L))x(t)

−
∫ 0

−L

K̃(β)B1,1w1(t+ β) dβ,

ẋ(t) = Ax(t) +B1,1w1(t− L) +B2u(t)

+ (B1,0D̃
T
21 + PC̃T

2 )(D̃21D̃
T
21)

−1(ỹ(t)− C̃2x(t))

+ 1
γ2 · PCT

1 (C1x(t) +D12u(t)),

K̃(β) := (DT
12D12)

−1[DT
12C1 B

T
2 ]

[
Ǩ1(0, β)

K1(−L, β)

]
,

P : defied by (30). (33)

This case, the control law is given based on a finite-
dimensional observer with a predictive compensation ofw1.
The solvability condition is characterized by Lemma 7.

C. Input/Output Delay Case

For the input/output delay systems defined byΣ with
Bi

1 = 0 (i = 1, 2, . . . , d), Cj
1 = 0 (j = 1, 2, . . . , ℓ), we will

show that the conditions (au), (by), (c) (Lemma 3, Remark 6,
Theorem 5) are directly characterized by differential Riccati
equations [19], [24], [17].

Lemma 9:SupposeBi
1 = 0 (i = 1, 2, . . . , d), Cj

1 = 0 (j =
1, 2, . . . , ℓ) hold for Σ. Then the conditions (au) in Lemma
3, (by) in Remark 6, and (c) in Theorem 5 are equivalently
characterized by (ãu), (b̃y), (c̃).

(ãu) The equation (18) has a stabilizing solutionS ≥ 0.
Furthermore the equation:

−Ṡ(t) = S(t)Ac +AT
c S(t)

− S(t)B̃(t)R−1
c B̃T(t)S(t) + CT

1 NcC1,

S(0) = S,

B̃(t) := [B1 B̃2(t) ],

B̃2(t) :=

d−1∑
i=0

χ[−L+hi,0](t) ·B
i
2 (34)

has a bounded solutionS(t) ≥ 0 (−L ≤ t ≤ 0).
(b̃y) The equation (30) has a stabilizing solutionP ≥ 0.

Furthermore the equation:

−Ṗ (t) = AfP (t) + P (t)AT
f

− P (t)C̃T(t)R−1
f C̃(t)P (t) +B1NcB

T
1 ,

P (0) = P,

2The notation follows from [27]. In the caseCj
2 = 0 (j = 1, 2, . . . , ℓ),

a corresponding condition for (bz) is obtained by applying Lemma 8 to the
transposed system ofΣ (see (72)).

C̃(t) := [CT
1 C̃T

2 (t) ]
T,

C̃2(t) :=
ℓ−1∑
i=0

χ[−Ľ+ȟi,0]
(t) · Ci

2 (35)

has a bounded solutionP (t) ≥ 0 (−Ľ ≤ t ≤ 0).
(c̃) The inequalityλmax(P (−Ľ)S(−L)) < γ2 holds.
The general structure of the control law (28) is observed

along theH∞ controller design for the input/output delay
systems.

Example 5 (Input/output delays (contd.)):Define an in-
put/output delay system based on Example 3 withd = ℓ = 1,
DT

12[C1 D12 ] = [ 0 I], D21[B
T
1 DT

21 ] = [ 0 I ], B0
2 = 0,

C0
2 = 0. By Theorem 5, theH∞ control law is given as

follows:

u(t) = −B1T
2 K1(0,−L)x(t)

−
∫ 0

−L

B1T
2 K1(0, β)B

1
2u(t+ β) dβ,

ẋ(t) = Ax(t) +B1
2u(t− L) + v(t+ Ľ,−Ľ),

x(t, Ľ) = x(t− Ľ) +
∫ 0

−Ľ

v(t, ξ) dξ,

v(t, ξ) = F (−Ľ− ξ,−Ľ)C1T
2 (y(t+ ξ)− C1

2x(t+ ξ,−Ľ))
+ 1

γ2 · F (−Ľ− ξ, 0)C0T
1 C0

1x(t+ ξ). (36)

In (36), the internal datax(t), x(t,−Ľ) is updated by integro-
differential equations. Similar structure is generally observed
in the control law for multiple input/output delay systems.

V. PROOFS

A. Preliminaries

In order to solve theH∞ control problemsΣ andΣFI, we
prepare a system description on an appropriate function space.
Introducing a Hilbert spaceX := Rn × L2(−L, 0; Rn) ×
L2(−Ľ, 0; Rn) endowed with the inner product

⟨ψ, ϕ⟩ := ψ0Tϕ0

+

∫ 0

−L

ψ1T(β)ϕ1(β) dβ +

∫ 0

−Ľ

ψ2T(β)ϕ2(β) dβ,

ψ = (ψ0, ψ1, ψ2) ∈ X , ϕ = (ϕ0, ϕ1, ϕ2) ∈ X , (37)

the systemΣ is described by the evolution equation [20]:

Σ̂ : ˙̂x(t) = Ax̂(t) + B1w(t) + B2u(t) (38a)

z(t) = C1x̂(t) +D12u(t) (38b)

y(t) = C2x̂(t) +D21w(t). (38c)

The operatorA is an infinitesimal generator defined by

Aϕ := (Aϕ0 + ϕ1(−L), ϕ1
′
, ϕ2

′
),

D(A) = {ϕ ∈ X : ϕ1 ∈W 1,2(−L, 0;Rn),

ϕ2 ∈W 1,2(−Ľ, 0;Rn), ϕ1(0) = 0, ϕ2(0) = ϕ0} (39)

whereW 1,2(−L, 0;Rn) denotes the Sobolev space ofRn-
valued, absolutely continuous functions with square integrable
derivatives on [−L, 0]. Let V∗ := {ψ ∈ X : ψ1 ∈
W 1,2(−L, 0;Rn), ψ1(−L) = ψ0}, W := {ϕ ∈ X : ϕ2 ∈
W 1,2(−Ľ, 0;Rn), ϕ2(0) = ϕ0} be subspaces ofX . Then
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W = DV(A), V∗ = DW∗(A∗) hold andW, X , V are with
continuous, dense injections satisfyingW ⊂ X ⊂ V ([20], Re-
mark 2.6). The operatorsBk ∈ L(Rmk ,V), Ck ∈ L(W,Rpk)
(k = 1, 2) are defined by

B∗
kψ := B0T

k ψ0 +
d∑

i=1

BiT
k ψ1(−L+ hi), ψ ∈ V∗,

Ckϕ := C0
kϕ

0 +
ℓ∑

j=1

Cj
kϕ

2(−ȟj), ϕ ∈ W. (40)

Remark 10:The statex̂(t) := (x̂0t , x̂
1
t , x̂

2
t ) ∈ X of Σ̂

corresponds to the original systemΣ in the following manner:

x̂0t := x(t),

x̂1t (α) :=
d∑

i=0

χ[−L,−L+hi](α) ·B
i
[
wt(α+ L− hi)
ut(α+ L− hi)

]
,

x̂2t (β) := xt(β),

wt(α) := w(t+ α), ut(α) := u(t+ α),

xt(β) := x(t+ β), − L ≤ α ≤ 0, −Ľ ≤ β ≤ 0. (41)

The expression (41) will be employed for describing the
control law alongΣ.

