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Abstract  

Multi-point aerodynamic optimization of a 

transonic wing using data mining is discussed. 

Design problem has two objectives which are 

minimization of drag coefficient at Mach 

number 0.6 and 0.8 respectively. Here, Mach 

number 0.6 is considered as a subsonic 

condition, and Mach number 0.8 is considered 

as a transonic condition with the local shock. To 

reduce the local shock that causes wave drag, 

the sweep back angle is required in transonic 

condition. On the other hand, the sweep back 

angle reduces lift to drag ratio in subsonic 

condition. Thus, a complex high lift device like a 

flap is required. Moreover, the torsion at wing 

root becomes stronger with high sweep back 

angle. As a result, the wing structure weight 

becomes heavy. To design high efficient new 

generation civil aircraft, the design knowledge 

which implements a subsonic and a transonic 

aerodynamic performance simultaneously with 

few structure penalty is expected. In this study, 

tapered wing geometry is defined with two cross 

sections. 31 sample designs are calculated by 

the unstructured Euler solver and Kriging 

surrogate models for the resulting drag 

coefficient of subsonic and transonic condition 

are constructed. Using these models, non-

dominated solutions are obtained by genetic 

algorithm (GA). Analysis of variance (ANOVA) 

and Self-organized map (SOM), which are data 

mining techniques, are also applied to obtain 

the relationship between design space and 

solution space. According to this result, there is 

trade-off between two objective functions and 

compromised design can be considered. 

According to data mining result, there is 

possible to find the design which achieve low 

drag with low sweep back angle and contrived 

cross sections.  

1  Introduction  

In this study, the multipoint aerodynamic 

optimization of a transonic wing using data 

mining techniques is discussed. A simple 

tapered wing is considered as the beginning in 

this study. The objective of the design problem 

is to minimize the drag coefficient (CD) under 

transonic and subsonic conditions 

simultaneously.  

Under transonic conditions, a large sweep 

back angle is required to reduce the local shock 

(Fig. 1(a)) that causes wave drag. On the other 

hand, a large sweep back angle leads to a 

decrease in the lift coefficient (CL) under 

subsonic conditions, because wave drag 

becomes small (Fig. 1(b)). In such a case, a 

complex high-lift device like a flap is required. 

Moreover, the torsion at the wing root increases 

with the sweep back angle. As a result, the wing 

structural weight becomes heavy with an 

increase in the sweep back angle 
1)

.  

Designing efficient next generation civil 

aircraft wings should involve the 

implementation of the design knowledge of both 

low-speed aerodynamic performance and high-

speed aerodynamic performance simultaneously 

with few structure changes. In this paper, the 

fundamental design knowledge required for 

designing an efficient transonic wing using data 

mining techniques is discussed. Sample designs 

for the resulting CD under subsonic and 

transonic conditions are constructed by using an 

unstructured Euler solver 
2, 3)

 and the Kriging 

surrogate models 
4)

. Non-dominated solutions 

are obtained by using these models and a 
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genetic algorithm (GA) 
4)

. The analysis of 

variance (ANOVA) method 
4)

 and the self-

organizing map (SOM) method 
4), 5)

, which are 

data mining techniques, are also applied to 

obtain the relationship between design space 

and solution space. 

 

(a)                                        (b) 

Fig. 1 Comparison of flowfield around a airfoil between 

subsonic/transonic flow; (a)Mach number 0.6, (b)Mach 

number 0.8. 

 

2  Procedure of Efficient Global 

Optimization  

The procedure of the present design (Fig. 

2) is as follows: First, N samples are decided by 

Latin hypercube sampling (LHS) 
4)

 which is one 

of the space filling methods, and sample designs 

are evaluated for the construction of Kriging 

surrogate models. Then, n additional designs are 

added as sample points, and model accuracy is 

improved by constructing Kriging models using 

N+n samples. n additional points are decided by 

expected improvement (EI) maximization 
4)

 

discussed below. MOGA is applied to solving 

this maximization problem. This process is 

iterated until improvement of objective 

functions becomes little. Finally, the non-

dominated front can be investigated (Fig. 3), 

and data mining techniques can also be applied 

to obtain the information of the design problem. 

