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Abstract 
Efficient global optimization (EGO) was applied to the multi-objective design and 
knowledge discovery of a supersonic transport (SST) wing. The objective functions 
considered here are employed to maximize the lift–to-drag ratio at supersonic 
cruise, to minimize the sonic boom intensity and to minimize wing structural 
weight, simultaneously. The EGO process is based on Kriging surrogate models, 
which were constructed using several sample designs. Subsequently, the solution 
space could be explored through the maximization of expected improvement (EI) 
values that corresponded to the objective function of each Kriging model because 
the surrogate models provide an estimate of the uncertainty at the predicted point. 
Once a number of solutions have been obtained for the EI maximization problem 
by means of a multi-objective genetic algorithm (MOGA), the sample designs 
could be used to improve the models’ accuracy and identify the optimum solutions 
at the same time. In this paper, 108 sample points are evaluated for the 
constructions of the Kriging models. In order to obtain further information about 
the design space, two knowledge discovery techniques are applied once the 
sampling process is completed. First, through functional analysis of variance 
(ANOVA), quantitative information is gathered and then, self-organizing maps 
(SOMs) are created to qualitatively evaluate the aircraft design. The proposed 
design process provides valuable information for the efficient design of an SST 
wing. 

Keywords: Supersonic Wing, Multidisciplinary Design, Efficient Global 
Optimization, Analysis of Variance, Self-organizing Map 

 

1. Introduction 

Recently, several techniques have been proposed for the efficient design of real-world 
aircrafts based on numerical simulations. In Ref (1), a multi-fidelity approach was adopted 
for the design of a supersonic transport (SST) wing. Specifically, two regression models 
were constructed in order to evaluate its aerodynamic performance. The first model was 
based on a low-fidelity/ low-cost full potential solver, and the second was based on a 
high-fidelity/high-cost Euler solver. The next step was to evaluate the differences between 
the two models. On the basis of the differences, additional design samples were selected and 
evaluated using the high-fidelity solver in order to enhance the global model. In Ref (3), 
efficient global optimization (EGO), i.e., optimization based on Kriging surrogate models 
was applied to solve real-world design problems with less computational cost. EGO proved 
to be effective for global search when combined with heuristic methods, like the genetic 
algorithm (GA)(4). Thus, the EGO process could identify the global optimum with a 
relatively low evaluation cost. Obayashi, et al. proposed the multi-objective design 
exploration (MODE) (5); a set of non-dominated solutions were obtained using EGO for the 
multi-disciplinary design optimization (MDO) of a transonic wing using EGO, and the 
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design knowledge was discovered by means of data mining techniques such as 
self-organizing maps (SOMs)(6) and rough set theory(7). In authors’ previous study (8), EGO 
was also applied to solve the design problem of a high-lift airfoil and acquire useful 
information. 

As stated above, an efficient design is required to solve real-world problems. Therefore, 
the surrogate model based design exploration can be potentially employed for the 
multi-disciplinary design and knowledge discovery of a SST wing with airframe 
configuration such as the supersonic business jet (SSBJ)(9). In this study, EGO is applied to 
the wing design of the silent SST demonstrator (S3TD)(10)-(11), as shown in Fig. 1(a), which 
is developed by Japan Aerospace Exploration Agency (JAXA). The design problems of a 
supersonic aircraft includes many requirements such as lower drag, lower structural weight, 
lower noise at take-off/landing, and lower sonic boom at supersonic cruise. In other words, 
the design problems are multifaceted. In addition, the complex geometry of the aircraft 
consisting of the main wings, fuselage, and horizontal/vertical tail wing need to be taken 
into consideration. Conventionally, aircraft’s wing design has been considered that the lift 
by the wing equal to the aircraft weight. In such design, trim balance by the horizontal tail 
should be considered after the wing is designed, and the drag by the horizontal tail is not 
always minimized. As this result, there is possibility of increasing the total drag, even if the 
drag of the main wing has been minimized. With these facts, this study proposes the design 
methodology which consider not only the lift constraint but also the trim constraint, 
simultaneously; ‘the lift equal to the weight’ and ‘the momentum around the gravity center 
is zero by the setting of the horizontal tail.’ In such design condition, the number of the 
evaluation becomes higher. This disadvantage can be resolved by the employment of EGO 
process, and the design exploration can be satisfyingly carried out in practical time. 