The systemΣ̂ is in the Pritchard-Salamon class [20], [21]
and typicalH∞ control problems have been characterized by
corresponding operator Riccati equations [26]. In the sequel,
we introduce the following operator Riccati equations:

SAcϕ+A∗
cSϕ− SBR−1

c B∗Sϕ+ C∗1NcC1ϕ = 0,

ϕ ∈ W (42)

AfPψ + PA∗
fψ − PC∗R−1

f CPψ + B1NfB∗
1ψ = 0,

ψ ∈ V∗ (43)

Ac := A− B2D+
12C1, Af := A− B1D+

21C2,
B := [B1 B2 ], C := [ C∗1 C∗2 ]∗

and establish a design method ofH∞ control law. The
H∞ control problemsΣ, ΣFI are formally characterized by
Propositions 11 and 12 [26].

Proposition 11 (Output feedback case):For a givenγ > 0,
the H∞ control problemΣ̂ is solvable iff (A), (B), (C) are
satisfied.

(A) The equation (42) has a stabilizing solutionS ≥ 0
(S ∈ L(V,V∗)) such thatAc−BR−1

c B∗S generates
an exponentially stable semigroup onW, V.

(B) The equation (43) has a stabilizing solutionP ≥ 0
(P ∈ L(W∗,W)) such thatAf − PC∗R−1

f C gener-
ates an exponentially stable semigroup onW, V.

(C) The stabilizing solutionsS ≥ 0, P ≥ 0 satisfy
λmax(PS) < γ2.

If (A), (B), (C) hold, anH∞ control law is given by

u(t) = −(DT
12D12)

−1(B∗
2S +DT

12C1)
× (I − 1

γ2 · PS)−1x̂(t) (44a)

˙̂x(t) = Ax̂(t) + B2u(t) + 1
γ2 · PC∗1 (C1x̂(t) +D12u(t))

+ (PC∗2 + B1DT
21)(D21D

T
21)

−1(y(t)− C2x̂(t)). (44b)

For the full-information (FI) control problem̂ΣFI defined
by (38a), (38b) with the measurementŷ(t) = (x̂(t), w(t)), the
solution is characterized by (A) [26].

Proposition 12 (Full-information case):For a givenγ > 0,
theH∞ control problemΣ̂FI is solvable iff (A) in Proposition
11 is satisfied. If (A) holds, anH∞ control law is given by

u(t) = −(DT
12D12)

−1(B∗2S +DT
12C1)x̂(t). (45)

Remark 13:A simplified conditionD11 = 0 (D11: feed-
through matrix fromw to z) is imposed onΣ as the general
relaxation technique forD11 ̸= 0 is not available for multiple
input/output delay systems. The relaxation technique for delay-
free systems (see e.g. [28]) is applicable only if (H4) is
preserved for the transformed system. It is also noted that
delayed signals are not allowed in the feed-through map from
w to y or fromu to z as the boundedness of the corresponding
operators forD12, D21 is required in the operator Riccati
equation approach. These generalizations are in the direction
of future research.

B. Proof of Theorem 1

Begin with the following lemma which is obtained by
[9] Theorem 1 with an auxiliary transformationu(t) =
−D+

12C1x(t) + ũ(t).
Lemma 14 ([9] Theorem 1):For a givenγ > 0, the equation

(42) has a stabilizing solutionS ≥ 0 only if the Hamiltonian
matrix (6) has no eigenvalues on the imaginary axis.

If the FI problemΣ̂FI is solvable forγ > 0, Lemma 14
guarantees that there exists a full column rank matrixV =
[V T

1 V T
2 ]T ∈ R2n×n (V1, V2 ∈ Rn×n) satisfying (10).

Next, we derive an auxiliary delay form of̂ΣFI, which
yields an analytic solution of (42). On a state-spaceX o :=
Rn×L2(−L− Ľ, 0;Rn), introduce an auxiliary delay system:

Σ̂o
FI :

˙̂xo(t) = (Ao
c + Bo

2D
+
12Co1)x̂o(t) + Bo1w(t) + Bo2u(t)

z(t) = Co1 x̂o(t) +D12u(t)

ŷo(t) = (x̂o(t), w(t)) (46)

and a corresponding operator Riccati equation:

SoAo
cϕ+Ao∗

c Soϕ− SoBoR−1
c Bo∗Soϕ+ Co∗1 NcCo1ϕ = 0,

Bo := [Bo
1 Bo2 ], ϕ ∈ Wo. (47)

The operatorAo
c is an infinitesimal generator defined by

Ao
cϕ := (Acϕ

0, ϕ1
′
), D(Ac) = {ϕ ∈ X o :

ϕ1 ∈W 1,2(−L− Ľ, 0;Rn), ϕ0 = ϕ1(0)}. (48)

Let Wo := D(Ao
c) be a subspace ofX o. ThenDWo(Ao∗

c ) =
X o holds andWo, X o are with continuous, dense injections
satisfyingWo ⊂ X o [20]. The operatorsBo

1 ∈ L(Rm1 ,X o),
Bo
2 ∈ L(Rm2 ,X o), Co1 ∈ L(Wo,Rp1) are given by

Bo1 := GB1, Bo
2 := GB2,

Co1ϕ :=
ℓ∑

j=0

Cj
1ϕ

1(−L− ȟj), ϕ ∈ Wo (49)
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where G ∈ L(X ,X o) is defined by (16) and satisfiesG ∈
L(W,Wo), G ∈ L(V,X o).

For a givenγ > 0, theH∞ control problemŝΣFI and Σ̂o
FI

share the same solvability condition.
Lemma 15:

1) Let x̂(0) ∈ W and x̂o(0) = Gx̂(0) ∈ Wo be the
initial states ofΣ̂FI, Σ̂o

FI, respectively. Then the equalities
x̂o(t) = Gx̂(t) and Co1 x̂o(t) = C1x̂(t) (x̂(t) ∈ W) hold
for (w, u) ∈ L2(0, t; Rm1+m2).

2) The equation (42) has a stabilizing solutionS ≥ 0 iff
(47) has a stabilizing solutionSo ≥ 03.

3) Let So ≥ 0 be a stabilizing solution of (47). Then
the stabilizing solutionS ≥ 0 of (42) is given by
S = G∗SoG.
Proof: In highlight with [12], the systemΣ̂FI allows

delayed channels in the regulated outputz. We note that the
following equalities are obtained via straightforward calcula-
tion.

B2D+
12C1ϕ = (B2D

+
12C1ϕ

0, 0, 0),

GAcϕ = Ao
cGϕ, C1ϕ = Co1Gϕ, ϕ = (ϕ0, ϕ1, ϕ2) ∈ W (50)

1): Since(Ao
c + Bo2D+

12Co1)Gϕ = GAϕ (ϕ ∈ W) follows
from (49), (50), the equalitŷxo(t) = Gx̂(t) holds for(w, u) ∈
L2(0, t; Rm1+m2). By the 3rd equality of (50), the equality
Co1 x̂o(t) = C1x̂(t) is derived.

2): By the proof of 1) , the systemŝΣFI and Σ̂o
FI provide

equivalent map from(w, u) to z. Hence, by Lemma 4 [12],
the solvability conditions of the FI problemŝΣFI, Σ̂o

FI are
equivalent.

3) Let S0 ≥ 0 be a stabilizing solution of (47). By (49) and
(50), it is verified that the stabilizing solution of (42) is given
by S = G∗SoG ≥ 0.

