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H*> Controller Design for Preview and
Delayed Systems

Akira Kojima, Member, IEEE

Abstract—The H* control problem of general preview/delayed A unified approach to both preview and delayéfi™
systems is solved using analytic solutions of the corresponding control problems has been discussed [12], and the FI control
gge;atoﬁe?'igag te)?o“;d“orgf{ ;—hoef isnOHLJJ?/?)Ett?Jttzglapgglimstg?nns problem has also been solved using the analytic solution
and Srﬁ)ables the handling c?f previe\?v/dela;ed cont?/ol proyblems. Of, the-correspondmg operator Riccati equation. The qperatpr
The solvability condition is characterized by the roots of the Riccati equation approach has the advantage of dealing with
transcendental equations and the control law for the general the preview/delayed strategies simultaneously. However, the
problem is given based on a predictive compensation with solvability condition is still complicated because it requires
an integro-differential observer. Some interpretations of typical e caicylation of eigenvalues to guarantee the positive semi-
control problems are presented based on the solvability condition definiteness of the stabilizing solution, and numerical diffi-
and the resulting control law. . . - e :

culties are created if the eigenvalues are in the neighborhood
of the origin (see Remark 4). Although an extendifg®
control problem [12] in an output feedback setting has been
discussed [11], the solvability condition inherits the limitation
I. INTRODUCTION of [12] and the structure of the general control law has not been
clarified. Control problems that deal with preview and delayed
HE design method of/* control laws for a broad range strategies frequently arise in one-directional delayed systems.
of infinite-dimensional systems have been studied, apgr example, the control of disturbance attenuation in a wind
the SOIVability conditions and control laws for preVieW traCkinﬁJnne| or ro”ing mill is formulated using a unilateral de|ayed
and delayed control problems are established in an explis{istem [3] and the coordinated control of a wind farm is also
form [9], [10], [12], [18], [13], [25], [19], [17], [24], [16]. Full- formulated using multi-path preview/delayed systems [14].
information (FI) and output feedback > control problems Thys, the solution of general preview/delayed control problems
of preview tracking were initially solved under the restricte@nables to clarify the control laws for a broad range of systems,
condition of the matrix Riccati equation ha.Ving a Stab”iZingnd evaluate the performance achieved by preview/de|ayed
solution [9], [10], and the limitation was subsequently relaxegbmpensations.
for general problems [12]. The fixed-lag smoothing problem, |n this study, we focused on a broad range #f pre-
which is a dual problem of preview tracking, has been solvegew/delayed control problems and developed a solution for a
[18], and the results were later extended to the case of mUltigéneraJ Setting_ The solution to the prob|ems can be apphed
delays [13]. Alternative solutions of preview tracking ango multiple preview/delayed control actions based on the
fixed-lag smoothing problems have also been provided [2%pssibility of delayed measurement, and enables the handling
The H* control problems of delayed systems have beeft various controlffiltering strategies in a unified manner.
discussed using various approaches (for e.g., see [4]), angtthermore, we establish a new solvability condition for the
the solutions for typical input (or output) delayed systems afg control problem, which allows input/output delays and
characterized by the solution of the transcendental equatigfercomes the limitation of [12]. The condition is directly
or differential Riccati equations [28], [19], [17], [24]. Thecharacterized by the maximal eigenvalue of the compact
multiple delay case has been clarified [16], andMTe control gperator and the corresponding operator Riccati equation is
problem with a generalized transmission element has also begalytically solved. The solvability condition for th&/ >
investigated [7]. Regarding the abstract formulation of a broaitput feedback control problem is clarified using the feature
range of infinite-dimensional systems, a method for designigg the analytic solution. A family of solvability conditions
the > control law for Pritchard-Salamon systems [21] hag derived for typical preview/delayed control problems, and
been studied, and a state-space solution was developed bagsgsle interpretations of the relevant results are also provided
on the abstract operator Riccati equations [26]. Approximatigng], [13], [19], [17], [24].
methods for solving the operator Riccati equations have beenrhjs paper is organized as follows. In Section I, a gen-
investigated [6], and fundamental approaches to the Hankghlized H> preview/delayed control problem is formulated
norm optimization of general infinite-dimensional systemgnd typical control problems are illustrated. In Section IIl,
have also been developed [22], [23], [1]. the solutions of FI and output feedback control problems are
L _ provided. Furthermore, a family of solvability conditions for
A. Kojima is with the Graduate School of System Design, Tokyo Metropoli- . . .
tan University, Asahigaoka 6-6, Hino, Tokyo 1910065, Japan, e-mail: akBf€view/delayed control problems is presented. In Section IV,
jima@sd.tmu.ac.jp. typical control problems are discussed and some interpreta-
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tions of relevant results are given. Subsequent to a descriptioffH3) rank A _Cf“’l 11)3122 =n+ ma,

of all proofs in Section V, the feature of preview/delayed rank|A=dwl Bl o Vw € R
H* control problems is illustrated using numerical examples HA) the fol s D21 hplfj’ '
(Section VI). The conclusion of this paper is presented in( ) the following conditions ho

Section VII. BiBIT =0, By(DT,Dy,) BT =0,

Notation and terminology: LeX and Y be real Hilbert iT~j D N
spaces with normg - [|x, | - ||y and inner product:,-)x C¥ Cl __TO’ ci' _(DQ%DM) Cr=00G#7) (3a)
(-,-)y, respectively. LeZ be dense inX andZ* be the adjoint BINyB{" =0 (i # j),
space. The adjoint pairing betwegre Z andg € Z* will be B{Djlcg =0(i#00rj #0), (3b)

denoted by(f, )z z+. Let L(X,Y") denote the set of bounded CITNLCI =0 (i # )
linear operator§” : X — Y. The adjoint ofl’ € £(X,Y") will Loere Ih

be denoted byl € L(Y*, X*). When X = Y, we write ByDY,Cf =0 (i #00rj #0). (3c)
L(X) instead of£(X,Y). A self-adjoint operatol” will be

: : The H*° control problem is to design a feedback control
written T > 0 if (z,T2)x > 0 forall z € X andT > 0

law such that the resulting system satisfies the following

if (z,I'z)x > 0, x # 0. The characteristic functioN (.5 IS  ¢gonditions:
defined b ={ 1 (Belath) s i
YXa,5(B) { 0 (8¢ lab)) (C1) the closed-loop system is internally stable,
(C2) the transfer function:,, from w to z satisfies
Il. PROBLEM FORMULATION IIZ.w]leo < v for a prescribedy > 0.

Define a generalized plant with multiple input/output delays; For the systenk, the assumptions (H1)-(H3) are standard
and, in the delay-free casd.(= 0, L = 0), they enable

to solve the problem based on matrix Riccati equations (see
Y oa(t) = Ax(t ) e.g. [27]). The assumption (H4) is additionally introduced to
d impose a structural condition on the delayed input/output chan-
+ ZBlw t—h;)+ ZBEU(t —h;) (la) nels. The condition (3a) requires that the differently delayed
i input/output channels are decoupled under the normalized
setting O1,D12 = In,, D21 DY, = I,,)%. The conditions
ZC j) + Dizu(t) (1b) (3b), (3c) are extension of the orthogonal conditions and
enable to formulate some tracking or estimation problems.
Typical problems are illustrated by Examples 1-3.
Z OJ (t = hy) + Dayw(t) (1c) Example 1 (Preview tracking)A preview tracking problem
is formulated byX with (H4):
wherez(t) € R", w(t) € R™, u(t) € R™2, z(t) € RP1, prev . s\ _
y(t) € ]R(m) are the st(aie, disturbar(u:)e, control ir(lp)ut, regulatezd Ha(t) = Aw(t) + Browo(t) + Buywi(t = L) + Bau(t)

output, and measurement of the system, respectively. The (> Cra(t )+D12“(> )
system matrices are with appropriate dimensions and the time = [u?)/(ft } [ } [Dgl ﬂ [zogﬂ (4)
delaysh; (i = 0,1,.‘.,d) hj (j=0,1,..., é) are denoted ! !
|n ascendmg orderd =: hg < hy < hy < -+ < hq == L, wherew(t) := [wg (t) wi ()]", B} := [Bio 0], B} :=
:ho < b1 < hy < -~ < hy := L. We prepare the [0 B,,], Cy = [CF 0]F, Dy = Dgl ? , and wy,
auxmary matrices: w, denote the system uncertainty and previewable reference
A, = A — ByD},Cy, Af — A 31D2+102’ respectively. Replacing by, (t) = r(t+L), it is observed that
the future information(¢+ L) is included in the measurement.
B:=[B Bs|, Bi:=) Bi, By:=)» Bj, u
[ ! 2 ' Z ! 2 Z 2 Example 2 (Fixed-lag smoothingp fixed-lag smoothing
Bi— [Bi BQ] (i=0,1,...,d) problem is formulated with (H4):
. e v g(t) = Az(t) + Biw(t)
— —— J .
C:=[01 G], Cii= ZC Cai=3 O3, 2(t) = Crpa(t — he) —up(t) (k=0,1,2,...,0)
y(t) = ng(t) + Dajw(t) (5)

ci= " " (;:o,l,...,e),
WherBZ(t) = [z () 21 (8) - 2 (O], ult) = [ug () ui (1)