The design problem on which the focus in this study is the design optimization of 
supersonic wings that can help achieve a relatively high lift-to-drag ratio (L/D), low sonic 
boom intensity (ΔP) defined in Fig. 1(b), and low structural wing weight (Wwing). Namely, 
the design problem addressed in this study is MDO, and has three objectives: first, to 
maximize the L/D, second, to minimize the ΔP, and lastly, to minimize the Wwing. During the 
EGO process, several sample designs are obtained using design of experiment (DOE) (2)(4). 
The aerodynamic performance of the obtained sample designs is evaluated by means of 
computer-aided design (CAD)-based automatic panel analysis (CAPAS) developed at JAXA 
(10)-(11) in consideration of two aerodynamic constraints about the lift and the moment of the 
aircraft. With the use of CAPAS, the pressure distribution along the aircraft surface can be 
obtained and the L/D can be calculated. CAPAS can also estimate the ΔP on the ground. 
Wwing is estimated by exploiting MSC.NASTRANTM.  

During the EGO process, non-dominated solutions of the multi-objective design 
problem are explored efficiently by means of the DOE and the Kriging-based 
multi-objective genetic algorithm MOGA. After selecting design samples, Kriging-based 
functional analysis of variance (ANOVA) (2)(5)(8)(12) and SOMs(4)(8) are used to extract useful 
design knowledge. ANOVA, a multivariate analysis method is used to acquire quantitative 
information about the contribution of each design variable to the objective functions. 
Through these analyses, information necessary to solve fundamental design problems can 
be obtained. The next step is to put SOMs to practical use. This is a “data mining” method 
widely used to project multidimensional data onto a two-dimensional (2D) map. Through 
this visualization, qualitative information useful to solve design problems can be obtained. 
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(a)                               (b) 
Fig. 1   S3TD designed by JAXA: (a) Conceptual design (10), and (b) Definition of sonic boom intensity. 

2. The EGO Procedure 

The optimization procedure 
followed for the design of the 
S3TDconsists of the following 
steps (see Fig. 2). First, N 
design samples are selected by 
means of Latin hypercube 
sampling (LHS)(2)(5)(8)(13) which 
is a space filling method and 
then assessed for the 
construction of a Kriging 
surrogate model. Second, n 
additional design samples are 
added and the design's accuracy 
is improved by constructing a 
new Kriging model based on all 
N+n samples. It should be noted that the n additional samples are selected using expected 
improvement (EI) maximization(2)(4)(5)(8)(14). Furthermore, MOGA is applied to solve this 
maximization problem. This process is iterated until the improvement of the objective 
functions becomes negligible. Finally, the non-dominated front is examined, while data 
mining techniques are applied to obtain the further information about the design problem. 
Each step of the optimization procedure is described in detail in the following sections. 

 
2.1. Kriging surrogate model 

The Kriging model express the value y(xi) at the unknown design point xi as 

y (xi) = μ+ε(xi)  (i = 1, 2, …., m),  (1) 

where m is the number of design variables, μ is a mean value of the objective function 
among all samples and ε(xi) represents a local deviation from the global model. The 
correlation between ε(xi) and ε(xj) is strongly related to the distance between the 
corresponding points, xi and xj. In the Kriging models, the local deviation at an unknown 
point x is expressed using stochastic processes. Specifically, a number of design points are 
calculated as sample points and then interpolated using a Gaussian random function as the 
correlation function to estimate the trend through the stochastic process(3). 
 