The systemΣ̂o
FI yields a Hamiltonian operator representa-

tion and enables to solve (47).
Lemma 16:Let V ∈ R2n×n be a full column rank ma-

trix defined by (10). Then the Hamiltonian operatorHo :=[
Ao

c −BoR−1
c Bo∗

−Co∗
1 NcCo

1 −Ao∗
c

]
associated with the system̂Σo

FI

satisfies

Ho
[
V1 + GΠG∗V2

V2

]
ϕ =

[
V1 + GΠG∗V2

V2

]
Ao

Λc
ϕ, ϕ ∈ D(Ao

Λc
)

(51)

Ao
Λc
ϕ = (Λcϕ

0, ϕ1
′
), D(Ao

Λc
) = {ϕ ∈ X o :

ϕ1 ∈W 1,2(−L− Ľ, 0; Rp1), V1ϕ
0 = ϕ1(0)}

Λc : stable matrix defined by (10), (52)

whereV1, V2, Π are defined by (14), (15).
Proof: For the auxiliary Hamiltonian operator:

Ho
L :=

[
Ao

c −Bo
LR

−1
c Bo∗

L
−Co∗

1 NcCo
1 −Ao∗

c

]
,

BoL := GBL, BL := [BL1 BL2 ] ∈ L(Rm1+m2 ,V)
B∗L1ψ := BT

1 ψ
1(0), B∗L2ψ := BT

2 ψ
1(0), ψ ∈ V∗ (53)

it is verified that the equality:

Ho
L

[
V1

V2

]
ϕ =

[
V1

V2

]
Ao

Λc
ϕ, ϕ ∈ D(Ao

Λc
) (54)

3The stabilizing solution of (47) means thatAo
c−BoR−1

c Bo∗So generates
an exponentially stable semigroup onWo, X o.

holds. SinceT Ho
L = HoT , T :=

[
I GΠG∗

0 I

]
follows from

C1Πϕ = 0 (ϕ ∈ X ) and ΠA∗
cψ + AcΠψ + BLR−1

c B∗Lψ −
BR−1

c B∗ψ = 0 (ψ ∈ V∗), the equality (51) is obtained by
(54).

It follows from (52) that the operatorAo
Λc

generates an
exponentially stable semigroup. Thus (51) yields a stabilizing
solution:

So = V2 (V1 + GΠG∗V2)−1 (55)

iff V1 + GΠG∗V2 is invertible. Exploring the conditions such
that 1) the operatorV1 +GΠG∗V2 is invertible and 2) the op-
erator (55) is positive semi-definite, we establish a solvability
condition of (42). Based on the condition 1), the existence
of the stabilizing solution is characterized by the following
theorem.

Theorem 17:Let V ∈ R2n×n be a full column rank
matrix defined by (10). The operator Riccati equation (47)
has a stabilizing solutionSo ∈ L(X o) iff the matrix (8) is
nonsingular. Furthermore, the stabilizing solution is given by
(55).

Proof: We describe a proof along the line of [12] Theorem
6, which deals with the preliminary case(Ľ = 0). On the
product space:X o = X o

1 × X o
2 , X o

1 := Rn × L2(−L, 0;Rn),
X o

2 := L2(−L − Ľ,−L;Rn), the operatorV1 + GΠG∗V2 is
expressed as follows:

V1 + GΠG∗V2 =
[
N1 0
0 I

]
,

N1 := I +
[
V1 − I 0

0 0

]
+ G1ΠG∗1

[
V2 0
0 Θ1

]
, (56)

(Θ1ϕ
1)(ξ) := CT

1 NcC1ϕ
1(ξ),

− L ≤ ξ ≤ 0, ϕ1 ∈ L2(−L, 0;Rn)

G1ϕ := ((G1ϕ)0, (G2ϕ)1), ϕ = (ϕ0, ϕ1) ∈ X o
1

(G1ϕ)0 := eAcLϕ0 +

∫ 0

−L

e−Acβϕ1(β) dβ

(G1ϕ)1(ξ) := eAc(ξ+L)ϕ0 +

∫ ξ

−L

eAc(ξ−β)ϕ1(β) dβ,

− L ≤ ξ ≤ 0.

The operatorN1 shares the same structure as the FI problem
where the output delays are relaxed(Ľ = 0). Hence, along
the proof of [12] Theorem 6 (a)⇔ (b), it is verified that (47)
has a stabilizing solutionSo iff (56) is invertible. Furthermore
by [12] Theorem 6 (b)⇔ (c), (56) is invertible iff (8) is
nonsingular. The stabilizing solution (55) is obtained based
on (51).

The positive semi-definiteness of (55) is equivalent to the
condition:

Q := (V1 + GΠG∗V2)∗So(V1 + GΠG∗V2)
= (V1 + GΠG∗V2)∗V2 ≥ 0. (57)

Transforming the condition (57) to a maximal eigenvalue
problem, the positive semi-definiteness of (55) is characterized
by Theorem 18.

Theorem 18:Let V = [V T
1 V T

2 ]T ∈ R2n×n be a full
column rank matrix defined by (10). The stabilizing solution
(55) is positive semi-definite (So ≥ 0) iff the maximal root of
(9) satisfiesλmax ≤ 1.
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Proof: On the product space:X o = X o
1×X o

2 ,X o
1 := Rn×

L2(−L, 0;Rn), X o
2 := L2(−L − Ľ,−L;Rn), the condition

(57) is expressed as

Q =
[
Ξ∗(I − Ξ∆Ξ∗)Ξ 0

0 Θ2

]
≥ 0, Ξ :=

[
I 0
0 NcC1 · I

]
,

(Θ2ϕ
2)(ξ) :=

ℓ∑
j=0

χ[−L−ȟj ,−L](ξ)C
jT
1 NcC

j
1ϕ

2(ξ),

− L− Ľ ≤ ξ ≤ −L, ϕ2 ∈ L2(−L− Ľ,−L;Rn), (58)

∆ :=
[
I − V T

1 V2 0
0 0

]
−
[
V T
2 0
0 I

]
G1ΠG∗1

[
V2 0
0 I

]
, (59)

whereΘ2 ≥ 0. We first show that the conditions (58) and

Ξ∆Ξ∗ ≤ I (60)

are equivalent. The condition (60) derives (58) directly. By
contradiction, we verify (58) derives (60). Suppose (58) holds
and there existsy ∈ X o

1 such that⟨y, (I−Ξ∆Ξ∗)y⟩ < 0 holds.
Then an inequality:⟨ỹ,Ξ∗(I − Ξ∆Ξ∗)Ξỹ⟩ = ⟨y, (ΞΞ+ −
Ξ∆Ξ∗)y⟩ ≤ ⟨y, (I −Ξ∆Ξ∗)y⟩ < 0 is obtained for̃y := Ξ+y,

Ξ+ :=
[
I 0
0 (NcC1)+ · I

]
where (NcC1)

+ is the pseudo-

inverse ofNcC1 andΞΞ+Ξ = Ξ, (ΞΞ+)∗ = ΞΞ+ hold. By
contradiction, it is shown that (58) derives (60).

Next, we prove that the condition (60) holds iff the maximal
root of (9) satisfiesλmax ≤ 1. Since Ξ∆Ξ∗ is compact,
we clarify the conditionλmax(Ξ∆Ξ∗) ≤ 1 by solving the
eigenvalue problem ofΞ∆Ξ∗. Based on the expression

λv =
[
I − V T

1 V2 0
0 0

]
v −

[
V T
2 0
0 NcC1 · I

]
G1Πf,

f = G∗1
[
V2 0
0 CT

1 Nc · I

]
v (61)

which is equivalent toλv = Ξ∆Ξ∗v, we will show that
there existsv ̸= 0 in (61) iff Vp(λ) (λ ̸= 0, 1) is singular.
Introducing auxiliary variables:

p(ξ) :=

∫ ξ

−L

eAc(ξ−β){−(Π1f
1)(β)} dβ,

q(β) := e−AT
c βV2v

0 +

∫ 0

β

eA
T
c (ξ−β)CT

1 Ncv
1(ξ) dξ (62)

to the left and right equalities of (61), we have boundary
conditions:[

V2V
T
2 −(λ− 1) · I − V2V T

1

] [p(0)
q(0)

]
= 0,[

p(0)
q(0)

]
= Φ−1

λ (−L)
[
p(−L)
q(−L)

]
,
[
p(−L)
q(−L)

]
=

[
0
I

]
f0

and

Ṽp(λ)f
0 = 0, Ṽp(λ) :=

[V2V
T
2 − (λ− 1) · I − V2V T

1 ] Φ−1
λ (−L)[ 0 I ]T. (63)

For λ ̸= 0, 1, it is verified by (61), (62) thatf0 ̸= 0 holds iff
v = (v0, v1) ̸= 0. Thusλ ̸= 0, 1 is the eigenvalue ofΓ∆Γ∗

iff the matrix Ṽp(λ) is nonsingular. SubstitutingΦ−1
λ (−L) =[

0 I
−I 0

]
ΦT

λ (−L)
[
0 −I
I 0

]
to (63), the condition (9) is derived.