+ . T -1 T + . T T \—1

Diz = (DiaDia) " Dia, Dy = D (D D)™, T O]T, 1 e [CFy CF, - O, Dy o= 1, andug (8

R := [77 o DD },Rf = {77 o DoDT }, stands for the estimation @ ,z(t — k). The solution of the
124712 2121 a L

N o —I—DwD: N+ —I—DtD @ H® problem>*" has been clarified by [18], [13]. ]
¢ 12512 24 2121 Example 3 (Input/output delaysin output feedback prob-

and make the following assumptions for the sysBm lem with input/output delays is formulated by with B} = 0

(H1) (Cs, A, Bs) is detectable and stabilizable, 1The condition (3a) derives R; ' BIT = 0, CITR; 0 = 0 (i # ),

(H2) D15 is full column rank andD»; is full row rank, vy > 0. These equalities are also employed.
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(i =1,2,...,d), ¢! =0 (j =1,2,...,0). This problem satisfiesAmax < 1 Where V e R2"*" js a full
has been solved by [16] and a preliminary result was also column rank matrix defined by
reported by [11]. The formulatio enables to elaborate the nxn.
. . . V= [Vl ] Vi,Vo e R

results along [11] and, further, deal with preview strategies

In case that the delayed signals are imposed on the channe(s) holds, anH> control law is given by
of (w,u) or (z,y), we are faced with broad?> control ;
problems whose solutions have not yet established. Suc _p+ i t—ﬁ (DLD BT
general structure frequently arises in the one-directional delay h{ 12 Z 12( 12D12) Z
systems and, for example, the coordination control of W|nd
tunnel, rolling mill, and wind farm systems are formulated”

’L

i(t) = G( L+hz,—L) (t)

along ¥ [3], [14]. The problemX enables to clarify the B o k[w(t+ 8
H< performance attained by preview/delayed strategies and + Z G( Lt his =L+ M+ B)B [ t+/3)} 4B,
provide a design method of the control law. B (11)

In the sequel, we first solve a full-information (FI) control ~ G(&,8) = [0 1@ (&)VF (¢, 8@ (B)[1 0]7,
problemXg; which is defined by (1a), (1b) with the measure- #(¢, ) = { VE > p
menty(t) = [z (t) wT (¢)]T. The results are utilized to solve VE-1, ¢<B >
the general problerx. VE.=VV I 0]®(-L). (12)
|

For the FI problemXgy, it is shown that the solvability
is generally characterized by the root of the transcendental
In this section, we provide solutions for thé°° control equation (9). A control law is given by (11) and some
problemsXg; and X. The key point in our approach is thatcompensation terms are included for the delayed control and
the corresponding operator Riccati equation is analyticaliile previewable disturbance. The key point in the derivation
solved and, further, the positive semi-definiteness of the sta-that the stabilizing solution of the corresponding Riccati
bilizing solution is characterized using the expression of theguation is expressed as
analytic solution. In the following, we discuss the essential . Ky \—
part of our approach and clarify that typical conditions for § = 97V2(V1 +G1IG7V2) ‘G e LX) (13)
preview/delayed control problems are also derived. Detailg; := [‘61 O} Vs := {‘62 0} € LX),
on the operator Riccati equation approach and the proofs are

Ill. M AIN RESULTS

described in Section V (A-D). ZX[ i, 0 CJTN CJ¢ (©),
A. Full Information Problem ot e Lg(—L —L,0;R"), —L—-L<&£<0 (14)
Introduce a Hamiltonian matrix and a differential equation: [0 0 O]
[I:=|0 1 0| eX,
o Ac —BR;'BT 0 0 0
1= offe, "] ®)
©5(0) =1, (") Zx —14m,0)(€) - B'RITBT4(9),
d
Hj()) = [ A - BiRan] Go = ((G9)°.(Go)"). &= (¢",¢".0%) € X (16)
J - i=0 0
X CENO 42 (G9)° = e + / e APel(8) dp
(j:071727"'7d_1)3 (7) -L
£3
the full-information (F1) control problenL; is solved by the eAe(E+D) 40 +/ =Pyl (B) dp
following theorem. (G)'(€) == —k (CL<£<0)
Theorem 1:For a giveny > 0, the FI problemXg; is G+ 1) (—L—1L <E<_—L)

solvable iff (a) is satisfied.

(@) The Hamiltonian matrix (6) has no eigenvalues on®t 7= R" X Ly(=L,0; R") x Ly(—L, 0; R"),

the imaginary axis. Furthermore, X?:=R" X Ly(—L — L,0;R"™).
V,:=[I 0]®,(—L)V ®) Thus ipyestigat!qg the positivg_semi-definiteness of (13), the
solvability condition (a) is clarified.
is nonsingular and the maximal root of The expression (13) also yields concise conditions for
preview tracking B = 0,i = 1,2,---d) or delayed control
det V,(A) =0, (B! = 0,i = 1,2,---d) problems. For the case of pre-

Vp(A) :=[1 0]®x(—L){(A—1)-[I 0]" +VV,"} view tracking B} = 0 (i = 1,2,---d), the positive semi-
(9) definiteness of (13) is directly verified by the stability of
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the resulting closed loop system. The following condition is
obtained as the closed loop system with= 0 is finite-

dimensional (Theorem 1). -

Lemma 2 (Preview tracking case®upposeBs = 0 (i =

2,---d) holds. Then (a) and (g are equivalent.

(aw) The Hamiltonian matrix (6) has no eigenvalues on
the imaginary axis. Furthermore, the matrix (8) is
nonsingular andi.— Bx (D}, D12) ' BYG(—L,—L)
is stable. [ |

For the case of delayed contrBf =0 (i = 1,2,---d), the 5
J

solution (13) is expressed as

S =G*M(Z +GUuGg*M)~'g,

Mi=Vout =[5 §] =0

. Ac - Z BiR;'BIT 4 Z
= = i=j+1 o2

@7 (0)
S0 (t) = TF) (1), by <t <,

987 (4) = ()87 (1), ~L+hy <t < ~L+hysn,

-B;’NfB;'T]
—CTN:.Cy —AT
(j=0,1,...,d—-1), (22)

:I’

(o) i= [ A7 - EC’TR oty Z ;2~C{TNCC;']
. =541

—BleBl[‘ _Af
(j=01,....6—1). (23)

(17) The output feedback problem is solved by the following
theorem.

where S > 0 is the stabilizing solution of the matrix Riccati Theorem 5:For a giveny > 0, the H>° control problemy:

equation

SA, + ATS — SBR;'BTS + C;N.Cy =0.  (18) ()

Since the positive semi-definitenedd > 0 is preserved in
(17), the conditionS > 0 is clarified by investigating the
eigenvalue off + GIIG* M.
Lemma 3 (Input delay case)SupposeBi = 0 (i =
2,---d) holds. Then (a) and (3 are equivalent.
(a,) The equation (18) has a stabilizing soluti6h> 0
such thatd. — BR; ' BT S is stable. Furthermore the
maximal root of

det V,(A\) =0

(N = [1 0]@x(~L)[I A~ -S]"  (19)

satisfiesA\ax < 1. [ |
Remark 4:For the H> control problemXy;, a preliminary
casel = 0 is discussed [12]. However, the solvability condi-
tion is still complicated because it characterizes the condition
S > 0 by calculating the minimal eigenvalue of (13). Since
(13) involves a compact operator and has an accumulating
point of eigenvalues at origin, the numerical calculation of
Amin(S) is prohibitive in some cases. To avoid such difficul-

is solvable iff (&) in Theorem 1 and (b), (c) are satisfied.