 

 

Fig. 2  Procedure for the efficient exploration of the global 

design model 
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2.2. Selection of Additional Design Samples 
Once the models are constructed, the optimum point can be examined with the use of an 

arbitrary optimizer on the Kriging surrogate models. However, it is difficult to accurately 
identify the global optimum, because the Kriging surrogate models include uncertainty at 
the predicted point. Therefore, for the purpose of this study, EI values have been introduced 
as a selection criterion. The EI values for maximization problem are calculated as 
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where fmax and fmin are the maximum and minimum value among all the available sample 
points and ŷ the value calculated by Eq. (1) at an unknown point x. On the other hand, Φ 
and φ are the standard distribution and normal density, respectively. Lastly, the EI values 
are estimated based on the predicted function value and its uncertainty. Consequently, the 
solution that corresponds to a relatively large function value and large uncertainty may be 
the solution sought. In other words, by selecting the point where EI(x) takes the maximum 
value as an additional sample point, the robust exploration of the global optimum and the 
improvement of the model can be simultaneously achieved, as shown in Fig. 3(a), because 
this point has a relatively large probability to be the global optimum.  

In this study, a multi-objective problem is considered. Thus, to decide select additional 
samples, the EI values corresponding to each different objective function should be 
simultaneously maximized. In this study, a divided range MOGA (DRMOGA) (8)(15) was 
employed to obtain non-dominated solutions by solving these multi-objective problems. To 
improve each Kriging model, several non-dominated solutions can be used as to select 
additional sample designs. Here, the k-means clustering method (16) is applied to cluster the 
non-dominated solutions, and the sample designs that are the closer to the centroid of each 
cluster are selected as additional samples (Fig. 3(b)). In this study, 20 clusters were defined. 

 
(a)                                     (b) 

 
Fig. 3  (a) Improvement of the global model, (b) k-means clustering and selection of additional samples 

based on the non-dominated solutions derived through EI maximization. 
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2.3. Knowledge Discovery Techniques 
  
2.3.1. ANOVA 

ANOVA, a method for multivariate analyses, is carried out to differentiate the 
contribution of different design variables to the variance of the responses from the global 
model. Specifically, to evaluate the contribution of each design variable, the total variance 
of the model is decomposed into the variance attributed to each design variable and the 
interactions between each other. The decomposition is accomplished by integrating 
variables out of the model ŷ. The variance of design variable xi to μ is defined as 

    niinii dxdxdxdxxxyx ,..,,,...,),.....,(ˆ)( 1111  (4) 

where the total mean μ is calculated as  

nn dxdxxxy ,.....,),.....,(ˆ 11    (5) 

The proportion of the variance attributed to the design variable xi to the total variance of the 
model can be expressed as: 
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The value obtained by Eq. (6) indicates the sensitivity of an objective function to the 
variance of a design variable, xi. 
 
2.3.2. SOM 

SOM are constructed by means of an unsupervised learning, nonlinear projection 
algorithm from a high to a low-dimensional space. This projection is based on the 
self-organization of a low-dimensional array of neurons. The lattice of the grid can be either 
hexagonal or rectangular. In this paper, the former is selected because it results in a SOM 
from which useful information can be easily retrieved by visual inspection. 

Each neuron k on the map is represented by an n-dimensional prototype vector mk = 
(mk1, mk2, …,mkn) as shown in Fig. 4(a), where n is the dimension of the input vector (design 
space)—that is to say the number of design variables and objective functions. In the 
learning process, the input vector X representing a design sample is first selected and then, 
the nearest neuron mc (the best matching unit, BMU) is identified using the prototype 
vectors of the map. The prototype vectors of the mc and its neighbors on the grid mk are 
shifted towards X as follows: 

mk = mk +α(t)(X-mk) (7) 

where α(t) is the learning rate, and it decreases monotonically with time. This process is 
iterated until α(t) is converged enough. 

During the iterative training process, the prototype vectors are also converged. The 
closer two patterns are in the high-dimensional space, the closer is the response of the 
corresponding neighboring neurons in the low-dimensional map. Consequently, SOM 
reduces the dimensions of the input data while preserving their features. The refined SOM 
is not only systematically converted into visual information, but qualitative information can 
also be obtained. 