The analytic solution of (42) is clarified by the following
theorem.

Theorem 19:For a givenγ > 0, the conditions (A) in
Proposition 11 and (a) in Theorem 1 are equivalent. If (A)
or (a) holds, the stabilizing solutionS ≥ 0 is given by (13)
and further expressed as follows:

(Sv)0 = G(−L,−L)v0 +
∫ 0

−L

G(−L, β)v1(β) dβ, (64a)

(Sv)1(ξ) = G(ξ,−L)v0 +
∫ 0

−L

G(ξ, β)v1(β) dβ, (64b)

(Sv)2(β) =
ℓ∑

j=0

χ[−ȟj ,0]
(β) · CjT

1 NcC
j
1v

2(β), (64c)

− L ≤ ξ ≤ 0, −Ľ ≤ β ≤ 0, v = (v0, v1, v2) ∈ X

whereG is defined by (12).
Proof: The conditions (A) and (a) are equivalent by

Lemmas 14, 15 and Theorems 17, 18. Furthermore if (A) or
(a) holds, Lemma 15 3) and Theorem 17 yields a positive
semi-definite stabilizing solution (13). In the following, we
will derive (64) from (13). By (13), the equalityf = Sv is
expressed as

V1w = G(v −Πf), f = G∗V2w. (65)

Introducing auxiliary variables:

p(ξ) := eAc(ξ+L)v0 +

∫ ξ

−L

eAc(ξ−β){v1(β)− (Π1f
1)(β)} dβ

q(β) := e−AT
c βV2w

0 +

∫ 0

β

eA
T
c (ξ−β)(Θw1)(ξ) dξ

to the left and right equalities of (65), we have

f0 = q(−L), f1(ξ) = q(ξ),

f2(β) =

ℓ∑
j=0

χ[−ȟj ,0]
(β) · CjT

1 NcC
j
1v

2(β) (66)

and the equalities:[
p(ξ)
q(ξ)

]
= Φ1(ξ)

[
p(0)
q(0)

]
−
∫ 0

ξ

Φ1(ξ)Φ
−1
1 (β)

[
I
0

]
v1(β) dβ (67)[

p(−L)
q(−L)

]
=

[
v0

f0

]
,
[
p(0)
q(0)

]
=

[
V1

V2

]
w0 (68)

whereΦ1(·) is defined by (7). Substitutingξ = −L and (68)
to (67), then pre-multiplying[I 0], we obtain

w0 = V −1
s v0

+

∫ 0

−L

V −1
s [ I 0 ]Φ1(−L)Φ−1

1 (β)[ I 0 ]Tv1(β) dβ (69)

whereVs is nonsingular by Theorem 17. Since (67), (69), and
the right equality of (68) yield

q(ξ) = G(ξ,−L)v0 +
∫ 0

−L

G(ξ, β)v1(β) dβ, (70)

the expression (64) is derived by (66), (70).
Proof of Theorem 1:By Proposition 12, Theorem 19, the

H∞ control problemΣFI is solvable iff (a) holds. The control
law (11) is derived from (40), (45), (64), and Remark 10.
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C. Proofs of Lemmas 2, 3

Proof of Lemma 2:The solution of ˙̂x(t) = (Ac −
B2(DT

12D12)
−1B∗

2S)x̂(t), x̂(0) ∈ W is bounded in0 ≤ t ≤
max(L, Ľ) (Remark 10) and, fort ≥ max(L, Ľ), it is reduced
to

x̂(t) = (x(t), 0, 0) ∈ X ,
ẋ(t) = {Ac −B2(D

T
12D12)

−1BT
2 G(−L,−L)}x(t) (71)

whereG(−L,−L) is defined by (12). Since the positive semi-
definiteness of (13) corresponds to the stability of (71) ([12]
Lemma 21), the solvability condition is characterized by (aw).

Proof of Lemma 3:For a given γ > 0, the H∞

control problemΣ̂FI is solvable only if the problem with
L = 0 is solvable. Hence, by [27], the equation (18) has
a stabilizing solutionS ≥ 0 and V = [ I S ]T meets
(10). Since (55) is expressed asSo = M(I + GΠG∗M)−1,

M := V2V−1
1 =

[
S 0
0 Θ

]
≥ 0, the stabilizing solution (13) is

positive semi-definite iffλmax(−GΠG∗M) < 1. Along [12]
Corollary 15, the condition (19) is obtained.

D. Proof of Theorem 5

Utilizing the fundamental results obtained by Section V-B,
we will solve theH∞ output feedback problemΣ based on
Proposition 11. The condition (B) is clarified exploring the
duality between (42) and (43). The condition (C) is further
simplified by employing the analytic solutions of (42), (43).

In order to solve (43), introduce a transposed system ofΣ:

ΣT : ṗ(t) = ATp(t) +

ℓ∑
i=0

CiT
1 w̃(t− ȟi) +

ℓ∑
i=0

CiT
2 ũ(t− ȟi)

z̃(t) =
d∑

i=0

BiT
1 x(t− hi) +DT

21ũ(t)

ỹ(t) =
d∑

i=0

BiT
2 p(t− hi) +DT

12w̃(t). (72)

On the spaceXT := Rn × L2(−Ľ, 0; Rn)× L2(−L, 0; Rn),
the systemΣT is described by

Σ̂T : ˙̂p(t) = ATp̂(t) + CT1 w̃(t) + CT2 ũ(t)
z̃(t) = BT

1 p̂(t) +DT
21ũ(t)

ỹ(t) = BT
2 p̂(t) +DT

12w̃(t) (73)

whereAT is an infinitesimal generator defined by

ATϕ := (ATϕ0 + ϕ1(−Ľ), ϕ1
′
, ϕ2

′
),

D(AT) = {ϕ ∈ XT : ϕ1 ∈W 1,2(−Ľ, 0;Rn),

ϕ2 ∈W 1,2(−L, 0;Rn), ϕ1(0) = 0, ϕ2(0) = ϕ0}. (74)

Let VT∗ := {ψ ∈ XT : ψ1 ∈ W 1,2(−Ľ, 0;Rn), ψ1(−Ľ) =
ψ0}, WT := {ϕ ∈ XT : ϕ2 ∈ W 1,2(−Ľ, 0;Rn), ϕ2(0) = ϕ0}
be subspaces ofXT. Then WT = DVT(AT), VT∗ =
DWT∗(AT∗) hold andWT, XT, VT are with continuous,
dense injections satisfyingWT ⊂ XT ⊂ VT ([20], Remark