The Hamiltonian matrix (20) has no eigenvalues on
the imaginary axis. Furthermore,

Uy, :=[I 0]¥,(-L)U (24)
is nonsingular and the maximal root of
det U, (p) =0

Up(p) = [1 010 (=L) {(u = 1) - [1 0" +UU; }

(25)

satisfieS imaxy < 1 where U € R?X7 s a full
column rank matrix defined by

U:=[Uf U, Uy, Uy € R
JU =UAy, Ay € R™*" : stable matrix  (26)

Maximal root of

ties, the condition (9) is newly derived by transforming thé (a), (b), (c) hold, anH>° control law is given by

condition to a maximal eigenvalue problem of an auxiliary
operator (Theorem 18 in Section V-B). ]

B. Output Feedback Problem

In addition to (6), (7), introduce a Hamiltonian matrix and
differential equations:

T T p—1
A —-C R,°C

T =g N BT —a] (20)
\11/1(0) =1,
d L L
ﬁxlf#(t) =Jj(w)¥,(t), —L+h; <t < —L+hjy1,

AT _ S oTR
Ji(n) = ! z‘go ]

-L.BiNyB —Ay
(j=0,1,...,0—1), (22)

d7(0) =1,

det W(o) =0,

W) =0T (-0)[7 " 0 |ée(-Lyv

(27)
satisfieso . < -
¢
—(DizD12)~ ZBngk — DY Crfu(t)
k=0

(28a)

= Ki(—L+ hy, —L)x(t)

0
A T e

u(t + «)

¢ 0
Yy / - Ko(~L+ he, $)CITNCl(t, ) (28b)
° —h;
fu(@®) = z(t, —hg) + K1 (—hy, —L)z(t)

+Z/ K1 (~hia =L+ hi) B[P %/Strz)“)} do

1=0

i z_:/_h Ka(=hy., B)C]"N.Cla(t,8)dB  (280)
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i(t) = Agz(t)
14
*ZB’[ U] ST R0, ~h)gi(t)  (284)
7=0
¢ 0 3
- Z/ F(B =& —h;j)g;(t + &) dg (28e)
j=0"7

g;(t) = CITR; ! (Cﬂ'g(t, “hy) + {Dj%t)}) (28f)

where K;, K; (¢ =1,2) and F are given as follows:

of

det U, (1) = 0

Up(p) =1 0]Wu(=L)[T p~" - P]"  (31)
satisfiesuyax < 1. [ |

IV. SPECIAL CASES ANDDISCUSSION

By Section Ill, general solutions for thE> control prob-
lems X, X are clarified and some concise conditiong )(a
(aw), (b.), (by) are also obtained (Lemmas 2, 3, Remark 6).
In this section, we first focus on the one-side delay systems

Ki(&,8) =0 1) (&)WF(,8)d7H(B)[I 0], (X with L = 0 or L = 0) and derive an alternative condition
4 B WE,  ¢>8 which simplifies the design procedure. Furthermore, for the
W (& B) = {WSR—I, E< B preview tracking and the input/output delay problems, the
Ko(&,8) =[0 []@(g)wfivfl(_mp*lévfl(ﬁ)[o ]}T, connection to the relevant results [18], [13], [19], [24], [17]
Wh — VW‘lUT\iﬂ( V)Fciﬂ( L), is investigated and generalized. The proofs are described in
Section V (E-G).
Ki(§,8) = 3 - [ 0] (WS —I)T
x @7(— L)‘I” Y@ o], A. One-side Delay Case
K3(&,8) = 55 - [1 007 (EWH(E, B) ¥ (B)[0 1], For the one-side delay system definedsbyith L = 0, we
W#(E,B) = { Wk ¢>p clarify an alternative solvability condition which merges (a)
Wi—1, ¢<p > and (c) (Theorems 1, 5). Complementary condition fo& 0
Wh =T (-L)VWUT¥7(-L), is obtained by applying the result to the transposed system

(see (72)).

— 77Ty ¥ — 2.0 0 ]
W UN(-L)re(-L)v, T [ 0 —I Lemma 7:For a giveny > 0, the H> control problemX:

F(&B) =10 INWi(=¢ — L)UF(€,5) with L = 0 is solvable iff (), (ac) are satisfied.

U (=B - L)[I 0]%, (bp) The equation (30) has a stabilizing solutiéh> 0

[ UR,  e<p such thatd; — PCTR;'C is stable.
Ur(&6) = {USR—I, &E>p 0 (ac) For a giveny > 0, the following full-information

U :=UU'I 0]0y(-L) (29) problem defined by
d
| . i
By Theorem 5, theH > control law for ¥ is given based E%?C) Palt) = Aex(t) + ;B{w t

on the predictive compensation law (28a), (28b), (28c) and
the observer (28d), (28e), (28f) whose structure arises in the
estimation of delayed systems [2]. In the general problem

d
+ Z Béu(t —h
i=0

an extended observer (28e), (28f) is embedded in the control 2(t) = Cra(t) + Disult) (32)
law which updates the distributed state based on the integro-
differential equations. A -t T 1 T

Along Lemma 2, the condition (b) is further simplified in {16 = A= BeDipCr, A=A ” POrGy
the fixed-lag smoothing(j = 0,j = 1,2,---¢) (Example 2) BY .= (B{D3, + PC3)(Ds1D3;)" 2,
and output delay@ = 0,5 = 1,2, --- /) cases. BY:= By + %4 . PCT D,

Remark 6 (Fixed-lag smoothing/output delay cas&s)p- - ; T7 T 1
poseC} =0 (j = 1,2,---¢) holds. Then the condition (b) is Bi := Bi Dy, (D21D5;)" 2,
equivalent to (b): . . . d .

(b.) The Hamiltonian matrix (20) has no eigenvalues on By=B;(i=12...,d), By:= ZBQ

the imaginary axis. Furthermore, the matrix (24) is =0
is solvable. ]

nonsingular andd; — F(0,0)C3 (D21 D3,)"*Cs is
stable.
SupposeC? =0 (j = 1,2,
(b) is equivalent to (}):

(b,) The matrix Riccati equation:

A;P+ PA} — PCTR;'CP+ BiN;B| =0 (30)

The solvability ofE%‘?C) is verified by applying Theorem 1

.¢) holds. Then the condition OF Lemmas 2, 3.

B. Preview Tracking Case

For the fixed-lag smoothing problem [18], [13] which is a
dual problem of preview tracking, the solvability condition
has a stabilizing solutiol” > 0 such thatA; — has been fairly characterized based on the operation of a
PCTR;10 is stable. Furthermore the maximal rooHamiltonian matrix. For the multiple preview tracking problem
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¥ with B = 0 (i = 1,2,...,d), a direct connection is C(t) := [ClT OIS
established between Lemma 2 and [18], [13].
Lemma 8:SupposeB; = 0 (i = 1,2,...,d) holds for . ZX[ i (t) - C (35)
Then the conditions (g in Lemma 2 and#,,) are equivalerit
(@,) @i (-L)H®'(-L) € dom(Ric), has a bounded solutioR(t) > 0 (—L <t < 0).
X(=L) := Ric(®1(=L)H®y " (=L)) > 0. B © Theinequality\max(P(—L)S(—L)) < 42 holds. m

For the preview tracking probleri*™” (Example 1), the  The general structure of the control law (28) is observed

feature of the resulting control law is observed by the followd|ong the H> controller design for the input/output delay
ing example. systems.

Example 4 (Preview tracking (contd.)kpplying Theorem ~“gyample 5 (Input/output delays (contd.)pefine an in-
5, the H*® control law for X**" is obtained as follows: put/output delay system based on Example 3 with ¢ = 1,

u(t) = —(DfRCy + K(—L))z(t) D,[C1 Diz] = [0 1], Dn[Bf Dy ] = [0 1], Bf =0,
0o CY = 0. By Theorem 5, theH> control law is given as
—/ K(B)By w1 (t+ B)dg, follows:
-L
@(t) = Az(t) + Brawi(t — L) + Bau(t) u(t) = =By " K1 (0, —L)z(t)
~ 1/~ = 0
(Bl 0Dz + PC3)(Da1D3,) " (5(t) — Cou(t)) f/ BiTK, (0, 8)Blu(t + ) dB,
= - PCT (Chz(t) + Dagu(t)), —L . .
. B z(t) = Az(t) + Bau(t — L) +v(t + L, —L),
R(8) = (Dh,Dw) ' [DLC BT ][50 . ‘ T
P : defied by (30) (33) z(t,L)=z(t-L)+ / Lv(t,é‘) dé,
This case, the control law is given based on a finite-(t,&) = F(—L — &, —L)CaT (y(t + &) — Caz(t + &, —L))
dimensional observer with a predictive compensationvgf + $ F(—L — €,0)09TC0%(t + €). (36)

The solvability condition is characterized by Lemma 7.1
In (36), the internal data(t), z(t, —L) is updated by integro-
C. Input/Output Delay Case differential equations. Similar structure is generally observed

For the inputioutput delay systems defined By with in the control law for multiple input/output delay systenms.