In this study, the commercial software modeFrontier® is used for the visualization of 
multidimensional data. modeFrontier® creates a map in a 2D hexagonal grid, which can be 
colored based on the every attribute values (for the design variables, and the objective 
functions). Therefore, the n component planes are visualized and can be compared easily. In 
the trained map, each hexagonal grid has similar vector to its neither. By coloring the grids 
by component values of the vector, the relationship among objective functions and design 
variables such as a ‘trade-off’ can be observed at a glance as shown in Fig. 4(b). However, 
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if the number of component planes is relatively large, they should be arranged for a 
comparison. Specifically, component plane reorganization can be combined with traditional 
correlation analysis (17). Correlations between component pairs are revealed by the patterns 
observed in identical positions of the component planes, the so-called ‘SOM’s SOM.’ 
Pattern matching is also possible by visual inspection. The extraction of useful design 
knowledge can be further simplified if all component planes are reorganized so that the 
most strongly correlated planes are presented next to each other. 

  
(a)                                             (b) 

Fig. 4  Self-organizing map, (a)Schematic illustration of SOM training, (b) Application example of SOM 

visualization example for minimization problem which has three objective functions, f1-f3.  

3. Formulation 

3. 1. Design Variables 
Figure 5 shows the illustration of 

the supersonic wing geometry to be 
designed. These include the airfoil 
geometries (thickness and camber) of 
three cross sections, the sweepback 
angles, the twist angles, and the 
aspect ratio. The design variables and 
their range are summarized in Table1. 

 
Table 1 Design variables and their values 

 Design variable Upper boundLower bound

dv1 Sweepback angle at inboard section 57 (°) 69 (°) 

dv2 Sweepback angle at outboard section 40 (°) 50 (°) 

dv3 Twist angle at wing root 0 (°) 2(°) 

dv4 Twist angle at wing kink –1 (°) 0 (°) 

dv5 Twist angle at wing tip –2 (°) –1 (°) 

dv6 Maximum thickness at wing root 3%c 5%c 

dv7 Maximum thickness at wing kink 3%c 5%c 

dv8 Maximum thickness at wing tip 3%c 5%c 

dv9 Aspect ratio 2 3 

dv10 Wing root camber at 25%c –1%c 2%c 

dv11 Wing root camber at 75%c –2%c 1%c 

dv12 Wing kink camber at 25%c –1%c 2%c 

dv13 Wing kink camber at 75%c –2%c 1%c 

dv14 Wing tip camber at 25%c –2%c 2%c 

 

 

Fig. 5  Illustration of wing geometry to be evaluated 
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3. 2. Objective Functions 
The objective functions are derived through the simultaneous maximization of L/D at a 

target CL, the minimization of ΔP, and the minimization of Wwing at supersonic cruise 
conditions (Mach number: 1.6). The aerodynamic performance is evaluated by means of 
CAPAS, as shown in Fig. 6. CAPAS includes the CATIA® v4/v5 application programming 
interface (API) and a full potential solver combined with a panel method (10). The L/D and 
CL are directly estimated from the pressure distribution along the aircraft surface, which can 
be derived with the use of the full potential solver. To evaluate the ΔP from the pressure 
distribution near the aircraft, Thomas’s waveform parameter method (10) is used after the 
shockwave form has been estimated based on the pressure distribution, which is calculated 
around the aircraft using the Whitham’s theory (10). In this study, the speed of sound and the 
air density was set equal to those at an altitude of 14km. 

It should also be noted that, in this study, the same structural model for wing weight 
estimation as Ref. (6) is employed. The inboard wing is made from aluminum, while the 
outboard wing is made from composite material. In addition, the inboard wing is composed 
of multiple frames, from the rib to the spar. The outboard wing has a full-depth honeycomb 
sandwich structure. In this design system, the optimization of the thickness of each frame 
within the inboard wing and the wing stacking sequences of the laminated composite 
material of the outboard wing was performed to meet concurrently the minimum weight 
constraints and the strength and flutter requirements. The strength characteristics were 
evaluated using the commercial software MSC.NASTRANTM. The conditions to which the 
computations corresponded were those of a symmetric maneuver at +6G, while the safety 
margin was set at 1.25. 