2.6). The operatorsCTk ∈ L(Rpk ,VT), BTk ∈ L(WT,Rmk)
(k = 1, 2) are given by

CT∗
k ψ := C0

kψ
0 +

ℓ∑
j=1

Cj
kψ

1(−Ľ+ ȟj), ψ ∈ VT∗,

BT
k ϕ := B0T

k ϕ0 +

d∑
i=0

BiT
k ϕ

2(−hi), ϕ ∈ WT. (75)

Based on the operator Riccati equation defined forΣ̂T:

PTAT
f ϕ+AT∗

f PTϕ− PTCTR−1
f C

T∗PTϕ

+ BT∗
1 NfBT

1 ϕ = 0, ϕ ∈ WT

AT
f := AT − CT2 D+T

21 BT
1 , CT := [ CT1 CT2 ], (76)

the condition (B) is characterized by the following lemma.
Lemma 20:The condition (B) holds iff the equation (76)

has a stabilizing solutionPT ≥ 0 (PT ∈ L(VT,VT∗))
such thatAT − CTR−1

f CT∗PT generates an exponentially
stable semigroup onWT andVT. Furthermore, the stabilizing
solution of (43) is given by

P = J−1PTJ ∗−1 ≥ 0 (77)

wherePT ≥ 0 is the stabilizing solution of (76) andJ ∈
L(X ,XT) is an isomorphic operator:

J ϕ :=

[
(Jϕ)0

(Jϕ)1

(Jϕ)2

]
,

(J ϕ)0 := ϕ0,
(J ϕ)1(α) := ϕ2(−α− Ľ),
(J ϕ)2(β) := ϕ1(−β − L),

−Ľ ≤ α ≤ 0, −L ≤ β ≤ 0, ϕ = (ϕ0, ϕ1, ϕ2) ∈ X (78)

satisfyingJ ∈ L(V,WT∗), J ∈ L(W,VT∗).
Proof: The following relations are obtained for̂Σ, Σ̂T:

AT∗J ϕ = JAϕ, CT∗
1 J ϕ = C1ϕ, CT∗

2 J ϕ = C2ϕ, ϕ ∈ W
(79a)

BT1 ψ = B∗
1J ∗ψ, BT

2 ψ = B∗
2J ∗ψ, ψ ∈ WT. (79b)

Hence, ifPT ≥ 0 is a solution of (76), a solutionP ≥ 0 of
(43) is given by (77). SinceJ (Af − PC∗R−1

f C)ϕ = (AT
f −

CTR−1
f CT∗PT)∗J ϕ, ϕ ∈ W holds by (79), bothPT andP

are stabilizing solutions if either is a stabilizing solution.
Applying Theorem 19, Lemma 20 to (76), it is shown that

(B) and (b) are equivalent.
Lemma 21:For a givenγ > 0, the conditions (B) and (b)

are equivalent. If (b) holds, the stabilizing solutionP ≥ 0 is
given as follows:

P = J−1GT∗U2(U1 + GTΠTGT∗U2)−1GTJ ∗−1, (80)

whereGT ∈ L(XT,X oT), X oT := Rn × L2(−Ľ− L, 0; Rn)
and

U1 :=
[
U1 0
0 I

]
, U2 :=

[
U2 0
0 Θ̌

]
∈ L(X oT),

ΠT :=

[
0 0 0
0 ΠT

1 0
0 0 0

]
∈ L(XT), (81)

are defined by the following association with the terminology
(16), (14), (15):

Σ← ΣT, V ← U, V ← U , G ← GT, Π← ΠT, Θ← Θ̌.
(82)
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Furthermore, the solution (80) is expressed as

(Pv)0 = F (0, 0)v0 +

∫ 0

−Ľ

F (0, β)v2(β) dβ (83a)

(Pv)1(β) =
d∑

i=0

χ[−L,−L+hi](β) ·B
i
1NfB

iT
1 v1(β), (83b)

(Pv)2(ξ) = F (ξ, 0)v0 +

∫ 0

−Ľ

F (ξ, β)v2(β) dβ, (83c)

− L ≤ β ≤ 0, −Ľ ≤ ξ ≤ 0, v = (v0, v1, v2) ∈ X

whereF is defined by (29).
Based on the analytic solutions (13), (80), the spectral

radius condition (C) is characterized by the maximal root of
a transcendental equation.

Lemma 22:Suppose (A), (B) hold for a givenγ > 0. Then
(C) and (c) are equivalent.

Proof: We will show that the roots of (27) meet the
nonzero eigenvalues ofPS. Let σ2 ̸= 0 (σ > 0) be an
eigenvalue ofPS and supposeσ2 · v = PSv or

σ · v = Pf, σ · f = Sv (84)

hold for v ̸= 0. By (13), (80), the equalities in (84) are
expressed as

V1w = G(v − σ ·Πf), σf = G∗V2w (85a)

σv = J−1GT∗U2w̃, U1w̃ = GTJ ∗−1(f − σ · J ∗ΠTJ v).
(85b)

We clarify the condition such thatv ̸= 0 exists in (85).
Introducing auxiliary variables:

p(ξ) := eAc(ξ+L)v0

+

∫ ξ

−L

eAc(ξ−β)(v1(β)− σ · (Π1f
1)(β)) dβ (86)

q(β) := e−AT
c βV2w

0 +

∫ 0

β

eA
T
c (ξ−β)(Θw1)(ξ) dξ (87)

to the left and right equalities of (85a), then similarly intro-
ducing

p̌(β) := eAf (β+Ľ)U2w̃
0 +

∫ 0

−β−Ľ

eAf (β+Ľ+ξ)(Θ̌w̃1)(ξ) dξ

(88)

q̌(ξ) := −e−AT
f ξf0

−
∫ 0

ξ

eA
T
f (β−ξ)(f2(β)− σ · (J ∗ΠTJ v)2(β)) dβ (89)

to the left and right equalities of (85b), we have[
v0

σ · f0

]
=

[
p(−L)
q(−L)

]
,

[
p(−L)
q(−L)

]
= Φ̌σ(−L)

[
p(0)
q(0)

]
,[

p(0)
q(0)

]
= V w0. (90)

0 = UT
[
p̌(−Ľ)
q̌(−Ľ)

]
,
[
p̌(−Ľ)
q̌(−Ľ)

]
= Ψ̌σ(−Ľ)

[
p̌(0)
q̌(0)

]
,[

p̌(0)
q̌(0)

]
=

[
σ · v0
−f0

]
. (91)

Combining the equalities (90), (91), the conditionW (σ)w0 =
0 (w0 ̸= 0) is obtained.

For σ ̸= 0, it is verified from (85)-(89) thatv ̸= 0 exists
in (85) iff w0 ̸= 0 satisfiesW (σ)w0 = 0. Thus the maximal
eigenvalue ofλmax(PS) is given byσ2

max.
Proof of Theorem 5:By Proposition 11, Theorem 19,

Lemmas 21, 22, the solvability condition is given by (a), (b),
(c). In the expression of the control law (28), we first derive
(28d), (28e), (28f) by rewriting the control law (44b) in the
following form:

˙̂x(t) = Ax̂(t) + Bf̃(t) + g̃(t),

f̃(t) =
[
D+

21(y(t)− C2x̂(t))
u(t)

]
∈ Rm1+m2 ,

g̃(t) = −PC∗R−1
f

[
C1x̂(t) +D12u(t)
C2x̂(t)− y(t)

]
∈ W. (92)

Since ⟨ψ, ˙̂x(t)⟩V∗,V = ⟨ψ,Ax̂(t) + Bf̃(t) + g̃(t)⟩V∗,V ,
∀ψ ∈ V∗ holds, the following representation is obtained
for x̂(t) := (x0(t), x1(t, ·), x2(t, ·)) ∈ W, g̃(t) :=
(g̃0(t), g̃1(t, ·), g̃2(t, ·)) ∈ W:

ẋ0(t) = Ax0(t) + x1(t,−L) +
d∑

i=0

Bif̃(t− hi) + g̃0(t)

(93a)
∂

∂t
x1(t, β) =

∂

∂β
x1(t, β) + g̃1(t, β) (93b)

x1(t,−L+ hk − 0) ={
x1(t,−L+ hk) +Bk f̃(t), k = 1, 2, . . . , d− 1

Bdf̃(t), k = d
(93c)

∂

∂t
x2(t, β) =

∂

∂β
x2(t, β) + g̃2(t, β), x2(t, 0) = x0(t).