Bi=0(i=12,..,d,C =0(G=12,...,¢), we wil

show that the conditions {3 (b,), (c) (Lemma 3, Remark 6, V. PROOFS

Theorem 5) are directly characterized by differential Riccafi.- Preliminaries

equations [19], [24], [17]. , In order to solve theéZ>° control problems. and L, we
Lemma 9:SupposeB} =0 (i = 1,2,...,d), C{ =0 (j = prepare a system description on an appropriate function space.

1,2,...,¢) hold for ¥. Then the conditions (g in Lemma |ntroducing a Hilbert spacet := R™ x Ly(—L,0; R™) x

3, (by) |n Remark 6, and (c) in Theorem 5 are equivalently,(—7, 0; R™) endowed with the inner product

characterized by&,), (b ), (©).

0T .0
(3,) The equation (18) has a stabilizing solutién> 0. (W, 9) =97

Furthermore the equation: / 1T (3 )dﬂ+/0 2T (8)6(8) dB,
—8(t) = S(t)A, + ATS(t) L

— S(t)B(t)R;'BY(t)S(t) + CTN.C, =WheLeN eX, o=(0 00,07 e X, @7)
S(0) = S, the systenm® is described by the evolution equation [20]:
B(t) := [B1 By(t)], S oa(t) = Az (t) + Biw(t) + Bau(t) (38a)
d— ‘ z(t) = C12(t) + Diou(t) (38Db)
2; Xi-z+h:,0)(8) - B (34) y() = Caib(t) + Dayu(t). (38¢)

has a bounded solutiafi(t) > 0 (—L < ¢ < 0). The operatotd is an infinitesimal generator defined by

(b,) The equation (30) has a stabilizing solutiBh> 0. A := (A6° + ¢'(~L), ¢, ¢%),
Furthermore the equation: D(A) = {p € X : ¢! € W2(—L,0;R")
—P(t) = AsP(t) + P(t) A} ¢* € WH2(=L,0;R"),6'(0) = 0,¢*(0) = ¢"} (39)
~T -1~ T
—P@CT (R C)P(t) + BINeBi,  \yhere W12(—L,0;R™) denotes the Sobolev space B&f'-
P(0)=P, valued, absolutely continuous functions with square integrable

, derivatives on[—L,0]. Let V* := X ot
2The notation follows from [27]. In the cas€j = 0 (j = 1,2,...,4), =L, 0] v v € v €

a corresponding condition for £b is obtained by applying Lemma 8 to the Wl’z(_Iij;Rn)albl(—L) = wo}, W = {(;5 e X : ¢2 €
transposed system af (see (72)). WH2(—L,0;R"),¢*(0) = ¢°} be subspaces of’. Then
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W = Dy(A), V* = Dy (A*) hold andW, X, V are with For the full-information (FI) control problenty; defined
continuous, dense injections satisfyiMg Cc X C V ([20], Re- by (38a), (38b) with the measuremeit) = (&(t), w(t)), the
mark 2.6). The operator8;, € L(R™*,V), C, € L(W,RPx) solution is characterized by (A) [26].

(k =1,2) are defined by Proposition 12 (Full-information casefor a giveny > 0,
d the H*° control problem>g; is solvable iff (A) in Proposition

Bitp == BITy0 + ZB}QTW(—L + hy), ¥ € V¥, 11 is satisfied. If (A) holds, aii/> control law is given by

N u(t) = ~(D5,D12) " (B3S + DLC)a(L).  (45)

Crop = CRg’ + > Clo*(—hy), ¢ € W. (40) -

J=1 Remark 13:A simplified conditionD,; = 0 (Dq;: feed-
Remark 10:The statei(t) := (i9,4!,42) € x of 5 through matrix fromw to 2) is imposed or as the general

corresponds to the original systemin the following manner: elaxation technique foby, 7 0 is not available for multiple
input/output delay systems. The relaxation technique for delay-

& = (1), free systems (see e.g. [28]) is applicable only if (H4) is
d ‘ , preserved for the transformed system. It is also noted that
~1 - Bt wi(a+ L — hy) . .
#H0) = X-r,—L4h)(@) - uila+ L —hi) |’ delayed signals are not allowed in the feed-through map from
) i=0 w to y or fromw to z as the boundedness of the corresponding
T3 (B) == z+(8), operators forDy5, D is required in the operator Riccati
wi(a) == w(t + a), u(a) =ult+ o), equation approach. These generalizations are in the direction
2(B) == z(t + B), ~L<a<0, —L<pB<0. (41) of future research. ]

The expression (41) will be employed for describing the
control law alongx. m B Proof of Theorem 1
The systent is in the Pritchard-Salamon class [20], [21] Begin with the following lemma which is obtained by
and typical H> control problems have been characterized 9] Theorem 1 with an auxiliary transformation(t) =
corresponding operator Riccati equations [26]. In the sequelD;5Ciz(t) + @(t).
we introduce the following operator Riccati equations: Lemma 14 ([9] Theorem 1}or a giverny > 0, the equation
. . . (42) has a stabilizing solutio§ > 0 only if the Hamiltonian
SAcp+ A:S5¢ — SBR;'B'S¢ + CINL16 =0, matrix (6) has no eigenvalues on the imaginary axis. =
peW  (42)  |f the FI problem3y; is solvable fory > 0, Lemma 14
AP+ PAGp — pc*RJ:lcpz/, + BiNBjy =0, guarantees that there exists a full column rank makfix=
(V" VE T e R#™ ™ (V1, Va € R™™) satisfying (10).

ey* 43
n n v (43) Next, we derive an auxiliary delay form ofig;, which
Aci= A =By DoCr, Af i= A= BiD;, Gy, yields an analytic solution of (42). On a state-space :=
B:=[B1 B], C:=[Cy C3]" R" x Ly(—L— L,0; R™), introduce an auxiliary delay system:

and establish a design method &> control law. The 2%11 3'30(15) = (A° + BD},C2)a° (t) + Bow(t) + BSu(t)
H* control problemsY, ¥r; are formally characterized by 2() = C23°(t) + Droul?)
Propositions 11 and 12 [26]. - 12

Proposition 11 (Output feedback cas&pr a giverry > 0, 9o (t) = (2°(t), w(t)) (46)
;geti;{i:d control problem3. is solvable iff (A), (B). (C) are and a corresponding operator Riccati equation:
(A) The equation (42) has a stabilizing solutién> 0 S°A%¢ + A2*S8°¢ — S°B°R; 'B**8°¢ + CY*N.Cy¢ = 0,
(S € L(V,V*)) such thatA. — BR_'B*S generates  j° .= [B¢ B3], ¢ W°. (47)

an exponentially stable semigroup oW, V. _ o ]
(B) The equation (43) has a stabilizing soluti®h> 0 The operatotA? is an infinitesimal generator defined by

(P € L(W*,W)) such thatd; — PC*R;'C gener- o0 p 0 _ 0.
ates an exponentially stable semigrouplenh V. Acgi=(4cd’, ¢ ), D(Ae) = {9 €2”:

(C) The stabilizing solutionsS > 0, P > 0 satisfy ¢t € WH (=L = L,0;R"™),¢" = ¢'(0)}.  (48)
2
Amax(PS) <77 o Let W° := D(A9) be a subspace ot°. ThenDyy.(A%*) =
If (A), (B), (C) hold, an H* control law is given by X° holds and°, X° are with continuous, dense injections
u(t) = —(DLD12) "L (BiS + DLC) satisfyingW? C X° [20]. The operatord3$ € L(R™, X°),

BS € LR™2, X°), C{ € LOW°,RP1) are given by
B} :=GBi, B3 :=GBs,

X (I~ 55 -PS)7'e(t) (44a)
&(t) = Ak(t) + Bou(t) + % - PC; (C1&(t) + Drzul(t)) ,
+(PC; + BiDyy) (D21 D)) ™ (y(t) — Cai(t)).  (44b) CPg = Clo' (=L —hy), W’ (49)

[ ] J=0
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where G € L(X,Xx°) is defined by (16) and satisfigs € holds. SinceTH¢ = H°T, T := [I ailg ] follows from

LWV, W), G € L(V, X9). ) . Gl =0 (¢ € X) andILA*Y + A H¢ + BLR;'Biyp —
For a giveny > 0, the H> control problems.er andXg;  BR-18*y = 0 (v € V*), the equality (51) is obtained by

share the same solvability condition. (54). u
Lemma 15: It follows from (52) that the operato3 generates an

1) Let #(0) € W and #°(0) = G#(0) € W° be the exponentially stable semigroup. Thus (51) yields a stabilizing
initial states opy, X%, respectively. Then the equalitiessolution:

#°(t) = Gi(t) andC92°(t) = Cia(t) (#(t) € W) hold

for (w,u) € Lo(0,t; RMitmz), S° =V, (V1 + GG V)" (55)
2) The equation (42) has a stabilizing solutioh> 0 iff iff V; + GIIG*V, is invertible. Exploring the conditions such
(47) has a stabilizing solutio§° > 0. that 1) the operatoy; + GIIG*V; is invertible and 2) the op-

3) Let S° > 0 be a stabilizing solution of (47). Thenerator (55) is positive semi-definite, we establish a solvability
the stabilizing solutionS > 0 of (42) is given by condition of (42). Based on the condition 1), the existence
S =G*§°G. B of the stabilizing solution is characterized by the following
Proof: In highlight with [12], the systemSf allows theorem.

delayed channels in the regulated outpute note that the  Theorem 17:Let V € R?***™ be a full column rank

following equalities are obtained via straightforward calculanatrix defined by (10). The operator Riccati equation (47)

tion. has a stabilizing solutios® € L£(X°) iff the matrix (8) is
nonsingular. Furthermore, the stabilizing solution is given b
ByD},C16 = (B Di,C16°,0,0), i g gy
GAc) = A2Gh, Crop =C7Gh, ¢ =(¢°,¢',¢*) € W (50) Proof: We describe a proof along the line of [12] Theorem

1): Since (A° + BDH,C)Gé = QA¢> (6 € W) follows 6, which deals with the preliminary cagd, = 0). On the
from (49), (50), the equality°(t) = G2(t) holds for (w,u) € product spacex” = Ay x Xy, Af := R" x Ly(—L,0;R"),
Lo(0,¢; R™+m2). By the 3rd equality of (50), the equalityt? ‘= L2(~L — L,—L;R"), the operaton); + GIIG"V; is
ijo(t) — C1i(t) is derived. ) ) expressed as foIIows

2): By the proof of 1) , the systemSy; and Xif; provide 4 grig*y, — {/\G g}’
equivalent map from{w, u) to z. Hence, by Lemma 4 [12],
the solvability conditions of the FI problemSg;, %2, are N :=7 + {Vl —1 0} + GIIG; {VQ 0} (56)

0 @1

equivalent.

q3) Let S, > 0 be a stabilizing solution of (47). By (49) and  (©1¢')(€) := CI NeC16'(§),
(50), it is verified that the stabilizing solution of (42) is given —L<E<0, ¢' € Ly(—L,0;R")
by § = G*5°G > 0. u G1¢:= ((G19)", (G20)"), & = (¢",9") € AT

The systemyg,; yields a Hamiltonian operator representa- 0
tion and enables to solve (47). (G19)° = el g’ +/ e Pl (B) dp

Lemma 16:Let V € R2"*" be a full column rank ma- - ¢

trix deoflned byo(lo) Then the Hamiltonian operatgf := (G1)L(€) i= eAclE+L) g0 +/ A=) g1 (B) dB,

_C;fN co —B°R AO* } associated with the systerﬁ -L
satisfies —L=g<0

240 [Vl + gIg* Vz}(ﬁ [vl + gIg* Vz} 2 ¢, peDAZ) The operatorV; shares the same structure as the FI problem
Ve Va A Ae where the output delays are relaxétl = 0). Hence, along

. 1) the proof of [12] Theorem 6 (a> (b), it is verified that (47)
2.0=Acp" ¢ ), DA ) ={p € x’: has a stabilizing solutioss, iff (56) is invertible. Furthermore
o' e WHE(—L — L,0; RP), V1¢° = ¢1(0)} by [12] Theorem 6 (b)< (c), (56) is invertible iff (8) is
A, : stable matrix defined by (10) (52) non(séir11)gular. The stabilizing solution (55) is obtained Eased
on .
whereVy, V,, 11 are defined by (14), (15). B The positive semi-definiteness of (55) is equivalent to the
Proof: For the auxiliary Hamiltonian operator: condition:
9 —B° R;'Box * * QO *
H o= | e PESPE, Q:= (V1 +GIIG"V,)*8° (V1 + GIIG* V)
B} :=GBy, Br, :=[Bri Bra] € LR™T™2V) = V1 + GIG™V)™, 2 0. (57)

B = B P! (0), Biytp == Bqupl(o), eV (53) Transforming the condition (57) to a maximal eigenvalue
problem, the positive semi-definiteness of (55) is characterized
by Theorem 18.

oW1l _ V1] go 0 Theorem 18:Let V = [ViT VI]T € R " pe a full
H = AX ¢, ¢ € D(A 54 1 Vs

L[VQ}QS { 2} A @ M3 %) column rank matrix defined by (10). The stabilizing solution

3The stabilizing solution of (47) means thaf — B° R 1 5°* S° generates (55) is_pqsitive semi-definiteSC > 0) iff the maximal root of
an exponentially stable semigroup o¥°, x°. (9) satisfies\ . < 1. [ |

it is verified that the equality:
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Proof: On the product space’® = AP x X3, A7 := R"x Theorem 19:For a giveny > 0, the conditions (A) in
Lo(—L,0;R™), X9 := Lo(—L — L,—L;R™), the condition Proposition 11 and (a) in Theorem 1 are equivalent. If (A)

(57) is expressed as or (a) holds, the stabilizing solutio§ > 0 is given by (13)
T = AR = and further expressed as follows:
Q= [FE-FAEE D=0 2= vo 4 .
: o (500 = Gl-L~L3*+ [ G(-L.5)0'(9)d5, (64a)
(©26°)(&) =D _ X1,y (©)C] NeC{&?(6), JL
=0 Sv)'(€) = G(&, —L1° G Y(8)d 64b
B NN CONC LGRS GO OR I D
_[1-vTv o] [vf o «[Va 0 ¢ , ,
A= - omey g 69 (s - > X(i,0(8) - CITNCI*(8), (640)
j=0

where©, > 0. We first show that the conditions (58) and B
7LS£§Oa 7LSB§07 U:(UO,’L}l,’L}2)EX
EAZ* < T (60)

whereG is defined by (12). ]
are equivalent. The condition (60) derives (58) directly. BY  pyoof: The conditions (A) and (a) are equivalent by
contradiction, we verify (58) derives (60). Suppose (58) holdmmas 14, 15 and Theorems 17, 18. Furthermore if (A) or
and there existg € A7 such thaly, (I—-EAZE")y) <0 holds. () holds, Lemma 15 3) and Theorem 17 yields a positive
Then an inequality:(y, =*(Z — ZAZ")Zj) = (y,(EE* —  semi-definite stabilizing solution (13). In the following, we
EAE")y) § {y, (Z-EAE")y) < 0is obtained forj := =7y, il derive (64) from (13). By (13), the equalitf = Sv is
=t = |, (N.C1)* .z} where (N.C;)*t is the pseudo- expressed as
inverse of N.C; andZ=1= = &, (E=2T7)* = Z=T hold. By .
contradiction, it is shown that (Sé) der)ives (60). Viw=G(v—11f), f=g"w. (65)

Next, we prove that the condition (60) holds iff the maximalntroducing auxiliary variables:

root of (9) satisfiesAnax < 1. Since ZAZ=* is compact,

. i A : 3
we clarify the condition\,.x(EAZE*) < 1 by solving the p(E) == pAc(E+L),0 +/ eAC(Efﬂ){vl(ﬂ) _ (Hlfl)(ﬂ)}dﬁ

eigenvalue problem dEAZ=*. Based on the expression L
0
s A Ul I RV AL 0(9) = MVt 4 [ AP 0w (e de
=61 {‘62 ClTJSC .I]U (61) to the left and right equalities of (65), we have
which is equivalent todv = ZAEZ*v, we will show that P =q(=L), f1¢) =q9),
there existsu # 0 in (61) iff V,,(A) (A # 0,1) is singular. ¢
Introducing auxiliary variables: 2(8) = ZX[—MO] (8) - CIT"NCIv?(B) (66)
3 j=0
o— Au(f_B) — 1
pe)i= [ A ) )} and the equalities:
T O e 0
o) = Vs [CANEDCN @b ©2) [ a6 [20] - | m@er @[] @ ©n
to the left and right equalities of (61), we have boundary [p(-L)] _ [+° p(0)] _ [Wi], 0
conditions: o e e yLI(—L)} B {fo}’ [Q(O)} B {Vﬂw (68)
Ty 1N T 1 [p(0)] _ where®,(-) is defined by (7). Substituting = —L and (68)
[VaVs (A=1)- 1= Vol {q(O)} =0, to (67), then pre-multiplyind/ 0], we obtain
O] _ -1 (—L) (=L)] _ fo
i) = e 0D [en)] = 17 W = V1o
and R —1 T, 1
+ [ VI e-ner @) o] (5)ds (69
—L