To obtain the additional sample designs described in §2.2, three EI values are 
simultaneously maximized by means of DRMOGA. On the other hand, the EI values are 
calculated based on three different Kriging models; EIL/D, EIΔP and EIWwwing. Eqs. (2) and (3) 
are written for the present design problem as 
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Fig. 6  Pressure distribution along the aircraft surface estimated by means of CAPAS 

 
3. 3. Constraints 

In the design problem, two aerodynamic and two geometric constraints are considered: 
aero1. Target CL=0.105 to lift the aircraft under supersonic cruise conditions 
aero2. Maintain the trim balance by varying the angle of the horizontal tail wing 

(stabilizer) 
geo1. Wing area S=21m2 
geo2. Place the kink airfoil along the fuselage axis so that the Mach cone is crossed at 

the leading edge of kink airfoil 
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The aerodynamic constraints are illustrated in Fig. 7. Because CD is proportional to CL
2, 

the pressure distribution around an aircraft is determined from three different angles of 
attack under cruise conditions in order to satisfy aero1. In addition, to meet aero2, the 
reflection angle of the stabilizer is adjusted for every aerodynamic evaluation individually. 
Since the pitching moment around the gravity center of the aircraft is proportional to the 
reflection angle, to identify the most suitable angle, each aerodynamic evaluation is 
conducted for two different reflection angles. Once the angle of attack and the angle of the 
horizontal tail are determined, the aerodynamic evaluation is conducted again under the 
flight conditions determined. Specifically the evaluations are conducted for each point in 
Fig. 7(a) to decide the reflection angle, as shown in Fig. 7(b). In total, 12 aerodynamic 
evaluations are required for each design sample. 

Two geometric constraints are also considered. The wing area is set to 21m2 (geo1) and 
geo2, about the Mach cone and main wing interaction is illustrated in Fig. 5. In the case of 
the S3TD, the inboard wing should have a subsonic leading edge in order to achieve the 
high aerodynamic performance at supersonic cruise conditions. The outboard wing has a 
supersonic leading edge to maintain the high subsonic aerodynamic performance during 
landing and take-off. Therefore, the location of wing/fuselage intersection is determined 
for aircraft design under study according to geo2. 

 

 

(a) 

 

(b) 

Fig. 7  Image of the geometric constraints considered in the aircraft design under study: (a)Constraint for 

the aircraft's lift, and (b)Constraint for the angle of the horizontal tail wing. 

 

4. Results and Discussions 

4. 1 Sampling Results 
The results of the EGO process are shown in Fig. 8. Many additional samples could be 

added around the direction of the multi-objective optimum (non-dominated solutions, or 
approximate Pareto optimal set), and the trade-off between the objective functions. To 
compare the most promising samples for each objective function, three samples named 
DesA, B, and C are evaluated.  

Figure9(a) shows the comparison of the geometry and pressure distribution over the 
surface of the 2.5th aircraft design (reference geometry defined by JAXA(7)). In the case of 
DesA, the highest L/D was achieved, DesB was characterized by the lowest ΔP, and DesC 
by the lowest Wwing. The value of the corresponding objective functions are summarized in 



 

 

Journal of 
Template 

9 

Vol. 00, No. 0, 0000 

Table 2, and design variables of obtained designs are summarized in Table 3. According to 
Fig. 9, the outboard wing of DesA reduces the wave drag with gradual pressure variation 
compared with the 2.5th aircraft design. In other words, the total drag reaches a minimum, 
while the highest L/D is achieved. DesB is characterized by a relatively high sweep-back 
angle at the inboard wing and consequently, lower shock wave. Namely, the sonic boom 
intensity on the ground should be reduced. Lastly, in the case of DesC, the lowest Wwing was 
achieved because this aircraft design is characterized by a relatively low sweep-back angle. 
Due to the low sweep–back angle, the shockwave produced by the aircraft at supersonic 
speed is more intense and ΔP the highest. An additional characteristic of the DesC is that 
the stabilizer increases the aircraft's lift in order to reduce the aerodynamic force developed 
on the main wing at supersonic cruise conditions. Therefore, the structural weight of the 
mail wing becomes lower. The same conclusion is drawn when the trim balance constraint 
(aero2) is considered during the aircraft design process.  