The detail of each procedure is described in the 

following sections. 

2.1 Kriging Model  

Kriging model expresses the value y (x
i
) at 

the unknown design point x
i
 as: 

 

y (x
i
) = μ+ε(x

i
)  (i = 1, 2, …., m)

 
(1) 

 

where, m is the number of design variables, μ is 

a constant global model and ε(x
i
) represents a 

local deviation from the global model. The 

correlation between ε(x
i
) and ε(x

j
) is strongly 

related to the distance between the two 

corresponding point, x
i
 and x

j
. In the model, the 

local deviation at an unknown point x is 

expressed using stochastic processes. Some 

design points are calculated as sample points 

and interpolated with Gaussian random function 

as the correlation function to estimate the trend 

of the stochastic process. 

2.2 Selection of Additional Samples 

Once the models are constructed, the optimum 

point can be explored using an arbitrary 

optimizer on the model. However, it is possible 

to miss the global optimum, because the 

surrogate model includes uncertainty at the 

predicted point. Therefore, this study introduced 

EI values as the criterion.                                                                                  

EI for minimization problem can be calculated 

as follows: 
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where fmin is the minimum values among sample 

points and ŷ is the value predicted by Eq. (1) at 

an unknown point x. Φ and φ are the standard 

distribution and normal density, respectively. EI 

considers the predicted function value and its 

uncertainty, simultaneously. Thus, the solution 

that has a large function value and a large 

uncertainty may be a promising solution. 

Therefore, by selecting the point where EI takes 

the maximum value, as the additional sample 

point, robust exploration of the global optimum 

and improvement of the model can be achieved 

simultaneously because this point has a 

somewhat large probability to become the 

global optimum. 

2.3 Knowledge Discovery Techniques 
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2.3.1 Analysis of Variance (ANOVA)  

An ANOVA which is one of the multivariate 

analyses is carried out to differentiate the 

contributions to the variance of the response 

from the model. To evaluate the effect of each 

design variable, the total variance of the model 

is decomposed into that of each design variable 

and their interactions. The decomposition is 

accomplished by integrating variables out of the 

model ŷ. The main effect of design variable xi is 

as follows: 

    niinii dxdxdxdxxxyx ,..,,,...,),.....,(ˆ)( 1111

 

(3) 

 

where, total mean μ is as follows:  

 

nn dxdxxxy ,.....,),.....,(ˆ
11    

(4) 

 

The proportion of the variance due to 

design variable xi to total variance of model can 

be expressed as: 
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(5) 

 

The value obtained by Eq. (5) indicates the 

sensitivity of the objective function to the 

variation of the design variable. 

 

2.3.2 Self-organizing Map (SOM)  

SOM is an unsupervised learning, nonlinear 

projection algorithm from high to low 

dimensional space. This projection is based on 

self-organization of a low-dimensional array of 

neurons. Higher dimensional space is possible, 

but they are not generally used since their 

visualization is problematic. The lattice of the 

gird can be either hexagonal or rectangular. In 

this paper, the former is used because it is more 

pleasing to the eye. 

Each neuron k is represented by an n-

dimensional prototype vector mk=(mk1, mk2, 

…,mkn), where n is the dimension of the design 

space, that is number of design variables. To 

train the map, input vector X which represents a 

sampling design is selected and the nearest 

neuron mc (the best matching unit, BMU) is 

found from the prototype vectors on the map. 

The prototype vectors of the BMU and its 

neighbors on the grid mk are moved towards X 

as follows. 

 

mk = mk + α(t)(X - mk)
 (6) 

 

where, α (t) is learning rate and it decreases 

monotonically with time. This process as sown 

in Fig. 4 is iterated until α(t) is converged well. 

During the iterative training, prototype vectors 

are also converged. The closer two patterns are 

in the original space, the closer is the response 

of two neighboring neurons in the low-

dimensional map. Thus, SOM reduces the 

dimension of input data while preserving their 

features. The trained SOM is systematically 

converted into visual information, and 

qualitative information can be obtained. 