V(NP =0, V,(\) =
VeVl —(A—1)-T— VeV @;1(—L)[O 117, (63) whereV; is nonsingular by Theorem 17. Since (67), (69), and
the right equality of (68) yield
For \ # 0, 1, it is verified by (61), (62) thayf® # 0 holds iff

0
v = (vo,vl) # 0. Thus A # 0,1 is the elgen_\/aluie1 of AT* q(€) = G(&, —L)° +/ G(& B0 (B)dB,  (70)
iff the matrix V,,()\) is nonsingular. Substituting, " (—L) = ~L
[PI é} oY (-L) {? —01} to (63), the condition (9) is derived. the expression (64) is derived by (66), (70). [ |
] Proof of Theorem 1By Proposition 12, Theorem 19, the

The analytic solution of (42) is clarified by the followingH°° control problemXg; is solvable iff (a) holds. The control
theorem. law (11) is derived from (40), (45), (64), and Remark 1M.
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C. Proofs of Lemmas 2, 3 2.6). The operatorg! ¢ L(RP:, V1), BI ¢ L(WT ,R™*)

Proof of Lemma 2:The solution ofz(t) = (A, — (k=1,2) are given by

By(DY,D12) "' B5S)#(t), #(0) € W is bounded in0 < ¢ <

max(L, L) (Remark 10) and, fot > max(L, L), it is reduced R Y= Oy’ +Zczw hi), € VT,
to j=1
d
2(t) = (x(1),0,0) € X, Bf¢:=B) ¢+ Bi"6*(—hi),¢ € W' (75)
(1) = {Ac — B2(DiyD12) ' By G(=L, —L)}z(t)  (71) =0

Based on the operator Riccati equation defined>for
whereG(—L, —L) is defined by (12). Since the positive semi- P I ' equat I

definiteness of (13) corresponds to the stability of (71) ([12] P'Aj¢+ A;*PT¢ — PTCTR;'CTPTo
Lemma 21), the solvability condition is characterized by)(a +BI*NBTp =0, ¢ eWT
u T._ AT _ pTp+TpT T ._ [pT AT
Proof of Lemma 3:For a giveny > 0, the H> Ap = AT =G Dy By, €= [0 G ], (76)
control problemXg; is solvable only if the problem with the condition (B) is characterized by the following lemma.
= 0 is solvable. Hence, by [27], the equation (18) has Lemma 20:The condition (B) holds iff the equation (76)
a stabilizing solutionS > 0 and V. = [I S|T meets has a stabilizing solutorP™ > 0 (PT e £V, V)
(10). Since (55) is expressed & = M(Z + GIIG*M)~!, such thatAT — CTR;'CT*PT generates an exponentially

M = Vng‘l = g (g > 0, the stabilizing solution (13) is stable semigroup o™ andVT. Furthermore, the stabilizing

positive semi-definite if\max(—GIIG* M) < 1. Along [12] Solution of (43) is given by
Corollary 15, the condition (19) is obtained. [ | P=g pTy—1>90 77
where PT > 0 is the stabilizing solution of (76) and’ €
D. Proof of Theorem 5 L(X,XT) is an isomorphic operator:
Utilizing the fundamental results obtained by Section V-B, (T6)° (T9)° := ¢,
we will solve the > output feedback problerit based on Tb:= [T, (Td)(a):= ¢2( a—1L),
Proposition 11. The condition (B) is clarified exploring the T (T$)2(B) := ¢! (—B — L),

duality between (42) and (43). The condition (C) is further L<a<0, ~L<B<0,p=(¢"0',0}) eX (78)
simplified by employing the analytic solutions of (42), (43).

In order to solve (43), introduce a transposed systeri:of Satisfying7 € L(V, W), 7 € LW, V™). u
Proof: The following relations are obtained fat, 37

4 4
»T: pt) = ATp(t) + Z Cilb(t — hy) + Y C5Ta(t — hy) AT o= TA¢, CI*Tdp=C1¢, Cy*Tp = Catp, p€W
- (79a)
Bl =BTy, Byv =BTy, » e W (79b)
Hence, if PT > 0 is a solution of (76), a solutio® > 0 of
(43) is given by (77). Since/ (A; — PC*R;'C)¢ = (AT —
232 p(t — hy) + D5w(t). (72) CTR;'C™*PT)* T4, ¢ € W holds by (79) botP™ and P
are stab|I|Z|ng solutions if either is a stabilizing solutiorm
Applying Theorem 19, Lemma 20 to (76), it is shown that

(B) and (b) are equivalent.
Lemma 21:For a giveny > 0, the conditions (B) and (b)

ZBZT (t — hy) + DEa(t)

On the spacet’™ := R" x Ly(—L,0; R") x Ly(—L,0; R™),
the system:™ is described by

ST p(t) = ATp(t) + Cla(t) + Coalt) are equivalent. If (b) holds, the stabilizing soluti#h> 0 is
2(t) = BYp(t) + DL a(t) given as follows:
§(t) = BYp(t) + DELw(t) 73) P=J ' +GTTITG U) I GT T, (80)
T T oT oT ._ Rn N . RN
where AT is an infinitesimal generator defined by \;v:éareg e L(XT, x°T), x°T .= R" x Ly(—L — L,0; R")
A= (S8, = [ 9 = [ Y] e o),
D(AT) = {¢ € AT : ¢' € WH(~L,0;R"), oo
R RSN L i -} o1

Let VI := {¢ € X1 : ¢l € WH2(—L,0;R"), ' (~L) = are defined by the following association with the terminology
POH W= {p € X1 ¢? e WH(=L,0;R"),0%(0) = ¢°}  (16), (14), (15):

be subspaces oft™. Then WT = Dyr(AT), VT* = - - - 5
Dyt (A™) hold and WT, XT, VT are with continuous, XY, VU VU GG I+ 117, 0+ 0.

dense injections satisfyingy™ ¢ T c VT ([20], Remark (82)
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Furthermore, the solution (80) is expressed as

(Pv)? = F(0,0)0° + / 0' F(0,8)v%(B3)dp (83a)
—L
d
(P0)'(B) =Y _Xi-L.—1+n)(B) - BINsB{™v'(8),  (83b)
=0
0
(Pu)(€) = F(£,01° + /_ F(&,B02(8) 5. (83¢)

~L<B<0, -L<e<0,v=>"0v"0?)eXx
where F' is defined by (29). ]

Based on the analytic solutions (13), (80), the spectral
radius condition (C) is characterized by the maximal root of

a transcendental equation.
Lemma 22:Suppose (A), (B) hold for a gives > 0. Then
(C) and (c) are equivalent.

Proof: We will show that the roots of (27) meet the(
nonzero eigenvalues oPS. Let 0> # 0 (0 > 0) be an

eigenvalue ofPS and suppose? - v = PSv or

For o # 0, it is verified from (85)-(89) that # 0 exists
in (85) iff w® # 0 satisfiesW (o)w® = 0. Thus the maximal
eigenvalue of\,.x(PS) is given byo?, .. [ |

Proof of Theorem 5By Proposition 11, Theorem 19,

Lemmas 21, 22, the solvability condition is given by (a), (b),
(c). In the expression of the control law (28), we first derive
(28d), (28e), (28f) by rewriting the control law (44b) in the
following form:

B(t) = AR (t) + BF () + §(1),

ft) = [DZﬁ(y(g(t)cz@(t))} € Rt

i) = —Pe R Te0 D ew. @2
Since (i, i(t))yey = (1, Az(t) + BF(E) + §(t))y- v,

Vi € V* holds, the following representation is obtained
for 2(t) = (2°(t),2'(t,-),2%(,-) € W, gt) =
g (t)7§1<ta)7g2(t7>) e W:

d

B0(t) = Az°(t) + 2 (¢, L)+ > B'f(t —hy)+ §°(¢
o v=Pf o f=8u (84) (1) = Az (t) + 2 ( ) ; f( )+g°(t)
hold for v # 0. By (13), (80), the equalities in (84) are 0 o (932)
expressed as —a'(t,8) = -2 (t,8) + 7' (t, B) (93b)
ot ap~
Viw=Gw—o- IIf), of =GVow (85a)  z'(t,~L+hyp—0)=
ov=J ' Uw, Uy =G T Hf —o - T Jo). al(t,~L+hy) + B*f(t), k=1,2,...,d—1 (93¢)
(85b) Baf(t), k=d
We clarify the condition such that # 0 exists in (85). 2.2 3y = 9 20 8y 1 521 3), #2(t,0) = 22(1).
Introducing auxiliary variables: ar" ap* - (93d)
p(&) = eAc(€+L),,0
¢ While f(t), g(t) in (92) are expressed as
[ M3~ o ) s (66) . ]
—-L . 0o f(t) — [D21(y( ) — Z Cya?(t, —hy)) , (94)
q(B) = e P Vpu® + / et D (owh) () ds  (87) "t
B Y4
to the left and right equalities of (85a), then similarly intro- 3°(t) ==Y F(0,=hy)g;(t), §'(t,8) =0,
ducing J=0
¢
p(B) = eAf(B+L)U2ﬁ)0 + /0 (5+L+5)( H¢) de §2(t75) == F(p _hj)gj( ) (95)
—p— L 7=0
- (88) by employing Lemma 21. Hence, the solutions of (93b)-(93c)
G(&) == —e i 0 and (93d) are obtained by