(93d)

While f̃(t), g̃(t) in (92) are expressed as

f̃(t) =

[
D+

21(y(t)−
ℓ∑

j=0
Cj

2x
2(t,−hj))

u(t)

]
, (94)

g̃0(t) = −
ℓ∑

j=0

F (0,−ȟj)gj(t), g̃1(t, β) = 0,

g̃2(t, β) = −
ℓ∑

j=0

F (β,−ȟj)gj(t) (95)

by employing Lemma 21. Hence, the solutions of (93b)-(93c)
and (93d) are obtained by

x1(t, β) =
d∑

i=0

χ[−L,−L+hi](β) ·B
if̃(t+ β + L− hi),

x2(t, β) = x0(t+ β) +

∫ 0

β

g̃2(t+ ξ, β − ξ) dξ. (96)

Replacing the variables byx(t) := x0(t), x(t, β) := x2(t, β),
the equalities (28d), (28e), (28f) are obtained from (94)-(96).

In order to derive (28a), (28b), (28c) from (44a), we focus
on the relation:

u = −(DT
12D12)

−1(B∗
2S +DT

12C1)(I − 1
γ2 · PS)−1g,

u ∈ Rm2 , g ∈ W (97)
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and elaborate the expression ofu. Employing (13), (80), the
equality (97) is given by

u+ (DT
12D12)

−1B∗
2f +D+

12C1v = 0 (98a)

V1w = G(v −Πf), f = G∗V2w (98b)

γ2 · (v − g) = J−1GT∗U2w̃,
U1w̃ = GTJ ∗−1{f − γ2 · J ∗ΠTJ (v − g)}. (98c)

Introducing (86) modified asσ ← 1 and (87) to the left
and right equalities of (98b), then introducing (88) and (89)
modified asσ · (J ∗ΠTJ v)2 ← γ2 · (J ∗ΠTJ (v − g))2 to
(98c), we have[
p(ξ)
q(ξ)

]
= Φ̌γ(ξ)

[
p(0)
q(0)

]
−

∫ 0

ξ

Φ̌γ(ξ)Φ̌γ−1(β)
[
I
0

]
g1(β) dβ, (99)[

p(−L)
q(−L)

]
=

[
v0

f0

]
,
[
p(0)
q(0)

]
=

[
V1

V2

]
w0, (100)[

p̌(ξ)
q̌(ξ)

]
= Ψ̌γ(ξ)

[
p̌(0)
q̌(0)

]
+

ℓ∑
i=0

∫ max(ξ,−ȟi)

0

Ψ̌γ(ξ)Ψ̌γ−1(β)
[
0
I

]
CiT

1 NcC
i
1g

2(β) dβ,

(101)[
UT
1 UT

2

] [p̌(−Ľ)
q̌(−Ľ)

]
= 0,

[
p̌(0)
q̌(0)

]
=

[
γ2 · (v0 − g0)

−f0

]
. (102)

Sinceu in (98a) is expressed as

u = −(DT
12D12)

−1
d∑

k=0

BkT
2 q(−L+ hk)

−D+
12

ℓ∑
k=0

Ck
1 (

1
γ2 · p̌(−ȟk) + g2(−ȟk)), (103)

we derive the representation ofq(ξ), p̌(ξ) in terms of g =
(g0, g1, g2) ∈ W . Combining (101), (99) with the boundary
conditions (102), (100), we have

UTΨ̌γ(−Ľ)ΓΦ̌γ(−L)V w0 =

UTΨ̌γ(−Ľ)Γ
{[

I
0

]
g0 +

∫ 0

−L

Φ̌γ(−L)Φ̌γ−1(β)
[
I
0

]
g1(β) dβ

}
+

ℓ∑
i=0

∫ 0

−ȟi

UTΨ̌γ(−Ľ)Ψ̌γ−1(β)
[
0
I

]
CiT

1 NcC
i
1g

2(β) dβ. (104)

SinceUTΨ̌γ(−Ľ)ΓΦ̌γ(−L)V = γ ·W (γ) is nonsingular by
Theorem 5, we obtain

q(ξ) = K1(ξ,−L)g0 +
∫ 0

−L

K1(ξ, β)g
1(β) dβ

+
ℓ∑

j=0

∫ 0

−ȟj

K2(ξ, β)C
jT
1 NcC

j
1g

2(β) dβ (105)

and

1
γ2 · p̌(−ȟk) = K̃1(−ȟk,−L)g0 +

∫ 0

−L

K̃1(−ȟk, β)g1(β) dβ

+

ℓ∑
j=0

∫ 0

−ȟj

K̃2(−ȟk, β)CjT
1 NcC

j
1g

2(β) dβ

(k = 0, 1, . . . , ℓ) (106)

from (99), (101), (102), (104). Substituting (105), (106) to
(103), then replacing by

g0 = x(t),

g1(ξ) =
d∑

i=0

χ[−L,−L+hi](ξ) ·B
if̃(t+ β + L− hi),

g2(β) = x(t, β),

we finally obtain the feedback laws (28a), (28b), (28c).

E. Proof of Lemma 7

For the systemΣ defined withĽ = 0, introduce a coupled
operator Riccati equation:

S̃Ãcϕ+ Ã∗
c S̃ϕ− S̃B̃R−1

c B̃∗S̃ϕ+ C∗1NcC1ϕ = 0, ϕ ∈ W
Ãc := Ã − B̃2D+

12C1, Ã := A+ 1
γ2 · PC∗1C1

B̃ := [ B̃1 B̃2 ]
= [ (B1DT

21 + PC∗2 )(D21D
T
21)

− 1
2 B2 + 1

γ2 · PC∗1D12 ]

(107)

whereP ≥ 0 is a stabilizing solution of (43). The following
lemma provides an alternative condition which inherits (A)
and (C).

Lemma 23:For a givenγ > 0, suppose (B) holds and let
P ≥ 0 be a stabilizing solution of (43). Then the conditions
(A), (C) and (AC) are equivalent.

(AC) The equation (107) has a stabilizing solutionS̃ ≥ 0
(S̃ ∈ L(V,V∗)) such thatÃc−B̃R−1

c B̃∗S̃ generates
an exponentially stable semigroup onW, V.

Proof: (⇒) Suppose (A), (C) hold andS ≥ 0, P ≥ 0 be
stabilizing solutions of (42), (43), respectively. ThenI − 1

γ2 ·
PS has bounded inverse and

S̃ := S(I − 1
γ2 · PS)−1 ≥ 0 (108)

holds. We will show that (108) meets a stabilizing solution of
(107). Substituting (108) to the left-hand side of (107), then
employing (42), (43), it is shown that the operator (108) meets
a solution of (107). While

(Ãc − B̃R−1
c B̃∗S̃)(I − 1

γ2 · PS)ϕ =

(I − 1
γ2 · PS)(Ac − BR−1

c B∗S)ϕ, ϕ ∈ W (109)

is obtained from (42), (107), (108) whereAc − BR−1
c B∗S

generates an exponentially stable semigroup onW. Hence
(108) is a stabilizing solution of (107) and (AC) holds.