In this study, commercial software 

modeFrontier® is used for visualization. 

modeFrontier® creates a map in a two 

dimensional hexagonal grid, and this map can 

be colored based on the every attribute values 

(that is, design variables, and objective 

functions). Therefore, n component planes are 

created and can be compared visibly. However, 

if n is large number and it is not pleasing to the 

eye, component planes should be arranged for 

the efficient comparison. In this study, 

component plane reorganization was used 

together with traditional correlation analysis
 5)

. 

Correlations between component pairs are 

revealed as similar patterns in identical 

positions of the component plane so called 

‘SOM’s SOM.’ Pattern matching is something 

that the human eye is very good at. The 

knowledge management can be made even 

easier if the component planes are reorganized 

so that possibly correlated ones are presented 

near each other. 
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Fig. 1  Procedure of multi-objective global 

exploration 

 
Fig. 2  Selection of additional samples from non-

dominated solutions based on EI maximization 

problem 

 
Fig. 3  Procedure of SOM training 

 

 

 

3  Formulation  

3.1 Objective functions 

Aerodynamic performance of each sample 

designs is evaluated by unstructured Euler 

solver. Here, TAS code 
2), 3)

 is employed. The 

multi-objective design problem is defined as 

follows: 

 

Minimize CD at Mach number 0.8 (CL = 0.418) 

Minimize CD at Mach number 0.6 (CL = 0.532) 

 

Here, Mach number 0.6 is considered as a 

subsonic condition without local shock, and 

Mach number 0.8 is considered as a transonic 

condition with the local shock.  

 The structural weight for each design is also 

estimated based on statistical equation
 1)

 from 

the wing geometry. 
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3.2 Design Variables 

In this study, simple tapered wing geometry is 

considered (Fig. 5(a)), the specifications of 

which are listed in tables 1 and 2. As shown in 

table 1, cross sections of the wing tip and root 

are determined by using the PARSEC airfoil 

shape (Fig. 5(b)). The sweep back angle and the 

twist angle are also defined. 

 

Table 1 (a) Design variables and (b) Wing 

planform. 

(a) 

 
 (b) 

 
 

 
(a) 

 
(b) 

Fig. 5 (a)Wing geometry and generated mesh and 

(b)PARSEC airfoil and parameter definition. 

 

4 Results and Discussions  

4.1 Sampling results 

31 sample designs are evaluated, and Kriging 

models for each objective function are 

generated. The EIs maximization results based 

on MOGA as shown in Fig. 6 shows that there 

is a trade-off between two objective functions. 

The color of each scatter represents the 

magnitude of the wing structural weight. 

Table 3 shows design variables and objective 

functions of selected design from Fig. 6. Figs. 7 

(a)-(c) show pressure coefficient around the 

wing upper surface. Wing_A achieves the 

lowest CD. This wing has relative low sweep 

back, on the other hand, it has also thin airfoils 

at the root. Thus, this wing achieves the lowest 

CD, while it has low sweep back angle. Wing_B 

achieves large CD in spite of its large sweep 

back. According to table 1, this design has thick 

airfoils around the tip and the root. Additionally, 

from Fig. 7(b), the strong compressive area 

which causes the wave drag is widely appeared 

on the upper surface. Thus, this design achieves 

higher CD. Wing_C has relative small sweep 

back angle and thick airfoil around the wing 

root. This design achieves low CD @Mach=0.6. 

Additionally, it also achieves lower CD 

@Mach=0.8 than that of Wing_B. This result 

suggests that the wave drag can be decreased by 

proper thickness distributions, and there is 

possibility to improve the aerodynamic 

performance with smaller sweep back angle. 
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4.2 ANOVA results 

ANOVA results are shown in Fig. 8. In 

transonic condition, dv4 and dv14, which 

represent the thickness of the upper surface of 

the wing, are found to significantly affect CD. 

This result suggests that the upper surface of the 

wing mainly determines the pressure drag and 

the wave drag. dv22 which represents the sweep 

back angle affects to CD. Therefore, the 

thickness on the upper surface and the sweep 

back angle have to be carefully designed. 