-, LATE0(f2(5) o

€
to the left and right equalities of (85b), we have

P el | R | Bt 2]

(T T0)?(8)) dB (89)

5] v =
o—vr b, [ich) - eren i)
][] o

Combining the equalities (90), (91), the conditidn(c)w’ =
0 (w® # 0) is obtained.

d
z'(t,8) = X(-p-rn)(B)  B'f(t+ 8+ L—hy),
1=0

0
28 =209+ [ Feres-gi 09
Replacing the variables hy(t) := z°(t), z(t, B) := 22(t, B),
the equalities (28d), (28e), (28f) are obtained from (94)-(96).
In order to derive (28a), (28b), (28c) from (44a), we focus

on the relation:
—(DiaD12) 1 (B3S + DisCi)(Z — 55 - PS) ™!

ueR””, geWw (97)
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and elaborate the expression «@f Employing (13), (80), the from (99), (101), (102), (104). Substituting (105), (106) to

equality (97) is given by (103), then replacing by
u+ (D1, D12) "B f + Df,Civ =0 (98a) ¢’ = x(t)
Viw =G —11f), f=GVow (98b) .
V(o= g) = TG Ui, ZX[ L—L+h,)(§) - B f(t+ B+ L —hy),

o =G"T Hf -7 TU'T(w-g)}  (98) 2 = w(t B),

Introducing (86) modified agr < 1 and (87) to the left \ye finally obtain the feedback laws (28a), (28b), (28c).m
and right equalities of (98b), then introducing (88) and (89)

modified aso - (7*IITJv)? «+ 42 - (T*IYT(v — ¢))? to

(98c), we have E. Proof of Lemma 7

For the systent defined withL = 0, introduce a coupled

{pgf)} [ 8} / 6)&11(5) Hgl(ﬁ) dj, (99) operator Riccati equation:
2(—D)] [0 [p(0) o 100 SAcp+ A;S¢p — SBR;'B*S¢p +CiN.Lrp =0, p €W
{q(— )}—[ ] <)} [ }“’ 100 4 = A-Bopen, A=A+ PCiCy
p(&) p(0 - L
{q( )} [Q(O} B:= B By]
£, pmax(&—ho) = [(B1D3; + PC3)(D21D3) ™% By + 2 - PC; D1
5 3 ~—1 0| ~iT i 2 1421 2 2121 2T 57 1 Y12
D (€57 (8) )] o1 N.Cig (5) d, (o)
(101) whereP > 0 is a stabilizing solution of (43). The following
T p(=L)] _ 4 [pO)] _ [+* (»° —g¢%) lemma provides an alternative condition which inherits (A)
vt U] [V(—L)} 0, [6(0)} [ -f° } (102) and (C).
Sincew in (98a) is expressed as Lemma 23:For a giveny > 0, suppose (B) holds and let
d P > 0 be a stabilizing solution of (43). Then the conditions
— (DLDyy)"! ZBQCTQ(*L + hy) (A), (C) and (AC) are equivalent. i
0 (AC)  The equation (107) has a stabilizing soluti§r> 0
(S € L(V,V*)) such thatd. — BR_'B*S generates
- D, ch % (—=h) 4+ g2 (=hy)), (103) an exponentially stable semigroup o, V. ]
Proof: (=) Suppose (A), (C) hold and > 0, P > 0 be
we derive the representation gf¢), j(€) in terms ofg = stabilizing solutions of (42), (43), respectively. ThEn- =
(9°, 9%, 9%) € W. Combining (101), (99) with the boundaryPS has bounded inverse and
conditions (102), (100), we have S.— S(T - % PS) >0 (108)

T AT 0_
US (- L)Te7 (- L)Vw” = holds. We will show that (108) meets a stabilizing solution of

0 T .
TEy, 7 I o Sy ryEv—1 I 1 (107). Substituting (108) to the left-hand side of (107), then
v L)F{Mg +/_LCI) (=L)27(8) Mg (8) dﬁ} employing (42), (43), it is shown that the operator (108) meets

a solution of (107). While
(Ac = BR'B*S)(T — 2% - PS)¢p =
(Z— 55 PS)(Ac—BR'B*S)p, ¢ €W  (109)

+Z / U (L) e (8)[§] CiTNCig? (8) dp. (104)

hl

SinceUT ¥ (—L)T'®Y(~L)V = v - W(y) is nonsingular by

Theorem 5, we obtain is obtained from (42), (107), (108) whetd. — BR;'B*S
0 generates an exponentially stable semigroup¥@n Hence
q(§) = K1(§, — / K1(¢,8)g"(8)dB (108) is a stabilizing solution of (107) and (AC) holds.

(<) Suppose (AC) holds and > 0, P > 0 be stabilizing
solutions of (107), (43), respectively. Thénh+ 7% -PS is
invertible ands := S(Z+ % -PS)~! > 0 meets a solution of
(42). SinceZ — 2 - PS = (I+ 25 -PS)~" holds in (109), the
0 operatorS := S(Z + 7% -PS)~1 > 0 is a stabilizing solution
& p(—hi) = Ki(—hy,—L)g° +/ Ki(~hi,B)g"(B)dB  of (42). While PS is expressed aBS = PS(Z+ 25 - PS) ™!

and the inequality\m.x(PS) < ~? holds. Thus conditions
; ; A), (C) are derived. ]
+Z/ ~hi, B CJTNCC{QQ(B) d ( Lo(r '2he system® with L = 0, the corresponding state
space is defined byt’ := R™ x Ly(—L,0; R™) and the
(k=0,1,....0) (106) output operators (40) are reduced to finite-rafp = Cr¢°,

L 0 4 4
+ZO/—E K?(fvﬁ)C{TNCC{QQ(ﬁ) d/@ (105)
J= J
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¢ = (¢°,¢') € &’ (k = 1,2). Hence, the condition (B) is
characterized by a matrix Riccati equation.

Lemma 24:For a giveny > 0, the conditions (B) and ()
are equivalent. If (§) holds, the stabilizing solutiof® > 0 of
(43) is given as follows:

P = [5 g} e L(X),

)= X—L—z+h (&) - BINsB{ ¢ (€),

¢' € Ly(~L,0; R"), ~L <£<0, (110)
| ]

Proof: (=) Suppose (B) holds. Then, by Lemma 21, there

exists a full column rank matrix) = [U{f U5 ]T satisfying

(20) and, furtherlJ, = U; is nonsingular in (24). Hence the

stabilizing solution of (43) is given by (110) with = U,U; "
Since (110) is positive semi-definite iff > 0, the condition
(bg) is derived.

(<) Suppose (§ holds. Then a positive semi-definite
solution of (43) is given by (110). The solution of the evolution™ Sx()

equationz(t) = (A; — PC*R;'C)&(t), £(0) = ¢ € A" is
bounded ovel) <t < L and fort > L, it is reduced to
I(t) = (x(t),0) € &7, i(t) = (Ay —PCTRflC) (1)
Hence A; — PC*R, ¢ generates an exponentially stable
semigroup. Thus (B) is derived. ]

Proof of Lemma 7By Proposition 11 and Lemmas 23,

24, the H>® control problem> with L = 0 is solvable iff (k)

and (AC) hold. Furthermore by Proposition 12 and Lemma
23, the condltlon (AC) is equivalent to the solvability of the;S attained fors,

Fl- probIemZFI with v > 0.