Figure9(b) shows the comparison of equivalent areas 18, 19) among DesA-C. From this 
figure, equivalent areas of DesA, B smoothly increased. On the other hand, the equivalent 
area of DesC rapidly increased due to its low sweep angle of the main wing. According to 
the area-rule 18), the airframe which has the smooth variation of the equivalent area 
achieves low drag. In actual fact, DesA, and B achieve lower drag. Additionally, the 
equivalent area of DesB is increased gentler than that of DesA around the main wing (about 
10m). This result agreed with Darden’s sonic boom minimization theory 19). These results 
suggest that the CAPAS evaluation was in good qualitative agreement with low drag/low 
boom theories. 

From Fig. 9(a), DesC has the smallest sweep back and the smallest aspect ratio among 
DesA-C, and 2.5th design. According to the theory of wing structure 18), the Wwing should be 
lighter if the wing is designed smaller sweep back and aspect ratio. 

 
Fig. 8  Solutions obtained by means of EGO 
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(a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) 

Fig. 9  Solutions picked up from EGO sampling,  (a)Comparisons of geometry and pressure distribution 

between selected designs and reference design (2.5th design provided by JAXA), (b)Comparison of 

equivalent area distribution 

 
Table 2Comparison of aerodynamic/structural performance of selected aircraft designs and reference design 

  L/D  ΔP  WWing  

DesA 7.2  1.09  806  

DesB 6.7  0.96  993  

DesC 5.6  1.53  276  

2.5th design by JAXA 6.9  0.97  691  
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Table 3 Comparison of design parameters among selected designs 

 Design variable DesA DesB DesC 

dv1 Sweepback angle at inboard section 58.84 64.98 57.33 

dv2 Sweepback angle at outboard section 41.11 46.32 41.71 

dv3 Twist angle at wing root 1.27 1.80 1.30 

dv4 Twist angle at wing kink -0.93 -0.98 -0.79 

dv5 Twist angle at wing tip -1.43 -1.20 -1.95 

dv6 Maximum thickness at wing root 3.02 3.01 4.03 

dv7 Maximum thickness at wing kink 3.37 3.00 4.78 

dv8 Maximum thickness at wing tip 3.23 4.95 3.16 

dv9 Aspect ratio 2.55 2.38 2.01 

dv10 Wing root camber at 25%c -0.47 -0.21 0.01 

dv11 Wing root camber at 75%c 0.18 -0.81 0.98 

dv12 Wing kink camber at 25%c 0.47 0.79 -0.98 

dv13 Wing kink camber at 75%c 0.73 0.89 -0.45 

dv14 Wing tip camber at 25%c -0.63 1.25 -0.35 

 
4. 2 Design Knowledge Extracted by ANOVA 

Figure 10 shows the main effects and the two-way interaction of the design variables 
for each objective functions considered in this design problem. According to Fig. 10(a), 
dv10-13, which defines the inboard wing cambers, has a predominant influence on L/D, 
suggesting that the inboard wing design is important under supersonic cruise conditions 
because the inboard wing has subsonic leading edge meeting the geometric constraint geo2. 

According to the Fig. 10(b), dv1, which is the sweep-back angle of the inboard wing, has 
a significant influence on ΔP. This result suggests that ΔP can be remarkably reduced when 
the most appropriate design of the inboard wing has been identified. The same conclusion 
can be drawn from Fig. 9. 

According to the Fig. 10(c), dv9, dv12, and dv13 influence Wwing. Specifically, dv9 
defines the aspect ratio. In theory, aspect ratio has a non-negligible influence on the wing 
structural weight. On the other hand, dv12 and dv13 determine the kink camber that has a 
non-negligible influence on the aerodynamic force acting on the wing. The aerodynamic 
force acting on the wing needs to be also considered during the wing structure design. 
Because the kink airfoil influences the geometry of both the inboard and outboard wing, this 
result suggests that the kink camber should be carefully designed in order to achieve the 
lowest possible wing weight. 
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Fig. 10  ANOVA results showing effect of design variables on objective functions: (a)L/D, (b)ΔP, and 

(c)Wwing. 