(⇐) Suppose (AC) holds and̃S ≥ 0, P ≥ 0 be stabilizing
solutions of (107), (43), respectively. ThenI + 1

γ2 · PS̃ is

invertible andS := S̃(I+ 1
γ2 ·PS̃)−1 ≥ 0 meets a solution of

(42). SinceI − 1
γ2 ·PS = (I+ 1

γ2 ·PS̃)−1 holds in (109), the

operatorS := S̃(I + 1
γ2 · PS̃)−1 ≥ 0 is a stabilizing solution

of (42). WhilePS is expressed asPS = PS̃(I+ 1
γ2 · PS̃)−1

and the inequalityλmax(PS) < γ2 holds. Thus conditions
(A), (C) are derived.

For the systemΣ with Ľ = 0, the corresponding state
space is defined byX ′ := Rn × L2(−L, 0; Rn) and the
output operators (40) are reduced to finite-rank:Ckϕ = Ckϕ

0,
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ϕ = (ϕ0, ϕ1) ∈ X ′ (k = 1, 2). Hence, the condition (B) is
characterized by a matrix Riccati equation.

Lemma 24:For a givenγ > 0, the conditions (B) and (b0)
are equivalent. If (b0) holds, the stabilizing solutionP ≥ 0 of
(43) is given as follows:

P =
[
P 0
0 Ξ

]
∈ L(X ′),

(Ξϕ1)(ξ) :=
d∑

i=0

χ[−L,−L+hi](ξ) ·B
i
1NfB

iT
1 ϕ1(ξ),

ϕ1 ∈ L2(−L, 0; Rn), −L ≤ ξ ≤ 0. (110)

Proof: (⇒) Suppose (B) holds. Then, by Lemma 21, there
exists a full column rank matrixU = [UT

1 U
T
2 ]T satisfying

(20) and, further,Us = U1 is nonsingular in (24). Hence the
stabilizing solution of (43) is given by (110) withP = U2U

−1
1 .

Since (110) is positive semi-definite iffP ≥ 0, the condition
(b0) is derived.

(⇐) Suppose (b0) holds. Then a positive semi-definite
solution of (43) is given by (110). The solution of the evolution
equation ˙̂x(t) = (Af − PC∗R−1

f C)x̂(t), x̂(0) = ϕ ∈ X r is
bounded over0 ≤ t ≤ L and, for t ≥ L, it is reduced to
x̂(t) = (x(t), 0 ) ∈ X r, ẋ(t) = (Af − PCTR−1

f C)x(t).
Hence Af − PC∗R−1

f C generates an exponentially stable
semigroup. Thus (B) is derived.

Proof of Lemma 7:By Proposition 11 and Lemmas 23,
24, theH∞ control problemΣ with Ľ = 0 is solvable iff (b0)
and (AC) hold. Furthermore by Proposition 12 and Lemma
23, the condition (AC) is equivalent to the solvability of the
FI-problemΣ

(AC)
FI with γ > 0.

F. Proof of Lemma 8

By Lemma 14, the condition (aw) holds only if a
full column rank matrix V exists in (10). We note that
Vs = Ṽ1(−L) and G(−L,−L) = Ṽ2(−L)Ṽ −1

1 (−L)

hold for the matrix function defined by

[
Ṽ1(t)

Ṽ2(t)

]
:=

Φ1(t)V . SinceΦ1(−L)HΦ−1
1 (−L)

[
Ṽ1(−L)

Ṽ2(−L)

]
=

[
Ṽ1(−L)

Ṽ2(−L)

]
Λc

(Λc : stable matrix) follows from (10), the condition
Φ1(−L)HΦ−1

1 (−L) ∈ dom(Ric) is satisfied iffVs = Ṽ1(−L)
is invertible. Focus on the equality

Φ1(−L)HΦ−1
1 (−L)

[
I

X(−L)

]
=

[
I

X(−L)

]
Ṽ1(−L)ΛcṼ

−1
1 (−L)

(111)

where X(−L) := Ṽ2(−L)Ṽ −1
1 (−L) = G(−L,−L) is a

symmetric matrix. Pre-multiplying[X(−L) −I ] to both sides
of (111), we have

X(−L)Ac +AT
c X(−L)

−X(−L)B2(D
T
12D12)

−1BT
2 X(−L) + CT

1 NcC1 + ∆̃ = 0,

∆̃ =
d∑

i=0

[X(−L) − I]Φ1(−L)Φ−1
1 (−L+ hi)

[
1
γ2 ·Bi

1B
iT
1 0

0 0

]
× Φ−T

1 (−L+ hi)Φ
T
1 (−L)[X(−L) − I ]T ≥ 0 (112)

where
[

0 I
−I 0

]
Φ1(τ) = Φ−T

1 (τ)
[

0 I
−I 0

]
is employed

in (112). Hence, under (H1)-(H3),X(−L) ≥ 0 holds

iff the matrix Ac − B2(D
T
12D12)

−1BT
2 X(−L) = Ac −

B2(D
T
12D12)

−1BT
2 G(−L,−L) is stable. Thus, the conditions

(aw) and (̃aw) are equivalent.

G. Proof of Lemma 9

Focus on the finite-horizon full-informationH∞ control
problem on[−L, 0]:

Σλ : ẋ(t) = Ax(t) + B̃1(t)w(t) + B̃2(t)u(t), x(−L) = 0

zλ(t) = λ−
1
2 · C1x(t) + λ−

1
2 ·D12u(t), λ > 0

(113)

B̃(t) := [B1 B̃2(t) ],

B̃2(t) :=

d−1∑
i=0

χ[−L+hi,0](t) ·B
i
2 (114)

and introduce a differential Riccati equation:

− Ṡλ(t) = Sλ(t)Ac +AT
c Sλ(t)− Sλ(t)B̃(t)R−1

c B̃T(t)Sλ(t)

+ λ−1 · CT
1 NcC1, Sλ(0) = λ−1 · S (115)

whereS ≥ 0 is the stabilizing solution of (18). By [8], the
finite-horizonH∞ performance:

Jλ := sup
w∈L2(−L,0)

∥zλ∥2L2(−L,0) + xT(0)S(0)x(0)

∥w∥2L2(−L,0)

< γ2

(γ > 0) (116)

is attained forΣλ iff (115) has a bounded solutionSλ(t) ≥ 0
(−L ≤ t ≤ 0). Based on the fundamental results stated here,
we first show that the condition (au) is characterized by a
differential Riccati equation.

(au) ⇔ (ãu): We note thatSλ(t) := V2,λ(t)V
−1
1,λ (t),[

V1,λ(t)
V2,λ(t)

]
= Φλ(t)

[
I

λ−1S

]
meets the solution of (115) (see

e.g. [5]) and, further,V1,λ(−L) = Ṽp(λ) holds by Lemma
3.