F. Proof of Lemma 8

By Lemma 14, the condition (g holds only if a
full column rank matrix V' exists in (10). We note that
Vi Vi(~L) and G(~L,—L) Vo(—L)Vy H(—L)
hold for the matrix function defined by gl(t

)
2(t)
®,(t)V. Since®,(~L)H® ' (~L) {“;;E:B Vi(—L

)
VQ(—L):| Ac
(A, stable matrix follows from (10), the condition
®(~L)H® ' (—L) € dom(Ric) is satisfied iffV, = V;(—L)

is invertible. Focus on the equality

o1 (-DHT (L) x L] = [y B DATTH-L)

(111)

G(—-L,-L) is a
—1I] to both sides

where X(—L) := Vo(-L)Vy Y(-L) =
symmetric matrix. Pre-multiplyingX (—L)
of (111), we have
X(—L)A.+ AT X(-L)
— X(=L)By(D{3D12) ' By X(—
d
A=Y [X(-L) - ®1(~L)®; (=L + hy)
=0
X @71 (—L + hi) @ (~L)[ X(~L)
where [_0] (I)}@l(r) o7 () {_OI é
in (112). Hence, under (H1)-(H3)X(—L)

L)+ CEN.Ci+A =0,

¥

_[}T

-BiBiT 0
0 0

>0 (112)

is employed
> 0 holds

13

iff the matrix A. — By(D5,D12) 'BfX(—-L) = A, —
By(DE,D12) tBfG(—L,—L) is stable. Thus, the conditions

(ay) and @,) are equivalent. ]

G. Proof of Lemma 9

Focus on the finite-horizon full-informatiod/ > control
problem on[—L, 0]:

Syt #(t) = Ax(t) + By (t)w(t) + Ba(tu(t), #(=L) =0
Z,\<t):)\_% -Chix t) +)\_% ~D12u(t), A>0
(113)
B(t) := [B1 Ba(t)],
By(t) = ZX[fLJrhi,()] (t)- Bj (114)
=0

and introduce a differential Riccati equation:
t) = Sx()Ac + ATSA(t) — SA(1) B(t) R, ' BT (¢)Sx(t)
+ A L. ofN.Cy, Sy(0)=X"1- S (115)

where S > 0 is the stabilizing solution of (18). By [8], the
finite-horizon H*° performance:

12117, (— 1.0y + 27 (0)S(0)x(0)

||wH%2(_L7o)
(vy>0)

iff (115) has a bounded solutiafi (t) > 0
(=L <t <0). Based on the fundamental results stated here,
we first show that the condition (R is characterized by a
differential Riccati equation.

(&) & (&.): We note thatS,(¢)

Jy = 2

sup
w€La(—L,0)

<7

(116)

= VeV (),

[&igg] = ®\(t) [/\*115} meets the solution of (115) (see
e.g. [5]) and, furtherV; x(—L) = V,(\) holds by Lemma
3.

(=): SupposeéV; \(—L) = V,,(\) is nonsingular forx > 1.
We will prove by contradiction that (34) has a bounded
solution S(-) > 0. If (115) with A = 1, or equivalently
(34), does not have a bounded solutiSp(-) > 0, the H*>°
control problem21 with J; < ~? is not solvable [8]. Let

%pt > ~2 be the optimal performance for the system
21 and define a systeri,- with \* :=~2, /4% > 1. Since
J1 = A* - Jy- holds by the definition (116), the optimal
performanceJ;. for the systent,- is given byJ5. = ~2. For
any givene > 0, the H>° control problem - with Jy- < +2,
ve := v + € is solvable and the bounded solutiéfi(-) > 0
exists. SinceSy\(-) > 0 is continuous and non-increasing
[8], [|Sa+(—L)|| — oc is derived asy. — v + 0. This fact
implies V; - (—L) = V,(\*) is singular and contradicts the
assumption (. Thus, (115) withA = 1, or equivalently (34),
has a bounded solutiof}; (-) > 0 and @,) is derived.

(«<): Suppose (115) witth = 1 has a bounded solution
S1(-) > 0. Then (115) has a bounded solutiéiy(-) > 0 for
A > 1 since theH*> control problem for:, with J, < ~2
is equivalent to the problem defined By with J; < X - 2.
Thus (115) has bounded solutiofg(-) > 0 for A > 1. Since
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Fig. 1. H* performance vs. preview/delay times (full-information case). Fig. 2. H*° performance vs. preview/delay times (output feedback case).

Sx(-L) = VQ,X_(_L)V{,;(_L) and Vi \(—L) = Vp(A) hold,  herey, is theh, unit-time previewable signal and is the
Vp(A) (A = 1) is nonsingular and (3 is derived. uncertainty ofw,. Furthermoreh, unit-time delay is imposed
(b,) < (b,): Applying the above result to the transpose@n the controk:. We will investigate theH> performance in
system X7, it is shown that the conditions (b (b,) are terms of (i, hy). Based on Theorem 1, the achievatile®
equivalent. _ o performance for (118a)-(118c) is obtained by Fig.1. Fig.1 (a)
(c) = (€): The matrices satisfying (10) and (26) are résymmarizes the performance for the case= 0 and it is
spectively given byV := é , U = E}I)l where S > 0, observed that the curves coincide by sliding aside. This feature
P > 0 are the stabilizing solutions of (18), (30). Furthermorarises from the fact that the common input delayia(h,, hq)
the solution of (35) is given byP(t) := U,(t)U;'(t), can be pushed out to the regulated output. While in the case
[5;8 =Ty (t) H Let o0k > 0 be the maximal solution k = 0:4 (Fig.l (b)), the rglation between the preview _and
of (27) and SuppoSE (oyax)v = 0 (v # 0) holds. Since delay tlmgs is rather compllcate_d a_md tHéo.perf'ormancg is
oT(—L) = W,(—L) holds between (21) and (23), thehot sufficiently recovered even if rich preview information is

condition W (o ax )v = 0 yields o2 'UlT(fE)VM(fL)v _ employed.

max 1

Uy (—L)Va1(—L)v and, further, the equality Replacing the measurement (118c)y) = [g O}x(t) +
0o - 0 =U] H(=L)US (—L)Vau (—L)V ' (—L)¥ [g} we(t) + E} wi(t), € = 0.01, we will investigate theH >

= P(—L)Si(~L)% (117) output feed a_ck.performa}nce based on Theorem 5. A ;Iight
_ _ } . noise (e > 0) is included in the measurement for satisfying
is obtained foro = V1,1 (—L)v # 0. Thus the conditiond) is  (H2). Based on Theorem 5, the achievabié® performance
derived. If €) holds, the equality (117) yield8/ (omax)v =  for (118a) is obtained by Fig.2 (a), (b). In the cdse 0, the
0 (v # 0) for omax = Maax(P(—L)S1(—L)). Thus (c) is performance in Fig.2 (a) is almost similar to Fig.1 (a) because

derived. B the initial states of control systems are both relaxed in the
evaluation of H>° performance and, further, the error system
VI. NUMERICAL EXAMPLES is not excessively driven by the slight measurement neise
Define anH> preview and delayed control problem: While in case that the uncertainty in the preview information
. Lo 0 grows ¢ = 0.4), the achievable performance is significantly
i(t) = [1 3}95('5) + M wo (t) deteriorated as the full-information is not easily recovered in
0 1 the output feedback setting.
+ M wi(t = hy) + Mu(t ~ ha) (1183) " Next we focus on the preview control problem depicted by

2(t) = [8 é}x(t) + mu(t), k=0,04 (118b) Fig.3 whereP(s), K(s), M(s) denote the plant, control law,
. . . and low-pass filter restricting the bandwidth of the control
y(t) =2 (t) wo (1) wy(t)] (118¢) channel, respectively. The delay element:s expresses the
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(0w = 0). In the cased” = 0,0.2, it is observed that thél>°
| Wp»  performance is recovered to the optimal level by employing
preview information ofw,. While in the cased” = 0.4, 0.6,
the H>° performance is not recovered to the optimal level
even if any rich preview information is employed. Thus
in the preview control of Fig.3, the limitation of control
bandwidth is recovered to certain extent by employing the
preview information ofw,. In Fig.4 (b), the achievablél/ >
performance is summarized fer, = 0 ~ 0.6 (7' = 0.4).
As the uncertainty in the previewable disturbance grows, the
H* performance is not significantly recovered and a similar
feature to the first example (118) is observed.

| —hs l<
LI~

3y

ny + Y+

Fig. 3. H disturbance attenuation problem.

B
h

VIl. CONCLUSION

A solvability condition and control law for a broad range
of H*° preview/delayed control problems were established
based on the analytic solutions of the corresponding operator
Riccati equations. The solvability condition is characterized
by the roots of the transcendental equations, and the control
law for the general problem is given based on a predictive
o e compensation with an integro-differential observer. The solv-
e ability conditions for typical control problems were further
investigated and relevant literature were used to interpret some
problems. The results are also applicable to the design of
an H? controller because the solutions of the corresponding
operator Riccati equations were clarified.

()T =0~ 04 (5, =0)
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