In subsonic condition, the thickness at root 

also affects to CD. Additionally, dv1, which 

represents the radius of the leading edge at the 

wing root, affects to CD. This result agrees with 

the theory of the subsonic airfoil. 

4.3 SOM results 

Figure 9 shows the SOM results. The 

component plane is colored on the basis of the 

attribute values. Thus, in this study, 25 (2 

objective functions, 22 design variables, and 

one estimated wing weight) component planes 

are obtained. From Fig. 9, it is found that 

component pairs have similar patterns if their 

positions on the component plane are identical. 

This result shows that there is a linear 

correlation between CD at transonic speed and 

the thickness of the wing root. On the other 

hand, there is a correlation between CD at 

subsonic speed and the sweep back angle. 

Remarkably, the correlation between CD at 

transonic speed and the sweep back angle is not 

linear, though the ANOVA result shows that the 

sweep back angle affects CD at transonic speed. 

This shows that it is possible to obtain a design 

in which low drag with low sweep back angle, 

when the root thickness is designed popery. 

To acquire the information to design the 

transonic wing which has low sweep back angle, 

component planes about objective functions, the 

estimated structural weight, and the design 

variables are compared as shown in Figs. 10 and 

11. Figure 11 shows the selected design 

variables by the correlation as shown in Fig. 9. 

According to these results, the designs around 

the upper left on the map are ideal data. These 

design data has the low structural weight and 

the low sweep back angle as shown in Fig. 10(c) 

and Fig. 11(c), respectively. Investigating the 

aerodynamic performances by Figs. 10(a) and 

(b), these designs achieves relative low drag in 

each Mach number. Fig. 11(a) suggests that the 

wing root have moderate value. On the other 

hand, according to Fig. 11(b), the thickness at 

the wing tip becomes absolute small. 

Additionally, the component plane of dv4, 

which represents the thickness of the upper 

surface of the wing root, shows similar tendency 

as the total thickness of the wing root. Thus, dv4  

is important design parameter for this design 

problem. 

 

 

(a) 

 

(b) 
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(c) 

Fig. 6 Multi-objective problem solution and non-

dominated front. 

 

Table3 Specifications of selected designs 

 

 

Wing_A     Wing_B         Wing_C 

Fig. 7 Comparison of pressure coefficient among 

selected solutions. 

 
CD@Mach0.8

dv4
dv14
dv22
dv7
dv1-dv22
others

 

(a) 

 

CD@Mach0.6

dv4
dv14
dv1
dv11
dv1-dv14
others

 

 (b) 

Fig. 8 ANOVA result showing effect of design 

variables on CD under (a) transonic and (b) subsonic 

conditions. 

 

 

Fig. 9 Summary of SOM results self-organized on 

the basis of similarity between attribute values. 

(solid line: objective functions and dotted line: 

selected design variables) 

 

 

(a) 

 

(b) 



MASAHIRO KANAZAKI, SHINKYU JEONG 

8 

 

(c) 

Fig. 10 Component plane of SOM colored by wing 

performance; (a)CD@M=0.8, (b) CD@M=0.6, and 

(c)wing structural weight. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 11 Selected component plane colored by design 

variables; (a)Thickness at root, (b)Thickness at the 

tip, (c)Sweep back angle, (d)Thickness at the upper 

surface of the wing root. 

 

5 Conclusions  

In this paper, the acquirement information of 

the transonic wing design was discussed. 

Several samples are evaluated by the 

unstructured Euler solver in transonic/subsonic 

condition, and Kriging models for each 

objective function are generated. The EIs 

maximization problem is solved by MOGA to 

select additional samples which help to improve 

the surrogate models. Then, ANOVA and SOM 

are applied to analyze the design space. 

 Resulting solutions by Kriging based MOGA 

shows that there is weak trade-off between drag 

coefficients at transonic/subsonic condition. 

ANOVA results suggest that the sweep back 

angle, the thickness at the wing root, and the 

radius at the leading edge of the wing root are 

important parameter for this design problem. 

According to SOM results, there are 

possibilities to design the transonic wing which 

have low sweep back.  To acquire such design, 

the thickness of the upper surface at the wing 

root is key design parameter. 
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