(⇒): SupposeV1,λ(−L) = Ṽp(λ) is nonsingular forλ ≥ 1.
We will prove by contradiction that (34) has a bounded
solution S(·) ≥ 0. If (115) with λ = 1, or equivalently
(34), does not have a bounded solutionS1(·) ≥ 0, theH∞

control problemΣ1 with J1 < γ2 is not solvable [8]. Let
J∗
1 := γ2opt > γ2 be the optimal performance for the system

Σ1 and define a systemΣλ∗ with λ∗ := γ2opt/γ
2 > 1. Since

J1 = λ∗ · Jλ∗ holds by the definition (116), the optimal
performanceJ∗

λ∗ for the systemΣλ∗ is given byJ∗
λ∗ = γ2. For

any givenϵ > 0, theH∞ control problemΣλ∗ with Jλ∗ < γ2ϵ ,
γϵ := γ + ϵ is solvable and the bounded solutionSλ(·) ≥ 0
exists. SinceSλ(·) ≥ 0 is continuous and non-increasing
[8], ∥Sλ∗(−L)∥ → ∞ is derived asγϵ → γ + 0. This fact
implies V1,λ∗(−L) = Ṽp(λ

∗) is singular and contradicts the
assumption (au). Thus, (115) withλ = 1, or equivalently (34),
has a bounded solutionS1(·) ≥ 0 and (̃au) is derived.

(⇐): Suppose (115) withλ = 1 has a bounded solution
S1(·) ≥ 0. Then (115) has a bounded solutionSλ(·) ≥ 0 for
λ ≥ 1 since theH∞ control problem forΣλ with Jλ < γ2

is equivalent to the problem defined byΣ1 with J1 < λ · γ2.
Thus (115) has bounded solutionsSλ(·) ≥ 0 for λ ≥ 1. Since
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Fig. 1. H∞ performance vs. preview/delay times (full-information case).

Sλ(−L) = V2,λ(−L)V −1
1,λ (−L) andV1,λ(−L) = Ṽp(λ) hold,

Ṽp(λ) (λ ≥ 1) is nonsingular and (au) is derived.
(by) ⇔ (b̃y): Applying the above result to the transposed

systemΣT, it is shown that the conditions (by), (b̃y) are
equivalent.

(c) ⇔ (c̃): The matrices satisfying (10) and (26) are re-
spectively given byV :=

[
I
S

]
, U :=

[
I
P

]
where S ≥ 0,

P ≥ 0 are the stabilizing solutions of (18), (30). Furthermore
the solution of (35) is given byP (t) := U2(t)U

−1
1 (t),[

U1(t)
U2(t)

]
= Ψ1(t)

[
I
P

]
. Let σmax > 0 be the maximal solution

of (27) and supposeW (σmax)v = 0 (v ̸= 0) holds. Since
Ψ̌σT(−Ľ) = Ψ1(−Ľ) holds between (21) and (23), the
conditionW (σmax)v = 0 yieldsσ2

max ·UT
1 (−Ľ)V1,1(−L)v =

UT
2 (−Ľ)V2,1(−L)v and, further, the equality

σ2
max · ṽ = UT−1

1 (−Ľ)UT
2 (−Ľ)V2,1(−L)V −1

1,1 (−L)ṽ
= P (−Ľ)S1(−L)ṽ (117)

is obtained for̃v = V1,1(−L)v ̸= 0. Thus the condition (̃c) is
derived. If (̃c) holds, the equality (117) yieldsW (σmax)v =

0 (v ̸= 0) for σmax := λ
1
2
max(P (−Ľ)S1(−L)). Thus (c) is

derived.

VI. N UMERICAL EXAMPLES

Define anH∞ preview and delayed control problem:

ẋ(t) =
[
1 0
1 3

]
x(t) +

[
0
k

]
w0(t)

+
[
0
1

]
w1(t− hp) +

[
1
0

]
u(t− hd) (118a)

z(t) =
[
0 1
0 0

]
x(t) +

[
0
1

]
u(t), k = 0, 0.4 (118b)

y(t) = [xT(t) wT
0 (t) wT

1 (t) ]
T (118c)
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Fig. 2. H∞ performance vs. preview/delay times (output feedback case).

wherew1 is thehp unit-time previewable signal andw0 is the
uncertainty ofw1. Furthermore,hd unit-time delay is imposed
on the controlu. We will investigate theH∞ performance in
terms of (hp, hd). Based on Theorem 1, the achievableH∞

performance for (118a)-(118c) is obtained by Fig.1. Fig.1 (a)
summarizes the performance for the casek = 0 and it is
observed that the curves coincide by sliding aside. This feature
arises from the fact that the common input delaysmin(hp, hd)
can be pushed out to the regulated output. While in the case
k = 0.4 (Fig.1 (b)), the relation between the preview and
delay times is rather complicated and theH∞ performance is
not sufficiently recovered even if rich preview information is
employed.

Replacing the measurement (118c) byy(t) =
[
0 1
0 0

]
x(t)+[

ϵ
0

]
wϵ(t) +

[
0
1

]
w1(t), ϵ = 0.01, we will investigate theH∞

output feedback performance based on Theorem 5. A slight
noise (ϵ > 0) is included in the measurement for satisfying
(H2). Based on Theorem 5, the achievableH∞ performance
for (118a) is obtained by Fig.2 (a), (b). In the casek = 0, the
performance in Fig.2 (a) is almost similar to Fig.1 (a) because
the initial states of control systems are both relaxed in the
evaluation ofH∞ performance and, further, the error system
is not excessively driven by the slight measurement noisewϵ.
While in case that the uncertainty in the preview information
grows (k = 0.4), the achievable performance is significantly
deteriorated as the full-information is not easily recovered in
the output feedback setting.

Next we focus on the preview control problem depicted by
Fig.3 whereP (s), K(s), M(s) denote the plant, control law,
and low-pass filter restricting the bandwidth of the control
channel, respectively. The delay elemente−hs expresses the
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Fig. 4. H∞ performance vs. control bandwidth (T ) or uncertainty of
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preview time of the disturbancewp and (ny, nw) denotes the
uncertain noises in the measurementyp and the previewable
disturbanceyw. The control objective here is to attenuate the
H∞-norm from w := [wp, ny, nw]

T to z := [ e, ρ · u ]T
(ρ > 0) by employing the information ofy := [ yp, yw ]T. The
system structure (Fig.3) frequently arises in the disturbance
attenuation problem (see e.g. [15]) and the generalized plant
is given by

[
z
y

]
=


P (s) · e−hs 0 0 P (s)M(s)

0 0 0 ρ
P (s) · e−hs σy 0 P (s)M(s)

1 0 σw 0

[
w
u

]
.

(119)

For the system (119) withP (s) = 5
(s−1)(s−2) , M(s) =

1
Ts+1 , ρ = 1.0, σy = 0.1, we will investigate the optimal
H∞ performance in terms of(T, σw). Based on Theorem
5, the achievableH∞ performance is obtained by Fig.4.
Fig.4 (a) summarizes the performance forT = 0 ∼ 0.6

(σw = 0). In the casesT = 0, 0.2, it is observed that theH∞

performance is recovered to the optimal level by employing
preview information ofwp. While in the casesT = 0.4, 0.6,
the H∞ performance is not recovered to the optimal level
even if any rich preview information is employed. Thus
in the preview control of Fig.3, the limitation of control
bandwidth is recovered to certain extent by employing the
preview information ofwp. In Fig.4 (b), the achievableH∞

performance is summarized forσw = 0 ∼ 0.6 (T = 0.4).
As the uncertainty in the previewable disturbance grows, the
H∞ performance is not significantly recovered and a similar
feature to the first example (118) is observed.

VII. C ONCLUSION

A solvability condition and control law for a broad range
of H∞ preview/delayed control problems were established
based on the analytic solutions of the corresponding operator
Riccati equations. The solvability condition is characterized
by the roots of the transcendental equations, and the control
law for the general problem is given based on a predictive
compensation with an integro-differential observer. The solv-
ability conditions for typical control problems were further
investigated and relevant literature were used to interpret some
problems. The results are also applicable to the design of
an H2 controller because the solutions of the corresponding
operator Riccati equations were clarified.
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