 
4. 3 Design Knowledge Extracted by SOM 

To generate SOM, the objective functions are used as training data, and the trained map 
is colored according to the objective functions, the reflection angle of the stabilizer, and 
design variables. Namely, colored component planes for 18 attribute values are created. 
These component planes are arranged according to their color contours and in particular, the 
correlation among component planes, as shown in Fig. 11. Based on this map, the 
correlation between different attribute values can be evaluated. 

Figure 12 shows the component planes about objective functions, and the reflection 
angle of the stabilizer. According to this figure, the trade-off between L/D and ΔP is not so 
sever. The reason is that the aircraft fuselage geometry is same as that of the 2.5th aircraft 
design, and during its design, the low-boom/low-drag trade-off was taken into consideration 
(7). On the other hand, the trade-off between ΔP and Wwing is severe, but a compromised 
solution can also be founded. 

Further useful information about this design problem can be extracted based on the 
correlation shown in Fig. 11. Specifically, L/D is strongly correlated with design variables, 
dv2, 8, and 13. In particular, dv2, which is the sweep-back angle of the outboard wing, 
should relatively large and dv8 relatively low in order to achieve an increase in L/D with the 
reduction of wave drag at the outboard wing. In addition, dv13 has influences on L/D, 
because dv13 defines kink camber as well as the geometry of the inboard wing and outboard 
wing. These findings are in agreement with information extracted by means of ANOVA. On 
the other hand, these correlations reveal the dependence of ΔP on the sweep-back angle of 
the inboard wing (dv1), which is in agreement with the ANOVA results. 

The Wwing is not correlated with any other attribute values. However, comparing 
component planes about Wwing with the reflection angle of the stabilizer, an aircraft design 
characterize by a positive reflection angle of the stabilizer would achieve relatively low 
Wwing. In other words, while the reflection angle of the horizontal tail is generally positive to 
maintain the trim balance, this aircraft's lift could be achieved through not only the main 
wing but also the horizontal tail. This finding is in agreement with Fig. 9. 
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Fig. 11  Summary of SOM result self-organized according to similarity among attribute values. (Dash line: 

objective functions, and dotted line: design variables) 

 
Fig. 12  Component maps colored by objective functions and angle of horizontal tail wing; (a)L/D, (b)ΔP, 

(c)Wwing, and (d)angle of stabilizer. 

 
Fig. 13  Component maps colored by selected design variables; (a)dv1, (b)dv2, (c)dv10, (d)dv11, (e)dv12, 

and (f)dv13. 

4. Conclusions 

In this paper, the acquirement of the design knowledge for a silent SST, is discussed. 
The design objectives are the maximization of L/D, minimization of ΔP, and minimization 
of Wwing. The total of 105 sample designs is evaluated and their results are used for design 
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space analysis by proposed EGO procedure. In this process, GA is used along with Kriging 
surrogate models. To obtain non-dominated solutions, additional samples are selected by 
GA exploration based on EI values on the Kriging model. In addition, ANOVA and SOM 
are employed to acquire the information about the design problem. In this study, the main 
wing of S3TD conducted by JAXA was designed. 

Many additional samples become non-dominated solutions. According to this sampling 
result, trade-off among objective functions was observed. To investigate the detail of the 
design space, ANOVA and SOM are applied.  According to these result, useful design 
knowledge can be acquired. According to ANOVA result, the inboard wing camber has a 
predominant influence on L/D. Additionally, SOM result suggest that larger outboard sweep 
back and thinner tip airfoil provide higher L/D wing, because outboard wing has supersonic 
leading edge. ΔP is influenced by the sweep back of the inboard wing. The design which 
achieves lowest Wwing has low taper ratio. Additionally, to reduce the aerodynamic force on 
the main wing, the reflection angle of the horizontal tail becomes positive where the 
horizontal tail wing also gains the lift. This knowledge could be obtained by the 
consideration of the trim balance constraint. Because it takes large computational cost to 
design the wing under such constraint, proposed design technique was highly efficient. 
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